|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "2722b419", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "[](https://colab.research.google.com/github/openlayer-ai/openlayer-python/blob/main/examples/tracing/google-gemini/gemini_tracing.ipynb)\n", |
| 9 | + "\n", |
| 10 | + "\n", |
| 11 | + "# <a id=\"top\">Google Gemini API tracing</a>\n", |
| 12 | + "\n", |
| 13 | + "This notebook illustrates how to get started tracing Google Gemini API calls with Openlayer." |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "code", |
| 18 | + "execution_count": null, |
| 19 | + "id": "020c8f6a", |
| 20 | + "metadata": {}, |
| 21 | + "outputs": [], |
| 22 | + "source": [ |
| 23 | + "!pip install google-generativeai openlayer" |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "cell_type": "markdown", |
| 28 | + "id": "75c2a473", |
| 29 | + "metadata": {}, |
| 30 | + "source": [ |
| 31 | + "## 1. Set the environment variables" |
| 32 | + ] |
| 33 | + }, |
| 34 | + { |
| 35 | + "cell_type": "code", |
| 36 | + "execution_count": null, |
| 37 | + "id": "f3f4fa13", |
| 38 | + "metadata": {}, |
| 39 | + "outputs": [], |
| 40 | + "source": [ |
| 41 | + "import os\n", |
| 42 | + "\n", |
| 43 | + "import google.generativeai as genai\n", |
| 44 | + "\n", |
| 45 | + "# Gemini API key\n", |
| 46 | + "os.environ[\"GOOGLE_API_KEY\"] = \"YOUR_GOOGLE_API_KEY_HERE\"\n", |
| 47 | + "\n", |
| 48 | + "# Openlayer env variables\n", |
| 49 | + "os.environ[\"OPENLAYER_API_KEY\"] = \"YOUR_OPENLAYER_API_KEY_HERE\"\n", |
| 50 | + "os.environ[\"OPENLAYER_INFERENCE_PIPELINE_ID\"] = \"YOUR_OPENLAYER_INFERENCE_PIPELINE_ID_HERE\"" |
| 51 | + ] |
| 52 | + }, |
| 53 | + { |
| 54 | + "cell_type": "markdown", |
| 55 | + "id": "9758533f", |
| 56 | + "metadata": {}, |
| 57 | + "source": [ |
| 58 | + "## 2. Configure Gemini and create a traced model" |
| 59 | + ] |
| 60 | + }, |
| 61 | + { |
| 62 | + "cell_type": "code", |
| 63 | + "execution_count": null, |
| 64 | + "id": "c35d9860-dc41-4f7c-8d69-cc2ac7e5e485", |
| 65 | + "metadata": {}, |
| 66 | + "outputs": [], |
| 67 | + "source": [ |
| 68 | + "from openlayer.lib import trace_gemini\n", |
| 69 | + "\n", |
| 70 | + "genai.configure(api_key=os.environ[\"GOOGLE_API_KEY\"])\n", |
| 71 | + "\n", |
| 72 | + "model = genai.GenerativeModel(\"gemini-pro\")\n", |
| 73 | + "traced_model = trace_gemini(model)" |
| 74 | + ] |
| 75 | + }, |
| 76 | + { |
| 77 | + "cell_type": "markdown", |
| 78 | + "id": "72a6b954", |
| 79 | + "metadata": {}, |
| 80 | + "source": [ |
| 81 | + "## 3. Use the traced Gemini model normally" |
| 82 | + ] |
| 83 | + }, |
| 84 | + { |
| 85 | + "cell_type": "markdown", |
| 86 | + "id": "76a350b4", |
| 87 | + "metadata": {}, |
| 88 | + "source": [ |
| 89 | + "That's it! Now you can continue using the traced Gemini model normally. The data is automatically published to Openlayer and you can start creating tests around it!" |
| 90 | + ] |
| 91 | + }, |
| 92 | + { |
| 93 | + "cell_type": "markdown", |
| 94 | + "id": "fb5ebdad", |
| 95 | + "metadata": {}, |
| 96 | + "source": [ |
| 97 | + "### 3.1 Non-streaming generation" |
| 98 | + ] |
| 99 | + }, |
| 100 | + { |
| 101 | + "cell_type": "code", |
| 102 | + "execution_count": null, |
| 103 | + "id": "e00c1c79", |
| 104 | + "metadata": {}, |
| 105 | + "outputs": [], |
| 106 | + "source": [ |
| 107 | + "response = traced_model.generate_content(\"What is the meaning of life?\")" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "code", |
| 112 | + "execution_count": null, |
