You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: i2c/mpl3115a2_i2c/README.adoc
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -4,7 +4,7 @@ This example code shows how to interface the Raspberry Pi Pico to an MPL3115A2 a
4
4
5
5
The board used in this example https://www.adafruit.com/product/1893[comes from Adafruit], but any MPL3115A2 breakouts should work similarly.
6
6
7
-
The MPL3115A2 makes available two ways of reading its temperature and pressure data. The first is known as polling, where the Pico will continuously read data out of a set of auto-incrementing registers which are refreshed with new data every so often. The second, which this example will demonstrate, uses a 160-byte first-in-first-out (FIFO) queue and configurable interrupts to tell the Pico when to read data. More information regarding when the interrupts can be triggered available https://www.nxp.com/docs/en/data-sheet/MPL3115A2.pdf[in the datasheet]. This example waits for the 32 sample FIFO to overflow, detects this via an interrupt pin, and then averages the 32 samples taken. The sensor is configured to take a sample every second.
7
+
The MPL3115A2 makes available two ways of reading its temperature and pressure data. The first is known as polling, where the Pico will continuously read data out of a set of auto-incrementing registers which are refreshed with new data every so often. The second, which this example will demonstrate, uses a 160-byte first-in-first-out (FIFO) queue and configurable interrupts to tell the Pico when to read data. More information regarding when the interrupts can be triggered is available at https://www.nxp.com/docs/en/data-sheet/MPL3115A2.pdf[in the datasheet]. This example waits for the 32 sample FIFO to overflow, detects this via an interrupt pin, and then averages the 32 samples taken. The sensor is configured to take a sample every second.
8
8
9
9
Bit math is used to convert the temperature and altitude data from the raw bits collected in the registers. Take the temperature calculation as an example: it is a 12-bit signed number with 8 integer bits and 4 fractional bits. First, we read the 2 8-bit registers and store them in a buffer. Then, we concatenate them into one unsigned 16-bit integer starting with the OUT_T_MSB register, thus making sure that the last bit of this register is aligned with the MSB in our 16 bit unsigned integer so it is correctly interpreted as the signed bit when we later cast this to a signed 16-bit integer. Finally, the entire number is converted to a float implicitly when we multiply it by 1/2^8 to shift it 8 bits to the right of the decimal point. Though only the last 4 bits of the OUT_T_LSB register hold data, this does not matter as the remaining 4 are held at zero and "disappear" when we shift the decimal point left by 8. Similar logic is applied to the altitude calculation.
0 commit comments