|
13 | 13 | from __future__ import annotations |
14 | 14 |
|
15 | 15 | import math |
| 16 | +import warnings |
16 | 17 | from typing import TYPE_CHECKING |
17 | 18 |
|
18 | 19 | import numpy as np |
|
21 | 22 |
|
22 | 23 | if TYPE_CHECKING: |
23 | 24 | from paddle import Tensor |
| 25 | + from paddle._typing import PlaceLike |
24 | 26 |
|
25 | 27 | from ..features.layers import _WindowLiteral |
26 | 28 |
|
| 29 | +from paddle.base.framework import ( |
| 30 | + _current_expected_place, |
| 31 | + _get_paddle_place, |
| 32 | + core, |
| 33 | + in_dynamic_or_pir_mode, |
| 34 | +) |
| 35 | + |
27 | 36 |
|
28 | 37 | class WindowFunctionRegister: |
29 | 38 | def __init__(self): |
@@ -445,3 +454,287 @@ def get_window( |
445 | 454 | params = (win_length, *args) |
446 | 455 | kwargs = {'sym': sym} |
447 | 456 | return winfunc(*params, dtype=dtype, **kwargs) |
| 457 | + |
| 458 | + |
| 459 | +def _apply_window_postprocess( |
| 460 | + w: Tensor, |
| 461 | + *, |
| 462 | + layout: str | None = None, |
| 463 | + device: PlaceLike | None = None, |
| 464 | + pin_memory: bool = False, |
| 465 | + requires_grad: bool = False, |
| 466 | +) -> Tensor: |
| 467 | + if layout is not None: |
| 468 | + warnings.warn("layout only supports 'strided' in Paddle; ignored") |
| 469 | + |
| 470 | + if in_dynamic_or_pir_mode(): |
| 471 | + device = ( |
| 472 | + _get_paddle_place(device) |
| 473 | + if device is not None |
| 474 | + else _current_expected_place() |
| 475 | + ) |
| 476 | + if ( |
| 477 | + pin_memory |
| 478 | + and paddle.in_dynamic_mode() |
| 479 | + and device is not None |
| 480 | + and not isinstance( |
| 481 | + device, (core.CUDAPinnedPlace, core.XPUPinnedPlace) |
| 482 | + ) |
| 483 | + ): |
| 484 | + if isinstance(device, core.CUDAPlace) or ( |
| 485 | + isinstance(device, core.Place) and device.is_gpu_place() |
| 486 | + ): |
| 487 | + device = core.CUDAPinnedPlace() |
| 488 | + elif isinstance(device, core.XPUPlace) or ( |
| 489 | + isinstance(device, core.Place) and device.is_xpu_place() |
| 490 | + ): |
| 491 | + device = core.XPUPinnedPlace() |
| 492 | + else: |
| 493 | + raise RuntimeError( |
| 494 | + f"Pinning memory is not supported for {device}" |
| 495 | + ) |
| 496 | + w = w.to(device=device) |
| 497 | + if pin_memory and paddle.in_dynamic_mode(): |
| 498 | + w = w.pin_memory() |
| 499 | + if requires_grad is True: |
| 500 | + w.stop_gradient = False |
| 501 | + return w |
| 502 | + |
| 503 | + |
| 504 | +def hamming_window( |
| 505 | + window_length: int, |
| 506 | + periodic: bool = True, |
| 507 | + alpha: float = 0.54, |
| 508 | + beta: float = 0.46, |
| 509 | + *, |
| 510 | + dtype: str = 'float64', |
| 511 | + layout: str | None = None, |
| 512 | + device: PlaceLike | None = None, |
| 513 | + pin_memory: bool = False, |
| 514 | + requires_grad: bool = False, |
| 515 | +): |
| 516 | + """ |
| 517 | + Compute a generalized Hamming window. |
| 518 | +
|
| 519 | + Args: |
| 520 | + window_length (int): The size of the returned window. Must be positive. |
| 521 | + periodic (bool, optional): If True, returns a window for use as a periodic function; if False, returns a symmetric window. Defaults to True. |
| 522 | + alpha (float, optional): The coefficient α in the equation above. Defaults to 0.54. |
| 523 | + beta (float, optional): The coefficient β in the equation above. Defaults to 0.46. |
| 524 | + dtype (str, optional): The data type of the returned tensor. Defaults to 'float64'. |
| 525 | + layout (str, optional): Only included for API consistency with PyTorch; ignored in Paddle. Defaults to None. |
| 526 | + device(PlaceLike|None, optional): The desired device of returned tensor. |
| 527 | + if None, uses the current device for the default tensor type (see paddle.device.set_device()). |
| 528 | + device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. Default: None. |
| 529 | + pin_memory(bool, optional): If set, return tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: False |
| 530 | + requires_grad(bool, optional): If autograd should record operations on the returned tensor. Default: False. |
| 531 | +
|
| 532 | + Returns: |
| 533 | + Tensor: A 1-D tensor of shape `(window_length,)` containing the Hamming window. |
| 534 | +
|
| 535 | + Examples: |
| 536 | + .. code-block:: python |
| 537 | +
|
| 538 | + >>> import paddle |
| 539 | +
|
| 540 | + >>> win = paddle.hamming_window(400, requires_grad=True) |
| 541 | + >>> win = paddle.hamming_window(256, alpha=0.5, beta=0.5) |
