|
| 1 | +# coding: utf-8 |
| 2 | +# 2022/3/18 @ ouyangjie |
| 3 | + |
| 4 | + |
| 5 | +import logging |
| 6 | +import torch |
| 7 | +import torch.nn as nn |
| 8 | +import torch.nn.functional as F |
| 9 | +import numpy as np |
| 10 | +import math |
| 11 | +from sklearn import metrics |
| 12 | +from tqdm import tqdm |
| 13 | +from EduKTM import KTM |
| 14 | + |
| 15 | + |
| 16 | +device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 17 | + |
| 18 | + |
| 19 | +class Cell(nn.Module): |
| 20 | + def __init__(self, memory_size, memory_state_dim): |
| 21 | + super(Cell, self).__init__() |
| 22 | + self.memory_size = memory_size |
| 23 | + self.memory_state_dim = memory_state_dim |
| 24 | + |
| 25 | + def addressing(self, control_input, memory): |
| 26 | + """ |
| 27 | + Parameters |
| 28 | + ---------- |
| 29 | + control_input: tensor |
| 30 | + embedding vector of input exercise, shape = (batch_size, control_state_dim) |
| 31 | + memory: tensor |
| 32 | + key memory, shape = (memory_size, memory_state_dim) |
| 33 | +
|
| 34 | + Returns |
| 35 | + ------- |
| 36 | + correlation_weight: tensor |
| 37 | + correlation weight, shape = (batch_size, memory_size) |
| 38 | + """ |
| 39 | + similarity_score = torch.matmul(control_input, torch.t(memory)) |
| 40 | + correlation_weight = F.softmax(similarity_score, dim=1) # Shape: (batch_size, memory_size) |
| 41 | + return correlation_weight |
| 42 | + |
| 43 | + def read(self, memory, read_weight): |
| 44 | + """ |
| 45 | + Parameters |
| 46 | + ---------- |
| 47 | + memory: tensor |
| 48 | + value memory, shape = (batch_size, memory_size, memory_state_dim) |
| 49 | + read_weight: tensor |
| 50 | + correlation weight, shape = (batch_size, memory_size) |
| 51 | +
|
| 52 | + Returns |
| 53 | + ------- |
| 54 | + read_content: tensor |
| 55 | + read content, shape = (batch_size, memory_size) |
| 56 | + """ |
| 57 | + read_weight = read_weight.view(-1, 1) |
| 58 | + memory = memory.view(-1, self.memory_state_dim) |
| 59 | + rc = torch.mul(read_weight, memory) |
| 60 | + read_content = rc.view(-1, self.memory_size, self.memory_state_dim) |
| 61 | + read_content = torch.sum(read_content, dim=1) |
| 62 | + return read_content |
| 63 | + |
| 64 | + |
| 65 | +class WriteCell(Cell): |
| 66 | + def __init__(self, memory_size, memory_state_dim): |
| 67 | + super(WriteCell, self).__init__(memory_size, memory_state_dim) |
| 68 | + self.erase = torch.nn.Linear(memory_state_dim, memory_state_dim, bias=True) |
| 69 | + self.add = torch.nn.Linear(memory_state_dim, memory_state_dim, bias=True) |
| 70 | + nn.init.kaiming_normal_(self.erase.weight) |
| 71 | + nn.init.kaiming_normal_(self.add.weight) |
| 72 | + nn.init.constant_(self.erase.bias, 0) |
| 73 | + nn.init.constant_(self.add.bias, 0) |
| 74 | + |
| 75 | + def write(self, control_input, memory, write_weight): |
| 76 | + """ |
| 77 | + Parameters |
| 78 | + ---------- |
| 79 | + control_input: tensor |
| 80 | + embedding vector of input exercise and students' answer, shape = (batch_size, control_state_dim) |
| 81 | + memory: tensor |
| 82 | + value memory, shape = (batch_size, memory_size, memory_state_dim) |
| 83 | + read_weight: tensor |
