diff --git a/dev_tools/notebooks/isolated_notebook_test.py b/dev_tools/notebooks/isolated_notebook_test.py
index 578389ca19f..4a2e7bb146a 100644
--- a/dev_tools/notebooks/isolated_notebook_test.py
+++ b/dev_tools/notebooks/isolated_notebook_test.py
@@ -63,7 +63,6 @@
# tutorials that use QCS and arent skipped due to one or more cleared output cells
'docs/tutorials/google/identifying_hardware_changes.ipynb',
'docs/tutorials/google/echoes.ipynb',
- 'docs/noise/qcvv/xeb_calibration_example.ipynb',
# temporary: need to fix QVM metrics and device spec
'docs/tutorials/google/spin_echoes.ipynb',
'docs/tutorials/google/visualizing_calibration_metrics.ipynb',
diff --git a/dev_tools/notebooks/notebook_test.py b/dev_tools/notebooks/notebook_test.py
index 5fd6579378e..760958a724e 100644
--- a/dev_tools/notebooks/notebook_test.py
+++ b/dev_tools/notebooks/notebook_test.py
@@ -44,7 +44,6 @@
# tutorials that use QCS and arent skipped due to one or more cleared output cells
'docs/tutorials/google/identifying_hardware_changes.ipynb',
'docs/tutorials/google/echoes.ipynb',
- 'docs/noise/qcvv/xeb_calibration_example.ipynb',
# temporary: need to fix QVM metrics and device spec
'docs/tutorials/google/spin_echoes.ipynb',
'docs/tutorials/google/visualizing_calibration_metrics.ipynb',
diff --git a/docs/_book.yaml b/docs/_book.yaml
index dd9b4792905..f914d53d1c6 100644
--- a/docs/_book.yaml
+++ b/docs/_book.yaml
@@ -173,8 +173,6 @@ upper_tabs:
path: /cirq/noise/qcvv/coherent_vs_incoherent_xeb
- title: "Parallel XEB"
path: /cirq/noise/qcvv/parallel_xeb
- - title: "XEB calibration: Example and Benchmark"
- path: /cirq/noise/qcvv/xeb_calibration_example
#### VISUALIZING NOISE ####
- heading: "Visualizing noise"
- title: "Heatmaps"
diff --git a/docs/google/best_practices.ipynb b/docs/google/best_practices.ipynb
index ef2f7db0b0a..22d1253d42a 100644
--- a/docs/google/best_practices.ipynb
+++ b/docs/google/best_practices.ipynb
@@ -517,7 +517,7 @@
"\n",
"For more on calibration and detailed instructions on how to perform these procedures, see the following tutorials:\n",
"\n",
- "* [XEB calibration example](../noise/qcvv/xeb_calibration_example.ipynb)\n",
+ "* [XEB calibration theory](../noise/qcvv/xeb_theory.ipynb)\n",
"* [Floquet calibration](https://www.youtube.com/watch?v=hYDWOz1r2Ys&t=243s)"
]
}
diff --git a/docs/noise/qcvv/xeb_calibration_example.ipynb b/docs/noise/qcvv/xeb_calibration_example.ipynb
deleted file mode 100644
index e3f22ada767..00000000000
--- a/docs/noise/qcvv/xeb_calibration_example.ipynb
+++ /dev/null
@@ -1,650 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "id": "A0STV1dk8Wwi"
- },
- "outputs": [],
- "source": [
- "##### Copyright 2021 The Cirq Developers"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "cellView": "form",
- "id": "cKNQ5_Ba8Ynl"
- },
- "outputs": [],
- "source": [
- "# @title Licensed under the Apache License, Version 2.0 (the \"License\");\n",
- "# you may not use this file except in compliance with the License.\n",
- "# You may obtain a copy of the License at\n",
- "#\n",
- "# https://www.apache.org/licenses/LICENSE-2.0\n",
- "#\n",
- "# Unless required by applicable law or agreed to in writing, software\n",
- "# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
- "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
- "# See the License for the specific language governing permissions and\n",
- "# limitations under the License."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "eLqunnmR8AH5"
- },
- "source": [
- "# XEB calibration: Example and benchmark"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "RdXA9tBC8Wjw"
- },
- "source": [
- "
"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "yKWtbKQB8Rej"
- },
- "source": [
- "This tutorial shows a detailed example and benchmark of Cross-Entropy Benchmarking (XEB) calibration."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "D7EQ-vixOSTR"
- },
- "source": [
- "**Disclaimer**: The data shown in this tutorial is exemplary and not representative of the QCS in production."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "q8VcUax18RtL"
- },
- "source": [
- "## Setup\n",
- "\n",
- "Note: this notebook relies on unreleased Cirq features. If you want to try these features, make sure you install cirq via `pip install --upgrade cirq~=1.0.dev`."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "id": "Z1uKMxmu-1SC"
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\u001b[K |████████████████████████████████| 1.5MB 4.9MB/s \n",
- "\u001b[K |████████████████████████████████| 399kB 28.7MB/s \n",
- "\u001b[K |████████████████████████████████| 51kB 5.5MB/s \n",
- "\u001b[K |████████████████████████████████| 1.3MB 37.7MB/s \n",
- "\u001b[?25h"
- ]
- }
- ],
- "source": [
- "try:\n",
- " import cirq\n",
- "except ImportError:\n",
- " !pip install --upgrade --quiet cirq~=1.0.dev"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "cellView": "form",
- "id": "wYSOLH5j-8uB"
- },
- "outputs": [],
- "source": [
- "# The Google Cloud Project id to use.\n",
- "project_id = \"\" # @param {type:\"string\"}\n",
- "processor_id = \"\" # @param {type:\"string\"}\n",
- "\n",
- "from cirq_google.engine.qcs_notebook import get_qcs_objects_for_notebook\n",
- "\n",
- "device_sampler = get_qcs_objects_for_notebook(project_id, processor_id)\n",
- "\n",
- "if not device_sampler.signed_in:\n",
- " raise Exception(\n",
- " \"Please setup project_id in this cell or set the `GOOGLE_CLOUD_PROJECT` env var to your project id.\"\n",
- " )"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "id": "xRKjeIVd_FRo"
- },
- "outputs": [],
- "source": [
- "import cirq\n",
- "from cirq.experiments import random_quantum_circuit_generation as rqcg\n",
- "import cirq_google as cg\n",
- "\n",
- "import matplotlib.pyplot as plt\n",
- "import numpy as np\n",
- "import tqdm"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "cellView": "form",
- "id": "PEuZQtn1Q4Hb"
- },
- "outputs": [],
- "source": [
- "# @title Helper functions\n",
- "from typing import Sequence\n",
- "\n",
- "\n",
- "def create_random_circuit(\n",
- " qubits: Sequence[cirq.GridQubit],\n",
- " cycles: int,\n",
- " twoq_gate: cirq.Gate = cirq.FSimGate(np.pi / 4, 0.0),\n",
- " seed: int | None = None,\n",
- ") -> cirq.Circuit:\n",
- " return rqcg.random_rotations_between_grid_interaction_layers_circuit(\n",
- " qubits,\n",
- " depth=cycles,\n",
- " two_qubit_op_factory=lambda a, b, _: twoq_gate.on(a, b),\n",
- " pattern=cirq.experiments.GRID_STAGGERED_PATTERN,\n",
- " single_qubit_gates=[\n",
- " cirq.PhasedXPowGate(phase_exponent=p, exponent=0.5) for p in np.arange(-1.0, 1.0, 0.25)\n",
- " ],\n",
- " seed=seed,\n",
- " )\n",
- "\n",
- "\n",
- "def create_loschmidt_echo_circuit(\n",
- " qubits: Sequence[cirq.GridQubit],\n",
- " cycles: int,\n",
- " twoq_gate: cirq.Gate = cirq.FSimGate(np.pi / 4, 0.0),\n",
- " seed: int | None = None,\n",
- ") -> cirq.Circuit:\n",
- " \"\"\"Returns a Loschmidt echo circuit using a random unitary U.\n",
- "\n",
- " Args:\n",
- " qubits: Qubits to use.\n",
- " cycles: Depth of random rotations in the forward & reverse unitary.\n",
- " twoq_gate: Two-qubit gate to use.\n",
- " pause: Optional duration to pause for between U and U^\\dagger.\n",
- " seed: Seed for circuit generation.\n",
- " \"\"\"\n",
- " forward = create_random_circuit(qubits, cycles, twoq_gate, seed)\n",
- " return forward + cirq.inverse(forward) + cirq.measure(*qubits, key=\"z\")\n",
- "\n",
- "\n",
- "def to_ground_state_prob(result: cirq.Result) -> float:\n",
- " return np.mean(np.sum(result.measurements[\"z\"], axis=1) == 0)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "KPcCbk-2_qp2"
- },
- "source": [
- "## Select qubits"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "YmNhr6_W_ulI"
- },
- "source": [
- "First we select a processor and calibration metric(s) to visualize the latest calibration report."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "g27X3DP7EPaH"
- },
- "source": [
- "Note: All calibration metrics are defined in [this guide](https://quantumai.google/cirq/google/calibration). The `parallel_p00_error` and/or `parallel_p11_error` metrics are good to eliminate qubits with high readout errors."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "cellView": "form",
- "id": "C8namTwj_vTi"
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8YAAAG5CAYAAABMei38AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3gUxRvA8e8kQHogoagJQjD0JlUFaUoRC3YRsYviz0JTBFEpYgEFEUEsCIKiiAg2ELCAgCK99xJ6KIEE0hNIMr8/Zu9y6SG5kIN7P89zz+V29nbf27vs7LszO6u01gghhBBCCCGEEO7Ko7QDEEIIIYQQQgghSpMkxkIIIYQQQggh3JokxkIIIYQQQggh3JokxkIIIYQQQggh3JokxkIIIYQQQggh3JokxkIIIYQQQggh3JokxkJYlFIdlFJaKXXQeh1mvS70Pc2UUget93QoqTiFEEJcHEqppdY+/Yk8yi+4nhDCpqDfV2nJfizjqnG6GznGLHmSGAuX4/CPb3ucVkr9rpRqUdqxFZdSakS2z5aslNqulOqTbb4XlFIRSqlUpdRupdTj2cqvVUr9bb0/Win1hVIqIJ/1Ls22Xtvj7pL6rEII95XLfjz7o0MJr7+iUmqCFcc5pdQppdQcpVRDJ68qDvjIetjWXaiDV6VUR6XUCqVUnFIqQSm1Tyn1vTOCKmwi4/B9NHHGekuaUqqCUup9q15MUUqdVUptsaaVKeQybPXw9GLEEaaUireW09Vh+lhr2lqllGdRl1/AukvjGGkO5je+I4+Ynsjj//znEoypUHI5/jmrlPpXKdW5hNZXXSk1RSl1xNr3HFNKzVZKXVMS6xPOVaidiBClZD5wAGgPdAFaKqXqaq2jLnRBSqmyWuvzzg6wGPYD84CqwL3ABKVUitb6C6VUD+Bj4BTwHXAnMF0pdUJr/buVAP8JVAbmAjWApwF/4KEC1rsc2OjwOiKvGZVSZbTWaYWdXhAX/A6EECXnSyDY+vs5oBxmf3XUmnY0tzc5g1KqPPAfUBuIBL4BmgL3Abcqpdpprdc7Y11a6xigfxFiDAV+JXO7xFnx3lmceC7n/axSqjKwEggH4jHHCLFAPWAgMBJIuBixaK0PKqUGA5OAydYJl7qY38I54EmtdXoJh+G0Y6SCaK0/LuSsp4FvHV5vzWvGvH6rRf0NF+J9y4FNQAvgRmC+UqqZ1nq7s9allKoLrMDs+yKBmUB5oLP19/4LXZe4yLTW8pCHSz2Ag4AG7rZeV7Rea+AuzA5mI6ZCPA8cAt50eP8T1rz/Ap9iKtARQGNgFXDGet9xTAJaznpfB+t9B63XYbb1Oiy7GjALs8M7C/wBNMwl9g55fLYRVvnPDtPmWdN+sl5vsl7fZ73uZb1ear3ub72eZ732B5KBdOCaPNa71HpP/zzKp1vln2OS7nPW9shrellgCLALSAR2AgMAj/y+g9L+bclDHvK4+A9rX2nfL2KSGA18bL0eYL1+z3o91Ho91npdGZgCHMYkkKuArvmsz7afjQGqWNPKAP9k25c+4fjampZlH+6w73wTc2CdCPwNhFnlYTjUEw7vd3w8kUuM91plv2SbHuzwt5e17z2DOYnZ22GZFbKt73Vgu1UPLM0lhhF5bCtbeRPrdU9Mq2Cytf1WAm2s70Bj6l0PzIF/BnDSet/VVnkUoCh8Pf0PMMH6XvcDD+fzvX5qvec0UC1bWT2gjMPva6/1XaUCm4H7s/02HB+230O+9Xsu8ShgibWM6cA26++hDvNUtL7Dg5h6cAXQ1qHc9l3l+vvKY72277yox0i2bTA9l99BWLZ1ZP8/yPFbzvZ9bsqjvINVftBafzQwLa/p1nvaWdvkLHAMk3CH5BJzf8wJgv15rNsWe3+HfcEZa1q/wnz35PJ/lse6Flnz7QDKO0wvD4QAr1nlkx3KBjtOwzSYfGV9bymY46uWeXwvvsBoYB/mt7PB9ruQR9Ee0pVauDSllAdmx2lzGgi1nmcBM4AAYJjV0uroRuBmMs/SVcYkdnMxrRnpwAvAS4WMxRdTCXYHtmDO9ncAliilKl3wh8PealDH9tmsrmC2rn7rsj3buro1dZyutU7AJKgemOQ/P/copcY7PIKzlffGJL3fYA5U8pr+DvAuEIj5HioB4zA7eEfZvwMhhFhmPbe2nm/M43mpVQf8ijlBeBr4BWgO/KaUsr0/u1us51+01XqmTS+Xqdb0NkopnwuM+VXMgep+zH7/hzzm+xKTAIGpa/Lqfnrcer5DKfWnUupNpVRbzEG5zetkJsPLMIlDXt7EtM79iOn2GmlN/9OKYVU+7wXA2ibTgeqYJOQ3zD4+XGt9yvocgZg6qjUmMayilKpJ5ne2XJsj9gupp1tiEpEawAylVF71mK01fYrW+rBjgdZ6p87syVTD2hbTMb+XBsA3Sqkwazustubbidk2c4pSv1ufsxcmIXncWs8mTKJiO375BfMdHgZmA42AP5RSdbItrrC/ryyKeYxUEkKzHWN0zVZeHdPDbS5ZW5OzTLd+A39hTsoswmybnsAipVTZbMt8F5NA/1FQcEophfm9+VuTTl/gd+/4f5Z92T5AJ+vlR1rrWFuZ1jpWa30M85tMB+5XSnlZxXdZzzMdYnkMkxTPwCTxIXl8pKmY465YzHFWKPBjQZdxiLxJV2rhyn7K9noe5uz1SsxZ6WaYM6URmK4xN2MqApt44Hqttf1AQyl1HlMRVwZ2Y3YiN2NVZAW4HdOFK9J6L5jKLhy4H/is8B+Nu1TWwVpigLGYBNN2XZKtS1ii9VxeKeUNXJGt3HGeKwtYbzvrYTPeWrfNcq11B9sLU4dknW5VLMut6Q9prZcppe4Cfgb6AKMclpfjOxBCuL0NmH1DY6WUH2afvAdoYR1c3oBpjfwHs2+/AbO/a6u1TlRKnca0Er2I6TKdne1g9ni26bbXnkCFC4z5E631AOtA+bgVawMy970AaK1HKqWewiQjH2utl+a2MK31SqXUWExreSfrMQzYoJTqaO0zH7Zm76e1nqGU6oY5aM/Nu1rrYbYXSqn7MfXbTK319EJ+Rk/rEYXZn+/QWu93uFZ2GVAfkxRXx7RehWCSl+YO8wB8TeHq6VNAO631eaXUT8DdwKPAK7nEV8V6Pmh9xrqY5NbmSeuzDsJ0m6+FORl+ClM3ttZaz1RK3QBcD6zRWve3lvUARajftdYHlFLzgQetSZ/pzC62zTG/7XjMbx5My15T4ElMMmyT6+9L59/Nt7jHSCWhEtDP4fVZTGJrY2vt3Adm0NM8pn+CORk/XWv9pJUMH8WcWLiJrEnwi1rrLwsR24fWw2YdJsG9g8J/91n+z7IJJvP47VBuM2itjymlFlrrvF0p9S/mtxiJOa66F/O7PQ401Vongem6nX1Z1qUFPTD7yv8wCfdOzP/J/zAt5eICSWIsXNl8TCUSDawHFmmttVLqc8wZ2OwqZ3u9PVtSPARzZrGg9+UlzHoOJeuOH6BmIZdhY7vGOMn6+wetdazVYpyO2bn6Yz677cxmrNY6RSl10nrt77A8298nCljvAK31+HzKczvIzD69MuBn/W07KNllPV+llCrnMO92SYqFEI601unWAeGtmHERrgSGY7qcPoHpdrjB2ieGWW87orW2JaG2/U31PFZxGrNPviLbdNuJw3RMspSbvAZM2mnFftpKzK/EdHncncf8BdJav6KUGg10tB5PYpKZpzA9cGytRLZ17MlncSuKGodDPAlKqecw38U8AKXUUUyiutR6PIdJjMMwXX7rYZK/ZtZillrPn1K4ejrCIZG0fa9V8wgxCrNNrrZex2BafB/GOhli1T+ryOx5ld+6HYVZzxdUv1tJ9gOYxE4BQ5VSs6zWQtsyAwqxzLx+X/klxsU9RrJ9BmcOErZZa53fQG4nbclvAdPDrGfbdjmvlNqPSfqy/98X9re/HHOCIhbT6vuL1jrNYR9TmO8+v3XFkHn8lte+CcxlIXcAj2BO0HkA32mtM5RSNax5ttqSYjCfP5fl2OL2wJwkzC9uUUjSlVq4sqla6wFa67e11gutbkuQeWb2UcwO6FPrtcr2/tRsr23vewNzUsjW7Tf7+/Jy0Hpej7mWVmmtFRCE6Vp8IbZqrftrrV/TWk+xdbmxuoLZKsLrrOeW1vNm63mTY7k1GFddTMWc50AXhZR9m+U2/RQmocdaL2R2Bz+utT5XiOUJIdybrWXxZcx1kN9gEtqXs5UftJ6vtroZQub+JtdWGeB36/kupVRFMIMGYhJOMAlEGpmtvYHWPBXJu9dNPWueSmS2SOc1gJht0KU8j7GUUtWUUuFa62it9Wyt9bPAAqvYdocBW3do2+etndfyyLmvLTCGPHyltQ7FJKD9MMnZUKvM9p20w9RLK6xHJ+BaTIK2zZqnsPV0uENrmK0+yWu7zrOeeymlrtRaR1ktvpEO89THJMVpmBY/DzK7stvWndu2OWg9F7p+t7rCfmktZwSmC2wo5qSG4zKPA94Oy/QlZyJzIb8vm6IeI2X53ZP7SYSSUphjDMjcdnXB3mJqG9U5+/99YY8zfrK21wit9VyHrve2dRXmu89zXVrrZGCx9bKfNQggVvz+SinbvuU3TCPGbZgu+GC6QYO5VhqgkePlHir3EddtcZ8DKjvEXQ64J684Rf6kxVhcik5iWhT6YlocCrsDsLW0Pow5m3ahtypagNlpNQdWKKW2YAZs6IDZwS29wOXl5T3M9V2TlFK3k3n9ia279xTMtWe3KaXmYCoLL2C21jrPUaYt9zicHQVTUSzLY95cWWekP8EMcDJTKbWIzGu/CjtypRDCvS21nusCq7XWSUqp/8jcl9jK12GuCb0e+EcptR3TyqyBT/JY9nhrntqYrsl/YbqvNsW0Ftm66W62ltNEKTUJ0900r+Oi562kpYk1zwZMwpVby9ARzH55pFLqTuADrfWRbPM0Bn5RSq3CtJT6Yi7X0WQeXM/EJKUfWV1Ob80jttzY1tfPul5zmtZ6c35vsJxUSi3FDHbUyJp2FkBrfVIptYvMBHYFppXMdjJjuUNyVth6uhKwTCl1DFMna7KOauxoOGb05RrAdqvuSSIzYQJzciUD8x19gDnJUCvbcmzb5lal1ETMb60o9fsITEK7CXMJ0QzMyemnlLnt1l+Ybs2tgLXW7/tKzCjSAzDXm9rk9fsqioK2ve3OFLcppT6wPp+zhCqlHHulRWqtxxRhOZOBZ4DHrQSxOqa1eDvO7yLszGO7AZhBR+thfqN/Yf63b8J8np+tVuqvMI0z7YBdWmvbd7IAM3BcLWCjUmoZ5v9tHOZ6dTut9Sml1GzMtdGrlVJ/YrrOt8V0/x5xAXELi7QYi0vR05gDiUaYSu/zQr5vAOaM4DWYM8nj8p89K6sb382YWyhVw5zpq4Np6Shyd7pc1jMTc6Y+ATPYxCmgl9Z6oVUejxl1chnmQCoMc9b6mUIsvp21bNujaf6z5+l1zAFbkhVjDOZg870iLk8I4V7WkzlOwopsz7bri9FaZ2CS5WmYA+N7MAf2d2qt/81twdblG60xox1rzEA2TTEti8211rbumXsw13lGY05A/oG5tjA3ozH72nDMvvcBhyQwuxGYLq6tMPvZ7F26wRzgf219pgcxXSu3Ao84fK53MAmCbYClkXmsLzcfYAYSqm/FkD05zMufmG7RvTCDSf1GZuILma3G0Zh6b0UuZVD4enoF5lKdzpiWwMe11ptym1FrfRLTUj0ec4LjAcw1mRGYbfWn1vooZqyLk5j6ej05LxH6AdOrwA/TcnvThdbvSqnmmDovDXhKa31ea32AzOuGv7CWfxcmSQnEXCbQFLNNsw+GdiG/r4Lku+211n9h/jeSMf9Pk4q4ntzYrjG2PR7Of/bcWb+BLpgTC7dhTobMwoxGfy6/9xZhXU47ttNa78Ak2NOsST0xiepSzP+jzVSHv22txVjdpztiTrL4WrFUwZyoyk0vzG8nA/P7ao3ZZovymF8UQBX9/04IIYQQwrVZI/fOwiRSr2qtL8kTeFZvH1tXy6BLefwGpdQTmORhmXYY8FEId6GU2olpDa5ZiN5+4iKRrtRCCCGEuGxZg9o8gmk99FZKXaW1zj5itRBClDilVBdMD4k6wO+SFLsWSYyFEEIIcVmzul9eki3FQojLSk/MiNTrMKO8CxciXamFEEIIIYQQQrg1GXxLCCGEEEIIIYRbc6mu1JUqVdJhYWGlHYYQQogStH79+tNa68q5ld1yk5+OjknPrejC17Ml9XetdVenLMyNSd0shBCXv4tYN2/AjPkwT2s9r6D5LyaXSozDwsJYt25daYchhBCiBCmlDuVVFh2TzprfqzllPZ5X7a3klAW5OambhRDi8ncR62atte7tlIU5mUslxkIIIdybBjLIKO0whBBCCGFxl7pZEmMhhBBCCCGySU5OJiIi77vphIeH4+PjA0BkZCRnzpzJdT5vb29q1qxpf71t27Y8lxkSEkJwcDAAMTExHDt2zF4WFBREaGioS8Xm7++PXGohLheSGAtRijp7PFDaIeTg2ahuaYeQq0Wb3yrtEMRFoUnXl/9ZaSGEa7Ilhg0bNizlSC4NCQkJpR2CuCjco26WxFgIIYTLMN215DaCQojS5+PjU+gEOTQ01N6aW5DCLjM4OJjg4GB7su64fFeIzbE1W1ze3KVults1CSGEEEIIIYRwa9JiLIQQwqW4wwAfQgghxKXEHepmSYyFEEK4DI0mXV/+3bWEEEKIS4W71M3SlVoIIcTlqrxSarJSqltpByKEEEII1yYtxkIIIVyKEwf4iNVa93bWwoQQQmSSkbvdizsMviWJsRBCCJehgXQ3qHyFEK4pJCSktEPIwRVjEu7FXepmSYyFEEIIIYTA3IaoNESdjmfFuohcy06dOkXlypWBw7mWl/H0oGuHBpQt61mCEQpx+ZPEWAghhEtxh+5aQghhE3U6nj7DvifyxNkiL2PFugjeGnjnRU2O9+3bB0DNmjUv2jpF6XGHulkG3xJCCOEyNJCutVMeQghxoWJiYoiJiblo6zsVHU/f4cVLigH+XRvB0LG/kpaW7qTICpaSkkJKSspFW58oPe5SN0tiLIQQQgghBHDs2DGOHTt2UdZ1Ktq0FB89Xryk2MYkx/MuanIsxOVEEmMhhBAuJcNJDyGEcFUmKZ7ttKTY5p81+yQ5FiXCHepmSYyFEEK4DI0m3UkPIYRwRadjEqyk+EyJLF+SY+Fs7lI3S2IshBBCCCHERXA6JoEXh35fYkmxzT9r9jHsg/mSHAtxAWRUaiFc2NOjH6Z+qzqcPHiKsb0+Id2q4Dw8PBjwxbOE1ryKvRv28+mA6QDc0/c22j/QirjoBEY/OoGk+GQAvP28mbF/EmOfmsTq3zYUO66n+neh/rVXc/LYWcYN/4n0tAwrLkW/4XcRWq0ie3cc4/MxCwG4q+cNtOvSkPjYZN5/bQ5JiakMH98TP39vlIcirNYVPND23WLHJS4DGtJd+4SyEEIUiWkpzpoUP/doOxrWCeF4VCyjJv1OenpmfTr4uS5UvSqI3ftPMuHLvwH46M3u1L6mCm+NX8B/6/cDMHHkg3h4KDIyNPMXb+X3ZTsAWL56L8PHzefNl7tRxlPawkQxuEndXKL/JUqprkqp3UqpfUqpV0tyXUJcbq5pXJ2KIcG81H4YR3ZH0u7+G+xl19/RjOhjZ3ip/TC8/byod0NtAisG0KpbC/q3HcrS2Su484Vb7PPf0/dW9loVaHHVqH0llaoEMvDJqRw5cJq2nRrYy65rV4eYqHgGPjkVb59y1Gt8NYEVfLmhQ11efmIKy37fSrcHrwfgzf4zGfT0l8z4ZDEr/97plNjEpU/jHtcxlSapm4W4+GxJ8ZFjmUlxzbDKVAr254U3ZnE4MoabWtW2l7Vufg2nYxJ44Y1ZeHuVpUHtqwAYOf43fpif8wT3wLfn0mfY9/ak2GbZqr0M/2AeaenO3ysGBQURFBTk9OUK1+MudXOJJcZKKU9gEnArUB94SClVv6TWJ8Tlpn7rOqz/czMAaxdtosGNde1lDVrXYf0fjmV1qNMynC3Ld2ROa23m9w3woUbDauxcvcc5cV17Nev/M/cuXLdiL/WbVsssa1KN9SsdyppUo3aDULauP5jr/ABtOzdk+e/bnBKbECJ/UjcLcfGdjkmg7/DZWZJigIZ1Qli7+SAAqzcepFHdUHtZo7qhrNl8yCo7QON6piz6TGKO5WdozZjX72X0kLu5onJgjvJlq/YyogSS49DQUEJDQwueUYhLREm2GF8H7NNa79danwNmAXeV4PqEuKwEBPmRFGe6QifGJhEQ5G8v8w/yz1IWGOyPf5A/iXFJmfMHm/nv6Xcbv0xa5LS4/AN9SEpMNetJSCEg0DezLMDbXpaUkEJAeR8zf4Jt/lQCAn3s8yulaNyyBhtXRzgtPnGpU6Q76QGUV0pNVkp1K+1P5UKkbhYiHw0bNqRhw4ZOW15Ghublt+ZyODLnvZED/L1JTDoHQEJSKoH+3pllfl4kJll1Z1IqAQ5l2Q0d8ysvDv2eWb+sY8DTN+c6z9JVe5lodccW4sI5tW52WSWZGIcCRxxeH7WmZaGU6q2UWqeUWnfq1KkSDEeIS0vC2UR8rSTSr7wv8WcS8iyLi0kg8WwiflaS6lfel/iYBHwDfbmmcRjb/9vttLgS41Pw9fMy6/H3Jt5KxrOX+fp7Ex+bTGJ8Mr7+tvm9iLcSeoCGzaqza+sR+zXKQmggQzvnAcRqrXtrreeV7qdyKVI3C3GRJKaew8ND8ezDbShbxjNHeUJiKn6+5QDw9/UiLiHFXhafmIqfr1V3+noR71CWne19m3YcpZLDSXRHVSoF0L1bc86lniftvHMG5EpOTiY5ObngGcUlz8l1s8sq9SvxtdaTtdYttNYtKleuXNrhCOEydvy3h2YdGwPQ4pZr2b5il0PZbpp1spU1YfuK3exeG0GjtvUyp/23i2p1Q6hcNZh3F7xOx4fb8diIB6lSrVLx4tp8mKY3hAPQvHVNdmw87FB2JGvZpsPs2R5Jo2Zh1rRaWeZv26WBdKMWwgVJ3SxE8UTFJ/DA5zP5eMlKWrcI5+1Bd+ZIjrfuiqRF4+oAXNc0jK27Iu1l23Yfs5dd3ySMLTsjyYuvj0muw6pWJD4xZwJdpVIAE0c+SKUKfrz5wgzeH/S9U5LjiIgIIiKkx5e4fJRkYhwJXO3wuqo1TQhRCBGbD3ImKpZxy0ZSvf7V/DN3Nf0+6w3AqvnrqXJ1JcYtG8m5lHPsXLWH2NNxrF6wgfH/vMXND7Xh10/+YNeaffRt/Tqv3fYOi79dztcjvifq8OlixbV/9wnORicwdlovqodX4d+/dtB36J0ArF6+mypXlmfstF6cP5fGzi1HiD2TxJp/dvPB9Ke56bbGzJu9GrC6UbeowcbVzhkUTFw+3KG7VimSulmIfOzbt499+/YVaxlR8Qk8OW0uB06fYdLSVUz6eyU35pIc7zt4ipizSUx6uwc1rq7I0lV7eOV/nQH4b10EV1QKYNLbPUg9n872PccBGPLCLXRtX59nerbhkXuuA2DCm92Z9HYPXvlfZz6evjRLLLakuHKQH2/1mcGGFXv5Z9FWpyXHwn24Q92stC6ZNm2lVBlgD9ARU+muBXpqrbfn9Z4WLVrodevWlUg8Qriizh4PlHYIOXg2qlvwTKVg0ea3SjsE4SRKqfVa6xa5lTVoXE7P+q2KU9bTuFpknutxV1I3C5G/bdtML6aiXmd8Kj6RJ6bNYf/prNcUv3hTK1646Qb+XRvB0DG/cv4i3F+4SsUAJr5lkuKRL85g/b97s5S37dqIwWMexDOXbt6FUdxtJVyL1M0l2GKstU4DXgR+B3YCs/OreIUQQghRsqRuFqLk5JUUA3z890o+WbqKNi3DeWtgt1yvOXamgpJiwLQcv/I96RchSRfiUlCmJBeutV4ALCjJdQghhLi8ZGjX7mp1qZO6WQjnO52QyJPTc0+KbSYuWYlC8VyH63lrYDfeGPsraSUw+GTlYH8mjOxudZ/+Jtek2Gb5oq2gFIPe717klmPhHtyhbi71wbeEEEIIG417XMckhLh8nE4wLcURp/JOim0mLPmPT5eups11NXlr4J2UKePcQ/HKwf5MfOtBqgT781afb1j3z54C37N84RbGDJ4tLcciT+5SN0tiLIQQQgghRBFcSFJsM2HJf3y2bDVtnZwc25PiigG83ffbQiXFNssWSHIsRIl2pRZCCCEuhEaRLudshRCXgOiEpAtOim0+WvwfCsWz7a9j5MvdGPbBvGJ1q64U7M+EkVZS3Ocb1i7ffcHLWLZgC0opBo5+oFDdqsPDw4sSqrgEuUvdLImxEEIIl+IO1zEJIVxTUFBQoeaLTkjiielFS4ptxi9egVLQu51Jjucu3JjrfKkpqQB4eXvlWl7G04P+vTpyRaUA3ulbtKTYZulvm0HBwFEFJ8c+Pj5FXo+49LhD3SyJsRBCCJdhu45JCCFKQ2hoaIHznElK5snpc9gXFV3s9X341wo8lOLpti1pd32tXOeJjIwsMK70tHRG9vmGNcuKnhTbLJ2/GYBB7z+IUrI/Fu5TN1/+beJCCCGEEEI4ye4Tp9jrhKTY5tfNO/MtP3PmTIHLSIxPYc3SXc4KiaXzN6O1zneeyMhIIiMjnbZOIUqbtBgLIYRwIYp0LedshRClIzk5GXC9bsLJyckuF5MtYS9MK7u41LlH3Xz5f0IhhBCXDA1k4OGUhxBCXKiIiAgiIiJKO4wcXDEm4T7cpW527eiEEEIIIYQQQogSJl2phRBCuBQnDvBRXik1GZintZ7nrIUKIdxbteAKzOjVnWNn4nj95z9IyzC3WfJQipF3daJ6xSB2HDvJqIXLCK0QyOj7uqK1JuncOQb+sJCE1HPc1qgOj93QlNS0NL76b4NT4nrq5a7Ua1KNk8fO8uHrc0i3bv/k4aHoN/JeQqpXZN+OY3w+aj4Adz3amrZdGxF/Nokxg2aTlJhK+9uu5e7HWnMuNc0pMYnLhwy+JYQQQlxEWpvrmJzxAGK11r0lKRZCOFNZT08enTqb/adj6NIgcyTpDnVqcCo+kUenzsanbFmaXH0V8SmpPP/tLzz25Q8s2bWfB1o0wpVlFVAAACAASURBVEMpet3YnEemzuaVOQt5tFXTYsfk4elBxSqBvPLoZI7uj6JNl0b2sus61CX6VByvPDoZL5+y1G1SjcAKvtxwUz0GPvw5yxdu5Y6eN+Dhobi/V1sGPvI577/yvYxILeycXDeXV0pNVkp1K+3PlZ20GAshhBBCiFKxbds2goKC7AM4JScn53s9bXh4uH0QqsjIyDxHbPb29qZmzZpZ1pOXkJAQgoODc8RlW5djTMHBwRw6EwfAP3sPcm+zBizYam6R1PTqEJbtOWDK9h2kabUQNh05bl/m+fR0MrQmyNeHk/GJpGVkEBWfSGiFwFzja9iwYY6YAPv2cvz8fr4BbPhvLwDr/tlD53tbsGyBue1S/abVWbPMjFi9/p89NGhaHf8Ab7auM7Gu+3cPL496gMAf1xN9Mo70tAyio+JITU1l3759BW4vx9tJlfb3FxMTQ1xcHGFhYXnOL0pdrNa6d2kHkRtJjIXb6Hzj26UdQg5RL7Yu7RByCNpzrrRDyFXz3h+Wdgg5rJ88oLRDuCxluEF3LSFE/slOaQsKCsp1FGhPT0/Op6UDkJCaSnkfb3tZoI83CammDk1IOZelLMDbix4tr6X3jB+JS0nlykB//L3KcWVgACEVAok9lnU9ISEhBcYYGhpKcHAwERERlClThqSEVAASE1IJKJ8Zu3+gj0NZCv7lfbJOi08hoLwPsTGJVLqyPL7+XlS6sjxeXl6F2VQuJSoqirQ06QZeEtyhbpbEWAghhMvQQLpc5SOEW3G83Y+Pj0+OltL83lfYWwUVdpmFiSlemcNnfy8vYpNTMqenpOLvVc6UeZezl5Xx8GDM/V15b9EyYpNNMjruz3+Z1PNOjp2NZ8/J04WKL7d5bLElJ6Xi628SWT9/L+Jjk+3zJMQnO5R5kxCbTGJ8CiHVK5ppAd7ExyajtWbauN8ZPukxoo6dzXOd2bnS9ydJcclwl7r58v+EQgghhBBCOImtJbhNrepsOJzZ1Lvx8DFahVczZTXD2GiVvXlnJxZu25tl3n/3HeLxaXP4fPlqDkbn3p34QqSnZdCklel63LxNbXZsOGQv27nxME0dyrZvPMSerUdp2KKGmXZjLXZsOAjA+n/3MPjxL5j1+d/FjkmIS420GAshhHAhyjY4hxBCuKTz6enM6NWd42fjmLZiPSO6dWTEvMUs3bOfjvXCmdGrOzuPR7HpyHGaVw+la8PaVA0K5N6m9flrZwQzVm1kyK3tqX1FJWKTU/l65QZubVinWDFlpGdw9nQCY2b05tTxWOZO+4c+I+5m4oifWb10F6061mfMjN5E7DzOrk2HAVizbBdjv32WhLgU3n9lFgDPDrmDsNpXkhCbhNZaBuASFveomyUxFkII4TI0kCGdmYQQLuxwzFmenD7X/nrEvMUApGdoXvvpjyzzrj8USfO3P86xjFELl9n/rlWlolPimjp2YZbXE0f8DJikedxrc3LM//NXK/j5qxVZptlu5QTw2/Z3nBKXuPS5S918+X9CIYQQQgghhBAiH9JiLIQQwqWka+m6J4QQQrgSd6ibJTEWQgjhMjTKLUa+FEIU7pZEF1thYirr6enUdRa0vMLE5OHpgVIKrbVTYvIsU7j9sKt9hxc6+rgoHHepmyUxFkIIIYQQF11wcHCprPfc+TTi4pLzKC0LwOno+FxLvcqVpVm1EJ66sTlfrlhf7Fgq+Hrzzj1dyMjIIObE2XznPX0sJtfpnmU8CapSnpfevZ9xr80pdnLsWcaD18c/jIeHBzEnzpKRkZHrfFcGh5CRkntcSimCr6wgg3eJS4okxkIIIVxKhhuMfCmEKB0JiakMfGM2O/ccL9L7vbzKMGrYfQzs0hagWMlxBV9vpj1xP7UqBzP60Qn8/d2Kgt+UC6UUL07sxZ3P34JG8+Frc4ucHNuS4lYd6/Ptuz8yfej3RVoOQLf/dabPx70kOb5MuEPdLImxEEIIl6HBLbprCSEgJsa0NF6sluPiJsUAqalpDBk5154caw3T/rvw5Li8T2ZS/N5jE4ucFANorfm4z1SUgm7P3QJQpOTYs4wHr33Yk1Yd6zNz1E/FSooB5n32J8BFTY737dsHQM2aNS/K+tyFu9TNkhgLIYQQQoiL7tixY8DFSYwTk1J5ZWjxkmIbW3I8evh9vHJLWzSa6f9tKPT7TVJ8H7UqB/P+4x8XKym20Voz8cWpoBTd/tcFNHz4euGTY88yHgwZ15PWnRrw3eifmPbGrGLHBFZyrBR9P+7llOUVJCUl5aKsR1yeJDEWQgjhMjTKLUa+FEJcPIlJpqV4x+7iJ8U2qalpDHnzR0YNv5dBt7RDa/hqZcHJcXkfL7584j5qV6nImCcmsWTmv06LSWvNxBemoJTijmc7o7Vm/Bs/Fpgce5bxYMgHD3Fj5wbMeu9nvnzdOUmxzbxPzb2dL1ZyLJzPXepmSYyFEEK4lAw36K4lhLg4EpNSGTj0B6cmxTYpqeftyfHgru3QaL5euTHP+U1SfD91r6jE+49/zOJv/3F6TFprJjz/BUrB7b07ozV8NDTv5NizjAevfvAQN3ZpyKz3f2Hqa985PSYwybFSij4TnyqR5YuS5w518+X/CYUQQgghhNsx3ad/YMeuYyW2DltyvGnrEV7t2p5Hb2ia63xZkuInSiYpttFa89FzX/Db5D+55b4W9Hvr3lzn8/A0SXEbW1I8ZGaJxQTw6ye/83HfL0t0HUIUh7QYC2F5+rmbqd+oKiePxzL23Xmkp5vbE3h4KAYMvp3Qq4PZu/s4n35kBpO454GWtL+5PnFxyYx+82eSks5xU6cG3NO9JedS05nwwUIOHzxdrJj639mGa2uEcCwmjuHf/kGadcsED6UY/lAnqlUOYseRk4z5cRmhwYG8/WhXMrQmKfUcQ75aSELKOYbcfxM1QyrhXbYM0xav469Ne4u3oYDeT7WnYf1QTpyM5b1xC7Nsq4H9ulI1NIg9e0/y8eeLARg3uge1a17BO+/PZ+WaCLOMJ9vTpVMDFv+9k0+n/F3smPrc24Zrw0M4Fh3HyK/+IC09c1u98VgnqlUJYuehk3wwexkAn710H3WrVWHo1EX8s/UAALe0rMNDHZuSej6N0TOXcOB47rfGECVHa0h3g5EvhRAlK8lKirc7JMXPPtmehnVDOBEVx+jxWeuuV/rcQtWQIHbvO8nHXywB4MN3H6RW+BW8M/Y3Vq41dVe//3XimrDKeHuVYeac1SxbsYeU1PO8OmIuo0fcx5Bb2wMwY1Vmy3F5Hy+mPn5fZlL8TWZS/PToh6nfqg4nD55ibK9PSE9Lt2LyYMAXzxJa8yr2btjPpwOmA3BP39to/0Ar4qITGP3oBJLikxm7ZAQenh5kpGew6Msl/PXNcntyrJTitmc6gdaMH/qjfb0enh4MGWeS4u/HZE2Knx7Vk/qtanPy0CnG9vrMISbFgMnPElrzSvZuOMCnL31lYupzq4kpJp7Rj35MUnwyfuV96ffJ01SoUp7IfSf46LkvAPhl0u8AvDhBWo4vJe5SN5fYJ1RKfamUilJKbSupdQjhLNfUrELFygG89PzXHDl0mnY31bOXXd+6FtGnE3jp+a/x9i5HvQahBJb3oVWb2vR/7iuWLt7Bnfe1wMND8UDPGxjw3NeMevNnnnr2pmLFVDukElXK+/PkR7M5cDKGTk1q2cvaNaxBVGwiT340G59yZWkcdhVxyan0nfwLvSb8wLKt+7m3dSMAxvy0jF4TfuCZj+fwTJfrihUTQHiNylSuFEDfgTM5fCSG9m3r2MtaXRdOdEwCfQfOxNu7LPXrhQDwzvvzmfPzuizLmfPzOt5+b36x4wGoVbUSVSr48/SY2Rw8EUPHZpnbqm3jGpw6m8jTY2bj41WWRtdcBcAbUxcxc3HmgYuHUjx2S3OeHjObN6Yu5MV7bnRKbOJCKTKc9BA5Sd0s3EGS1X3aMSkOr1GZShX96TP4Ow4djaZDm6x11+mYBPoM/g4f77I0qGvqrrfH/sacX7KOOD1pyhL6vfod/V/7nkd7tLJPtyXHm7cdYcit7Xn0hiYABHqbpLjelZUZ8+SkLEnxNY2rUzEkmJfaD+PI7kja3X+Dvez6O5oRfewML7UfhrefF/VuqE1gxQBadWtB/7ZDWTp7BXe+cIt9/tdue5eBN4/gr2+W26dprRn/v8ks+OIvbrm/Jf1GmpZj01LcgzZdGjJ77K9MeXVm1phCg3mpwwiO7DpGu/uvd4ipuYmpwwgrplpWTM3p324YS2ev5M7nTUyPj3iA78f8yqDOb9mTYptfJv3OpH7TCvwehStxj7q5JFP/6UDXEly+EE5Tv2FV1q/ZD8Da1RE0aFzVXtagUfayq6lTL4Qtmw6baasiaNDoagLL+3L6VDzp6RlEn47n6uoVixXTtdeE8N+uQwCs2HmQpteE2Mua1AhhpUNZk2tCiE9OJT45FYDz6en264lsLafe5cqy/0TxW0Ab1A9l7XrTwrpm3X4a1Q/Np8xsx+iYhBzLiTmTiLkBQPFdGx7Cqh1me/y37SDX1szcVo0dy7YfpEm4KTsdm5hlGRX8fYg6k0haeganziYSduXFuX2IEBfZdKRuFpexpKRUXhk2J0tSDNCwXijrNhwEYM36AzSsF5qlbK1Vtnr9ARpa9VpudVdamlWnepXh0OHoLGW25HjL9qMMubUDvdu25MsnTFI89qlP+GvG8izz129dh/V/bgZg7aJNNLixrr2sQes6rP/DsawOdVqGs2X5jsxprc38GRmad34bwsifB1OlWqUs67Anx1MW0/WBlvR98x5eHduDtrc04ocP5vHF4G+zxVSb9X9uMev4fRMNWmeeQGjQKmeZiWmnQ5y1AQhvUoM7n+vC2MXDaH1Xixzb8eePFzGp//Qc04srKCiIoKAgpy9XuIcS60qttV6ulAorqeUL4UwBgT7ERJsKMDEhlYAAH3uZf4A3SUmp9rLAQB/8A7xJTLSmJaYQEOhN7NlEqlwRiK+fF5WrBBAaGoynp4e9q9aFCvTxsidvCcmpBPp6Z8br401iyjmr7Bzls5R50b3NtTz3aWaXqfcev42Wtary4a/FH/0ywN+bmBgTV2Ji1m0V4O9NUpKJKzEplYAA71yX4WwBvlm3leP2CPT1JjE5c1sF+uUe05mEJK4I9sffpxxVKgRQtXIFynh62E8siItD49TuWuWVUpOBeVrrec5a6KVM6mbhSho2bOjU5SUln2PQ8Dls2xmZoyzA39ue6CYmphLoUD8F+HuTlJxZdwX65193DRvUjaaNq/HZtKU5ypJTzjN4+Bzee/N+BnRuQ0ZGBmN7fcKfXy/LGVOQHzHHz5j1xiYREORvL/MP8icpLtleFhjsj3+QP4lxSZnzB5v53+r+AfExCTRuV58XJ/Ri2N3vZVmP1prxz36OUnBrr44A/DBuHpMHfZMzpgrZYgp2jMmPJPv6k62Y/Eh0iNP2GepeX5PPX5nB4Z1HGbf0TdYu2sz51PNZ1vXzxIUoBc9/+ERum7lIQkNDC55JXDAn180uq9SvMVZK9QZ6A1SrVq2UoxHuKiE+BV8/LwD8/L2Ij0/OLEtIwdc3sywuLpnEhBRCq5oWRT8/b+LjUtAapny6hJGju3PyZCy7dkQWOSkGiE9Oxc+7HAD+Pl7EJaXkUVaOWKusjIcH7z7WlbE/LSPOSuYBBn+1gAAfL759+SHmr91BIW9rmKuExFR8fc26/fyybSvHMl8v4uMvzv0EE5KybqvY7NvKJ3NbxSXmHpPWMPHHf/ng+Ts5ER3PtgMnJCkuJenO68wUq7Xu7ayFuROpm8WlyNPTA2/vsrmWJSSm4Gery/28iHOonxISUvD1yay74hLyr7tGvj8Pf38vPhv3KH8s2Z6jTvX09MDby8Th4eGBX4Bv7jGdTcQ30Jxc9ivvS/yZhDzL4mISSDybSGjNKzPntxJ92/OW5Tt4duxjua7Lw9MDX4cT2X4BviilcoxWnXA2Cd9A3xzryFnmkxlTuENM1mc4dSSaPevMddlH9xyjUmgwx/efzBGXfwW/XOMVrseJdbPLKvVPqLWerLVuobVuUbly5dIOR7ipHduO0qxFDQBaXB/O9i1HM8u2HqVZS6vsumvYvuUIu3cep9G11az5r2H71iMArFu9n4F9ZjDzq385sD+qWDFtPnCcG+qYdbSuW52N+485lB1zKAtjk1U2rEcn/ti4N8u8Zct4ApByPo3E1HPFSooBtu+IpHnTMABaNq/B1h2R+ZQdzWUJzrc54jjX1TPbo1WD6mzel/n5t0Qc43pbWf0wNkXkPTrpyu2HePaDOUxdsJp9kcUbOE2IS5nUzeJSkpSUyshRvxIdncA7Q++lZbOwHPNs23mM5k2qA3BdsxpZWpW37YykhVV3Xde8Btt25GxxtrHVqakpaSQl56xT/f28GPfOg9QMr8LwdYtYG3WYFyY8xd0v3ppjWTv+20Ozjo0BaHHLtWxfscuhbDfNOtnKmrB9xW52r42gUdt6mdP+M/PbEt5q9aoSfybrZUIAnmU8GfJNX9p3b83cyX/z+/eruO2ZjvT/9BmUynrN546Vu2nW0YxR0qLLtWz/b3e2soZZyrLGdC3bV+wBYP+WQ4SEX4GHh+Kqa66wt0I7emTofTw2/AHWLN7O1Ld/KfB+y4WRnJxMcnJywTMKkYtSbzEWwhVE7D3JmTOJjPvkMaJOxvHDzJX0e+U2PhqzgFX/7eXGdnUY98lj7Ntzgp3bTYW5euVexn/6OPHxKYx682cAnuvXmRrhVxAfl8xHYxYUK6bdkaeIjk9iWr/uHD8Tx1dL1jP0wY689f1ilm/fz02Nw5nWrzu7jkax5eBxml4TSpemtQmpGMhd19dnyZYIZi7byPtP3EaAjxdly3gy5fc1xd5W+/ZHceZsIhPG9uRkVBzfz13DS31vYdyE31m5eh9tWtdiwtie7I04yY6dJgkdNOBWmjSuRptWtagRVomZs1dz313N6dKpIeUDfahUyZ+3Rhe9p+ueo6eIiUtiyivdORETx4w/1vPaIx1595vF/LNlPx2ahDPlle7sPhzF1v3mXpbDHu9M89pX06FJOOGhlZi+aC0vd29PraqViE1MZdS3fxV7W4kLp1FkaNcenEMI4Rz79u0DoGbNmkVeRlJSKoOHzmHr9qNs3xnJ+Pcf4p2h9/LayB9Zt/Fg5rr2RxFzNomJ7z3EyVPxzPpxDS+/2IUPPv6DlWsiaNOqFhPfe4i9+6Ps1ycP7tfVqrtqmrrrh9UMf/VO/P28KFvWkxnfr8wSi7+fFx+8052a4VUYsnYBcw9s4ceDW/my3YO8MOEptNb8MmmRff6IzQc5ExXLuGUjiTp8mh/GzqPfZ7356H+TWTV/PTfedR3jlo1k36YD7FxlEs7VCzYw/p+3iD+TyKhHJgAwZvFwUq2u4BNfnJIlJg9PD3tS/OMXfzPl7V9QSlmjVXc0o1c/P8WelEZsPsSZk2cZt3QEUUei+eGDefT79Bk+eu4LVs3fwI13tWTc0hHs23SQnav2Zsa0fCTxZxMY9chEAL58/TsGfP4sXj7lWDB1sT0+m4ffuI/HR3RnzeLtvPXMFNLOpZOens4zw+7JkaxfiIgI00rt7G767s5d6mbljLMzeS7cXMc0X2tdqF9nixYt9Lp16wqeUYgi6Hzj26UdQg5RzV2vC1HQnnMFz1QK4quVK+0Qclg/eUBph3BJUkqt11rnHI0FqNYwUL88p/ijpwP0r7c4z/W4M6mbhavYts0Mjl7UJCYp+RyD3/iBrdszeyddUSWQ8e8/RHCQH0NG/sj6TYecEmtB/P28GPt2d+rUupIha35jzoEt9jLfMmWZ1r4HLSpfzcQXp/DrJ79flJhsSXGHB2/kpylLmTzyZ3uZUooBY3vQ+YHrmf/5n0x4YapTWmwL4+HX7+WJkQ9mSYpt7u19E08PvbvIyXFxf1PuTOrmkr1d03fASqCOUuqoUqpXSa1LCCGEEAWTullcLpKSz/Hq0KxJMcDJqDj6D/qOmDNJjBp2L82vrV7iseSXFAMkpZ3nqWXfs+7UEfp8/DTdnrsljyU5j4enB6/OyD0pBjMg14cDZ/HnD6u549nO9Pm4V7Faagur52v38MTIB1m7ZEeOpBjgx8mmVftiJelCOCqxxFhr/ZDW+iqtdVmtdVWt9dSSWpcQQojLgwYytIdTHiInqZvF5cCWFG/Zlvs4FiY5nmmS4+Elmxz7+3kx9i2TFL+2ZkGOpNgmMe2cQ3Lci27/61JiMXl4ejD46z7c1CP3pNgmMzleQ7f/dabPxKdKNDl+aMg9PPlWD9b9nXtSbPPj50ucds2xcA53qZtdOzohhBBuRpHupIcQ4vKTlHyOIcPm5JkU22RPjptd6/zR1f18yzFm5APUqW2S4h8ObM53fltyvP70UfpMepo7nu3s9Jg8PD0Y/NWL3PxQm3yTYhuTHH9nkuPnuvDixCedHhNAj1fv5qm3TVI88ukpnE9Ny3f+uZIcuxj3qJslMRZCCCGEEC4vOcUkxZutO0EU5GRUHAMGf8eZs0mMGnYfTRs7Lzn28y3H2Le6U7fOVby+tuCk2MaWHG+IjqTvJ89we2/nJccenh4Mmv4iN/dsy89TlxWYFNvYkuO/5qzhzuduoc/HTzktJoAeg++i1zsPsX7pzkIlxTZzP1/Cl+/8KsmxuGgkMRZCCOEy3KW7lhDiwiSnnOPVoYVPim1OnIyl/6DvOBubxOjhzkmO/XzLMcaeFC9k9v7CJcU2iWnneHLpLDZER9Lv02e4/ZlOxY7Jw0MxaPqLdHy4Lb98uYzP3/zpgt6vtWbcy5nJ8YsTnZMcPzjoLnq925P1S3fyZq8vCp0U28z5bDFfvivJcWlzl7rZtaMTQgjhdtyhu5YQAoKCgggKCipwvqImxTYnTsYyYPB3xMYlM3r4fTRpdHWRlgMmKX5/5APUq3MVb6xdyOz9m4q0nMS0czy1dBYboyPp91nvYiXHHh6KV2xJ8bTlfDbiwpJiG1tyvHjuWu56/hZemFC8btUPDrqLp0f1ZP2yoiXFNnM+Xcy0UfMKlRyHh4cTHh5epPWI/LlD3Sz3MRZCCCGEEBddaGhogfOY7tNzi5wU2xw/EUv/QTMZ/35PPny3B6nnzhdpOZ6eHpQp48nQdQv5vohJsU2C1XI8rUMP+n/+LM+Oe7xIy/HwUHj5ePHr9H/4bPiPxYpJa80HL81EKcXdL3Tl1qduJiMjI9d5U5JT8PbxzrVMKYW3rxfrl+1k5FOF7z6dlx8++Qul4IlXu+U7QJiPj0+x1iPcmyTGQgghXIbWyuW7WgkhLp4Fi7awacthpyzr+IlYvvz6H4YMvB0f73JFXs7qqEPMiiheUmyTkHaOYesWMb/r0/j45Z5kFkb82SQ+HTbXKTFprRk74Fs63N0ML5+8t1Nh4p0waBbnUot2EiK72ZP+osPdLahRL8QpyxOF5y51syTGQgghXEq6G1S+QghITk4G8m/ly8hw7rWl6em5t37aHDp0iCpVquQbU7qTr3ctaHmFicnZ1+AWZnmF+f4K2t4XKq/Wa5vIyEigcL0RxIVxh7r58v+EQgghhBDC5URERBAREVHaYWQRHx8vMRWSK35/Z86c4cyZM6UdhrhESYuxEEIIl6GBDBcfnEMIIYRwJ+5SN0tiLIQQwoUot+iuJYQonEYNqjJhbE9OnIzlvXEL7V1zPTwUA/t1pWpoEHv2nuTjzxcDMG50D2rXvIJ33p/PyjWmNbPf852oEVYZb++ybNsRWeyYqvsHMavjoxxNPMurq38jTVsxKcW7LW8jLCCYbTHHeXvjXwBsvu9ltp05AcCb6/9gT+wpulWrz+O1W5Kakca03WuKHRPAU0O6Ua95GCePxvDhwO9IT8vcVv3e60FIjUrs23rUfiunu55qR9s7mhB/Jokx/WaQlJDKjbc2pvvznZzWhf3BPl2oUTfExPTyt1ljev8hQmpUZt/WI3w+wgwadlev9rS9oynxZxIZ03cGSQkpDJv6DH6B3iilCKsr1xeXDveomy//TyiEEEIIIS5JPj7l6DtwJoePxNC+bR379FbXhRMdk0DfgTPx9i5LfWtApnfen8+cn9dlWcakyUvoP+g7BgyeRZtWtYodUzkPT3osnsH+uGhuvbquffrNITWJSk6gx+IZ+JYpS9OK5jrXA/ExPLzkWx5e8i17Yk/hoRRP172BHotn8NLKX3i8dstix+Th6UHFK8rzyv0TObovija3NbGXXdexAdEnY3nl/ol4+ZajbrMwAoP8uKFzQwbeO4Hl8zZyx+NtAej+fCeGPDSJl+4en+/oz4UVXDmQV+77iKP7TtLmdoeYOjU0Md33Uc6Y7hmfJaaRvb5g8AMTmfHBAhLjkosdkxB5kcRYCCGEy9BAhlZOeQghLn0no2IBWLNuP43qZw6o1KB+KGvXH3AoqwpAdExCjmWkWa2U3l5lOB0dX+yYzp4zydny4/tpVqmqfXqzSlX558R+AJYd309zq6yafwW+u/kRRjbvSjkPT4LK+XIyOZ40ncHJ5ASu9qtQ7Jg8PT3Y8M9uANYt20n9FjXsZfVb1GDD8l0ArF+6kwYtalD72mpsXWVa1NctzZz/aEQUvv7elPNyTqfSrav3Za6j5TV5x9TyGmo3cYjp7x3Ub1kjy7La3t5UEuNS4i51s3SlFkII4VLS5ZytEG7FNrpx9oGcKleuTNSp0wAkJqYSEJA5+nGAvzdJSedMWVIqAQH53zpo2Kt30uTaavzx1ybIOJulrGHDhsTExHDs2LFCxXT8bBQA8edTqeCVGVP5ct4knE+1l5X3MjHdPP8zzp5L5sUGbXi0VnO+3L2Gq3wD8S/rxVU+AYT4BrJt27YCYzp06BDVq1e3/x0fn5nklw+oQFJ8itkecSkEVPC1l/mX9yEpwcSVGJ+CfwVfa1qKfVpAeTP/8vkbGT/vJTLSM4iMPMbZs5kDWYWEmxDWswAAIABJREFUhBAcHAzArl27CrWtEuKSrHUk54zJHm+yFZNv5rT4FAIq+NnnV0pxbetabN28nej4igVuK1tc+Q0OFh4ebh9ROzIyMs9Bu7y9valZs6b9dfbvypHjNnKMyd/fn7CwsDzfdylwh7pZEmPhNtK9Xe/nrl0vJE41Kfq9HUtSpS3OuQ+iM91a85XSDiGHhfvGlHYIQghxQXx8fOzJlaP09HTKlTMVpZ+fF/HxmfMkJKbi62vqKz9fL+KthCovI0f/ir+/F9M+e4qTJ8x9kR2TmAuJqaynJwABZb04m5o5T9y5FPzLetnLYlNNTLYW5kVHdvG/eq3QwJjNf/N52/s5lhjLTuv644JiKlMm86ChSpUqWRLjtPR0fK2TA36B3sSfTbKXJcQl4+tv4vIL8CbhbBKJccmEhFW2T4uPNfM/+eodPNf5PVKSUvlu80ji4mJzvUVSlSpV7ElfftvKx8+2Xp+cMdnj9ck9prOJ9vkbXh/Org0H0T6Z1z7nt61cTUJCzp4MwvW44GG5EEIId6Vx/a5WQgjn8/HxoWHDhjmmnztvkt+WzWuw1WHgrO07ImneNIwt247SsnkNFv65Nc9lly3ryfnz6aSmppGWlpHreoKDgwkODs7SGphXTGWSA2EdtL3qGjacPmqfvuF0JDdeUYO1p47Q7qprmLN/Cz6eZUnNSCNDa1pWvpqDCaZVcvmJ/Sw/sZ+wgGBeatSe2wsRk+O9ebPHlhCXTJM2tVk8dy3N29Vlx7oD9rKd6w7StE0dtq3ZT/P2dflj9hqOHzzFPc90AKB5+8z5086lk5yYStr5dHx9falfv36u2zQ4ODhLC21e26pxq9rMn/6vWcfa/Q4xHaBp2zpsWx1hYvp+NccPnuaeZ24yMXWox461mZ+hzR1NWD5/I08O6UZ4g6o51nMh319uQkNDC33v48IuM7eYLlXuUjdf/m3iQgghLikZeDjlIYS49KWmnmfC2J6EVa/E8n9381LfWwBYuXofV1QJZMLYnpw7n8aOnSZJGzTgVrp0bEivx9vSs/v1AAwfcifj33+ID997iH9X7i12TOcz0pnV8VFqBVZi0dFdvN3iVgCWHNtLiF8gszo+Smp6GhujIwkLCOKnzk/y3c2P0P6qcKbvWQvAG0078c1NPRnYuANfW9OKIyM9g7On4hkzpw/Va1/JioWb6TOqOwCrF2+ncmgQY+b04VxqGrs2HCQ2JpE1i3cw9se+dLi7OfO//heAH6csZezcvoz7qX+xYwKIi05gzNx+VK9zFSsWbKbP6AdNTH9tp3JIEGPm9nOIKYE1i7cz9qf+Vkz/AKYbdeMbarLRuoZalA53qJulxVgIIYQQQrikLduOMmnyEvvrcRN+ByA9QzP6gwU55n//w4U5pr0x8if7351uyr0F9EIcSjjDo3/PzFz+OrPOdK0ZtHp+lnl3no3irj++zLEM262cAGqXr1zsmACmvvtrltcTh8wGTNI87uWZOeb/eeoyfp66LMu0JT+uY8mPZlTv3w6OK/bI1N9N+J3oE7GZMb36fWZML32bM6YpS/l5ytIs07TWPNdpdLHiEKIwJDEWQgjhMrSGdDforiWEEEJcKtylbpbEWAghhEtxh+uYhBBCuIfCXpPs6tyhbnbtjt5CCCGEEEIIIUQJk8RYCCGEyzAjX3o45SGEcG0hISGEhITkO0/rG2pSqZK/U9ZXrlwZbrulcbFjahR8FdcG5z/PhXikZrNix+QX6EOHu/JfzoW4/dEbC7y+uDBxdXuirdNiatKmNlWvqVLsmMSFc5e6WbpSCyGEcCnpXP7dtYQQFOoetKEhQYx/vyf9B83k9Omi3wu2XLkyjHrzPpo1qc7ERf/x764Duc6XmpqKl5dXnssp7+vNqIduZXqHHjy+9Du2xBwvckwAbza/hYdrNWf+qh189/fGIsVUxtOT13t2ZOCHD6P1/9k776gorj4MPwNIL1IVUAELKqCIvWuMhSQmsfeusRtN7CaxG2uiKdbYTTSxJbYY9UvsGnsXAUVUioiAwi6wCMz3x+zCLkWRXRTjPOfsObq/uzMvM7P77rv3zr0iR3fnvZ2C8n6vhgyf1ZGg83dZOX0HYqb44hflRBDo9mlruo5sTWamyMYF+/TS5N/Im2nrBvMkXsk3UzaQmpyWZ7tUVSrmZub5bqdpYDU6DWyql5aX5fbt2wBUrFjxle7X0LwN3iwHYxkZGRmZYoOIQe9jshMEYRWwRxTFPYbaqIyMzKuljJs9S+Z3Z8yELTyOe/lwbGpqwtfTO1IrwJNv9x5j3ZELeukZuGIba4Z2ZkPz7nqF4+m1WtNLHYqnbzxIpliIAKpm6JLtrBjTifFLegEUOhy/37MhI2Z34taFcL7stZwURWqhNc0duo4pKwfQ/dM2IMLGhYULx/6NvJm+fjCJCclM6r+ahxEJhdYUeiOSzEyRLp80K/Q2XpbU1MIfw+KCgb252FK8+7NlZGRkZGQKz1NRFAfLoVhGpngSHx9PfHx8gdqWcXdgyYLuODm+3LBqKRR3oHZNT77de1zvUAxwJyaeQSu280yVyYbm3anm4PrS25heqzW9K9Vm7xn9QzHAE2UqQ7/bwZ2H8Yxf0oumHwa89Dbe69GAEXM6EXzxnt6hGCD9WQZfD1nLvwev0X10G3qPe/+lt+HfsFJWKJ7Y7ye9QrGGdYsPsHX10Rc3lHnrkIOxjIyMjEwx4u24j0lGRgaioqKIiooqcPsy7g4snl/wcFyihDFzpnWgdk0vFu87zroj5wsrNRe3Y+IYtGI76WmZbGjeDT/70gV+7bSaUijedyaI6Rv0D8UanihSGPrdDsJiEpjwXS+atq1R4Ne+16MBI7/uTPCle3zZa5neoVhD+rMM5qjDcY8xgfQa+16BX1u9QUWmrx9M0pNkJurZU5yTdd8eYNuaYwbb3n+ft8Obi7c6GRkZGZm3jkwEgzxkZGT+e5QtI4VjR4fnh+MSJYz5enpH6tTyYsmfJ1h72HChWMPtmDgGrthORprIxne6FygcT6vZmj7etfnzbBDTNhwwWCjW8ESRwtAl26Vw/H1vmnzw4nAc2F0rFPdcRnKSYYf+pqelZ4Xjnp+9R6/PXxyOqzeoyIwNQ0h6msKEfqt5+KBgIwtehrXf/CWH45fgbfBmORjLyMjIyMjIyMi8MZQtIw2rzi8ca3qKNaF4zT/nikzL7Ye64dj3OeF4as1WWaF46nrDh2INCepwfFcdjhu/759v28Bu9Rk1t+hCsQZNOD5z6Do9P3+Pnp8F5tu2Wv2iD8Ua1n7zF9vlcCyjRg7GMjIyMjLFBlGEDFEwyENGRua/i9Rz3C1XOC5RwpjZ0zpQt3Z5viviUKzh9sM4Bq3cQeYz2Ni8O772pXK1+apmK/p612H/2VtF0lOckwRFCkOWbCf8UQITf+hDo/dyh+PAbvUZNa8LIZfvF2ko1pCels7swWs4c+g6vca+T48xucOxX70KzNw4hKTEVCYWcSjWsOabv9i+9niR7+dN5m3x5iKblVoQhLLARqAU0mRmq0RR/K6o9icjoy+ffNIcX193Yh4+ZcHCP8nIyATAyEhg7Ofv4V7GntCQhyxd9jcA3yzqTqVKpfh67h7+/fcOAH5+ZRgyuDmZmSJLvjvI3buxemka07YxNTzdiIxPZNqvB0nPVGsSBKZ1aYmHsz03I2JY8MdR3B1smdMjkExRJFmVxqSf96NIlZYzsDAtwf4vBzD114Mcu5n3EhUvw+eBjanh4UZkQiJfbdfVNaNjSzwc7bkZGcO8vUdxt7dlbhe1rrQ0JmzZj0KVRiu/igxqVodMUWTPpSA2n76il6Yh/ZvhV9WNh48Smbd4v875G/9pG8q42RN8O4YfV/0DwOK5XalUoRRzFu3j9Fnp/A3u15Q27/rxvyM3Wb7miF56AAaMf5+qNT2IiUxg8aStZKRnaxo9pxNunk7cvh7Jyjm7Afi4b2OavO9P0hMlC8duIVmhwsrGnJEzO1DSyYao8Mf88NUOvXUVd4r7PUhvMrI3y/yXKFfWkcXzuzFmwhbiE5RZobhe7fJ8v/8kq3OE4s8+aIy/hxtRCYlM/U3Xu6Z3bkk5J7Wn7lZ7ardARLV3TfxF8tS1wzphJBiRKWay88wN9l4MAiA0+jEDV2xnzdBObGzegz5HNnMjIQaALwNa0s+7Dn+du8XUDX+RobX80aftGuNfwY2ouERmbNTV9FWvlpRzsSfofgyLth3FzdGWWf0CycyUfP6LtZKmUe0a07ZeVfafu8WSndkBTxOOV33WiUk/9mHeyI2c3C95bRt1KA69kjsUD5jyEVVrlycmIo7Fn/+i610Lu+Pm5cLta/dZOW0nAB8PbEaTD2uSlKBk4aiNJCtSmbr2E6xsLBCMBDyruNHFdyKQHY6/+mlg1v3Gm5f8BWhC8VApFPf9iWitUDzg8zZUDVD76Zc7dDXNbI+bhxO3b0Sycp408/XHvRrSJLAaSU+SWThxK8lKFc3er0673g1JU6WzdNZu7t95lLX9NYv2IwjQsb/h1l3WYG9vb/Btvg7eBm8uyr8wHRgriqIPUB8YIQiCTxHuT0am0JQv74KTkzVjxvzC/ftxNGtaOatWv35F4uKSGDPmF8zNS+DjIy0c//XcPezYoXvP0sABTZk8ZRtzvt7D4E+a66XJ280JFztr+v24lfBH8bTyr5RVa+rjRWyikn4/bsXCtATVPVxJTFExavUuBizdxpEbYXSsXy2rfc8mNQiKeJTXbl6ayq6Srj4rt3I3Np7W1bJ1Nasq6eqzUtLlX86VpFQVIzbsot+qbRy+GUanupKuQc3qMGD1Dnos/5VOdash6PEjYgUvZ5wcrRk1YQv3HsTRvHH2+WtQtwKP4xWMmrAFC/MS+FaRzt/shfvYvkt3dtLtuy4we+HewgvRwquKK46l7RjffTkRdx7ROLB6Vq1uCx/iHiUyvvtyzCxNqRLgga29JfXf9WFc16Uc23eFtr0aAtBrdGu2/3SEyb1XvhWhWKbIkb1Z5j9FubKOLF7QndKl7HRC8U9/n9Vp5+3qhIutNf2WbeXuo3haVdfyLo2nLlN7l4crSSkqRq3dRf/lak+tl+2pw1b/zoDl27NCsYbQ6McMWrEdMR02Nu+Br30pvgxoSf/Kdfnr3C2+Wq8biiu5O+FS0pqB32wl/GE879bM1tSkmhexT5UM/GYr5qYlqO4laRq9bBefLN7GsathtG8sadr8z0W+WLc/z+MjheMd3ItNYNKPUs9x6671+FQdir/osQxlYkpWey8fdxxLl2R8hyVE3I6h8QfZs1vXbelHXMxTxndYgpmFGVVqeWJrb0X91tUY124xx3ZfpG0/KVjOHPATEzt/z6ZF+zh94KqOJk04Pvf3DXqNfY/uo9tkhWJFUiqT+q3WCcVelUvjWMqW8b1XEXE3lsat/bI1Na9C3KMkxvdehZmFKVX8y2Jb0pL6LaoyrtdKjv11lbY96mNkJNBpQBPG9V7Fgglb6Tumda5jtXrhfnasM3zPsbu7O+7u7gbfrozhKbJgLIpitCiKF9X/TgKCAPmqkCmW+Pm6c/58OABnz4Xh51cmq+arU7uLn69Ui8uxlqKpqQmZmSIKhYpHjxKxscl/gfmCUMPTjdPB9wA4cSucGl5u2TWv7NrJW+EEeLmRlKIiKVUFwLP0jKxhWlZmplRydeLqvcKts5hLVzk3ToWqdYWEE+CRrSugnBsnc9QStXVlZCCqdd19nIC1mSlmJiaonqWjz6gyv6runL8YDsDZC3fx83HXqZ1T185o1eLic6+FGZ+gzNKnLz41Pbl4PASA88eC8anlmV0L8ODiCal24VgwvjU98a5Wlmtnw7Lb15TaV/Bx54OeDZn/y1AatPQ1iLbijIhApmiYh0xuZG+W+S/iUdaRjT8NyjcUg+Spp0J0fTPPWnA4NTzz965MUWT5oHZ83/8jXO1tcu0nRCscb2vZN99QDOBfwY3TQdJ+T90Mp0aFbE3+5d3492Z2zb+CG0nJKhQp2Zo0Ph+XmPxcD41PStYJx6Pnd80zFAP41Pbi4rFbAJw/HIRPnfK6taNS7cKRm/jWLo93DQ+unb4ttT9yU6c9QJO2ARzfk3tN5WcqdTj+5ya9x73PnM3DUSqkUBx1P05XUw0PLp5U7+N4CD4BHlq1clw8GSppOhGCb00PvKuV4dq5uzrtbe2tiItJJCM9k7hHiZT1cs7zWK1euJ+d60/kfzDfUt4Wb34lfeKCIHgCAcCZPGqDBUE4LwjC+dhY/YadysgUFmsbc5KTJbNRKlU6odbG2hxlVi0VG9u8A6+NTXY7gIyMTExMCv8Ws7UwyxoKrUhVYWdprlUzz6olpaTp1GzMzejSyJ9d524A0LNpAFtO6DdM+WV0KTW6UnPr6lbfnz8uSLr+uhrCryO7s3dsP3aev6GXJhtrc5Qp2efPNsf5S05Oy7NWlFjbWZCsXu5CqUjFxs4yR02tNykV65IWuu2TUrEpKbWvUqMcf/36L9M+WUuPUS0pYVpkd8AUG96GmS+LA7I3y7xu/Pz88PPze3HDAmBqakKCMoXfz17Ps25rYablTyrsLPL2VEUe3tWlgT9/qD117MZ99Fu2jY1HLzC53Tt57isk+jHHg+5iZiz9YP7L3xdzhWIAW8tsTYoUFbZWWpostTSlpGGnVbO2MKNTU3/2nC64d8YnJbP79E1MShhjZGTEvk0nc4ViAGs7y6xh1cqklCwvyqpp+ZS1vZWudyWm6rQXBAH/hpW4dPxWnpqeqdL546fDCIKAqVkJThy8nisUS/s1J1mZj5/aWpCsVGXVrO0speey/FeFjZ0FT+OVOLnaYWltRrmKLriVc8A4n+9oezafJkWpyrNWGFJSUkhJyX2s3zTeBm8u8mAsCII1sAMYI4piYs66KIqrRFGsLYpibWfnvH+9kZEpahSKVCwtzQCwsjIjSeteG4UyFausmjlJiXlPTqFQZLcDMDY2Il19D0xhSEpRYW1uCoC1uRlPk1PzrNlYmGbVTIyMmNsrkEW7jpKYLLWp7ObM5fCCrxP5Ql2pz9GVqsJKo8tcV9f8boEs2HuUp+oA+1lgY9ot2cR7C9fxUc2q2FqYUVgUylSsLLLPX2KO82dpaZpnrShRJKZgaS19kbGyNifpabJWLRVLa7VeG3MUT1JQJqZmt7cxJ+mJ1D42+gkh1yJITU4jIiwWp9J2r0S/zH8b2Ztl/kuIosjfh29ibWrKmmGdcbKxzNVG15/MeJqS7QWJOn6r613zegaycPdREtXepamdD4vExTbvWbHHf9SMj2r7cOx6GInJqfw4qgNVyrrk1pScrcnawoxEZd4+b21hylNltqY5/QP5drvk8wXlowa+jG7fhOAbkdwLi2X0gm40ymO2akViCpY2Gi+yyPKirJqWTykSlCi1n7M112nvV68Cty6GZ90PnBPfuuX5as0nPH74lEunQmnXuxHdh+b+sUGRmIqlVT5+mpSKpZVZVk3xNBllkrb/mpH0NAVRFFn37QGm/dibzgOacutqRJ66SrnbM2/dIAQjgeMHrj3niBacO3fucOfOHYNsS6ZoKdJgLAhCCSTj/UUUxZ1FuS8ZGX24cSOSWuqhq3XqlOf69QidWk31MNg6tb24fiMijy2ASpWOsbERVlZmODvb6ITrwnA5PJr6lcoB0KiyB5fvRmnVoqjnLdUaVvbkkro2tUtLDl4Ozfq/l4sDpUpas3xwez6oVZXhbRrkOfTrpXTdi6Z+RbWuSh5cupet69K9KBpk1TyzatM7tOTA1VAuarV9lpFBsiqNZxkZpGdmYmpS+J7Q60FR1FIPrapb04vrNyO1apHUruGZZ60oCbp4jxqNpPvFajWtzM0L4Vq1cAIaqmtNvLlxMZyQaw/wUw9Bq9XEm5vq4d9hQdG4ejhiZCTgWs6R+Ee5Msx/ChHeiuFarxPZm2X+a6z/+QSz5u9hxtxdlLW3Y83QTjjmCMfantqwskeWTwJcCY/S8lvPrB+Tp3VuyYEroVzS+nHZykwKq+VLOZCYktvnx33YlD5Na3LgQjBjVu5m8A87EEWR5aM7UrmM7o9MV8KiqVdF2m8DHw8u39HSFBZFXXWtYVVPrqhrX/ZsyaGLoTptX8SHDXyY2qsVoUFRTB65iYnDNhD5IJ5Jy/rT8L3qOm2DzodRo4k0T0et5lW5eS5Mq3aXAE2tWVVunA8j5PJ9/OpXzHpOu33jtgEcy2MYNUiheNbPw1EmpTKx1wqmfbKO88eC6fNpK7oNaa6r6fJ9ajSoIO2jcSVuXrqnVbtHQAP1/htV4sbFe4Rci8Svtqe6vXdW+wsnQpnYbzW/rjxMeOjDXJpKudszf/0g7BysmD58I19/toXfN558/sF9S3hbvLnIgrEgCAKwBggSRfHbotqPjIwhuHPnEQkJSpYs6YmnhxPHjgfz2WdtADh9+jYuLrYsWdKTtLR0bt6UzGj8uPdp1cqPAf2b0r1bfQDWrj3GvLmd+erLj/lp9VG9NAVHxRKnSGb9yC5UKO3IoauhfNX5XQCO3QzDtaQN60d2QZWeztV70dT0cqeNvzcf1/VhzfBO9GwSwLX7D+n13a8MW/U7+y4EsezAaaITkvTSdSs6lrikZDYO6ULFUo4cuh7KtPaSrqO3JF0bh0i6rtyPpqanO22qe9Outg/rBneiVyNpIo8Nxy+yaWhXfhnWlQt3I3mcpCy0ptthj4hPSOaHBd3x9HDi6Mlgxo6UJtY4feYOLs42/LCgO2lp6dy4JZ2/iWMCadPCl4G9G9Ojcz0AOn5ci+GD3qF5k8pMnfChPoeJsKAonjxOYuGWYXhULMXJA9cYNasjAGcOB+HsZs/CLcNIU6Vz69I9nsYrOXskiEW/jaD5hwHs/fk0AOu/2c/oOZ34ZusI/tp6BlXqM710vQlkikYGecjkRvZmmeLE7du3uX37tl7bWLfpBBt+OQXAiVOhzJy7m3KOJVmbIxxneerwLlQs7ciha6FM7aj2riC1pw7vgupZOlfUntra35t2dXxYO6wTPRtL3rVmaCfWD+/C1I4tWbRHd/3bcW2b0rdZLQ5cDGbKhv1kiiIhkbEM+TE7HHtrheOQiFjik5JZM7YL5V0d+ftSKF/0kDQdvxZGaQcb1oxV+/zdaAIqutOqljcfNfBh1Wed6P6OpKn7OwF83qkprWp68/WA93Q0fVjfh2m9WnP7VjSTR25CqVCREK9kwtANREXEM3n5ABpoTQ4ZdiOSJ7GJLNw5Bg/v0pz88zKj5ncF4Mz/ruPs7sDCnWNIUz3j1oVwnsYrOPv3DRb98RnN29dm7wZp8ipBEKjeoCKXjgfnOmc+dbJD8aTeK4m6F8eztHRmDtvAhePB9B3dmq6Dm2druhXNkzgFCzcNlvz00A1GTW8naToSjLOrHQs3DSYtLZ1bVx7wNEHJ2aPBLPp5CM0/8Gfvln8BGDLpA+auHUi/MW3Y+N0hHU0ubiWzQvGMEZu4ckYK+Kvm7eOPTXI4hrfDmwVDTTSTa8OC0Bg4DlwDNGMVpoii+Gd+r6ldu7Z4/vz5/MoyMnrR4t15r1tCLh77F374cFGRYfq6FeSN09XiFwgtQ4rfvZf7by983RJeiCAIF0RRrJ1XzaGqs9hqbUeD7Gdrw5X57udtRfZmmeLE9evS/cCFvc9YCsW5Q0uTht5Mm/IR9x4/YcCK7cQrkvN4tWEZ27YJ/ZrX5uDFECav/zPXPcVVyriwclRHRFFk6Hc7CIkoev9oW68q0/u04U5wNJNGbEKRYySbvYMVC1b2w83dnq+HruX0X1fz2ZLh8KntxaxfhpOiVDGx10oiwx/r1EuYmjBtRV9qNanM+sUH+O0n/ToZCoKLW0kWbPiEko7WzBixiUunc/9YM3RyWz7u3bBQ29f3On9VyN5ctLNSnxBFURBFsbooijXUj3yNV0ZGRkZGBgMN1Sruw7VeF7I3y/xXWP9z3qEY4PipEGbO3Y2Hk9Rz7GCd+55jQ/L5B88PxQC3Ih4x5IcdCILAitEdqeTuVKSaXhSKAanneMh6oiITmLJiAA3aVMtjS4ZDJxT3zh2KAZ6lpTNj6AYuHA+h32dt6DKoWZFqcnGVeoqfF4oBVszdy66fTxWplmLNG+jNgiCUFwRhjSAI2wv6muLdny0jIyMj81Yh8nbMfCkjI1N4NvxykvU/P39467GTIcycJ4XjNUM7Flk4/uyDxvR/pzaHLuUfijXohOMxnYosHH+gCcUhD5k0Mu9QrCEhXsnEoRukcLxyIPVbF004rlpLCsWpyWlSKL6bOxRrkIZVr+fiiRD6f96GzoOaFokmF9eSzN8wCHsnG2aMzD8Ua1jx9V52/3K6SLQUd161NwuCsFYQhEeCIFzP8XygIAjBgiDcFgRh0nM1i2KYKIoDX+bvlIOxjIyMjIyMjIzMG8HGX06yblPB1pk9diKEWfP24OlkL4VjKwuDahnzfmMGvFOH/10KZdK654diDbciHjH0xx0YqcNxRQOH4/frVmGGJhSP2Igin5U0tImPUzBx6AaiIxOYsnKAwcOxFIqHFSgUa0hTpTNjqBSOB3weaPBw7OJaknnrpVA8c9TPXDpVsHvdl8/Zw57Nb2c4fsWsBwK1nxAEwRhYCrwH+ADdBUHwEQShmiAIe3M8ck8DXwDkYCwjIyMjU6x404ZrycjIvBo2bj7F2gKGYg1HTwRnh+NhnQwWjse835iBLaRQPHHdvgKFYg1BD6RwbGwksNKA4fj9ulWY2TfwpUKxhvg4BROGbeBh1BOmrBxAvVaGuR+2Sk1PZv0yDFXKMyb2XklEWMHvrdaE40snQxnweSCdBhomHDuXtmPe+kE4OEuh+OLJ0Jd6/bLZLxeOK1SoQIUKFV5WZrHDgN7sJAjCea3H4Jz7EkXxGBCf4+m6wG11T3Aa8CvwsSiK10RRbJvj8agwf6McjGVkZGRkig1vy5IQMjIyL8evpXRzAAAgAElEQVTGzadYu/F4oV579EQws+dL4Xj1UP3D8ej3GzGwRR3+vlzwnuKcBD14xNAf1OF4dEcqujnqpek9dSgOC335UKwh/rEUjmOin/LFqoHUbalfOK5S05PZm4ejSk1nUu9VLxWKNaSp0pk+ZB2XToYycGwgnQY00UuTc2k75m/4BEcXG2Z9+vKhWMOy2XuyZrt+ERYWFlhYGHa0wqvGwN78WBTF2lqPVQWU4Q480Pp/hPq5PBEEwVEQhBVAgCAIkwuyg8IvHCojIyMjIyMjIyNTSOzt7QvUbtOWwodiDUfUywZ9OekjNo7syo2ImDzbxccnAODgkLc2O0tzGlX25J8rt5m49k/SMzPzbFcQbqrD8YpRHVk5phNnbt0vlCYTYyPeqVGRu6Ex0kRbhQjFWft6rGD80PUsXNGPL38ayKn9V8hvBZvn6hIE6rTwkUJxr5U8CCtUBx6QHY6nr+rPwHHv4VvLk9TktHw0xas1OeRZr1qjHPZO1swc9TMXThQuFGtYOms3CNBWvWSnTPFCFMU4YOjLvEYOxjIyMjIyxQq5t1dG5u3A3T3fzp4sDh8LYs0G/UKxhiPHg3F1PcaQAc3xcM47ZEZGRr5Q1+2ox0xYs0+vUKzh5oNHTF6/n6XD2xNYp0qhNaWmpDFxxEaSnqborUnTc/zz3s9o9nEtvbb1Rb8f9ArFGtJU6cwYsp5VB8ZR/52q+bYryLH6btrveodiDUtn7satnCM1G1Z6riYo2PVenCkG3hwJlNX6fxn1cwZDHkotIyMjI1NsEHnzloSQkZEpOh4/Vhh0e7GxSc+tJyQkvHAb8UnJBgnFGmIS9NeUpko3SCjWEPeC4wTZge95PI5JNIQcAFSpz0h68vy/sSDHKs6AmgDiHr34/BVEV3GmmHjzOaCSIAhegiCYAt2A3Qb5A9XIwVhGRkZGRkZGRuaVk5KSQkqK4cKcoZA1FYyEhIRiqas4apJ5OQRB2AKcBioLghAhCMJAURTTgZHAASAI2CqK4g1D7lcOxjIyMjIyxQp5HWMZmbeDO3fucOfOndctIxeypoJTHHUVR03/BV6lN4ui2F0URVdRFEuIolhGFMU16uf/FEXRWxTFCqIozjH03yjfYywjIyMjU3wQi8V9TDIyMsWEar5l+H5RDx7GPGX+t/vJyJCGMBsZCYwbHUgZd3tCQmP4ceXfAHw7rxveFUsxZ8FeTp+VAtLo4S3x8nTG3LwE12/qf0tiGaeSrB3Thaj4RKb/fDBrWLWRIDC1R0vKOdsT9CCGhTuO4uZoy+zegWSKIimqNCav348iNY3vhnyMraUZAJsPX9JbE8DAkS3xqV6Gh9FP+Hbmbp1jNeaLD3Ev60DorWhWfHsAgPnL+lCxiisLpu7kjPqeW1//sgz6tBWZhZhpOy+6DnsHL29XYiLjWTx5Gxnp2ZpGz+mEm4cTt29EsHLOHgA+7tuIJu/5k/QkmYXjtpCsUNGojR9dBr9Dpihia2+pt6ZW7WvS5ZNmxEQmsPjLHbqaZrZXa4pk5bx9kqZeDWkSWE3SNHEryUoVzd6vTrveDUlTpaNIKvxkZ28Mb4k3yz3GMjIyMjIyMjIyxRILC1M+HbeZ+w/iadakctbzDepWIC5ewafjNmNuXgKfqm4AzFmwl+1/nNfZxtJV/zBmwhY+m/grjRvkP0lSQTEtYcyAJVsJj4mnZUD29pr6eRH7VMmAJVuxMC1BdS9XkpJVjF65i0HfbePItTA6NKoGwILtR+i/eCvTfzlEt2Y19NZkZCTg6GLD2MHriQiPo8m7Plm1eo29iYtNYuzg9ZhbmFK1WhkA5k/dye85lhzqN7wFX43ZzLwvdyAYIAc5ONkwvsdyIsJiaRxYPev5uu9UJe5RIuN7LMfMwpQqNcpha29J/RY+jOu2jGN/XqFtz4YAdBn8DpP7ruLzzkuxtbfSW5NtSUvG915FxN1YGrfOXpKqbvMqxD1KYnzvVZIm/7LYlrSkfouqjOu1kmN/XaVtj/oYGQl0GtCEcb1XsWDCVir6uOmtSaZ4IAdjGRkZGZlig7yOsYyMjDYxj54CcPZ8GNV8smf19fVx59yFu1o1KezFxeeerCtd3SNobmbC47gXTyr1Ip4qpR7CkzfDqVE+OxT5l3fjdNA9qRYk1ZJSVCSlqCQdGRlkqpc+ioyT/q5nWs/pg7GJMRf/lXrIz52+ja9/9uS9PtXLcuGMVDt/KrsWn2NiM1MzEzIzRBRJqcQaaIKqa+ekc3T+WDA+NT2yNdX04OKJEAAuHA/Gt5Yn3tXK6rav5QlAxN1YLK3NMTUzyXfpqJfh9s0oaR/HQ/AJ0NJUo1zWusYXToTgW9MD72plsjWp29vaWxEXk0hGeiZxjxKxsjbXW1Nx523xZnkotYyMjIxMsaK4G6eMzMuQkpLy3HseK1SogIWFBSDN8pvf7LXm5uZUrFgx6//Xr1/Pd5tubm5Z67jGx8cTFSUFAWtrazw9PYuVJs3rypQpQ0REhM5rnJ2deRT7GAClUoWNjUVWzcbanGT1WrbKZBU2Ns8PJ1MnfUQN/3Ic/N9lyHySp76Caop+KGlSpKiws8rer62lOcrUNHUtDTvL7JqNhRmdG/szfNlOne193r4p249fxiLtaYE0ac5NznNoZ2uPUikF8GRFKja22cfK2tacZHVNqdStaWNtk90OIDk5mfDwcJ0w6ucn9bBq1gt+0bFSJCZL+01KxaZk9jBoa1tLkhWpWTVrO0us7Sx0nrOxk3Qe+/MKS7aPIjMzkzuh9xCNVOTkZc7fkwQp9CsVqdjYaWuyyD5OCrUmWy1NChU2dhY8jVfi5GqHpbUZTqXtsLAyzfPa19ZkZCT1RRan957m86CgGNCb7QRBWAXsEUVxj6E2agjkYPwfoPLMxa9bQi5MDTsTvkEoaWP8uiXkwvFG3gvUv07SbIvnx8LT8iVet4RcWN4tfseqXu9vX7eEXJzZ9PnrliAj80rRfEnVhIjigkJh2KWPDIWfn1+eMwlnZGRgaip9zlpZmZGUlN1GoVRhaWkq1SzNSHrBfZ4z5+3G2tqMdSsGEPPwPpA7MBRUUwkT6fuEtYVZVu8xQFKyCitzU3XNlKfJUs3EyIiv+wayaOdREpOzQ92w9xtw7W40N+49hHpeL9Rkb2+fFZpykp6RgZWVdM+ypbU5SYlaxyopFUt1zcpKt6aNUqudhKATit3c8h4y/LxjZaHZr405SU+StTSlYKnuabWyMUfxNBllYipuHk7Z7dXLT/Uf9x7D2n5LarKKDccnEf0wkszMzEKfP3ML9XVjbU7SU21NWsfJWq0pKQW3co7q58xIepqCKIqs+/YA037szaOoJ8TGZP/Qkp+mTAMu72UoXuPnwVNRFAe/rp0/j+L3rU5GRkZG5q1Fs1aijMx/BQsLiwIHZHd3d9zd3V/ckIKHbgcHBxwcHHR6lN4kTWnPpBBTp5YX17QmzrpxM5JaAZ5cvR5BnVpe7D90Ld/9lShhzLNnGahU6aSnZ+a5n5fRZGplB0DDqh5cDsvupbxyN4p6Vcpx8U4kDat6sutfaSWZr3q05OClUJ22H9XzwaWkNTM2H6Kiq2OBNGmfh5zaFEkpBNQtz//+vErt+hW4ceVBVu3m1QfUrFue65fuU6tBBQ7uuZzncVKp0jE2NsLK2gxLKzMsLfO/ThwcHHR6aPM7VtXrVWDvz6ep1cSbmxfvZT0fdPEeAQ0rcf3cXWo1rszBHeeIvh9H+/5NAKT2F8IBSH+WQYpSRfqzDMzNzPHx8cm1n5c5f74BKcBhajWuxM1LWpou3yOgQUWuXwinVqNKHPz9AtH342nft7GkqbF3VvsLJ0K5cCIUdw9Hqvj30fuayotX9d4rCG+LN8v3GMvIyMjIFCtEUTDIQ0ZG5s1HpXrG94t64OnhxLETwXz+aRsATp+5TSkXW75f1IO0Z+ncDJJC2oTP3qP1u34M7NuEHl3qATBt8kcsWdCdxfO7c+J0qN6anmVksHZMFyq4OvK/y6F82e1dAI5dD8PV3oa1Y7qgepbO1bvRBFRwp3WANx/X92H16E70aB6AkSDwVfeWeJVyYPXoTgxv21BvTZkZIgnxSr5Z1Q+PCs6c+Ocmn05uC8CZEyE4l7bjm1X9SFOlE3RNGl78+Vcf0fIDf/oOa0GXvo0AWL/iH2Z/15PJczpigNt5SYxXsnDzMDwqlebkgWuMmtVB0nQ4CGe3kizcPIy0tGfcunyfp/FKzh65xaJfh9P8wwD2/nIagJ1rj7NoyzC+3TqClGT9R9opElNYuGkwHhVLcfLQDUZNbydpOhKMs6sdCzcNJi0tnVtXHvA0QcnZo8Es+nkIzT/wZ696srIhkz5g7tqB9BvThttBUc/b3X+Gt8GbBUPcxG4oateuLZ4/f/7FDWV0kIdSF4ySt9Nft4RcmKQUv6E1xXUotbJU8fsdz/XvR69bQi7iazu/bgm5yDmUWhCEC6Io1s6rrU3l0mKtZb0Mst+jLb/Jdz8yBUf25penOA6lflM1bdt5jqWr/jHYPlu+48OXEz/US9PZ4PsM/mGHwTRVdHVk+xd99NKU+CSZzq0WGkwTwP4zUzEyyj/IFERXr8ZziIvJff90Yflx1xgqPGcW6IJomjp0A+eOBRtM0+dfd6JVu5p6aXrV5KVJ9mZ5KLWMjIyMTDEjk+L9i7KMjIyMjMzbxtvgzXIwlpGRkZEpNoiiPCu1jIyMjIxMUfKyvddvizcXv7GJMjIyMjIyMjIyMjIyMjKvELnHWEZGRkamWFHcJ+eQkXkR+S1r8zp5UzV5ejhhZCSQmWmYOXEqlnfRW5Orgy3W5qYoUg2z5KJ3mefPDVEQTWbmJXAtY090RN7r3r4sXhVdEF7wUVwQXeWruBrsHmM7ByvsnW3011S5tMHuMTYpYUxZL/3P35vA2+DNcjCWkZGRkSlGvB1LQsj8t9GsY/oqEUWRX/+9SoIy7zVq4+Pjn6urTvky1ClfxuC6/jkVTHhkXN6a4uJxcMxfk4e7A+82rMKU8W35euFevcNx98716NqpLleuPeDStfuF0mRrY0H7tgEsH9mBYT/u1DscN/Mrz4yerYm4F8eRg3kvofOic2diYkS7bvVYsLwvE4ZuIDpSv3DsVdGFecv6oEhKZc+2c4U67oIArdrWYMr3vZg2eC1Xz4TppcnOwYr5Pw/Bzt6K7b+dISUl7+P+wuu8XgX6jG7F0yfJ/LXtnF6aTEoY89X3PaniX5Z9R2/w8HHeM8++SFNlLxca16ygl5aX5fbt2wBUrFixgK94O7xZDsYyMjIyMjIyMm8woigyY+ffbDub/1q+L8LUxJgf+nxE48qeBtO1ff9FFq/Rb0bpuAQlXT6ohSiKzF20r9DhuFunugwe0Izzl+4xZeZO0tIKv1LF7TsxjB8dyLIRHRi2dCfKQobjZn7lWTjwAx5GJDBh2AbiHysKren86TvM/q4HC1boF449K0ih2NjYiEkjNnH7VnShNR3ae4UFK/oyY9UApn6ylmtnCxeO7RysmLdpCGW8XJgz8w+OHb1VaE3btp5l3sJujJr2MYgif20v3Iz7JibGfPldT+o2q8Lq7adYs+N0oTUZCQJTh79Hm8ZVC72NlyU1NfWV7etNQr7HWEZGRkamWPE2rJUo898mPj6e+Pj4V7IvURSZ+bt+oRggLT2DTzfu5mTIPYPo2rH/kt6hGOC7dYfZtu8irVr4MnncB89dPig/unWqy5CBzblw+R5fzNIvFAPsO3iNhd8foJpnaZaP6ICVuelLb6OpnxcLB37Ao6ineodigGuX7vHVmM3Y2lmwYEVfXN3tX3obnhVcmL9cCsWTR+oXigGiIxOYMHQDiYkpzPxpAH51vF56G7b2UiguW96FObP0C8UAyUoVk8b/yq2gaEZNb0dgp5dfNcjExJgvv+9JveZVWKNnKAbIFEVmLd/PgRNBem2nqDGgN9sJgrBKEIT81017TcjBWEZGRkam2CAizXxpiIeMzOsiKiqKqKioIt+PKIrM+uMftp7RLxRrUKVnMGrDLr3D8c6/LvHtmr8Noglgybp/2PanFI4njX25cNy1oxSKL165z5SZO1Gp9AvFGvYduMqiHwoXjpv4erFoYFuDhWINVy+qw3FJSxas6Etpt5IFfq1HeWfmL+uDiYkxk0duIjRIv1CsITpS6g1PSkpl1uqBLxWObe2l4dNly7vw9exdHDuiXyjWoAnHwbdePhzrhOIdp1mtZyjWkJGpDscni2c4NrA3PxVFcbAointe85+VCzkYy8jIyMjIyMi8YWhC8W//XjXodjXh+FQhw/HvBy4bNBRrWLL2H7bvv0jrd6Vw/KKJoQC6dKzD0EFSKJ48Y4fBQrGGvX9d5ZsfD1LNszTLhrcvUDhu4uvFN4PaEhstheK42CSDatIOxwtX9itQOPYo78yC5X0xKWHM5BGGC8UaoiMSGD90PUlJqVLPce0Xh2Opp3gwZStIofjoYcMGRk04Dgl+yKjp7WjT8cXh2MTEmC++60G95lVYu/M0q7efMqimjEyRWcv2c7CYhuO3ATkYy8jIyMgUH0RpvURDPGRk/quIosjsXYcNHoo1qNIzGLVx90uH498PXOab1f8rsvff4jX/sGP/JVq/68vkcW2fG467dKjDsEHvcKmIQrGGPfuv8O2PB6nu5crS4e2xNCuRb9uiDsUarl4IZ+pn2T3HpZ4TjnVC8chNhAQVzUiHaPV91AqFipmrnx+Obe0tmbdxMOUqlmJuEYRiDUqFionjthAS/JBPZ7SjdYda+bY1MTHmiyU9qP9OVdbuPM1P2wwbijVkZIrMLI7h+C3xZjkYy8jIyMgUKzIRDPKQkfmvMnvXYX49faVI95H6LJ1RG3dzOrRg4bioQ7GGb9f8nR2O8+k57ty+NsM+kULxpCIMxRp2q8Oxv5cry0Z0yDMcN9aE4oeJTBi2gcePiiYUa7hyXgrHdvZWLMwnHJfzkkJxCVN1KL5ZtMP/ox7EM2HYBpRKKRz71vbM1UYKxUMoV0kKxUf+KdqAqB2OR89sT6v2ucOxiYkxUxZ3p36Lqqzb+W+RhWINmnB86JRhho4birfBm+VZqd8Cxr3bmICybkQ+SWTK7oOkZ2YC0ix4s9u2xMPRnhtRMXx98CgAW/p3JT0zExMjI77cc4g7j+OZ+1FrKjk7kvzsGUdD77Lm9AW9NH32QWP8PdyISkhk6m+6mqZ3bkk5J3tuRsSwYPdR3B1smdMtEFEUSU5LY+Iv+1GkpmFjbsaXHVvgaGPJ/dgnzNyh39CtoX2a4lfFnYePnjL3h7/IyFBrMhKYMLwNZdzsCb7zkB/WHAZgycwueFcoxezF+zh1Xpppcd4X7bGxMpfqP/1N6N1HemkaPLAZvj7uPHz4lAXf7tfRNG5MIO7u9oSExrB0hfS3fzO/G94VSzFnwV7+PXMHAD9fd4YMegcxU2TxDwe4G/5YL00Aw3o2oVplN6JjE/l62QEdXROHtKasa0mCw2L4bv0RAL6f1hlvLxdmfr+fUxezZ6W0MC/BtqWD+HrpAZ3nC8Pojxvj7+VGVHwi03/Wvaam9mhJOWd7gh7EsHDHUdwcbZndO5BMUSRFlcbk9dI19d2Qj7G1NANg3rbDBEfE6qVpwNhAqtYoR0zUExZ/sZ2M9OzjNHpmB9w8HLl9M4qVc/cC8HHvhjQJrEbSk2QWTthKslKFlY05I6e1o6SjNVH3HvPD9D/00jSiaxOqV3IlOjaRWasPZp87QWDKwFaULV2SW3cfsfiXIwAsndyJyh4uTFuxn5OX7wJgbWnGxH7v4mBnyYOHT5i37n96aZKRkSk4s/74RycUf/5eY2p4uBGZkMhX23Q/+2Z0bImHkz03I2OYt+co7va2zO0qffYlq9KY8Gu2n05t3wJHa0vuxT1hxk7JU1KfpTNyw26W9vuY+hXL5avpj4NXcoXiYb2aSj7x6GlunxjamrKu9gTfieG79ZKnfj+tC97lXZj5/Z+cuiD5wQ8zumJsJJCRKbL372scOHYTkMKxIECHwABEYN43+7L23bl9bYYPbsGlq/eZPEP3nuIh/ZvhV9WNh48SmbdY11PHf6r2+dsx/LhKmjRs8dyuVKpQijmL9nH6rOSpo4e1pLynM+ZmJmzedoajJ0MAKRwjCHw+ohVLh7dnxLLfSVY9A3KE4qHrdULxwJEt8alehofRT/h25m4dTWO++BD3sg6E3opmxbcHAJi/rA8Vq7iyYOpOzpwIBcDXvyyDPm1FZqbID/P2EX5H+u5x5Xw40z7bwszF3aWlnIZtICbqCaAJxX0oYWrMpBG6obgoNUU9iGf80A0sXNGXmT9Js1XfOB8OSKF47obBlKtUinmzd+uE4kFD3sHXrwwPHz5h0bx9Opo+H/8+7mUcCAmOZvmPkh8tXNyDSpVKM3fObs6clpYmGjS4OS3bVOOf/91g1fLsieE04Xj+ou6MmdUegEO/S99zjU2MmLK4Ow3e9WH97/+yattJtBnevQnVvKXvQ3NWHtDx1MmDW1OmdEmC78awZOMR6Zr+sjOVPV2YsXQ/Jy9J17m1pRnjB7bEwc6SiOgE5q/5HxmZIjOW/okgQMsGVTA09vYvPznb20CR9RgLgmAuCMJZQRCuCIJwQxCEGUW1L5n8qVzKiVI21vRcv5Wwx/G0qVopq/ZOJS8eKZT0XL8VC9MS1CjjCkCfDdvovWEbi/85Sf/6NbPaT959kD4bt+sdir1dnXCxtabfsq3cfRRPq+rZmpr5eBGbqKTfMkmTv4crSSkqRq3dRf/l2zhyI4yO9aoBMLxNA9YdPs+gFTv0DsUVPJ1xdrBh5JQt3IuIp3lD76xaw9oVeByvYOSULViYlcC3srRQ+6zF+9i2R/dYfLf6H0ZM2cK8H/9iUI/G+mkq74yTow2jx27mfkQ8zZpUzqo1qFeBx3EKRo/djLl5CXyqSpq+nr+X7b/rLj0wqF9TJn+1jdnzdjN4YHO9NAFU9HDG2cGa4VN/415kPO/U1zpWNcvzOEHB8Km/YW5WAl9v6Zqa+f2fbN13Mde2Or8XQHBYjN6avN2dcLGzZsCSrYTHxNMyIPuaaurnRexTJQOWSNdUdS9XkpJVjF65i0HfbePItTA6NJKuqQXbj9B/8Vam/3KIEW0b6qXJq3JpHF1sGd97FRFhj2jculpWrW7zKsTFJjK+9yrMLEpQpUY5bEtaUv+dqozruZJj+6/Rtkd9AHqNbMn2NUeZ3H+13qG4UjknnO2tGTJ7K+HR8bxbJ/s4NQ4oT+wTBUNmb8XcrAR+FaVzN235fn49cElnO4M7NGDTvnOMmLvd4KFYRJ6VuiiRvfnNZnaOUFxZ7ad9Vkh+2rqalp9Wlfy0zwq1n5ZzJSlVxYj1u+i3chuHg8LoVFf6XBrRqgFrjp5nwE87skKxhtRn6YxYv4t/b+e97u+uQ1dY9NMhnVCc5RNf/ZrbJ2qV53G8guFf/Yq5ubZP7MvTJ8bO2cGoab9lhWIN3675m98PXKZNS7+se447aYfi6TtJVQdTgApezjg5WjNqwhbuPYijeWMtT60r+fyoCVuwMC+BbxXJU2cv3Mf2Xbo+v/Snfxg9cQtjJv9G724NdGq7/7zM4mWHqFHeLWtYdSMfT74Z1Ja4mEQmDNXtKS5fqRSOLjaMHbyeiPA4mrzrk1Wr19ibuNgkxg5ej7mFKVWrSWtMz5+6k9+3/Kuz337DW/DVmM3M+3IHA0e11KldPn+XqZ9twd7BigXL+1LK1S4rFJuamTB55M86ofhVaNL0HKekPGPmTwPwqeWZFYo9vEszb85uDv+Tfb7LV3DBycmGz0Zt4sG9OJo2zw6K9RtUJO6xgs9GbcLCogRVfd0BmDd7Nzu3665TvGP7OebO3k1eKBUqJo37ldCQGMbMak+rdjUxNjHii8U9pFD8xxlWbtUNxRXLSdf5sBm/cS8qnhb1sq/zRjXLE5ugYNgM6fuQXyXpOp+x9E9+2697nQ/q1JBf9pxj1OxtzF+T7akZmSLTf/yT/502fM+xu7s77u7uBW7/tnhzUQ6lVgEtRFH0B2oAgYIg1C/C/cnkQc0ybpwIk4ZBHb8TTs2yblm1gLJunLijrt3Orj1T/9psZWZKaGwcIL0hZn3YkrW9OlC5lJNemmp4umXdt3TyVjgBXm5514LDqeHpRmKKiqRUlaQtIwNR7b5V3Z3p2tCftcM60cJXv4XRq1Vx5+zlcADOXLpLtSrZHxZ+Vdw4l1ULz6rFJShzbSc65ikA6emZZOo5nszXx53zF6UeunPnwvDzddetXVDXzofh5yuZU1y87syWpqYmZGSKKBQqHsUmYWtjoZcmAL/Kbpy9Ip2jM5fvUr1K9vmrVtmNs1fC1bVwqleWND/O41hZWphSvpwzN0L0n+TD38uN07fU183NcGqUz9bkX96N00HqWpBUS0pRkZQiXVPpGRlZ5yoyTjp/z7SeKyw+AR5cPCX9cn7+eAg+NT10ayel2oXjIfgGeOBdrQzXzkvn9PyJEHxqegJQwceND7rXZ/6GT2ig9QWlMFSr5MaZa+EA/Hs1nOre7jlq97Jq/t7SMXz8JPe58/ZwoeO7NVg2pTNNa+n33suNYWa9lGelzhfZm99Q5uw6zJYcw6dreLhxSj3U+URIOAGeWh7v4cZJTS1YquXrp27OdG/gz7rBnWjhk/s9nV843n3oKgtX6YZi0PhEOKD2Ai1PrVbZPdtDLt3NquXlE2KmyKIpHZg/sR2lnGx1ayJ8s/p/WeF42ZLejBjcgsvXHuQKxQB+Vd05f1HSdPbCXfx83HVq59S1M1q1nJ4Kkr8DmJuZcO9BXK76rn2XWbLsfwRUcGfdZ1359pMPiYtJZPyQDTx+lKjT1qd6WS7+K/VEnzt9G1//sjq1C+qRX+dPZddyzmBtamZCZoaIIimV2JhEbGxz+/zl83eZ+rk6HK/opw7FJZgy6meCb0S+Fk2R9+9AJigAACAASURBVOMZP3Q9KSnPmLV6AAt+GYaHd2nmf72Hw3/r/gji61eGC+qReefOhuHrVyZbk18Zzp9T186E4aeuxcXlPncJ8crn3uSqUKQycewWQkNiGD2rA9/8MpQG7/qw4Y8zrPztRK721bzdOHtV7ZtX7lLd2y1HLVxdy/bbvK5zb08XOrTyZ+lXXWhau6JOLTscB+er+9XwdnhzkQVjUUJzVZZQP4r5Ldf/PWwtzFCopIXnk1JV2FmYZ9fMzbNrqrSsmpOVJVv6d2Xaey04ey8CgAWHjtFt7W/M3n+YWW1bog+2FmYoU/PRZGGOQl1TpKZhZ5ldszE3o0sDf/44dwOAauVKs/3MNUas2cWQVvUwNTEutCYbazOS1UFJqVRha6O1X2tzlClqTTlq+TG8f3N+/ePcC9s9X5M5SqV6v8kqnVBrY22OMvnFmmyszUlOVmX9PyMjExMT/d72tlZm2ccjOQ0ba91jlZyipdk6/2PV5f2a7PjrUr71l9JkmX1NKVJU2FlpXVOW5lq1HNeUhRmdG/uz+98bOtv7vH1TNv5Pv5ER1rYWJCvU15RChY2dRT61VKztLHSfS0rNal+leln+2nqOacM20GN4C0qYFv4OGBvtY5Gchq32cdI+rykqnVpOfCuU5o/DVxn7zR8MbFcf0xKFf+/JvFpkb341+Pn54efnZ7DtbTtzjc2nLud63tbCTMszc/tpttem6dRszM3oVt+fP85Ln33Vy5Vm25lrjFi/i2Et8/ZTzbDqx0nSF/vrIVEsWHUwz5xhq+1RySpdn7DK9tsX+cSX3+xmxNTf2LLnPJ8PbJGrrgnHV29FUrWyG08TU5gyI3coBo2X5+/zyWq9OWt5MXXih6xd2p+z6h+oc/LHvkv8se8Slcs4U8LYmGmfb8kVigGsbcxRKiVNyYpUnQBpbWtOslKjNzXPcKnZhqYd5O/zl8/dZcXiA5R2K4m9ozVL5uzh1vXIXO1epabI+/HMmrgVS2tzPCqV4rfNp/nnfzdytZM0aZ0frf3a2GR/z1EqVdjYvvg72vNQKFL5YuJvpKnSqVytDCcvhrEij1AMur6pTE7TuZZtrMy1as+/zn0rlmbX31cZt+B3BnTI7akZmSLTl/5JeGTuH2IKS0pKCikpKQbb3n+FIp18SxAEY0EQLgOPgEOiKJ7Jo81gQRDOC4JwPjZWv/v5ZHKTlKrC2kxaPsDG3IynKanZNZVWzcw0q/ZYmUz3db8xatsexraQhgM/UdfC4hIQReneCX00aZY0yKkpMUWFtbpmbW7K02SpZmJkxLyegSzcfZREtbE9fKLgxoMYUtKeER6bgIuddeE1KVVYWkj3llpZmZGYlK1JoVRhZaHWlKOWFwO6NeJmcBRXbkYUWg+AQqHCykq9X0szEpNSdGuWL9akUKZiqb5nFsDY2Cjr1+7CkqR9PCxNSVLoHitLCy3Nirx1WVmaUtHTmWvBhpnoIykl+5qytjDjqVLrOk/WruleU1/3DWTRzqMkav14MOz9Bly7G83FO7m/MLwMiqRULK3V15S1GUlPtc5fUopWzRzF0xSU2u1tzLPax0Y/JeR6BKnJaUTcfYxTKVsKi0L7WFiakpjzOFlkH0PtWk5i4hUE3Y0hRfWM+9EJONsX/r2XF2/azJeCIJQXBGGNIAjbX91eC4/szW8OoigSn6Dk41pVaVLZM1c9Scczc3h8irbXZnu8iZER87sFsmDvUZ5q+en1iBiS1X5ayjb3e1oQYPKHzXGysSI+XoGftxtdPsh7Ft8kpZZHWZrl4RNmWbX8fALIql2+GYGTQ96fM53er0n1Ku7ExykoaWfJqCHv5rnOsUKZilW+Pp+KpVpvzlpezJy/h95DVtO7W4M8J/+qW8uL91pVIyFOgSDA6CkfYmGZeyknhSIVKytJk6W1OUmJ2j6RiqWVRq9uTRulVjvI3+fLejrR+5PmKBWpqFTPGDiqJaVc7V6rJhs7C0ZN/ICMjEyexCXRrmNtnd7grO0pUrO+D1lZmZGorUmR/T3HysqMpMTnn7sXYWxsxOixgVhYmhIfp6BBDS/ea5L3aC1t37SyNNW5lhU6tedf54/ikggKkzz1Xj6eOrBDAzzdHYlNyt3jXBju3LnDnTt3Xuo1b5o3F4YiDcaiKGaIolgDKAPUFQQh18+noiiuEkWxtiiKtZ2dnYtSzlvJxQfRNPSSJsxoXMGDiw+itGpRNCyvqXly8UEUJkZGWfPFKVRppDyTfnW1MpXe3A6WFpQwNtJrmOnl8GjqV5L227CyB5fuZmu6Eh6VVWtU2ZPL4VJtWueWHLgSyqXw7LbBUbGUdbTDSBAo61iSx4mF/7C4fiuK2v7SUNd6AZ5cuxWpVYvMqtXNUcvJey18cXayZouevcUA129GUivAE4A6tb24rjXc6frNSGqph9rWqeXF9Rt5h3CVKh1jYyOsrMxwdrbRCdeF1hUSRe3q0jmq5+/J1VvZ5+RacBR1qquPVQ1Prgbnfaw83BxwcbDmmy860KZpVQZ2bUgpJ5tCa7oSFk29yuprqqoHl8O0rqm7UdSroql5ZtW+6tGSg5dCddp+VM8Hl5LWbPhbv95igKBL96jRQBoSVauxNzcv3tOq3SdAq3bj0j1CrkVkLV9Rq1ElbqqH9YUFR+NazhEjIwHXsg7E67G8x9XQKOr6qa/zap5cDYnUrflKtfrVPbgSkv+PFrfvx1LGpSRGgoC7S8k8h1vrw6u8j0kQhLWCIDwSBOF6jucDBUEIFgThtiAIk56vVwwTRXGgHn/yK0X25jcDURT5YdU/DB69gUePkvi+z4e5wvHle9FZk2I18vbQ8chL96JokFXzzKpN79iSA1dDuajtp9GxlNPy05xfvgUBpndoSce6fuzbd5nevVZw6WI4n/Z7h65tc4fj68GR1FZ7Qb0anlzV8s1cPvEcT9X80OpZxlEnXGvo/H5NxvRvwZXL9+jdczl7dl/k/dbVGPdpm1yB9XpQFLUC1Put6cX1m1qeGhRJ7RqeedZyUkLdm65KTSc5OS3XF/26tbyY/VV74h4lMrLPTyxduB9f/7LMWtIjVzi+efUBAXXLA1C7fgVuXHmgU6uprtVqoFvTJsvnrc1wLmWbZ1gt6+nEguV9MTM3YdJnW5g6YSv2jtn3HL8OTTZ2Fsxb2hvPii4sGr2Jce2WkJKYytyFXXOF4xvXI6hZS/LH2nXLc+N6hFYtkpq1s2vXrxe+U8LY2Igvp7ejSdMq/LrpJAN7ruB2yEO+HBqYZzi+FhJFHT/pPVa/uidXtXxTqqnfA9V1/TYnofdiKVNK8tQyLna5PHVw50b071Cff27cIXDBWg5cDSn036gP8j3GBkIUxSfAYSDwVexPJptbMbHEKZP5pV8XKjk7cjAolBkfvAvAkZAwXG1t+KVfF1Tp6VyOiMbZ2opNfTuzsU8npr/fgiWHpSnpF7UPZHO/Lizr9hELDh3XS1NwVCxximTWD+9CxdKOHLoWytSOkqajQWG4lrRh/fAuqJ6lc+VeNDW93Gnt7027Oj6sHdaJno0DAPh+/0mmd27FxpFd2XHmGqnPCr8cw+27j0h4ouTHr7vjWdaJo6dDGDesNQCnzt2hlLMtP37dnbS0dG6oezknjQwksLkvg3o2oWeHutKslsPa4OHuyPezu/6fvfMMi+J6+/C9oHRQpKmggIgKghWNir13Y0PsNWqMRmMvUaOxd4MxarrGqGgSE3uMvYJdEQvNBog06Z19P8zusisLArso79+5r4sPzHN25seZ4Tzz29OYN0Wzxz0k9BVx8SlsXj8EB3tLzl98xPTPuwBwxS8YayszNq8fQmZmNoGyfQdnT+9G545ujB3ZisFeHwHw0y/nWbVsIIvm9eaHn89ppAkg6Ek08QmpbF06CMdqlpz1e8ys8cLw+ss3QrCxNGXr0kFCXcnmD8/7tAtd27gyfrAnwz5uSmDwS8Yv2MOM5X9y4vwDftx3maiYkhu+R+HRxCWl8tM0L5yqWPDf7SC+9BaeqfMBoVQxN+WnacIzdTcskoZOtnRuWIs+zVz5YeoAhrRtiI5EwsLBHXG0qcQPUwewZFhnjeop9GEkr2OSWbtrPPY1bbh0MoApX30MgN/Zh1hVqcjaXePJzMjm4e1nJMSn4H/uIet2T6BtzwYcli1k8svGE0xd2pf1v0/k+IFrZKTnHyJYVIKeRROXkMr2L72oYWfB6WtBzB0t3LtLt0KxsTRl+5deZGTlEBAs3Lsvx3Wme0sXJg7wZETPJgBs9b3I/LGd+H6RN3+fvUdGZuluhVLK/MIbuUkikegC3wLdAFdgsEQicZVIJO4SieTwGz/W716ydhBzc+kRHBxMcHBwiT8vlUrZ8v1p/vjnBtGxyUybu0etOX4YKeTTnRO9qGljwcmAIBb3k+XTh0I+3TlRyPF3nkXSyMGWLvVq8bGHKz+PH8AwTyGfbjp+iSX9O/HbpEEc8FfNp3JTPKCpO0eP3mHD+mOkp2exYMF+bt16yuej2uXrOQ56Ek3861S2fu2NYzULWZ7oBCjlia+9yczKycsTk2R5wrslwz5uCoDPV15s/dqb2RM64SNb1VfOwO6NmDamPXfvPGP+XF/S07PYtOE4hw/dokfnesya2lXFHAeHviIuPhWfNYNxsLfk3KVHzJgstPNX/EKwtjLFZ40sz8u+8J0zrStd2tdl7PCWDBko5NTF83qzaZU3m1Z5s2vfFRVNTRo5sGxhX+JeJckW2krk0P5rbF13DLcG1fOZ49DHUcTHpbB+xyjsnay4eDqQz+f1BMDv4mOsKldg/Y5RZGZk8+CeYPimL+xNxx71Gflpe7xGegLwy7bTLNs8lHnL+/Pzt6qLpylMsWF55k3fw8PAcG5eD2PRHF/MLU1Y891IrCtXeKea5KbYsaYN66ft4uxf1wkPfcWcgd+QnpTfHIcEvyI+LoWNPsNxcLDkwrmHTJvRDYCrV4KwtjZjo89wMjOzeSDrRJg5pwedurgxemwbvIcIi6T17d+ECZM60KatC/MX9VHRpGKKf7vMj9vOkJyUztxpuwkJUm+Og54KOfW7xYNwtLPkjN9j5oyV5dSbwnP+3eJBZGZlExAkPOcLJnShWytXxnt5Mry38Jxv23eRuZ90YvsSb/4+o5pTPxnYQjDFgSF88fth0rOymbX3KCfuvR9z/L+ORFpKfdoSicQKyJJKpa8lEokh8C+wWiqVHi7oMx4eHtLr168XFBYpgNpLN75vCfnQyz+V5r1TMbjsvbyXS9NsWHNpkGlWNndxS7Epe9uuVzml2XZcpUGcR9nr3fPbNV3ld4lEckMqlXqoK2tYs6q05oZPtHLdgD5LnwLK+5PtkEqlO94sJ5FIHIDDUqnUTfZ7c+ArqVTaRfb7PACpVLqysOtJJJIDUql0gFbElxJibn43BAQIAxBKMs9YKpXy7fen2f/GashWlqZsWumNtbUpU349xMXHT7QhtVAkEljctyMDP3Ln2LE7rF93VKWHVF+/HCtWetGggT2bfz6D7xHNR9sUhQHdGvLF2A7cvfOMeXP2kf7GF4ZfzOhGz14NOfLvXdZuPv5Ohm82aeTA8kX9iHuVxKyJvxAdpfoi1NurCZNmdiPg9jO+nLqb9LSSf8lZVOzsLVi7bZRgir/4XWEa5TRq4sjS1V7ExyQza+KvvHqZUOqaTMwMWPXtCGo427Bh2m+c/lN1hJ2dkzWr93+OgakBc2fuJfC+ZtOaioKurg4LFn9M6zYyU6y0lRMI85hXbx6Kk3Nlvt52nOMXAgs4k3YZN6AFY/s3F0zx7sNk5+S9M+rqSFg3uIfKSvTFQV0b9Q5zc4HXed+U5ptmFeCMRCK5C1xDmMdUYOIVEREREREBtLnyZYx8OLDsJ58pLgBbQHmM4AvZMbVIJBILiUSyDWgoN9FlGDE3l2EKMsUA0TFJTJu3l+hooefYs5a9mjNoD4kEFvXtUKApBmHI7Px5vty+/ZSpo9sxsEcj9SfTIv3lpviuelMMsHH9sbye48+7qp0HrE08GhZuigH+8b3Gd+uP49agOss2DcXAsHyparKzt2DNtpEFmmKAm9fCWDx3v6Ln2EqDNSyKwttMMcCLEOWeY29cXIu+pVBJ0NXVYcGiPrRuU4d9u/ObYoCkpHTmTBV6jhdO7ErXli6lqglgXP/mjO3fnDNqTDEIC3LN3HOEf+8FlboWOVrMzRUkEskOiUTS652JLyKluSr1XalU2lAqldaTSqVuUql0aWldS0RERERE5H0hlUpjpVLpRKlU6vS2XuX3jZibyy5SqZRvfzij1hTLiY5JYurcvcTEJOEzojctnEvHHEsksOjjDnh9VI/jx+6qNcVyMjKyWTB/P3fuPGPa6PYM7F565rhf1wZMl5vi2epNsZyN649x5PAtenSpx8wp+ecca4vGDexZsagv8dFJzP70V7WmWM7f+/zZtv44bg2r8/XGIaVmju2qC6bYwFCP+dP3qDXFcm74h/LVvP1YWJmydtuoUjPHJmYGrNoynBrONmz8Qr0plvMi5BVzvXzISMlg1brSM8e6ujrMX9iH1m1d8N19hR+25jfFcuTmODQ4ioWfdqOLZ+mZ43H9mzN2QAvOBIYwTY0plpOTK2XWnqOcDHh35lhLJEil0vFSqfTQ+xbyJmVvbKKIiIiIyAdNGVj5MhyopvS7neyYiEipIJVK2frjGfYffPuQdXnPcWxMMltGat8cSySw8OP2eDWrx/Hjd1m37shb/5/S07OYP89XMMdj2jOgW0OtagLo16UBM8Z15N7d5281xXI2rDvGkcO36dm1PjNKwRw3bmDPysX9ijUU+eA+f7ZtOIF7I3u+3jgEfQPtmmO5KTY01GP+jD0EFmExqut+oSye54uFlSlrtmm/59jEVGaKa1Vm4/TdnPrj7QuUPg+OYu7AbxTmuI5r1bd+pjjo6uow78vetGnnwv7fr/D91lNv/UxSUjqz5eZ4UtdSMcdjZab47IPQQk2xnOzcXGb+fpT/Akq+pkFRKQO5udQRjbGIiIiISJmiDKx8eQ1wlkgkjhKJRA/wBv7Ryh8nIvIGUqmU7348i+9fRZ/H/So6ianz9mjdHMtN8aBm9Tlx4i7r1r7dFMuRm+O7d57xxdgOWjXH/bo0YMYnMlNcwPDpgtiw7ihHj9yml5bNscIUx6Yw+9Pizc89uNeP7RsFc7xsk/bMscIUG+kxb8YeAu8VfYXm636hfDV/P5ZWZqzZNhJLa+2YYxNTA1Z9K5jiTTN2c+qAf5E/+zw4irlePmSmZrB63WCtmWO5KW7b3pX9e66y49u3m2I5SYlpzJ66m7DgVyyc1JXOnnW0ogkEUzxuQAvOPQxl2m9vN8VysnNzmfH7kWKZYycnJ5ycnIqlrwzk5lJHNMYiIiIiImUGKdpJvMXYrmkPcAWoLZFIXkgkkrFSqTQbmAycAB4AvlKp9H6p/dEiHyxSqZRtP51l31/F3+LvVbTQcxwXKzfH1TXSIpHAl33yTPHaNUU3xXLS07OYN8+Xu3ef88XYDvTXgjnu26U+08d1IOCeYIrT0jKLfY4N645y7OgdenWtz/TJnTU2xyqmeOIvREUWf9Gqv/bkmeOvtWCObatXUpji+TOLZ4rlXLsaojDHa7drbo5NTA1YKesp3jzzd/7bX3RTLOd50EvmDBTM8aq13tRx0cwc6+hKFKb4wN6r7NjyX7HPITfHT0KiWTSpG51aaG6Ox/RrxrgBLTj/MIypuw6TlZNTrM/LzfGp+0Uzx4aGhhgaGhb5/O86N78vyubysyIiIiIiIu8AqVQ6uIDjR4Gj71iOyP8I5ubmby0jlUrZ9vM59hYy1/JtREUnMnXuXjav8sZnZB/WH71AfIr6/erT0lIBMDQ0Uhv3dLanb5O6/PvvvRKZYjnp6VnMm7uPlasGMX1sB8zNjHjyIlZt2VSZJqMCNNnbVmL0wObcD3jB3NklM8UgDN9cv/YIEgn07tYAvfLl8LsRqrZsWqpQf4ZG6k2DmYkhk8a15XWc0FNcElMs5689fkgkEsZP68zXm4Zw9E/188vfVk+65XQY81kHDI30WDBzL/fvlnwvX7k5/mrFQNZsG8mu7WcpaAebQnVJoN/gZtSsU5lNM/dw0tevxJqeB71krpcPq3ynsGqdN9u3nia9gGfhbXXVqk1tWrd14Y+9fmz3Kb4pliOY499Ys3kYiz/rRmVLU15Gq59fnpqWJtOk/plycarM4B4enH8Yxue7DhXbFMvJzs1l+u4jbBzak/Z1i9cbLCJQats1lQRxS4iSIW7XVDTE7ZqKhrhdU9ERt2sqGsXZrsmgpq3Ufs0ErVz3cf/FZXZLiP9PiLm5dPhx1wV27r3y9oJFoLK1Gd+uG4qlhWmBZcLDw7G1LXwRo7NnH7Ds64NamQdoYFCe9euHFNrDVxRNjx9FMn3a7hKbYmUkEpi3oA8dOtbVSFNcTDLTxv5IVMRrjTUBDBrpyZjJHTXSlJWVw+zPfyPg7vNCyxWVps1rsmztICQadq/7zNnL0d8uaUVT9VqVWX/wC0wqqDe9ULS6+ufP6/isP64VTWYVDNn43Uiq21tqpOlq8DMm/nywxKZYmXK6OmwZ0Udlz3N1mgAVXWJuFodSi4iIiIiUJaRancdUZreEEBG5ci1Ea+d6+SqRsKcxhZaJj49/63n8/UK0tjhOenoWd+4801jT3bvPtWKKQeg59rta+FDTomh6FhatNVMM4Hex8FWFi6IpLTVDa6YYwP9K8FufBbm5Kgy//7Q3C+XZ45dEPY8rtExR6srvsvYWqkpMSOPhW/ZaLoqmq8HPtGKKAbJzcrkc9PStmoqiS4F2c3OZRTTGIiIiIiL/q5TZLSFE/rdJS0sjLU39kOb3iaipaIiaikZ8fHyZ1CVqEikpojEWERERESlbSLX0IyLynggJCSEkRHs9wtpC1FQ0RE1FpyzqEjWVEh9Abi6bkwlFRERERD5YyvpQKxERERERkQ+NDyE3i8ZYREREREREROQd0793Y2wrV+Tlq0RWbTpGjmzPUh0dCbOmdMGuqjmPgqPY8v1pADauGISzkw3L1x1RmZ9saFCevT9N4FUBK+IWhzZt6tCtW31eRiWwds0RFU3TZ3TDzrYSj4NesvVbYTXfdesH4+xcmZUrDnFVNnd32fIBmJgYABARXow5jAXg7m7Hpm+G8/Lla9aufkPTzO7Y2VXi8eNItsq23Vm3YQjOtSqzcvk/XL0i07RiICamgib/q5r33FWxM2f9jlG8jHzNhqX/qGiatqAXttUqEfQwkm0bTgCweusIatapwppFfyrmE9etX41xn3ciN1fKH7u1swjbuE/b4+puR1RkAutWHFLR9cWcHoKuR5F8t/kkAGu+GYZzrcqsWnpQMe927MR2dOpWj9P/BmhF06ApnXF0qUrUi1g2Tt9NTnaepqlrB1PV0Zrge8/YvvhPAPqMbUOrXo1Iik9h7ZSdpCans+inTzA2NUSiI8FBw+2aALr0qI/38BZlqp5a1nKgVW1HwuMTWXjgX7JzZZokEpb074i9hTmB4VGsOnwOW3MzVnp1JVcqJTUzk9l7jpGckYnPiN6YGOihI5HgZmujFV0fGuJQahERERGRMoVUqp0fEZGyjHkFI6bM2cPTF7G0bVlbcbx5Uydi4pKZMmcPhgblqVtHMALL1h3hwN/5t/Pp37sxj4JfakWTiakB06b9xrNnsbRuk7c3a7NmNYmNTWbatN8wMCiPq6uwku3KFYf44w/V7aa+3fIf06b+xrp1R3F3r6axJgNDPaZ9viu/puYyTZ/vUtW0/B/+OPCGJp+TTJuyi3VrjtC6reZ7zpbXK8eM8b/w4kksrTq4Ko5/1LIWsdFJzBj/CwaGeri42wGwetGf/LXnqso5Rk1qz8Jpv7Pqyz/oN6SZxpp0dCRYWJkyfdJOnj+NoXU7lzxdLZyJjUlm+qSdGBjo4VJXqKvVSw/yp6/q3sJ/+vqzcslBjfXIqWRtxqx+m3gRHEXLHnn7Wjft6EZsVAKz+m1C31CfOo0dMDM3pllnd2Z+vJHz/9yk56hWACwd8z1zBn7DrnVHSEnUfK6umZlhmasnYwM9Rmz3JSw6js7uzorjbVwciU5MYcR2Xwz1ylO/ehWS0jP47Ne/GbVjP2cCQxnQ1B2AKTv/YfSOA2w5eYWgKPVbpGnCh5CbxR5jEREREZEyg5QPY7iWiPYICMjrsTE3N1dsP5KWllbovD4nJycMZfuKhoeHF7hCq4GBATVr1lR7vTepWrUqlSpVUikrv46ynkqVKnH7nrBqrP+NMLp1dOfUuQcAuLnYcsVfKOd3Iww3V1vuP4wgNi453/WMDPWo4WBF4MNInB1NyUzPvzK1m5ubyu+Fabp/X9B0zT+Urt3qceZ0IAB169py1S9EEavrZktgYDixsfk1RUYKqzVnZ+WQnpGutr6Ko+nxo5cFaLJT9FJf8w+lrrtdkTRlZWZprCniuXC+a1eC6dKrAWdlvYau9arhd+kxANcvB1O3fjUe3HtBXIyqJj39cuTmSElOSic5KR1DI70ia4K851z5uTU2NuOGv7A38zW/ELr0qM8Z2YrQdd3tFD2d1/xCqFuvGg/uhxMbk7+u4uNSqCbbeiggIAAdnfztcbGe80uPhPo484BOg5pxTvbljquHI/6nBH03zgZS16MGJmZG3JP18l8/G8iMTcNVrtuqZ0OCHoagb5q/X6849+/e3SdaracX4eEEBOhqpCkgLAKAi4+f0LdxXY7eEeqtYfWqnHsUpog1tK/KnWeRinNm5eTk22e6i7sz/g+DkSQU3B6UK1eO3Nyibxn6oeRm0RgXg2bDNrxvCWp5sG7b+5aQj1aTx79vCfmIGKyd7R60if0P+RvS941ReNlcOVE3Q/99S/h/QSX/sre3sohIaVGYSS0LmJubK8y3Mrq6uootiFJSMjCTDfMFMDUxIFUeS83AzMQg3+flIfq5OAAAIABJREFUDOjTmD8P3cSjoYPaeNWq+YedFqYpIyNLoclUSZOJqQGpKRlKevN//k0mTGzPjRvBuLiYa6QpM1NZU14ZE1MDUlOVNRVcTwpNn3bg3Ln7tGptp5Gm7KxsAFKT0zE1U9JkplxPqjFllOsTIDcnF4lEomJw1Gl6E1tbWypVqkRISAjldHXzrp1cSF0lZ2BWgK6SUuhznpIuXDcpDdOKefsPm1QwIjVZHkvHxNwYkwqGeccS01XKSyQS6rdw5uHDx1Q1tVC5TnHvX7r8/6sU66nY/3uyZyo5PYMKRnnPspmhASnpgt6k9EyVmKmBPt7N6jPhpz8VxyQSaFqjGt8fP8dHVSoWqqk4xljLVJBIJDuAQ2Vt1wjRGIuIiIiIlB2kgPa+lS6zyVdEu7zZMwNgaGio9rg6bG1tFT3NJblWYectSI+ZmTEAxsb6JCalK44nJ6djZKgnxIz0SUzOiyljbKSHk6M1O/dewaOhA9bW1tSqWVkjTZXMIxSakpQ0pSRnYGSsr6S38C9QR45sxYMHEVSsYFSk+ipMk5V1spKmvOumJKdjZKSsSX09KTSNasWDwHDi4zI01pSeIvRYGpkYkKQ0tDc5KV2pnlRjyqQolQMoV74ctZzrvlVTYc95Wlpm3rVNVOsqWbmuTPRJLOJwZDc3N7U9xm9SWF2ZyJ9zU0OSXqfmaUpMw0j2pY+xqQHJ8SmkJKZR1cFKOGZmoFLe7SMnHt58gpObE05uql9sFFdTRXMz4Rpaqic7W1vNn/OoBABMDPRJSM17lpPSMzA2ENoDUwM9Raycjg6rvbuy5vA5EtLyvmRp7GDLneeRmFtYFKopOzu7SH+bAu3m5gSpVFr2etAQ5xiLiIiIiJQxtDiPSdzHWKTM4lK7CgBNGzkS8CBccTzgQbiiB7hpY0cCAsPVfZzq1SywsjRlzdIBdGrnim1Vc7XlioO9zJQ0aeJIQMALxfH791/QuJGgyaOJI/cD1GsC6NLFHSsrU3z3+WmsB8DGuoJMUw0C7ilrCqdxY0eZphrcV4rl09RVu5pMzQRD59HMift3niuOB959TqOmNQBo3Fw1pkxGRja6ujoYm+hjZWNGSgFffhSHnOwcGnnI6uMjJ+7fzauPwHsvaNREFmtag/t31esqDeo2dQKgcVsXAq+FKo4/uB5Gw1bC3PrGbVy4fz2Ux7ef4daspuKYcvmWPRty/tAtrWiq6SwsTFWW6qmahdC76+lsz62nEYrjt55G0LxmdVnMQRH7ql9HTtwN4qZSWYAu7rU4cfdxqWj8EOYYi8ZYREREREREROQdk5iUjs/qwThUt+TcpUfMmNwZgCv+IVhbmeKzejCZmdncfyi8+M6Z2pUuHeoydkRLhgz8iAePIpk04zdmLzrAyTOBhEdovgJ0akoGmzYNw97BigvnH/LFF10FTVeCsbY2Y9OmYWRm5hAoM+szZ3WnUyc3Ro9pjffgZsKqvtO7Ua26Bes3DKGpzCRqQnpGFpu+GY69g6WgaXo3maYgrG3M2PTNcDIzs/M0ze5Bp85ujB7bBu8hzQVNM7oLmjYNpUevhoVdrkhkZ+Wwfsco7J2suHg6kM/n9QTA7+JjrCpXYP2OUWRmZPNAZtanL+xNxx71Gflpe7xGegLwy7bTLNs8lHnL+3Nwj+aGPTdXSnx8Chu2jsDe0YoLZx8wdVZ3AK5eFupqw9YRZGZm8+C+UFcz5vWkU1d3Ro9vy6BhLQDoO7AJEyZ3pHV7VyRa6CBMjEtm7Z/TsK9VmUtHbzNl9SAA/P4LwMq2Emv/nEZmRhYPbzwhIS4Z/1P3WXfwC9r29eDwrxcAYRh1veY1uXXhkeaCEHqGtVlP7g2qa6wpNTOTnRO8qGljwcmAIBb37QDAuYehVKloys4JXmRkZ3PnWSSNHGzpUq8WH3u48vP4AQzzFJ5piQSa1LDjSvAzjfV8qEjenLD9PvHw8JBev379fcsokLI6x/iyOMe4SLwcmPH2Qu+YsjjHWDelmMNr3hEZlmVvjrFxUNz7lpCf3LLTpss59miVyu8SieSGVCr1UFdWv4at1HbZZ1q5btjQBQVeR6TolOXcLJ9jXJzhze+Couga9/kvBIVob02AdV8PpEkjR400rVl9mBMn7mlN0/jx7RjkXfCKy0XRdGC/P9/JtofSBh061mX+l3000nT7WhhzJu3UmiYHJ2u27/1UI02JCan0767d99QTFxYUOpS6KLqGNV5I7MvXWtO05cScQodSF0XTgpl78Zct8qUNZi3oRefu9TXStOn4Rb4/e63AeHEZ0bIRc3q2KZYmMTeLc4xFRERERMoUkg9i5UsREREREZH/P3wYuVkcSi0iIiIiIiIiIiIiIiLyQSP2GIuIiIiIlC3K3mhwkTJKUba0eV+8TZuBbKVZbWFgUL7QeFHq6m3nKC4Ghv+jmt5yjuKiDU265XQpV06H7GztbMFT1Hp/63NupN3nXN+w8PO9n/unuSZDPe1qetv5SjT95APIzaIxFhEREREpO0j5IIZriWiHSpUqvbdrh0XEklWACdEzsyEmOYeY5Gi1cYcq5iyY3p2pc/cSFZ2osZZPRrbG3dWOiFcJpKQWvp5GbKL6ec2VrcwYO64tQUFRioWsNKFDB1d69mxIbHwy8Urb7qgjLkG9pooVjOjWvT4B955z8l/N96x2canK+AntSUlKJ+oti5W9jo5Ue9zI2IA6bnaMndKRH300n/tsaW3GnK/7kZGdTWhc4ZqiXql/nsrp6OBsacGi5QNYuuCAxubYwKA8y9YOQkdHQmjYK6QFrF1haGhFfHwW8fFR+YMSCQ72lizYMZa5Xj4kxiVrpAlg6trB2DlZExH2ivTUzELLvo5U/8xVcbBk8vSuPAuL4UmY+vosDh8PbEKrtnV4mZjE69TCVxd/9VL99axNjRndujF3nkVy7mGYxppaONszoV1Tjc+jwgeSm0VjLCIiIiIiIiJSDH76x49tf1wq8ec/crNn3dQ+bFrpzdR5e3gVnVTic40b0YphXs045x/Ewo2Hyc4pmSmqXtWcb78axKrVg5g7Z59G5rh9e1fmzO1F6NNovli8n4S37HtcEKYmBmxc4sWsOT2RSuG/kyU3x3VcqrJqrTdZGdnMGfcTz0JLZop0y+kwb7UXXiM8kUql/LTlVIk1WVqbsWbbSCwqm/Hpn4c4H/akxOea2rI5U1o2Y+GyAXz9ZcnNsb5+OZatHUT9Rg58+91//PFnyRfea9umDgvm9WbVvsmCOY5PKfG5Pl/jTdchLTjx+2U2z9hNSRcPdq5fnRW+n7PGZxizp/ymkTn+eEATJk3tzI1n4Xzy+0FSs7JKdB4bUxN2jhjApmE9mfbbYY3McQvn6viM6I1+edHilQRxjrGIiIiISNlCqqUfkf954uLiiIt7t6vD/3xIM1MM4BfwlJmb/8bCwoTNKwdjbWVaovOMG96K4YOaa2yKAZ5FxPPZV/tIz8pm1epBuLiWbJh6+/auzJ3Xi7BnMRqZYoCk5HS+WOxLyNNoZs/tScdOJVt9vI5LVVav0dwUA+Rk57Jyji8X/7vPoJEtGfNZhxKdx9LalDXbRmJZRXNTDLD54hW2XLpKi1a1WLisP+XKFf8VX1+/HMvXeWvFFAOcPfeQ5Sv/oXrtKqzynYKZuXGJzjNltTfdhnpqbIoBgu48Y77XN5TXkbDGZxj2DpYlOk+f/h5Mmqa5KQaISkpmxM4DRCYms2lYT1rXLnh1+cIQTHEfDIpgioODgwkOLubK3B9AbhaNsYiIiIhIGUOipR8qSCSSHRKJpNc7/gNE3hERERFERES8s+v9csif7w5oZorl+AU8ZdY3JTfH44a3Yri3dkyxnGcR8Uxe4kt6VjarV3sX2xy3a+eiMMXTFvlqZIrlvGmOO3SsW6zP165ThdVrvMnO1NwUy1Exx6OKb44FUzwKyypmTPpLc1MsZ9PFK3x72Y8WrWoX2xwLPcWCKd667ZTGpljO2XMPWbHqUInN8ZTV3nQf5sm/e65obIrlBN15xoJBPujp6rB2y/Bim+M+/T347Isu3HgewSd7NDPFcqKSkhn+634iE5PZPLz45rg4phggPT2d9PTCh37nR2u5ucwiGmMRERERkf9VEqRS6XipVHrofQsR+f/Pr4f92XrgolbPefWeYI4tLU3YtNIbK8uimeOxw1sy3Ls5568Fa80Uy3kaHseUJb5kZGWzatUgXFyKZo7btXNh3vzehD3XnimWk5gkmOPQp9HMmderyOa4dp0qrFk7mOzMbGZryRTLycnOZdWc/Vw6FcigUS0ZPal9kT5nYWXKmu+EnuLP/jrMudAnWtMEsPHCZbYqmWNd3be/6uvrl+PrtYNo0NiB77ad4sAf2ttPF+DM2QcKc7xy3+Qim+MpqwbRfZgnJ/deYfOM37RiiuU8vv2U+V7fCOa4GD3HvfspmeLf/yI1U3NTLEfoOd6v6DluVduhSJ9rXrN4plikYERjLCIiIiJStvgAhmuJ/P/i1yP+fLtfu6ZYztV7T5m1+R+sLE3ZvOrt5njMsJaM8G7BhevBfLnhkFZNsZwn4XFMXuJLZnaOMKz6Lea4bSmaYjmCOd5P2LMY5sztRfsOroWWr107zxTP+eRnrZpiOdnZOayc7cvl04F4j27FqLeYYwsrU9ZuG4mVbUUmHzzM2VDNF1pSx4YLl9l6xb9I5lhPrxxL1wyiYWNHvtt+mv1aNsVyzpx9wMrVh7GvU5WV+yZjWtGo0PKTVw6i+/CWnNx3lU3TfyO3gAXANOHx7adCz3E5Xdb6DKP6W8xxr36NmTy9CzdLwRTLeZkomOOopGQ2D+tFy1oOhZZvVrMaPiN6vxtT/AHkZtEYi4iIiIiULT6A5Cvy/4dfj/jzrW/pmGI5V+49YfY3gjnetNIbKwsTteVGD/Vk5GC5KdZuT/GbPAmPY8rS/QpzXKdOFbXl2rZ1Yf783jx5HiuY4kTtm2I5CUlpTFvkS9jzGObO612gOa5VqzKr13mTnZXDnE9+5mmI+lWvtUF2dg4rZgnmePDoVoz8tJ3acvKeYivbinz21yHOhJSOKZaz4fwltl7xx7N1bb78up9ac6ynJ/QUN/JwZNuO0+w/4F+qmk6fCWTVGrk5nlKgOf5shRc9RshM8Re7SsUUy3l06wkLvGXm+JthVLO3UFuuV9/GTJneVWaKD5aKKZbzMjGZ4TJz/M3wgs3xR07V2DKij9a3eiqQDyA3i33uWuazQa1wr1WFyOhEln3/LzmypKUjkTBvXCeqVa7Iw7BXbPrtLABb5g2gtoM1X313jEu3hUbSxEif2aM7UMnMiOdRr1n9k2bbAcxdFsOVa2nYVyvPjxttKF8+b3z/3oNJ/PBbArm5sHy+BQ3q6tNjqDBfKzUtl6xsuHGyOj/tSeDXvYlkZUPbFoasWFCyxQrkfDqsNe61qxL5KoEVW0/k1ZOOhDkTO1OtijmPQqLY/MsZAL5Z7EWtGtYs/eYol2+EKs5jaFCe/d9+woqtx1WOl4TZ9drRyNKOFykJzPU/TLY0796t8OiBg6k5AfEvWXbrJAAz3NvS3MYBgJW3/+NGzAuWeXSjdgVrJBIJG++d41KUZonvk3FtqetqS1RUAmvWHVWppxlfdMPW1pygoJd8+52wKub6NYNxdrZhxapDXPULAcCtrh0TPmlLrlTKps3/EvZE82/Nx01qj6ubHVEvE1i3/JCKri/m9sDWrhJBjyL5brNQV329mtCmvSuJCWmsWnKQ1NRMWratg/fwFuTmSjl1/B5//6HZfKaJI1tTt44tL18lsOqb4yqaZk3ugl0Vcx6HvMTnB+GZ2rTMC+caNizbcIQr14VnZ+WXfTE1MQBg845TBIVq9jI1ZkZXXBpUJyriNRsXHCAnO0/T1KX9qGpvQXBgBNtXHgagz/AWtOrqTtLrVNbO9iU1JQNjUwMmL/6YihYmRDyNweerg5ppmtkVl4b2RIXHs3H+G5qW9Rc03Q9n+wqZphGetOom0zRzX56mrz6moqUpEU9i8Fn8l0aaRETKKjuPXFMxxZO9WlGvZhUiYhL5+kfVHD9/TCeq21TkwZNXbPz9LABb5wygtr01i7cf4+IdIR+083BmZI8m5EqlHLv8gP3/3Qbg8l3BHK/5vDebVg1m2tw9RMfmbXEzeqgno4Z4cvF6CF9uOExWdg4Ak4a2wq1WVV5GJ7L8uxMqmuZO7Ixd5Yo8Co1i86+CJp9FA6nlaM0Sn2Ncvim0fSZG+sz6pCOVKhjxPDKeNd8L7x1hL2KZsnQ/Pou9WL3Gm9mz9vLoUd42Rm3a1GH+AsEUT120T8UUTxzRGjdZm7zSR7VNnj2pC3ZVzXkU8hKfH2Vt8lIvajnZsGzjES5fV83zvtvHs9LnGJevhyrM8aalXsyd1xupFM6cDlSUr1WrMmvWDyYnK5c5435SMcVjpnXGtX41oiJes2HxX6rt3+I+2Fa3ICgwgu1rjwHQZ0gzWnd2IykhjTXzD5CakkHbru70GdqcrIxstqw4xLPQaIU5nr/WiyFjWoMUft12RnHdSpYmrPluJNZ2+U3xrDYtaWRblfCEROYe+5fs3Lz7t7xrRxzMzQmIimL5qXMA7Bs6iJzcXHR1dFhw/CTBsXHo6eqysGNbHMwrkpKZxcQ//wEEcywBPm3TlAVL+7F80Z+K+/CmKfbdn2eKtfHusXzpAExM9YVnbst/BIcIWzqdkt2rubN7smLfZOYN2kKy0nZeny0fSM+RrfjPV9UUj/nyY1w8ahD1PJaNX+xSvXfrh1LV0Zrgu8/YvuiAcO/GtaNV70Ykxaew9rNfSE1OZ9EvEzA2M0QikeDgYotXnZkAPLopmOPl+6awzmc4M6fs4vnTWIWmnh83YvL0rtx6Ecknvx8kJTNvq6iZHVrSsFpVwl8nMv8f1fu3rGdH7C3MuR8RxYp/hfu3Z/QgsnNzKaejw5eHThISE8fwpg0Y1awRARGvmHpAyL1Cz/EBdo4YwDfDezFl1z9cevxUcd2PnKrx7ch3aIo/EEq9x1gikehKJJJbEonkcGlf631Ts7olVpVMmPi1L08j4mjf1FkR82xYg5j4ZCZ+7YuhfnncagrfvH713TH2nbilcp5P+jfnt8PXmLzygMam+M79DMIjszn3dzXq1NTjwOG8JBvxMpt/TiRzcr8tp/+0o7mHIYaGOpz+047Tf9oxcVRF+nQV5oEM62/Gub+rcflINa7eSOdFRMm/Katpb4VVJRMmLdzL0/A42jWrpYi1aFyDmLhkJi3ci4FBeerWEupp6TdH8D1yM9+5BnZvxKNQNfvnFZM6Fa2xMTTF+/QuQhNj6VatjiLWvoozr9KS8D69CyPd8jS0sKWCngHNrO0Z8N8vTLn0B1PqtgJg+4MrDDz1K2PO7WWGe1uNNNWoYY2lhQnTpu/m2fNY2rSurYg1+6gmsbFJTJu+GwOD8rjKhrmtWH0o34IZY8e0Zt6X+1m+4hDjP9FME0CNmtZYWJkyfdJOnj+NoXV7F0XsI09nYmOSmT5pJwaGeri42WJWwZDmLWsxbeKvnD0VSO/+HgB4D2/B7Cm/MXX8z3Tv0xCJBusxODlYYWlhypR5e3j2Io62nkrPVBMnYmOTmTJvDwb65albW6irrzcc4cChGyrn+eb700yeu4fVPscZO7RlyQUBjrUrY2FtxqzhO3gR+oqWnd0VsaZt6xAbncis4TvQNyxPnQbVMatoRLN2Lswcup3zx+7Rc0gzAIZN7siBH88xb/QPGptix9pVsLCpwKyh23kRGk3LLkqa2rkQ+yqRWUO3o2+oJ2gyN6JZexdmDt7G+aN36Tm0uaDp804c+OE880Z+r31TLAWkEu38iBTIh5SbS8quo9fY4ntB8btzNUuszE0Yv8KXp5FxdGiSl+NbNqhBzOtkxq8Qcry7k5C7Fm0/xt5/VXP8yB5N+Gz1AcZ+vYeP27qrtH2X7z5hjs8hrK2EnmNLWc/xqCEtGDXEk0s3Qliw4ZDCFCvy6eJ9PA2Po71SPvWU59PF+zA0KI+bs6Bpic9RfI+q5tNxXi3Y/fc1pizdrzDFcsJexDJliS+ZObmsWetN7drCeVq3Fkzx0xexTFus2lPs5GCFVSVTJs/fw9MXcbRtodQmezgRE5fM5Pl7MFRukzceYf8bbTLAgJ6NeBSimucVPccvYpg3vzft2gs9x85KpnjuJ6qm2LFWZSytzZg5+keeh8XQSmmectPWtYl7lcTM0T8KuateNaFNbluHGaN+4NyJe/Qa9BE6OhIGjGrJzNE/sHr+fkZN6aQ4h9wcXznzgCFjWzNiQltAMMVrt41Sa4rrWFlS2dSEwb/7EhIXR9faec9UeydHXiWnMPh3X4zKl6dhVaHeh+3Zz5A9+9lw/hJjmjQCYHjjBpwLCWP43j8UpljO+vOX2HbVn1Zt67BgSV90dCWCKV7jRSMPR7Z/f0bFFGvr3WPL1pNM/WI369YfY/SoViqxU6cDWb32CI4utqzcNxkTWc/xpOUD6TmqNf/5XmXjtDxT7Ohqi0Xlisz6eAMvgqNo2bNR3r3r5E7sywRmfbwBfSM96jR2xKySMc26uDOz93rO/32DnqPbALB01Hbm9NvErrWHuXL8joqmRzefsGCQD/p6sp7j6kLPcY8+jZgyoxu3wyMZt/svFVNc28YSG1MThv7iS2hMHF1c8u5fO2fh/g39xRdDvfI0sBPu34hf9zP81/1sPH2J0c2Ev+NIwCNG7fqDN4lMTGLEzgO8Sk7GZ3hvWjjbC39zjfdgij+Q3PwuhlJPBR68g+u8d+o5V8Xv3hMArtx9Qj1n2zdiwjc9V+8+oV4toTGJeZ1/T7da9tb079iArQsG0rqxk0aaLl9Po1MbocHp0s6Iy9fyEtfxMyno60noMiicEZNfkpyiOiTrwKEkBvYS5jrp6QkPcna2lIoVdKhUUbfEmtxqV8X/zhMA/G4/oV6dvHpyr22L/x2hnvxuhSliMWr2vjMy1KNGdUvuB0XmixWXRhZ2XJT17p5/GUIjy2p5MUtbLkQJ316fexlCY0s7UrIySchMp5xEBzM9Q+IzhG87n6e8BiAzNxuphuNF3FxtuX7jCQD+10Jxq2uniNWtqxwLU8RilXoXQPhGODdHSnJyBq+iEzE1NdBIE4Crux03/IT6uHY1hLruSrrc7bjhrxyrRm2Xqty99SzvWD2hbp8/i8XIWB89vXJkZGSjyZoabi62XLv1BAC/m2G4u+Q9U251qnLtthDzv/lEEYuNy/9MRUYlAJCdnYtUw6Fbrg3tuXk5CIDrFx7j2sheNXZJiN248Ji6De2p5W7HvevCM3j94mNcGzkA4ORalR6Dm7H6109o/pY5dW/V1Kg6Ny8WpCkvduPCY+o2kmm6FpavvJNLVXoMacbqneM11qQOqVQ7PyKF8sHk5pLw29Hr+Oy7oHKsnnNV/AKeAMLQ53w5PuBpXqyQHP/0ZTzGhnrolS9HRmb+tu/SnTDm+BzCxqYCm1d6M2lsW0YPbcmlGyHMX59nigHca1XFT5Yzr94Ow7123lxg99pV8b/7RBZ7gnsh+bSWgzX9utRny2IvWjepmS8u9BznmeNhw1qw4MvePAuPY+oiX14npKqUd69ji7+s3fW7Faa4Nqi2yX638nTFFpjnrbj/OP/K42+a42HDPVmzbjC52bnMHf8zT4JVR/y41q/GjcvC9jTXLwXh2rB6XqxBdW5cUYo1qE6turbck+VZeXmzikbEvEokJzuX2FdJVHNUHT2XnZ3D8pn7uHL2AUPHtWHCF50VPcWTDx7ON3y6kW1VLoQJ9+986BMa2+bdv4a2VbmoFGtkJ8SyZD2Sxnp6PI4RejVbOzrQ2M6W3YMH4F3fnTdZd+4S269eo1U7F75c0o+lq71o1KQGO74/wz5fP5Wy2nj3AIh8KeTTrOwctYtm/XfqPqvXHqGGqx0r905mympveo1qzan9fiqmGMC1SQ1unhOaq+tn7uPatIba2I0zgdRt6kStBvbcuyLLdWcCVcoDtOrViAv/5P8S5tHNJ3zpvQUD/XKs9RnGiLGt+XxmN+