|
| 1 | +------------------------------------------------------------------------ |
| 2 | +-- The Agda standard library |
| 3 | +-- |
| 4 | +-- Symmetric interior of a binary relation |
| 5 | +------------------------------------------------------------------------ |
| 6 | + |
| 7 | +{-# OPTIONS --cubical-compatible --safe #-} |
| 8 | + |
| 9 | +module Relation.Binary.Construct.Interior.Symmetric where |
| 10 | + |
| 11 | +open import Function.Base using (flip) |
| 12 | +open import Level |
| 13 | +open import Relation.Binary |
| 14 | + |
| 15 | +private |
| 16 | + variable |
| 17 | + a b c ℓ r s t : Level |
| 18 | + A : Set a |
| 19 | + R S T : Rel A r |
| 20 | + |
| 21 | +------------------------------------------------------------------------ |
| 22 | +-- Definition |
| 23 | + |
| 24 | +record SymInterior (R : Rel A ℓ) (x y : A) : Set ℓ where |
| 25 | + constructor _,_ |
| 26 | + field |
| 27 | + lhs≤rhs : R x y |
| 28 | + rhs≤lhs : R y x |
| 29 | + |
| 30 | +open SymInterior public |
| 31 | + |
| 32 | +------------------------------------------------------------------------ |
| 33 | +-- Properties |
| 34 | + |
| 35 | +-- The symmetric interior is symmetric. |
| 36 | +symmetric : Symmetric (SymInterior R) |
| 37 | +symmetric (r , r′) = r′ , r |
| 38 | + |
| 39 | +-- The symmetric interior of R is greater than (or equal to) any other symmetric |
| 40 | +-- relation contained by R. |
| 41 | +unfold : Symmetric S → S ⇒ R → S ⇒ SymInterior R |
| 42 | +unfold sym f s = f s , f (sym s) |
| 43 | + |
| 44 | +-- SymInterior preserves various properties. |
| 45 | +reflexive : Reflexive R → Reflexive (SymInterior R) |
| 46 | +reflexive refl = refl , refl |
| 47 | + |
| 48 | +trans : Trans R S T → Trans S R T → |
| 49 | + Trans (SymInterior R) (SymInterior S) (SymInterior T) |
| 50 | +trans trans-rs trans-sr (r , r′) (s , s′) = trans-rs r s , trans-sr s′ r′ |
| 51 | + |
| 52 | +transitive : Transitive R → Transitive (SymInterior R) |
| 53 | +transitive tr = trans tr tr |
| 54 | + |
| 55 | +-- The symmetric interior of a strict relation is empty. |
| 56 | +asymmetric⇒empty : Asymmetric R → Empty (SymInterior R) |
| 57 | +asymmetric⇒empty asym (r , r′) = asym r r′ |
| 58 | + |
| 59 | +-- A reflexive transitive relation _≤_ gives rise to a poset in which the |
| 60 | +-- equivalence relation is SymInterior _≤_. |
| 61 | + |
| 62 | +isEquivalence : Reflexive R → Transitive R → IsEquivalence (SymInterior R) |
| 63 | +isEquivalence refl trans = record |
| 64 | + { refl = reflexive refl |
| 65 | + ; sym = symmetric |
| 66 | + ; trans = transitive trans |
| 67 | + } |
| 68 | + |
| 69 | +isPartialOrder : Reflexive R → Transitive R → IsPartialOrder (SymInterior R) R |
| 70 | +isPartialOrder refl trans = record |
| 71 | + { isPreorder = record |
| 72 | + { isEquivalence = isEquivalence refl trans |
| 73 | + ; reflexive = lhs≤rhs |
| 74 | + ; trans = trans |
| 75 | + } |
| 76 | + ; antisym = _,_ |
| 77 | + } |
| 78 | + |
| 79 | +poset : ∀ {a} {A : Set a} {R : Rel A ℓ} → Reflexive R → Transitive R → Poset a ℓ ℓ |
| 80 | +poset {R = R} refl trans = record |
| 81 | + { _≤_ = R |
| 82 | + ; isPartialOrder = isPartialOrder refl trans |
| 83 | + } |
0 commit comments