@@ -309,7 +309,7 @@ def projected_solar_zenith_angle(solar_zenith, solar_azimuth,
309309
310310def tracker_shaded_fraction (tracker_theta , gcr , projected_solar_zenith ,
311311 cross_axis_slope = 0 ):
312- """
312+ r """
313313 Shade fraction (FS) for trackers with a common angle on an east-west slope.
314314
315315 Parameters
@@ -332,6 +332,34 @@ def tracker_shaded_fraction(tracker_theta, gcr, projected_solar_zenith,
332332 The fraction of the collector width shaded by an adjacent row. A
333333 value of 1 is completely shaded and zero is no shade.
334334
335+ See also
336+ --------
337+ pvlib.shading.linear_shade_loss
338+
339+
340+ The shaded fraction is derived using trigonometery and similar triangles
341+ from the tracker rotation :math:`\beta`, the ground slope :math:`\theta_g`,
342+ the projected solar zenith (psz) :math:`\theta`, the collector width
343+ :math:`L`, the row-to-row pitch :math:`P`, and the shadow length :math:`z`
344+ as shown in the image below.
345+
346+ .. image:: /_images/FSLR_irrad_shade_loss_slope_terrain.png
347+
348+ The ratio of the shadow length to the pitch, :math:`z/P`, is given by the
349+ following relation where the ground coverage ratio (GCR) is :math:`L/P`:
350+
351+ .. math::
352+ \frac{z/P}{\sin{\left(\frac{\pi}{2}-\beta+\theta\right)}}
353+ = \frac{GCR}{\sin{\left(\frac{\pi}{2}-\theta-\theta_g\right)}}
354+
355+ Then the shaded fraction :math:`w/L` is derived from :math:`z/P` as
356+ follows:
357+
358+ .. math::
359+ \frac{w}{L} = 1 - \frac{P}{z\cos{\theta_g}}
360+
361+ Finally, shade is zero if :math:`z\cos{\theta_g}/P \le 1`.
362+
335363 References
336364 ----------
337365 Mark A. Mikofski, "First Solar Irradiance Shade Losses on Sloped Terrain,"
0 commit comments