6oMcUAjeyqcjFUuEcXQp7QqJrS/atWlYshslhwXkxx//T1CIoW7l9calqBw8UjE5MY/qvMHI/ozfh2Tfl2lOam2NzcHHNz82J95kPIzaVqjCUSiR3QA/ihNK9TVjA1NiAlTfinSUnLxMzEQCmmr4glp2aoxN6krlNlDp65y4x1Bxnbtxl65UtuQl+/zsXMVLjNFcx0iHudl1BfRecQE5fDiX22NPcw4NufXud9LiGHqFc5uNTSUxxb7RNH7RZPsLbUxcio5I+OmYkBKal5dWH6Rj2lpmUoYoXVk1ePRvxx7FaB8eJQQc+A5CzhuklZGVTUM1CKGZKclamIVdAzJFuay4PXUfzX/VN+aTOY7x9eVTnfrHrt2Bmk2dBgE1MDUlMFTSkpGSqm1tTEgBRFLB1TM/X1ZGqaVw4gJye3RHsbqp7TME9XcgamZoaqmlPyYmZmhpiYGpCSkl/ruf8C2fLDGH7aO4kTh++gCaYm+nn18cYzZfLm81aELwcmjW7L3oOaLUBiYmZIarJSPVUwLCCWjkkFQ9VjSemK8nXqVeO47zUWf/orQya1p7xeyWfACNdIV7qGUYExkwpGBZavU78ax339WTzxF4Z81kEjTSLvnv+l3Ozm5oabW8n2ti2IPSdu8s2+8/mOmxoZKOXxTCoYq+auZOUcb1xwO3PS7xE/Lx7CgVWjOXQ+QG2ZS3fCmP3NP1SpUpFB/Zpy9XZYPlMMQtuXqqRJ9b1Dte0rLJ+6Olfm7//uMmvVX4zur/69I+y5YI5zkTJ6TBvCX75Wa4rzdOXlL7M385dc8xuxNxnYqzF/Hi04zyckCub4WWQco8e2QQLM+eRnngTlH0lmYmaolJ/SMTVTav+UcldqstD+5mvDzQxJiE/FyqYCRib62DtZU7VaJXS7+SCuAAAgAElEQVTfyKnZ2TmsmLkP/wuP6TekObb2Fkw5eJjTwfmne1Uw0CdZZraSMzKoYKj07mFgoIglZWRS0UCIWRobsW/oIJZ0bo//sxcAVDE14W7kS0bs/YPernWobJp/jvracxf5wf8Grdq50LhpDX786Rx73zDFirrQ8N1DmYnj26v0SCsjmOPD1HSvRvdhnpz96xobpu7MZxJNKhiRmiTLRYnpmFY0LiCWhklFo3zHlMtLJBLqe9bi1vmHajU9vBHGwsFbMDbSZ/iY1gRERjHu9/ymGMDMUJ/kDNk9Sle9f2YGBnmxjExFzNLYiD2jB7G4W3v8n74opObykPccx6WmMrWLJ0Za6Cm2tbXF1tb27QVLhzK7lWJp9xhvAmYDBa4OIZFIxkskkusSieR6dLT2Vwx8lySnZmBsKBhJY0M9EpPT1cZMjPRVYm8SFZfMg9Ao0jKyeBoZj5W5+kU4ikLFCjokJgnVn5CYq9LTW6GCDu08jZBIJLRvacT9R3n/9H+fSKF3V9Xl9OdMqcTjKw5Evsrh6o2SL66RlJKBsVFeXSQp11NKBkaG+opYQfVkbKRHTXtr7j3Szv6ViVkZmJQXrmtaXp/XmXnXTcxMx6S8niKWkJlGDVML6leqSvujW+l38icWNMwbTjXAsT66Eh3+fqr+haeoJCenY2QkaDI21icpKV0lZqyIGZCUqL6elMsB6OrqkJ2t2WItKrpM9ElSGj6XnJSOkXFeLDExjZTkdIyN82sd+2l7Phm+g1Fe39KxqzsmGvRmJydn5NWHmmdK5XlLKnzfvtGDPbn/KII794uWsArUlJSOkYlSPSUo11OaUsyA5IQ0UpTLmxooykdHJvA44AXpqZm8CIvB0sZMQ00GStdILTCWnJBKSqL68tGRr3l8T64pWiNNavkAFvh4z3xQubm4ONlZoq/my54klTyuR0KKajtjopzjUwpuZyZ7tWTIgp30m/0T3TxdMVVqo5VxcbRBV0d4TbO1qUgFU8N8ZYScmadJOWe+mWsLe+94FZvEgxDhveNZZDxWldS/dzjYWihydKWKxlS2Uv+/n6SUy42N9UlMeqNNlmt+I6aMsZEeNR2suPcwvEDdADaWZljK3pOMjPWp7miltlyKSn4yICkxVW3MyERof1NU2mkh10mlUn7a/C9fbRrKgFEteXjvhWKuqzKmFY2oUk3ojdORSHCrbKNWU2JGBiZ6srrQ1ychLV1tzFRfj9eyPWdjUlIZtHsfnx08xMw2LRVlrzx9To5Uys3wCBwr5e8J1C+nSx2rvB5uZ2cbtQtyaePdQ87IES158CCcu/eeF1imjtIoBzsnG4zM1DzniWkYyd4RjM0MSFIaiaEaMyT5dSopbxxTLu/WrCYPb4SpvW9yHFxs0TcUzGeVCqZYmajfXiopPQMTfdk9MlC9f0kZSjF9PUUsJiWVwT/vY8r+Q8xoX/QpW3YVK2BulL9u3inay81ldivFUjPGEomkJ/BKKpXmH6ughFQq3SGVSj2kUqmHlZX6xuz/C3cfR9CkrjDUsFk9B+4G5TXmd4MiaOImxD5yt+eummFBcoKfRmNnUxEdiQRb64pqh2IVleYehpy6IDT+/55NpUWTvH8qzyaG3A4Qvvm7fT+DGvZ530ApD6MGyMgQGhBdXQnGRhKMDEv+6AQ8CsejnqwuGjhwVynp3XsUQRNZrOkbMWXsbSthbWHC+gX96dLKhbFeLbCxLPnL+c2YF3jKFtJqVbkGN2PyGvGbsS/wtBE2Wm9d2YkbMS+QAIlZ6eRKpSRmZWBcTmj8Wtg40NWuDl/f+rfEWuTcDwynsWw4bROPGgQoGbX7geE0UsQcVWLKZGRko6urg7GxPlZWpm81hUUh8N4LGjUR6sPjIyfu38u7dmDACxp5yGM1uH/vOY8eROLeoHresbtC3WZn55CWmkFWVg45ObnoadDrGPAwgsb1Zc9NIwfuPch7bgIehCtiTd6IvUnX9nWxtjRh71+ab1fx4NZTGjQXhiQ2blmLwJtPlWLPaKgUu3/rKY/vvcBNVneNPZ0JvPkEgNBHkVSpboGOjoQq1SoRF51Uck03n9Kghfy6zqqabj6loVLs/k25Jod85UMfvszTVN1CI01q+QDmMb0vPsTcXFT2+/qzfdtpmrhWY/20j/OZ47vBETSV53i3N3J8cARNXGWxt+T4rOxcUtIzycqWtX1qtlkZ16cZ4/u2wO9qMF999Sc2FqZ8+5WXwgDKufcogibuQvv6UQMHlS+LAx5H4OEuy7X1HQo1mEFPo7GVv3fYVFA73Lpds1osmdqDsNg4Ru46QKYklw1fDaROzcr5ygY8jMBD1u5+1FD12gEPwxWxpg0L1mVva4GVhSnrFg2gcxtXxgz2xOYNI16rhg2blnqRm5nDvJE7eBYcxZxVA2ndOf8ogsA7z2jYTJie1rhFTQJlU3yE2HPV2O1nPL4fjrsszzZu4awof+NyMLPH/cTeH87xJDh/z3QlK1NW/zCayrbmLJ+1j6vnHjLFsxlTWzbPV/ZmeCSeDsL9a+1oz43wCKVYBC1ksVaODtx8EUE5HR3kLVtSRiZpWVmKsi42wv9pHWsrXrxOVLmOfjldtvfrg6dDdX7YcYZ9e6/SulUdFi7onc8ca+PdA6BLZ3esLE3ZV0BvMcCUzzrR9+PGnD54gw2z9uJY146Vvp8r5hzLeXAtlAathbVfGrd1JdA/VCXWUCl23z+Ex7ef4tbMWXbMRaV8y14NOf9P/jVr5HQd5smUNYMh6w65cWOxNJKya+RAHC3yf9lw83kkLRyFe9TSyZ6bz5Xu3/MIWtSQxxy4+Vz1/iUr3b+30dTejh1DPsawvPbmFKelpZGWVsxOrg8gN5dmj7En0FsikTwB9gLtJRLJb6V4vfdO0LNo4hJT2bbQixq2FpzxD2LOmI4AXLoVSmULU7Yt9CIzK4eAYGFe7IJPOtOtpQsTBnoyvFcTAL7bf5F5YzuxY7E3/5y5R0Zmdok1NXDTx8ZKlzZ9nnP/USb9e5gwcZbQkNdz1ada1XK07/eCn/ckMnlMRQASEoVh1HWc84ZRr/KJp32/F7Tu/ZyaDnrUc1X/DXdRCHoSTfzrVLZ+7Y1jNQvO+j1m1nihx/XyjRBsLE3Z+rU3mVk53H8s1NO8SV3o2saV8d4tGfZxUwKDXjJ+/u/MWP4HJy484Effy0TFJBZ22UJ58DqKmPQU9rYfjnMFK46/eMgyj24AnI4IoqqRGXvbDycjJ5tbseGEJMXyKi0Z3w4j2NV2KN8GCquWLvPojpWBMTvbDuWn1t4l1gMQEvKK+PgUNm0YioO9JecvPOKLqV0AuHI1GGtrMzZtGEpmZjaBD4TGeNaM7nTq5MaY0a0ZPEhYvOmnX86zavlAFi7ow/c/ntNIE0BIUBTxcSls2DoCe0crLpx5wNTZ3QG4eikIaxszNmwdQWZmNg8Cwkl4nYrf5SA2bRtJ+85u/POn8D7+x14/Nm4byeYdo7h3+xlxauYoFZXgsFfEv07BZ+VgHKtZcu7yY2ZO6gzAlWsh2FiZ4bNyMJmZ2dyXvTjO+bwrXdrVZdywVgzt31RYvfqzLlS3s2Dz8kHM/byrRvUU+jCS1zHJrN01HvuaNlw6GcCUrz4GwO/sQ6yqVGTtrvFkZmTz8PYzEuJT8D/3kHW7J9C2ZwMO7xGG5/+y8QRTl/Zl/e8TOX7gGhnpJV/4LvRhJK9jk1i7ewL2zjZc+jeAKUv6qmraPUFV09lHrNszUdD0+xWZpuNMXdaP9Xs+5bivv0aaRN45/1O5OTg4mODgYI3Pc2C/P9u+O4XvPj92bD8jM8d9VMxx0LNoYhNS2TFfyPGnrwUxd5SQ4y/eFnL8jvleZGbmcC9EyF1fju1Md08XJvb3ZEQPIcf/fvwG33/pzY8Lvbn1KJzYBFUTOrbPR4zvJ5jixYv/5ML5Ryz56i9sLEzZsnigijkOehpNXEIqW5cMwtHOkjNXHzP7E9l7hzyfLhlEZlY2AbL1OOZ/2oWurV0Z7+3J8D5NAdj++0XmTujEtq+9+edU/veOth85s2RqD57ExTPytz+4+uQ5o3YdIEtmjms7qfaIytvkLSsG41DNknNXHjPzU6FNvixrk7esUG2T507uSte2dRk3tBVD+zUlMCiSiXN2M3PpAf49F8hPey4RFZ2X551rWLNxyUCFKb59OZi5w2XmeOUAWnWuq6Ip9NFLXscms+7nsdg7WXPxv0A+X9gbAL/zj7CuXIF1P48lKzObB3efkxCfiv+FR6z/ZRztutfjkGzY8YRZ3Vj1/WhGTenEr1tOqVzD3NJEyRT7cuHkfZbN2Iff+UdM8WzG557NVMo/eBVNTEoqe4Z4UdPSghOPgvi6SwcAzgSHUtXMlD1DvMjIzuZWRCRWxsbsHjKQ37wHsLRzezZeuCzcv6vXGde0MfuGDuJu5EueJyQorqFfTpdtMlP84/dn2fP7FXZsO42vzBx/OV/VHGvj3UNHR8L0aV2pXt2CDeuGMHtmd95k8mcdZab4Jutn7uXkH9fZOGefWnMcev8Fr6MTWXtwOva1q3DpyC3BvAJ+J+9hZWvO2oPTyczI4uGNMBJik/H/L4B1/8ygbb8mHP5FePeRSCTUa1HwMOquwzz5fO0QyLqDNH40ZF5AGj8OSyMpO0cMyGeOH0ZFE5uSyu5RXjhbWfDvgyCW9BDu39nHoVQxM2X3KOH+3X4RiZWJMbtGDmTniAF81b09m84I96973Vqs7dsVj+pV+XlYf5StY2mYYoCQkBBCQkK0es7/BSTqJsRr/SISSVtgplQq7VlYOQ8PD+n165rNyyxNmg3b8L4lqOXyum3vW0I+Wk0e/74l5OPlwIy3F3rH2P9Q8vnjpYVuSsm/iClNMixL/mVMaWEcFPe+JeSnFPd7LCnHHq1S+V0ikdyQSqUe6srqO9hJqyyYqpXrPh0/Oxg4Axwqi0O23jf/C7k5IECYsqLJPOMD+/35bquqwRnk3YxPxrfF//4zZm46SEZWTgGf1i5jen/ExP6e+PmFsHjRH2QpXbd585osWtyXlzGJTF7iq7ZXtzRo29SZpV/05ElcPCN2HSA2JW8Ici0rC34dPoDyUh2mLfLlsRZ2iSgKzjWs2bTEC7JzmTdiB6EP8xbhNDM3ZvVvE6hWw4qVc/dz8eT9d6LJ3NKENT+MobKdubA69dk881W+vC5frvfmo9a12XzxCj6XrhZyJu2hX06X7/r2ppWjPT/+cI49uy+rxCd82gGvQR9x9txDlq/8R7EtU2kzeVJH+vX14MzfN1k3Y4/KnOKO/T2YtsqL0IAXzB/0jcpWTqVJ16GefL5uCGTdFUyxVOnL+vKNkJj/QHQKDN95gCex8e9EU5PqtuwY0lcrc4rfRF3b+Q5zc4HXed+8i1WpRUREREREioa25jCV8XlMImWDPw7kN8UA+/Ze5Yfvz9K0bnXWTfsYfQ0WwSwqo3sJptjfP78pBrhyJZilS/6iilUFfBZ7YWmuft6jNmnTtOb/sXfeYVFcbxu+Z5HeBAENqGBXQLDH3nuNDbtij0ns3di72DXGXqLG3hK7ptkL2MGCihUUld7rfn/MLnWBlV2U78fc17VXcu05O/Mw53XeeeY05o5px6vgEAZkMMUAvh+DGLD7MAlCsrgPcWnVc2m1SblSWZtigPCQKKb028gbv49MXdyd+i2csjiS9rAoYsKSzQMpVtyCRZMOpjPFAAkJScwfv48bF58wun4dfqr7bZ5r0tPR4VeFKd62NbMpBtioGCXRuFFFfp7aQeWcY23z44hmWZpigL8Oe7F6ygFKOxdn4f5RmJjn/bzaVr3rZm2KARJuIw8ZgrUx7OzfDQcVw6q1TV6a4lyh3dycb/kixlgul/+X0xtpCQkJCQkJiS9HQc/Nhw958uu6zKZYyb6919m65QK1nEqydHSnPDXH7h1qMaKbaIpnzshsipUozbGtwhwXKZx35rhhzbLMG9OeVyGh9N91iE9RqnvufD98Es2xTM7KOd0pV9omzzSVdbBmZTamWElYsGiO375QmOPm2t9WTolFEXH49DclLFk0+SBX/1W9C5rSHN+85MuYBnXz1Bzr6eiwvktHGpayZ/vWC+zZndkUK9m4/m8OHrhB40aV+HlqB2SyvJsD+sOIZnTtUpP//ryj0hQrOX/Yi9VTD1KmcnEW5LE5btmrDqOX98naFCtJuI08ZCg2SnNsWTjPNNXIb6a4ACH1GEtISEhI5CO0tLhHPl/gQ+LrIpriv3Kst3fPNbZuucC3zvZ45JE5dm9fix+61cfT0y9bU6zk6tWnacxx9zwxxw1rlmX+2JxNsRLfD58YsOsQiTqwao5bnpjjsg7WrJrbAyEpmakDNmdpipWEBUcxua/CHC9xo14e7Lle2NKYxZsHYluiiGiK/8l+a/CEhCTmjdubYo5/rKN9c6yno8P6zh1STPHv2ZhiJRt+/ZtDB28qzHHHPDHHI75vSjeFKV46bk+WpljJ+UOerJpykLIuJZi/byTGKlar1pQWPdU0xUoSbqUxx92xzwNzXKOkHZvzpSkuGLlZMsYSEhISEvmLAjBcS+LrceSweqZYidIc13a2x2NUR5V7/OaWAe1q8kN30RTPmH4oR1Os5OrVp8ydexQ7m8KsndkdS3OjnH+kJg1qlBFNcWiYWqZYie+HT7inNceltGeOyyhMsSxZzjT3zfg9Um+rRrHneBNvX3xi6hI36jatpDVNhS2NWbJlEHYli7Bw8oEcTbESpTn2vOzL2IZ1+aFOLa1pEodPd6BhaQd2bLuolilWsn7dXxw6eJMmjSsxbYp2e45HDG9K9661+O+4eqZYidIcl3MtyYL92jXHLXrUZsyKPghJ3shDBuVsipUozbGJwC4tm+PqJWzZ1Pu7fGiKFRSA3CwZYwkJCQkJCYkCwdEjXqz7RX1TrGTvnmts23qR2pUdWKolc9y/XU1+dGuA12eaYiVXrzxl3txj2BUtzC+z3LRijuvXKMOCcR14FRrGgF0H1TbFSp58+MTA3YdJ0oGVc9wo66D5Vl+iKXZDlixn6oBNPH+onilWEhoUyZR+G/F/+YlpHj2o20Rzc6zsKbYrWYRFU3LuKc5IQkISc8eK5nhcw3qM0II51tXRYV3n9jQq7cCO7RfZvevKZx9DaY6bNnFk6mTtmOPvhzWhe7daXDhxl6Vj1TfFSs4f8mT11EOiOdZSz3Fzt9qMWdlXNMXBA0H+mVsOpjHHO/t3o6SFucaaqpewZXOfzhjr6eVcWSLPkIyxhISEhET+ogC8lZbQDhYWFlhYqLcQzrGjXvyy9nyuz7Xn96ts3yaaY4+RHTEx0kdfr5DKj14hGXq6OlmW929Xk5/cGuDl9YIZagyfzoorV3yZP+8YxYsVZu0sN4oWMc1ak65Otpoa1izLgnEdeK0wxR8jc7ca8OPAj7jvPkxyIVg1twcVyhTNtaZypW1YNdcNnWRyZYqVhAZFMrX/RgJefWLa0h7Ua+aIvoGuyo+ung56+oWyLLeyMWPx5oEUt7di8dSDXPn7Ya40JSQkMXfcPryuPGW8whwbFCqk8qOvo4O+jk6W5SZ6evzauT1NypTmtx2X2L3z802xkvXr/uLwwZs0a+rI1MntMTDQRV+/kMqPrq4MPT0dlWUGBroMH9YEt+7fcvHkXTxyYYqVnDt4kzXTDlGuSknm7/sJ8yIm6Bvqqvzo6hcS2y+L8hY9ajN2VV+EJJ/cmWIlCV7IQ4ZR1ETGrgHdKW1lmev2q1nS7oub4jJlylCmTJnP+1EByM2Zd5WXkJCQkJD4muTzxCmRf7Czs1Or3rGjt1i7JvemWMnvu68iCOA+sCH/rP8xy3oxMTEYGmbfs+Xl9YIZ0w8RH6/ZFnmXL/syb+4xZsz8jqPrNdsq0e9TMP13Hcq1KVbyOPAjA3cfZnvfrmxZ3l+jY0WERjPNfXOuTbGSkE9iz/HiXcOZsaKXRsdKTEhi8dRDXP4rd6ZYSUJ8InPG7mXWyl6Mb1iP8Q3raXS837ZfZNdvlzU6BiBONRCga7daNGua9are6sT5xZN3WTJmD8kabgV19sBNBEFg5IKu7PPx0OhY8oQHmpliJQmeojm22MzpHwZodqwvTE7tppICkJulHmMJCQkJCQmJ/2nW/aK5KVaye9dVQkKyN47qPHRu3vSvxqZYyeXLvty980rj42y+6snHSO3sj/wo8COH72q+h/BfR7145uOvBUWiOd63/h+Nj+N95xWX/9LO/sgJ8YlsWXlW4+OEhUWzUwumWMmvv/yVYw+vOnG+acFxjU2xkjP7b/Aih0XX1EEeuQbk4VpQBCR4QtwZ7RxL4qujljEWBGGeIAgtBEHI+03zJCQkJCQKLnIKxMqX2kDKzWKPVUxMzNeWkYn8qOvVq1eSJjWQNKmPFOfqkR81+fv74+//GS+cCkhuVrfH2A/oBXgJgnBTEITlgiB0ykNdEhISEhIFFEGunU8BoMDn5ufPn/P8+fOvLSMT+VFXRESEpEkNJE3qI8W5euRHTSEhIYSEhHzWbwpCblbLGMvl8u1yuXwQ0ATYDXRX/FdCQkJCQkLiKyDlZgkJCQkJCe2h1uJbgiBsARyBQOAS0A24nYe6JCQkJCQKKvn8jXJ+QcrN6jNkaGMcHe14/z6MpR4nSVLMeZTJBMZNaENxO0t8fd+n7G+8bHkvypUvxqIFx7l+/RkA8xd0w8TUAAAdHc2XaOnSpQa2tha8D1ShabxC09MMmsoVY9HCDJpMDFJ+pymtK5WnaxVn/EPDmXb8HInJCk2CwPz2zbG3tMDnXSALz10AYK97DxKTkykkkzH9xHmefwpmRP1a1Cttj4FuISJi4zXW5FSjFEv3jCDQP5iVUw+SlJh6nUYv6IatvRXPfN6yccFxADoNqEeDNq5EhEazdMJeoiPjqNfKGbdhTUiWy3nz/IPGmr4pbsmybYMJDAhhxexj6TXN7IRdySI8fRTAxqWnRU29a9OwpTMRodF4/HyY6Kg4GreuTKfetUmIT+ToZ+w3nB1DhzXBybk479+HsnRJxjhvS/Hilvj6vuNXxZZly1b0VsT5n1y/poiphd1T4lwb9PihGaUqFCPwbQgrJ+9Pf60WdcfWwYpn3m/ZOO9PADq516dBW0X7jdsjtl/ryrh935TkZDlmFprPHJky+ybXrr/BvoQuW1cWRVdX/LdzzyeOH6d8QLeQgKmpjL0bimFsJOPg8QhWbwrF0EBg++qiFLfV5fHTeL6fGEhiEsydc5/mbbtorCvfUwBys7p39iKADhAKBAOf5HK5dlaMkJCQkJCQyBvMBUHYJAhCh68tJI+QcrOaFLEyYczo3bx+HUTDRhVTvq9dpyxBnyIZM3o3Bga6ODqKq1wvWnicw4c80x1j3S9/MWbUbpYtPYWhoa7GmgoXNmLMGBWaapclKCiSMWNUaDqsQtPo3Sxbdgo7O/W2rcoOM0N9+vx2AL+gYFpVKpfyfZNypfgQEUWf3w5gqKtLFbtvAOi/8yD9dh5k5b9XGFi7GgBbrnrRd+dBemzbR6Vimu9jbGCkx8Te63nr95H6rV1Svq/VpBJBH8KZ2Hs9+oZ6VKxSEjMLI2o3dWRCz1+5eOoe7fvUBcBtWBOmDtjEuO7rcK1dVmNNuno6TBi0lTcvP9GgeeqqzbUaViD4YwQTBm3FwFCXSi4lMCtsRO1GFRnvvoUL57zp0KMWMplAtwH1mDBoK0umHaJT7zoaa5LJBKysTRkzapfqOA+KZMyoXeljasGfmeN87XnGjNzFMo+TCFqYDmppbcrEHr/y9vkH6rdJ035NHQkKDGdij1/F9qtqL7ZfcycmuK3j4sm7tO8nrtLt9n1TpvbdwLiuazU2xvfu3cP/XRQX/ihBxbJ6HDoRmVLmWF6Py8dL8O/R4lR30efoqUgSE+Ws2hjKP4eLM3tiEeavDAbg50Wf2LyiKKf22DJr3j6NNEnkH9QdSt1ZLpd/C3gAhYF/BUF4m6fKJCQkJCQkNCNMLpcPk8vlx7+2kLxAys3qc8vrJQCenn44OxdP+d7JyQ4vrxcpZU7OomEICorMdIx370IBcasebfBQsf2Q581sNN38DE1a6M15+iEIgEvPXlKthG3K91VL2HLZT1z1+tLz1LIERY+ysZ5eym+V3+kV0iEiNk5jTR/8xXmQXhef4FjNPuV7x2r23L7sC8CtS09wqu5A+coleOD5IrV+dQcA3r74iJGJAXr6hUhM0PzdUUSYuJCS15WnOFYpmarJtQS3FD2vXlee4VilJOWd7Hhw62W6+maFjfj0IYKkxGSCPkRQTAsvNQoV0sHL0w9QxFTltDFVPF2Zk6LsS8T5gxvieb0uPsaxeqmU7x2rO3D7kqL9Liraz6Vkav0LadrP70NK+8nlmgX61atXadFE/PtbNTHiqmfqoljKnmOAmFg5Fcrq8dQvgYrl9NDTE6hXy5AHj8RREO8CkyhXWg8zUx0sLUz49OmTRrok8gfqDqVuDzQAGiIm338Qh21JSEhISEholfy+OEd+4Wvm5piYmGwXkylTpkzKVi7+/v5ZLvJiYGBA2bKpPXje3t5ZHtPW1hZLS0sAgoODCQhI3df21atX2Nvbp/x/RETq/qTW1tZERcUCEBUZh6lZ6jBRE1MDoqPiUsrMzHLefmb4iKb4+j4HElRqe/z4ccr3ypVoM14ra2trwsNFUxIVFYepaRaaouIwM1VD0/dNuXv3CVbWeum+d3Z2znStstMUFBoGQERcHOaGqZrMDAyIjItXlMWnlFkZG7G2ewe+MTNlxIE/UupPa9mINo7l8Xn9lvCA9O9qPlfTxw+i4YiKiMW0sFFKmYmZEdGRsSllJuZGmJgbpvvO1Fy8dhdP3WPVoZEkJydz5fw9ylYropGmd+/ei+eIjEs5h6jJMKXtoiPF85uYpY8xU3NDwkKisS5mhpGJPtZFzbAuZp4p9lVpyi7Ozc0siIze22EAACAASURBVI4W20iMqTS6TA2Ijk4bUzkPlR4+ohl+fn7pVlPOTZxHhovbf4ntl+FapW2/wqraT2zviyfuseroKJKT5Dz3fYlcJ/0Q/c9pv8ePH1PLWXw5Ym4mIzg0/QuAM/9E8fOiIPR0YfJPFjx6Go+ZSWo/YlKSmKDSbmWlqytw/fp1HBwcctT0Je+LGXF2ds6yTB0KQm5WyxgDrRGT7Wq5XK7ZDutq0qr6rC9xms8isYr515agkmb9B39tCZkIqaHztSVkotS6r60gM6Hl9XKu9IUxCFH3tvBlMb2lnX0stUnAdyVzrvSFubdq7NeWoDn5fDuHfMQXzc3KhzNNH67ygkKFUu9bNjY26QxDUlISxkb6ABib6BMRHptSFhUZh5Fxall4ePZbqgxwb8CjhwFUdjHHzExfZR0bG5uUh1NDQ0OV27QkJSVhaCje/42N9YmIyEKTsT7hETloGtCAR48CKGIJVtY2QPqH5Yxkp8lAVxwibqqvT1hMqqaI2DhM9PUUZXopZZ+ioum1Yz+VbYsyvkl9huw9CsDCcxdY9vdlzo7oT3jgexITE3OtSU9P1GRsakBEaOr+0ZERMRgp5lcbmxoQGRZNVHgstvZWqfUVPbsDJ7RhRPsVxEbHsebYKKITQkhOTs61pkK6YrwZm+innANEM6dsOyMT8fxREbHYliiSrr5cLmfb6vPMXtWbwHeh+D1J3Zs3O03ZxXliUhJGRmljKo2uyFiMjNLGVGrbqkKMc38KW9hkOXdd7ThXxrKpARGhqXUiwzO0X2g0UeExGdpPbO+Bk9oyos1yYqPj+O3KNN4F+ue6/UxNTYmIFF9qhYUnY1k4/fNq66bGtG5qzNJ1wWzaFUaHlsaER6buw6yjI16PtNclPCIGc3PRI2SnKT9hYGCQLp7UogDkZrWuiFwu/0kQhKJATUEQqgE35XK55qsXSEhISEhISOSKr5mbDQ0N1TbIdnZ22NnZqVVX3WNaWlpiaWmZYtbTHl+VtmrVgzl3zpuaNUvh7Z3ag+nj/Zbq1R14cP8NNWqW4uzpB1mes1Wrylhbm7Js6Sm6u43C0lL1XEdLS8t0vTZZXavKLtHs3++ZWZPPW6pXS6PpjBqalp1iyZIeODuXVqkn7bXKTpOrojesfhl7br9J/Rtuvw2gbqmSeL32p34ZB47c9aGQTEZScjJyIDIunphE0Wzo6uiQkJREfFISgkyHihUrZjrP52hKdBSNS/UG5Xl4+1XK949uv6Jq3XJ4e76gev0KnDvsybvXQXQe2CC1vmIIc2JCEjFRcSQmJCETZDg6OmqkyUDPVDxH3XI8vPs65fuH915T9dsyeN9+RfW6ZTn/xx0C3gTRpW9dRf2yKfVvXX3GravPsCtZhAE/NaNhy8zn+Zw4j4iIoVr1Upw/503NmqXxfpA2pvypXr2UIqZKc/b0/UznUtKqdWqcDx0+NUtjrG6cu9Qux4ld16jesAIPb71I+f7R7ZdUrVcOb08/qjeowLlDnrx79YnOgxuK16phBZXtZ2BgoFH7devWjeWL9zOsl8C5/6KpWzO1FzsuLhl9fbF32MxUh/h4OeVK6/H4aTzx8XK87sVSuZL48qGYjQ7PX8ZjY1WImJhEGjRokKMmZW8x5O19UR3S9kh/BcwFQdgEHM9vU53UmmMsCEJ34CbiVhBuwA1BELrlpTAJCQkJiQKIXIuf/3Gk3Kw+ISFRrFrdF3sHay5dfMzYca0BuHbtGTY2Zqxa3Zf4+CQePhRHpkyY1JYWLZ0ZOLghPXvVRiYTGDu+DSVKFmH5yt4YG2s+2iciPIZVq9JoGptB06oMmia2pUULZwYOSqNpnELTit44OGi+0FVkXDy/D3CjnHURzj16ypy2zQD4z9ePb8xN+X2AG3GJidz1f4e1iTG7+ndnZ79uzG7TlFX/iisrT2/VmJ39urHXvQd+QcEaa4qLiWfpnhHYlyvGlbMPGDlPXP33xr+PsLYtzNI9I4iPT+Dx3deEBUdx87/HLNv3A407VOXE79cAOLLtEsv2jmDFgR956/dRY02JCUks2zYY+zLWXP7rIaOmi+v73bjoi8035izbNpiEuEQe3X9DWEg0Ny/7snzHEJq0ceH4gZsADJ/YhsWb3HEf2Zw/9l7XWFNyslyM8zX9sHewUsR5GwCuXXuKTVEzVq3pR3x8Ypo4b6eI80b07F1HEedtxZha1Ucri2+FB0eydP8PYvudecDI+V0BuPGPov32/0B8XAKP77wS2+/fRyw78CONO1blhGK17iNbL7DswI+sOPQTMdGazVuvUqUKRa0NadTpDT5P4unazoTvJwYCcObfaJp0fkvTLm85fyGKQb3N0NUVGDW0ME27vmXmkiB+HiMaz/lTijBodCBtevkz6+ceGmn6f4F2c3O+Xf9DUGcSuyAI94AWyjfRgiBYA3/J5XJXbYqpUaOG3MvLC8ifQ6mD8ulQatM3CTlX+sIE1sh/Q4RtL0fnXOkLE1o+57ljXxqDkOScK30FpKHU6vH/YSi1IAi35HJ5DVVl+iVKyO3GaedveDFufJbn+V/gS+fm/DiUWl1NLZotTjcnUFMOHs66x1hdXcOHbePZs0CtaVqypAc1ambuMf4cTVP/PMuRew+1pmliswYMqZv1P0F1NB3dfpFNC09oTVOTjlWZtLyXRpru3vRjyrAdWtPkUNaGDYd+0khTWFg0XTqt0pomgPP/ZN1jrK6uvnXnEfQ+TGuafjkxljKOWfe0qqMpOWQoxF3QmibBfDGCYdbbNeXHe6cqpNys/hxjWYbhWUGov9WThISEhISE2hSEBT60hJSbJSQkJCS+CAUhN+dojAVBEABPQRDOAnsVX/cATuWlMAkJCQkJCQnVSLlZQkJC4v8H+b2nWCKVHI2xXC6XC4JQC5gJ1Fd8vUkulx/NU2USEhISEgWTAvBWWlOk3CwhISEh8UUpALlZ3SFXt4A3crl8nOIjJV4JCQkJibxBWnxLXb5obra1tcXW1jYvT/HZqKupX//6OdZRl44dq1I4zX66qlBHV5++dbOdv/k5VK1qj3PlEhpr6luzCuYGqreh+lzsLQvTwTnzitSfq6lRuyrYlbLSiiZjUwM6Dcg+FtTRVMmlBNVql9GKJplMoNfQRhprMjMz5LvO1bWiCaBv/3o5Lr6ljq7eI1toTVO91pWxL1dMY02C0RAg572c1aKQI+g31c6x8jsFIDerO8f4W6CPIAivgCjll3K53CVPVElISEhISEjkxBfNzV9rb86/Tt5j5/p/ULVYaEJiIrrZ7MUpyAR+mNiW/gPqA3J+23FZIy0dOlZl5OhWPL7/mmU/HyYxISlXx+nYuzbd3BswfcZ3zJ93TKOFwapWtWf+gu6EhkUzc/zRLPdiTkhIRFc362tVo5oD40a3ZnvfrrjvPkx4bO5X/7W3LMyuft0x1dVj/PxDvHgbpLJeYmJitnup2tsVYf6EjizZNZzJ/Tbi/+JTrjUZmxqwYMdQyjnbsWben3hd8VVZL6frZGpmyIyVvZm1qjezR//OnRt+udYkkwlMXtSNRq0qc3TnFY79dkW1psQEdAvpZnkcnUIyxi3sxk+jWiKXwx/HbuVaE0DffvVwH9iQ6/desnTbXyr/7eWMwOCudWjfqzbI5aydflgjTfVaV2bK6r68iArhh/+OEZ2geuHZnO4J7UtVZGqNJmCxCXnIMCD7PZ2zpZAjguUOBFnhbKs9e/YM+OpbJEmogbrGuFWeqpCQkJCQkEBc3KMgLPChJf7nc/NfJ++xfPZRjYzj/En7mbG0J/0HNEAuh52/5c4ct+9QlVEKUzz9+9+Ijsq9cdyy/AyCINB1QH2Qd2L+/D9y9TdWqSKa4rDwGMZN2ss7DVb/PXnmPolJyUwa15btfbsyMJfmuKSFOTv7dcNUV48JC49w79HbnH+UBYGfIpiw4DDLf+4qmuO+G/F/+fnm2MjEgAXbh1C+cnFWzjrGuT9u51rTh3dhTBqyDY8tg0RzPGYPd3NhjmUygUkLU03xpsUnc60JYObwHczd6M7I0S2RI+fPY7n7G/v0rYv7INEUT1nxB/G5fPkDsGjTOQQB2vWug1wu55cZR3J1nHqtRFP8MiqEXmf28Sk2KvsfZBO2G71vkiSXM71mU7DYiDxkOLkyx4UqqWWKAWJjNTDf+YSCkpvVGkotl8tfqfrktTgJCQkJiQKIXNDO53+cL52bg4ODCQ7WfF9adfn7lOamGCAhIYl5k/Zz87IvA9wb0K9/vc8+Rrv2VRg9phWP77/R2BQr2bzsNId/u0yjxpX4eXqnzx5W7VqlJPMXdCMsPIaxE/doZIqVnD3vzdIVp3AsasO2Pl0w+8xh1SUtzNnVvzvmevoam2Il9x/7M37BYQzNDFm8azh2Dp83rNrIxICFO4ZQ3qUEK2drZoqVfAgIZdKQbYSFRDN7VW+q1Cr1Wb+XyQQmLuhK49baMcUAMdHxzBy+g4d3XjNqdCs6dqr22cfo3bcuAwc30oopBkiWy1m48RwnL/jQrk9dfpyb9ZZGWVG3pTNT1oimuKc6plgNtvh4ssDzHwT9OggWG4DPnD7wGab4f4oCkJulbR0kJCQkJCQkciQgIICAgIAvcq5/Tt1n2SzNTbGShPhE5k7cj+eVpwxwb0Dffuqb43btqjBmbGuePHjD9BE7tGKKlWxedpojO6/QuHElpv3cUW1z7FqlJAsWdCciIlbjnuKMnDnvzdKVp3EqVpRtfbpgqq+eaShhYc7Ofto1xUqU5tjIXDTHtvZF1PpdSk+xSwlWzfmDc7nsRVXFh4BQJg3eKprj1X3UNscymcDE+V1p0saFY7u0Y4qVxETHM2P4Dh7dfc3I0a3o0LGq2r/t3bcugwY34sb9V1oxxUpEc3yWUxd9aN+3Lj/O6az2b+ukmOJQep3VjilWstnHk4We/yLo10Ww2Ija5rhQRYUpttCaFon8g2SMJSQkJCTyFwVggQ+JrPnn1H2WzjqiNVOsJCE+kTkT9uF19RnuAxvQt1/dHH/Ttp0rY8aJpvjn73cQHak9U6xk09JTHNl5hSZNHNUyx66uqaZ47KS9BLwL1bqmM+cepJrjvjmb4xIW5uzq153C+vpMXHiEuw+1Z4qV3H/sz4SFRzAyN2TJ7u9zNMeGxvrM3zaYCq4lWD33D84e1WzerSoCA0KZrOw5Xt0H15rZm+MUU9zWhT92XWXjIu2ZYiUxUXFMH7aDx/deM2pMa9p3yNkc9+qTaoonL9eeKVaSLJezYIPCHPerxw+zczbHdVo4MXVNX15Fh9Hr7F4+xmjPFCvZ5HOTRV5Kc6xGz3GhCgXbFBeA3CwZYwkJCQmJfIVyLpOmH4n/f/xz+j5LtTB8OivSm+OG9OmbtTlu286VsePa5KkpVrJp6SmO7hLN8dRpWZtjF5cSLFiYt6ZYidIcV/5G7Dk20ddTWa94YTN29uuWYorv5IEpVnLv0dsUc7x413C+KanaHBsa67Ng+xAqVinJ6rl/cOaI9k2xkvf+IUweso3w0GjmrOmDSw0HlfVkMoEJ87qkmOINi07kmaa05nj02Na061Aly7q9etdh8JBG3HygNMWJeaIprTnu0D97c1ynhRNT1/bLU1OsZKO30hzXy94cF6qAYPkbguzrLEKYHygIuVkyxhISEhIS/6uYC4KwSRCEDl9biETO/HP6PktnHSU5KTlPz5Nijq89Y+CghvTuk9kct2krmmJf77d5boqVbPQQzXHTpo5MndohkzmuXLkECxe5ERmZ96ZYSYo5ti3K9j5dM5nj4oXN2NW/O5YGhnluipUozbGJhRFLdmc2x2lN8Zp5f+apKVby3j+ESYNFczx3bd9M5lgmExg/rwtN27nyx+68NcVKlOb4yf03jBnbhnbtM5vjnr3qMHhoY24+eMWkZXlnipUozfHpSw/p0L8eI2Z/l6lO7eaiKX4dk/emWIlojv9TmOP1QIaXQJIpLjCouyp1rhAE4SUQASQBiXK5vIY2jz94ZAscXUvwPiCUFXOPkZQoJlOZTGDM9I7YlSzC00cBbFh+BoDvetWmYXMnwsOi8ZhxhOioOGYv74WRiT4ymYBD2aJ0a7JYI00juzXApcw3vAsKZ872cyQpErxMEJju3oISNoV59OoDK/b9B8D6Cd2oaG/DjM2nuXz/BQBNq5djQJuayOVyTl17xIF/7mqkadjgRjg52vE+MAyP5adTNckEJoxpjZ2dBb5PA1m34W8Alnv0pHzZoixYcoLrN54D4Oxkx/AhTZDL5axcc5YXuVgVMi3jWtWnqr0t/iHhTD98jsTk1Os0t3Nz7K0s8PEPZPHJCwDsHt6DpORkdGQyZh09z/MPwZSytmDOd83RkclY+9dVrj9/o5GmId83wcmpOO/fh7Fs8Yl012ncxHbYFbfA1/c969eeB6Bzt5o0alKJ8PAYFs/7g+joeJo0c6RLt1rExyeyesUZXr/S7DqN7JomnnZkiKcBaeJp/38ArB+viKctaeKpWoZ4+lezeAIY0bchzhVsefcxjEXrzqa7VpO/b0nxbyx44hfImu3/ArB6thvlS9swb/Uprt4SV+8cO6QZpUtaYaCvy+9Hb/LfddVbZ6jLoCntqVStFIFvg1k5aW+6+8HoxT2wdbDmmfcbNs49BkCngQ1p0K4KESFRLB27m+jIOJbs+xGZTEZycjJn99/gn6NeGmka06E+rg62BASHM2tv+jif1bM5Ja0sePg2kKVHL2Bnacb8Pq1JlsuJjotn6q7TRMbGM7VrE8p+Y4WBXiG2/+3FX/eeaqTp/wXae6McJpfLh2ntaP8j5HVuzg3/nnmQyRR/bo5fsmEAZSt+g8eMI9y4JN5PnKqUZMioFiTL5axddIKXzz4ACnM8fh+zl/di0OCGyOVy9u65BkDrNi6MG9+Gpz6ZTfGgsa1wdC1JYEAIK2YeSX+fmd1Z1PTQn40epwDo1KcODVtVJiI0Go+pB4mOiqNxGxc69alDQnwiv8z/k9d+H1OOv9HjFIIg8F3fusiBxYuOk5wsp3LlEixaLJriMRPTm+KUHP8+DI8VauT4JYoc75Ga40f92JzSDtbo6+uy98ANLl5+knL802cfIAjisbb16cKg348QGRePXWEzdvYTTfEEFaZ4RN+GVK5gy7sPYSz8NXOeKPGNBU+eB7J6h5gn1swS88TcNal5Yu2cHujIBJKS5Zz4+wFnLz4EUs3xsmldWLJ7OJP6bOD9m2AMjfWYv21wiik+fTj9PXzQmJY4upYgMCCUFbOOpm+/WZ0U7RfAxqWnxfbrXZuGLZ2JCIvBY9ohsf1aVxbbLy6RXxYeT2k/Zc+xx9bBzF3blxk/7ebBrZcIgmiKm7Vz5c/fr7FhYXpTPGhcKypVtSfQP4SV0w+n1zS3M7b2Vjzz8WejYi5yp751adBajKmlkw8QHRVHo7YufNevLvFxiayb9yevn4txLprj7czfPJAx49ogl8Opk+IzQI9etRkyrDGeKkzxD70aULm8Le8+hrNg49l0zx5Th7WkeLHCPHkRyKqd/4ntNL07FRxsmLPuNFfuiG1nYqTPxMHNsTQ34u27EJZs/QsQzfH89WcQgI796yOXw4Y5Yl7+tpkj035RmOIz+9KZ4inVG1HNxo63kWFMunyaRHmqpsV1W+NgZoF3UCBzb4px7t1nDN5BgQDMun6eJ6Gf2NKsK+Z64v7Fs2+cxyf4Q8rxN3rfQACm1GgMFhuQh3wPxGvFFFtY/I8Mvc7nvb3a4Ev0GDeRy+VVtJ14S5crShEbU8YP2cbbl59o0MwxpezbBuUJ+hjB+CHbMDDUo1Ll4pgVNqJ2wwqMG7yVC+e96eBWC4DZ4/cyafgOdm74l2v/PdZIU7niVlgXNmHokgO8fBdM8+rlUsoauJbmY2gkQ5ccwFBfl8plvgFgxpbT7D1/J91xBrSpyQ/LDjFw4V46N6yc4wbr2VGmtDVWVqaMHr+H12+CadSgQkpZnW/L8Ck4ktHj92BgoItjJXFD9IWLT3AogyEYMrAhU2ccZP6iPxk2pHHuBQEVillR1MyEfpsO8OJjMC2dU69T44ql+BARRb9NBzDU08W1hHidBm45yIDNB1l97goD6okrLY5pWY8ZR84zbMdRfmqe81yx7ChdxgYrK1PGjtzFm9dBNGxcMaWsdt1yBAVFMHbkLgwNdKnkZIeZuSF16pVjzI87+e+fh3TqXAOZTMCtVx3G/LSThfP+YPCwxhppKlfcCmsLE4Z6HODl+yziyUMRT6XTxNNfKuJp+SEGLtpL50aaxRNAWXtrrCxN+HHGPl77B9OkTvmUsrrVS/MpJJIfZ+zDQF8Xp/KirrmrT3LwRPpFT9bu+JeRM/czatZ+BnSrrZGmUpVsKVLUnIlua3n7PJD6bV1Tymo1cyIoMIyJbmvRN9SjYjV7zCyMqd3ciQnd1nDxxB3a96+fUn+G+0Ym91ynsSkub2uFjbkJA9ce4MWHYJpXSW2/hk6l+BAWxcC1Ypy7OHxDeEwco7b8weBfDnLBx48udSoDsPTYBQb/cpCh6w4xtGUtjTT9v0BLQ7Xy+3CtfECe5Obc8O+ZB3jMPJLOFH9ujgdYMv0IR/dcT3ds9x+aMWP07yz++TCDR7ZIVyb2HO/l9vXnDB7SiF6969C6tQvjJ7Tlqc9bpg3fQVRE6jYrpcoXw8rGjAnum3nz4hMNWjinlNVqVJHgj+FMcN8sanItIT53NK7E+P6buHD2AR16fotMJtDNvQET3DezZMpB3Ee3zHQ9Niw5ybHfr9KsmROTp7THtUpJ0RRHxTF20r50prhMaWusiihy/FsVOT5IRY5fkjnH/7rxH8ZM3Mu4yfvo17tOJk2nztxn+aozuNgWY2vvLlQsas2uft0pYmjIxEVHuOOT/sV0WXtrrC1N+GHGPl75B9OkdoY8ERzJDzP2YWCQJk+sOcmBk5kXxxq/4DAjZ+1PMcVK7j58y0RFz7HH799TupIt87cNoVJVe9bOP57JFKe038CtYvs1d0ptv4YVCP4QwYSBW8X2c1G2X0XGu28R26+Hsv3qM2HgFpZMO4h7hph69zaESYO3EhEWw7xf+uJasxTj53WmWTtXju+5xvoFx9NrqlCMIkXNmNhvE29ffKR+yzQx1bgiQR8imNhvk5i7lDHVtBIT+m7k4pn7tO9dW9Q0qAET+m3CY9IBBoxJH1PRkXFMH7qdJw/eMHZ8G9q2q0KPXrUZOqwJnt6vmZRh+HTZkmLbjZizn1cBwTT9NrXt6lUrzceQSEbM2Y+Bvi7O5cS2m7PuFPtPp2+7Id3q8vtxT0bOP5hiipUky+XMW3+Gs5cf0WlAfb6f2UlhivvzJiacXmf28SEmMqV+JQtrihqZ4nZ6D8/DgmnrkBrnzYqXITA6ErfTezAspEs1azHO/cKC6XlmLz3P7OVJqNhJMefGX3Q//TuTr5xmXNUGZGSD9w2W3LqAoF9f7DnWrayVnmI7Ozvs7Ow0OsZXp4Dk5v+3Q6kdXUty+7r4ptPz6lOcXEumlrmU5JaizOvqU5yqlKS8oy0Pbr9UfPcMJ9cS6Y7XoLkTF857a6TJpawtN3zEc1z1folrWbt0Zdd9xF00rnm/xLWs+A/3U2jmISKv3odgbKiHnm4h4hISydW+6gqcHO3wuiX2HHp6+eHsZJdNmfhwERQcme4YenqFSEqWExkZx4ePEZiZGuZeEFDF3pYrz8Rrccn3JVXtbVPLStpy5alYdtn3JdUUZQmKByZjfT2eBgYBYGNqwqugUKLi4gmLjqWwkUGuNTk5F+eWp+Ja3HiOU+XU+HB0tsPLU3wD6nnzOc6Vi1Ohoi33774GwOuGH06Vi2NmbsSnjxEkJSUT9CmCElnMfVKXbOOpTBbxFKYingLTxFO8ZvEE4FzRFs97oq4bd15SuWKqrsoV7Lh5T9R14+4LXBRlQSGZdSUq3oob6Ovy8m2QRpocqztw+5LYw+F14TGO1UupLLt14TFO1UtR3rUEDxQ9JWnrJyfLmbt9GLM2D8bGTrM3vK6lbLn6RLwWVx69pGqpNHFeypZrj1PLqpSyJSImjogYsWcqITEJuaKhEhWxb6Cri9/7L7dVjoTEl+C/s5lNMXx+jgcI/hSR7hh6+oVITk4mMiKWj+/DMDXPnLvi4xKZPT7VHI+f2JanD/0zmWIAxyoluXVVHLHhdcUXx6r2GcqeKcqe4ljFnvLOxXmgyLFel8X6ZhZGfPoQTlJiMkEfwilRylrlddmw+CR//H6N5s2dWbast2iKJ+7FPyAkXT0nRzu8bityl2fucjykvR8X4tVr1ffjk2fus3z1WVztinF0aB+KGBoyadFRbntnHq3lXMGWm8o8cfdlSi6ADHniTmqe+KQiT8iT5WKv8OTvKGpllqn8jsIcm1oas/bYKCpVteeXBcc5dcgzU11H1xLp26hqmpiqUpJb19K2X0nKO9nx4NbLdPXNCqdtvwhKlMq8ddS7tyFMGrKNiLAYFm0cQPP2VTix9zq/zj+eqa5jFXtuX1Gc91LmmLp9RYy3W5d9capmT/nKxXmgeFZR1jezMCYoMPuYUppj3wdvGTu+TaopXnaMuPj0w6crl7fl5n2xfa7fe4FLedsMZS8VZS9xKZ9125V3sKFLC1fWzXCjYY2ymcpFc3xaNMfuDZi50Z23seH0Ors3nSkGqG5jx6UA8e++4O9HdRu7bMrEOLc3tWB/697Mr90SfR0dAN5Eiqu3xycnkZzFw9D6B9fxuHUBQb8BguVBafh0ASOvjbEcOCcIwi1BEFQOZxMEYZggCF6CIHh9/PhRVRWVmJgaEKXYMiE6Mi5dwjMxM0jZTiEqMg5TM0NMzQxThkMpv0ujAdcaDty5+fkbtKfFzMiAyNh4ACJj4jEzTjVqpkb6RMUoyqLj0pVl5LznE36b3pvDCwby52XNzLqpiQFR0YrzRsWlM7WmpgZERaUtU63J1MSA6OjUoWRJSckU3MOlPwAAIABJREFUKpT70DE30CdKeZ1i4zBPY2jNDA2IilOWxaeUWZkYsXt4D2Z0bIrXC3G4lpCm6zMyNg5zw9wb47TxFJXhWpiaGBKtuE5RkXGYmhpiapp6TSKjYjE1MyQsNAprGzOMjfWxd7DCzs4SHZ3cXyczIwMiY7KJp5RYUyOefu7N4fmaxxOAqbFB+lg2SXut9IlSXJeo6DhMTbJvk9lj2/PbigHcuPtSI00mZkZER4oPsVERsZgWNsqyzKSwUZb1F/6wg0k9fuHIlv8YMfvz91tMi5lh+jg3SxPnplnEuVimj1s9V/646ZPy3ZL+bTk0uS9XHxeQ7eMLwMqXX5lc5WZnZ2ecnZ1VVc81F//yUTmn+HNzvCpMTA3Tba0k5i6dTPXi4xK5+t9jBEFAJhPwuuSbyRSL5009XlREbAZNqc8Y0ZFimYmZQfrnDnNDwoKjsS5mjpGJPvZlbLAtYYlOFvn00jlvkpKSkckEHj95x7v3mecUm5qkyePRGXJ8pvyf/f14xtSObNkwCE+vF1nWuX3nJWFhMcgEgbfvQnns915lPbO0586QC0yN9YlWvATMmEMyMn35n/w4cz97j3sxbnBTlXWevPjAa/9gZDIZEWEx3FYY3Iyka7/IWEzN0uQJ09SYSm2/zM+NYSHRWBfNuf0C/UN4dP9NytScS2cfqNZkbkB0VGyqJvO0uSu9XhNzI4UmZX1lTEVh9Y2oqWRZG2xLqtYUHRmH58UnyGQCgiBwyetZJlMMYGac+rwaFR2fPsenyf9RObSdU9li/PH3fSZ4HGVQl9ro6Wb+t5eULOefG+KLa5lMxs3ANwRGZ35xY6ZnQGSCeN6I+DgK6xtmUyZqanRkIz3O7OFDTCT9Kqbf0/nnGk3Y7HMzS+1/v3lGVEI8gqAdmxQTE0NMTIxWjvVVKQC5Oa+NcX25XF4NaAP8KAhCw4wV5HL5JrlcXkMul9ewtlb95lQVkZGxGBuLK8cZmegTEZYacJERsRgpyoxN9IkIjxG/M0n/nRLnqiV5/OBtyryO3BIRE4eJgThh38RQj/Co1MQaGR2HsaGizEg/XVlGfupan54zd9J56jba1nHE1OgzNx5PQ2RUHMZGivMa6xMekeY6RcZhbJy2TLWmyKhYjNJo0NGRpbxdzg3hsXEYK6+TgT5h0annjYiNw1hfWaaXUvYpMpq+G/czZs9xxrQSh73K07ztMzHQJywm62uaE1GRcSnxZJzhWkRGxmKkuE7GJvpERMSI3ymuiYmxARHhMcjlsHXjP8xd2J0evevw6JF/yryc3BARHYeJYRbxFJPmGhrmEE9d6tNz1k46T9M8nkARU2ljOTJN+0XFYaw4vrGRPhGR2bfJ7JUn6DNqGwO6fqvREO/I8BiMFAna2NSAiNDoLMsiQ6OJyqK+8r8PbjzHsqh57gUh3g/Sxnl42jiPUR3nhWQyFvZtzbJjFwhP8zJq8s5TdFr4G0Nb1NJ4KPz/CwpA8v3K5Flu/lymLexO7UYVMn3/uTleFVGRqfVAmbsyb0PTsmNVfpzcFt97r7l98Ql9RjTFbVCmS0JU2vOaGqTTJN5TlHrFsqiMzx1hMcjlcratOsvsNX3pNrBBls8eTtXsmbe+PyHBkZw7dY8G9cozZWK7TAtypcvjRipyvFHOOV7JvEV/MmDIZvr0qqPyPlOsqDkrPHphYKDLkQM3KV3SihXTu6WcIy0RaZ89MuSCyKg4jAz1UzVnkyeUZXcfvsXK0iRTuZGhHit+7kq5UjYc230VPb1CeGwdzDfFM4/4Sdd+JgZEhEerLEttv5hMz41yuZxtq88xe1UfurnXV9l+MpnAuLmdadjSmb+O3yHoQwRzfh2As4rVqiPDYzFSvNg2NjEgIixN7sqgNzIsWqFJWT81pravOMusX/rRfVBDHt9XHVNdBzag38jmePq8xvv5O8a5N6Vjk8qZ6kWkeV41NtJL1z6R6cqyb7sPQRE88gskJi6BV+9CsLbI3H71qpVm/ugOvH35iUvnvelZ3pVZtZplqhceH4eJrnheUz19QuNisikTNSn/e+rlEypZ2KTUH1ulPnc+BnAzUPVCcRUKW7GndS+MdVWvwp4bnj9/zvPnz7V2vK9GAcjNeWqM5XK5v+K/H4CjgNYmyD2894aqtUoDUKNOWXzuvU4tu/+Gat+KZdXrlMXn7mt8ffyprBiiItZPHfrTsLkTF8/7oCn3nwVQy1E8Rx0nB+49808pu/c8gFqVxLLaTvbcexaQ5XESk5KJio0nITGJpKRk9HRzv0aat48/1as6AFCzeim8fVI1eT9MU1ajFN4+qm8ScXGJ6OjIMDbWx9raNF3izQ13X7+jThlxCFP9cvbceZV6Le6+CqBOWbGsXjkHbr8KoJBMlpKkI2LjiU1IAOBjRBQlLM0x0tPF3MiA0OjcG2Mf77dUq+4AQI1apfF58CZDmTjUtkbNMng/eMuTR+9wUQztE+uL187zph/jR+/m951XeOGn/ggIVdxPEzOZ4ilNrH1WPCVrFk8AD574U8NFPHetKg48eJwmpp4EpJR9W8WB+2nKMqKr6LmJjUskOiZeoyHej26/oEo9cR5U9YYVeXjrRbqyqmnKfG69wPf+a5xrlclUX/kQVLJsUSLTPKDkhnsv31G7vBgjdSvac+dFQJqyAGpXUJY5cFdRNrNHc87dfZqurq5iCFhsfCJRcZpdJwkJyNvc/LkU0tVh+hI3ajdMb44/N8erIi42QcxdJgZYFzVLZ2SVtOhQhbEzOvLswVum9fmVOYO3cPviEwaNbUX3gennID68+5qqtcUhodXrluPhndQRHA/vvaZqbcU9pV45Ht59ha/3Wyor8kr1eqn1b115yqRBW9m3+T9ePg3MpMmpmj3z1w8gKiqOCT/tZun84xw75EmLpk5MmZDeHGfO4xlyfDVFWfWsczyArqI3Ly4ukRgV9+NiRc1ZubQXhc2NmDl5P+tXn2PNslM4lv2GFT93w8gwvYnwTpMnMuaCB08CqJkmh2SXJ5THdSheJNOLVkMDXZb/3BXnCrasm/cnGxadZOYPOzE1M2TJlkEUyzAdJl0b1S3LwztpYurem/RlyudGxfUT21usf+vqMyYN2ca+LRd4+Sx9+8lkAmPndKZ5h6qc2H+DZdMOMWnQFiLCY5i3wT2TOX509zVV6ijOWz99TD26+4qqdRTxVq8cPrdf4fvAP+UY1euXT42py0+Z7L6FfRv/5eXTzL34XdzrM2RiGzx9XjN+xVFGeRzmod97pgxtQYcm6UeBPPANoKazmJ9quzhw3zcgQ5miXV0cuO+bdds9ffWR4kULIxMEituYZ5o6WLdqaRaN7cgHf3Ev6EWTDvDv6fsMdKzBzAzm+PZHf+p9I/7dDW1LceuDfzZlbzEspItM8eBYq2hxXkWIUxC6lXWmmJEpm7LoLS6vMMVFDIxUlkv875NnxlgQBGNBEEyV/w+0BDQfx6nAz/c9IcFRLN8yCPsyNlz++xGjpok7cty45It1MXOWbxlEfHwijx68JSw0mhuXn7Ji62CatK7M8YM3lTpxqe7AbQ2HUQP4vvlIUHg0mye7UdquCH/fesq0fs0BuHzPj2JFTNk82Y34hCQePH8HwMyBLWlbtxIjOtdjQJuaAPx+7hZbp/Rk27Se3Pb1J0jFvFF1ee73geDQKFYv742DgxUXLz9h3OhWAFy7/gwbGzNWL+9NfHwiDx+JN79J49rQsrkzg90b0KvHtwBs23GRxfO7M3NaR7Zsu5BrPQCP330kKDKaXcPcKFu0COd9njL7O/Em+N8TP74xN2XXMDfiExO59+Yd1qbG/DakO9uHdGNmp6asOX8VgNXnr7CwWys2D+zCur+vaaTp+bNAQkKiWLm2Hw6lrLl04TFjJrQB4Pq1p9gUNWPl2n5iPPn4ExYWzY1rz1i1rj9Nmzvx5zFxO4gRI1uwdFUfBg9rzPYt/2mkKSWeJrlR2jZDPN33o5ilKZsnuRGfmMQDP0U8ubekbZ1KjPhORTxN1TyeAJ69/EhwWDTr5vWkVIki/Hfdl4nDxQVIrno9p6iVKevm9SQuPgkfX1HX1B9a0bqxI0N71advZ/EZfM749qyd04M1c9z47fANjTT5PQwg9FMESw+MxL58Ma6cvs/Ihd0BuPH3Q6ztLFh6YCTxcQk8vv2KsOAobv77kGWHRtG4UzVO7LoCwKI9P7L0wEhGLnRj84I/NNL0xP8jQRHRbB/pRpliRfjr3lNmuIlxftHHj2IWpmwfKcb5/ZfvqFrajpZVytPpW0e2/NSN3g2rAuDh3pYtP3UTP+ezHvr1v0RBWODja6FJbn727BnPnqkepqoJurqFmO7hxrcNUhf5+dwcDzBuZieat3NlwIimuLmLI4t2/PoP89f0YerC7mz/Jf0CQC3aV2HczE489/bn5z7riQqPJT4ugTmDt3Dn0hMGj2tNtzTm2O/JO0KDIlm2Yyj2ZW24fN6HUTM7iZouPMHmm8Is2zGUhLgEHt17Q1hINDcvPmH5zmE0aevK8f3ifW74pLYs3jII91Et+U2xy4ESx6pKUxzPhJ924/9GXFdg3Yqz/HHYixbNnJg8vm2KOX7u94HgEEWOt1fk+FGKHH/jGTbW2eT4AQ3o5Sbm+JnTOrLSoxcrPHqxe2/6fFq0qBkrPXphUdiIWZMPcMfrJQAn/7jDmmWncSz3DSunpzfHT19+JCQ0ml+VeeKGLxOHKfLELTFP/DqvJ/EJGfJEI0eG9axP3+/EPLF2thu/zuvJpOEtWKtYARlEU7xiejcqV7Bl3fzjnNgv3hvve75g1o+7MCtshMfW9ObY78l7sf22DxZj6q+HjJrRUWy/i0+wKWbOsu2DSYhP5NF9RftdesLyHUNo0taF4wcU7TexDYs3D8R9ZAt+++XvlOPLZAJjZn9Hi45VOXngBr/M/xOAd2+CmTx4a6o5VrwsAfB7LMbU0l3DsC9blCvnfRip2MLoxn9PsP7GnKW7hhEfn8jje28IC4ni5oUnLNs9nMbtXDmxV1xsbviUdizaNhj3Ma3YuTp9THUZUJ+hk9ri9fA141ceIy4hiaiYeEYtPcJDv/dMHdqS9o1TzfHTV2KOXz+rB6WKW/HvDV8mDxafPa7cFttu/awexCck4v1UbLufh7eiTQNHhrnVo19Hse027L/MlKEt2DinJ3/8+yDdsO26VUqxaGwHPviHMmnwVoI+RpCcLGfptEP8d/o+gxxrMKNm6tD5h8Ef+BQbxYE2vSlf2IrTr56wsI4Y53+/eYadiRkH2vQmLimR2x8DKGVmwZ/t+7O/dW+aFC/D9odeyASBhXVaU8bckn2te7G0Xtt016l8YSv2tOopmeJsKAi5WZDnUfeDIAilEd9Eg7gt1B65XL4gu9/UqFFD7uUlriLYqvqsPNGlCUFVNBtamVeYvkn42hIyEVhDe0NQtIXtZc16APOC0PKaLWSWFxiE5O0eornF9FbWb6a/FgHflcy50hfm3qqxX1tCjgiCcCur1ZAN7ErI7b8fp5Xz+M4cl+V5Ciqa5GZvb9E/a3uesZKEhETmTdyfstVSXtK8nSvjZ3/Hc29/pvX+lcgMw7H19HWZvW0IVRtUYPPy0xzecTnPNTlWKcn8De5ER8czceQu3r7OvNjeT+Nb06lrDc6e98ZjxSmSk/P2KbNoUTNWefTGwsKImZMOcFvF/OP231Vj5Pg2+PgGMG7BYaIVc1DzCmVPsUtFO9EU78v8YtW1Vmnm/NqPsJBoJg3eSmBA3u75LJMJjJn1HS2/q8bJAzdYO+/PTHVsSxbBY9tgjE0MmDF8Bz63837NiM4D6jFscju8Hr5m3IrMC22ZGOmzdlJXKjoUZeGms5y8oPnoyZyoU6UUi8d15GNAGJOHbOPTh/B05TKZwORF3WnUujJbfDyZ7/lPnmsqV7gIe1v1wsrQOE+On9f3Tm0h5eY87DGWy+V+crncVfFxyinxSkhISEhISOQt+Tk36+oWYsbSHul6jvOCnEwxQHxcArMHiT3HQ8e3oeuA+iqOpD3UMcUAvyw/w5+HvWjVwpmJ49pkmnOsTYraKHqKszHFACeO3Wbt8tM4lbdl+c9dMTTQzTNNhga6LJsmmuJfF6g2xQD3bvox64ddmFsY4bF1MEVtC+eZJkEQGD2zk8IU31RpigECXgcxadBWoiJjmbfRHadq9nmmCeC7/tmbYhDnDI/0OMzjl4FMG9aKdo2cVBxJeyhN8ad3qk0xiLtDLJl6kAtnHjDEqSbTazbJU01lzYuwJw9NscT/L/7fbtckISEhIfE/SgFY4ENCNUpzXKt+3pjjZgpT7Ofjz7Q+61WaYiUp5viyL0MntKFL/3p5oqmSq2iKY2KyN8VK1i4/w/Ejt2jdojITx+aNOS5qY8bKpb2wtDBm5uSsTbGSE8du88uKM1SuYMuK6d3yxBwrTbFrJTvWLzzB8b3ZT8G5d9OP2T+K5njJlkHY5IE5FgSBMbM60apzdU4dvMnaedlPwQl4HcTkwanm2DGPzPF3/esxfEr2pliJ0hw/UZjjtg3zxhzXdnVIMcWTBqs2xUqSk+UsmXaIi2cfMMSpFj/XyBtzXNa8CHtb98JaMsXqUQBys2SMJSQkJCTyD1qaw5Tf5zFJZE2KOa5XTqvHbdbWhQkKUzy193q1FtiLj0tgzqDN3L3iy7CJbbVujkVTPEA0xT/tztEUK1mz7DTHj96idcvKTBjTWqvmuKiNGSs8RFM8a8pBbntmb4qVHD96i7XLRXOs7Z5j0RR3STHFf+65rtbv7t7wY/ZPuylsaYyHls2xsqdYaYrXzFVvXQr/V3lrjjv1q8vwKe249ehNjqZYSWR0HD8pzPHPw7Vvjr91cWDxuE58eh/OpCx6ijOSnJTM4qmHuHjOm6HOtZhWo7FWNYk9xT0lU6wuBSQ3S8ZYQkJCQkJCIl+hp1eIGct6as0cN2vrwoQ5nfF7GKC2KVYSF5vA7IGp5rhzP+2Y44ouJZi/YQBxcYlMHLmbN6+DPuv3a5ae5sSxW7Rp5aI1c2xjbcoKj15YWZowe+pBbn3mwqTHj95i7YozuFS005o5TjXFxVm/6KTapljJ3evPmTNyNxZFTLRmjpWmuHWX6pw+5Km2KVaiNMcxUXGiOa6qnfUqOvWry/dT23P78RvGLT+qlilWktJz/OpDymJa2uBbFweWjO9EUGA4kwZv5VNgzqZYSXJSMounHOTiOW+GOX+rNXNcxtySPa16YmOUeQupvKBMmTKUKVPmi5xLQjMkYywhISEhkb8oAMO1JHJGaY5ramiOm7ZJNcXTev+aq63YlOb43tWnDJ/Uls5962qkqaJLCRZsdCcuLpEJP+3izavPM8VKVnukmuPxY1prtM+5jbUpK5f2xsrShFlTD+B1I3e7dRw/cotfVpzFpaIdy6ZpZo4NDXRZOlU0xRsWn+TP33O3A8Wda8+Z/dMu0RxvHoTNN7lfTFUQBEbN7Cia4sOerJ5zLFfH8X8VxCSlOd40UGNz3KlvnRRTPHbZUWI/wxQriYiOY+SSQzx59YHp37fW2Bx/62KfYoonD9n2WaZYidIcXzovmuOpGprjMuaW7G3V64uZYgBDQ0MMDfPfYqufTQHIzZptaCohISEhIaFt8nniLKhYWFjkXEnL6OkVYuaynvjcfY2qXTQ+ffoEgJWVlcrfywSBytUdePFINMURobnfnSAuNoFZ7puYs2MYwye3+z/2zjMsqqMNw/ciZYGlKqigglIsIPZeook9lhS7iV0TS4y991ixR43dqCnWGBO/aCxJrLF3BBVRLICogMDSy34/zi6wsgiyi2KY+7r84b7DzLPvmT2zz86cGRp+UIWUlDSdZSPUuornoKti1TJ6m2INK3wPIkPGhx/VxL2CI7GxiTrL5ZYrF5fiWCvM9TLFGn7fK50wMnx0azb7fk7489h8aXIsbkU5JzvWLTjAbz/qdyyjxhzPXPU5y374ggdBT3WWy+3aWVnL8ajiLJnimfkzxRpCgp8zfsAmfDcP4Jv1/bh97ZHOcs8j1HkqrltTMRMjfOpU0MsUa4iNT2KE7x5WTujM1C/b0K6pF+k5nGDzqlzJZODj6UzkU8kUP3sSnW9N6WnpzJ+wG4AvWtajjmMZ4lN1n8iSW5+qbO8ojmTKL4Ybm21kMtl6YL9KpdpvsFoNgDDGAoFAIBAIcsXZ2fmttGtqakyNuhV0xkJC5HnSNbnXGr1MsQaNOf7xwiyq1i7/ipLuudY1a/KPeptiDct9D+DuWYqKVZxyLBMSYpJrrtauPKK3Kdbw+96LuHuWpG2HGpRzss9Bk3Gumo7su8y+H/81iKYrZ4LYtPQQQye3p7iDVQ6acu9Tgf4hepvijPaCn7Ng3E4WbRlEjYa6+01IiHmumuISkvU2xRpi4qSZ40Orh1Lb+1Uz2bk/Hz1r5M96mWINGnPsVsmJmmVzzkWIKvd+/qYJCZGOmyxsut4i0SqVavDbFqELsZRaIBAIBIUGGUVjgw+BYYiKispTOaUBTLGGpMQUUpJ1zxRr0HwRfhWxMbpndvNLbGzOO2xD3nIV+4pduvNDbu8xT5qiDawpl6X0edEUl8OsfH7J7T3mRVNqappBTLGGmLikXMvkpZ8rDXj90tPSSchFV17vCW+SqKioQqnrdSgqY7MwxgKBQCAoXBSB55jeRRISEkhIMKxJMQSFUVNUVFSh1CU05Q2hKW+Ifl7EKAJjszDGAoFAIBAIciUoKIigoKC3LSMbhVETFE5dQlPeEJryTmHUVRg1Cd4NxDPGAoFAICg8vANLrQTvHv0mtqdSTVfCH0eybOx20lLTATAykvH1wu44lS/B3RuPWTfrVwA69W9Kk/bViY2KZ9HXPxCvTKJRWx+6Dm1BeroKMwMcQ/RRlzo4OdsR/iSaxXP3k5aWqWnUxA9xLmNP4O0w1qw4AoDvys/w8CzFgln7OPfvXQAGDGlOyzY+/H3ET289AE2bV6ZN++qEh0WzeN5LmiZ8iHPZlzR9q9Y0O4umL5vTsq0Pfx/2I4c9m14Lr5ouLN42iPCQKJZO26t97WZ9jLNLcQL9Q1i34AAg7c7ctE1VYl/E4zthN/FxSTRr50OnzxqQkpTK+ZN39NZUuqw9i7cMIjw0iqXTX9I082Ocy6k1+ao19WpA09ZqTZPUmtr60KlXA1KSU/l1m2GeoR7WtQk+HqUJex7DNxsPZ14/mYzJA1pStqQtt4KfsuynYwCsntiZii6OzFh3kNNX7wPQvLYHvdvXyXHDrdel28CmlPcoSXjoC5bO+FU7VzM6qXMVyrpFBwHo1LM+TVt5ExudgO/kPVKu2lSVcpWUiompsC5vhSIyNosZY4FAIBAULgy3XMtGJpOtl8lkHd7sGxAUNoqXtGFc55U8vvuUxu2qZ7xe9wMvIsKjGdd5JWYWplSq6Yq1nSX1W3oz9pNvObH/Cu37NAGg69AWTOqxmtEfLcfUXH9jbGtnyeih23j04DlN36+c8Xq9Rh5EPFcyeug25OamVPaWNuxZOGsfe3ed16pj787zzM/ncUG6sLIyz9TUPIumhlk0yU2p7KXWNFuHpl2G1WRuYcrY3ht4dP85TVp5Z7xe971KRD6LYWzvDVKeqpXF2taC+s0rM+az9Rw/eIMOPephZCSjc78mjO29gYUTdtO0TVW9NZmYGjO2r1pTSx2a+r6kqVllxvRez/FDN+jQXa2pbxPG9t3Awom76fRZA701GRnJcLBT8MXcXQSHRvJBncxjzhrXqMCzKCVfzN2F3MwEb/fSAMxYe5Adh69o1dO7fR2GL9jDwNnb9Tr+S4N9cSvG9tsk5aqFV8brdZtWJPJpLGP7bZJy5aPJVSXG9N0o5aqbJleNGdtvIwsn785x0zTBG0AspRYIBAKB4J0lWqVSDS5sx0EI3jyXT94G4OLxAKpk2U26Su3yXD5xC4BLxwLwql0ez2rluHFWWop58Vhm+cdBT7FQyDE1MzbIl7sAv8cAXDgbhFfVMhmve1Utw6Xz97LEygIQ8VyZrY6oyDiDzMpqCL4vHWF04VwQXj45aDoXhJfPm9P0NPQFABdP3aFKjcxdkKvUKMel03fVsUCq1HDB07sMNy7e1ypvbWfB86cxpKWmE/E0xiDGSrOB18XTL2mqXo5L6pnzi6cDqVJdrenSqzWVctb/KDTjYkac8wsG4OyNYHw8MndAruruxDm/B1LsejDVPKTdy5+/iMtWz4OwKCzNTTE1MczM7I1LkqaLpwO1zmquUr0cl85kzVU5PL2cs5W3ts2aq1gxYywoUETvEggEAkHhopD/olzU8fPzw83NDXNzc0DamTanHVflcjnu7u5af5sTTk5O2NtLx/pERkYSGhqaY1lvb2+t/2fVlJCQoPWMoYODA/FKaRfhuJhErGwzzzBV2JgTr5R2uY2LTURha6F+LTHjNSsbqfyJ/11h+f7RpKel8yD4IQlJ2qZCoykyMlJLV5kyZXj8+LFWWQcHB2Kipb+PUyZhZW2eqclKTrx65904ZRLWWWKvIjj4AXLL7JsOOTk5aeXyVZoiI6IzNVm9pCn+9TU9efJE5zV/HU3Pnj1Xt5uIlU0WTdbmGXmKj5ViCht55vVUJmFlY050ZDwOpWywUJjhUNIG2+IKvTWFhT6R2ojVoUndfrxar8I6d00OpW3zrCmnfm5ta0dcQjIAyvhkrBXyzJilWWYsIQlry8zYyxw9d5vNM3uSnq4iJDSUFy99tl+3n8fGxqvfeyJW1lk+e1n6eWauzLVzZW1OdFQ8DiUzc2VsUuy1cwVv9z4ll+ec73eKIjA2F1pjfOjSrLctIRsNei552xJ08sLd9G1LyEYJP8MdGWAowhoUvgPdFaGF7y7z6MP0ty1BJw52Zd+2hGxcWz7qbUv4T1IUnmN6F1EoFCiV2WcICwN2dnYZX4BfJi0tDXO1SbC0lmudZ6yMScBCYSbFrOQoX8QTF5OAk6sZIwU/AAAgAElEQVRDxmua2cF+E9szpOVCEuOT+PHSTB6HJJCeLt0vnZx0nx/s7e2tc4fctLQ05BbS2G2pMNM6JkkZm4iFpVlGLCYfRyi9/OU9r5o0z05bKsy0jn9SKhOxsHg7mkzVM4SWCrnWsUZxsQkZebKwkmJxMYk4lSue+R6iE1CpVGxedoiZKz8jPOwFj9Wz4vpoMlbPplpavaQpS3+yUOuNi81B0/JDzPz2M8JDX3Dvdqa5epWmV/bz1DQszaU+pbAwJUaZeaRUbHxSZszcjJi4nI+bGta1MT2nbCMhMYVDKwcSEx2tVz+3yOjncmJjMj97cVn6eWauEnAqZ68uL30uVCoVm1ccZubyXoSHvSD6RUxGHa/KVWEiq+l+lykKY3OhNcYCgUAgEAgKD66urjpfd3Z2xtnZWWfsZV6e6c0Je3v7jC+8eSFr++bm5tnaqdHIk7/2XKBW00r4q5faAgRcDKZG44r4nb9HrfcqcXjXecKCn/HxoGYA1Hovs3xqchoJcUmkpqRhbm5OlSpVctSedRZJlx4An+px7P7pHLXruXHzRuZMm7/fY2rWLs+Nqw+pXa8Ch/64lqccuLq64O3tplOPvb291ixYTpqqeEnnM9eu58bN61k03XhMzTrluXHtIbXr5l1TqVKldLbzOppSEqSvqrUaeeB/5UGmpisPqdHADb9LwdRq5MGRXy8R+jCCT/o0kso3zix/6VQgl04F4uxSnOHTO1Gjvn6a5CbScuxaDV/SdO0hNepn0bRPral3o2zv4dLpQC6dljT1+aolTVtnf/b5ZU2v6uexcYnU9VJy8HQA9aq6cj0w84zh64Gh1PVy4ertEOpXdWH/yZvZ2tKQkpZOfEIyqWnpWFhY6N/P67ixf+cFajV0x//Kwyy5eiTl6vIDajV058hvVwh9FMEnnzfKklup/KV/73Lp37s4uxSnbhPPPPWpl8sUhvuUoPAjnjEWCAQCQeGiCGzwIXizvHgey6I9X+HiWYrTB6/x1fyuAJz76yYOznYs2vMVyUmp3LocTHRkHOf/8mfx3hE0+6gW/9t2CoC9G4+x+JcRLP11JKkpaXprio1JYOl3vXEp78DJfwL4enw7AM6eDsSxpDVLv+tNcnIqAX6SwRkzuT0t21Sl3+BmdPu8IQAfd63DF1+1oOn7VSjv5qi3pri4pExNxwL4epxa078vabqp1jQpi6bP1Jq61OGL4ZKm+o08cmwrryQlpLB42yBc3B05deQmI2Z0AuDc8ds4lrZl8bZBpCSlEHDtEdFR8Zw/cZslPw6mebtq7N9xDoAvJrZjweb+9B3ZipOHbuitKTUljcVbsmia/pKmLTo0bVNr2qnWNL4dCzb2p++IVvz20xm9NaWnq4iMiWfdlK5UcC7O3xcCmdi3BQCnr96jZHEr1k3pSlJKGn53wwCYOrAV7RpV5stPG9G7fR0Ath+8xPqp3dk4vbvemgBiouJY/P0AXNwcOXXUnxHTOgJw7sRtHEvZsPj7AaQkpxJwXZ2rk7dZsmUgzdv5sH+XOlfj2rJgQz/6ftWSyOexBtElyAdFYGyWqQy5Q4Ke1K5dW3Xx4sW3LSNHCutS6kTbwvf7htXjwreUOqJy4VsgURiXUj9pXviuHYDDv4Xv+l3cOPptS3gnkclkl1QqVW1dMfNSZVUV+hgmr/6+o3NsR5B3CvPYnNPs0Mt86DqK9HTD3W9/vvQNdq/YxCkvuob03cjdO08Mpmn+sh7Urpd9xvh1NC2a+zuHD1w3mKZBQz+ga6+cd1zOi6a9W0+zXn3skSFo3r4aExZ21UvT1XNBTBy42WCaXN1LsvbXEXppio5NoNWwNQbTBHBmyyiMjHLemjovuj5ruYjnT2NyjL8uq3cOxa1Sab00CXQjxmYxYywQCAQCgUAgEAgEgiJO4ZuCEQgEAkGRpihs8CEQCAQCwyNmiguOojA2C2MsEAgEgsJFERh8BQKBQCB4pygCY7NYSi0QCAQCgeCdxMnJKccjZLJSpU4Fg7XpWqk0FlZmryyTF13ePoY7gs7W1oIy6iOBCosmE5NiVKzy6vbyosnT2xkTk2IG0+Vd00VvTc4uxbG1tzScplr6azKXm+BRzsFgmnw8nJDl/HhxnnV51ShnME2OTraUKGltsPoEgpcRM8YCgUAgKFQUheVaAsOQ16NSZm8ZzPQ+6/A7f0+v9lwrlWb+9mEkJ6exZc0hUlPztzt1i3bVGDKyFYmJyfz5v7wdfZQTtrYW+K78jBKO1mz89QwvYnWfMRwdHY2NjU2O9dTxKkfbDjVIiE9mzbdH9NJkbGzE9LmdqVbDhX0HrhD8KCJfmsqVseeTD2syfWUvZn/1Eyl67gY+cGwbPuxWj39P3+FSlmO7svIiOhrbV2iysjbns88bsXDzQCb038iLyDi9NLXoWIMhkzoQ6B/Ckd+u6Nb04gW2trY51lHM2Iieg5uxakJnhi3Yzd1Hz/XS5OPhxPKxnxD5XMmuradIz8dGvTKZjPaf1mbs3E9JTk7lzD+39NLk6GSL78b+2Ni9+geJu3fvAv+ds4MLE0VhbBbGWCAQCASFiyIw+AreLOaWZsze+gXTeq/j5oX8mWPXipIpLmZSjInDfuDurbB86/nrwHXmr/qcURPbo1KR53OBX8ZGbYrLupZg2nd/8PeFwHxr2vv3NWZ+2ZZPutVDpYK1K/Nnjo2NjZgxrwv1G3mw+efTbNnxb741AURGxTPws8ZM+7YX34zIvzkeMKYNnfs14fixAOZ+8xtpaen51hR8/xnTpn/Mgk0DmDBgE9H5NMctOtZg1OxPuHc7jEmDvkcZm5hvTdcv3GfBhn6snthFL3Ps4+HEsrEfk6hMYvyXW3n8UPePGnnh5FF/Fq7tw+RF3Zg3bme+zbFjaRt8N/anlLNdrmUTE/OfQ0EuFIGxWSylFggEAoFA8E4SGRlJZGRknspK5ngwXvlYVi2Z4qEUMynGpOH6mWKAOGUSk7/6kbu3whg9qT2tP6z22nXY2FqwSG2Kp685oJcpBkhLVzFz7UGOnL3Np93r8cVXLV67Ds1Mcf1GHny/XX9TDLBt1xk2/XSKuk0rMu3bXvlaVj1gdGu69DeMKQY4eeI238z+lbKuDizcNACbfCyr/qBDdbUpfsKkwVv0MsUAQbfCmDjoe4qlq1g9sQvuZUu8dh1V3UuzbOzHJMUl622KASIjlEz4cithIS+YvKgb9ZtVeu06JFM8IE+mWCDQF2GMBQKBQFB4UBnwn+A/T2hoKKGhoXkub6GQM3vrYKrULp/nv3HxLMX87UMxNjNh0vAfCAzQzxRrUMYmZpjs0ZPa06qdT57/NqspnrHmAH+dv2MQTWnpKmasPcDRc7fp3L3+a5ljjSlu0NiTLTv+5fvt+ptiDVt3nmHzz5I5nrqi52uZ4wGjW9NlQFODmWIN+pjjDzpUZ/Q3n6pN8fcoY3Qvf39dMsyxitc2x1XdS7N83CcGM8UaNOb4ScgLpix+PXOcYYrLCFP81ikiY7MwxgKBQCAoNMgM+E8g0IWFQs43277Ikzl28SzFgh3DJFM8zHCmWIPGHAfdlsxxyzyYY2sbc3y/7UW58pIpPmogU6whLV3F9LUH+ev8HTp3r8/g4bmbY2NjI6bNkUzx1h3/svnn0wbVBLBlxxk2/3yaeu9VYuryvJnj/qMkU3zi+C2DmmINJ0/cZs43+yRzvDFv5vj99pIpvn/HsKZYQ9AtaVl2MRWsmtA5T+bY200yxclxKZIpfmAYU6whMkLJ+CGZ5rjeexVz/RuHUjYs3NhfmOJCQlEZm4UxFggEAoFAUKTIMMe1cjbH5TyymOLhP3AnIO8z06+DMjaRicN/4N6dJ4yZ1J6WbavmWNbaxpxFKz/DpYID09ccNLgp1pCWls409Ux0lx71GTzsgxzLSqb4Uxo2kUzxpgIwxRq2qE13vWaSOTY2ztkc9xvZiq4Dm3LyxC3mzN5ncFOs4cTxW8yds4+y5dXm2M4ix7Lvt6/OmDkFZ4o13A0IZfLg7zFGxqoJnXErk/OO5d5upVkxXm2KhxjeFGuIfC6Z4/DQaKYs7k69pjmbY4dSNvhu6k/pMnnbXE8gMBTCGAsEAoGgcFEElmsJ3j4WCjmzt31B5Vqu2WIaU2wiV5ti/4IxxRqUMWpzHBjOmMkdaNEmuzmWZoqzmOJztwtUk5Y57tmAQUOzm+NixTSmuCJbd54pUFOsQVqmLZnjaSt0m+O+I1vRbdB7nDxxi29mFZwp1nD8WKY5XpCDOW7+YTUtUxwbXTCmWEOgfxZzPLELFZyzm2Mvt1KsGJdpih8F67ebdW5EPlcy7sstPA2LZsqS7tRt4pmtTImS1izcKExxoaQIjM0Fuiu1TCazBTYC3kip6K9Sqc4UZJtvm6Hdm1DV04mwZzHMXX8o42ZsJJMxaVArypSy5fb9cJb/cAyAlVO6UNHVkVnfHeT0FWmnzNVTu2JkJCM9XcX+Yzf481SAXppGfNSYahWcCI2IYdYPh0lNz9Q0rVcLyjnaEfAwnMV7juNU3Jpv+rRBpVIRn5TM5M0HUSYmM6JTY9rXq8zBi7dYtvekXnoAvuzTFK9Kzjx5Gs2Cb//MzJORjHHDW1OmtB13gp6wcuM/ACyf0xWPCiWZs/QPzlyU8jR/6sdYKeQArFj/F4H3nuqlaXTbxlR3cSIkKoZpu7XzNOvTFriUsMM/JJwF+4/jbGfN/G5tSFfnafwOKU8tvd0Z2KwO6SoV+y8H8PMZ/Y7hGNatCT4epQl7FsM3Gw9r9afJA1pStpQtt+4/ZdlPxwBYPakzFV0cmbH2IKevSkdRKCzMmND3A+xtLHj05AULvj+qlyaAibXfo5ajE4+VMYw7eZBUVaauhY1a42ptx42IcGaf+xsAT9sSTK3bHNNixfjf/Vv8eOsqIC2pOfJxf364dYWtAbqPqcgrX33aBB+30oRFxDBri3aupvZpSVlHWwIePGXpzmMArBnTmUoujkzbeJBT16VcvV/Tgz5t66BSqThwJoBd/1zVS5MgfxSFIyHeJkVxbM4JSys532z7kmm91xJwKRiAsu4lWbBjGKbmJkwcpm2KBwxvQRWfMjwJe8HS2b9rjV0jp3TAuaw9gbfCWLv0EAALv+uNe6XS+E7fy7lT0uZYXtXKMnBES9LTVaxc8AfBQdLYpYxJZOKwbSxY3ZuxUzoAcPTPG4B0RJDvt5/h6ubAjLXapnhYV/U48TyHcaKkLbeCs4wTE9XjxLrMcaJ5bQ96t5fGroOnA9hzVLr3acwxQNdeDVChYuN30n09qynWbJCVFUOM8yCdz7tzw2DmrziY8fr32/9FJpPRt3tDpi7vwZyR2zOOzur7dUu6D3qPUydvZ5spHjS4OV7eZXjy5AWLFv6hpWn02HaUKWPPnTthfLdKGicXL+2Jh2cp5s/9nbNnpGOA5szrgsJK+u6xasVh7t4NByRzLJP9xuQpnZi/YQCTBm0iOipeym+7aoyd25ngwPBsprj/yFZUqV6O8JAXLJ2xl7TUTE1fz/gIZ5fiBPqHss5Xug6dejWgaStvYqPj8Z20h/i4JJq19aFTrwakJKWyau7vPLz3DMg0x/PX92P1pC4Mm7+beyHSjLCXWym+HfcpKQkpTBiqbYoLsp9rZo591/Rh6tIezBm9nfMnpZUPJUpa47tpAE5l82+K7ezE0uuCoiiMzQU9Y7wC+FOlUlUCqgH6ObxCjns5BxzsFQyZvZMHoZG8Xzfzl7BGNSvwLErJkNk7kZuZ4O1RGoBZqw+w88/L2eoavXAvw+bs0tsUezqXwNFWwYCluwgOj6RFTY+MWNOq5XkWHceApbswNzXBp3xpYuOT+HrNbwxctpvj1+/xcWPpV+uf/rnM5C0H9dKiwc3VgRLFrfhq0nYePo6kWaPMPDWs40ZEhJKvJm1HbmaCV0Xp4Phvlv7Bnv2XtOr5dsPfDJ+4nYUr/2RAr8Z6aapYugSO1gp6r93F/aeRtKqamaf3KpfnWUwcvddKeapWrjSxiUkM2/Ibfdft5p+Ae3SuK+VpYLM69N/wCz2/20HnelWR6fEwhUe5EjjYKfhizi6CwyL5oE6mpsY1KvDshZIv5uyS+pO71J9mrDnIjkPaBnPwJw344Y8LDJu/xyCmuLK9A6UsFHQ5sJ2g6Ajalc9cDvVBWTfC45V0ObAdC2MTajpI129C7aYM/ec3uh/ckWGKATpVqEJIXIzemjzKSLka5LuL4CeRtKiVmasm1aRcDfLdhbmZCVUrSLmatvEg249q56pP2zoMXbKHfvO38/F7+l0/gaAQU6TG5tzQmOPKtVwp616ShTuHY2puwqThP2qZ4goeJSnuaMWYwVt4HBxBkw+qZMTqNfYk4lksYwZvQW5uSuWqZQBYOH0vv24/q9Ve36HvM23kzyyY+gsDXtrcSmOO798NZ+wUaebYylpaPu3q5pCxa7QGj7LqcWLuLoJDdYwTUUq+mPvSOLH2IDsOa9/7erevw/AFexg4ezsfNdO+92nM8d8X7tCtV0MGDn0/wxQ3alqRH3adZeOP2qbYUOM8wKcdanI7KDzb65t/Ps3WHf9Sv3llpizrgbFxMckUD27GqZO3+WbWr6SmZpriCm6OlHCwYuSIH3j4MIKm72VuAlW/gTsREUpGjvgBudyEKlWcAZg/93d+2XNBq93VK48w8qsfWOz7B/0GNNWKHfsngHlzf8PF3ZH5GwZgbWuhNsWf8uBudlNc3rMUJRytGdt3I4+Cn9GkpXdGrG7TikQ+i2Vs341Sn/Ipi7WtBfWbVWJMnw0c/9OPDt3rYWQko3Pfxoztu4GFk3bRd0RLLU2B/qFM+mILpshYPUmaOfaqkGmKxw/ZysP7mab4TfTziGexjB+ylWdPopm6tAd1m3gaxBQDODs74+zsrFcdgqJLgRljmUxmAzQFNgGoVKpklUr1oqDaKwxU9XTi/I0HAJy9fh8f9c0eoKqHE+dvBEuxa8H4eEof2ucvsp99l65SsWT8J/iO+YhSJaz00lStghNnAyRN/94MplqFTE0+WWP+wVRzcyI2IQllQhIAKalpqNKln4ciYuLJx/nuOvGu7MyFK8EAnLt8n6qVM29g3pWcuHBVip2/HJwRi9BxRmBYeDQAqanpGTrzS3UXJ/4NlHJx6k4wNVwz81TDxYnTmthtKRaTkERsojpPaWmo1Mm5/ywKhdwUM2NjklJS9cpZVQ8nzmn6zPXMPpMZe5ARq+Yp6dXVnzxdHPn0g+p8N7kLTWu55V+QmlqOzpwIlXQde3yf2o7O2rEQKXb88X1ql3SmrJUNxkZGrHivPdtadcHNRhr0jGQy2pWvyB/39V8O6OPuxLmbUrv/+gVTzT1Tk4+bE2dvSrk64xdMNXd1rqKz5+pBeBSW5qaYmhiTlKzf9RPoQRFYrvW2KIpjc17QmGPJFJsy+asfuX0zRKtMFZ+yXD4bBMCFM3fxqlZWK3bpnBS7+G9mLPK5UqsOUzNj0tNUKGMTeRYeg5W1eTYtkjn+IcMcr97UH1c3B2at+5PDZ7Xvl1U9nDjnFwzA2RvB+HhkGSfcnTjnl2Wc8Mh5nHgQluXep2PsSktLZ+p3B/jnQiDdejVk409f0qhpRX7cfZYNP2ZfRWaocd7C3JQKLg7439a9lH3Tz6fZuvMMDd6vzLrfR+RoigG8vMpwUX2G9YXz9/BWmzpdMS91LCJC+/oBhIVJH5fUlDTSdXz3OPZPAPPmSOZ4xc9DJFMc9JSJg74n5kW8Vtkq1ctxST0TffFUIFWql9MdO32HKjXK4entzI2LwZmvVS+Hta0Fz5/GkJaaTsTTWMqWd8imKfBmCJO/3IKZzIjVk7rw7fhPSU1MZfyQbVqmGN5cP88wx+ExTF3ag6VbB+ltigUFTBEYmwtyxrg88Az4XiaTXZHJZBtlMlm27fpkMtlgmUx2USaTXXz27FkByil4rC3NiEtIBiAuPhlrS3lGzEohz4wlJGGtkOusA2DKiv0M/WYn2/+4yOg+OW94kResLMxQJkrtKhOTsMmiydpCnhlLSMbGIjOmMDejS9Nq/H72pl7t69SkMCMuXjKVcfFJGcuhARQKOXHxak3xSVhZ5ZwnDUP7NWPHvgu5lnsV1uYv5ck8S57M5cSpY7GJyVoxK7kZ3etXY99FKU9/Xr/DjuE9+N/Yvuy9qF/urCwy21W+1J+y9jVlQpJW7GW83Eqx75/rjFmyjwEf1cc0H2dAZsXGVI4yWbp+sclJ2Jpltm1jJkeZIumKSUnCxkyOg9ySyvaOjDz+P+ac/4dpdZsD8JFbFQ7cv026AdyntYUcZUJmX9b67FmYZeYxl1wduXCbrVN68sucfvx+yk9vXYJ8UgQG37fIf2ps9vb2xtvbO/eCecDSSo6dgxWbVx3lll9ItrjCSk5cnHTvi1cman3ZV1jLiVfH4uISdRoBTR2aciAZTmPj7F/FYqMTmDd5DwClne347Zgfh87cylbOyjLzu4UyPlnru8XrjBNHz91m88ye7F7Yj/+d0H3vS0tLZ+a6g0REx1GmrD03b4Wy/gfdj1YZapzv3LEWe/949WM2m346xXX/xzi7lCD6RTzz5/6ezRQDWFnJiVe3GxeXhJVVlutnJSdeozcuCes8fPf4YsgH7Np5Tmfs2D8B7P/9MqXL2iMzkjF//K5sphhAYW1OvFLdrjIRKxvzl2LS2cbxsUlY2VhIr8UlqstLr0VHxeNQ0gYLhRkubo44lbWnmI4+dccvhI1L/8Te2gKFhRmrfA/w8H72z/ab7OfPn8biO30vpqbGOJa21VnX65KQkEBCQsE+v11kKQJjc0EaY2OgJrBGpVLVAOKAiS8XUqlU61UqVW2VSlXbwSH7r1zvErFxSViamwJgaWFKTFzmYe3KrDFzM2KUOR/kroldufWYEnavf2i8lqaEJBRyqV2F3IzoLJq0YuamRMdLMWMjI+b1a8OSX44TE5+UvVI9USqTsLQwA8DSwoxY5Ut5slBrsjAjNpcD7/v1aMTN26Fcu/lYL03Z8pSgnSdLdcxKbpoRMzYyYmH3Nvj+7zjR6ln2UW0b89GyH2jr+z0da1TG2tws35qU8ZntKl7qT7Hxmf1JYW6mFXuZ8EglAffDSUhK4WFYFA52inxrAohJTkRhKr0vK1MzXiRlth2TlIjCRNJlbWJGdFIiMcmJ3Hj+hNiUZO68eI693AIjmYz2rpX4/b5hVnDGxiehMM/sy1qfvSzXL7dcDf+kMd1nbOPjyZtp16AKVhb5v34CQSGlyI3Nr0v/4S2o5J19KaZSmYilpXRPsFDIic2yo7AyNhELdczSUjuWlbgs5UB6TlenibMxZ8q8LgCEhEbRqZk3rRtkP/9VmXUssDDV+m7xOuPEsK6N6TllG5+O20zbRrrvfcWKGTHzi7YUt7HkwZMovCo5MfjzJjrrM8Q4b2lhirurA34B2X+kyMqAXo3xqVKGxw+eY2NrweSpnXSaMKUyEQt1u5aWZsTGZl6jOGUiFhq9lmbE5PLdo0/fJgT4h3Dj+iOd8ebvV6FDx5qEhEWRroJJi7phbZt9Q6642AQsFOp2FXKtZdZxsYlYqH9QsLAyIzY6nriYRCzUP3BYKqTXVCoVm1ccZuaKz+jcrwm3bjzOeE45K57ezgwc3YbIqDiUykSGj29HOR2zy2+yn5dwtGL87E901pFfgoKCCAoKMmidgqJDQRrjx8BjlUql+TltD9Jg/J/lRmAodbylZTD1fVy5nmXpjxRzAaBeNVeu38n5Rm+hHshcne2JjdPPmF67F0a9SpKmBlVcuHYvNEssNEvMlWtBUmxqrxYcuRTI1aCC2YXT71YotapJuahb05UbWQY9v4CQjFidl2Iv0+Z9LxxLKNjxq36zxQBXH4RR313KRSNPF64EZ773Kw9CaZARc82Izfy0BYeuB3I5S9mU1DTik5JJSUsjNT0dU+P87293PTCUupo+U1W7z1wPDKWulxSr7+PCtTs5X6u7D59RxtEWI5kMZ0dbncvoXodLT0Np7CS1/Z5zeS4+DckSC6GxkysATcuU52J4CPdjorCXm2MsM6KUhYLYlCQczC1xsLDk+5afMsi7Dp9XqkG1EqXyrel6UCh1K0uaGni5cu1upqZrd0OpW0WdKy8Xrt3NOVepaenEJSaTkppGWno6piYFuj+hQBcqaYMPQ/wT6KTIjc2vi6XCjHkrP8tmjv2vP6JG3QoA1K7vxs1rj7RiNdWxWg20Y1lJSkqlWDEjLBVmOJS01mksrGzMWbD6c1zdHVmw6A+GfrWN+/efMeOLNtnMcdaxoF5VV64H5jBOVHXhWmDO976UtHTiE6R7X2pa9ntfsWJGzB36Ic3reLDlwHm6Tt/KP5cD+axLfQZ9lt0cG2KcL1emOA4lrFg0szMtm1Whf89GlHSw1iozoGcj+nRrwJljt/jy09Vs33CcRo09mTbj42zm+ObNx9RUH89Vp04F/G48zhILoZY6VrtOBW7eyPnH9tZtquLgYJXjbHGz5pWZNKUj9x88Z8ioH5m3+A/KuTmyYEO/bObY/+pDatSXHnGq1cgD/6sPtWP11LGGHvhfecidm4+pqt5FPWv5S6cDGT9gEzs2HCM4MPvz2J7ezsxb25ek1DTGjNvO+Ek7MTYrhu+a3tnM8Zvq5yUcrfBd0wdnsXz63aCIjM0FZoxVKtUT4JFMJtPszPMB4F9Q7RUGAh88IzI6njXTu1G+TAn+OX+HCQOkDQdOXw6iZHEr1kzvRnJyKn6BYQBMGdyatk2qMLhLIz7vUBeAVVO6sGZ6NyYMaMm3Px7TS9Odx8+IiIln0+iuuJUuztErgUzpIS3PPnnjHqXsrNg0uivJKalcvx9GDTdnWtX0pGODKmwY2ZkezWsA0KN5DUZ/2pSWNTyZ36+tXpru3n9K1Is4Vs7vQfmyJTj+7x3GDm0FwJkLQZR0sGbl/B4kJ6dyU/3jwoQRbWjd3IuBn7X0qeAAACAASURBVDWh16d1pV0th7WmXJnirJjbjYkj2uil6VbYMyKU8Wz7sivuJYtzxC+QGZ9IeTp+6x6lba3Y9mVXklJTufYwjJquzrT28eSj2lX4fnBnPmsk5Wnrycv8MKQbPw3txqX7ITyPzb8JDXwo9ad1U7tSoUxx/r4QyMR+6v505R4lS1ixbmpXklLS8Lsr9aepA1vRrnFlvuzciN7t6wDw3a5TTB7Qkg3Tu/PbsRskJafqkyr8I5/yPCGe3e164GlXgoPBt5nXULp+fz0Kwklhxe52PUhKTeXys1DSVCrW3TjPjnbdWfN+J3wvniA8XkmH37fR5/AeNvhd4IdbV7j2/Em+Nd15JPXzDeO7UsGpOH9dCmTy51KuTl2/Ryl7KzaM70pyaho37km5mt63Fe0aVGbIR43o01bK1U+HL7FpYnc2T+rO5TshROh4DlnwBigCy7XeFv+1sfnu3bvcvXvX4PVaKuTMW/kZFb0yzfG9O+FERcaxZH1fXNwcOPW3PyMmtQfg3Kk7OJSyYcn6viQnpRKgNlajp3WkxYfV6DPkfbr2aQTAlrV/M2dFLybN/ZTvV/+l1a7GFJd3L8nCxQc4+rc/MbGJjBm/I8Mct6qfueFh4MNnRMbEs25KVyo4q8eJvupx4uo9Sha3Yt0UHeNEo8p8+WnmOLH94CXWT+3OxunduXpb+96X1RRvPXiBVb+cIi0tnYlr/+Cfy4F83jW7OTbEOB9wJ4wh435i3Mw9HDnmz+afTxP+LHOzxgE9G9Gne0POHLvF3LE7SU1NY+vqv9ix8TiNm1TMZo6D7j4lKiqO5d9+jotrCU6euMWo0dL3mTNnAnEsac3ybz8nOTkVf3/JrI8d/yEtW3nTb8B7dO/ZACMjGaPGtKNsueIsWd6LcRM+1HrfzZpXZvLUTgQ/fM7oyTuJjkngr+MBzF/yB+XcS2Yzx/duP+FFhJLFWwbi4ubIqSM3GTGtk9SnTtzGsbQNi7cMJCUplYDrj4iOiuf8idss2TqI5m192K8251+Mb8eCjf3pO6IlW1dpb7Lp4SWZ4pS0dMaM286DB8+5dSuM8RN3YiI3VpvjEm+0nxd3UJvicjmfrywohBSBsVmmKsDdZWQyWXWkIyFMgXtAP5VKFZVT+dq1a6suXrxYYHr0pUHPJW9bgk4SbQvfcdRWj/UzXwVBROXCN/unCC18d4gnzQvftQNw+LfwXb+LG0e/bQnvJDKZ7JJKpaqtK2bhWFZVsYth8nr1u9E5tlOU+S+NzX5+0vOwhnrO+GXilIlMGp59I66CQGEtZ8Hq3lTwKMnCJQc4clR7nwprKzlLfHtQvnwJZq49mG0jroKgWDEj5gxtx/t1PNn25wW+3X0yW3zhl+1pVtOdbbvOZNuduqDo37MRfbs35OzxW8wZszPjqCYNfb9qQfcBTXPciKsgyDTFEYyatIPol2ZJWzSrzKQxH/IgMJyJgzYX+DnGIJni+evUpnj8doJfOqe4UqXS+C7oRkpiarbdqQuK4g5WLFpbcKa4oO8J/2XE2FzAxzWpVKqr6meUfFQq1UevGngFAoFAIBAUPGJszjuWCjnzV32GZxWn3AvrQVZT7LvkYDZTDEgzxxN2cP/+c2Z+2ZaWWWaOC4JixYz4ZkjOphikTZUmrP0fx67cpXfXBnofnZgX+vVo+EpTDLBl5VF2bDpB4yYVmTr9I4oVK9gJhPeaVWLylJxNMcDRY9LMsatHSRZs6K+10VZB4FHFKcMUjx2/I5spBrh1K4wJE3dhIjdm4Xd9KOtaQkdNhkPMFAsKO4VvqlEgEAgERZsisFxL8O4gmePP8axcMOZYYS1nwarPM0zx4aM574gfE5OQYY5nfdmWFvUKxhxrTPEHdT354c+LOk2xhrS0dCaskcxxn24NGNCzUYFoAujbvSH9ejTi3InbOZpiDVtWHmXn5hM0aVqJaTMKzhw3fa8SU6Z+RPCjnE2xhqPHApi/9ACuHiWZv75fgZlj98pOzFvfj9R0FWPH7+B+cM47ywfcCmXipF2YmZvgu6bgzLF9CQW+a/pQxkWY4neWIjA2C2MsEAgEgkJFUdjgQ/BuobCSM3+14c2xwkptij1LsWjpq02xBo05Dg5+zuwhbWlR19OgmooVM2L2l235oK4nPx66yIrdJ3L9m7S0dCau+R/HrwbRp3tD+heAOe6rrlcyxTteaYo1fP/tUXZ9f5ImTSsVyMxx0/cqMXXaRzx4nLsp1nDkH3/mLz1Aec9SzFvXD0UORx7lF/fKTszf0I+0dBVjxm1/pSnW4B8QyoRJOzPMsaHNqzDF/w2KwtgsjLFAIBAIBAJBLhjaHCus5CxYLZnixcsOcuhI3s9O15jjBw8imD20ncHMscYUt6hXkR8PXWL5rtxNsYbUtHQmfLefE1eDMkysoejbvYGWKU5Jyd0Ua9i84gi7vz8pmVgDmmNtU7wzT6ZYw5F//Fmw7CAVKpZi/nrDmeOspnjs+LyZYg3+AaFMmCzNHC9a29dgJlZjigt6mbYGNzc33Nzc3khbgv8ewhgLBAKBoPBgqKVa0q/SNjKZbL1MJuvwRt+D4D+Lxhx7VC6tfz2rPsetYmkWL/+TPw/n3RRriI5OYPT47Tx4EMEs9bJnfShmJMswxT8dvsTyXcdfu47UtHTGZzHH/Xo01EsTQJ9uDejfszHnT955bVOsYdOKI+zeckpa9jytk97muEnTikyd9hEPQyIZNWknL6LjX7uOw3/fNKg5dqtUmvnr+5Kukkzxvft5N8Ua/P1DMsyx71r9Z3jti79ZUwxgbm6OuXnBPr9dJDHs2FxoKXzbvAoEAoGgaGO4gTNapVINNlhtgkKHnZ3dG29TY2q3bz6Z43JepVIplVUodMZbtKuGe6XSLFp2kD8P3ci3Fo05Xubbg9lD2lGhTHGiY3XPXCqVcWpNljrjtauU471a7vx0+BLLdr6+KdagMceLhnWkX49G2NtaEvwoIgdNr85TuTL2fNyuBudP3uGb0dvzZYo1bFp+GJkMOvdpjImpMZcv3s+XJisrOZ993phHoZGMmrQjX6ZYw+G/byKTwYSRbZm/vh9Hfr+ss1yc+tpZ5nDtjI2L0WPQe6QDY/JpijX4+4cwcfIuFs7viu/aPuzaepqcTrB5Va5kwIed67xRUywoYAq5qTUEwhgLBAKBQCB4J3F2ds69UAFgZW3O4JGt9Krj29VH9TLFGiRzvIM1K3sz8KMGOZYLCQnJNV/7Tt7QyxRr0JjjVaM/oVPb6npp8rscrLcp1rBx2WHMLcz4sEsdGjb0yLem8KcxjJy4g6gX+TfFGg79dRO53ITRw1rhkcPu53nRlJycyrCvtnHvXv5NsYab/iFMmLSLb5d/xpAxbfSu700SEiIdrfa27g2CdxuxlFogEAgEhQYZRWODD8F/G82X81fhd/Oxwdp7ER3Po8eRrywTFZX7qVzXAkMNJYmU1DRu3n/yyjJ50XTnZqhBTLEGvysPXhnPi6aQ0CiDmGIN1/1e3RfyoikhMYWge08NJYmb/iHkMFGcQV76+ZsmKioqT/kSvB4GHpsL7WNOwhgLBAKBoHBRBJ5jEhiGhIQEEhLyvunRmyIqKqpQ6hKa8obQlDcKaz8XFBCGG5ujVSrVYJVKtf/NvoHcEcZYIBAIBALBO0lQUBBBQUFvW4ZOCqMuoSlvCE15p7DqEgjyg3jGWCAQCASFCllu6/cEAoFAIBC8UYrC2CyMsUAgEAgKD2IZtKCI8MlHtXAqbcuT8Gh8lxwkLS0dACMjGWNHtsHZ2Y47geGsXvsXAEt8u+PpXpK5C//H2XPSLN2IYS2oUN4BMzMTjI31XwTYorYnHRt7ERYRw6zvD2dqksmY2rclZR1tCXjwlKU7jgGwZmxnKrk4Mm3DQU5dl3Z5bl23It1b1CQ5JZXHz17orcmrhguLNw8gPDSKpTP3kZaamaevp3fCuVxxAgNCWbfoIAAL1vfFvXJpfCf/wvmTd6Q6qpdjwKhWqNJVnD1xW29NTqVtWenbgydPY1iwTPvajRvRmjJOdty+G86q9X8DsGx+NzzcSjJ38R+cOS9du6+HtKCCqwNyM2OOHgvQWxPAoIHN8KriTHh4NL6LD2jpGjOqLc7OdgQGPmH1Gk2f6oGHR0nmLdif0afmzu6MwsrMIHoE/yGKyNgsllILBAKBQCAQvGFsbS34eszPPHwUyXtNKma83qCeG88jlXw95mfkchOqVJZ2Kp634H/s+fWiVh3frfubkWO3M3r8DpxK2+qtycrCjEELdxEcFkmLWpm7NjepVoFnL5QMWrgLczMTqrpJ5zhP23iQ7UeuZJQzksn4vE1tBi7cydQNB6nhWUZvTeYWpoztv4lHwc9p0sIr4/W6TSsS+SyWsf03ITc3obJPWQB8p/zCvp/OatXRZ3gLpg//kQWT9tCsTVW9NZmaFOOr8dt58CiCZo2zXLu60rX7avx2zOUmeFWSrt2cRX+w57dLWnWs3vA3X0/YzshJO+nYtpremoyMZJQormDk6J94+CiC95pm6qpfz52IiFhGjv5Ju08t3M8ve7X71KrvjvD1qJ9YvOQgMpnesgSCdwoxYywQCASCQoXYUVrwuvj5+eHm5oa5uTkg7Zab0860crkcd3d3rb/NCScnJ+zt7QGIjIwkNDTnXZu9vb116ipTpgyPH2vvOmxvb8/Va8EAXLh4jzatqvK3etbQq4ozZ9Wzihcu3sPbqwz+AaFERCqz1Z+qnj2Vmxnz/PkLYmKyH9Xj5OSkpftVmm4EPgTgX79gOjby5tB5aXbVx92JU9fvAXDGL5hq7k7cCArj+Ys4rTpsrcx5GqUkLS2dZy+UWMpNdOb3dTQF3pJ2Pr54OpBWnWpy7E/piKsq1cpmzAhfPH2XKtXLEXD9EZHPYrXqMDUzJj09HWVsIsrYRExMi+mtKSQsGoDzl+7TtmVV/jouXTvvys6cuSBdu3OX7uNdxZmbt3K/do9CIoiJDsuTJk0/T0hI0Hq+19LSmouXgiVdF+7RtrUPf/+j7lNezpxTzwifv3A/s09FZNcV9kR6bympacTGxvLw4UOtuKafR0Zm7oJemD5/crk8xzIC/SgKY7Mwxq/BmZ/HvG0JOmnYbcnblpCNaNfC17WsH6a/bQnZSLEofD/H2l8yedsSdHJx46i3LUHwpigCg6/AMCgUCpTK7F/uCwve3t46d+0tVqwYiQnJACjjkrC2Ms+IWVnJiYvLGnv1F/1pkztSvVo57t59iIW6mpcNRZ41JadI7SYkY22Z2a6VhRlxGr3xSVqxrETFxlPS3gpLc1NK2llhZ2WBxu7lV1NyUioAccokrGwy86SwNic+LgmAeGWiViwrWcsBpKelI5PJUKlU+daUmiodHxX30vWxUsiJj0/WGdPF9AkdqOFTjp2/nKVJ/ZLAq/NkZ2eXYT5fxti4GPHxSRltW72kKy4jloiVdclX6gL4cvD7PHum/UOLk5Puc5YLE1lNt8DAFIGxufC5F4FAIBAIBII84OrqqvN1Z2dnnJ2d81SHrpleXdjb22cYltfB3NxcZxvWNgoAFJZmxMRmGjClMglLS9MsscRX1v/NvN9RKMzY/fMw5PLsP2xqdGedmctJk72ddA6uwtyUmLjMdpXxSViaqzVZmGnFsqJSwapfTrF0eCfCImJ4Hh2nu53X0OTgGAOApcKM2OjMPMXFJmJhKT0La6GQa8WykrUcgKmpCa7uXtnKvY6mhMRikqaXro8yLhELC1OdMV3MXrgfhcKMTSv7UqqkTa6asvbpl7UlJCRjYWGW0XZsVl3KRCwzYnJiY16tq0/vxgQEhNC4UXOMjHT/gG9vb58xg/tyjgrT508geB3EM8YCgUAgKFTIVIb5JxAUZipXkp7TrVOrPH43QzJe9/MPoVYNVylWuzx+Nx/r+nMATEwkg5aUlJqx0ZI+VHCSjEcDL1eu3c3UdC0olLqVXQCo7+XCtbs5L2k94xfMF4t2s/mPc0TF6n/GrUMpyTDWauiB/9XMZb3+1x5So56bOuauFctKUmIKxYoZYWklp0RJaxLUM9/6oJmNrVuzPH7+Wa5dQAi1q7vqjL2MibH62iWmkpiUorem1LR0atWU2q5Tu4JWv7npH0LNjNir+1TrVlVxKGHFzt3n9dYk+G9RFMZmYYwFAoFAULhQGeifQFCIiYlJZMWSnri6luDEqduM/ro1AGfO3sXR0ZoVS3qSnJyKf4BkQsePbkurFt4M6NuEHt3qATB9SkeWLerBUt8ehIXpvwN0XEIyGyZ0pYJzcf66FMjkz1sAcOraPUoVt2LDhK4kp6RxI0haID29XyvaNazMkI8b0adtHQBGd2/GmrGdGfZJY64G5mwM80pSYgqLNw/Axc2BU0f9GTG1AwDnTtzBsbQNizcPICUplYDrjwAYNfMjPmhfjT7DP6BrvyYAbF39F9+s+oxJC7ty/FDOz7TmldTUNFb69sDVpQTHT99mzPBWAJw5F4SjgxUrfXuQnJzKzVvStZswsg2t3/diwOeN6dlFunYzJnVk+YLuLF/Qnf0Hr+mtKT1dRVRUHMuX9sLVpQQnTt5m1Et9avnSXlp9atyYdrRs6U3/fk3p0a0+RkYyRo9sQ7lyxVm6uKfYfEugTREYm2WqQnQmVe3atVUXL17MvaBAi8L4jHFcycL3m4vFM/GMcV5Ikxc+TQBXVotnjP8ryGSySyqVqraumGWJsiqvDw1zrS9sG5NjO4K8I8bm10ez9PVVy0QHD91C4N1wg7XpO68rdWqX10vTrM2H2H/6psE0jejShN5t6uilae8P/7J+yZ8G09S8nQ8T5nXWS9Plqw8YNXmnwTSVdynBljX99dIUHZPAx5+uMJgmgKOHJuS4lDqvugTvDmJsFs8YCwQCgaAw8Q4stRIIBAKBoEhRRMZmYYwFAoFAULgoAoOvQCAQvOuImeIiRhEYm4UxFggEAoFAIDAgeTnWxiqXo3xel9zqy4umnI5hyi82lrqPFtKQpzzlcAxTfrG2sXhlPC+aFFZyZDJpF25DYGOtf55MjI2Qy01ITNR/Iy8wfP8UCN4FhDEWCAQCQaFBRtFYriX4b5OXY2WmTOzA6HHbefAwQu/2xoxsTaWKpfF/EJ7jUUqhoaGSwXoSqzNeoXRxhn7SiPuhEfzrF6y3pm4fVKdjYy+Cn0YRFhWjs0xIaCjOTk7wTLemUnZWtOhQnXu3n/DrT2f01lSzvhv9v27J02gld8N15z0jT891a7I2N8PbrRTjvm6D73L9n30uV8ae6RM6EB+flLEpVk6a7t2P1hk3Ni5G9WrlmD+3C5Om7NbbHFtZyVm0sPsrny8WFC2KytgsjLFAIBAICheFaFNIgaCgsLezZKlvd0aP36GXOR79dWvat6vOvlN+fPPjkXx/fEraKVg/pguLhndk3Krf9TLHXd+vztgezbl0L4RhG/aRkJw/oyY3NWb1wI8YPLYNKpWKfT+fzbemmvXdmLG8J8/i4+m3djdhL3Qb39yQyWDGJy3o3MoHVOC7Iv/muFwZe5Yv6I653ITxk3dx0z/nY7By4+NONRkxrKXe5lhjij09SuVa9u7duwC4u7vnqy3BO0YRGJsL39bBAoFAIBAIBO8wkZGRREZG5lrO3l7BUt/ulCub+wyzLkZ/3ZoOH1Zn32n9TDFAeJSSL5bs4dkLJYuGd6Sht2u+6un6fnXG9WzO5fv6mWKAxORUhm3cx6WgEL4Y15aPetbPVz2GMsUgeYNZe4+y59wNPmztw/iv2+SrnrLOdgYzxQC//naZb1cfpZqPNHMsl5u8dh0KhVmeTTFAYmIiiYm6VygIBO8iwhgLBAKBoFAhUxnmn0DwtggNDSU0NG9Gx95ewbJFPV7bHI8akcUU/6CfKdbwJCqWwVnMcQNvl9f6+y7vVzOYKdbwsjnu1OP1zHGNehUyTHH/dXv0MsUaXjbH40a0fq2/1zbFu/U2xRp+/e0SK79Tm+M5r2eOFQozFi/skWdTLCh6FIWxWRhjgUAgEBQeVAb8JxC8I0gzxz0oWyZv5njUiFZ0bF+d307fNJgp1pDVHC8e3on6Xnkzx12aV2N8z/e5cj+UYRv2EZ9kmE2gABKSUyRzfC+EL8e3pWOPenn6u+pqU/xcbYpDc3jWOT9kNcft21RjbB7NcRknyRRbmJuqTXGIwTQB7N2nNsfVyjFvTuc8mWOFwoxFC7rj6SlMsSAHisjYLIyxQCAQCAQCwVumeHFp5jg3czzyq1Z0bF+D3/81vCnW8CQqlsFL9/A8Oo7FwztSr8qrzXHnZtUY30syxUM3/GpQU6whITmFYRskczxkfLtczXH1uuWZubwnEQkJ9DOwKdagMce/nPejQ5tqjPmq1SvLl3GyY8XC7lhamDFhiuFNsYa9+y6xas1RqldzYd6czpiZ5bylkMYUV6xYukC0CATvEsIYCwQCgaBQIUs3zD+B4F0jN3P89fCWdOpQg/1nbjJ72xHSC3AznCeRsQxaspuImHiWfJWzOdaY4qvBBWeKNWjM8eX7anPcXbc5rl63PDNX9CIyMbHATLEGlQpm/nKEvRf86Ni2OmOG6zbHmpliSwszxk/ehd/NgjHFGn759RKr1/ylNsdddJpjS0thigV5pyiMzWJX6iLA0J5N8PZ04smzGOauPURamtQrjWQyJn7RijKlbLl9P5wVW48BsHJaFzzLOzJr1UH+vXwvox5zMxP2rBrI3DWHtF7PDyM7NqZaeSdCI2OY8dNhUtMzNc3o0YJyDnb4Pwpn0d7jONtbM+fzNqSrVMQnJTNp60GUicl8O7gT1uZmACz45R9uPX6ml6ahPZpQ1dOJsGcxzF2nnadJgzPztHzbMQBWTu1CRVdHZq0+yOkrUj5WT+uKkZGM9HQV+/+5wZ+nAvTS9FXnJvi4lSYsIoZZ3x/W0jS1b0vKOtoS8OApS3dImtaM7UwlF0embTjIqev3AXi/lgd92tZBpVJx4EwAu/6+qpcmgBGdGlOtgnT9Zv2gff2m9ZKuX8DDcBb/chyn4tZ801vaUTQ+KZnJ30vXb0SnxrSvW5mDF2+x7NeTemsS/Ico5EutBIKCRGOOR43bzqPHmRt4fT28JR91rMn/zvgza6u2KR7xifqeHBHDrK0v3ZM/b0E5R/U9eZf6ntwvc0ydslG6J1d3c+LrT5uQrlIx/6e/uBsawZNIaeZ4w+jOLPmqI2NW/s45/wcZ7X7azIfxvd7n+oMwhq7XXj49sn1jqrs6ERIZw4wdL43zXVvg4mCH/+NwfPdJ4/zcnpmaJv4oaQIwNzXh4NT+TN9xmBP+9zPM8XeDPmbIhHaoVCr27zyf0a6WKV67W8sUj2oraQqNjGHabm1Nszq3oFwJSdPC/cdxtrNmXndJU0JSMuO3S5qs5GZM++R9iissePD8BbP3/oVKBTP2HEGGjI/bVQdgyarDGe06O9myfEF3FJbSTHFWUzx4wHt4VXHmSXg0vksOZo7zRjLGjmyDs7MddwLDWb32L6le3+54updk7sL/cfZckHT9h7WgQnkHzMxM2L7rHCdO3gZgz68XQQbDvvyAeXO6MHnqbpKSUgG1KV4oTLHgNSgCY3OBzRjLZLKKMpnsapZ/MTKZbGRBtSfQjbuLAw72CobO3MmD0Ejer+eZEWtUqwLPo5QMnbkTczMTvD2km+OsVQfYdeBytrq6tK3B7XvhemvydCqBo42Cfit2cT88khbVPTJiTb3L8zQ6jn4rdmFuaoKPa2liEpIYsf43Bny7m+M37vFJw6oALPzlGH1X7GLG9iMMa9dQL03u5aQ8DZmlI081K/AsSsmQWTuRZ83T6gPsPJg9T6MX7GXYN7v0NsUeZUrgYKtg0MJdBIdF0qJWZp6aVKvAsxdKBi3chbmZCVXdJE3TNh5k+5ErWvX0aVuHoYv30G/edj5uWhWZnscSejqXwNFWwYBluwh+EkmLGlmuX9XyPHsRx4Blki6f8qWJjU/i67W/MXC5dP0+biRdv5/+uczkLQf1EyMQCF4LMTa/G/y/vfsOj6pM3zj+fSGkJ5DQJKEEQhEIvau4rmAviIZqF8UGYhdERV0LouACCitiryuIdXXVnwUXRRSkBRBIaJIgLZT0+v7+mEkjCYRkhhky9+e65iKZ98w5d2bCPPPkvOechg1DmfHsyOI9x3eUaooffePrMk1xu+bO9+TnHO/Jg0rXiq6t2XsogzHPfUCgfz26tmlGWlYOE178hJumL+DH1VsYOtDxnnz7ZadzxwsfM3n+l9xx+cDidezaf5ibZiwk1bnnuG+nlgBc/reuPHDlINZs38Wt8z4iIye3+DFFdf66Fz5g255UzulWqk50as3ewxlc94Kzzrdy1Pnx8z/hhhcX8MO6LVzRv0vx8lcO7M6GnXvKPD+ZOXnc9vJHjqnbEy/ikhF9AejWx9EUH8jO5oaXFpBcqinu0KwRTeuHcu3cD9i6N5VzupZk+lvH1uw5nMG1cx2ZurVsRlp2DuNe+4Tr/7WA79dvIb6v83k6dwCv/rCcMfM+5PFF3xavo6g5/nj5Oi69sDt3334O4GiKZ04dRWhIABMnL2Btws7ix8S2aUyjRmFMuOdddvyZyt8GdigeG9Avln2p6Uy4510CA+vRqWMUAE9N/dzR8JYy56XvuPPe97j7/ve5evSAMmMLFy1nzkvf0aN7K578h2NadVFTfGoNm+KIiAgiIiJqtA4Rb+K2xthau9Fa291a2x3oBWQCH7lre1KxLu2jWLbG8dfdX1ZtpUuHqDJjv67Z5hzbRpcO0QDsO5BRbj3BQf7EtmzMus27apypW5sofv7DkemnDdvo0aYkU/fWUSwtNda9TRRpWTmkZeUAkFdQgHV+IEje77jQfX5+QY2nkzmeC+fztHorXdtX8jyt3kbX9pU/T4XWMv2By5l272Wc0iisRpm6to1i2TrHdn9O2Ea3ttFlxn5Z58i7NGEb3do68u47iPViZwAAIABJREFUWD7T9r8OEBLkj389P3Ly8mt8PFq3NlH8ssGx7Z/Xb6NbbMlz1bV1FL/8UWrM+fqlF71++SWv3/7Dmb7wx0epBl8486WnqDafPBo1DGPGsyOZeN9FDL20J5//Ur4pBsd78lLnXtyf122je6n35G6xUfxSaqxbbBRpmaXekwsc9TOgXl0KCwtJy8zhrwNp1A8JLLON4uY4LYsZ44Zw7+i/M/GqQazdUb4pBugeE8XSjY7tLvljG91bH1HnnWM//bGNHq2ddT67pE4U/YwhAf60a9aINdvLf/Yoao5XbXM0x7c+cCGPzXI0xde/tICdqWWnT3dvFcXPm5yZNm6jR6uoysdiojhcOlNBSaZToxozckA3Xrs5nrM7x5bZRqG1PLLgGz5Zvo4hF/Vg8r0X8c9STfGaUk0xQOdO0Sxf4Zjd9dvyLcR1jj7KWHMA9qeml3su8vMde5kDA/zYvr38NbEXfPgbc+d9R88eMTz5j3imTR1R46YYIDo6mujo6GMvKLWCL9TmE3WM8SAgyVq7/ZhLikuFhQSQmekoWOmZuYSHBpYaCySjaCwrp8zYkYZf0JOFX62sdPx4hAcFkJFdarvBpTIFBZYay6V+mbEAhp/RjU+WrSuzvrsvO5M3vltRs0whAWRkObabUdHzVDx29Odp8j8/47bH/817/1nO3dcNqlmm4MDiqWTpWbmEl/qgEhZckjc9M6fM2JG++W0jbzw0mg+fvJ5PlyTUKFPRtotzZeeUeY2OzFz6w1VoUADDBnbj01/Kvn4iZVgcu15ccZNjUW12k7i4OOLi4mq8nkYNwzjvnDi+/X0zj75evimGsvUrPatsPQgPDiQ9q/L35Pgzu/HZz+sIK/XeDZBfWIhf3bIfEXftP8zY6QvIys1j5KAebN61r8KmGBx1vtI6EVSyrbQj63xgAMNP78YnvznqxJVn9uC9JasrfX4yc/K4bd7H/JG8lyGj+pNVWMD1Ly0s1xQXZ3JmTTta7coun2lE/258vNyRqWvLU1i4bC23vfYJtwzuh79f3TLbKbSWhxd8w1drNnHu2Z1pFBnKpIcXlmuKAcJCS30Oy8ghPCyoZCwskIyM0mOV13mAhx+8lPkv3cBvzmb6SB8s/I1X3/gfPXvE0PHUqAqXEamUj9TmE9UYjwTeq2jAGDPWGLPcGLN8796aHSMq5aVn5hAc7A9AaLA/h9NLLsSelplDSNFYUECZsdJCgvxp16oxaze65jp7aVk5hASW2m5mdiVj/hxyjvnVqcNT15zPcx8t5nBmTvHyt14wgDXbdvF7Us1OYpGWmUNIkGO7IUc8T+llxip/noDisZUbdtIoIqRmmbJyCC31XBzOqDhTaHBAmbEjjbviDEY+8iZDJ73KhQM6ERYcULNcmaVyBQYUv0YVZT6UUer1u+58pi8q+/qJiEepNp8kurRuRnTj+hWOla5foUFl60FaZg6hQRW/Jz855nxmLHC8J6eXel8vGs8vKH+WnH4dW9IgNIjCQkurxhF0atG04kxZVasTYUfU+aevOp/nPnFkCg30p0NUY1ZtO/pnj07NmxDTJILCQkuD4EBOa1/xScIOZ+cQGuDc7tFqV2DZTM+MOp9pny/msHMv+18H00nYuZus3Dy27T1A0/DQctuKjgynW8tmFBYWUqeO4awzT60wU3pGqc9hIQEcTssqGUvPISSk9FjldR7gH099yrVjXubKUQMqPGQqJNif/n1jyw/UQFZWFllZWcdeUOQk4fbG2BjjD1wKLKho3Fo7z1rb21rbu3Hjxu6O43PWbkyhTxfH8UD9usWUaW4TNqbQO65VqbGKm8tW0ZE0bhjKjEmXc97Ajtw47LQaTRNevXUX/Ts4Mp12aitWbkkpNZZSaiyGVc6xR0YO5uuVm8sse2nfTjRtEFrjvcUAazel0CfOsd3+XWNYsynliDHn89Q1hjWbKm/Cg50fQGKiI0nLqFkDuCYxhb7Os4AO6BzD6sSS7a5OSqFvR8dY/86tWJ1Y+QeH/IJCMrJzycsvoKCgEP96NTvn3uqtu+h3quO5GtCpFauTSr1+W1Lo53z9BnSMYbXz9Xpo9GC++X0zq5Jc88cVqd18YbqWp6k2n1yaRITy8t3DaNGkQbmx1Uml3pM7tyrzPrs6KYW+zrHTOscUv18/dPVgvlle8p6cnZdP3bp1CA0KoGlEaHEDXdrQM+J46KrBrN32FyOffYfU9ExmjxlC33Ytyi27atsu+rdzbPf0Dq1YtTWl1FgK/do7M3WIYaVz7JHhg/l61ebi71s3iaRpg1Dmjh3KRb06ctt5A2gWUfazR+/Y5rxw02UcTsvmmkffZm3iLh4eejbD+3c9eqb2rVi5vVSm7Sml8saw0tmMT7liMP9ds7n4e4CNu/bSomF96hhDi8gG7E0rewhTi4b1efXmYTTwD2DSmNf4v09XctmlPZkw7pxymRLWJdOrRwwAfXq1LnNSroT1pcZ6tyZhXfk9zkXq1XPstc7JyScrK7fcTrmQYH+mPT2i+DhlV0lKSiIpKcml6xTv5Qu1+UTsMb4A+N1aW/OzNslx27x9L6kHM5nz6Ahat2jE98s2cf9NgwH46fckmjYKY86jI8jNyyfBefzwg7ecx/lndmLsiNO5ekhf1if+xdiH3uPupxfx1f82MH/Bz/y1L63amTYm72V/WiavTRhObLOG/N/qzTw8wjHt+Md1WzglIozXJgwnNz+fNdt20aNNNOf2aM+Qfp2YPz6e0X/rQR1jeGTkYGKaRjJ/fDyPjz76tQOr9DwdymTulBG0bu54nh4YU/Z5mjul7PM0+ebzuGBgJ8YOP52rL3Wc+OOFh4Yxd8oIHrjxHGa9/UONMm36cy/7D2fy8gPDaRPdkG9XbObBqx2ZlqzewikNw3j5geHk5hWwNsmR6ZHrz+XC0zpy69DTufaCPgC88/UKXpk4klcfHMnvm5LZf6j8ccjHlWun4/V75S7n67dqM5NHOV6//yVs4ZTIMF65y/n6bd1Fj9hozu3Znkv7d+LlCfGMOqsHAKPO6sHdl5/JOT3b8/T1F9Qok9Qy1kU3ORrVZjdKTEwkMTHRpeusrDnetHMvqWmZvHLvcNo0a8i3v29m8pXO9+S1zvfke4eTk5fPmi276NE2mnN6tefS0zox7+54Rp3teE+e88nPzB5/GU/feBGzP15SZhvFTfH2v7h17iI2Ju9lzKwFHEjPYvaYIfRpW7Y53piyl/3pmbw+bjixpzTkmzWbeXiYs86v30KzBmG8Pm44Ofn5rNm+i56tozmvW3uG9O3EK7fFc+XAHqzd8RdXzXyfW+d9xH9WbGDOV0vZdaDks0fv2Oa86GyKb5n6AZt27OWO6R8WN8fD+nUpm2mXI9Mbtzozrd3MI5c7Mi3e4Mj0xq3Dyc3LZ/WOXfSMcWQa2rsTr90cz1WnO56nmf/9icfiz+Gt20aw8Ne1ZOflF2+jeaSjKY7wD+DhW99g9a9bmP7gh5U2x0lb9pB6MIOZ00cTE9OIH5ds5O4J5wGw9JdEmjQJZ+b00eTm5rN+g6M5v//uCzh3cBxjrhvIqBGOy1U9MvlSnn92FDOmjeLtd5eW2Ya7mmLxQT5Qm41181xvY8z7wFfW2teOtWzv3r3t8uXLj7WYHOG0EdM9HaGcjKbed4ns4L3ed/G0vOAaniLaDQoCvS8TwMoX7/J0BHERY8wKa23visZCI1rY7n+f4JLt/PTRfZVux9epNrtXQoLjfA6uOM74SLsPOK4vvHPvIZevuyJlmuI5i8ocixzdMJxXxg+jQWgQ4+Z/wm+Jf56QTL3aRPPiTUNJy8jm1qkfsHNPyXMREujPzHsvp0tsMx5f9C0Llq09IZmaR9bntVucTfFtb7L2t5JjfY0x3Pt0PIMu6c5Hn/7OrBe+OSGZHE3xcDp1dM8Jstz5ey4nnmqzm/cYG2NCgHOARe7cjoiI1A4G35iu5UmqzSe3phFhvHzPMJpXcsyxK112uqMpTtixu1xTDJC8/zBjZi/gYHoWL9w4hD6xzd2e6WhNMUBGdi4TnlvE2qRdPHL5IOL7ur9pax4Zzms3xxPhH8AjRzTFANZapj+4kG8/W8XQS3tyx+2D3Z4pONifZ55yX1MsvsVXarNbG2NrbYa1tqG19sT8WVNERE5urjrrpZef+dKTVJtPfk0jwph39zCaN3Jfczzk9M48fPVg1lXSFBdJ3n+YG2cv5FBGNi/cdBm93dgc9zxGU1ykqDlOSNrFlCsGu7U5djTFw4gIDGTK7W+x5oimuEhhoaM5/u7zVQwd0ovxt7mvOQ4O9mfaU8Pp3ElNsbiIj9Rm75vvKiIiIiJHdUpkGPPucU9zfOlpnXn4qnNYt2M3t8xZRFrW0U8muXP/IcbMWuBojm+8jF5tXN+Q9WgdxZybLiM9M5vbnllQaVNcJCM7lzumlzTHV7ihOY6OCHccUxwYyJTb3mL1r1uOunxhoeW5SQv5/vPVXH5ZL8bdWrPLOlYkONifZ54cpqZYpBrUGIuIiFfxhelaIq5wSmQYL90TT3SjcJet85IBnXjk6nNY/2fVmuIiRc3x4cxsXrxpqEub4x6to5g7dijpmTncOnUBf+4+WKXHZWQ5muN1W/7i0SsGc3kf1zXH0RHhvHbLMCKr2BQXKSy0PDtpAd9/vporhvbmdhc2x0FB/kx9chhxnd0/pV18jy/UZjXGIiLiXY73DJeV3UR8QLPIcObdM8wlzfElAzox5Zpz2bDz+JriIjv3H+LG2QtIczbHPV3QHFe3KS6SkZXL+Oc+ZN2Wv3gsfjBD+3SucaaoiHBevTmeyMBAHr296k1xkdLNcfzQ3tx+y9k1zhQU5M8zTw2jywlsimNjY4mNde21kcWL+UBtrtkFTUVERESkjIiIiBO6vWaR4bx09zDu/ddnHEzPqnCZgoICAOrWrVvh+IBOrZh85WD+2LmHm188/qa4yJ/7DjFm9gJeGT+MOTddxj1v/Ictu/dXnCnfmcmv4kytm0Qy/dqLq90UFylqjl+47woeu+Ic/OrUYcnGbRVnOsbzVD84kJnXXELDoCAeHfc2q5YdX1NcpKg5xkD85Y7LKy5cVPHZ3/OdmfwqyVTXrw4T773ohDbFAEFBQSd0eyLupsZYRES8irdPtRI5lujoE398Z1TDcN6dfGWl48nJycfMtX7Hbsa++GG1m+Iif+47xI0vLGT+uHjmjh1ao0x7D6TXqCkukpGVy/hnFzH7vsuZckXlJ76qSqac7DweHfcWq35JqlGmwkLLsxMXYIwh/vI+xQ1ydTKJuJsv1GZNpRYREe9hgULrmpuIFDtw4MAxl3nvf6tq3BQX2bH3IF/+vrHGmb75dWONm+Ii6Vk5/PublTXOtGHVDlYurVlTXKSw0PL+vB9qnMkTkpOTSU5O9nQMORF8pDarMRYRERFxoaysLLKyKp7S7EnKVDXKVDUHDhzw2qZdpDrUGIuIiHfxgRN8SO2WlJREUpJr9ii6kjJVjTKJVMAHarOOMRYREa/iC8cxiYiInEx8oTarMRYRERERzu3enqH940hJPcyUd74mv7AQgDrGMGXUYFo2jmD9n7t5dtFioiPDeeLq8ym0lsycXCa98SXp2blMiv87baMaEVjPj72HM2qcqXv7aOZNGk7K/sP845WvKSgoyfTg9efQsmkDNmzfw/Pv/gDAnPvj6RDThCkvfcmS1VsB+Hvvdlx7YR8KrWXbrtQaZ2rWMpLn3ryJ3ckHmPHwIgrynZnqGCY8NpToVg3ZvD6Zl6Z+AcCQqwZw5vldSDuYybQHFpCZkcNZF3ZlyFUDyMvJ56M3f65xJhGpOU2lFhER72Kta24iclzCgwO4fuYHbN2dyuDu7YrvPzOuNXsOZXD9zA8I8q9H15hmHM7K4Y55nzBm1gIWr93C5ad1AeDZjxYzZtYCbnphId1imtU4U1BAPcY+/QHbd6UyqHdJpjO6t2HfwXTGPv0BQQH16BLr2NYj877k/a/LnmDr2gv7cPu0hYx54j16d2xR40z16vlx7zUv8+fWfQw8N674/r5/O5XUvYe595qXCQzyp2O3FoQ3CKb/3ztyz1XzWPzlWi4Z1Y86dQzx1w/k3mte5pkHFjDk6gE1ziTidj5Qm7XHWEREvIovTNcS35CQkEBsbGzx9V6Tk5MrPVlRYGAgbdu2LfPYykRFRREZGQlAamoqKSkplS4bFxdX5vvSmbKysoqPXY2MjGRN4p8A/LRhG5f168x/nWeV7t46ih/XbS0e694mijXbdhWvM6+gAOv8wJvv3KMb6F+PXfsPkLK9/HV+jyfTH0l7AFi6ZhsXD4zj62WOTF3bRvHTase6l67dRtd2UaxN2sW+g+X3Um//6wAhQf7kFxaSnZNb4XN7PJlSdjhew+VLNnHu0F788MUaADr1aMmvizc6xzbTqUcrQsKCWLt8a/Hy9z4VT3jECvbtOUxBfiH79xymaVSD484E3vH7JL7DF2qzGuNa4Od/3+PpCOWc1+cxT0coJ71ViKcjlFM3z3g6QjnLX7nL0xFETirGmMuAi4Bw4BVr7dcejiQeFhoaSnp6uqdjVCgiIqK4sSqtbt26ZOfmAY7LGoUHBxaPhQUFkpGd6xzLpX6ZsQCGn9GNW+cuKr7vmWsvpE+75ixN2ExMeNmPmlFRUceVKTcvv2S7IaW2GxJAelGmzBzCS40d6ZtfN/LaI6MpLLR8/9sG4poH1yhTvjNTRno2YfVLlgkNDyIzw3G5q8w0x1ho/UAy03Ocy+cQVj+IQ6mZND6lPsGhATRuWp8mURHsP7SrzHZKZ/Lz8yM/P7/Sn89TAgMD8fNTKyG1h36bRUTEe5zgs1YaY14FLgb2WGvjSt1/PjATqAvMt9ZOrWwd1tqPgY+NMRHAc4AaYx8XExNT4f3R0dFER0dXaR1V3TMXGRlZvLevKkpvPygoqMx2IiMce2dDgwI4nJldfH9aVg4hgf7OMX8OOcf86tThqWvO57mPFnM4s+T6xw+88QVhQQH8Z8oNZZro6mRqsiezZLsZJZnSM3MILcoUHMDhUmNHGjfsDEY/9CaZOXm8+4+radXs2M/X0TJlpzn+DQkNJO1QyWWUMtKyCA4JACA4zDGWcTibqJYNncsHkHYoC2strz7/FY/Ovorduw6ybdNfR329i5riI5fx9O9T6T3SUsudBGeUdgUdYywiIl7DAMZal9yq6HXg/DIZjKkLvAhcAHQCRhljOhljuhhjPj/i1qTUQx9yPk7kpBR7iqMhOu3UVqzcUjKddvXWFPp3aOkci2GVc+yRkYP5euXmMsvW86sLQHZePnn5BTXOdEpkOAD9u8SwZnNy8f1rElPo07mVYyyuFWs2Vz79Ny+/kIzsXPLyCyh0wTGOYfUde5x7nd6O9Su3F9+/fuUOegyILTO2KWEnXXrFOO47o2T5FUs2c//1r/D+Sz+QvH1/jTOJuJMHarNHqDEWERHvUuiiGzQyxiwvdRt75KastT8CR56mti+QaK3dYq3NBd4Hhlhr11prLz7itsc4PAN8aa393bVPhsiJk56dy2sThhPbrCH/t3ozD48YBMCP67ZwSkQYr00YTm5+Pmu27aJHm2jO7dGeIf06MX98PKP/1gOAadddyPzx8cwfH1/mOOTqysrNY96k4bSJbsh3yzcz8drBACxZtYVTGoYxb9JwcvMKWJvk2NZDN5zLhad15JYrTueai/oA8O5XK3h58kheeWgk211wVur8vAKee/MmWrVtwpJv1nHHlCEALFu8kSbNGvDcmzeRl5PHhtV/cuhAJr/+uJHpb4/l7xd247P3lwFw88QLmfrqDVx357l88s7SGmcScTvX1WavpanUIiJSW+2z1vauxuOigT9Lfb8T6HeU5ccDg4H6xpi21tp/VWObIh731cpNfLpsffH3//j3twAUFFoeeafsEQIrtyTT/74Xyq3jrvmflXw9ZGCNM63alMw/31tc/P3UN/6vONPj878qt/wTr5Y/kuHLnzfw5c8bADh/wKmc1atduWWOR8qO/Uwc82rx97Me+wSAwoJCpk/+sNzyH735c7lLMhVdygkgpl3TGuUREddQYywiIl7F26daHclaOwuY5ekcIiIi7nKy1ebqUGMsIiLewztO8JEMlL7YaXPnfSIiIr7HO2qz26kxFhERKes3oJ0xpjWOhngkMNqzkURqpqJLEnmaMlWNrh0scmLo5FsiIuJFLFgX3arAGPMesBToYIzZaYwZY63NB8YBXwEbgA+stevc9iOLnABVuQzPmHP60jg8xCXbO7V5E4b2P3pDV5VMF5/RmVNbNTnqMlUVGR7MDZf0r3GmuF4xDDzPNc1qPX8/brz3ApesS8R9Tmxt9hTtMRYREa9iTmDdtNaOquT+L4AvKhoTqa1imkQw/45h3DhrAXsPZ1R7PR2iGzPv9iswuQXcMXI6OzbvrtZ6msc24cm3buGF++MZN20hf2zfU+1MkeHB/GvicJo3qc/DT33MshVbq7We8LBApj0WzwPPDMdaWPJ1QrUz1fP3Y8rsq+h9Rs1OBiZyIpzI2uwp2mMsIiIiUsulpqaSmnrsSxXFNIlg/vj4au857hDdmHnjHE3xpNFz2Lx2JznZedW6Ja1LZuLoOdicfGbfdwUdqrnnODI8mLkTh9G8SX2mPPMpPy7dTE5ufrVue/enc9fkD/gz5QATpw3njHM6VytTPX8/psy6skpNcWJiIomJidXajohUnRpjERHxLq6brlXfGDPPGHOJp38kEU9LSUkhJSWlSsvGNI1k/vh4GoUHH9c2ipriunmFTLpyLls2VG17R7Ptj11MGj0Xcgt4oRrNcWR4MHMeGEaLJg14dNpnLPml5g3mwUOZ3PXQvx3N8bMjjrs5rlevrqMpHti+SstnZ2eTnZ1dnagiruMDU6nVGIuIiPewYApdcwMOWWvHWms/O8ZWReQIjuZ4WJWb4/ZRjXjpdkdTPHH0XLasd92J3Lf+kcKk0XMxeYW8cN8VtG/ZuEqPK2qKW54SwWPTPuN/Sze7LNOBg47meOcuR3N8+uCqNcf16tXlkdlVb4pFvIJra7PXUmMsIiIiIuW0djbHDcOO3hy3j2rEvHHx+OU79xS7sCku4miO5zia4/vjj9kcR4QF8eID8Y6m2Dl92tUOHMzkrsmO5njScyM4bXCnoy5fr15dHp51JX0GdnB5FhGpOTXGIiLiXXxgupbIyaK1c1p1Zc1xuyOa4qR17rvk95YNjua4zjGa44iwIOZMHEarUyLd1hQXSS1qjv86yKRnR3DaoI4VLlfUFPc9U02xnKR8oDarMRYREe9iXXQTEZdoc0pDXh4XT+QRzXG7qEbMu/0K/Aqs25viIls2pDDpyrnUzXc0x+1alG2OI8KCmPOAoyl+fNpnbm2Ki6QezOSuB98nefchJj03kgFnl22O69Wry0MzR6splpObD9Rmt16uyRhzF3AjjqdhLXC9tVZnDxDGjBtMp67N+WvXQWY8/ikFBY6DDurUMdw5+RKiW0Sy+Y9d/GvGVwBcNrIfZw7uxOFDWUx7ZBGZGbmc8feODL/udGyh5dsv1vDpgt9qlOnWq86kS4codu05xFNzviqT6YFbzqVFswg2Ju1m5uvfAzBrynDat2nC47O+4OcVWwC4e8wg2rRsRGBAPd7++Fd++GVTjTLdPnwgXds1Y9e+w/xj/tclmYzhwTHn0KJpA/7Ytofn3/kBgBcnxtOhVROmvPQlP61yXIoiNDiAB64dRGT9YP786yBTX/+/GmUSkZObarNUR2yzhswfF8+NLywkNS2Tts0aMu/2K6hXCA9W0BTfMPFiOvZsze6dqTx//3sU5JfU1AlTRxAV05jEhD956fGPARhy/ZkMvKg7aQcyePaut8lMz+H087sy/NZBFFrLd4uW89mbSwDYsj6ZiaPnMvXdW3nx/nhum7aAxD/30aCoKW4WyePPfsbin8vW4JuvPZO4jtH8tecQU2f+t0ydv2/ceTSPimBj4l+8MN9R559/YjjtYpvy5Iz/sPS3LcXrCQqsx/vzxzJ15pfF9xftOf7nkyN4cPpInrrnfZZ+twE/v7o89M/R9PvbqW54VUTEldy2x9gYEw3cAfS21sYBdYGR7tqenDzatGtKwyZh3DP2dXZu28/AQSXH5PQ7oz3796Zxz9jXCQzyp2OX5oTXD6L/me25+8bXWPzNOi4Z1heA4dedzsTb3uTOG17hgqG9MKb6mdq2akzjyFBue/h9tien8vf+JSfFOK1XG/alpnPbw+8TGFiPzu2bAfD4rP/wwX9+L7OeWW98z7gp/+aOR//NdVf0r34goF2LRjSOCOXmJz9gW0oqg/qUXNLhjB5t2HsgnZuf/IDAgHrEtXVkmvKvL3n/65Vl1jN26ADe+uI3bp+6UE2xnBSMtS65SXmqzVITsc0a8vK4K+jXvgXzxsVTrxAmXzWXxISdZZZr3TGKhk3rc9/w2exM2s0ZF3YrHus7qDP7dx/ivuGzCQjy59SerQiPCKH/4M7cGz+LHz9fycXXnAHA8FsHMenKOdw9dCYXjBqAKVXot6xPduw5Lihkzv3D6NOpJXPuj6dVs0j+8eznLP6pbFMcG9OYRg3DGD/xPbbvTOWs00vq/IA+sexLTWf8xPcICqxH5w5RADwx4z8s/HRFuefhikt6sjGx/LWZUw9kcOfkf5Oy+xAPTh/JwPPieHjmaPqdVbOmOCIigoiIiBqtQ6SmfKE2u3sqtR8QZIzxA4KBmp+3X056nbq24PdfkgD4bWkinbu1KDO2YpljbPnPjrH2naNZ+/t2x31LE+nc1bH8zu37CQ4JwN/fj9ycvBodthDXIYpfV28DYNmqbXQ9Nbp4rEuHaH5d7dj+spVbi8f2Hcgot55851/EAwLqsXXn/uoHArq0i2JZgiPTL2u30bVdqUxto1iW4Mj0y5ptdGvnKOL7DpbP1L5VE64Y1J05k4ZxZs+xRdJxAAAcZElEQVTYGmUSOSF84DgmD1Nt9kFxcXHExcXVeD1tmzmOKQ4oNEy+ai6b1+4st0ynXjH8/r+NACxf/AederWucGzF4j/o3Ks17bu1YG1R7S+1/M4tewgODcQ/wI+cnDzsEf+vk9aVNMcv3h9PTFRDnnjuc374aWP5n79jNMtXbgPg1xVbietYUlPjTo3iN+fYst+3EdfJMbY/tXxNDQ7yp02rxqzfWPF/m6LmeNeew0yeMarGTTFAdHQ00dHRx15QxJ18oDa7rTG21iYDzwE7gF04Lpvx9ZHLGWPGGmOWG2OW7927111xxIuEhgWSkZEDQGZ6NmHhQSVj4YFkOscyMhxjYWGl7kvPJqy+Y/nF36xj1us38cqH4/jq01U1yhQeGkhGZi4A6Zk5hIUGFo+FhQSQmZVTPBZeaqwij911MW9Ov5ZfV22rUaawkEAysooy5ZbZbnhIQMlYVg7hIZVn6hx7Ch9/v4Z7ZnzMmMv641+vbo1yiZxEdB3jI6g2i6sc3JfG3l0HKxwLDQ8mM90xOz8jLZuwBsGVjoU2CK50+R8/X8U/P7mLl7+bxNcfLKtwW/v+OkTq3jQAsrJy2bEztcLlwkIDyHDW8ozMHMLDStX50EAynZ8BMjKOXufjL+3Fov+srHQcIC0tm5S/Kn5uROTEMMZcZox52Rjzb2PMuVV5jDunUkcAQ4DWQBQQYoy56sjlrLXzrLW9rbW9Gzeu2nXp5OSWnp5NSEgAAMGhgaQdzioZS8sm2DkWEuIYK3NfaCBphxzLjxk3iJtHzeX6obMZdGFXQsOO3rAeTVpGDiHB/oDjmNy09JLD7dIzcggOCigeO5x+9EPxpjz/OaMnvMo1V/Sr0fTu9MwcQoKKMvmX2W5a6bGgAA5nVJ5pd2o6G7buJisnjx27DtA4IrT6oUTczQKFLrrpOsblqDaLqzSPbcLUd2+jQaPyNSX9cBbBzuYyJCyQtIOZlY6lH8wko5Llr3/gYm49bxpjznqSQUN7E1rqD+kA4ZEhPP3OrTRv3Zg35n6HLShkxhPDiY0p/zubnpFDiLOWhwQHcDjtiDrv/AwQElJ5nQ8J9ie2dWMSNlR+krF6fnV5bNKl9O/dptJljldWVhZZWVnHXlDEXVxbm4/JGPOqMWaPMSbhiPvPN8ZsNMYkGmMmHjWytR9ba28CbgFGVGW77pxKPRjYaq3da63NAxYBp7lxe3KSWL/mT3r0dRSM3v1jWbf6zzJjPZ1jvQY4xjatT6FLj1Yly69xLJ+XV0BWRg55eQUUFBTi71/9c8klbEymd1fHNvp1j2HNHyVFb+3GFPo4x/oeMXaken6OvbHZOflkZuXWaMbIms0p9O3szNQlhjWbkysc69+lFas3Vz4TMnHHXpo3aUAdY4hu0qDC6dYi3sLgmmOYvP04Jg9SbfZRiYmJJCYmunSdrdo3Y+q7t1G/YdnmeMPvW+nuPIa315mnsn7F1jJjPUqNrVuxlU1rdhDXN7bc8vl5+Y46n+uo8/UC6hWvJzwyhKnv3kbLtk155uFFvPvKj0y6/S3qADOeGE6bmEZlMiVsSKFXd2ct7xlTprlN+COZ3kVjPWJIqOQ6zC2bN6RxwzCmPRrPOWd14vrRp9O0cXjxeD2/ujw28VJO79u26k9iFSQlJZGUlOTSdYocDw/U5teB88tkMKYu8CJwAdAJGGWM6WSM6WKM+fyIW5NSD33I+bhjcmdjvAPob4wJNo6zJQwCNrhxe3KS2LJpNwdSM5g+7zpaxTZmyXfruWPSxQAsW7KJxqfUZ/q868jNyWfD2p0cOpjJsiWbmTH/ev5+Xhc+c559etE7vzBj/g08/8oNJKzcTur+9Gpn2rxtLwcOZjLnHyNp3aIhPyzbxH1jzwHg5xVJNG0Uxpx/jCQ3r4B1m3YBMOm28zj/b50YO/IMrrrMcUKwx+++mNmPjWD2Y8N5c1HF076qnGnHXlIPZ/LS5OG0iW7Id79tZuJ1gwH4adUWmjYM46XJw8nJKyAh0ZHpoRvP5cLTO3LLFadzzcV9AJizYAkP3nAOLz88kk8WryUnN79GuUTkpKba7KOys7PJznb9yccrao63rE/h4L40nv1gPK3an8JPX65h/FPDAFj27XoaR0fw7Afjyc3J44/ft3MoNYNfv1/Pcwvv4KwhPfn8rZ8AWDR/Mc8tGM+MRRNIWJbEgb2HAWdT/I6jKZ72yEcs/mYdAIl/7GLS7W9R1xief2IErVuVNMeJW/eQejCD2VNHEdOyEYt/3sQ9tztmVy79NYkmjcOZPXUUuXn5rHMeP/zAHedz3tmdGXPVQEbH92XDpl3cdt873P/oQr75YT2vvfsTu52Z/PzqOJrifq5tikVqoUZFh+o4b2OPXMBa+yNw5HERfYFEa+0Wa20u8D4wxFq71lp78RG3PcbhGeBLa+3vR26jIubIExm4kjHmMRy7rvOBlcCN1tqcypbv3bu3Xb58udvyyIlzXp/HPB2hnPRWIZ6OUE5+sPddSnzZm3d7OoLUcsaYFdba3hWN1Q+Jsv07lquR1fL1iscq3Y4vU232TQkJjhmJrjgBV0W2/pHCxNFzOFzBCatcKTzCuae4naMp/uHrhHLLtOvYjKdfvIYCa7lz8r/Zun2fWzP5+dXhsQcu5Yz+7Y69cDW4+7UTAe+rzcaYGOBz5xUUMMbEA+dba290fn810M9aO66Sx98BXAv8Bqyy1v7rWNt066dya+0Ua+2p1to4a+3VRyu8IiIigE+c+dKTVJvFHVqfGsXUd28jPNJ9f4QOj3AcU9yyXVOmTam4KQbYvGEXk25/k7rG8M8nR9C6ZaMKl3MFP786PHq/+5piEa9xktVma+0sa20va+0tVWmKwf2XaxIRERERH9D61CimvuOe5jisQTBPvX0rrdqfwrOPfswPX1XcFBfZvGEXD457C786huefHO6W5tjPrw5T7r+EgQPUFIucAMlAi1LfN3fe5zJqjEVExHuc4DNfiohrte7obI4jXNcchzUI5ul3biPm1GY8++jHfP/ftVV63Kb1KUy6/S3q1a3D808OJ6ZFQ5dlqlu3DlPuu4QzB7R32TpFvJZ31ObfgHbGmNbGGH9gJPBpjdZ4BDXGIiLiVXRWapGTW+uOUTz9zq0uaY6L9hTHnNqMZ6d8VOWmuEjZ5niES5rjunXr8Oj9l3DmaWqKxXecyNpsjHkPWAp0MMbsNMaMsdbmA+OAr3CcNPIDa+06V/6MaoxFREREarmIiAgiIiJO2PbadIqucXNc1BS37hjFc48ef1NcZNP6FB4c9zb+fo7muFUNmmNPNMWxsbHExsaesO2JeJq1dpS1tpm1tp61trm19hXn/V9Ya9tba2OttU+6ervVv/CriIiIO7hub299Y8w84DNr7WeuWqnIySg6OvqEb7NNp2jmfnU/B/elVevxDRqFUr9hGNMf/ZjvvqxeU1xk47pkHhz3Nk+/eDVznr2Sv/YcqtZ6QoL8aXZKgxplOV5BQUEndHsiFfKBmVhqjEVExIu49KyVh6y1rrm+hIhUS2STcCKbhFf78V8sWs63X65xSZaN65KZP/MbJky+hLatm7hknSK+wTeu9qCp1CIiIiK1XFZWFllZWZ6OUcb27duPmSk7K8+l28zOzj3qeFUynWjJyckkJ7v05LsiUgE1xiIi4j0sJ921EkVOBklJSSQlJXk6RhlpaWnKVAUHDhzgwIEDno4hvsy1tbm+MWaeMeYSD/9U5WgqtYiIeBddaklERMS7uK42e+1hTmqMRURERMQrde7ekukvX89fuw4y47FPKChwfDqvU8dw50OXEt0iks0bdvGvGf8F4Jm519L21GZMe3gRy5ZscqyjW0tuvOMcCq1l2ZKNHvtZRMS7aSq1iIh4FV3HWESKBAX7c89Nr7Fz2z4GDu5UfH+/ge3ZvzeNe256jcCgenTs0hyAZx5exEfv/VJmHdfddjYP3/kOUyd/yFnndjmh+UVqC1+ozWqMRUTEu+gYYxFx2rPrIAC//ZxI524ti+/v1LUFK35xHAu8fGnJWOoRl4byD/CjsNCSnpbN3t2HCAqqd4KSi9QyPlCbNZVaRERExEdkZWUVXxc3OTm50pM6BQYG0rZt2+LvExISKl1nVFQUkZGRAKSmppKSklLpsnFxcRVmAsqd9Kpx48bs2bsPgMz0HMLCS67nGxoWRGZGDgAZR4yVVno5gNzcfNatW4ct9QE9Li6uXG5vfJ5ExL3UGItbfPXbFE9HKOfv5z7j6Qjl/LTwXk9HEPEuFij07r8oi5yMQkNDSU9P93SMCgUFBVV4iaSCggL8/R17eINDA0g7XLJMeno2wSEBAIQcMVZaRlrJcuA4NrmoKS7dqHqzwMBA/Pz0kV08yEdqs/6XiYiIF/H+qVYiJ6OYmJhy90VHRxMdHV2lx1d1D2ZkZGS1ms2goKAKt5GX7WiMew9oy7rVO4rvX7/6T3r2bUPCyu306t+Wrz9bWeF6c3LyqFu3DiGhgQSH+JOXV1jhdopyF+3xLdpbDJ5/nkrvkRbxDN+ozTrGWEREaiuvvVaiiFRNTnYe01++nlZtGrPk2w3c8eDFACxbsonGp9Rn+svXk5ubz4a1OwG4+5EhDL6wG9feejbDrz0DgNfnfscTM69k0lPxLP6m8qnOIuLbtMdYRES8i+v+Ku2110oUkapJWLmdl57/qvj7WU99DkBhQSHTH/u43PIzHv+kwnXcNeYVAM6+QGelFqkWH9hjrMZYRES8iw8UXxERkZOKD9RmNcYiIiIiIuhs0CInQH1jzDzgM2vtZ54OU5oaYxER8R4+cuZLERGRk4Zra7PXHuakxlhERLyIBVvo6RAicgJERUUdc5kuPVsRFOxPVmZujbdnDPQ5vV2N1yPie3yjNuus1CIiIiJywlXlkkXtOkbx5OyrCAr2r9G2jIG7Hh7C2ed3PepyiYmJJCYm1mhbInJyUmMsIiLexVrX3ESkVujcrSVPzqp+c2wM3PXQpZx3aY9jLpudnU12dna1tiNSq/lAbVZjLCIi3qPoOCZX3ETEq6WmppKamlqlZTt3r15zXNwUD+lZnYgiAj5Tm9UYi4iIiMgJl5KSQkpKSpWX79y9JU/MupLAoHpVfoyaYhGpKjXGIiLiXXxgupaIVE9c91Y8OfuqKjXHaopFXMgHarMaYxER8S4+UHxFpPriurfiiVlHb47vfOgSzr9MTbGIy/hAbVZjLCIiIiInlS49Km+OJ0y+hAsu6+WBVCJyMnNrY2yMmWCMSTDGrDPG3OnObYnU1Ngxf2Pm9NFMuv8i6tYt+a9Rp47h/rsvYOb00dx+y6Di+6dPG8lniybQv19s8X1xnaOZ/fxVzJpxJa1jGp3Q/CK1g4v+Iu34q3R9Y8w8Y8wlnv6pvIlqs9QWXXq04omZZY85nvDgxVw4tPpNcUREBBEREa6IJ1KLuLQ2ey23NcbGmDjgJqAv0A242BjT1l3bE6mJ2DaNadQojAn3vMuOP1P528AOxWMD+sWyLzWdCfe8S2BgPTp1jALgqamfs/Cj5WXWc+P1ZzLp4QU88fSnjL3xrBP5I4jUDhYoLHTNDQ5Za8daaz/z8E/lNVSbpbbp0jOGJ2ZeSVCwv6Mpvrx3jdYXHR1NdHS0i9KJ1BKurc1ey517jDsCy6y1mdbafGAxcLkbtydSbZ07RbN8xVYAflu+hbjO0UcZaw7A/tT0Muvw9/ejoNCSnp7Dnr1phIcFnaD0IiJVptostU6XnjG89tEdNW6KRcS3ubMxTgAGGmMaGmOCgQuBFkcuZIwZa4xZboxZvnfvXjfGEalcWGggGZm5AKRn5JRpasPCAsnIKD0WWOk6MjNzir8vKCjEz0+H8YscNx+YruVBqs3iNeLi4oiLi3PJuiIahrpkPVlZWWRlZblkXSK1ig8c5uTnrhVbazcYY54BvgYygFVAQQXLzQPmAfTu3VufZMQj0jNyCAn2ByA0JIDDaSVFMT09h5CQ0mPZlawjm+DggOLv69atQ36+d08ZEfFKamrdRrVZ5OiSkpIAXNawi9QarqvNh6y1Y121Mldy6+4sa+0r1tpe1tozgQPAJnduT6S6EtYl06tHDAB9erUmYV1yydj6UmO9W5OwbmeF68jJyadu3TqEhATQuHFYmeZaRKrKQqGLblIh1WYRETk+vlGb3X1W6ibOf1viOIbpXXduT6S6krbsIfVgBjOnjyYmphE/LtnI3RPOA2DpL4k0aRLOzOmjyc3NZ/2GFADuv/sCzh0cx5jrBjJqRD8AXn39R6Y+MYxHHryU+a8u9tjPIyJSGdVm8RaJiYkkJiZ6OoaICODGqdROHxpjGgJ5wO3W2oNu3p5Itb308g9lvp8x8ysACgstzzz3Rbnlp834stx9a9buZPxdb7sln4hPsGCtDkFwM9Vm8QrZ2RUfmiQiXsZHarNbG2Nr7UB3rl9ERGohL59qdbJTbRYRkePmA7VZp8wVERERERERn+buqdQiIiLHR2elFhER8S4+UJvVGIuIiPewFgpr/3FMIuKdYmNjPR1BxPv4SG1WYywiIiIiAgQFBXk6goh4iBpjERHxLj4wXUtEICIiwtMRRKSqfKA2qzEWERGvYn1gupaIQHR0tKcjlJOcnAx4ZzYRT/KF2qyzUouIiIiIAAcOHODAgQOejiEiHqDGWEREvIh1TNdyxQ3qG2PmGWMu8fRPJSLlZWVlkZWV5ekYInJMLq3NXktTqUVExHtYoNBlhfOQtXasq1YmIq6VlJQEQFxcnIeTiMhRubY2ey3tMRYREREREZETwWtnc2mPsYiIeBdb+0/wISIiclJxXW322tlcaoxFRMRrWMD6wHQtERGRk4Wv1GY1xiIiIiLiMQkJCcTGxhIUFAQ4LplU2ZmhAwMDadu2bZnHViYqKorIyEgAUlNTSUlJqXTZouOcAwMDjzu/iNQOaozFZ3z/9QOejiAix2KtplKL+IjQ0FDS09M9HaOM0k23iDj5SG1WYywiIl7FF6ZriQjExMRUeH90dDTR0dFVWkdVz2gdGRlZvPdYRI6fL9RmnZVaREREREREfJr2GIuIiHfxgelaIiIiJxUfqM3GWu/ZLW6M2Qtsd8OqGwH73LDemlCmqvHGTOCduZSpapSp6tyVq5W1tnFFA8aY/zq36wr7rLXnu2hdPku12eOUqeq8MZcyVY0yVZ1qs5t4VWPsLsaY5dba3p7OUZoyVY03ZgLvzKVMVaNMVeetuaR28MbfL2WqGm/MBN6ZS5mqRpmqzltz1QY6xlhERERERER8mhpjERERERER8Wm+0hjP83SACihT1XhjJvDOXMpUNcpUdd6aS2oHb/z9Uqaq8cZM4J25lKlqlKnqvDXXSc8njjEWERERERERqYyv7DEWERERERERqZAaYxEREREREfFptboxNsacb4zZaIxJNMZM9HQeAGPMq8aYPcaYBE9nKWKMaWGM+d4Ys94Ys84YM8ELMgUaY341xqx2ZnrM05mKGGPqGmNWGmM+93QWAGPMNmPMWmPMKmPMck/nKWKMaWCMWWiM+cMYs8EYM8DDeTo4n6Oi22FjzJ2ezOTMdZfzdzzBGPOeMSbQCzJNcOZZ5w3PkdQuqs1Vo9p8fFSbq0a1ucq5VJt9UK09xtgYUxfYBJwD7AR+A0ZZa9d7ONeZQDrwprU2zpNZihhjmgHNrLW/G2PCgBXAZZ58rowxBgix1qYbY+oBS4AJ1tpfPJWpiDHmbqA3EG6tvdgL8mwDeltrveoi9MaYN4D/WWvnG2P8gWBr7UFP54Li94dkoJ+1drsHc0Tj+N3uZK3NMsZ8AHxhrX3dg5nigPeBvkAu8F/gFmttoqcySe2h2lx1qs3HR7W5alSbq5RDtdlH1eY9xn2BRGvtFmttLo5fpiEezoS19kcg1dM5SrPW7rLW/u78Og3YAER7OJO11qY7v63nvHn8rzjGmObARcB8T2fxZsaY+sCZwCsA1tpcbym8ToOAJE8W3lL8gCBjjB8QDKR4OE9HYJm1NtNamw8sBi73cCapPVSbq0i1uepUm6tGtfm4qDb7oNrcGEcDf5b6ficeLignA2NMDNADWObZJMXTolYBe4BvrLUezwT8E7gfKPR0kFIs8LUxZoUxZqynwzi1BvYCrzmnts03xoR4OlQpI4H3PB3CWpsMPAfsAHYBh6y1X3s2FQnAQGNMQ2NMMHAh0MLDmaT2UG2uBtXmY1JtrhrV5ipQbfZdtbkxluNkjAkFPgTutNYe9nQea22BtbY70Bzo65xG4jHGmIuBPdbaFZ7MUYEzrLU9gQuA251TAj3ND+gJzLXW9gAyAG85ltAfuBRY4AVZInDsLWsNRAEhxpirPJnJWrsBeAb4GsdUrVVAgSczifgy1eajU20+LqrNVcui2uyjanNjnEzZv6Q0d94nFXAeK/Qh8I61dpGn85TmnObzPXC+h6OcDlzqPG7ofeBsY8zbno1U/JdNrLV7gI9wTFX0tJ3AzlJ7EhbiKMbe4ALgd2vtbk8HAQYDW621e621ecAi4DQPZ8Ja+4q1tpe19kzgAI5jQkVcQbX5OKg2V4lqc9WpNleNarOPqs2N8W9AO2NMa+dfoUYCn3o4k1dynkzjFWCDtXaGp/MAGGMaG2MaOL8OwnGilj88mclaO8la29xaG4Pj9+k7a61H/4JojAlxnpQF53Soc3FMt/Eoa+1fwJ/GmA7OuwYBHj25Timj8IKpWk47gP7GmGDn/8NBOI4j9ChjTBPnvy1xHMP0rmcTSS2i2lxFqs1Vo9pcdarNVaba7KP8PB3AXay1+caYccBXQF3gVWvtOg/HwhjzHnAW0MgYsxOYYq19xbOpOB24GljrPG4I4EFr7RcezNQMeMN5hsI6wAfWWq+4BIOXaQp85Hjfxg9411r7X89GKjYeeMf54XcLcL2H8xR9QDkHuNnTWQCstcuMMQuB34F8YCUwz7OpAPjQGNMQyANu97KTs8hJTLX5uKg2n7xUm4+DanOVqTa7Wa29XJOIiIiIiIhIVdTmqdQiIiIiIiIix6TGWERERERERHyaGmMRERERERHxaWqMRURERERExKepMRYRERERERGfpsZYxM2MMY8aY+71dA4RERFxUG0WkSOpMRYRERERERGfpsZYpJqMMdcYY9YYY1YbY94yxsQYY75z3vetMaZlBY/5wRjT2/l1I2PMNufX1xljPjbGfGOM2WaMGWeMudsYs9IY84sxJrLU458xxvxqjNlkjBl4Qn9oERERL6baLCLVpcZYpBqMMZ2Bh4CzrbXdgAnAbOANa21X4B1g1nGuNg64HOgDPAlkWmt7AEuBa0ot52et7QvcCUyp0Q8iIiJSS6g2i0hNqDEWqZ6zgQXW2n0A1tpUYADwrnP8LeCM41zn99baNGvtXuAQ8Jnz/rVATKnlFjn/XXHE/SIiIr5MtVlEqk2NsciJlU/J/7vAI8ZySn1dWOr7QsCvguUKjrhfREREjp9qs4ioMRappu+AYcaYhgDO44x+BkY6x68E/lfB47YBvZxfx7s5o4iIiC9RbRaRatNftESqwVq7zhjzJLDYGFMArATGA68ZY+4D9gLXV/DQ54APjDFjgf+csMAiIiK1nGqziNSEsdZ6OoOIiIiIiIiIx2gqtYiIiIiIiPg0NcYiIiIiIiLi09QYi4iIiIiIiE9TYywiIiIiIiI+TY2xiIiIiIiI+DQ1xiIiIiIiIuLT1BiLiIiIiIiIT/t/iGgcbqT5hFEAAAAASUVORK5CYII=\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light",
