@@ -38,7 +38,7 @@ <h1>Source code for pgmpy.estimators.ExhaustiveSearch</h1><div class="highlight"
38
38
< span class ="kn "> import</ span > < span class ="nn "> networkx</ span > < span class ="k "> as</ span > < span class ="nn "> nx</ span >
39
39
40
40
< span class ="kn "> from</ span > < span class ="nn "> pgmpy.base</ span > < span class ="kn "> import</ span > < span class ="n "> DAG</ span >
41
- < span class ="kn "> from</ span > < span class ="nn "> pgmpy.estimators</ span > < span class ="kn "> import</ span > < span class ="n "> K2Score </ span > < span class ="p "> ,</ span > < span class ="n "> ScoreCache</ span > < span class ="p "> ,</ span > < span class ="n "> StructureEstimator</ span >
41
+ < span class ="kn "> from</ span > < span class ="nn "> pgmpy.estimators</ span > < span class ="kn "> import</ span > < span class ="n "> K2 </ span > < span class ="p "> ,</ span > < span class ="n "> ScoreCache</ span > < span class ="p "> ,</ span > < span class ="n "> StructureEstimator</ span >
42
42
< span class ="kn "> from</ span > < span class ="nn "> pgmpy.global_vars</ span > < span class ="kn "> import</ span > < span class ="n "> logger</ span >
43
43
< span class ="kn "> from</ span > < span class ="nn "> pgmpy.utils.mathext</ span > < span class ="kn "> import</ span > < span class ="n "> powerset</ span >
44
44
@@ -54,11 +54,11 @@ <h1>Source code for pgmpy.estimators.ExhaustiveSearch</h1><div class="highlight"
54
54
< span class ="sd "> ----------</ span >
55
55
< span class ="sd "> data: pandas DataFrame object</ span >
56
56
< span class ="sd "> dataframe object where each column represents one variable.</ span >
57
- < span class ="sd "> (If some values in the data are missing the data cells should be set to `numpy.nan `.</ span >
58
- < span class ="sd "> Note that pandas converts each column containing `numpy.nan `s to dtype `float`.)</ span >
57
+ < span class ="sd "> (If some values in the data are missing the data cells should be set to `numpy.NaN `.</ span >
58
+ < span class ="sd "> Note that pandas converts each column containing `numpy.NaN `s to dtype `float`.)</ span >
59
59
60
- < span class ="sd "> scoring_method: Instance of a `StructureScore`-subclass (`K2Score ` is used as default)</ span >
61
- < span class ="sd "> An instance of `K2Score `, `BDeuScore `, `BicScore ` or 'AICScore '.</ span >
60
+ < span class ="sd "> scoring_method: Instance of a `StructureScore`-subclass (`K2 ` is used as default)</ span >
61
+ < span class ="sd "> An instance of `K2 `, `BDeu `, `BIC ` or 'AIC '.</ span >
62
62
< span class ="sd "> This score is optimized during structure estimation by the `estimate`-method.</ span >
63
63
64
64
< span class ="sd "> state_names: dict (optional)</ span >
@@ -79,7 +79,7 @@ <h1>Source code for pgmpy.estimators.ExhaustiveSearch</h1><div class="highlight"
79
79
< span class ="k "> else</ span > < span class ="p "> :</ span >
80
80
< span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> scoring_method</ span > < span class ="o "> =</ span > < span class ="n "> scoring_method</ span >
81
81
< span class ="k "> else</ span > < span class ="p "> :</ span >
82
- < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> scoring_method</ span > < span class ="o "> =</ span > < span class ="n "> ScoreCache</ span > < span class ="o "> .</ span > < span class ="n "> ScoreCache</ span > < span class ="p "> (</ span > < span class ="n "> K2Score </ span > < span class ="p "> (</ span > < span class ="n "> data</ span > < span class ="p "> ,</ span > < span class ="o "> **</ span > < span class ="n "> kwargs</ span > < span class ="p "> ),</ span > < span class ="n "> data</ span > < span class ="p "> )</ span >
82
+ < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> scoring_method</ span > < span class ="o "> =</ span > < span class ="n "> ScoreCache</ span > < span class ="o "> .</ span > < span class ="n "> ScoreCache</ span > < span class ="p "> (</ span > < span class ="n "> K2 </ span > < span class ="p "> (</ span > < span class ="n "> data</ span > < span class ="p "> ,</ span > < span class ="o "> **</ span > < span class ="n "> kwargs</ span > < span class ="p "> ),</ span > < span class ="n "> data</ span > < span class ="p "> )</ span >
83
83
84
84
< span class ="nb "> super</ span > < span class ="p "> (</ span > < span class ="n "> ExhaustiveSearch</ span > < span class ="p "> ,</ span > < span class ="bp "> self</ span > < span class ="p "> )</ span > < span class ="o "> .</ span > < span class ="fm "> __init__</ span > < span class ="p "> (</ span > < span class ="n "> data</ span > < span class ="p "> ,</ span > < span class ="o "> **</ span > < span class ="n "> kwargs</ span > < span class ="p "> )</ span >
85
85
@@ -157,11 +157,11 @@ <h1>Source code for pgmpy.estimators.ExhaustiveSearch</h1><div class="highlight"
157
157
< span class ="sd "> --------</ span >
158
158
< span class ="sd "> >>> import pandas as pd</ span >
159
159
< span class ="sd "> >>> import numpy as np</ span >
160
- < span class ="sd "> >>> from pgmpy.estimators import ExhaustiveSearch, K2Score </ span >
160
+ < span class ="sd "> >>> from pgmpy.estimators import ExhaustiveSearch, K2 </ span >
161
161
< span class ="sd "> >>> # create random data sample with 3 variables, where B and C are identical:</ span >
162
162
< span class ="sd "> >>> data = pd.DataFrame(np.random.randint(0, 5, size=(5000, 2)), columns=list('AB'))</ span >
163
163
< span class ="sd "> >>> data['C'] = data['B']</ span >
164
- < span class ="sd "> >>> searcher = ExhaustiveSearch(data, scoring_method=K2Score (data))</ span >
164
+ < span class ="sd "> >>> searcher = ExhaustiveSearch(data, scoring_method=K2 (data))</ span >
165
165
< span class ="sd "> >>> for score, model in searcher.all_scores():</ span >
166
166
< span class ="sd "> ... print("{0}\t{1}".format(score, model.edges()))</ span >
167
167
< span class ="sd "> -24234.44977974726 [('A', 'B'), ('A', 'C')]</ span >
0 commit comments