|
| 1 | +""" |
| 2 | +Test script for the Oracle DB Data Lake Event Logging system |
| 3 | +
|
| 4 | +This script demonstrates the data lake functionality by: |
| 5 | +1. Initializing the event logger |
| 6 | +2. Logging sample events of each type |
| 7 | +3. Querying and displaying statistics |
| 8 | +4. Showing recent events |
| 9 | +""" |
| 10 | + |
| 11 | +import sys |
| 12 | +import time |
| 13 | +from datetime import datetime |
| 14 | + |
| 15 | +try: |
| 16 | + from OraDBEventLogger import OraDBEventLogger |
| 17 | +except ImportError: |
| 18 | + print("❌ Error: Could not import OraDBEventLogger") |
| 19 | + print("Make sure Oracle DB credentials are configured in config.yaml") |
| 20 | + sys.exit(1) |
| 21 | + |
| 22 | + |
| 23 | +def print_section(title): |
| 24 | + """Print a formatted section header""" |
| 25 | + print("\n" + "="*70) |
| 26 | + print(f" {title}") |
| 27 | + print("="*70 + "\n") |
| 28 | + |
| 29 | + |
| 30 | +def test_event_logging(): |
| 31 | + """Test the event logging system""" |
| 32 | + |
| 33 | + print_section("Oracle DB Data Lake Event Logger Test") |
| 34 | + |
| 35 | + # Initialize logger |
| 36 | + print("1️⃣ Initializing Event Logger...") |
| 37 | + try: |
| 38 | + logger = OraDBEventLogger() |
| 39 | + print("✅ Event logger initialized successfully\n") |
| 40 | + except Exception as e: |
| 41 | + print(f"❌ Failed to initialize event logger: {str(e)}") |
| 42 | + return |
| 43 | + |
| 44 | + # Test A2A Event Logging |
| 45 | + print_section("Testing A2A Event Logging") |
| 46 | + |
| 47 | + print("Logging Planner Agent event...") |
| 48 | + logger.log_a2a_event( |
| 49 | + agent_id="planner_agent_v1", |
| 50 | + agent_name="Strategic Planner", |
| 51 | + method="agent.query", |
| 52 | + system_prompt="You are a strategic planning agent with expertise in problem decomposition.", |
| 53 | + user_prompt="How can I build a distributed RAG system?", |
| 54 | + response="Step 1: Design the architecture\nStep 2: Implement A2A protocol\nStep 3: Deploy specialized agents\nStep 4: Set up monitoring", |
| 55 | + metadata={"query_type": "planning", "steps_generated": 4}, |
| 56 | + duration_ms=1234.5, |
| 57 | + status="success" |
| 58 | + ) |
| 59 | + print("✅ Planner event logged\n") |
| 60 | + |
| 61 | + print("Logging Researcher Agent event...") |
| 62 | + logger.log_a2a_event( |
| 63 | + agent_id="researcher_agent_v1", |
| 64 | + agent_name="Deep Researcher", |
| 65 | + method="agent.query", |
| 66 | + system_prompt="You are a research agent with expertise in information gathering.", |
| 67 | + user_prompt="Research distributed systems architecture", |
| 68 | + response="Key findings: Microservices, event-driven architecture, message queues...", |
| 69 | + metadata={"findings_count": 5, "sources_consulted": 3}, |
| 70 | + duration_ms=2345.6, |
| 71 | + status="success" |
| 72 | + ) |
| 73 | + print("✅ Researcher event logged\n") |
| 74 | + |
| 75 | + print("Logging Synthesizer Agent event...") |
| 76 | + logger.log_a2a_event( |
| 77 | + agent_id="synthesizer_agent_v1", |
| 78 | + agent_name="Knowledge Synthesizer", |
| 79 | + method="agent.query", |
| 80 | + system_prompt="You are a synthesis agent that combines multiple perspectives.", |
| 81 | + user_prompt="Synthesize findings about distributed RAG", |
| 82 | + response="Based on the research, a distributed RAG system requires careful consideration of...", |
| 83 | + metadata={"reasoning_steps_count": 4}, |
| 84 | + duration_ms=1567.8, |
| 85 | + status="success" |
| 86 | + ) |
| 87 | + print("✅ Synthesizer event logged\n") |
| 88 | + |
| 89 | + # Test API Event Logging |
| 90 | + print_section("Testing API Event Logging") |
| 91 | + |