| 84 | + correlation weight, shape = (batch_size, memory_size) |
| 85 | +
|
| 86 | + Returns |
| 87 | + ------- |
| 88 | + new_memory: tensor |
| 89 | + updated value memory, shape = (batch_size, memory_size, memory_state_dim) |
| 90 | + """ |
| 91 | + erase_signal = torch.sigmoid(self.erase(control_input)) |
| 92 | + add_signal = torch.tanh(self.add(control_input)) |
| 93 | + erase_reshape = erase_signal.view(-1, 1, self.memory_state_dim) |
| 94 | + add_reshape = add_signal.view(-1, 1, self.memory_state_dim) |
| 95 | + write_weight_reshape = write_weight.view(-1, self.memory_size, 1) |
| 96 | + erase_mult = torch.mul(erase_reshape, write_weight_reshape) |
| 97 | + add_mul = torch.mul(add_reshape, write_weight_reshape) |
| 98 | + new_memory = memory * (1 - erase_mult) + add_mul |
| 99 | + return new_memory |
| 100 | + |
| 101 | + |
| 102 | +class DKVMNCell(nn.Module): |
| 103 | + def __init__(self, memory_size, key_memory_state_dim, value_memory_state_dim, init_key_memory): |
| 104 | + super(DKVMNCell, self).__init__() |
| 105 | + """ |
| 106 | + Parameters |
| 107 | + ---------- |
| 108 | + memory_size: int |
| 109 | + size of memory |
| 110 | + key_memory_state_dim: int |
| 111 | + dimension of key memory |
| 112 | + value_memory_state_dim: int |
| 113 | + dimension of value memory |
| 114 | + init_key_memory: tensor |
| 115 | + intial key memory |
| 116 | + """ |
| 117 | + self.memory_size = memory_size |
| 118 | + self.key_memory_state_dim = key_memory_state_dim |
| 119 | + self.value_memory_state_dim = value_memory_state_dim |
| 120 | + |
| 121 | + self.key_head = Cell(memory_size=self.memory_size, memory_state_dim=self.key_memory_state_dim) |
| 122 | + self.value_head = WriteCell(memory_size=self.memory_size, memory_state_dim=self.value_memory_state_dim) |
| 123 | + |
| 124 | + self.key_memory = init_key_memory |
| 125 | + self.value_memory = None |
| 126 | + |
| 127 | + def init_value_memory(self, value_memory): |
| 128 | + self.value_memory = value_memory |
| 129 | + |
| 130 | + def attention(self, control_input): |
| 131 | + correlation_weight = self.key_head.addressing(control_input=control_input, memory=self.key_memory) |
| 132 | + return correlation_weight |
| 133 | + |
| 134 | + def read(self, read_weight): |
| 135 | + read_content = self.value_head.read(memory=self.value_memory, read_weight=read_weight) |
| 136 | + return read_content |
| 137 | + |
| 138 | + def write(self, write_weight, control_input): |
| 139 | + value_memory = self.value_head.write(control_input=control_input, |
| 140 | + memory=self.value_memory, |
| 141 | + write_weight=write_weight) |
| 142 | + self.value_memory = nn.Parameter(value_memory.data) |
| 143 | + |
| 144 | + return self.value_memory |
| 145 | + |
| 146 | + |
| 147 | +class Net(nn.Module): |
| 148 | + def __init__(self, n_question, batch_size, key_embedding_dim, value_embedding_dim, |
| 149 | + memory_size, key_memory_state_dim, value_memory_state_dim, final_fc_dim, student_num=None): |
| 150 | + super(Net, self).__init__() |
| 151 | + self.n_question = n_question |
| 152 | + self.batch_size = batch_size |
| 153 | + self.key_embedding_dim = key_embedding_dim |
| 154 | + self.value_embedding_dim = value_embedding_dim |