- "tags": []
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "processor_id = \"\" # @param {type:\"string\"}\n",
- "metrics = \"parallel_p00_error, two_qubit_sqrt_iswap_gate_xeb_pauli_error_per_cycle\" # @param {type:\"string\"}\n",
- "metrics = [m.strip() for m in metrics.split(sep=\",\")]\n",
- "\n",
- "from matplotlib.colors import LogNorm\n",
- "\n",
- "\n",
- "_, axes = plt.subplots(nrows=1, ncols=len(metrics), figsize=(min(16, 8 * len(metrics)), 7))\n",
- "\n",
- "\n",
- "calibration = cg.get_engine_calibration(processor_id=processor_id)\n",
- "for i, metric in enumerate(metrics):\n",
- " calibration.heatmap(metric).plot(\n",
- " ax=axes[i] if len(metrics) > 1 else axes,\n",
- " collection_options={\"norm\": LogNorm()},\n",
- " annotation_format=\"0.3f\",\n",
- " annotation_text_kwargs={\"size\": \"small\"},\n",
- " );"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "T9U6qwhmBLh3"
- },
- "source": [
- "Using this report as a guide, we select a good set of qubits."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "id": "v8rxDM_5AF4p"
- },
- "outputs": [],
- "source": [
- "# Select qubit indices here.\n",
- "qubit_indices = [(2, 5), (2, 6), (2, 7), (2, 8), (3, 8), (3, 7), (3, 6), (3, 5), (4, 5), (4, 6)]\n",
- "qubits = [cirq.GridQubit(*idx) for idx in qubit_indices]"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "JDTOQHi1FNQ1"
- },
- "source": [
- "An example random circuit on these qubits (used as the forward operations of the Loschmidt echo) is shown below.\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "id": "AhziVqFiFaFy"
- },
- "outputs": [
- {
- "data": {
- "text/html": [
- " ┌──────────────────────────────────────────┐ ┌────────────────────────────┐ ┌──────────────────────────────────────────┐ ┌────────────────────────────┐ ┌──────────────────────────────────────────┐ ┌────────────────────────────┐\n",
- "(2, 5): ───PhX(-0.5)^0.5───────────────────────────────────────────────────PhX(-0.25)^0.5────FSim(0.25π, 0)──────────────────PhX(1)^0.5───────FSim(0.25π, 0)───PhX(-0.5)^0.5─────────────────────PhX(1)^0.5───────FSim(0.25π, 0)───PhX(0.75)^0.5────────────────────PhX(0)^0.5──────────────────────────────────────────────────────PhX(-0.5)^0.5─────FSim(0.25π, 0)──────────────────PhX(0.25)^0.5───────────────────────────────────────────────────PhX(0.5)^0.5──────FSim(0.25π, 0)──────────────────PhX(-0.75)^0.5───\n",
- " │ │ │ │ │\n",
- "(2, 6): ───PhX(0)^0.5────────FSim(0.25π, 0)────────────────────────────────PhX(0.5)^0.5──────┼───────────────────────────────PhX(-0.5)^0.5────FSim(0.25π, 0)───PhX(-0.75)^0.5───FSim(0.25π, 0)───PhX(0.75)^0.5────FSim(0.25π, 0)───PhX(0.5)^0.5────FSim(0.25π, 0)───PhX(0)^0.5────────FSim(0.25π, 0)────────────────────────────────PhX(-0.25)^0.5────┼───────────────────────────────PhX(-0.5)^0.5─────FSim(0.25π, 0)────────────────────────────────PhX(0.25)^0.5─────┼───────────────────────────────PhX(1)^0.5───────\n",
- " │ │ │ │ │ │ │ │\n",
- "(2, 7): ───PhX(0.75)^0.5─────┼─────────────────────────────────────────────PhX(0)^0.5────────┼─────────────FSim(0.25π, 0)────PhX(-0.25)^0.5───FSim(0.25π, 0)───PhX(-0.75)^0.5───FSim(0.25π, 0)───PhX(0.75)^0.5────FSim(0.25π, 0)───PhX(0.5)^0.5────FSim(0.25π, 0)───PhX(-0.75)^0.5────┼─────────────────────────────────────────────PhX(-0.5)^0.5─────┼─────────────FSim(0.25π, 0)────PhX(0.25)^0.5─────┼─────────────────────────────────────────────PhX(0)^0.5────────┼─────────────FSim(0.25π, 0)────PhX(-0.75)^0.5───\n",
- " │ │ │ │ │ │ │ │ │ │ │\n",
- "(2, 8): ───PhX(0.75)^0.5─────┼─────────────FSim(0.25π, 0)──────────────────PhX(1)^0.5────────┼─────────────┼─────────────────PhX(0)^0.5───────FSim(0.25π, 0)───PhX(-0.25)^0.5────────────────────PhX(0.5)^0.5─────FSim(0.25π, 0)───PhX(-0.5)^0.5────────────────────PhX(-0.25)^0.5────┼─────────────FSim(0.25π, 0)──────────────────PhX(0.75)^0.5─────┼─────────────┼─────────────────PhX(-0.75)^0.5────┼─────────────FSim(0.25π, 0)──────────────────PhX(-0.5)^0.5─────┼─────────────┼─────────────────PhX(0.25)^0.5────\n",
- " │ │ │ │ │ │ │ │ │ │ │ │\n",
- "(3, 5): ───PhX(0.75)^0.5─────┼─────────────┼─────────────FSim(0.25π, 0)────PhX(1)^0.5────────FSim(0.25π, 0)┼─────────────────PhX(-0.75)^0.5────────────────────PhX(0)^0.5───────FSim(0.25π, 0)───PhX(0.25)^0.5─────────────────────PhX(0)^0.5──────FSim(0.25π, 0)───PhX(-0.75)^0.5────┼─────────────┼─────────────FSim(0.25π, 0)────PhX(0.25)^0.5─────FSim(0.25π, 0)┼─────────────────PhX(-0.75)^0.5────┼─────────────┼─────────────FSim(0.25π, 0)────PhX(-0.5)^0.5─────FSim(0.25π, 0)┼─────────────────PhX(-0.75)^0.5───\n",
- " │ │ │ │ │ │ │ │ │ │ │ │ │ │\n",
- "(3, 6): ───PhX(0)^0.5────────FSim(0.25π, 0)┼─────────────┼─────────────────PhX(0.75)^0.5─────FSim(0.25π, 0)┼─────────────────PhX(0.25)^0.5────FSim(0.25π, 0)───PhX(1)^0.5───────FSim(0.25π, 0)───PhX(0)^0.5───────FSim(0.25π, 0)───PhX(0.25)^0.5───FSim(0.25π, 0)───PhX(0.5)^0.5──────FSim(0.25π, 0)┼─────────────┼─────────────────PhX(1)^0.5────────FSim(0.25π, 0)┼─────────────────PhX(-0.5)^0.5─────FSim(0.25π, 0)┼─────────────┼─────────────────PhX(-0.75)^0.5────FSim(0.25π, 0)┼─────────────────PhX(0.25)^0.5────\n",
- " │ │ │ │ │ │ │ │ │ │ │ │ │ │\n",
- "(3, 7): ───PhX(0.75)^0.5───────────────────┼─────────────┼─────────────────PhX(-0.75)^0.5────┼─────────────FSim(0.25π, 0)────PhX(-0.5)^0.5────FSim(0.25π, 0)───PhX(0.75)^0.5────FSim(0.25π, 0)───PhX(-0.75)^0.5───FSim(0.25π, 0)───PhX(0)^0.5──────FSim(0.25π, 0)───PhX(-0.75)^0.5──────────────────┼─────────────┼─────────────────PhX(0.25)^0.5─────┼─────────────FSim(0.25π, 0)────PhX(1)^0.5──────────────────────┼─────────────┼─────────────────PhX(-0.75)^0.5────┼─────────────FSim(0.25π, 0)────PhX(0.5)^0.5─────\n",
- " │ │ │ │ │ │ │ │ │ │ │\n",
- "(3, 8): ───PhX(-0.5)^0.5───────────────────FSim(0.25π, 0)┼─────────────────PhX(0.25)^0.5─────┼───────────────────────────────PhX(1)^0.5────────────────────────PhX(0.25)^0.5────FSim(0.25π, 0)───PhX(-0.5)^0.5─────────────────────PhX(1)^0.5──────FSim(0.25π, 0)───PhX(0.75)^0.5───────────────────FSim(0.25π, 0)┼─────────────────PhX(-0.25)^0.5────┼───────────────────────────────PhX(-0.75)^0.5──────────────────FSim(0.25π, 0)┼─────────────────PhX(0)^0.5────────┼───────────────────────────────PhX(-0.5)^0.5────\n",
- " │ │ │ │ │ │\n",
- "(4, 5): ───PhX(1)^0.5────────────────────────────────────FSim(0.25π, 0)────PhX(0.25)^0.5─────┼───────────────────────────────PhX(0)^0.5───────FSim(0.25π, 0)───PhX(1)^0.5────────────────────────PhX(-0.25)^0.5───FSim(0.25π, 0)───PhX(0)^0.5───────────────────────PhX(-0.75)^0.5────────────────────────────────FSim(0.25π, 0)────PhX(-0.25)^0.5────┼───────────────────────────────PhX(0.5)^0.5──────────────────────────────────FSim(0.25π, 0)────PhX(0.25)^0.5─────┼───────────────────────────────PhX(0.75)^0.5────\n",
- " │ │ │ │ │\n",
- "(4, 6): ───PhX(-0.25)^0.5──────────────────────────────────────────────────PhX(0)^0.5────────FSim(0.25π, 0)──────────────────PhX(-0.75)^0.5───FSim(0.25π, 0)───PhX(0.75)^0.5─────────────────────PhX(0.5)^0.5─────FSim(0.25π, 0)───PhX(0.75)^0.5────────────────────PhX(-0.75)^0.5──────────────────────────────────────────────────PhX(0.75)^0.5─────FSim(0.25π, 0)──────────────────PhX(1)^0.5──────────────────────────────────────────────────────PhX(0.75)^0.5─────FSim(0.25π, 0)──────────────────PhX(0.25)^0.5────\n",
- " └──────────────────────────────────────────┘ └────────────────────────────┘ └──────────────────────────────────────────┘ └────────────────────────────┘ └──────────────────────────────────────────┘ └────────────────────────────┘
"
- ],
- "text/plain": [
- " ┌──────────────────────────────────────────┐ ┌────────────────────────────┐ ┌──────────────────────────────────────────┐ ┌────────────────────────────┐ ┌──────────────────────────────────────────┐ ┌────────────────────────────┐\n",
- "(2, 5): ───PhX(-0.5)^0.5───────────────────────────────────────────────────PhX(-0.25)^0.5────FSim(0.25π, 0)──────────────────PhX(1)^0.5───────FSim(0.25π, 0)───PhX(-0.5)^0.5─────────────────────PhX(1)^0.5───────FSim(0.25π, 0)───PhX(0.75)^0.5────────────────────PhX(0)^0.5──────────────────────────────────────────────────────PhX(-0.5)^0.5─────FSim(0.25π, 0)──────────────────PhX(0.25)^0.5───────────────────────────────────────────────────PhX(0.5)^0.5──────FSim(0.25π, 0)──────────────────PhX(-0.75)^0.5───\n",
- " │ │ │ │ │\n",
- "(2, 6): ───PhX(0)^0.5────────FSim(0.25π, 0)────────────────────────────────PhX(0.5)^0.5──────┼───────────────────────────────PhX(-0.5)^0.5────FSim(0.25π, 0)───PhX(-0.75)^0.5───FSim(0.25π, 0)───PhX(0.75)^0.5────FSim(0.25π, 0)───PhX(0.5)^0.5────FSim(0.25π, 0)───PhX(0)^0.5────────FSim(0.25π, 0)────────────────────────────────PhX(-0.25)^0.5────┼───────────────────────────────PhX(-0.5)^0.5─────FSim(0.25π, 0)────────────────────────────────PhX(0.25)^0.5─────┼───────────────────────────────PhX(1)^0.5───────\n",
- " │ │ │ │ │ │ │ │\n",
- "(2, 7): ───PhX(0.75)^0.5─────┼─────────────────────────────────────────────PhX(0)^0.5────────┼─────────────FSim(0.25π, 0)────PhX(-0.25)^0.5───FSim(0.25π, 0)───PhX(-0.75)^0.5───FSim(0.25π, 0)───PhX(0.75)^0.5────FSim(0.25π, 0)───PhX(0.5)^0.5────FSim(0.25π, 0)───PhX(-0.75)^0.5────┼─────────────────────────────────────────────PhX(-0.5)^0.5─────┼─────────────FSim(0.25π, 0)────PhX(0.25)^0.5─────┼─────────────────────────────────────────────PhX(0)^0.5────────┼─────────────FSim(0.25π, 0)────PhX(-0.75)^0.5───\n",
- " │ │ │ │ │ │ │ │ │ │ │\n",
- "(2, 8): ───PhX(0.75)^0.5─────┼─────────────FSim(0.25π, 0)──────────────────PhX(1)^0.5────────┼─────────────┼─────────────────PhX(0)^0.5───────FSim(0.25π, 0)───PhX(-0.25)^0.5────────────────────PhX(0.5)^0.5─────FSim(0.25π, 0)───PhX(-0.5)^0.5────────────────────PhX(-0.25)^0.5────┼─────────────FSim(0.25π, 0)──────────────────PhX(0.75)^0.5─────┼─────────────┼─────────────────PhX(-0.75)^0.5────┼─────────────FSim(0.25π, 0)──────────────────PhX(-0.5)^0.5─────┼─────────────┼─────────────────PhX(0.25)^0.5────\n",
- " │ │ │ │ │ │ │ │ │ │ │ │\n",
- "(3, 5): ───PhX(0.75)^0.5─────┼─────────────┼─────────────FSim(0.25π, 0)────PhX(1)^0.5────────FSim(0.25π, 0)┼─────────────────PhX(-0.75)^0.5────────────────────PhX(0)^0.5───────FSim(0.25π, 0)───PhX(0.25)^0.5─────────────────────PhX(0)^0.5──────FSim(0.25π, 0)───PhX(-0.75)^0.5────┼─────────────┼─────────────FSim(0.25π, 0)────PhX(0.25)^0.5─────FSim(0.25π, 0)┼─────────────────PhX(-0.75)^0.5────┼─────────────┼─────────────FSim(0.25π, 0)────PhX(-0.5)^0.5─────FSim(0.25π, 0)┼─────────────────PhX(-0.75)^0.5───\n",
- " │ │ │ │ │ │ │ │ │ │ │ │ │ │\n",
- "(3, 6): ───PhX(0)^0.5────────FSim(0.25π, 0)┼─────────────┼─────────────────PhX(0.75)^0.5─────FSim(0.25π, 0)┼─────────────────PhX(0.25)^0.5────FSim(0.25π, 0)───PhX(1)^0.5───────FSim(0.25π, 0)───PhX(0)^0.5───────FSim(0.25π, 0)───PhX(0.25)^0.5───FSim(0.25π, 0)───PhX(0.5)^0.5──────FSim(0.25π, 0)┼─────────────┼─────────────────PhX(1)^0.5────────FSim(0.25π, 0)┼─────────────────PhX(-0.5)^0.5─────FSim(0.25π, 0)┼─────────────┼─────────────────PhX(-0.75)^0.5────FSim(0.25π, 0)┼─────────────────PhX(0.25)^0.5────\n",
- " │ │ │ │ │ │ │ │ │ │ │ │ │ │\n",
- "(3, 7): ───PhX(0.75)^0.5───────────────────┼─────────────┼─────────────────PhX(-0.75)^0.5────┼─────────────FSim(0.25π, 0)────PhX(-0.5)^0.5────FSim(0.25π, 0)───PhX(0.75)^0.5────FSim(0.25π, 0)───PhX(-0.75)^0.5───FSim(0.25π, 0)───PhX(0)^0.5──────FSim(0.25π, 0)───PhX(-0.75)^0.5──────────────────┼─────────────┼─────────────────PhX(0.25)^0.5─────┼─────────────FSim(0.25π, 0)────PhX(1)^0.5──────────────────────┼─────────────┼─────────────────PhX(-0.75)^0.5────┼─────────────FSim(0.25π, 0)────PhX(0.5)^0.5─────\n",
- " │ │ │ │ │ │ │ │ │ │ │\n",
- "(3, 8): ───PhX(-0.5)^0.5───────────────────FSim(0.25π, 0)┼─────────────────PhX(0.25)^0.5─────┼───────────────────────────────PhX(1)^0.5────────────────────────PhX(0.25)^0.5────FSim(0.25π, 0)───PhX(-0.5)^0.5─────────────────────PhX(1)^0.5──────FSim(0.25π, 0)───PhX(0.75)^0.5───────────────────FSim(0.25π, 0)┼─────────────────PhX(-0.25)^0.5────┼───────────────────────────────PhX(-0.75)^0.5──────────────────FSim(0.25π, 0)┼─────────────────PhX(0)^0.5────────┼───────────────────────────────PhX(-0.5)^0.5────\n",
- " │ │ │ │ │ │\n",
- "(4, 5): ───PhX(1)^0.5────────────────────────────────────FSim(0.25π, 0)────PhX(0.25)^0.5─────┼───────────────────────────────PhX(0)^0.5───────FSim(0.25π, 0)───PhX(1)^0.5────────────────────────PhX(-0.25)^0.5───FSim(0.25π, 0)───PhX(0)^0.5───────────────────────PhX(-0.75)^0.5────────────────────────────────FSim(0.25π, 0)────PhX(-0.25)^0.5────┼───────────────────────────────PhX(0.5)^0.5──────────────────────────────────FSim(0.25π, 0)────PhX(0.25)^0.5─────┼───────────────────────────────PhX(0.75)^0.5────\n",
- " │ │ │ │ │\n",
- "(4, 6): ───PhX(-0.25)^0.5──────────────────────────────────────────────────PhX(0)^0.5────────FSim(0.25π, 0)──────────────────PhX(-0.75)^0.5───FSim(0.25π, 0)───PhX(0.75)^0.5─────────────────────PhX(0.5)^0.5─────FSim(0.25π, 0)───PhX(0.75)^0.5────────────────────PhX(-0.75)^0.5──────────────────────────────────────────────────PhX(0.75)^0.5─────FSim(0.25π, 0)──────────────────PhX(1)^0.5──────────────────────────────────────────────────────PhX(0.75)^0.5─────FSim(0.25π, 0)──────────────────PhX(0.25)^0.5────\n",
- " └──────────────────────────────────────────┘ └────────────────────────────┘ └──────────────────────────────────────────┘ └────────────────────────────┘ └──────────────────────────────────────────┘ └────────────────────────────┘"
- ]
- },
- "execution_count": 10,
- "metadata": {
- "tags": []
- },
- "output_type": "execute_result"
- }
- ],
- "source": [
- "create_random_circuit(qubits, cycles=10, seed=1)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "AByUxOocFMCx"
- },
- "source": [
- "## Set up XEB calibration"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "ir3eBfioDx3y"
- },
- "source": [
- "Now we specify the cycle depths and other options for XEB calibration below. Note that all `cirq.FSimGate` parameters are characterized by default."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "id": "by6KJHuxp9-I"
- },
- "outputs": [],
- "source": [
- "xeb_options = cg.LocalXEBPhasedFSimCalibrationOptions(\n",
- " cycle_depths=(5, 25, 50, 100),\n",
- " n_processes=1,\n",
- " fsim_options=cirq.experiments.XEBPhasedFSimCharacterizationOptions(\n",
- " characterize_theta=False,\n",
- " characterize_zeta=True,\n",
- " characterize_chi=True,\n",
- " characterize_gamma=True,\n",
- " characterize_phi=False,\n",
- " ),\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "pxJTETNmQTg9"
- },
- "source": [
- "## Run a Loschmidt echo benchmark"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "ig0EjlmDIRm1"
- },
- "source": [
- "Note: See the [Loschmidt echo tutorial](https://quantumai.google/cirq/tutorials/google/echoes) for background about this benchmark."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "id": "YquQdZSqQXCq"
- },
- "outputs": [],
- "source": [
- "\"\"\"Setup the Loschmidt echo experiment.\"\"\"\n",
- "\n",
- "cycle_values = range(0, 40 + 1, 4)\n",
- "nreps = 20_000\n",
- "trials = 10\n",
- "\n",
- "sampler = cg.get_engine_sampler(\n",
- " project_id=project_id, processor_id=processor_id, gate_set_name=\"sqrt_iswap\"\n",
- ")\n",
- "\n",
- "loschmidt_echo_batch = [\n",
- " create_loschmidt_echo_circuit(qubits, cycles=c, seed=trial)\n",
- " for trial in range(trials)\n",
- " for c in cycle_values\n",
- "]"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "E95hBywZswC6"
- },
- "source": [
- "### Without calibration"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "w7jLxisKsyn8"
- },
- "source": [
- "First we run the Loschmidt echo without calibration."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "id": "fCt5Z9Basy_n"
- },
- "outputs": [],
- "source": [
- "# Run on the engine.\n",
- "raw_results = sampler.run_batch(programs=loschmidt_echo_batch, repetitions=nreps)\n",
- "\n",
- "# Convert measurements to survival probabilities.\n",
- "raw_probs = np.array([to_ground_state_prob(*res) for res in raw_results]).reshape(\n",
- " trials, len(cycle_values)\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "iyxRKi0DszLu"
- },
- "source": [
- "### With XEB calibration"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "pWF_c_jrxH_m"
- },
- "source": [
- "Now we perform XEB calibration."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "id": "eUWl3GHuqHxl"
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "100%|██████████| 45/45 [00:46<00:00, 1.04s/it]\n",
- "100%|██████████| 45/45 [01:50<00:00, 2.45s/it]\n",
- "100%|██████████| 45/45 [01:00<00:00, 1.34s/it]\n",
- "100%|██████████| 45/45 [02:24<00:00, 3.20s/it]\n"
- ]
- }
- ],
- "source": [
- "# Get characterization requests.\n",
- "characterization_requests = cg.prepare_characterization_for_operations(\n",
- " loschmidt_echo_batch, xeb_options\n",
- ")\n",
- "\n",
- "# Characterize the requests on the engine.\n",
- "characterizations = cg.run_calibrations(characterization_requests, sampler)\n",
- "\n",
- "# Make compensations to circuits in the Loschmidt echo batch.\n",
- "xeb_calibrated_batch = [\n",
- " cg.make_zeta_chi_gamma_compensation_for_moments(circuit, characterizations).circuit\n",
- " for circuit in loschmidt_echo_batch\n",
- "]"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "FH9Lvt7gxIw8"
- },
- "source": [
- "And run the XEB calibrated batch below."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "id": "Ibl9odPdrosP"
- },
- "outputs": [],
- "source": [
- "# Run on the engine.\n",
- "xeb_results = sampler.run_batch(programs=xeb_calibrated_batch, repetitions=nreps)\n",
- "\n",
- "# Convert measurements to survival probabilities.\n",
- "xeb_probs = np.array([to_ground_state_prob(*res) for res in xeb_results]).reshape(\n",
- " trials, len(cycle_values)\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "ynCBsf4-s3GJ"
- },
- "source": [
- "### Compare results"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "FV5HLCAD4hHh"
- },
- "source": [
- "The next cell plots the results."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {
- "id": "7hNzY6K1vh0V"
- },
