@@ -204,17 +204,17 @@ class ChannelEnsembleClassifier(ClassifierMixin, _BaseChannelEnsemble):
204204 Examples
205205 --------
206206 >>> from tsml.compose import ChannelEnsembleClassifier
207- >>> from tsml.interval_based import IntervalForestClassifier
207+ >>> from tsml.dummy import DummyClassifier
208208 >>> from tsml.utils.testing import generate_3d_test_data
209209 >>> X, y = generate_3d_test_data(n_samples=8, series_length=10, random_state=0)
210210 >>> reg = ChannelEnsembleClassifier(
211- ... estimators=("tsf ", IntervalForestClassifier(n_estimators=2 ), "all-split"),
211+ ... estimators=("d ", DummyClassifier( ), "all-split"),
212212 ... random_state=0,
213213 ... )
214214 >>> reg.fit(X, y)
215215 ChannelEnsembleClassifier(...)
216216 >>> reg.predict(X)
217- array([0, 1, 1 , 0, 0, 1 , 0, 1 ])
217+ array([0, 0, 0 , 0, 0, 0 , 0, 0 ])
218218 """
219219
220220 def __init__ (self , estimators , remainder = "drop" , random_state = None ):
@@ -349,12 +349,12 @@ def get_test_params(
349349 params : dict or list of dict
350350 Parameters to create testing instances of the class.
351351 """
352- from tsml .interval_based import IntervalForestClassifier
352+ from tsml .dummy import DummyClassifier
353353
354354 return {
355355 "estimators" : [
356- ("tsf1 " , IntervalForestClassifier ( n_estimators = 2 ), 0 ),
357- ("tsf2 " , IntervalForestClassifier ( n_estimators = 2 ), 0 ),
356+ ("d1 " , DummyClassifier ( ), 0 ),
357+ ("d2 " , DummyClassifier ( ), 0 ),
358358 ]
359359 }
360360
@@ -411,19 +411,19 @@ class ChannelEnsembleRegressor(RegressorMixin, _BaseChannelEnsemble):
411411 Examples
412412 --------
413413 >>> from tsml.compose import ChannelEnsembleRegressor
414- >>> from tsml.interval_based import IntervalForestRegressor
414+ >>> from tsml.dummy import DummyRegressor
415415 >>> from tsml.utils.testing import generate_3d_test_data
416416 >>> X, y = generate_3d_test_data(n_samples=8, series_length=10,
417417 ... regression_target=True, random_state=0)
418418 >>> reg = ChannelEnsembleRegressor(
419- ... estimators=("tsf ", IntervalForestRegressor(n_estimators=2 ), "all-split"),
419+ ... estimators=("d ", DummyRegressor( ), "all-split"),
420420 ... random_state=0,
421421 ... )
422422 >>> reg.fit(X, y)
423423 ChannelEnsembleRegressor(...)
424424 >>> reg.predict(X)
425- array([0.31798318, 1.41426301, 1.06414747 , 0.6924721 , 0.56660146 ,
426- 1.26538944 , 0.52324808, 1.0939405 ] )
425+ array([0.8672557, 0.8672557, 0.8672557 , 0.8672557, 0.8672557 , 0.8672557 ,
426+ 0.8672557 , 0.8672557], dtype=float32 )
427427 """
428428
429429 def __init__ (self , estimators , remainder = "drop" , random_state = None ):
@@ -518,12 +518,12 @@ def get_test_params(
518518 params : dict or list of dict
519519 Parameters to create testing instances of the class.
520520 """
521- from tsml .interval_based import IntervalForestRegressor
521+ from tsml .dummy import DummyRegressor
522522
523523 return {
524524 "estimators" : [
525- ("tsf1 " , IntervalForestRegressor ( n_estimators = 2 ), 0 ),
526- ("tsf2 " , IntervalForestRegressor ( n_estimators = 2 ), 0 ),
525+ ("d1 " , DummyRegressor ( ), 0 ),
526+ ("d2 " , DummyRegressor ( ), 0 ),
527527 ]
528528 }
529529
0 commit comments