You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: arxiv.json
+35Lines changed: 35 additions & 0 deletions
Original file line number
Diff line number
Diff line change
@@ -55788,5 +55788,40 @@
55788
55788
"pub_date": "2025-09-24",
55789
55789
"summary": "Managing scan protocols in Computed Tomography (CT), which includes adjusting acquisition parameters or configuring reconstructions, as well as selecting postprocessing tools in a patient-specific manner, is time-consuming and requires clinical as well as technical expertise. At the same time, we observe an increasing shortage of skilled workforce in radiology. To address this issue, a Large Language Model (LLM)-based agent framework is proposed to assist with the interpretation and execution of protocol configuration requests given in natural language or a structured, device-independent format, aiming to improve the workflow efficiency and reduce technologists' workload. The agent combines in-context-learning, instruction-following, and structured toolcalling abilities to identify relevant protocol elements and apply accurate modifications. In a systematic evaluation, experimental results indicate that the agent can effectively retrieve protocol components, generate device compatible protocol definition files, and faithfully implement user requests. Despite demonstrating feasibility in principle, the approach faces limitations regarding syntactic and semantic validity due to lack of a unified device API, and challenges with ambiguous or complex requests. In summary, the findings show a clear path towards LLM-based agents for supporting scan protocol management in CT imaging.",
"title": "Interactive Recommendation Agent with Active User Commands",
55794
+
"url": "http://arxiv.org/abs/2509.21317v1",
55795
+
"pub_date": "2025-09-25",
55796
+
"summary": "Traditional recommender systems rely on passive feedback mechanisms that limit users to simple choices such as like and dislike. However, these coarse-grained signals fail to capture users' nuanced behavior motivations and intentions. In turn, current systems cannot also distinguish which specific item attributes drive user satisfaction or dissatisfaction, resulting in inaccurate preference modeling. These fundamental limitations create a persistent gap between user intentions and system interpretations, ultimately undermining user satisfaction and harming system effectiveness. To address these limitations, we introduce the Interactive Recommendation Feed (IRF), a pioneering paradigm that enables natural language commands within mainstream recommendation feeds. Unlike traditional systems that confine users to passive implicit behavioral influence, IRF empowers active explicit control over recommendation policies through real-time linguistic commands. To support this paradigm, we develop RecBot, a dual-agent architecture where a Parser Agent transforms linguistic expressions into structured preferences and a Planner Agent dynamically orchestrates adaptive tool chains for on-the-fly policy adjustment. To enable practical deployment, we employ simulation-augmented knowledge distillation to achieve efficient performance while maintaining strong reasoning capabilities. Through extensive offline and long-term online experiments, RecBot shows significant improvements in both user satisfaction and business outcomes.",
"summary": "Graph-based retrieval-augmented generation (RAG) enriches large language models (LLMs) with external knowledge for long-context understanding and multi-hop reasoning, but existing methods face a granularity dilemma: fine-grained entity-level graphs incur high token costs and lose context, while coarse document-level graphs fail to capture nuanced relations. We introduce QCG-RAG, a query-centric graph RAG framework that enables query-granular indexing and multi-hop chunk retrieval. Our query-centric approach leverages Doc2Query and Doc2Query{-}{-} to construct query-centric graphs with controllable granularity, improving graph quality and interpretability. A tailored multi-hop retrieval mechanism then selects relevant chunks via the generated queries. Experiments on LiHuaWorld and MultiHop-RAG show that QCG-RAG consistently outperforms prior chunk-based and graph-based RAG methods in question answering accuracy, establishing a new paradigm for multi-hop reasoning.",
"title": "SGMem: Sentence Graph Memory for Long-Term Conversational Agents",
55808
+
"url": "http://arxiv.org/abs/2509.21212v1",
55809
+
"pub_date": "2025-09-25",
55810
+
"summary": "Long-term conversational agents require effective memory management to handle dialogue histories that exceed the context window of large language models (LLMs). Existing methods based on fact extraction or summarization reduce redundancy but struggle to organize and retrieve relevant information across different granularities of dialogue and generated memory. We introduce SGMem (Sentence Graph Memory), which represents dialogue as sentence-level graphs within chunked units, capturing associations across turn-, round-, and session-level contexts. By combining retrieved raw dialogue with generated memory such as summaries, facts and insights, SGMem supplies LLMs with coherent and relevant context for response generation. Experiments on LongMemEval and LoCoMo show that SGMem consistently improves accuracy and outperforms strong baselines in long-term conversational question answering.",
"title": "Adoption, usability and perceived clinical value of a UK AI clinical\n reference platform (iatroX): a mixed-methods formative evaluation of\n real-world usage and a 1,223-respondent user survey",
55815
+
"url": "http://arxiv.org/abs/2509.21188v1",
55816
+
"pub_date": "2025-09-25",
55817
+
"summary": "Clinicians face growing information overload from biomedical literature and guidelines, hindering evidence-based care. Retrieval-augmented generation (RAG) with large language models may provide fast, provenance-linked answers, but requires real-world evaluation. We describe iatroX, a UK-centred RAG-based clinical reference platform, and report early adoption, usability, and perceived clinical value from a formative implementation evaluation. Methods comprised a retrospective analysis of usage across web, iOS, and Android over 16 weeks (8 April-31 July 2025) and an in-product intercept survey. Usage metrics were drawn from web and app analytics with bot filtering. A client-side script randomized single-item prompts to approx. 10% of web sessions from a predefined battery assessing usefulness, reliability, and adoption intent. Proportions were summarized with Wilson 95% confidence intervals; free-text comments underwent thematic content analysis. iatroX reached 19,269 unique web users, 202,660 engagement events, and approx. 40,000 clinical queries. Mobile uptake included 1,960 iOS downloads and Android growth (peak >750 daily active users). The survey yielded 1,223 item-level responses: perceived usefulness 86.2% (95% CI 74.8-93.9%; 50/58); would use again 93.3% (95% CI 68.1-99.8%; 14/15); recommend to a colleague 88.4% (95% CI 75.1-95.9%; 38/43); perceived accuracy 75.0% (95% CI 58.8-87.3%; 30/40); reliability 79.4% (95% CI 62.1-91.3%; 27/34). Themes highlighted speed, guideline-linked answers, and UK specificity. Early real-world use suggests iatroX can mitigate information overload and support timely answers for UK clinicians. Limitations include small per-item samples and early-adopter bias; future work will include accuracy audits and prospective studies on workflow and care quality.",
"title": "IntSR: An Integrated Generative Framework for Search and Recommendation",
55822
+
"url": "http://arxiv.org/abs/2509.21179v1",
55823
+
"pub_date": "2025-09-25",
55824
+
"summary": "Generative recommendation has emerged as a promising paradigm, demonstrating remarkable results in both academic benchmarks and industrial applications. However, existing systems predominantly focus on unifying retrieval and ranking while neglecting the integration of search and recommendation (S&R) tasks. What makes search and recommendation different is how queries are formed: search uses explicit user requests, while recommendation relies on implicit user interests. As for retrieval versus ranking, the distinction comes down to whether the queries are the target items themselves. Recognizing the query as central element, we propose IntSR, an integrated generative framework for S&R. IntSR integrates these disparate tasks using distinct query modalities. It also addresses the increased computational complexity associated with integrated S&R behaviors and the erroneous pattern learning introduced by a dynamically changing corpus. IntSR has been successfully deployed across various scenarios in Amap, leading to substantial improvements in digital asset's GMV(+3.02%), POI recommendation's CTR(+2.76%), and travel mode suggestion's ACC(+5.13%).",
0 commit comments