Skip to content
This repository was archived by the owner on Feb 3, 2025. It is now read-only.

Commit dc0a2b3

Browse files
author
DEKHTIARJonathan
committed
[Benchmarking-Py] Replacing tf.data.experimental.AUTOTUNE with tf.data.AUTOTUNE
1 parent cfa6877 commit dc0a2b3

File tree

11 files changed

+22
-24
lines changed

11 files changed

+22
-24
lines changed

tftrt/benchmarking-python/dataloading_utils.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ def SyntheticDataset(dataset, device):
1212
dataset = dataset.take(count=1) # loop over 1 batch
1313
dataset = dataset.cache()
1414
dataset = dataset.repeat()
15-
dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
15+
dataset = dataset.prefetch(buffer_size=tf.data.AUTOTUNE)
1616
dataset = ensure_dataset_on_gpu(dataset, device)
1717
return dataset
1818

@@ -46,7 +46,7 @@ def ensure_dataset_on_gpu(dataset, device):
4646
print(f"[INFO] Adding prefetch to device `{device}` to the dataset.")
4747
dataset = dataset.apply(
4848
tf.data.experimental.prefetch_to_device(
49-
device=device, buffer_size=tf.data.experimental.AUTOTUNE
49+
device=device, buffer_size=tf.data.AUTOTUNE
5050
)
5151
)
5252
return dataset

tftrt/benchmarking-python/huggingface/bert/transformers.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -128,7 +128,7 @@ def get_dataset_batches(self):
128128
dataset = dataset.take(count=1) # loop over 1 batch
129129
dataset = dataset.cache()
130130
dataset = dataset.repeat()
131-
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
131+
dataset = dataset.prefetch(tf.data.AUTOTUNE)
132132

133133
return dataset, None
134134

tftrt/benchmarking-python/huggingface/t5/infer.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -169,7 +169,7 @@ def get_dataset_batches(self):
169169
dataset = dataset.cache()
170170
dataset = dataset.repeat()
171171

172-
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
172+
dataset = dataset.prefetch(tf.data.AUTOTUNE)
173173
return dataset, None
174174

175175
def preprocess_model_inputs(self, data_batch):

tftrt/benchmarking-python/image_classification/image_classification.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -163,7 +163,7 @@ def preprocess_sample_fn(record):
163163

164164
dataset = dataset.interleave(
165165
tf.data.TFRecordDataset,
166-
cycle_length=tf.data.experimental.AUTOTUNE,
166+
cycle_length=tf.data.AUTOTUNE,
167167
block_length=max(self._args.batch_size, 32)
168168
)
169169

@@ -175,12 +175,12 @@ def preprocess_sample_fn(record):
175175

176176
dataset = dataset.map(
177177
map_func=preprocess_fn,
178-
num_parallel_calls=tf.data.experimental.AUTOTUNE,
178+
num_parallel_calls=tf.data.AUTOTUNE,
179179
)
180180

181181
dataset = dataset.batch(self._args.batch_size, drop_remainder=False)
182182

183-
dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
183+
dataset = dataset.prefetch(buffer_size=tf.data.AUTOTUNE)
184184

185185
return dataset, None
186186

tftrt/benchmarking-python/nvidia_examples/bert_tf2/infer.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -200,7 +200,7 @@ def append_feature(feature, is_padding):
200200
)
201201

202202
dataset = dataset.batch(self._args.batch_size, drop_remainder=False)
203-
dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
203+
dataset = dataset.prefetch(buffer_size=tf.data.AUTOTUNE)
204204

205205
bypass_data_to_eval = {
206206
"eval_features": eval_features,

tftrt/benchmarking-python/nvidia_examples/efficientnet_base/infer.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -196,17 +196,17 @@ def parse_record(record, image_size):
196196
tf.data.TFRecordDataset,
197197
cycle_length=10,
198198
block_length=1,
199-
num_parallel_calls=tf.data.experimental.AUTOTUNE
199+
num_parallel_calls=tf.data.AUTOTUNE
200200
)
201201

202202
parse_record_fn = lambda record: parse_record(
203203
record=record, image_size=self._args.input_size
204204
)
205205
dataset = dataset.map(
206-
parse_record_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE
206+
parse_record_fn, num_parallel_calls=tf.data.AUTOTUNE
207207
)
208208
dataset = dataset.batch(self._args.batch_size, drop_remainder=False)
209-
dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
209+
dataset = dataset.prefetch(buffer_size=tf.data.AUTOTUNE)
210210

211211
return dataset, None
212212

tftrt/benchmarking-python/nvidia_examples/electra_tf2/infer.py

Lines changed: 1 addition & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -220,9 +220,7 @@ def get_dataset_from_features(features, batch_size):
220220
))
221221

222222
dataset = dataset.batch(batch_size, drop_remainder=False)
223-
dataset = dataset.prefetch(
224-
buffer_size=tf.data.experimental.AUTOTUNE
225-
)
223+
dataset = dataset.prefetch(buffer_size=tf.data.AUTOTUNE)
226224

227225
return dataset
228226

tftrt/benchmarking-python/nvidia_examples/mrcnn_tf2/infer.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -167,14 +167,14 @@ def get_dataset_batches(self):
167167

168168
dataset = dataset.map(
169169
lambda x: dataset_parser(value=x, args=self._args),
170-
num_parallel_calls=tf.data.experimental.AUTOTUNE
170+
num_parallel_calls=tf.data.AUTOTUNE
171171
)
172172

173173
dataset = dataset.batch(
174174
batch_size=args.batch_size, drop_remainder=False
175175
)
176176

177-
dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
177+
dataset = dataset.prefetch(buffer_size=tf.data.AUTOTUNE)
178178

179179
return dataset, None
180180

tftrt/benchmarking-python/nvidia_examples/sim_tf2/infer.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -108,16 +108,16 @@ def _remap_values(sample, out_type):
108108

109109
dataset = dataset.map(
110110
map_func=partial(tf.io.parse_example, features=feature_spec),
111-
num_parallel_calls=tf.data.experimental.AUTOTUNE
111+
num_parallel_calls=tf.data.AUTOTUNE
112112
)
113113

114114
out_type = tf.float16 if self._args.amp else tf.float32
115115
dataset = dataset.map(
116116
map_func=partial(_remap_values, out_type=out_type),
117-
num_parallel_calls=tf.data.experimental.AUTOTUNE
117+
num_parallel_calls=tf.data.AUTOTUNE
118118
)
119119

120-
dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
120+
dataset = dataset.prefetch(buffer_size=tf.data.AUTOTUNE)
121121

122122
return dataset, None
123123

tftrt/benchmarking-python/nvidia_examples/unet_medical_tf2/infer.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -101,7 +101,7 @@ def get_dataset_batches(self):
101101

102102
dataset = dataset.batch(args.batch_size, drop_remainder=False)
103103

104-
dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
104+
dataset = dataset.prefetch(buffer_size=tf.data.AUTOTUNE)
105105

106106
return dataset, None
107107

0 commit comments

Comments
 (0)