| 92 | + print("Logging /query endpoint event...") |
| 93 | + logger.log_api_event( |
| 94 | + endpoint="/query", |
| 95 | + method="POST", |
| 96 | + request_data={ |
| 97 | + "query": "What is machine learning?", |
| 98 | + "use_cot": True, |
| 99 | + "model": "qwen2" |
| 100 | + }, |
| 101 | + response_data={ |
| 102 | + "answer_length": 450, |
| 103 | + "context_chunks": 3 |
| 104 | + }, |
| 105 | + status_code=200, |
| 106 | + duration_ms=3456.7, |
| 107 | + user_agent="Mozilla/5.0", |
| 108 | + client_ip="127.0.0.1" |
| 109 | + ) |
| 110 | + print("✅ API event logged\n") |
| 111 | + |
| 112 | + print("Logging /a2a endpoint event...") |
| 113 | + logger.log_api_event( |
| 114 | + endpoint="/a2a", |
| 115 | + method="POST", |
| 116 | + request_data={ |
| 117 | + "method": "document.query", |
| 118 | + "params": {"query": "Explain neural networks", "collection": "PDF"} |
| 119 | + }, |
| 120 | + response_data={ |
| 121 | + "result": "Neural networks are...", |
| 122 | + "sources": ["paper1.pdf", "paper2.pdf"] |
| 123 | + }, |
| 124 | + status_code=200, |
| 125 | + duration_ms=2567.8 |
| 126 | + ) |
| 127 | + print("✅ A2A API event logged\n") |
| 128 | + |
| 129 | + # Test Model Event Logging |
| 130 | + print_section("Testing Model Event Logging") |
| 131 | + |
| 132 | + print("Logging qwen2 model inference...") |
| 133 | + logger.log_model_event( |
| 134 | + model_name="qwen2", |
| 135 | + model_type="ollama", |
| 136 | + system_prompt="You are a helpful AI assistant.", |
| 137 | + user_prompt="Explain quantum computing in simple terms", |
| 138 | + response="Quantum computing uses quantum mechanics principles...", |
| 139 | + collection_used="general_knowledge", |
| 140 | + use_cot=False, |
| 141 | + tokens_used=256, |
| 142 | + duration_ms=1890.2, |
| 143 | + context_chunks=0 |
| 144 | + ) |
| 145 | + print("✅ Model event logged\n") |
| 146 | + |
| 147 | + print("Logging deepseek-r1 model inference with CoT...") |
| 148 | + logger.log_model_event( |
| 149 | + model_name="deepseek-r1", |
| 150 | + model_type="ollama", |
| 151 | + system_prompt="You are an analytical reasoning agent.", |
| 152 | + user_prompt="How does A2A protocol improve distributed systems?", |
| 153 | + response="Through standardized communication, agent discovery, and task management...", |
| 154 | + collection_used="repository_documents", |
| 155 | + use_cot=True, |
| 156 | + tokens_used=512, |
| 157 | + duration_ms=3456.1, |
| 158 | + context_chunks=5 |
| 159 | + ) |
| 160 | + print("✅ Model event logged\n") |
| 161 | + |
| 162 | + # Test Document Event Logging |
| 163 | + print_section("Testing Document Event Logging") |
| 164 | + |
| 165 | + print("Logging PDF document processing...") |
| 166 | + logger.log_document_event( |
| 167 | + document_type="pdf", |
| 168 | + document_id="doc_12345", |
| 169 | + source="machine_learning_research.pdf", |
| 170 | + chunks_processed=45, |
| 171 | + processing_time_ms=5678.9, |
| 172 | + status="success" |
| 173 | + ) |
| 174 | + print("✅ Document event logged\n") |
| 175 | + |
| 176 | + print("Logging repository processing...") |
| 177 | + logger.log_document_event( |
| 178 | + document_type="repository", |
| 179 | + document_id="repo_67890", |
| 180 | + source="https://github.com/example/agentic-rag", |
| 181 | + chunks_processed=123, |
| 182 | + processing_time_ms=8901.2, |
| 183 | + status="success" |
| 184 | + ) |
| 185 | + print("✅ Repository event logged\n") |
| 186 | + |
| 187 | + # Test Query Event Logging |
| 188 | + print_section("Testing Query Event Logging") |
| 189 | + |
| 190 | + print("Logging vector store query...") |
| 191 | + logger.log_query_event( |
| 192 | + query_text="machine learning algorithms", |
