Skip to content
This repository was archived by the owner on Jun 1, 2023. It is now read-only.

column selection when multiple sensors at site #34

@limnoliver

Description

@limnoliver

Currently we choose the column (or sensor) with the most data, but some hints from the DRB pipeline suggest that we should check the output of this exercise. See the code below from the DRB NGWOS pull:

  # retrieve remaining sites from NWISuv
  new_ngwos_uv <- dataRetrieval::readNWISuv(siteNumbers = missing_sites, parameterCd = '00010')

  uv_long <- select(new_ngwos_uv, site_no, dateTime, ends_with('00010_00000')) %>%
    tidyr::gather(key = 'temp_column', value = 'temp_c', - site_no, -dateTime)

  uv_site_col <- filter(uv_long, !is.na(temp_c)) %>%
    group_by(site_no, temp_column) %>%
    summarize(n_vals = n(),
              n_dates = length(unique(as.Date(dateTime)))) %>%
    filter(!grepl('piezometer', temp_column, ignore.case = TRUE))

  # always choose the standard temp column. In cases where that is missing, choose the one on that day
  # with the most data
  # first take day-temp type means
  uv_long_dailies <- filter(uv_long, !is.na(temp_c)) %>%
    filter(!grepl('piezometer', temp_column, ignore.case = TRUE)) %>%
    group_by(site_no, date = as.Date(dateTime), temp_column) %>%
    summarize(temp_c = mean(temp_c),
              n_obs = n()) %>%
    left_join(select(uv_site_col, site_no, temp_column, n_dates))

  # find the temperature for each site-day
  # first choose standard temp column, then choose one with most data when available
  uv_dat <- uv_long_dailies %>%
    group_by(site_no, date) %>%
    summarize(temp_c = ifelse(grepl('X_00010_00000', paste0(temp_column, collapse = ', ')),
                              temp_c[which(temp_column %in% 'X_00010_00000')], temp_c[which.max(n_dates)]),
              temp_column = ifelse(grepl('X_00010_00000', paste0(temp_column, collapse = ', ')),
                                   'X_00010_00000', temp_column[which.max(n_dates)]),
              n_obs = ifelse(grepl('X_00010_00000', paste0(temp_column, collapse = ', ')),
                             n_obs[which(temp_column %in% 'X_00010_00000')], n_obs[which.max(n_dates)])) %>%
    mutate(source = 'nwis_uv') %>%
    select(site_id = site_no, date, temp_c, n_obs, source)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions