You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
datafusion.execution.parquet.maximum_parallel_row_group_writers 1 (writing) By default parallel parquet writer is tuned for minimum memory usage in a streaming execution plan. You may see a performance benefit when writing large parquet files by increasing maximum_parallel_row_group_writers and maximum_buffered_record_batches_per_stream if your system has idle cores and can tolerate additional memory usage. Boosting these values is likely worthwhile when writing out already in-memory data, such as from a cached data frame.
358
358
datafusion.execution.parquet.metadata_size_hint NULL (reading) If specified, the parquet reader will try and fetch the last `size_hint` bytes of the parquet file optimistically. If not specified, two reads are required: One read to fetch the 8-byte parquet footer and another to fetch the metadata length encoded in the footer
359
359
datafusion.execution.parquet.pruning true (reading) If true, the parquet reader attempts to skip entire row groups based on the predicate in the query and the metadata (min/max values) stored in the parquet file
360
-
datafusion.execution.parquet.pushdown_filters false (reading) If true, filter expressions are be applied during the parquet decoding operation to reduce the number of rows decoded. This optimization is sometimes called "late materialization".
361
-
datafusion.execution.parquet.reorder_filters false (reading) If true, filter expressions evaluated during the parquet decoding operation will be reordered heuristically to minimize the cost of evaluation. If false, the filters are applied in the same order as written in the query
360
+
datafusion.execution.parquet.pushdown_filters true (reading) If true, filter expressions are be applied during the parquet decoding operation to reduce the number of rows decoded. This optimization is sometimes called "late materialization".
361
+
datafusion.execution.parquet.reorder_filters true (reading) If true, filter expressions evaluated during the parquet decoding operation will be reordered heuristically to minimize the cost of evaluation. If false, the filters are applied in the same order as written in the query
362
362
datafusion.execution.parquet.schema_force_view_types true (reading) If true, parquet reader will read columns of `Utf8/Utf8Large` with `Utf8View`, and `Binary/BinaryLarge` with `BinaryView`.
363
363
datafusion.execution.parquet.skip_arrow_metadata false (writing) Skip encoding the embedded arrow metadata in the KV_meta This is analogous to the `ArrowWriterOptions::with_skip_arrow_metadata`. Refer to <https://docs.rs/parquet/53.3.0/parquet/arrow/arrow_writer/struct.ArrowWriterOptions.html#method.with_skip_arrow_metadata>
364
364
datafusion.execution.parquet.skip_metadata true (reading) If true, the parquet reader skip the optional embedded metadata that may be in the file Schema. This setting can help avoid schema conflicts when querying multiple parquet files with schemas containing compatible types but different metadata
Copy file name to clipboardExpand all lines: datafusion/sqllogictest/test_files/parquet.slt
+4-20Lines changed: 4 additions & 20 deletions
Original file line number
Diff line number
Diff line change
@@ -455,11 +455,7 @@ EXPLAIN
455
455
logical_plan
456
456
01)Filter: CAST(binary_as_string_default.binary_col AS Utf8View) LIKE Utf8View("%a%") AND CAST(binary_as_string_default.largebinary_col AS Utf8View) LIKE Utf8View("%a%") AND CAST(binary_as_string_default.binaryview_col AS Utf8View) LIKE Utf8View("%a%")
457
457
02)--TableScan: binary_as_string_default projection=[binary_col, largebinary_col, binaryview_col], partial_filters=[CAST(binary_as_string_default.binary_col AS Utf8View) LIKE Utf8View("%a%"), CAST(binary_as_string_default.largebinary_col AS Utf8View) LIKE Utf8View("%a%"), CAST(binary_as_string_default.binaryview_col AS Utf8View) LIKE Utf8View("%a%")]
458
-
physical_plan
459
-
01)CoalesceBatchesExec: target_batch_size=8192
460
-
02)--FilterExec: CAST(binary_col@0 AS Utf8View) LIKE %a% AND CAST(largebinary_col@1 AS Utf8View) LIKE %a% AND CAST(binaryview_col@2 AS Utf8View) LIKE %a%
