|
| 1 | +import numpy as np |
| 2 | +import scipy.interpolate |
| 3 | + |
| 4 | +from spikeinterface.core.core_tools import define_function_from_class |
| 5 | +from .basepreprocessor import BasePreprocessor, BasePreprocessorSegment |
| 6 | + |
| 7 | +from ..core import get_random_data_chunks, get_noise_levels |
| 8 | + |
| 9 | +class SilencedPeriodsRecording(BasePreprocessor): |
| 10 | + """ |
| 11 | + Silence user-defined periods from recording extractor traces. By default, |
| 12 | + periods are zeroed-out (mode = 'zeros'). You can also fill the periods with noise. |
| 13 | + Note that both methods assume that traces that are centered around zero. |
| 14 | + If this is not the case, make sure you apply a filter or center function prior to |
| 15 | + silencing periods. |
| 16 | +
|
| 17 | + Parameters |
| 18 | + ---------- |
| 19 | + recording: RecordingExtractor |
| 20 | + The recording extractor to silance periods |
| 21 | + list_periods: list of lists/arrays |
| 22 | + One list per segment of tuples (start_frame, end_frame) to silence |
| 23 | +
|
| 24 | + mode: str |
| 25 | + Determines what periods are replaced by. Can be one of the following: |
| 26 | + |
| 27 | + - 'zeros' (default): Artifacts are replaced by zeros. |
| 28 | +
|
| 29 | + - 'noise': The periods are filled with a gaussion noise that has the |
| 30 | + same variance that the one in the recordings, on a per channel |
| 31 | + basis |
| 32 | + **random_chunk_kwargs: Keyword arguments for `spikeinterface.core.get_random_data_chunk()` function |
| 33 | +
|
| 34 | + Returns |
| 35 | + ------- |
| 36 | + silence_recording: SilencedPeriodsRecording |
| 37 | + The recording extractor after silencing some periods |
| 38 | + """ |
| 39 | + name = 'silence_periods' |
| 40 | + |
| 41 | + def __init__(self, recording, list_periods, mode='zeros', |
| 42 | + **random_chunk_kwargs): |
| 43 | + |
| 44 | + available_modes = ('zeros', 'noise') |
| 45 | + num_seg = recording.get_num_segments() |
| 46 | + |
| 47 | + |
| 48 | + if num_seg == 1: |
| 49 | + if isinstance(list_periods, (list, np.ndarray)) and not np.isscalar(list_periods[0]): |
| 50 | + # when unique segment accept list instead of of list of list/arrays |
| 51 | + list_periods = [list_periods] |
| 52 | + |
| 53 | + # some checks |
| 54 | + assert mode in available_modes, f"mode {mode} is not an available mode: {available_modes}" |
| 55 | + |
| 56 | + assert isinstance(list_periods, list), "'list_periods' must be a list (one per segment)" |
| 57 | + assert len(list_periods) == num_seg, "'list_periods' must have the same length as the number of segments" |
| 58 | + assert all(isinstance(list_periods[i], (list, np.ndarray)) for i in range(num_seg)), \ |
| 59 | + "Each element of 'list_periods' must be array-like" |
| 60 | + |
| 61 | + for periods in list_periods: |
| 62 | + if len(periods) > 0: |
| 63 | + assert np.all(np.diff(np.array(periods), axis=1) > 0), "t_stops should be larger than t_starts" |
| 64 | + assert np.all(periods[i][1] < periods[i + 1][0] for i in np.arange(len(periods) - 1)), \ |
| 65 | + "Intervals should not overlap" |
| 66 | + |
| 67 | + if mode in ['noise']: |
| 68 | + noise_levels = get_noise_levels(recording, return_scaled=False, concatenated=True, **random_chunk_kwargs) |
| 69 | + else: |
| 70 | + noise_levels = None |
| 71 | + |
| 72 | + BasePreprocessor.__init__(self, recording) |
| 73 | + for seg_index, parent_segment in enumerate(recording._recording_segments): |
| 74 | + periods = list_periods[seg_index] |
| 75 | + periods = np.asarray(periods, dtype='int64') |
| 76 | + periods = np.sort(periods, axis=0) |
| 77 | + rec_segment = SilencedPeriodsRecordingSegment(parent_segment, periods, mode, noise_levels) |
| 78 | + self.add_recording_segment(rec_segment) |
| 79 | + |
| 80 | + self._kwargs = dict(recording=recording.to_dict(), list_periods=list_periods, |
| 81 | + mode=mode, noise_levels=noise_levels) |
| 82 | + |
| 83 | + |
| 84 | +class SilencedPeriodsRecordingSegment(BasePreprocessorSegment): |
| 85 | + |
| 86 | + def __init__(self, parent_recording_segment, periods, mode, noise_levels): |
| 87 | + BasePreprocessorSegment.__init__(self, parent_recording_segment) |
| 88 | + self.periods = periods |
| 89 | + self.mode = mode |
| 90 | + self.noise_levels = noise_levels |
| 91 | + |
| 92 | + def get_traces(self, start_frame, end_frame, channel_indices): |
| 93 | + |
| 94 | + traces = self.parent_recording_segment.get_traces(start_frame, end_frame, channel_indices) |
| 95 | + traces = traces.copy() |
| 96 | + num_channels = traces.shape[1] |
| 97 | + |
| 98 | + if start_frame is None: |
| 99 | + start_frame = 0 |
| 100 | + if end_frame is None: |
| 101 | + end_frame = self.get_num_samples() |
| 102 | + |
| 103 | + if len(self.periods) > 0: |
| 104 | + new_interval = np.array([start_frame, end_frame]) |
| 105 | + lower_index = np.searchsorted(self.periods[:, 1], new_interval[0]) |
| 106 | + upper_index = np.searchsorted(self.periods[:, 0], new_interval[1]) |
| 107 | + |
| 108 | + if upper_index > lower_index: |
| 109 | + |
| 110 | + periods_in_interval = self.periods[lower_index:upper_index] |
| 111 | + |
| 112 | + for period in periods_in_interval: |
| 113 | + |
| 114 | + onset = max(0, period[0] - start_frame) |
| 115 | + offset = min(period[1] - start_frame, end_frame) |
| 116 | + |
| 117 | + if self.mode == 'zeros': |
| 118 | + traces[onset:offset, :] = 0 |
| 119 | + elif self.mode == 'noise': |
| 120 | + traces[onset:offset, :] = self.noise_levels[channel_indices] * \ |
| 121 | + np.random.randn(offset - onset, num_channels) |
| 122 | + |
| 123 | + return traces |
| 124 | + |
| 125 | + |
| 126 | +# function for API |
| 127 | +silence_periods = define_function_from_class(source_class=SilencedPeriodsRecording, name="silence_periods") |
0 commit comments