You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
feat: Add reduction_factor metric to AggregateExec for EXPLAIN ANALYZE (#18455)
## Which issue does this PR close?
<!--
We generally require a GitHub issue to be filed for all bug fixes and
enhancements and this helps us generate change logs for our releases.
You can link an issue to this PR using the GitHub syntax. For example
`Closes#123` indicates that this PR will close issue #123.
-->
- Closes#18410
## Rationale for this change
<!--
Why are you proposing this change? If this is already explained clearly
in the issue then this section is not needed.
Explaining clearly why changes are proposed helps reviewers understand
your changes and offer better suggestions for fixes.
-->
## What changes are included in this PR?
<!--
There is no need to duplicate the description in the issue here but it
is sometimes worth providing a summary of the individual changes in this
PR.
-->
This PR adds the `reduction_factor` metric to the `AggregateExec`
mode=Partial case.
e.g from the issue
```
create table t1(a int, b int);
insert into t1 values (1,10), (1, 20), (2,10), (2,30);
explain analyze select a, sum(b) from t1 group by a;
+-------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| plan_type | plan |
+-------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Plan with Metrics | AggregateExec: mode=FinalPartitioned, gby=[a@0 as a], aggr=[sum(t1.b)], metrics=[output_rows=2, elapsed_compute=7.856539ms, output_bytes=544.0 B] |
| | CoalesceBatchesExec: target_batch_size=8192, metrics=[output_rows=2, elapsed_compute=192.334µs, output_bytes=96.0 KB] |
| | RepartitionExec: partitioning=Hash([a@0], 10), input_partitions=10, metrics=[] |
| | RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1, metrics=[] |
| | AggregateExec: mode=Partial, gby=[a@0 as a], aggr=[sum(t1.b)], metrics=[output_rows=2, elapsed_compute=2.581625ms, output_bytes=544.0 B, reduction_factor=50% (2/4)] |
| | DataSourceExec: partitions=1, partition_sizes=[1], metrics=[] |
| | |
+-------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
```
Note: For AggregateExec cases where this doesn't apply, the
reduction_factor metric won't be shown. Here's an example of the explain
analyze from the modified test in `explain_analyze.rs`.
```
running query: EXPLAIN ANALYZE SELECT count(*) as cnt FROM (SELECT count(*), c1 FROM aggregate_test_100 WHERE c13 != 'C2GT5KVyOPZpgKVl110TyZO0NcJ434' GROUP BY c1 ORDER BY c1 ) AS a UNION ALL SELECT 1 as cnt UNION ALL SELECT lead(c1, 1) OVER () as cnt FROM (select 1 as c1) AS b LIMIT 3
Query Output:
+-------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| plan_type | plan |
+-------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Plan with Metrics | CoalescePartitionsExec: fetch=3, metrics=[output_rows=3, elapsed_compute=6.084µs, output_bytes=25.0 B] |
| | UnionExec, metrics=[output_rows=3, elapsed_compute=117.208µs, output_bytes=25.0 B] |
| | ProjectionExec: expr=[count(Int64(1))@0 as cnt], metrics=[output_rows=1, elapsed_compute=1.333µs, output_bytes=8.0 B] |
| | AggregateExec: mode=Final, gby=[], aggr=[count(Int64(1))], metrics=[output_rows=1, elapsed_compute=70.542µs, output_bytes=8.0 B] |
| | CoalescePartitionsExec, metrics=[output_rows=3, elapsed_compute=4.958µs, output_bytes=24.0 B] |
| | AggregateExec: mode=Partial, gby=[], aggr=[count(Int64(1))], metrics=[output_rows=3, elapsed_compute=51.835µs, output_bytes=24.0 B] |
| | ProjectionExec: expr=[], metrics=[output_rows=5, elapsed_compute=2.251µs, output_bytes=0.0 B] |
| | AggregateExec: mode=FinalPartitioned, gby=[c1@0 as c1], aggr=[], metrics=[output_rows=5, elapsed_compute=76.666µs, output_bytes=48.0 KB, spill_count=0, spilled_bytes=0.0 B, spilled_rows=0, peak_mem_used=50544, aggregate_arguments_time=3ns, aggregation_time=3ns, emitting_time=5.875µs, time_calculating_group_ids=9.459µs] |
