@@ -441,7 +441,7 @@ def add_model(
441
441
You can now upload this dataset to Unbox:
442
442
443
443
>>> model = project.add_model(
444
- ... name='Linear classifiers ',
444
+ ... name='Linear classifier ',
445
445
... task_type=task_type,
446
446
... function=predict_proba,
447
447
... model=sklearn_model,
@@ -737,7 +737,7 @@ def add_dataset(
737
737
Column header in the csv containing the input text. Only applicable if your ``task_type`` is
738
738
:obj:`TaskType.TextClassification`.
739
739
categorical_feature_names : List[str], default []
740
- A list containing the names of all categorical features on the dataset. E.g. `["Gender", "Geography"]`.
740
+ A list containing the names of all categorical features in the dataset. E.g. `["Gender", "Geography"]`.
741
741
Only applicable if your ``task_type`` is :obj:`TaskType.TabularClassification` or :obj:`TaskType.TabularRegression`.
742
742
tag_column_name : str, default None
743
743
Column header in the csv containing tags you want pre-populated in Unbox.
@@ -1029,7 +1029,7 @@ def add_dataframe(
1029
1029
Column header in the csv containing the input text. Only applicable if your ``task_type`` is
1030
1030
:obj:`TaskType.TextClassification`.
1031
1031
categorical_feature_names : List[str], default []
1032
- A list containing the names of all categorical features on the dataframe. E.g. `["Gender", "Geography"]`.
1032
+ A list containing the names of all categorical features in the dataframe. E.g. `["Gender", "Geography"]`.
1033
1033
Only applicable if your ``task_type`` is :obj:`TaskType.TabularClassification` or :obj:`TaskType.TabularRegression`.
1034
1034
description : str, default None
1035
1035
Commit message for this version.
0 commit comments