|
| 1 | +#include "radius_cpu.h" |
| 2 | + |
| 3 | +#include "utils.h" |
| 4 | +#include "utils/neighbors.cpp" |
| 5 | + |
| 6 | +torch::Tensor radius_cpu(torch::Tensor x, torch::Tensor y, |
| 7 | + torch::optional<torch::Tensor> ptr_x, |
| 8 | + torch::optional<torch::Tensor> ptr_y, double r, |
| 9 | + int64_t max_num_neighbors, int64_t num_workers) { |
| 10 | + |
| 11 | + CHECK_CPU(x); |
| 12 | + CHECK_INPUT(x.dim() == 2); |
| 13 | + CHECK_CPU(y); |
| 14 | + CHECK_INPUT(y.dim() == 2); |
| 15 | + |
| 16 | + if (ptr_x.has_value()) { |
| 17 | + CHECK_CPU(ptr_x.value()); |
| 18 | + CHECK_INPUT(ptr_x.value().dim() == 1); |
| 19 | + } |
| 20 | + if (ptr_y.has_value()) { |
| 21 | + CHECK_CPU(ptr_y.value()); |
| 22 | + CHECK_INPUT(ptr_y.value().dim() == 1); |
| 23 | + } |
| 24 | + |
| 25 | + std::vector<size_t> *out_vec = new std::vector<size_t>(); |
| 26 | + |
| 27 | + AT_DISPATCH_ALL_TYPES(x.scalar_type(), "radius_cpu", [&] { |
| 28 | + auto x_data = x.data_ptr<scalar_t>(); |
| 29 | + auto y_data = y.data_ptr<scalar_t>(); |
| 30 | + auto x_vec = std::vector<scalar_t>(x_data, x_data + x.numel()); |
| 31 | + auto y_vec = std::vector<scalar_t>(y_data, y_data + y.numel()); |
| 32 | + |
| 33 | + if (!ptr_x.has_value()) { |
| 34 | + nanoflann_neighbors<scalar_t>(y_vec, x_vec, out_vec, r, x.size(-1), |
| 35 | + max_num_neighbors, num_workers, 0, 1); |
| 36 | + } else { |
| 37 | + auto sx = (ptr_x.value().narrow(0, 1, ptr_x.value().numel() - 1) - |
| 38 | + ptr_x.value().narrow(0, 0, ptr_x.value().numel() - 1)); |
| 39 | + auto sy = (ptr_y.value().narrow(0, 1, ptr_y.value().numel() - 1) - |
| 40 | + ptr_y.value().narrow(0, 0, ptr_y.value().numel() - 1)); |
| 41 | + auto sx_data = sx.data_ptr<int64_t>(); |
| 42 | + auto sy_data = sy.data_ptr<int64_t>(); |
| 43 | + auto sx_vec = std::vector<long>(sx_data, sx_data + sx.numel()); |
| 44 | + auto sy_vec = std::vector<long>(sy_data, sy_data + sy.numel()); |
| 45 | + batch_nanoflann_neighbors<scalar_t>(y_vec, x_vec, sy_vec, sx_vec, out_vec, |
| 46 | + r, x.size(-1), max_num_neighbors, 0, |
| 47 | + 1); |
| 48 | + } |
| 49 | + }); |
| 50 | + |
| 51 | + const int64_t size = out_vec->size() / 2; |
| 52 | + auto out = torch::from_blob(out_vec->data(), {size, 2}, |
| 53 | + x.options().dtype(torch::kLong)); |
| 54 | + return out.t().index_select(0, torch::tensor({1, 0})); |
| 55 | +} |
0 commit comments