Skip to content

Commit 00c0354

Browse files
committed
fix: more eta-expansion needed
1 parent c4cb90f commit 00c0354

File tree

1 file changed

+6
-6
lines changed

1 file changed

+6
-6
lines changed

src/Relation/Nullary/Negation.agda

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -56,7 +56,7 @@ open import Relation.Nullary.Negation.Core public
5656
¬¬-Monad : RawMonad {a} DoubleNegation
5757
¬¬-Monad = mkRawMonad
5858
DoubleNegation
59-
¬¬-eta
59+
¬¬-η
6060
(λ x f negated-stable (¬¬-map f x))
6161

6262
¬¬-push : DoubleNegation Π[ P ] Π[ DoubleNegation ∘ P ]
@@ -72,7 +72,7 @@ open import Relation.Nullary.Negation.Core public
7272
-- ⊥).
7373

7474
call/cc : ((A Whatever) DoubleNegation A) DoubleNegation A
75-
call/cc hyp ¬a = hyp (flip contradiction ¬a) ¬a
75+
call/cc hyp ¬a = hyp (λ a contradiction a ¬a) ¬a
7676

7777
-- The "independence of premise" rule, in the double-negation monad.
7878
-- It is assumed that the index set (A) is inhabited.
@@ -81,17 +81,17 @@ independence-of-premise : A → (B → Σ A P) → DoubleNegation (Σ[ x ∈ A ]
8181
independence-of-premise {A = A} {B = B} {P = P} q f = ¬¬-map helper ¬¬-excluded-middle
8282
where
8383
helper : Dec B Σ[ x ∈ A ] (B P x)
84-
helper (yes p) = Product.map₂ const (f p)
85-
helper (no ¬p) = (q , flip contradiction ¬p)
84+
helper (yes b) = Product.map₂ const (f b)
85+
helper (no ¬b) = (q , λ b contradiction b ¬b)
8686

8787
-- The independence of premise rule for binary sums.
8888

8989
independence-of-premise-⊎ : (A B ⊎ C) DoubleNegation ((A B) ⊎ (A C))
9090
independence-of-premise-⊎ {A = A} {B = B} {C = C} f = ¬¬-map helper ¬¬-excluded-middle
9191
where
9292
helper : Dec A (A B) ⊎ (A C)
93-
helper (yes p) = Sum.map const const (f p)
94-
helper (no ¬p) = inj₁ (flip contradiction ¬p)
93+
helper (yes a) = Sum.map const const (f a)
94+
helper (no ¬a) = inj₁ λ a contradiction a ¬a
9595

9696
private
9797

0 commit comments

Comments
 (0)