| 542 | + """ |
| 543 | + w0 = get_window('hamming', window_length, fftbins=periodic, dtype=dtype) |
| 544 | + alpha0, beta0 = 0.54, 0.46 |
| 545 | + B = beta / beta0 |
| 546 | + A = alpha - B * alpha0 |
| 547 | + w = A + B * w0 |
| 548 | + return _apply_window_postprocess( |
| 549 | + w, |
| 550 | + layout=layout, |
| 551 | + device=device, |
| 552 | + pin_memory=pin_memory, |
| 553 | + requires_grad=requires_grad, |
| 554 | + ) |
| 555 | + |
| 556 | + |
| 557 | +def hann_window( |
| 558 | + window_length: int, |
| 559 | + periodic: bool = True, |
| 560 | + *, |
| 561 | + dtype: str = 'float64', |
| 562 | + layout: str | None = None, |
| 563 | + device: PlaceLike | None = None, |
| 564 | + pin_memory: bool = False, |
| 565 | + requires_grad: bool = False, |
| 566 | +): |
| 567 | + """ |
| 568 | + Compute a Hann window. |
| 569 | +
|
| 570 | + Args: |
| 571 | + window_length (int): The size of the returned window. Must be positive. |
| 572 | + periodic (bool, optional): If True, returns a window for use as a periodic function; if False, returns a symmetric window. Defaults to True. |
| 573 | + dtype (str, optional): The data type of the returned tensor. Defaults to 'float64'. |
| 574 | + layout (str, optional): Only included for API consistency with PyTorch; ignored in Paddle. Defaults to None. |
| 575 | + device(PlaceLike|None, optional): The desired device of returned tensor. |
| 576 | + if None, uses the current device for the default tensor type (see paddle.device.set_device()). |
| 577 | + device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. Default: None. |
| 578 | + pin_memory(bool, optional): If set, return tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: False |
| 579 | + requires_grad(bool, optional): If autograd should record operations on the returned tensor. Default: False. |
| 580 | +
|
| 581 | + Returns: |
| 582 | + Tensor: A 1-D tensor of shape `(window_length,)` containing the Hann window. |
| 583 | +
|
| 584 | + Examples: |
| 585 | + .. code-block:: python |
| 586 | +
|
| 587 | + >>> import paddle |
| 588 | +
|
| 589 | + >>> win = paddle.hann_window(512) |
| 590 | + >>> win = paddle.hann_window(512, requires_grad=True) |
| 591 | + """ |
| 592 | + w = get_window('hann', window_length, fftbins=periodic, dtype=dtype) |
| 593 | + return _apply_window_postprocess( |
| 594 | + w, |
| 595 | + layout=layout, |
| 596 | + device=device, |
| 597 | + pin_memory=pin_memory, |
| 598 | + requires_grad=requires_grad, |
| 599 | + ) |
| 600 | + |
| 601 | + |
| 602 | +def kaiser_window( |
| 603 | + window_length: int, |
| 604 | + periodic: bool = True, |
| 605 | + beta: float = 12.0, |
| 606 | + *, |
| 607 | + dtype: str = 'float64', |
| 608 | + layout: str | None = None, |
| 609 | + device: PlaceLike | None = None, |
| 610 | + pin_memory: bool = False, |
| 611 | + requires_grad: bool = False, |
| 612 | +): |
| 613 | + """ |
| 614 | + Compute a Kaiser window. |
| 615 | +
|
| 616 | + Args: |
| 617 | + window_length (int): The size of the returned window. Must be positive. |
| 618 | + periodic (bool, optional): If True, returns a window for use as a periodic function; if False, returns a symmetric window. Defaults to True. |
| 619 | + beta (float, optional): Shape parameter for the window. Defaults to 12.0. |
| 620 | + dtype (str, optional): The data type of the returned tensor. Defaults to 'float64'. |
| 621 | + layout (str, optional): Only included for API consistency with PyTorch; ignored in Paddle. Defaults to None. |
| 622 | + device(PlaceLike|None, optional): The desired device of returned tensor. |
| 623 | + if None, uses the current device for the default tensor type (see paddle.device.set_device()). |
| 624 | + device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. Default: None. |
| 625 | + pin_memory(bool, optional): If set, return tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: False |
| 626 | + requires_grad(bool, optional): If autograd should record operations on the returned tensor. Default: False. |
| 627 | +
|
| 628 | + Returns: |
| 629 | + Tensor: A 1-D tensor of shape `(window_length,)` containing the Kaiser window. |
| 630 | +
|
| 631 | + Examples: |
| 632 | + .. code-block:: python |
| 633 | +
|
| 634 | + >>> import paddle |
| 635 | +
|
| 636 | + >>> win = paddle.kaiser_window(400, beta=8.6) |
| 637 | + >>> win = paddle.kaiser_window(400, requires_grad=True) |
| 638 | + """ |
| 639 | + w = get_window( |
| 640 | + ('kaiser', beta), window_length, fftbins=periodic, dtype=dtype |
