@@ -135,98 +135,120 @@ def step(self, closure: Any = None) -> None:
135
135
super ().step (closure )
136
136
self ._step_num += 1
137
137
138
- @torch .no_grad ()
139
138
def clip_grad_norm_ (self ) -> Optional [Union [float , torch .Tensor ]]:
140
139
"""Clip the gradient norm of all parameters."""
141
140
max_norm = self ._max_gradient
142
141
norm_type = float (self ._norm_type )
143
142
all_grads = []
144
143
total_grad_norm = None
145
144
145
+ sharded_params = self ._sharded_params
146
+ replicate_params = self ._replicate_params
147
+
146
148
# Process distributed parameters and gradients
147
- for pgs , dist_params in self ._sharded_params .items ():
148
- sharded_grads = [
149
- p .grad ._local_tensor if isinstance (p .grad , DTensor ) else p .grad
150
- for p in dist_params
151
- if p .grad is not None and p .grad .numel () > 0
152
- ]
153
- if len (sharded_grads ) == 0 :
154
- continue
149
+ for dist_params in sharded_params .values ():
150
+ sharded_grads = _get_grads (dist_params )
155
151
all_grads .extend (sharded_grads )
156
152
157
- sharded_grad_norm = _batch_cal_norm (
158
- sharded_grads ,
159
- max_norm ,
160
- norm_type ,
161
- pgs ,
162
- )
163
- total_grad_norm = (
164
- sharded_grad_norm
165
- if total_grad_norm is None
166
- else (
167
- torch .maximum (total_grad_norm , sharded_grad_norm )
168
- if norm_type == torch .inf
169
- else total_grad_norm + sharded_grad_norm
170
- )
171
- )
172
-
173
- square_sharded_grad_norm = total_grad_norm if total_grad_norm is not None else 0
174
-
175
153
# Process replicated parameters and gradients
176
- if self ._replicate_params :
177
- replicated_grads = [
178
- p .grad ._local_tensor if isinstance (p .grad , DTensor ) else p .grad
179
- for p in self ._replicate_params
180
- if p .grad is not None and p .grad .numel () > 0
181
- ]
182
- all_grads .extend (replicated_grads )
183
-
184
- replicated_grad_norm = _batch_cal_norm (
185
- replicated_grads ,
186
- max_norm ,
187
- norm_type ,
188
- None ,
189
- )
190
- total_grad_norm = (
191
- replicated_grad_norm
192
- if total_grad_norm is None
193
- else (
194
- torch .maximum (total_grad_norm , replicated_grad_norm )
195
- if norm_type == torch .inf
196
- else total_grad_norm + replicated_grad_norm
197
- )
198
- )
199
- square_replicated_grad_norm = replicated_grad_norm
200
- else :
201
- square_replicated_grad_norm = 0
202
-
203
- global log_grad_norm
204
- if log_grad_norm :
205
- if total_grad_norm is not None and norm_type != torch .inf :
206
- # pyre-ignore[58]
207
- grad_norm = total_grad_norm ** (1.0 / norm_type )
208
- else :
209
- grad_norm = total_grad_norm
154
+ if replicate_params :
155
+ replicate_grads = _get_grads (replicate_params )
156
+ all_grads .extend (replicate_grads )
210
157
211
- rank = dist .get_rank ()
212
- logger .info (
213
- f"Clipping [rank={ rank } , step={ self ._step_num } ]: square_sharded_grad_norm = { square_sharded_grad_norm } , square_replicated_grad_norm = { square_replicated_grad_norm } , total_grad_norm = { grad_norm } "
214
- )
215
-
216
- # Aggregation
217
- if total_grad_norm is None :
218
- return
158
+ total_grad_norm = _compute_total_norm (
159
+ replicate_params , sharded_params , norm_type , max_norm
160
+ )
219
161
220
- if norm_type != torch .inf :
221
- # pyre-ignore [58]: ** is not supported for operand types torch._tensor.Tensor and float.
222
- total_grad_norm = total_grad_norm ** (1.0 / norm_type )
223
162
# pyre-ignore [58]: / is not supported for operand types float and Union[float, torch._tensor.Tensor].
224
163
clip_coef = cast (torch .Tensor , max_norm / (total_grad_norm + 1e-6 ))
225
164
clip_coef_clamped = torch .clamp (clip_coef , max = 1.0 )
226
165
torch ._foreach_mul_ (all_grads , clip_coef_clamped )
227
166
return total_grad_norm
228
167
229
168
169
+ def _get_grads (
170
+ param_list : List [torch .Tensor ],
171
+ ) -> List [torch .Tensor ]:
172
+ """Get the gradients of a list of parameters. Converts DTensors to local tensors if needed."""
