Skip to content

Commit 201fc4a

Browse files
committed
Module morphisms polymorphic in the underlying ring
1 parent 9990e42 commit 201fc4a

File tree

3 files changed

+646
-594
lines changed

3 files changed

+646
-594
lines changed

src/Algebra/Module/Morphism/Definitions.agda

Lines changed: 7 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,9 @@
99
open import Relation.Binary.Core using (Rel)
1010

1111
module Algebra.Module.Morphism.Definitions
12-
{r} (R : Set r) -- The underlying ring
12+
{r} (R : Set r) -- The underlying ring of the domain
13+
{s} (S : Set s) -- The underlying ring of the codomain
14+
([_] : R S) -- The homomorphism between the underlying rings
1315
{a} (A : Set a) -- The domain of the morphism
1416
{b} (B : Set b) -- The codomain of the morphism
1517
{ℓ} (_≈_ : Rel B ℓ) -- The equality relation over the codomain
@@ -18,8 +20,8 @@ module Algebra.Module.Morphism.Definitions
1820
open import Algebra.Module.Core using (Opₗ; Opᵣ)
1921
open import Algebra.Morphism.Definitions A B _≈_ public
2022

21-
Homomorphicₗ : (A B) Opₗ R A Opₗ R B Set _
22-
Homomorphicₗ ⟦_⟧ _∙_ _∘_ = r x ⟦ r ∙ x ⟧ ≈ (r ∘ ⟦ x ⟧)
23+
Homomorphicₗ : (A B) Opₗ R A Opₗ S B Set _
24+
Homomorphicₗ ⟦_⟧ _∙_ _∘_ = r x ⟦ r ∙ x ⟧ ≈ ([ r ] ∘ ⟦ x ⟧)
2325

24-
Homomorphicᵣ : (A B) Opᵣ R A Opᵣ R B Set _
25-
Homomorphicᵣ ⟦_⟧ _∙_ _∘_ = r x ⟦ x ∙ r ⟧ ≈ (⟦ x ⟧ ∘ r)
26+
Homomorphicᵣ : (A B) Opᵣ R A Opᵣ S B Set _
27+
Homomorphicᵣ ⟦_⟧ _∙_ _∘_ = r x ⟦ x ∙ r ⟧ ≈ (⟦ x ⟧ ∘ [ r ])

0 commit comments

Comments
 (0)