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEHCAYAAACwUAEWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hURffA8e+kkBBIQu8l9BpI6FWp0kERFUUEUVBAsKLoT19QXl8bKkVQUYoiioogRVEB6b2F3hISmtICJKGkz++Pu9nNQrKkbEtyPs+zT7Kze+89riQnM3PnjNJaI4QQQmTGw9UBCCGEcG+SKIQQQtgkiUIIIYRNkiiEEELYJIlCCCGETZIohBBC2OTl6gAcoVSpUjooKMjVYQghRJ6xe/fuy1rr0hm9li8TRVBQELt27XJ1GEIIkWcopU5l9prbJwqlVBFgJpAIrNNaL3BxSEIIUaC4ZI5CKTVHKXVRKXXwtvbuSqljSqlwpdR4U3N/YJHWejjQ1+nBCiFEAeeqyex5QPf0DUopT2AG0AOoDzyqlKoPVALOmN6W4sQYhRBC4KKhJ631BqVU0G3NLYBwrfVJAKXUQqAfcBYjWYQhd2kJ4RaSkpI4e/Ys8fHxrg5FZJOvry+VKlXC29s7y8e40xxFRSw9BzASREtgGvCZUqoXsDyzg5VSI4ARAFWqVHFgmEKIs2fP4u/vT1BQEEopV4cjskhrTXR0NGfPnqVatWpZPs6dEkWGtNY3gCez8L5ZwCyAZs2aSUlcIRwoPj5ekkQepJSiZMmSXLp0KVvHudNQzjmgcrrnlUxtTqG15uNf1rHvzDVnXVKIPE2SRN6Uk/9v7pQodgK1lFLVlFKFgIHAsuycQCnVRyk1KyYmJtsXX7p2C6P3DyBy1iC++3MLqanSKRFCCHDd7bE/AFuBOkqps0qpp7TWycBzwJ/AEeAnrfWh7JxXa71caz0iMDAwW/HcSkwhYOPb+Kok7vfcRP8t97NkylguXrmSrfMIIZxHKcXLL79sfj558mQmTpzosOt16NDBvJC3Z8+eXLt2jaioKBo2bJir8/76668cPnzY/Pw///kPq1evztU57c0liUJr/ajWurzW2ltrXUlrPdvU/rvWurbWuobW+l1nxVPYI4VW1Uuan/upBB6M/ZbUac059OdskF0AhXA7Pj4+LF68mMuXLzv92r///jvFihXL8vtTUjK/s//2RPHOO+/QpUuXXMVnb+409JRrOR568iqE3+AfSB68jAt+tczN5bhMg60vcWZyexJP77RztEKI3PDy8mLEiBF8+umnd7wWFRVFp06daNSoEZ07d+b06dN3vOf69es8+eSTBAcH06hRI3755RcARo4cSbNmzWjQoAETJkzI8NpBQUHmBJWcnMygQYOoV68eAwYM4ObNm+b3vPbaazRp0oSff/6Zr776iubNm9O4cWMefPBBbt68yZYtW1i2bBnjxo0jJCSEiIgIhg4dyqJFiwBYs2YNoaGhBAcHM2zYMBISEsznnjBhAk2aNCE4OJijR4/m/gO1we3vesoOrfVyYHmzZs2G5+R4rxr3UvaV7YT/OZMS2z+kBLEAVL5xAOZ0Ia7OAPx7/RcCytszbCHytKDxvzns3FHv97L5+ujRo2nUqBGvvvqqVfuYMWMYMmQIQ4YMYc6cOYwdO5Zff/3V6j2TJk0iMDCQAwcOAHD16lUA3n33XUqUKEFKSgqdO3dm//79NGrUKNMYjh07xuzZs2nbti3Dhg1j5syZvPLKKwCULFmSPXv2ABAdHc3w4cavpjfffJPZs2czZswY+vbtS+/evRkwYIDVeePj4xk6dChr1qyhdu3aPPHEE3z++ee88MILAJQqVYo9e/Ywc+ZMJk+ezNdff23zs8qNfNWjsAsPT2r2GANj9rAy4CEStaf5Jf9ji0ieGope/xEk3XJhkEIIgICAAJ544gmmTZtm1b5161Yee+wxAAYPHsymTZvuOHb16tWMHj3a/Lx48eIA/PTTTzRp0oTQ0FAOHTpkNSyUkcqVK9O2bVsAHn/8catrPfLII+bvDx48SPv27QkODmbBggUcOmR7CvbYsWNUq1aN2rVrAzBkyBA2bNhgfr1///4ANG3alKioKJvnyi1JFJkoUbI03V/8iuVtF7M6tZm53SvlFmrtf0md3hwOLpb5CyFc7IUXXmD27NncuHEj1+eKjIxk8uTJrFmzhv3799OrV6+7rj6//XbT9M+LFCli/n7o0KF89tlnHDhwgAkTJuR6VbuPjw8Anp6eJCcn5+pcd5Ovhp7sTSnFg/d14FDDUF6eP4/hN76iroexeNwj9gwsehJ2zILu70GFUBdHK4Rr3G14yNFKlCjBww8/zOzZsxk2bBgAbdq0YeHChQwePJgFCxbQvn37O47r2rUrM2bMYMqUKYAx9BQbG0uRIkUIDAzkwoULrFy5kg4dOti8/unTp9m6dSutW7fm+++/p127dhm+Ly4ujvLly5OUlMSCBQuoWLEiAP7+/sTFxd3x/jp16hAVFUV4eDg1a9Zk/vz53Hvvvdn5aOwmX/UocrOOwpYGFQKZ9OJovgn+lv9LGka09re8eHorelZH+HU0xF2w63WFEFnz8ssvW939NH36dObOnUujRo2YP38+U6dOveOYN998k6tXr9KwYUMaN27M2rVrady4MaGhodStW5fHHnvMPKRkS506dZgxYwb16tXj6tWrjBw5MsP3TZo0iZYtW9K2bVvq1q1rbh84cCAfffQRoaGhREREmNt9fX2ZO3cuDz30EMHBwXh4ePDss89m52OxG6Xz4dBJs2bNtKM2Llq+7x/eW7yNYSk/McTzL7xVutveChWF9i9Bq9Hg7euQ6wvhDo4cOUK9evVcHYbIoYz+/ymldmutm2X0/nzVo3CGPo0r8OPz3fmtwhjuS/yQ1SnphpwSr8Oad2BGCzi8VOYvhBD5giSKHKhcwo+fnmlNrw7tGZ48jsGJ4zmeWtHyhmun4KcnYF5v+He/6wIVQgg7yFeJwlFzFBnx9vTglW51WPB0S44XbU6PxPd5K2koV3VRy5tObYIv74FlY+D6RYfHJIQQjpCvEkVOaz3lRpsapVj5/D10rFee+Sn30SHhE+YkdyfJvP5Cw55vYVoT2DQFkhOcFpsQQthDvkoUrlKiSCG+eqIZb/dtwC2vAN5JfoLuie/zd0qI5U2JcbB6AsxoCUdWyPyFECLPkERhJ0ophrQJ4tdRbalRuggRuiLDkl5lSOJrRKl08xdXI+HHQfBNHzh/0HUBCyFEFkmisLP6FQJYPqYdA5sbezCtT21Ml1vv8U7yEOK9AixvjNoIX7aH5S/ADedXvxQiLztz5gzVqlXjimkrgKtXr1KtWjWioqKIioqicOHChISEmB/ffvstYBTTCw4OJiQkhODgYJYuXZrrWNatW0fv3r0BWLZsGe+//z6AVXG/nLh27RozZ840P//nn3/uqAflLJIoHMCvkBfvP9iIGY81wd/Xi2S8mJPcjVbXP+LPIn3RyjR/oVNh91yYFgpbpkNyomsDFyKPqFy5MiNHjmT8+PEAjB8/nhEjRhAUFARAjRo1CAsLMz+eeOIJ87Fr164lLCyMRYsWMXbsWLvG1bdvX3NMWWGr9MbtiaJChQq5Sjy5ka8ShTPvesqKXo3Ks/L59jStahQbu4Y/z0QPZAAfEV0u3TL/hFj46034rCns/wlSU10UsRB5x4svvsi2bduYMmUKmzZtMldszarY2FhzIcDb/fHHHzRp0oTGjRvTuXNnAHbs2EHr1q0JDQ2lTZs2HDt27I7j5s2bx3PPPWd+vnr1apo1a0bt2rVZsWKF+T19+/alU6dOdO7cmevXr9O5c2dzyfC0Xs748eOJiIggJCSEcePGWW2SFB8fby6RHhoaytq1a83n7t+/P927d6dWrVp3VNXNqXxV6ym3ZcYdoVJxP34c0Yqpa07w2dpwtIbdt8rRNGok7zbox6NXv8TjSrjx5munYfFw2DwNukyAml1A9iUW7m6iA+8ynJj5H33e3t589NFHdO/enb/++gtvb2/za2m/YNNMnz7dXO+pY8eOaK05efIkP/300x3nvXTpEsOHD2fDhg1Ww1t169Zl48aNeHl5sXr1at544w3zHhaZiYqKYseOHURERNCxY0fCw42f9T179rB//35KlChBcnIyS5YsISAggMuXL9OqVSv69u3L+++/z8GDBwkLCzOfK82MGTNQSnHgwAGOHj3Kfffdx/HjxwEICwtj7969+Pj4UKdOHcaMGUPlypVtxnk3+SpRuCsvTw9evq8ObWqU4sUfwzgfGw8o/u9QRRaW+4g5bfdRes9UuGXUw+fCAVgwAKq2gy4ToXJzF0YvhPtauXIl5cuX5+DBg3Tt2tXcnjb0lJG1a9dSqlQpIiIi6Ny5Mx06dKBoUcv6p23btnHPPfdQrVo1wCg6CBATE8OQIUM4ceIESimSkpLuGt/DDz+Mh4cHtWrVonr16uYNhrp27Wo+r9aaN954gw0bNuDh4cG5c+e4cMF23bhNmzYxZswYwEhgVatWNSeKzp07k7ZEoH79+pw6dSrXiSJfDT25u9Y1SrLy+fZ0rV/W3Hbg/C3u2VCPxe1/Q7d/Bbz9LAec2gSzu8DCQXDpzm6uEAVZWFgYq1atYtu2bXz66af8+++/2Tq+Ro0alC1b9q77TaR566236NixIwcPHmT58uVZKhOeWQny9OXHFyxYwKVLl9i9ezdhYWGULVs2VyXI08qPg/1KkEuPwsmKFynErMFNmb/tFP/97QiJyancSkrhpWVRrGrYk/89PYTiO6fAnm8g1fQ/+OgKOPY7hAyCDq9DYEXbFxHCmWwMDzmK1pqRI0cyZcoUqlSpwrhx43jllVdYsGBBls9x8eJFIiMjqVq1qlV7q1atGDVqFJGRkeahpxIlShATE2MuDT5v3rwsXePnn39myJAhREZGcvLkSerUqcPevXut3hMTE0OZMmXw9vZm7dq1nDp1Csi8/DhA+/btWbBgAZ06deL48eOcPn2aOnXqmHfTszfpUbiAUoonWgexdHRbapWxdHlXHjzPfV8fZ22t8TB6BzTobzlIp8Le+TC9Cfz1Fty84oLIhXAPX331FVWqVDEPN40aNYojR46wfv16wDJHkfZIvwNex44dCQkJoWPHjrz//vuULVvW6tylS5dm1qxZ9O/fn8aNG5t3qXv11Vd5/fXXCQ0NzfJf6VWqVKFFixb06NGDL774Al/fO6tKDxo0iF27dhEcHMy3335rLkFesmRJ2rZtS8OGDRk3bpzVMaNGjSI1NZXg4GAeeeQR5s2bZ9WTsDcpM+5itxJTmPTbYb7fbr35+6CWVfi/XvXwu3wAVr8NJ9daH+gbCG1fgJbPQiE/hHAmKTOetxXoMuPudntsVhQu5Mn/HghmztBmlCpq+YtgwfbT9Jy6kT3JQfDEr/DEUutd9OJjYM3bRg9j11xIcexWiEKIgitfJQpXFAW0l051y/LnC+3p1sDSDY6KvsmAz7fwyV/HSKp6DwxfCw/NgxI1LAfG/QsrXoCZLeHQr1JDSghhd/kqUeR1JYv68MXjTZn8UGOK+hj3GaRqmPZ3OP1nbiH80nVo8ACM3g69P4Wi5SwHR4fDz0Pgq05wcr2L/gtEQZIfh60Lgpz8f5NE4WaUUgxoWomVz7enZbUS5vYD52LoNW0TczdHkqq8oNkwGLsXOv8HfNL1oP7ZA9/2hfkPwL/7XPBfIAoCX19foqOjJVnkMVproqOjM5xUt0Ums91Yaqpm9qZIPvrzGIkplrIe7WqW4qOHGlE+sLDRcPMKbPoEts+ClNv2u2j4IHR6E0pUd2LkIr9LSkri7NmzubrfX7iGr68vlSpVslrJDrYnsyVR5AFHz8fy4o/7OPJvrLktwNeLSfc3pF9IujUVMWdh3XsQ9r1xO20aDy9oOhTueRX8rW8FFEIIkESRLyQkp/DpqhN8uSHCar66T+MKTOrXgGJ+hSyNF4/C35OMhXrpeReB1qOgzVjwDUAIIdJIoshHdkRe4aWfwjh79Za5rWyAD5Mfakz7WqWt33xmB6yeCKc2W7cXLgH3vALNnwYvxy3SEULkHZIo8pnrCclMWn6YH3edsWof2iaI17rXpXAhT0uj1nBilbHm4sJtO+oFVoaOb0CjR8DDEyFEwVVgEoVSqg/Qp2bNmsNPnDjh6nAc7q9D53l98QGib1g2PKpeughTHgmhUaVi1m9OTYUDP8Pa/xrlzNMrFwz3fwHlGjohaiGEOyowiSJNfu9RpHf5egLjfznA6iOWssReHooxnWoxumMNvDxvuwM6OcFYyb3hQ7gZbWn38IaOr0Ob58FTakUKUdBIosjntNb8tOsM7yw/zI3EFHN7SOVifPJwY6qXLnrnQQlxsOUz2DwVki3zHVRqDg98CSVr3HmMECLfKjC1ngoqpRSPNK/CyufvoVlVy9aOYWeu0XPaRuZvO3Xnwigff6MH8ewmqJju38bZnfB5W2NNhmzJKoRAEkW+UqWkHz8+05pXu9fB29PYICU+KZW3fj3I0Lk7uRCbweKoUjVh2J/Q6S1j+AmMHsbKcfDdA8baDCFEgSaJIp/x9FCM6lCTX0e3pXZZy5DT+uOX6DZlA7/tz2AXME8v43bZ4X9DmfqW9pPrYGYbCPtBig0KUYBJosinGlQIZNlz7Xi6XTXSdmO8djOJ0d/v4cUfw4i5lcF+v+UbwYh1xj4XyvRPIyEGfn0Wfnwcrl9yVvhCCDciiSIf8/X25M3e9fn+6VZULFbY3L5k7zl6TNnAlvDLdx7k5QNd34Yn/4Di1SztR1fAzFZwZLkTIhdCuBNJFAVA6xolWflCe/o3sdSF+icmnse+3s6kFYeJT0q586AqLWHkZmP1dpqbl42exeJn4NY1J0QuhHAHkigKiABfbz55OITPBzWhuJ+lauTsTZH0+2wzZ6/evPOgQkWg18fw+GLwr2Bp378QPm8DEX87IXIhhKtJoihgegSX588X7qFjHUtdqGMX4nhg5hYOnM1kC9manWHUFqPUR5rYc8aeF7+9Aok3HBy1EMKVJFEUQGUCfJkztDn/vb8hhUwrty/FJfDwl1v5++iFjA8qXBz6z4KH54NfSUv7zq/gi3ZwersTIhdCuEK+ShRKqT5KqVkxMZn8ZSzMlFI83qoq859qQWBhYyjqVlIKT3+zi++2ncr8wPp9YdQ2qNPL0nblJMztblSqTU7I9FAhRN4kJTwE4RevM3TuDqvS5c/cW53XutXFw0NlfJDWsO8HWPkaJFg2VKJsQ3jgC6PQoBAiz5ASHsKmmmWKsmRUWxpVsuy9/eX6k4xduDfjO6IAlIKQx2DkFqh2r6X9wkGY1RE2TIaUZAdHLoRwBkkUAoDS/j4sHNGKLvXKmNtW7P+XwbO3czVdGfM7FKsMg3+FHh+Cl2mtRmqSscPe3O5wOdzBkQshHE0ShTDzK+TFl4ObMaR1VXPbzqirPPj5Fk5HZ3D7bBoPD2j5TMYFBr9oJwUGhcjjJFEIK54eiol9G/Bmr3rmtpOXb/DAzM2EnbnLIjtbBQbn3y8FBoXIoyRRiDsopXi6fXVmDmpCIS/jn0j0jUQGztrKX4fO2z44swKDkethZmsI+14KDAqRx9w1USil5PaVAqpncHm+f7qleSV3fFIqz3y3m3mbI+9+cIYFBmPh15FSYFCIPCYrPYqZSqkdSqlRSqnAu79d5CfNgkqweFRbqpb0A4zOwMTlh5m04jCpqXfpGdgsMNgSDi9zYORCCHu5a6LQWrcHBgGVgd1Kqe+VUl0dHplwG9VKFWHxyDaEVilmbpu9KZJRC/ZkfvtsehkWGIyGnwbDj4Nl7kIIN5elOQqt9QngTeA14F5gmlLqqFKqvyODE+6jZFEffhjeiu4Nypnb/jh0nse+2kb09Sysxs6swOCRZfBZc9j0KSTbuA1XCOEyWZmjaKSU+hQ4AnQC+mit65m+/9TB8Qk34uvtyYxBTXiqnWUYac/pa/T/fAuRl7NYGDCtwGDIIEtb0k2j/MfnbYxd9YQQbiUrPYrpwB6gsdZ6tNZ6D4DW+h+MXoYoQDw9FG/1rs+EPvXNO+edir5J/5mb2X3qStZOUrg43D8TnlwJZRpY2qNPwLf94OehEPuP3WMXQuRMVhLFEq31fK21uRCQUup5AK31fIdFJtzak22r8cXjTfH1Nv4JXb2ZxKNfbef3AxnsyZ2Zqm3gmQ3Q/X0o5G9pP7QEpjeDzdMgJYMtW4UQTpWVRPFEBm1D7RyHyIO6NSjHD8NbUbJIIQASk1MZ/f0evt54kiwXm/T0glYjYcwuCH7Y0p50A1a9ZazsjtzogOiFEFmVafVYpdSjwGNAOyD9T6o/kKq17uz48HJGqsc61+nomwydu4OT6eYphrSuyn/6NMAzs+qzmYnaZGyGdOmIdXvwQ3Dff8G/XMbHCSFyxVb1WFuJoipQDXgPGJ/upThgv9babUuDSqJwvqs3Ehkxfxc7o66a27rUK8u0R0PwK+SVvZOlJMH2L2Dd+5B43dJeyB86vg4tnjF6IkIIu8lRosjLJFG4RnxSCi//vI/f9lvmKRpXCuTrIc0p7e+T/RPG/gN//h8cWmzdXqYB9JpszHEIIewiR/tRKKU2mb7GKaVi0z3ilFKxmR1nb0qp6kqp2UqpRc66psgZX29Ppg8M5Zl7q5vb9p2N4YGZmwm/eN3GkZkIqAAPzYUnlkKp2pb2i4dgbg9Y8ixcv2iHyIUQtmSaKLTW7Uxf/bXWAeke/lrrgKycXCk1Ryl1USl18Lb27kqpY0qpcKXU+MyON13/pNb6qaxcT7ieh4fi9R71mHR/Q9KmJ85evcWDn29h+8nonJ20egd4djN0eRu8/Szt+36A6U1h+5eySZIQDmSrR1HC1iOL558HdL/tvJ7ADKAHUB94VClVXykVrJRacdujzJ2nFHnB4FZV+eqJZhT29gQg5lYSg2fvYGnYuZyd0KsQtHsBntsJ9ftZ2hNiYeWr8FUHOL0994ELIe5gazI7EtBARretaK119QzaMzpPELBCa93Q9Lw1MFFr3c30/HXTCd+7y3kWaa0HZOWaMkfhPvafvcawebu4nK7Mx2vd6/LsvdVRKpt3RKUXvgZ+HwdXIqzbQx6HLhOhaOmcn1uIAihHcxRa62pa6+qmr7c/spQkMlEROJPu+VlTW4aUUiWVUl8AoWlJJZP3jVBK7VJK7bp0SUpYu4tGlYqxZFQbapYpam774I+j/N+vB0lOycWudzU7w6itxiZJaVuwAoR9B581hZ1fQ2oWChYKIe7K1tBTXdPXJhk9nBWg1jpaa/2s1rqGrV6H1nqW1rqZ1rpZ6dLy16Q7qVzCj1+ebUOr6pYRy++3n+bpb3dxPSEXcwtePsYmSc/tgLq9Le3xMfDby/BVRzgrPUshcsvWyuyXTF8/zuAxORfXPIdRsjxNJVObyMcC/bz5ZlgL7g+xVI5dd+wS/WduznpBwcwUqwIDF8CgRdb7Xvy7D77uDMvGwI0cTqQLIRy/jiKDOQov4DjQGSNB7AQe01ofssO1+gB9atasOfzEiRO5PZ1wAK01H/91nM/Whpvb/H29mPZoKB3r2OHehaR42DINNn4MyfGW9sLFofMEaDIEPGQHYCFul6sFd0opX2AURikPjVHO4wutdbzNA41jfwA6AKWAC8AErfVspVRPYArgCczRWr+b9f+cu5PJbPe3aPdZ3lhygMRkY55CKXi5a21Gd6yZu0nuNFci4Y/X4fhK6/YKTYx9MSo6bfRUiDwht4niJ4yyHd+Zmh4DimmtH7JrlHYkiSJv2H/2Gs/O380/MZa/Obo3KMfkhxtT1MdOJTqOrYSVr8G1U+kalbHbXte3jQ2VhBC5ThSHtdb179bmDmToKe+5fD2B0Qv2sD3SspdFzTJFmTW4KdVLF7VxZDYk3TJ20Ns0BVLS7cZXogb0nwWVMvzZEKJAydHtsensUUq1SneyloBb/rmutV6utR4RGBjo6lBEFpUq6sN3T7fkybZB5rbwi9fp99lm1hy5YJ+LeBeGjm8Yt9PWTLfd+5UImH0frH1P9r0QwgZbC+4OYMxJeAN1gNOm51WBo+7Yo0gjQ0950+I9Z3l98QESki3rK17sUpsxnWrikd1y5ZnRGsK+N4ajEuMs7RWaGL2LUrXscx0h8pjclBnPlNb6lK3XXUkSRd518FwMz8zfzblr5g0V6Vq/LJ883Bh/X2/7XehqFCwZCae3WNq8CsN9k4z5C3tMqAuRh+R0Zfap9A/gFkaPIu0hhN01rBjIsufa0qZGSXPbqsMXuH9GDivQZqZ4EAxdYRQa9DAloORb8PsrsGAAxJ2337WEyOPuOkehlOqrlDoBRALrgShgpc2DXEQp1UcpNSsmJsbVoYhcKFnUh2+HteDpdpbFcxGXbnD/jM2sOmyneQsAD0+j0OCItVAm3Uhq+GqY2QoOL7XftYTIw7IymT0JaAUc11pXw1got82hUeWQTGbnH16eHrzZuz5TB4bg6238M72ekMzwb3fx6arjpKbasVNbLhiGr4XWz1nabl2Fn54w9ryIlz88RMGWlUSRpLWOBjyUUh5a67WA3E8onKJfSEV+GdmGisUshf+mrjnBiPm7iI23451K3r7Q7V14YhkEVLK07/sBPm9n7OUtRAGVlURxTSlVFGNF9gKl1FQgl8V5hMi6BhUCWT6mHW1rWuYtVh+5yP2fbSb8YpyNI3Og+r0wcjM0esTSFnMa5vWGv96C5ITMjxUin8rKgrsiQDzGvhSDgEBggamX4VZkwV3+lpySykd/HuPLDSfNbUUKefLJIyF0a1DO/hc8uBhWvAjx1yxtZRoYt9GWa2j/6wnhQrlamW06QTmgBcbdTju11m59S4jcHpu/Ldv3D68u2kd8kmW9xZhONXmxS237rbdIE/sPLB0NEX9b2jwLGftgtB5tTIgLkQ/kamW2UuppYAfQHxgAbFNKDbNviEJkXd/GFVg8si2VS1jmLab/Hc5T3+wk5padV1gHVIDHF0PPyeDla7SlJMKqt+CbvnDttH2vJ4QbysrQ0zGgTdpQk1KqJLBFa13HCfHliPQoCoZrNxMZ88NeNp64bG6rVqoIs/7MACgAACAASURBVAY3pVZZf/tf8NJxWDIC/tlrafMJgB4fQuOBskhP5Gm5rfUUjVE9Nk2cqU0IlyrmV4h5T7bg2XtrmNsiLxvrLf44+K/9L1i6Njy1Cu55FZTpRychFn591riVVjZHEvmUrRIeaTvchQDBwFKMOYp+wH6t9VBnBJgT0qMoeFbs/4dxP+/nVpJln+zRHWvwUtc6eNp73gLgzA5YPAKuRlraipaFfjOhVhf7X08IB8tpj8Lf9IgAfsVStmMpxipttyMrswuu3o0qsGR0G6qW9DO3zVgbwbB5O4m56YDKsJVbwLOboOlQS9v1C7DgQWO/7kS5g1zkH1neCtW0lgKttR0L7jiG9CgKrpibSYxduJf1xy+Z26qW9GPW4GbUKeeAeQuAY3/AsufghuWalKwJD8yCSk0dc00h7Cy3dz01VErtBQ4Bh5RSu5VSDewdpBD2EOjnzZyhzRnd0TJvcSr6Jg/M3Mxv+x0wbwFQpzuM2gZ1e1vaosNhdldY9wGkJDvmukI4SVYms2cBL2mtq2qtqwIvA185Niwhcs7TQzGuW10+H9QEv0LGOoebiSmM/n4PH/xxlBR71olKU6QUPPId9JsBhUw78+kUWPc/mHMfXA63/zWFcJKsJIoipvpOAGit1wGy0bBwez2Cy/Pr6LYEpZu3+HxdBEPn7uDazUT7X1ApCH3cKAFSpbWl/dxu+LI97JxtbJwkRB6TlURxUin1llIqyPR4Ezh516OEcAO1y/qz9Ll2dKxT2ty28cRlek/fxJ7TVx1z0eJBMPQ36DzBstdF0k347SVY8BDEOmgITAgHyUqiGAaUBhYDvwClTG1C5AmBhb2ZPaQ5YzvVNLedvXqLh7/YyufrIuxbsjyNhye0fwmGr4HSdS3t4atgZkvYt1B6FyLPsHnXk1LKE1itte7ovJByTooCirv589B5Xvl5H3Hxlgnm9rVK8fHDjSnj7+uYiybFw5p3YNsM6/baPaDPFPB3QEFDIbIpx3c9aa1TgFSlVJ7YCUg2LhJ3061BOX4f254mVYqZ2zaeuEzPqRvZkO6WWrvy9oXu/4MhK6BYFUv78ZUwo4X0LoTby0qtp6VAKLCKdPtQaK3HOja0nJN1FOJuklJSmbL6ODPXRVj9jn7mnuq8fF8dCnllZVQ2BxKuw+oJsPNr6/Y6PaH3p9K7EC6TqzLjSqkhGbVrrb+xQ2wOIYlCZNXm8Mu88GMYl+IsGxI1rlyM6QNDqZLubim7i9xglC9PX33Wtxj0/AiCH5ICg8Lp7LEfRSGgLkYZj2NaawfcW2g/kihEdly+nsArP+9j3THL0JO/jxf/6x9Mn8YVHHfhhOuw6j+wa7Z1e52e0HsK+Jd13LWFuE1uV2b3xKj3NA34DAhXSvWwb4hCuE6poj7MGdKc/+tZD29P4y/5uIRkxvywl9cW7edmooNWVvsUhd6fGPt0B6abuzj2uzF3sf8nmbsQbiErQ09Hgd5a63DT8xrAb1rrujYPdCHpUYic2nfmGmN+2MvpKzfNbTVKF+Gzx5pQr3yA4y6cEAerJtzZu6jbG3p9Ir0L4XC53Y8iLi1JmJzEen8KIfKNxpWL8dvYdvQLsQw5RVy6Qb8Zm5m/NYqsFtHMNh9/U+9iqXXv4ugKY93FgUXSuxAuk5UexedAVeAnjDmKh4DTwGoArfViB8eYbdKjELmltWbR7rP8Z+khqz0uujUoywcPNqKYXyHHXTwhzjR3Mce6vW5v486oomUcd21RYOX2rqe5Nl7WWmu3WaUtC+6EvYVfvM6YH/Zy5N9Yc1uFQF+mPhpK86ASjr34yXWw9DmIOWNpK1zc2L+74YNyZ5Swq1zf9ZTXSI9C2FN8UgrvrzzKvC1R5jYPBS92qc2ojjUds4NemoQ4+Ost2H3b32v1+hhzF9K7EHaS2zkKIQo0X29PJvZtwKzBTSnmZxT5S9Xw8arjDPp6G+dj4h13cR9/o8zH4CUQUMnSfmQ5zGgJB3+RuQvhcJIohMii+0zlP1qkG3LadvIKPaZuYM2RC469eI1OMGqr9dart67AomHw02C47qDyI0IgiUKIbKlQrDDfD2/J851rkTbidPVmEk99s4t3lh8mITnF9glywzcA+kzNpHfRAg663X0lIp/IdI5CKfWSrQO11p84JCI7kDkK4QzbTkbzwsIwzsdahp4aVgxg+qNNqFbKwXt7xcfCX2/Cntsq6dTvBz0/hqKlMz5OiEzkdI7C/y4PIQq0VtVL8vvz7elSzzKhfPBcLL2nbWTxnrOOvbhvAPSdBo8vtu5dHF5qrLs4tMSx1xcFitz1JEQuaa2ZtyWK934/SmJKqrm9f2hF3rm/IUV9vBwbQHyMqXfxrXV7/X7GnVFFSjn2+iJfyO06Cl/gKaABYN7ZxZ3WT9xOEoVwhYPnYhj7w15OXjZX46daqSJMfzSUhhWdsEdK+GpYNhZiz1na/EpCr4+hwQOOv77I03J7e+x8oBzQDVgPVEJKeAhxh4YVA1k+ph0PNrEMBUVevkH/mVuYsynSceU/0tTsYtwZFTrY0nYzGn4eajxuXHbs9UW+lZUexV6tdahSar/WupFSyhvYqLVu5ZwQs096FMLVluw9y5tLDnIj0XIXVOe6ZfjoocaUKOLA8h9pTqyG5Rn0Lrq/L/tdiAzltkeRZPp6TSnVEAgEZDmoEDY8EFqJFWPbE5xuyGnN0Yv0mLqBrRHRjg+gVlrv4nFL281oWDwcvnsQrp5yfAwi38hKopillCoOvAUsAw4DHzg0qhxSSvVRSs2KiYlxdShCUK1UEX4Z2Yan21Uzt12ITeCxr7fxyV/HSE438e0QvoHQbwYMWmR9Z1TEGpjZCrbOhFQHrvsQ+UZWhp48tdZ56l+TDD0Jd7P26EVe/nkfV25YNodsHlScqQNDqVCssOMDSIiDv/8L27/EKAJtUqEJ9J0O5Ro6Pgbh1nI79BSplJqllOqslAxsCpETHeuWYeXz7WldvaS5bWfUVXpM3cifh847PgAff+jxATy1CkrXs7T/swdm3QtrJkGSA2tWiTwtK4miLsbeE6OBKKXUZ0qpdo4NS4j8p2yAL9893ZJX7qttrjgbcyuJZ+bv5j9LDxKf5ISOe+Xm8MwG6PgmeJom1VOTYeNk+KItRG1yfAwiz8nWgjvTXMVUYJDW2tNhUeWSDD0Jd7cr6grPLwzj3LVb5ra65fz57LFQapZxUuGDS8eNO6NOb7VubzoUurwNhYs5Jw7hFnJdZlwpda9SaiawG2PR3cN2jE+IAqdZUAl+H9ue7g3KmduOno+jz/TN/LTrjOPXXACUrg1DfzdWb/uk2w989zyjhPmR5Y6PQeQJWZnMjgL2YmyFukxrfcPmAW5AehQir9Ba893200xacZjEZMtdUH0bV+DdBxri7+vtnEBi/4HfXoFjv1m31+sDPT6CgPLOiUO4TG5LeARorWNtvsnNSKIQec2Rf2MZ88Newi9eN7dVKeHH9EdDaVzZSUNAWsORZfD7OLiebn8Nn0Do+jY0GQIesjNBfpWjRKGUelVr/aFSajpW99MZtNZj7Rum/UiiEHnRzcRk3ll+mIU7LXtke3koXu1eh6fbVcfDkVuupnfrKqyacGcJ86ptjf0wStVyThzCqXI6R3HE9HUXxtzE7Q8hhB35FfLi/QcbMf3RUPxNFWeTUzX/+/0oT87byeXrCc4JpHBxo4T5kBVQooal/dRm+LwtbJgMKUmZHy/ynawMPTXRWu9xUjx2IT0Kkdedjr7JmIV72XfmmrmttL8Pnz4cQrtaTiwbnnQL1n8Im6dC+nW3ZRoYC/UqNXVeLMKhcnvX08dKqSNKqUmmWk9CCAerUtKPRc+25pl7q5vbLsUlMHjOdj784yhJji7/kca7MHSZAM+shwqhlvaLh2B2F/jjdUi4nvnxIl+4a6LQWncEOgKXgC+VUgeUUm86PDIhCjhvTw9e71GPb4a1oFRRY3Gc1jBzXQQPf7mVM1duOi+YcsHw1Gq4713w9jPadCpsmwkzWxvVakW+ld0Fd8HAq8AjWmsn1ErOGRl6EvnNxbh4Xv5pHxtPWPaU8Pf14oMHG9Ez2Mm3rl6NghUvQsTf1u2NHoFu70GRkhkeJtxbroaelFL1lFITlVIHgOnAFozNi4QQTlLG35dvnmzB+B518TLd/RQXn8yoBXt4Y8kB55T/SFM8yNir+4EvjYnvNPt/hBnNYf9PRtdH5BtZmczeCiwEftZa/+OUqHJJehQiP9tz+ipjf9jL2auW8h+1yxbls8eaULusk8p/pLl+Cf58HQ78bN1eozP0/hSKV3VuPCLHctyjUEp5ApFa66l5JUkIkd81qVKc38a2p1cjy5DT8QvX6TN9E99vP+2c8h9pipaGB7829rwIrGxplz0v8hWbicK0D0VlpZTbzkcIURAFFvbms0dDeb9/ML7exo9xQnIqbyw5wHPf7yXmlpPXOdTqCqO2QcuRgGlhYNJNo7fxdWc4tcW58Qi7ysrQ07dAPYzd7cx1nrTWnzg2NPP17wd6AQHAbK31X3c7RoaeREFy4kIcz32/l2MX4sxtFYsVZvpjoTSpUtzGkQ5ydhcsGwMXD1u31+5h3Gpbpl7GxwmXyu06ighghem9/ukeWbnwHKXURaXUwdvauyuljimlwpVS422dQ2v9q9Z6OPAs8EhWritEQVKrrD9Ln2vLoJZVzG3nrt3ioS+2MnNdOKmpTp5YrtQMRqy33vMC4PhK+LwN/DoaYs46NyaRK9m6PTbbJ1fqHuA68K3WuqGpzRM4DnQFzgI7gUcBT+C9204xTGt90XTcx8CCrKwSlx6FKKhWHviX137ZT2x8srmtXc1SfPJIY8r4+zo/oKunYO3/jDui0peM8/KFls9Auxet75wSLpPb6rFrybgoYKcsXjwIWJEuUbQGJmqtu5mev2463+1JIu14BbwPrNJaZ2lVjyQKUZCdvXqT5xeGsfvUVXNbySKF+PjhxnSoU8Y1QZ0/AKsnQvhtP8K+gdD+ZWjxDHi7IJEJs9wOPb0CjDM93gLCMAoF5lRF4Ey652dNbZkZA3QBBiilns3sTUqpEUqpXUqpXZcuXcpFeELkbZWK+/HjiFY817EmabvcR99IZOjcnbyz/DAJyS64C6lcMDz+CzyxzLoUSHwMrPoPTG8KexfIHVJuKkdDT0qpHVrrFll8bxDWPYoBQHet9dOm54OBllrr57IdSCakRyGEYXP4ZV74MYxLcZbKs/XKBzBtYAi1nL3mIo3WcGgJrHkHrkZav1a6HnSZCLW7Yc5ywilyuzK7RLpHKaVUNyAwF/GcA9LdcE0lU5sQws7a1izFH8+3p3Ndy5DTkX9j6T19E/O3nXLumos0SkHD/vDcTug5GYqUtrx26Qj88AjM7Qlndjg/NpGhrMxRRGLMUSggGYgE3tFab8rSBe7sUXhhTGZ3xkgQO4HHtNaHcvafYHWtPkCfmjVrDj9x4kRuTydEvqG1Zv62U7z72xES0m252qVeWT4c0IgSRVy4VCrhOmydAVumQeJtlWjr9YHOE2SzJCfI1WR2Li/8A9ABKAVcACZorWcrpXoCUzDudJqjtX7XnteVoSchMnbsfBxjf7Bec1HG34dPnL3PRUauX4INH8KuOZBquWsL5QlNBsO942XvbgfK6VaozYEzWuvzpudPAA8CpzDuWrrioHhzTRKFEJmLT0rh/ZVHmbclyqp9xD3VeeW+OhTycvG+2FdOwt//hYO/WLd7FYbWo6HtWONuKWFXOU0Ue4AuWusrpvUQCzHuQAoB6mmtBzgq4JySoSchsm7t0YuMW7SPy9cTzW0NKgQwdWAoNcsUdWFkJv/sNfbujlxv3V64BNwzDpo/BV4+roktH8ppotintW5s+n4GcElrPdH0PExrHeKgeHNNehRCZM2luATGLdrHumOWW8p9vT2Y0KcBA5tXRrn6ziOtjX0vVk8w1mKkV6wKdHoLGg4ADxf3gvKBnN715GmaeAZj4jn9LiVeGbxfCJHHlPb3Ye7Q5kzoU59Cnsavg/ikVF5ffIBnv9vN1RuJdzmDgykFNTvDiA3Q/2sjOaS5dhoWD4cv7zEW8skeGA5jK1H8AKxXSi0FbgEbAZRSNYEYJ8QmhHACpRRPtq3G0ufaUivdkNOfhy7QY+pGtoRftnG0k3h4QKOH4Lld0P19Y/gpzYUD8N2D8G1fOHfXCj8iB2ze9aSUagWUB/7SWt8wtdUGimal5pKryNCTEDkTn5TCu78dYf62U+Y2peCZe2rwUtfarp/oThMfA1umG7fVJt22d3iDB4whqZI1XBNbHuWy22OdTSazhbCP1Ycv8Oov+7mSbugpuGIgUweGUL20G0x0p4k7D+s/gN3fgE5X/sPDC5o+Cfe+ZmyuJO6qwCSKNNKjECL3LsbG8/LP+9h4wjL05FfIk4l9GvBQs0qun+hO7/IJoyTIkWXW7T6B0On/oNlT4ClTq7ZIohBC5EhqqmbO5kg++OMoSSmW3xW9gsvzvweCCfTzdmF0GTiz07hD6tRm6/YyDaDnRxDU1jVx5QGSKIQQuXLwXAzPL9xLxCXzJpdUCPTl00dCaFm9pAsjy4DWcPxPYxvWKyetXwt+GLq+Iyu8M1BgEoXMUQjhOLcSU5j022G+337a3KYUjOpQgxe61Mbb000mutMkJ8DWz2DDZOsJ70JFjbmLls+ClwtrXLmZApMo0kiPQgjH+ePgecYv3s+1m0nmtsaVizFtYAhVSxZxYWSZiDkLf71plDZPr1Rt6PEB1MjSHmz5Xm43LhJCCLPuDcvxx/P30KaGZchp35lr9Jy6kV92n3VN6XJbAivBQ/OMTZNK17W0Xz4O8x+AHwfDtTOZHi4kUQghcqBcoC/fPdWS8T3q4uVh3P10IzGFl3/ex9iFYcTcSrrLGVyg+r3w7Cbo9j8olG7TpiPL4LPmsOEjSIp3XXxuTIaehBC5sv/sNZ5fGEbkZctEd8VihZkyMITmQSVsHOlCcReMu6P2/WDdXryaMRxVu5tr4nIhGXoSQjhMo0rFWDGmHY80s2xcee7aLR75ciufrDpOckqqjaNdxL8sPPAFDPvT2M87zdVI+P5h+P6RO++YKsDyVY9C7noSwrV+P/Av43/ZT2y8ZeOhJlWK8V7/RtQp56I9uu8mNQV2z4U1kyD+mqXdsxC0fR7avQSF/FwXn5PIXU9CCKf559otXvwxjO2Rlr3NPD0UQ1oH8ULXWgT4utkivTQ3omHN27DnW4zdn00CK0O3d6FeX+N+4HxKEoUQwqlSUjVfrI/g01XHSU61/I4pVdSH/+tVl/tDKrpXCZD0zu2G38cZX9Or3gF6fAil67giKoeTRCGEcInjF+L4z9KDbDtpvXNyi6ASvN2vAfXKB7gosrtITYWwBcaE981oS7uHF7QaaSzY83HTobQckkQhhHAZrTXL9//Lu78d5kJsgrnd00MxuFVVXuxam8DCbjocdesqrH0Pdn4FOt2kfNFycN8kCH4o3wxHSaIQQrjc9YRkpq05wZxNkbcNRxVifI969A+tiIeHm/7SPX8Afn8VTm+xbq/SBnp+aH3nVB4liUII4TZOXIhjwrJDbImItmpvWrU47/RrQIMKgS6K7C60hgOLjHIg189b2pUHNH8aOr4BhYu7Lr5cKjCJQm6PFSJv0Frz24F/+e+KI5yPtayG9lDweKuqvNy1jvuVME+TEGdslrTtc0i13AaMX0noMhFCHje2bs1jCkyiSCM9CiHyhhsJyUz/O5zZm05a7XdRskghXutelwFNK7nvcNSlY7DyVTi5zrq9YlOjlHmVNnkqYUiiEEK4tfCL15m47BCbwi9btYdWKcakfg1pWNGNh6OOLIM/3oDYs9avFSkNte4zyoFU7wi+bnqHl4kkCiGE29Na88fB80xacZh/YizDUUrBoJZVeOW+OhTzc9P9IxJvwqZPYPNUSEm883UPb2N3vdrdjeRRsobzY7wLSRRCiDzjZmIyM9aG89WGSBLT1Ykq7ufNa93r8nCzyu47HBUdAZs+heN/wI1Lmb+vZC2jp1G7O1RpBZ6un4+RRCGEyHNOXrrOxOWH2XDc+hdu48rFmNSvAY0qFXNRZFmQmgr/7DUSxvE/4Pz+zN/rEwg1OxtJo2YXKOKarWUlUQgh8iStNX8eusCkFYc5d+2WuV0pGNi8Cq92q0PxIm46HJVezDk48Zexl/fJdZB8K+P3KQ+o1MLS2yhTz2kL+iRRCCHytFuJKcxcF86X609aDUcV8/NmXLc6DGxeBU93HY66XdItiNxo6m38eeckeHqBVaD2fUbSCGoP3r4OC0sShRAiX4i6fIO3lx9i7THr4ahGlQJ5p19DQiq78XBURrSGi4ctSePMDqwq16bn7WcUJqzdDWp1g4Dydg2lwCQKWXAnRP6ntWb1kYu8vfwQZ69aD0c90qwyr3avS4m8MByVkRvREL7KSBzhayAhNvP3lm9s9DRqd4Pyobles1FgEkUa6VEIkf/FJ6Uwc10EX6yPIDHZMhwVWNibV7rV4bEWeWg4KiMpSXB6m6W3EW3jj98iZYwhqlrdoEbHHFW2lUQhhMi3TkXf4J3lh1lz9KJVe8OKAbzVqz4tq7vmLiK7i44wEsbxP+DUZuvyIel5F4FXI8C7cLZOL4lCCJHvrTlygbeXH+b0lZtW7ffWLs24bnXcd3V3TsTHQMRaI3Gc+AtuplvRHtQehq7I9iklUQghCoT4pBS+XH+SmevCSUg3HAXQq1F5Xupamxqli7ooOgdJTYV/9ljWbDQaCG2ey/ZpJFEIIQqUM1du8unq4yzZe470v+I8PRQDmlTi+S61qFAse0MzeYbWOVp7IYlCCFEgHb8Qx8d/HePPQxes2gt5evB4q6qM7liDkkV9XBSde5FEIYQo0MLOXOOjP4+yOdx6s6QihTx5qn11hrevhr+v6+stuZIkCiGEADaHX+bDP4+x78w1q/Zift6M6lCDJ1oH4evt6aLoXEsShRBCmGit+evwBSb/eYwTF69bvVYuwJexnWvxULNKeHvmnU2H7EEShRBC3CYlVbM07ByfrDputcIbIKikHy92rU2fRhXct6S5nUmiEEKITCQmp7Jw52mmrQnn8vUEq9fqlQ9gXLfadKxTBuWkKq6uUmAShdR6EkLk1M3EZOZujuLL9RHExluvem5WtTjjutXJP6u8M1BgEkUa6VEIIXIq5mYSX26IYO7mKG4lpVi9li9XeZtIohBCiGy6GBfPjL/D+X7HaZJSrH9P5sdV3pIohBAihwrKKm9JFEIIkUv5fZW3JAohhLCT/LrKWxKFEELYma1V3g+EVqRCYGHKBPhQxt+XMgE+lA3wpaiPl4uivTtJFEII4QC2VnlnxK+QJ2UDfCnt70MZfyN5lPH3MRKJKaGUCfDF38fL6es2bCUK901vQgjh5pRSdGtQji71yvLr3nN8uvrOVd7p3UxMIfLyDSIv37B5Xl9vD8r4+1I2XY+kjL+vJbkEGIkmsLC3UxKK9CiEEMJOEpNTWXPkApHRN7gYm8DFuHgumL5ejE24YzOl3Crk5WHdM/H3IahUEZ5sWy3b55IehRBCOEEhLw96BJfP8DWtNbG3kq2TR1wCF2KNrxdjLc/jk7KWUBKTUzl79ZZVL6ZuOf8cJQpbJFEIIYQTKKUI9PMm0M+bWmX9M32f1pq4hGSjR5KWRMzJxUgkl0xfbyam3HF8aX/736IriUIIIdyIUooAX28CfL2pWcb2yu/rCclcjLX0UC7FJVAmwNfuMUmiEEKIPKqojxdFSxeluoNLiRSsnTmEEEJkmyQKIYQQNkmiEEIIYZMkCiGEEDZJohBCCGGTJAohhBA2SaIQQghhU76s9aSUugScyuHhpYDLdgzHXiSu7JG4skfiyp78GFdVrXXpjF7Il4kiN5RSuzIrjOVKElf2SFzZI3FlT0GLS4aehBBC2CSJQgghhE2SKO40y9UBZELiyh6JK3skruwpUHHJHIUQQgibpEchhBDCJkkUJkqp7kqpY0qpcKXUeFfHk55SKkopdUApFaaUctker0qpOUqpi0qpg+naSiilVimlTpi+FneTuCYqpc6ZPrMwpVRPF8RVWSm1Vil1WCl1SCn1vKndpZ+Zjbhc+pkppXyVUjuUUvtMcb1taq+mlNpu+tn8USlVyE3imqeUikz3eYU4My5TDJ5Kqb1KqRWm5475rLTWBf4BeAIRQHWgELAPqO/quNLFFwWUcoM47gGaAAfTtX0IjDd9Px74wE3imgi84uLPqzzQxPS9P3AcqO/qz8xGXC79zAAFFDV97w1sB1oBPwEDTe1fACPdJK55wAAX/xt7CfgeWGF67pDPSnoUhhZAuNb6pNY6EVgI9HNxTG5Ha70BuHJbcz/gG9P33wD3OzUoMo3L5bTW/2qt95i+jwOOABVx8WdmIy6X0obrpqfepocGOgGLTO2u+Lwyi8ullFKVgF7A16bnCgd9VpIoDBWBM+men8UNfnDS0cBfSqndSqkRrg7mNmW11v+avj8PlHVlMLd5Tim13zQ05fQhsfSUUkFAKMZfo27zmd0WF7j4MzMNpYQBF4FVGD39a1rrZNNbXPKzeXtcWuu0z+td0+f1qVLK/ptV2zYFeBVINT0viYM+K0kUeUM7rXUToAcwWil1j6sDyog2+rsu/0vL5HOgBhAC/At87KpAlFJFgV+AF7TWselfc+VnlkFcLv/MtNYpWusQoBJGT7+us2PIyO1xKaUaAq9jxNccKAG85qx4lFK9gYta693OuJ4kCsM5oHK655VMbW5Ba33O9PUisATjB8hdXFBKlQcwfb3o4ngA0FpfMP1wpwJf4aLPTCnljfHLeIHWerGp2eWfWUZxuctnZorlGrAWaA0UU0p5mV5y6c9muri6m4bwtNY6AZiLcz+vtkBfpVQUxlB5J2AqDvqsJFEYdgK1THcMFAIGAstcHBMASqkiSin/tO+B+4CDn5skogAAAx5JREFUto9yqmXAENP3Q4ClLozFLO0XsckDuOAzM40ZzwaOaK0/SfeSSz+zzOJy9WemlCqtlCpm+r4w0BVj/mQtMMD0Nld8XhnFdTRdslcYcwFO+7y01q9rrStprYMwfl/9rbUehKM+K1fO2LvTA+iJcfdHBPB/ro4nXVzVMe7C2gcccmVswA8YQxJJGOOfT2GMi64BTgCrgRJuEtd84ACwH+MXc3kXxNUOY1hpPxBmevR09WdmIy6XfmZAI2Cv6foHgf+Y2qsDO4Bw4GfAx03i+tv0eR0EvsN0Z5QL/p11wHLXk0M+K1mZLYQQwiYZehJCCGGTJAohhBA2SaIQQghhkyQKIYQQNkmiEEIIYZMkCiGySSlVTim1UCkVYSqr8rtSqnY2z7FOKeV2ey4LkRGvu79FCJHGtLhqCfCN1nqgqa0xRr2m466MTQhHkR6FENnTEUjSWn+R1qC13gcMV0qZK3UqpRYopfqZislNVkodNBWPG3P7CZVS9ymltiql9iilfjbVYEIp9b5pz4j9SqnJzviPEyIj0qMQInsaAhkVYpsNvAj8qpQKBNpglFAYAQQBIVrrZKVUifQHKaVKAW8CXbTWN5RSrwEvKaVmYJTRqKu11mklJIRwBelRCGEHWuv1GPXCSgOPAr9oo9xzF+BL0/dorW/fN6MVxqZBm01lrIcAVYEYIB6YrZTqD9x0zn+JEHeSHoUQ2XMIS9G1230LPI5RpO3JLJ5PYexv8OgdLyjVAuhsut5zGBVChXA66VEIkT1/Az7pN5BSSjVSSrXH2BrzBQCt9WHTy6uAZ9JKP98+9ARsA9oqpWqaXi+ilKptmqcI1Fr/jjGk1diB/01C2CSJQohs0EYVzQeALqbbYw8B7wHntdYXMMpiz013yNfAaWC/Umof8Nht57sEDAV+UErtB7ZibIbjD6wwtW3C2BtZCJeQ6rFC2IlSyg+j7HQTrXWMq+MRwl6kRyGEHSilumD0JqZLkhD5jfQohBBC2CQ9CiGEEDZJohBCCGGTJAoh/r+9OhAAAAAAEORvvcEEJRGwRAHAEgUASxQArABIIHWsO4SH/gAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light",
- "tags": []
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "plt.semilogy(cycle_values, np.average(raw_probs, axis=0), lw=3, label=\"No calibration\")\n",
- "plt.semilogy(cycle_values, np.average(xeb_probs, axis=0), lw=3, label=\"XEB calibration\")\n",
- "\n",
- "plt.xlabel(\"Cycles\")\n",
- "plt.ylabel(\"Survival probability\")\n",
- "plt.legend();"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "8NVknuvzd6Ex"
- },
- "source": [
- "A smaller (in magnitude) slope indicates lower two-qubit gate errors. You should see that XEB calibration produces lower errors than no calibration in the Loschmidt echo benchmark."
- ]
- }
- ],
- "metadata": {
- "colab": {
- "collapsed_sections": [],
- "name": "xeb_calibration_example.ipynb",
- "toc_visible": true
- },
- "kernelspec": {
- "display_name": "Python 3",
- "name": "python3"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
diff --git a/docs/tutorials/google/identifying_hardware_changes.ipynb b/docs/tutorials/google/identifying_hardware_changes.ipynb
index 5945ef06f74..5091c595d68 100644
--- a/docs/tutorials/google/identifying_hardware_changes.ipynb
+++ b/docs/tutorials/google/identifying_hardware_changes.ipynb
@@ -322,7 +322,7 @@
"id": "9sY5bMW9f-Oo"
},
"source": [
- "Note: The parallel XEB errors are scaled in pxeb_results. This is because the collected fidelities are the estimated depolarization fidelities, not the Pauli error metrics available from the calibration data. See the [XEB Theory](../../noise/qcvv/xeb_theory.ipynb#fidelities) tutorial for an explanation why, and [Calibration Metrics](../../google/calibration.md) for more information on the difference between these values."
+ "Note: The parallel XEB errors are scaled in pxeb_results. This is because the collected fidelities are the estimated depolarization fidelities, not the Pauli error metrics available from the calibration data. See the [XEB Theory](../../noise/qcvv/xeb_theory.ipynb#fidelities) tutorial for an explanation of why."
]
},
{
@@ -525,7 +525,7 @@
"\n",
"* You need to map your actual circuit's logical qubits to your selected hardware qubits. This is in general a difficult problem, and the best solution can depend on the specific structure of the circuit to be run. Take a look at the [Qubit Picking with Loschmidt Echoes](./echoes.ipynb) tutorial, which estimates the error rates of gates for your specific circuit. Also, consider [Best Practices#qubit picking](../../google/best_practices.ipynb#qubit_picking) for additional advice on this.\n",
"* The [Optimization, Alignment, and Spin Echoes](./spin_echoes.ipynb) tutorial provides resources on how you can improve the reliability of your circuit by: optimizing away redundant or low-impact gates, aligning gates into moments with others of the same type, and preventing decay on idle qubits with by adding spin echoes.\n",
- "* Other than for qubit picking, you should also use calibration for error compensation. The [Coherent vs incoherent noise with XEB](../../noise/qcvv/coherent_vs_incoherent_xeb.ipynb), [XEB Calibration Example](../../noise/qcvv/xeb_calibration_example.ipynb), [Parallel XEB](../../noise/qcvv/parallel_xeb.ipynb) and [Isolated XEB](../../noise/qcvv/isolated_xeb.ipynb) tutorials demonstrate how to run a classical optimizer on collected two-qubit gate characterization data, identity the true unitary matrix implemented by each gate, and add [Virtual Pauli Z gates](../../hardware/devices.ipynb) to compensate for the identified error, improving the reliability of your circuit.\n",
+ "* Other than for qubit picking, you should also use calibration for error compensation. The [Coherent vs incoherent noise with XEB](../../noise/qcvv/coherent_vs_incoherent_xeb.ipynb), [Parallel XEB](../../noise/qcvv/parallel_xeb.ipynb) and [Isolated XEB](../../noise/qcvv/isolated_xeb.ipynb) tutorials demonstrate how to run a classical optimizer on collected two-qubit gate characterization data, identity the true unitary matrix implemented by each gate, and add [Virtual Pauli Z gates](../../hardware/devices.ipynb) to compensate for the identified error, improving the reliability of your circuit.\n",
"* You are also free to use the characterization data to improve the performance of large batches of experiment circuits. In this case you'd want to prepare your characterization ahead of running all your circuits, and use the data to compensate each circuit, right before running them."
]
}