@@ -75,10 +75,10 @@ def to_label_decomposed_graph(graph, automata_size, initial_graph_size):
7575 print ("Boolean matrix for alloc_r nvals: " , alloc_r .nvals )
7676
7777 print ("mask start" )
78- # mask_v = Vector(BOOL, graph.ncols, name = "mask_vector")
78+ mask_v = Vector (BOOL , graph .ncols , name = "mask_vector" )
7979 ####exit_mask_v = Vector(BOOL, graph.ncols, name = "exit_mask_vector")
80- # mask_v("any") << alloc.reduce_columnwise("any")
81- # mask_v("any") << alloc.reduce_rowwise("any")
80+ mask_v ("any" ) << alloc .reduce_columnwise ("any" )
81+ mask_v ("any" ) << alloc .reduce_rowwise ("any" )
8282
8383 print ("entrypoints start" )
8484
@@ -97,11 +97,11 @@ def to_label_decomposed_graph(graph, automata_size, initial_graph_size):
9797 store_i << graph .select (graphblas .select .select_store ).apply (graphblas .unary .decode_store )
9898 print ("Matrix for store_i nvals: " , store_i .nvals )
9999
100- # mask_v("any") << load_i.reduce_columnwise("any")
101- # mask_v("any") << load_i.reduce_rowwise("any")
100+ mask_v ("any" ) << load_i .reduce_columnwise ("any" )
101+ mask_v ("any" ) << load_i .reduce_rowwise ("any" )
102102
103- # mask_v("any") << store_i.reduce_columnwise("any")
104- # mask_v("any") << store_i.reduce_rowwise("any")
103+ mask_v ("any" ) << store_i .reduce_columnwise ("any" )
104+ mask_v ("any" ) << store_i .reduce_rowwise ("any" )
105105
106106 store_block_count = store_i .reduce_scalar ("max" ).get (0 ) + 1
107107 load_block_count = load_i .reduce_scalar ("max" ).get (0 ) + 1
@@ -137,7 +137,7 @@ def to_label_decomposed_graph(graph, automata_size, initial_graph_size):
137137 print ("Boolean matrix for assign nvals: " , assign .nvals )
138138
139139
140- # assign << transitive_reduction(assign, mask_v)
140+ assign << transitive_reduction (assign , mask_v )
141141
142142 assign_r = Matrix (BOOL , graph .ncols , graph .nrows , name = "assign_r_after_intersection" )
143143 assign_r << assign .T
0 commit comments