11import os
22from typing import Type
3- from langchain_huggingface .embeddings import HuggingFaceEmbeddings
3+ # from langchain_huggingface.embeddings import HuggingFaceEmbeddings
44from langchain_community .vectorstores import FAISS
55import gradio as gr
66import pandas as pd
77from torch import float16 , float32
88from llama_cpp import Llama
99from huggingface_hub import hf_hub_download
1010from transformers import AutoTokenizer , AutoModelForSeq2SeqLM , AutoModelForCausalLM
11- import zipfile
1211
13- from chatfuncs .ingest import embed_faiss_save_to_zip
14-
15- from chatfuncs .helper_functions import get_connection_params , reveal_feedback_buttons , wipe_logs
16- from chatfuncs .aws_functions import upload_file_to_s3
17- from chatfuncs .auth import authenticate_user
18- from chatfuncs .config import FEEDBACK_LOGS_FOLDER , ACCESS_LOGS_FOLDER , USAGE_LOGS_FOLDER , HOST_NAME , COGNITO_AUTH , INPUT_FOLDER , OUTPUT_FOLDER , MAX_QUEUE_SIZE , DEFAULT_CONCURRENCY_LIMIT , MAX_FILE_SIZE , GRADIO_SERVER_PORT , ROOT_PATH , DEFAULT_EMBEDDINGS_LOCATION , EMBEDDINGS_MODEL_NAME , DEFAULT_DATA_SOURCE , HF_TOKEN , LARGE_MODEL_REPO_ID , LARGE_MODEL_GGUF_FILE , LARGE_MODEL_NAME , SMALL_MODEL_NAME , SMALL_MODEL_REPO_ID , DEFAULT_DATA_SOURCE_NAME , DEFAULT_EXAMPLES , DEFAULT_MODEL_CHOICES , RUN_GEMINI_MODELS , LOAD_LARGE_MODEL
19- from chatfuncs .model_load import torch_device , gpu_config , cpu_config , context_length
20- import chatfuncs .chatfuncs as chatf
21- import chatfuncs .ingest as ing
12+ from tools .ingest import embed_faiss_save_to_zip , load_embeddings_model , get_faiss_store
13+ from tools .helper_functions import get_connection_params , reveal_feedback_buttons , wipe_logs
14+ from tools .aws_functions import upload_file_to_s3
15+ from tools .auth import authenticate_user
16+ from tools .config import FEEDBACK_LOGS_FOLDER , ACCESS_LOGS_FOLDER , USAGE_LOGS_FOLDER , HOST_NAME , COGNITO_AUTH , INPUT_FOLDER , OUTPUT_FOLDER , MAX_QUEUE_SIZE , DEFAULT_CONCURRENCY_LIMIT , MAX_FILE_SIZE , GRADIO_SERVER_PORT , ROOT_PATH , DEFAULT_EMBEDDINGS_LOCATION , EMBEDDINGS_MODEL_NAME , DEFAULT_DATA_SOURCE , HF_TOKEN , LARGE_MODEL_REPO_ID , LARGE_MODEL_GGUF_FILE , LARGE_MODEL_NAME , SMALL_MODEL_NAME , SMALL_MODEL_REPO_ID , DEFAULT_DATA_SOURCE_NAME , DEFAULT_EXAMPLES , DEFAULT_MODEL_CHOICES , RUN_GEMINI_MODELS , LOAD_LARGE_MODEL
17+ from tools .model_load import torch_device , gpu_config , cpu_config , context_length
18+ import tools .chatfuncs as chatf
19+ import tools .ingest as ing
2220
2321PandasDataFrame = Type [pd .DataFrame ]
2422
3432if isinstance (DEFAULT_MODEL_CHOICES , str ): default_model_choices = eval (DEFAULT_MODEL_CHOICES )
3533
3634# Disable cuda devices if necessary
37- #os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
38-
35+ #os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
3936
4037###
4138# Load preset embeddings, vectorstore, and model
4239###
43-
44- def load_embeddings_model (embeddings_model = EMBEDDINGS_MODEL_NAME ):
45-
46- embeddings_func = HuggingFaceEmbeddings (model_name = embeddings_model )
47-
48- #global embeddings
49-
50- #embeddings = embeddings_func
51-
52- return embeddings_func
53-
54- def get_faiss_store (faiss_vstore_folder :str , embeddings_model :object ):
55-
56- with zipfile .ZipFile (faiss_vstore_folder + '/' + faiss_vstore_folder + '.zip' , 'r' ) as zip_ref :
57- zip_ref .extractall (faiss_vstore_folder )
58-
59- faiss_vstore = FAISS .load_local (folder_path = faiss_vstore_folder , embeddings = embeddings_model , allow_dangerous_deserialization = True )
60- os .remove (faiss_vstore_folder + "/index.faiss" )
61- os .remove (faiss_vstore_folder + "/index.pkl" )
62-
63- #global vectorstore
64-
65- #vectorstore = faiss_vstore
66-
67- return faiss_vstore #vectorstore
68-
6940# Load in default embeddings and embeddings model name
7041embeddings_model = load_embeddings_model (EMBEDDINGS_MODEL_NAME )
71- vectorstore = get_faiss_store (faiss_vstore_folder = DEFAULT_EMBEDDINGS_LOCATION ,embeddings_model = embeddings_model )#globals()["embeddings"])
42+ vectorstore = get_faiss_store (zip_file_path = DEFAULT_EMBEDDINGS_LOCATION ,embeddings_model = embeddings_model )#globals()["embeddings"])
7243
7344chatf .embeddings = embeddings_model
7445chatf .vectorstore = vectorstore
@@ -87,7 +58,6 @@ def docs_to_faiss_save(docs_out:PandasDataFrame, embeddings_model=embeddings_mod
8758
8859 return out_message , vectorstore_func
8960
90-
9161def create_hf_model (model_name :str , hf_token = HF_TOKEN ):
9262 if torch_device == "cuda" :
9363 if "flan" in model_name :
@@ -167,12 +137,11 @@ def load_model(model_type:str, gpu_layers:int, gpu_config:dict=gpu_config, cpu_c
167137
168138 return model_type , load_confirmation , model_type #model, tokenizer, model_type
169139
170-
171140###
172141# RUN UI
173142###
174143
175- app = gr .Blocks (theme = gr .themes .Base ( ), fill_width = True )#css=".gradio-container {background-color: black}")
144+ app = gr .Blocks (theme = gr .themes .Default ( primary_hue = "blue" ), fill_width = True )#css=".gradio-container {background-color: black}")
176145
177146with app :
178147 model_type = SMALL_MODEL_NAME
0 commit comments