|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +from typing import Optional |
| 8 | + |
| 9 | +import torch |
| 10 | +import torch.nn.functional as F |
| 11 | +from torch.utils._python_dispatch import return_and_correct_aliasing |
| 12 | + |
| 13 | +from torchao.utils import TorchAOBaseTensor |
| 14 | + |
| 15 | +# --- C++ Op Accessor Functions --- |
| 16 | + |
| 17 | + |
| 18 | +def get_pack_op(weight_nbit: int): |
| 19 | + """Gets the C++ packing function from the 'torchao' namespace.""" |
| 20 | + op_name = f"_pack_groupwise_{weight_nbit}bit_weight_with_lut" |
| 21 | + if not hasattr(torch.ops.torchao, op_name): |
| 22 | + raise NotImplementedError(f"Packing op for {weight_nbit}-bit not found.") |
| 23 | + return getattr(torch.ops.torchao, op_name) |
| 24 | + |
| 25 | + |
| 26 | +def get_linear_op(weight_nbit: int): |
| 27 | + """Gets the C++ fused linear function from the 'torchao' namespace.""" |
| 28 | + op_name = f"_linear_groupwise_{weight_nbit}bit_weight_with_lut" |
| 29 | + if not hasattr(torch.ops.torchao, op_name): |
| 30 | + raise NotImplementedError(f"Linear op for {weight_nbit}-bit not found.") |
| 31 | + return getattr(torch.ops.torchao, op_name) |
| 32 | + |
| 33 | + |
| 34 | +aten = torch.ops.aten |
| 35 | + |
| 36 | + |
| 37 | +class GroupwiseLutQuantizedTensor(TorchAOBaseTensor): |
| 38 | + """ |
| 39 | + Corrected version that is robust for torch.export. |
| 40 | + """ |
| 41 | + |
| 42 | + tensor_data_attrs = [ |
| 43 | + "packed_weight", |
| 44 | + ] |
| 45 | + tensor_attributes = [ |
| 46 | + "bit_width", |
| 47 | + "lut_group_size", |
| 48 | + "scale_group_size", |
| 49 | + "shape", |
| 50 | + "dtype", |
| 51 | + ] |
| 52 | + |
| 53 | + @staticmethod |
| 54 | + def __new__( |
| 55 | + cls, |
| 56 | + packed_weight: torch.Tensor, |
| 57 | + bit_width: int, |
| 58 | + lut_group_size: int, |
| 59 | + scale_group_size: int, |
| 60 | + shape: torch.Size, |
| 61 | + dtype: torch.dtype, |
| 62 | + ): |
| 63 | + kwargs = { |
| 64 | + "device": packed_weight.device, |
| 65 | + "dtype": dtype, |
| 66 | + "layout": packed_weight.layout, |
| 67 | + "requires_grad": False, |
| 68 | + } |
| 69 | + return torch.Tensor._make_wrapper_subclass(cls, shape, **kwargs) |
| 70 | + |
| 71 | + def __init__( |
| 72 | + self, |
| 73 | + packed_weight: torch.Tensor, |
| 74 | + bit_width: int, |
| 75 | + lut_group_size: int, |
| 76 | + scale_group_size: int, |
| 77 | + shape: torch.Size, |
| 78 | + dtype: torch.dtype, |
| 79 | + ): |
| 80 | + self.packed_weight = packed_weight |
| 81 | + self.bit_width = bit_width |
| 82 | + self.lut_group_size = lut_group_size |
| 83 | + self.scale_group_size = scale_group_size |
| 84 | + |
| 85 | + def __repr__(self): |
| 86 | + return ( |
| 87 | + f"{self.__class__.__name__}(shape={self.shape}, dtype={self.dtype}, " |
| 88 | + f"bit_width={self.bit_width}, lut_group_size={self.lut_group_size}, " |
| 89 | + f"scale_group_size={self.scale_group_size}, device={self.device})" |
| 90 | + ) |
| 91 | + |
| 92 | + def __tensor_flatten__(self): |
| 93 | + metadata = [getattr(self, attr) for attr in self.tensor_attributes] |
| 94 | + return self.tensor_data_attrs, metadata |
| 95 | + |
| 96 | + @classmethod |
| 97 | + def __tensor_unflatten__(cls, tensors, metadata, outer_size, outer_stride): |
| 98 | + return cls( |
| 99 | + *[tensors[name] for name in cls.tensor_data_attrs], |
| 100 | + *metadata, |
| 101 | + ) |
| 102 | + |
| 103 | + def _apply_fn_to_data(self, fn): |
| 104 | + new_packed_weight = fn(self.packed_weight) |
| 105 | + return self.__class__( |
| 106 | + new_packed_weight, |
| 107 | + self.bit_width, |
| 108 | + self.lut_group_size, |
| 109 | + self.scale_group_size, |
| 110 | + self.shape, |
| 111 | + self.dtype, |
| 112 | + ) |
| 113 | + |
| 114 | + @classmethod |
| 115 | + def from_packed_data( |
| 116 | + cls, |
