This page contains a list of example codes written with Optuna.
- AllenNLP
- AllenNLP (Jsonnet)
- Catalyst
- CatBoost
- Chainer
- ChainerMN
- Dask-ML
- FastAI V1
- FastAI V2
- Haiku
- Gluon
- Keras
- LightGBM
- LightGBM Tuner
- MXNet
- PyTorch
- PyTorch Ignite
- PyTorch Lightning
- PyTorch Lightning (DDP)
- RAPIDS
- Scikit-learn
- Scikit-learn OptunaSearchCV
- Scikit-image
- SKORCH
- Tensorflow
- Tensorflow (eager)
- XGBoost
The following example demonstrates how to implement an objective function that uses additional arguments other than trial.
The following example demonstrates how to implement pruning logic with Optuna.
In addition, integration modules are available for the following libraries, providing simpler interfaces to utilize pruning.
- Pruning with Catalyst integration module
- Pruning with Chainer integration module
- Pruning with ChainerMN integration module
- Pruning with FastAI V1 integration module
- Pruning with FastAI V2 integration module
- Pruning with Keras integration module
- Pruning with LightGBM integration module
- Pruning with MXNet integration module
- Pruning with PyTorch integration module
- Pruning with PyTorch Ignite integration module
- Pruning with PyTorch Lightning integration module
- Pruning with PyTorch Lightning integration module (DDP)
- Pruning with Tensorflow integration module
- Pruning with XGBoost integration module
- Pruning with XGBoost integration module (cross validation, XGBoost.cv)
- Allegro Trains
- BBO-Rietveld: Automated crystal structure refinement
- Catalyst
- CuPy
- Hydra's Optuna Sweeper plugin
- Mozilla Voice STT
- neptune.ai
- OptGBM: A scikit-learn compatible LightGBM estimator with Optuna
- PyKEEN
- RL Baselines Zoo
- Hyperparameter Optimization for Machine Learning, code repository for online course
PRs to add additional projects welcome!
You can use our docker images with the tag ending with -dev to run most of the examples.
For example, you can run PyTorch Simple via docker run --rm -v $(pwd):/prj -w /prj optuna/optuna:py3.7-dev python pytorch/pytorch_simple.py.
Also, you can try our visualization example in Jupyter Notebook by opening localhost:8888 in your browser after executing this:
docker run -p 8888:8888 --rm optuna/optuna:py3.7-dev jupyter notebook --allow-root --no-browser --port 8888 --ip 0.0.0.0 --NotebookApp.token='' --NotebookApp.password=''