| 193 | + collection_name="pdf_documents", |
| 194 | + results_count=10, |
| 195 | + query_time_ms=123.4, |
| 196 | + metadata={"similarity_threshold": 0.7} |
| 197 | + ) |
| 198 | + print("✅ Query event logged\n") |
| 199 | + |
| 200 | + # Get Statistics |
| 201 | + print_section("Event Statistics") |
| 202 | + |
| 203 | + stats = logger.get_statistics() |
| 204 | + print(f"Total Events: {stats['total_events']}") |
| 205 | + print(f"A2A Events: {stats['a2a_events']}") |
| 206 | + print(f"API Events: {stats['api_events']}") |
| 207 | + print(f"Model Events: {stats['model_events']}") |
| 208 | + print(f"Document Events: {stats['document_events']}") |
| 209 | + print(f"Query Events: {stats['query_events']}") |
| 210 | + print(f"\nAvg A2A Duration: {stats['avg_a2a_duration_ms']:.2f} ms") |
| 211 | + print(f"Avg Model Duration: {stats['avg_model_duration_ms']:.2f} ms") |
| 212 | + |
| 213 | + if stats['top_models']: |
| 214 | + print("\nTop Models:") |
| 215 | + for i, model_stat in enumerate(stats['top_models'], 1): |
| 216 | + print(f" {i}. {model_stat['model']}: {model_stat['count']} calls") |
| 217 | + |
| 218 | + # Show Recent Events |
| 219 | + print_section("Recent A2A Events (Last 5)") |
| 220 | + |
| 221 | + recent_events = logger.get_events(event_type="a2a", limit=5) |
| 222 | + for i, event in enumerate(recent_events, 1): |
| 223 | + print(f"{i}. Agent: {event.get('AGENT_NAME', 'Unknown')}") |
| 224 | + print(f" Method: {event.get('METHOD', 'N/A')}") |
| 225 | + print(f" Duration: {event.get('DURATION_MS', 0):.2f} ms") |
| 226 | + print(f" Status: {event.get('STATUS', 'N/A')}") |
| 227 | + print(f" Time: {event.get('TIMESTAMP', 'N/A')}") |
| 228 | + print() |
| 229 | + |
| 230 | + # Show Recent Model Events |
| 231 | + print_section("Recent Model Events (Last 3)") |
| 232 | + |
| 233 | + model_events = logger.get_events(event_type="model", limit=3) |
| 234 | + for i, event in enumerate(model_events, 1): |
| 235 | + print(f"{i}. Model: {event.get('MODEL_NAME', 'Unknown')} ({event.get('MODEL_TYPE', 'N/A')})") |
| 236 | + print(f" CoT: {'Yes' if event.get('USE_COT') == 1 else 'No'}") |
| 237 | + print(f" Duration: {event.get('DURATION_MS', 0):.2f} ms") |
| 238 | + print(f" Context Chunks: {event.get('CONTEXT_CHUNKS', 0)}") |
| 239 | + print(f" Time: {event.get('TIMESTAMP', 'N/A')}") |
| 240 | + print() |
| 241 | + |
| 242 | + # Show Event Counts |
| 243 | + print_section("Event Counts by Type") |
| 244 | + |
| 245 | + for event_type in ["a2a", "api", "model", "document", "query"]: |
| 246 | + count = logger.get_event_count(event_type) |
| 247 | + print(f"{event_type.upper():12s}: {count:6d} events") |
| 248 | + |
| 249 | + # Close connection |
| 250 | + print_section("Cleanup") |
| 251 | + logger.close() |
| 252 | + print("✅ Database connection closed") |
| 253 | + |
| 254 | + print_section("Test Complete") |
| 255 | + print("✅ All event types tested successfully!") |
| 256 | + print("\nThe data lake is now storing all events in Oracle DB 23ai.") |
| 257 | + print("You can query these events using:") |
| 258 | + print(" - SQL queries directly on the database") |
| 259 | + print(" - REST API endpoints (/events/statistics, /events/{type})") |
| 260 | + print(" - OraDBEventLogger Python API") |
| 261 | + print() |
| 262 | + |
| 263 | + |
| 264 | +if __name__ == "__main__": |
| 265 | + try: |
| 266 | + test_event_logging() |
| 267 | + except KeyboardInterrupt: |
| 268 | + print("\n\n⚠️ Test interrupted by user") |
| 269 | + except Exception as e: |
| 270 | + print(f"\n\n❌ Test failed with error: {str(e)}") |
| 271 | + import traceback |
| 272 | + print("\nTraceback:") |
| 273 | + print(traceback.format_exc()) |
| 274 | + |
0 commit comments