| 641 | + ) |
| 642 | + return _apply_window_postprocess( |
| 643 | + w, |
| 644 | + layout=layout, |
| 645 | + device=device, |
| 646 | + pin_memory=pin_memory, |
| 647 | + requires_grad=requires_grad, |
| 648 | + ) |
| 649 | + |
| 650 | + |
| 651 | +def blackman_window( |
| 652 | + window_length: int, |
| 653 | + periodic: bool = True, |
| 654 | + *, |
| 655 | + dtype: str = 'float64', |
| 656 | + layout: str | None = None, |
| 657 | + device: PlaceLike | None = None, |
| 658 | + pin_memory: bool = False, |
| 659 | + requires_grad: bool = False, |
| 660 | +): |
| 661 | + """ |
| 662 | + Compute a Blackman window. |
| 663 | +
|
| 664 | + Args: |
| 665 | + window_length (int): The size of the returned window. Must be positive. |
| 666 | + periodic (bool, optional): If True, returns a window for use as a periodic function; if False, returns a symmetric window. Defaults to True. |
| 667 | + dtype (str, optional): The data type of the returned tensor. Defaults to 'float64'. |
| 668 | + layout (str, optional): Only included for API consistency with PyTorch; ignored in Paddle. Defaults to None. |
| 669 | + device(PlaceLike|None, optional): The desired device of returned tensor. |
| 670 | + if None, uses the current device for the default tensor type (see paddle.device.set_device()). |
| 671 | + device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. Default: None. |
| 672 | + pin_memory(bool, optional): If set, return tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: False |
| 673 | + requires_grad(bool, optional): If autograd should record operations on the returned tensor. Default: False. |
| 674 | +
|
| 675 | + Returns: |
| 676 | + Tensor: A 1-D tensor of shape `(window_length,)` containing the Blackman window. |
| 677 | +
|
| 678 | + Examples: |
| 679 | + .. code-block:: python |
| 680 | +
|
| 681 | + >>> import paddle |
| 682 | +
|
| 683 | + >>> win = paddle.blackman_window(256) |
| 684 | + >>> win = paddle.blackman_window(256, requires_grad=True) |
| 685 | + """ |
| 686 | + w = get_window('blackman', window_length, fftbins=periodic, dtype=dtype) |
| 687 | + return _apply_window_postprocess( |
| 688 | + w, |
| 689 | + layout=layout, |
| 690 | + device=device, |
| 691 | + pin_memory=pin_memory, |
| 692 | + requires_grad=requires_grad, |
| 693 | + ) |
| 694 | + |
| 695 | + |
| 696 | +def bartlett_window( |
| 697 | + window_length: int, |
| 698 | + periodic: bool = True, |
| 699 | + *, |
| 700 | + dtype: str = 'float64', |
| 701 | + layout: str | None = None, |
| 702 | + device: PlaceLike | None = None, |
| 703 | + pin_memory: bool = False, |
| 704 | + requires_grad: bool = False, |
| 705 | +): |
| 706 | + """ |
| 707 | + Compute a Bartlett window. |
| 708 | +
|
| 709 | + Args: |
| 710 | + window_length (int): The size of the returned window. Must be positive. |
| 711 | + periodic (bool, optional): If True, returns a window for use as a periodic function; if False, returns a symmetric window. Defaults to True. |
| 712 | + dtype (str, optional): The data type of the returned tensor. Defaults to 'float64'. |
| 713 | + layout (str, optional): Only included for API consistency with PyTorch; ignored in Paddle. Defaults to None. |
| 714 | + device(PlaceLike|None, optional): The desired device of returned tensor. |
| 715 | + if None, uses the current device for the default tensor type (see paddle.device.set_device()). |
| 716 | + device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. Default: None. |
| 717 | + pin_memory(bool, optional): If set, return tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: False |
| 718 | + requires_grad(bool, optional): If autograd should record operations on the returned tensor. Default: False. |
| 719 | +
|
| 720 | + Returns: |
| 721 | + Tensor: A 1-D tensor of shape `(window_length,)` containing the Bartlett window. |
| 722 | +
|
| 723 | + Examples: |
| 724 | + .. code-block:: python |
| 725 | +
|
| 726 | + >>> import paddle |
| 727 | +
|
| 728 | + >>> n_fft = 512 |
| 729 | + >>> win = paddle.bartlett_window(n_fft) |
| 730 | +
|
| 731 | + >>> win = paddle.bartlett_window(n_fft, requires_grad=True) |
| 732 | + """ |
| 733 | + w = get_window('bartlett', window_length, fftbins=periodic, dtype=dtype) |
| 734 | + return _apply_window_postprocess( |
| 735 | + w, |
| 736 | + layout=layout, |
| 737 | + device=device, |
| 738 | + pin_memory=pin_memory, |
| 739 | + requires_grad=requires_grad, |
| 740 | + ) |
0 commit comments