173
+ grads = [
174
+ p .grad ._local_tensor if isinstance (p .grad , DTensor ) else p .grad
175
+ for p in param_list
176
+ if p .grad is not None and p .grad .numel () > 0
177
+ ]
178
+ return grads
179
+
180
+
181
+ def _compute_total_norm (
182
+ replicate_params : Optional [List [torch .Tensor ]] = None ,
183
+ sharded_params : Optional [Dict [Tuple [dist .ProcessGroup ], List [torch .Tensor ]]] = None ,
184
+ norm_type : float = 2.0 , # can be a normal float, or torch.inf
185
+ max_grad_norm : float = 1.0 ,
186
+ ) -> torch .Tensor :
187
+ """
188
+ Given both recpliate params and sharded params, compute the total norm of the gradients of the full replicate params and the
189
+ full sharded param (parameters with a process group).
190
+
191
+ Args:
192
+ replicate_params (List[torch.Tensor]): list of replicate params
193
+ sharded_params (Dict[Tuple[dist.ProcessGroup], List[torch.Tensor]]): dict that maps each process group to a list of tensors
194
+ norm_type (Union[float, str]): type of the used p-norm. Can be ``'inf'`` for infinity norm.
195
+ max_grad_norm (float): max gradient norm.
196
+ """
197
+
198
+ ## compute |W|^p corresponding to all DDP params W
199
+
200
+ if replicate_params is None :
201
+ replicate_params = []
202
+ if sharded_params is None :
203
+ sharded_params = defaultdict (list )
204
+
205
+ def get_grad_norm_power (
206
+ param_list : List [torch .Tensor ],
207
+ norm_type : float ,
208
+ max_grad_norm : float ,
209
+ pgs : Optional [Tuple [dist .ProcessGroup ]] = None ,
210
+ ) -> torch .Tensor :
211
+ """
212
+ Given a list of parameters, convert them to local tensors if they are DTensors,
213
+ and compute the squared (or p-th power) norm of the gradients of the parameters.
214
+ """
215
+ grad_list = _get_grads (param_list )
216
+ return _batch_cal_norm (grad_list , max_grad_norm , norm_type , pgs )
217
+
218
+ ## compute the norm |W|^p corresponding to all sharded params W
219
+ sharded_grad_norm : torch .Tensor = torch .tensor (0.0 )
220
+ if sharded_params :
221
+ combine_sharded_norm_operator = (
222
+ torch .maximum if norm_type == torch .inf else torch .add
223
+ )
224
+
225
+ # We need to move sharded_grad_norm to the same device as the first shard so that we can do addition (or take max)
226
+ # this is specifically for the case where sharded_grad_norm is 0, and replicate_grad_norm is not,
227
+ # because by default torch.tensor(0.0) is on cpu, and replicate_grad_norm is on GPU. For MTIA
228
+ # specifically, adding a tensor on cpu and a tensor on GPU will result in an error.
229
+ for pgs , dist_params in sharded_params .items ():
230
+ shard_norm = get_grad_norm_power (dist_params , norm_type , max_grad_norm , pgs )
231
+ sharded_grad_norm = combine_sharded_norm_operator (
232
+ sharded_grad_norm .to (shard_norm .device ), shard_norm
233
+ )
234
+
235
+ # Similar to the case above, we move replicate_grad_norm to the same device as sharded_grad_norm so that we can do addition.
236
+ replicate_grad_norm : torch .Tensor = (
237
+ get_grad_norm_power (replicate_params , norm_type , max_grad_norm )
238
+ if replicate_params
239
+ else torch .tensor (0.0 )
240
+ ).to (sharded_grad_norm .device )
241
+
242
+ combine_norm_operator = (
243
+ torch .maximum
244
+ if norm_type == torch .inf
245
+ else lambda a , b : torch .add (a , b ).pow (1.0 / norm_type )
246
+ )
247
+
248
+ total_grad_norm = combine_norm_operator (replicate_grad_norm , sharded_grad_norm )
249
+ return total_grad_norm
250
+
251
+
230
252
def _batch_cal_norm (
231
253
grad_list : List [torch .Tensor ],
232
254
max_norm : float ,
0 commit comments