04)------DataSourceExec: file_groups={1 group: [[WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/parquet/binary_as_string.parquet]]}, projection=[binary_col, largebinary_col, binaryview_col], file_type=parquet, predicate=CAST(binary_col@0 AS Utf8View) LIKE %a% AND CAST(largebinary_col@1 AS Utf8View) LIKE %a% AND CAST(binaryview_col@2 AS Utf8View) LIKE %a%
458
+
physical_plan DataSourceExec: file_groups={1 group: [[WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/parquet/binary_as_string.parquet]]}, projection=[binary_col, largebinary_col, binaryview_col], file_type=parquet, predicate=CAST(binary_col@0 AS Utf8View) LIKE %a% AND CAST(largebinary_col@1 AS Utf8View) LIKE %a% AND CAST(binaryview_col@2 AS Utf8View) LIKE %a%
463
459
464
460
465
461
statement ok
@@ -503,11 +499,7 @@ EXPLAIN
503
499
logical_plan
504
500
01)Filter: binary_as_string_option.binary_col LIKE Utf8View("%a%") AND binary_as_string_option.largebinary_col LIKE Utf8View("%a%") AND binary_as_string_option.binaryview_col LIKE Utf8View("%a%")
505
501
02)--TableScan: binary_as_string_option projection=[binary_col, largebinary_col, binaryview_col], partial_filters=[binary_as_string_option.binary_col LIKE Utf8View("%a%"), binary_as_string_option.largebinary_col LIKE Utf8View("%a%"), binary_as_string_option.binaryview_col LIKE Utf8View("%a%")]
506
-
physical_plan
507
-
01)CoalesceBatchesExec: target_batch_size=8192
508
-
02)--FilterExec: binary_col@0 LIKE %a% AND largebinary_col@1 LIKE %a% AND binaryview_col@2 LIKE %a%
04)------DataSourceExec: file_groups={1 group: [[WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/parquet/binary_as_string.parquet]]}, projection=[binary_col, largebinary_col, binaryview_col], file_type=parquet, predicate=binary_col@0 LIKE %a% AND largebinary_col@1 LIKE %a% AND binaryview_col@2 LIKE %a%
502
+
physical_plan DataSourceExec: file_groups={1 group: [[WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/parquet/binary_as_string.parquet]]}, projection=[binary_col, largebinary_col, binaryview_col], file_type=parquet, predicate=binary_col@0 LIKE %a% AND largebinary_col@1 LIKE %a% AND binaryview_col@2 LIKE %a%
511
503
512
504
513
505
statement ok
@@ -554,11 +546,7 @@ EXPLAIN
554
546
logical_plan
555
547
01)Filter: binary_as_string_both.binary_col LIKE Utf8View("%a%") AND binary_as_string_both.largebinary_col LIKE Utf8View("%a%") AND binary_as_string_both.binaryview_col LIKE Utf8View("%a%")
556
548
02)--TableScan: binary_as_string_both projection=[binary_col, largebinary_col, binaryview_col], partial_filters=[binary_as_string_both.binary_col LIKE Utf8View("%a%"), binary_as_string_both.largebinary_col LIKE Utf8View("%a%"), binary_as_string_both.binaryview_col LIKE Utf8View("%a%")]
557
-
physical_plan
558
-
01)CoalesceBatchesExec: target_batch_size=8192
559
-
02)--FilterExec: binary_col@0 LIKE %a% AND largebinary_col@1 LIKE %a% AND binaryview_col@2 LIKE %a%
04)------DataSourceExec: file_groups={1 group: [[WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/parquet/binary_as_string.parquet]]}, projection=[binary_col, largebinary_col, binaryview_col], file_type=parquet, predicate=binary_col@0 LIKE %a% AND largebinary_col@1 LIKE %a% AND binaryview_col@2 LIKE %a%
549
+
physical_plan DataSourceExec: file_groups={1 group: [[WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/parquet/binary_as_string.parquet]]}, projection=[binary_col, largebinary_col, binaryview_col], file_type=parquet, predicate=binary_col@0 LIKE %a% AND largebinary_col@1 LIKE %a% AND binaryview_col@2 LIKE %a%
562
550
563
551
564
552
statement ok
@@ -669,11 +657,7 @@ explain select * from foo where starts_with(column1, 'f');
669
657
logical_plan
670
658
01)Filter: foo.column1 LIKE Utf8View("f%")
671
659
02)--TableScan: foo projection=[column1], partial_filters=[foo.column1 LIKE Utf8View("f%")]
04)------DataSourceExec: file_groups={1 group: [[WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/parquet/foo.parquet]]}, projection=[column1], file_type=parquet, predicate=column1@0 LIKE f%, pruning_predicate=column1_null_count@2 != row_count@3 AND column1_min@0 <= g AND f <= column1_max@1, required_guarantees=[]
660
+
physical_plan DataSourceExec: file_groups={1 group: [[WORKSPACE_ROOT/datafusion/sqllogictest/test_files/scratch/parquet/foo.parquet]]}, projection=[column1], file_type=parquet, predicate=column1@0 LIKE f%, pruning_predicate=column1_null_count@2 != row_count@3 AND column1_min@0 <= g AND f <= column1_max@1, required_guarantees=[]
0 commit comments