@@ -1450,8 +1450,7 @@ Lemma is_lat1 L a :
14501450 premeet_closed L^~pl [fset a] &
14511451 [fset a] != fset0].
14521452Proof .
1453- apply/and3P; split; first exact/premeet_closed1;
1454- first exact/premeet_closed1.
1453+ apply/and3P; split; try exact/premeet_closed1.
14551454by apply/fset0Pn; exists a; rewrite in_fsetE.
14561455Qed .
14571456
@@ -1558,7 +1557,7 @@ Proof. exact: mem_bigfmeet. Qed.
15581557Lemma mem_djoin L (S : {finLattice L}) b : djoin S b \in S.
15591558Proof . exact: mem_bigfjoin. Qed .
15601559
1561- Lemma itv_prop0 L (S : {finLattice L}) a b :
1560+ Lemma itv_prop0 L (S : {finLattice L}) a b:
15621561 interval S a b != fset0.
15631562Proof .
15641563apply/fset0Pn; exists (\fmeet_S (umeet S a) (djoin S b)).
@@ -1720,6 +1719,7 @@ Proof. exact: Interval.intervalP. Qed.
17201719Lemma itv_subset L (S: {finLattice L}) a b x :
17211720 x \in [< a ; b >]_S -> x \in S.
17221721Proof . exact: Interval.itv_subset. Qed .
1722+
17231723Lemma itv_bigrange L (S: {finLattice L}) a b x :
17241724 x \in [< a ; b >]_S ->
17251725 \fmeet_S (umeet S a) (djoin S b) <=_L x <=_L \fjoin_S (umeet S a) (djoin S b).
@@ -2274,7 +2274,6 @@ case/misofP => f_morph f_inj f_surj.
22742274by exists (FMorphism f_morph) => //; apply/misofP.
22752275Qed .
22762276
2277-
22782277Lemma isofP :
22792278 (exists f, [/\ fmorphism L S1 f, {in S1&, injective f} & f @` S1 = S2]) <->
22802279 (isof).
0 commit comments