@@ -14,42 +14,42 @@ open import Function.Base using (_on_; _$_)
1414open import Data.Integer.Base
1515open import Data.Integer.Properties
1616import Data.Nat.Base as ℕ
17- import Data.Nat.Divisibility as ℕᵈ
17+ import Data.Nat.Divisibility as ℕ
1818open import Level
1919open import Relation.Binary.Core using (Rel; _Preserves_⟶_)
20- open import Relation.Binary.PropositionalEquality
20+
2121
2222------------------------------------------------------------------------
2323-- Divisibility
2424
2525infix 4 _∣_
2626
2727_∣_ : Rel ℤ 0ℓ
28- _∣_ = ℕᵈ ._∣_ on ∣_∣
28+ _∣_ = ℕ ._∣_ on ∣_∣
2929
30- open ℕᵈ public using ( divides)
30+ pattern divides k eq = ℕ. divides k eq
3131
3232------------------------------------------------------------------------
3333-- Properties of divisibility
3434
3535*-monoʳ-∣ : ∀ k → (k *_) Preserves _∣_ ⟶ _∣_
3636*-monoʳ-∣ k {i} {j} i∣j = begin
3737 ∣ k * i ∣ ≡⟨ abs-* k i ⟩
38- ∣ k ∣ ℕ.* ∣ i ∣ ∣⟨ ℕᵈ .*-monoʳ-∣ ∣ k ∣ i∣j ⟩
39- ∣ k ∣ ℕ.* ∣ j ∣ ≡⟨ sym ( abs-* k j) ⟩
38+ ∣ k ∣ ℕ.* ∣ i ∣ ∣⟨ ℕ .*-monoʳ-∣ ∣ k ∣ i∣j ⟩
39+ ∣ k ∣ ℕ.* ∣ j ∣ ≡⟨ abs-* k j ⟨
4040 ∣ k * j ∣ ∎
41- where open ℕᵈ .∣-Reasoning
41+ where open ℕ .∣-Reasoning
4242
4343*-monoˡ-∣ : ∀ k → (_* k) Preserves _∣_ ⟶ _∣_
4444*-monoˡ-∣ k {i} {j} rewrite *-comm i k | *-comm j k = *-monoʳ-∣ k
4545
4646*-cancelˡ-∣ : ∀ k {i j} .{{_ : NonZero k}} → k * i ∣ k * j → i ∣ j
47- *-cancelˡ-∣ k {i} {j} k*i∣k*j = ℕᵈ .*-cancelˡ-∣ ∣ k ∣ $ begin
48- ∣ k ∣ ℕ.* ∣ i ∣ ≡⟨ sym ( abs-* k i) ⟩
47+ *-cancelˡ-∣ k {i} {j} k*i∣k*j = ℕ .*-cancelˡ-∣ ∣ k ∣ $ begin
48+ ∣ k ∣ ℕ.* ∣ i ∣ ≡⟨ abs-* k i ⟨
4949 ∣ k * i ∣ ∣⟨ k*i∣k*j ⟩
5050 ∣ k * j ∣ ≡⟨ abs-* k j ⟩
5151 ∣ k ∣ ℕ.* ∣ j ∣ ∎
52- where open ℕᵈ .∣-Reasoning
52+ where open ℕ .∣-Reasoning
5353
5454*-cancelʳ-∣ : ∀ k {i j} .{{_ : NonZero k}} → i * k ∣ j * k → i ∣ j
5555*-cancelʳ-∣ k {i} {j} rewrite *-comm i k | *-comm j k = *-cancelˡ-∣ k
0 commit comments