|
| 1 | +module AutoAnomalyDetectors |
| 2 | +# classification search blocks |
| 3 | + |
| 4 | + |
| 5 | +using Distributed |
| 6 | +using AutoMLPipeline |
| 7 | +using DataFrames: DataFrame, nrow, rename! |
| 8 | +using AutoMLPipeline: score |
| 9 | +using Random |
| 10 | +using Statistics |
| 11 | +using ..AbsTypes |
| 12 | +using ..Utils |
| 13 | +using ..CaretAnomalyDetectors |
| 14 | +import ..CaretAnomalyDetectors.caretadlearner_dict |
| 15 | +using ..SKAnomalyDetectors |
| 16 | + |
| 17 | +import ..AbsTypes: fit, fit!, transform, transform! |
| 18 | +export fit, fit!, transform, transform! |
| 19 | +export AutoAnomalyDetector, autoaddriver |
| 20 | + |
| 21 | +# define customized type |
| 22 | +mutable struct AutoAnomalyDetector <: Workflow |
| 23 | + name::String |
| 24 | + model::Dict{Symbol,Any} |
| 25 | + |
| 26 | + function AutoAnomalyDetector(args=Dict()) |
| 27 | + default_args = Dict( |
| 28 | + :name => "autoad", |
| 29 | + :votepercent => 0.3, |
| 30 | + :impl_args => Dict() |
| 31 | + ) |
| 32 | + cargs = nested_dict_merge(default_args, args) |
| 33 | + cargs[:name] = cargs[:name] * "_" * randstring(3) |
| 34 | + new(cargs[:name], cargs) |
| 35 | + end |
| 36 | +end |
| 37 | + |
| 38 | +function fit!(autodt::AutoAnomalyDetector, X::DataFrame, Y::Vector) |
| 39 | + return nothing |
| 40 | +end |
| 41 | + |
| 42 | +function fit(clfb::AutoAnomalyDetector, X::DataFrame, Y::Vector) |
| 43 | + return nothing |
| 44 | +end |
| 45 | + |
| 46 | +function transform!(autodt::AutoAnomalyDetector, X::DataFrame) |
| 47 | + # detect anomalies using caret |
| 48 | + dfres1 = DataFrame() |
| 49 | + for learner in keys(caretadlearner_dict) |
| 50 | + model = CaretAnomalyDetector(learner) |
| 51 | + res = fit_transform!(model, X) |
| 52 | + mname = string(learner) |
| 53 | + dfres1 = hcat(dfres1, DataFrame(mname => res; makeunique=true)) |
| 54 | + end |
| 55 | + |
| 56 | + #detect anomalies using scikitlearn |
| 57 | + iso = SKAnomalyDetector("IsolationForest") |
| 58 | + eli = SKAnomalyDetector("EllipticEnvelope") |
| 59 | + osvm = SKAnomalyDetector("OneClassSVM") |
| 60 | + lcl = SKAnomalyDetector("LocalOutlierFactor") |
| 61 | + isores = fit_transform!(iso, X) |
| 62 | + elires = fit_transform!(eli, X) |
| 63 | + osvmres = fit_transform!(osvm, X) |
| 64 | + lclres = fit_transform!(lcl, X) |
| 65 | + dfres2 = DataFrame(iso=isores, eli=elires, osvm=osvmres, lcl=lclres) |
| 66 | + |
| 67 | + # combine results and get mean anomaly for each row |
| 68 | + mdf = hcat(dfres1, dfres2) |
| 69 | + mdfm = hcat(mdf, DataFrame(admean=mean.(eachrow(mdf)))) |
| 70 | + # filter anomalies based on mean cut-off |
| 71 | + # cutoff = autodt.model[:votepercent] |
| 72 | + dfad = DataFrame() |
| 73 | + for cutoff in 0.1:0.1:1.0 |
| 74 | + ndx = map(x -> x >= cutoff, mdfm.admean) |
| 75 | + dfad = hcat(dfad, DataFrame(n=ndx); makeunique=true) |
| 76 | + end |
| 77 | + names = map(x -> string(x), 0.1:0.1:1.0) |
| 78 | + rename!(dfad, names) |
| 79 | + return dfad |
| 80 | +end |
| 81 | + |
| 82 | +function transform(autodt::AutoAnomalyDetector, X::DataFrame) |
| 83 | +end |
| 84 | + |
| 85 | +function autoaddriver() |
| 86 | + autoaddt = AutoAnomalyDetector(Dict(:votepercent => 0.1)) |
| 87 | + X = vcat(5 * cos.(-10:10), sin.(-30:30), 3 * cos.(-10:10), 2 * tan.(-10:10), sin.(-30:30)) |> x -> DataFrame([x], :auto) |
| 88 | + fit_transform!(autoaddt, X) |
| 89 | +end |
| 90 | + |
| 91 | + |
| 92 | +end |
0 commit comments