|
4 | 4 | # SPDX-License-Identifier: BSD-3-Clause |
5 | 5 | # |
6 | 6 | # ----------------------------------------------------------------------------- |
| 7 | + |
| 8 | + |
| 9 | +import logging |
| 10 | +from typing import Tuple, Dict, Optional, Type, List, Callable |
| 11 | + |
| 12 | +# from QEfficient.finetune.experimental.core.logger import get_logger |
| 13 | + |
| 14 | +# logger = get_logger() |
| 15 | +logger = logging.getLogger(__name__) |
| 16 | + |
| 17 | + |
| 18 | +def get_object(obj_dict: Dict, name: str, object_type: str, list_fn: Callable) -> Optional[Type]: |
| 19 | + """Utility to get object from a dictionary with error handling.""" |
| 20 | + obj = obj_dict.get(name) |
| 21 | + if obj is None: |
| 22 | + raise ValueError(f"Unknown {object_type}: {name}. Available: {list_fn()}") |
| 23 | + return obj |
| 24 | + |
| 25 | +class ComponentRegistry: |
| 26 | + """Registry for managing different training components.""" |
| 27 | + |
| 28 | + def __init__(self): |
| 29 | + self._optimizers: Dict[str, Type] = {} |
| 30 | + self._schedulers: Dict[str, Type] = {} |
| 31 | + self._datasets: Dict[str, Type] = {} |
| 32 | + self._models: Dict[str, Type] = {} |
| 33 | + self._data_collators: Dict[str, Type] = {} |
| 34 | + self._metrics: Dict[str, Type] = {} |
| 35 | + self._loss_functions: Dict[str, Type] = {} |
| 36 | + self._callbacks: Dict[str, Type] = {} |
| 37 | + self._hooks: Dict[str, Type] = {} |
| 38 | + self._trainer_modules: Dict[str, Type] = {} |
| 39 | + |
| 40 | + def trainer_module(self, name: str, args_cls=None, required_kwargs=None): |
| 41 | + """ |
| 42 | + Decorator to register a trainer module with its configuration. |
| 43 | + Each trainer module has to be binded to its args class and required kwargs. |
| 44 | + |
| 45 | + Args: |
| 46 | + name: Name of the trainer type |
| 47 | + args_cls: The arguments class for this trainer |
| 48 | + required_kwargs: Dictionary of required keyword arguments and their default values |
| 49 | + """ |
| 50 | + required_kwargs = required_kwargs or {} |
| 51 | + |
| 52 | + def decorator(trainer_cls): |
| 53 | + self._trainer_modules[name] = { |
| 54 | + 'trainer_cls': trainer_cls, |
| 55 | + 'args_cls': args_cls, |
| 56 | + 'required_kwargs': required_kwargs |
| 57 | + } |
| 58 | + logger.info(f"Registered trainer module: {name}") |
| 59 | + return self._trainer_modules[name] |
| 60 | + |
| 61 | + return decorator |
| 62 | + |
| 63 | + def optimizer(self, name: str): |
| 64 | + """Decorator to register an optimizer class.""" |
| 65 | + |
| 66 | + def decorator(cls: Type): |
| 67 | + self._optimizers[name] = cls |
| 68 | + logger.info(f"Registered optimizer: {name}") |
| 69 | + return cls |
| 70 | + |
| 71 | + return decorator |
| 72 | + |
| 73 | + def scheduler(self, name: str): |
| 74 | + """Decorator to register a scheduler class.""" |
| 75 | + |
| 76 | + def decorator(cls: Type): |
| 77 | + self._schedulers[name] = cls |
| 78 | + logger.info(f"Registered scheduler: {name}") |
| 79 | + return cls |
| 80 | + |
| 81 | + return decorator |
| 82 | + |
| 83 | + def dataset(self, name: str): |
| 84 | + """Decorator to register a dataset class.""" |
| 85 | + |
| 86 | + def decorator(cls: Type): |
| 87 | + self._datasets[name] = cls |
| 88 | + logger.info(f"Registered dataset: {name}") |
| 89 | + return cls |
| 90 | + |
| 91 | + return decorator |
| 92 | + |
| 93 | + def model(self, name: str): |
| 94 | + """Decorator to register a model class.""" |
| 95 | + |
| 96 | + def decorator(cls: Type): |
| 97 | + self._models[name] = cls |
| 98 | + logger.info(f"Registered model: {name}") |
| 99 | + return cls |
| 100 | + |
| 101 | + return decorator |
| 102 | + |
| 103 | + def data_collator(self, name: str): |
| 104 | + """Decorator to register a data collator class.""" |
| 105 | + |
| 106 | + def decorator(fn_pointer: Type): |
| 107 | + self._data_collators[name] = fn_pointer |
| 108 | + logger.info(f"Registered data collator: {name}") |