| 117 | + int_data: torch.Tensor, |
| 118 | + luts: torch.Tensor, |
| 119 | + scales: torch.Tensor, |
| 120 | + bit_width: int, |
| 121 | + lut_group_size: int, |
| 122 | + scale_group_size: int, |
| 123 | + original_shape: torch.Size, |
| 124 | + bias: Optional[torch.Tensor] = None, |
| 125 | + target: str = "auto", |
| 126 | + ): |
| 127 | + """ |
| 128 | + A factory function that uses the C++ packing op to create an instance |
| 129 | + of the GroupwiseLutQuantizedTensor. |
| 130 | + """ |
| 131 | + # 1. Get the correct C++ packing operator based on the bit width |
| 132 | + pack_op = get_pack_op(bit_width) |
| 133 | + |
| 134 | + # 2. Call the C++ op to get the single packed weight tensor |
| 135 | + packed_weight = pack_op( |
| 136 | + int_data, |
| 137 | + luts, |
| 138 | + scale_group_size, |
| 139 | + lut_group_size, |
| 140 | + scales, |
| 141 | + bias, |
| 142 | + target, |
| 143 | + ) |
| 144 | + |
| 145 | + # 3. Construct and return the custom tensor object |
| 146 | + return cls( |
| 147 | + packed_weight, |
| 148 | + bit_width, |
| 149 | + lut_group_size, |
| 150 | + scale_group_size, |
| 151 | + original_shape, |
| 152 | + int_data.dtype, |
| 153 | + ) |
| 154 | + |
| 155 | + |
| 156 | +implements = GroupwiseLutQuantizedTensor.implements |
| 157 | + |
| 158 | + |
| 159 | +@implements([F.linear]) |
| 160 | +def _(func, types, args, kwargs): |
| 161 | + """ |
| 162 | + Override for `torch.nn.functional.linear`. This implementation calls the |
| 163 | + fused C++ kernel directly, avoiding a separate dequantization step. |
| 164 | + """ |
| 165 | + input_tensor, weight_tensor, _ = ( |
| 166 | + args[0], |
| 167 | + args[1], |
| 168 | + args[2] if len(args) > 2 else None, |
| 169 | + ) |
| 170 | + |
| 171 | + # Get the correct C++ operator based on the bit width |
| 172 | + linear_op = get_linear_op(weight_tensor.bit_width) |
| 173 | + |
| 174 | + # --- Input Reshaping Logic --- |
| 175 | + # |
| 176 | + # The underlying C++ kernel (`linear_op`) is designed to compute a matrix multiplication on 2D tensors ONLY. |
| 177 | + # It assumes a simple (m, k) matrix layout. |
| 178 | + # We "flatten" the high-rank input into a 2D matrix that the C++ kernel understands, and then |
| 179 | + # "unflatten" the 2D output back to restore the original batch dimensions. |
| 180 | + |
| 181 | + # Store original shape to reshape the output later |
| 182 | + original_shape = input_tensor.shape |
| 183 | + k = weight_tensor.shape[1] |
| 184 | + # If input rank > 2, flatten all batch dimensions into one |
| 185 | + if input_tensor.dim() > 2: |
| 186 | + input_tensor = input_tensor.reshape(-1, k) |
| 187 | + |
| 188 | + # The 'n' dimension is the output feature dimension from the weight |
| 189 | + n = weight_tensor.shape[0] |
| 190 | + |
| 191 | + # Call the fused C++ linear operator |
| 192 | + output = linear_op( |
| 193 | + input_tensor, |
| 194 | + weight_tensor.packed_weight, |
| 195 | + weight_tensor.scale_group_size, |
| 196 | + weight_tensor.lut_group_size, |
| 197 | + n, |
| 198 | + k, |
| 199 | + ) |
| 200 | + |
| 201 | + # Reshape the output to match the original batch dimensions |
| 202 | + if len(original_shape) > 2: |
| 203 | + output_shape = original_shape[:-1] + (n,) |
| 204 | + return output.reshape(output_shape) |
| 205 | + |
| 206 | + return output |
| 207 | + |
| 208 | + |
| 209 | +@implements([aten.detach.default]) |
| 210 | +def _(func, types, args, kwargs): |
| 211 | + return return_and_correct_aliasing( |
| 212 | + func, args, kwargs, args[0]._apply_fn_to_data(torch.detach) |
| 213 | + ) |
| 214 | + |
| 215 | + |
| 216 | +@implements(aten.clone.default) |
| 217 | +def _(func, types, args, kwargs): |
| 218 | + return return_and_correct_aliasing( |
| 219 | + func, args, kwargs, args[0]._apply_fn_to_data(torch.clone) |
| 220 | + ) |
0 commit comments