| | CoalesceBatchesExec: target_batch_size=4096, metrics=[output_rows=5, elapsed_compute=11.249µs, output_bytes=192.0 KB] |
| | RepartitionExec: partitioning=Hash([c1@0], 3), input_partitions=3, metrics=[spill_count=0, spilled_bytes=0.0 B, spilled_rows=0, fetch_time=15.064041ms, repartition_time=149.418µs, send_time=8.672µs] |
| | AggregateExec: mode=Partial, gby=[c1@0 as c1], aggr=[], metrics=[output_rows=5, elapsed_compute=248.667µs, output_bytes=16.0 KB, spill_count=0, spilled_bytes=0.0 B, spilled_rows=0, skipped_aggregation_rows=0, peak_mem_used=52168, aggregate_arguments_time=3ns, aggregation_time=3ns, emitting_time=7.377µs, time_calculating_group_ids=128.46µs, reduction_factor=5.1% (5/99)] |
| | CoalesceBatchesExec: target_batch_size=4096, metrics=[output_rows=99, elapsed_compute=81.459µs, output_bytes=64.0 KB] |
| | FilterExec: c13@1 != C2GT5KVyOPZpgKVl110TyZO0NcJ434, projection=[c1@0], metrics=[output_rows=99, elapsed_compute=503.793µs, output_bytes=1584.0 B, selectivity=99% (99/100)] |
| | RepartitionExec: partitioning=RoundRobinBatch(3), input_partitions=1, metrics=[spill_count=0, spilled_bytes=0.0 B, spilled_rows=0, fetch_time=4.160958ms, repartition_time=1ns, send_time=16.085µs] |
| | DataSourceExec: file_groups={1 group: [[Users/peter/Documents/open-source/datafusion/testing/data/csv/aggregate_test_100.csv]]}, projection=[c1, c13], file_type=csv, has_header=true, metrics=[output_rows=100, elapsed_compute=1ns, output_bytes=19.1 KB, batches_split=0, file_open_errors=0, file_scan_errors=0, time_elapsed_opening=313.458µs, time_elapsed_processing=3.974624ms, time_elapsed_scanning_total=3.771208ms, time_elapsed_scanning_until_data=3.714625ms] |
| | ProjectionExec: expr=[1 as cnt], metrics=[output_rows=1, elapsed_compute=20.792µs, output_bytes=8.0 B] |
| | PlaceholderRowExec, metrics=[] |
| | ProjectionExec: expr=[lead(b.c1,Int64(1)) ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING@1 as cnt], metrics=[output_rows=1, elapsed_compute=1.333µs, output_bytes=9.0 B] |
| | BoundedWindowAggExec: wdw=[lead(b.c1,Int64(1)) ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING: Field { "lead(b.c1,Int64(1)) ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING": nullable Int64 }, frame: ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING], mode=[Sorted], metrics=[output_rows=1, elapsed_compute=560µs, output_bytes=17.0 B] |
| | ProjectionExec: expr=[1 as c1], metrics=[output_rows=1, elapsed_compute=2.459µs, output_bytes=8.0 B] |
| | PlaceholderRowExec, metrics=[] |
| | |
+-------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
```
The following cases don't include `reduction_factor` metric
- `AggregateExec: mode=Final, gby=[], aggr=[count(Int64(1))]`
- `AggregateExec: mode=Partial, gby=[], aggr=[count(Int64(1))]`
- `AggregateExec: mode=FinalPartitioned, gby=[c1@0 as c1], aggr=[]`
While this case does:
- `AggregateExec: mode=Partial, gby=[c1@0 as c1], aggr=[]` ->
`reduction_factor=5.1% (5/99)`
## Are these changes tested?
<!--
We typically require tests for all PRs in order to:
1. Prevent the code from being accidentally broken by subsequent changes
2. Serve as another way to document the expected behavior of the code
If tests are not included in your PR, please explain why (for example,
are they covered by existing tests)?
-->
Yes
## Are there any user-facing changes?
<!--
If there are user-facing changes then we may require documentation to be
updated before approving the PR.
-->
Yes, a new metric will be visible when running `EXPLAIN ANALYZE`
<!--
If there are any breaking changes to public APIs, please add the `api
change` label.
-->
---------
Co-authored-by: Yongting You <[email protected]>
0 commit comments