| 109 | + return fn_pointer |
| 110 | + |
| 111 | + return decorator |
| 112 | + |
| 113 | + def loss_function(self, name: str): |
| 114 | + """Decorator to register a loss function class.""" |
| 115 | + |
| 116 | + def decorator(cls: Type): |
| 117 | + self._loss_functions[name] = cls |
| 118 | + logger.info(f"Registered loss function: {name}") |
| 119 | + return cls |
| 120 | + |
| 121 | + return decorator |
| 122 | + |
| 123 | + def callback(self, name: str): |
| 124 | + """Decorator to register a callback class.""" |
| 125 | + |
| 126 | + def decorator(cls: Type): |
| 127 | + self._callbacks[name] = cls |
| 128 | + logger.info(f"Registered callback: {name}") |
| 129 | + return cls |
| 130 | + |
| 131 | + return decorator |
| 132 | + |
| 133 | + def get_trainer_module(self, name: str) -> Optional[Type]: |
| 134 | + """Get trainer module class by name.""" |
| 135 | + return get_object(self._trainer_modules, name, "trainer module", self.list_trainer_modules) |
| 136 | + |
| 137 | + def get_optimizer(self, name: str) -> Optional[Type]: |
| 138 | + """Get optimizer class by name.""" |
| 139 | + return get_object(self._optimizers, name, "optimizer", self.list_optimizers) |
| 140 | + |
| 141 | + def get_scheduler(self, name: str) -> Optional[Type]: |
| 142 | + """Get scheduler class by name.""" |
| 143 | + return get_object(self._schedulers, name, "scheduler", self.list_schedulers) |
| 144 | + |
| 145 | + def get_dataset(self, name: str) -> Optional[Type]: |
| 146 | + """Get dataset class by name.""" |
| 147 | + return get_object(self._datasets, name, "dataset", self.list_datasets) |
| 148 | + |
| 149 | + def get_model(self, name: str) -> Optional[Type]: |
| 150 | + """Get model class by name.""" |
| 151 | + return get_object(self._models, name, "model", self.list_models) |
| 152 | + |
| 153 | + def get_data_collator(self, name: str) -> Optional[Type]: |
| 154 | + """Get data collator class by name.""" |
| 155 | + return get_object(self._data_collators, name, "data collator", self.list_data_collators) |
| 156 | + |
| 157 | + def get_loss_function(self, name: str) -> Optional[Type]: |
| 158 | + """Get loss function class by name.""" |
| 159 | + return get_object(self._loss_functions, name, "loss function", self.list_loss_functions) |
| 160 | + |
| 161 | + def get_callback(self, name: str) -> Optional[Type]: |
| 162 | + """Get callback class by name.""" |
| 163 | + return get_object(self._callbacks, name, "callback", self.list_callbacks) |
| 164 | + |
| 165 | + def list_trainer_modules(self) -> list[str]: |
| 166 | + """List all registered trainer modules.""" |
| 167 | + return list(self._trainer_modules.keys()) |
| 168 | + |
| 169 | + def list_optimizers(self) -> list[str]: |
| 170 | + """List all registered optimizers.""" |
| 171 | + return list(self._optimizers.keys()) |
| 172 | + |
| 173 | + def list_schedulers(self) -> list[str]: |
| 174 | + """List all registered schedulers.""" |
| 175 | + return list(self._schedulers.keys()) |
| 176 | + |
| 177 | + def list_datasets(self) -> list[str]: |
| 178 | + """List all registered datasets.""" |
| 179 | + return list(self._datasets.keys()) |
| 180 | + |
| 181 | + def list_models(self) -> list[str]: |
| 182 | + """List all registered models.""" |
| 183 | + return list(self._models.keys()) |
| 184 | + |
| 185 | + def list_data_collators(self) -> list[str]: |
| 186 | + """List all registered data collators.""" |
| 187 | + return list(self._data_collators.keys()) |
| 188 | + |
| 189 | + def list_loss_functions(self) -> list[str]: |
| 190 | + """List all registered loss functions.""" |
| 191 | + return list(self._loss_functions.keys()) |
| 192 | + |
| 193 | + def list_callbacks(self) -> list[str]: |
| 194 | + """List all registered callbacks.""" |
| 195 | + return list(self._callbacks.keys()) |
| 196 | + |
| 197 | + |
| 198 | +# Global registry instance |
| 199 | +registry = ComponentRegistry() |
0 commit comments