File tree Expand file tree Collapse file tree 3 files changed +646
-594
lines changed
src/Algebra/Module/Morphism Expand file tree Collapse file tree 3 files changed +646
-594
lines changed Original file line number Diff line number Diff line change 99open import Relation.Binary.Core using (Rel)
1010
1111module Algebra.Module.Morphism.Definitions
12- {r} (R : Set r) -- The underlying ring
12+ {r} (R : Set r) -- The underlying ring of the domain
13+ {s} (S : Set s) -- The underlying ring of the codomain
14+ ([_] : R → S) -- The homomorphism between the underlying rings
1315 {a} (A : Set a) -- The domain of the morphism
1416 {b} (B : Set b) -- The codomain of the morphism
1517 {ℓ} (_≈_ : Rel B ℓ) -- The equality relation over the codomain
@@ -18,8 +20,8 @@ module Algebra.Module.Morphism.Definitions
1820open import Algebra.Module.Core using (Opₗ; Opᵣ)
1921open import Algebra.Morphism.Definitions A B _≈_ public
2022
21- Homomorphicₗ : (A → B) → Opₗ R A → Opₗ R B → Set _
22- Homomorphicₗ ⟦_⟧ _∙_ _∘_ = ∀ r x → ⟦ r ∙ x ⟧ ≈ (r ∘ ⟦ x ⟧)
23+ Homomorphicₗ : (A → B) → Opₗ R A → Opₗ S B → Set _
24+ Homomorphicₗ ⟦_⟧ _∙_ _∘_ = ∀ r x → ⟦ r ∙ x ⟧ ≈ ([ r ] ∘ ⟦ x ⟧)
2325
24- Homomorphicᵣ : (A → B) → Opᵣ R A → Opᵣ R B → Set _
25- Homomorphicᵣ ⟦_⟧ _∙_ _∘_ = ∀ r x → ⟦ x ∙ r ⟧ ≈ (⟦ x ⟧ ∘ r )
26+ Homomorphicᵣ : (A → B) → Opᵣ R A → Opᵣ S B → Set _
27+ Homomorphicᵣ ⟦_⟧ _∙_ _∘_ = ∀ r x → ⟦ x ∙ r ⟧ ≈ (⟦ x ⟧ ∘ [ r ] )
You can’t perform that action at this time.
0 commit comments