| 113 | + "id": "b5e8c9f0", |
| 114 | + "metadata": {}, |
| 115 | + "outputs": [], |
| 116 | + "source": [ |
| 117 | + "response.text" |
| 118 | + ] |
| 119 | + }, |
| 120 | + { |
| 121 | + "cell_type": "markdown", |
| 122 | + "id": "09d39983", |
| 123 | + "metadata": {}, |
| 124 | + "source": [ |
| 125 | + "### 3.2 Streaming generation" |
| 126 | + ] |
| 127 | + }, |
| 128 | + { |
| 129 | + "cell_type": "code", |
| 130 | + "execution_count": null, |
| 131 | + "id": "9a86642c", |
| 132 | + "metadata": {}, |
| 133 | + "outputs": [], |
| 134 | + "source": [ |
| 135 | + "response = traced_model.generate_content(\"Tell me a short story.\", stream=True)\n", |
| 136 | + "\n", |
| 137 | + "for chunk in response:\n", |
| 138 | + " if hasattr(chunk, 'text'):\n", |
| 139 | + " continue # Process chunks as needed" |
| 140 | + ] |
| 141 | + }, |
| 142 | + { |
| 143 | + "cell_type": "markdown", |
| 144 | + "id": "4e6fb396", |
| 145 | + "metadata": {}, |
| 146 | + "source": [ |
| 147 | + "### 3.3 Multi-turn conversation" |
| 148 | + ] |
| 149 | + }, |
| 150 | + { |
| 151 | + "cell_type": "code", |
| 152 | + "execution_count": null, |
| 153 | + "id": "21369c42", |
| 154 | + "metadata": {}, |
| 155 | + "outputs": [], |
| 156 | + "source": [ |
| 157 | + "chat = traced_model.start_chat(history=[])\n", |
| 158 | + "\n", |
| 159 | + "response1 = chat.send_message(\"Hello, I'm learning about AI.\")\n", |
| 160 | + "response2 = chat.send_message(\"Can you explain neural networks?\")" |
| 161 | + ] |
| 162 | + }, |
| 163 | + { |
| 164 | + "cell_type": "code", |
| 165 | + "execution_count": null, |
| 166 | + "id": "22369c43", |
| 167 | + "metadata": {}, |
| 168 | + "outputs": [], |
| 169 | + "source": [ |
| 170 | + "response2.text" |
| 171 | + ] |
| 172 | + }, |
| 173 | + { |
| 174 | + "cell_type": "markdown", |
| 175 | + "id": "5e6fb397", |
| 176 | + "metadata": {}, |
| 177 | + "source": [ |
| 178 | + "### 3.4 With generation configuration" |
| 179 | + ] |
| 180 | + }, |
| 181 | + { |
| 182 | + "cell_type": "code", |
| 183 | + "execution_count": null, |
| 184 | + "id": "31369c44", |
| 185 | + "metadata": {}, |
| 186 | + "outputs": [], |
| 187 | + "source": [ |
| 188 | + "response = traced_model.generate_content(\n", |
| 189 | + " \"Write a haiku about technology.\",\n", |
| 190 | + " generation_config=genai.types.GenerationConfig(\n", |
| 191 | + " temperature=0.7,\n", |
| 192 | + " top_p=0.9,\n", |
| 193 | + " top_k=40,\n", |
| 194 | + " max_output_tokens=100,\n", |
| 195 | + " ),\n", |
| 196 | + ")" |
| 197 | + ] |
| 198 | + }, |
| 199 | + { |
| 200 | + "cell_type": "code", |
| 201 | + "execution_count": null, |
| 202 | + "id": "41369c45", |
| 203 | + "metadata": {}, |
| 204 | + "outputs": [], |
| 205 | + "source": [ |
| 206 | + "response.text" |
| 207 | + ] |
| 208 | + } |
| 209 | + ], |
| 210 | + "metadata": { |
| 211 | + "kernelspec": { |
| 212 | + "display_name": "Python 3 (ipykernel)", |
| 213 | + "language": "python", |
| 214 | + "name": "python3" |
| 215 | + }, |
| 216 | + "language_info": { |
| 217 | + "codemirror_mode": { |
| 218 | + "name": "ipython", |
| 219 | + "version": 3 |
| 220 | + }, |
| 221 | + "file_extension": ".py", |
| 222 | + "mimetype": "text/x-python", |
| 223 | + "name": "python", |
| 224 | + "nbconvert_exporter": "python", |
| 225 | + "pygments_lexer": "ipython3", |
| 226 | + "version": "3.9.18" |
| 227 | + } |
| 228 | + }, |
| 229 | + "nbformat": 4, |
| 230 | + "nbformat_minor": 5 |
| 231 | +} |
0 commit comments