| 155 | + self.memory_size = memory_size |
| 156 | + self.key_memory_state_dim = key_memory_state_dim |
| 157 | + self.value_memory_state_dim = value_memory_state_dim |
| 158 | + self.final_fc_dim = final_fc_dim |
| 159 | + self.student_num = student_num |
| 160 | + |
| 161 | + self.input_embed_linear = nn.Linear(self.key_embedding_dim, self.final_fc_dim, bias=True) |
| 162 | + self.read_embed_linear = nn.Linear(self.value_memory_state_dim + self.final_fc_dim, |
| 163 | + self.final_fc_dim, bias=True) |
| 164 | + self.predict_linear = nn.Linear(self.final_fc_dim, 1, bias=True) |
| 165 | + self.init_key_memory = nn.Parameter(torch.randn(self.memory_size, self.key_memory_state_dim)) |
| 166 | + nn.init.kaiming_normal_(self.init_key_memory) |
| 167 | + self.init_value_memory = nn.Parameter(torch.randn(self.memory_size, self.value_memory_state_dim)) |
| 168 | + nn.init.kaiming_normal_(self.init_value_memory) |
| 169 | + |
| 170 | + self.mem = DKVMNCell(memory_size=self.memory_size, key_memory_state_dim=self.key_memory_state_dim, |
| 171 | + value_memory_state_dim=self.value_memory_state_dim, init_key_memory=self.init_key_memory) |
| 172 | + |
| 173 | + value_memory = nn.Parameter(torch.cat([self.init_value_memory.unsqueeze(0) for _ in range(batch_size)], 0).data) |
| 174 | + self.mem.init_value_memory(value_memory) |
| 175 | + |
| 176 | + self.q_embed = nn.Embedding(self.n_question + 1, self.key_embedding_dim, padding_idx=0) |
| 177 | + self.qa_embed = nn.Embedding(2 * self.n_question + 1, self.value_embedding_dim, padding_idx=0) |
| 178 | + |
| 179 | + def init_params(self): |
| 180 | + nn.init.kaiming_normal_(self.predict_linear.weight) |
| 181 | + nn.init.kaiming_normal_(self.read_embed_linear.weight) |
| 182 | + nn.init.constant_(self.read_embed_linear.bias, 0) |
| 183 | + nn.init.constant_(self.predict_linear.bias, 0) |
| 184 | + |
| 185 | + def init_embeddings(self): |
| 186 | + |
| 187 | + nn.init.kaiming_normal_(self.q_embed.weight) |
| 188 | + nn.init.kaiming_normal_(self.qa_embed.weight) |
| 189 | + |
| 190 | + def forward(self, q_data, qa_data, target): |
| 191 | + |
| 192 | + batch_size = q_data.shape[0] |
| 193 | + seqlen = q_data.shape[1] |
| 194 | + q_embed_data = self.q_embed(q_data) |
| 195 | + qa_embed_data = self.qa_embed(qa_data) |
| 196 | + |
| 197 | + value_memory = nn.Parameter(torch.cat([self.init_value_memory.unsqueeze(0) for _ in range(batch_size)], 0).data) |
| 198 | + self.mem.init_value_memory(value_memory) |
| 199 | + |
| 200 | + slice_q_embed_data = torch.chunk(q_embed_data, seqlen, 1) |
| 201 | + slice_qa_embed_data = torch.chunk(qa_embed_data, seqlen, 1) |
| 202 | + |
| 203 | + value_read_content_l = [] |
| 204 | + input_embed_l = [] |
| 205 | + for i in range(seqlen): |
| 206 | + # Attention |
| 207 | + q = slice_q_embed_data[i].squeeze(1) |
| 208 | + correlation_weight = self.mem.attention(q) |
| 209 | + |
| 210 | + # Read Process |
| 211 | + read_content = self.mem.read(correlation_weight) |
| 212 | + value_read_content_l.append(read_content) |
| 213 | + input_embed_l.append(q) |
| 214 | + # Write Process |
| 215 | + qa = slice_qa_embed_data[i].squeeze(1) |
| 216 | + self.mem.write(correlation_weight, qa) |
| 217 | + |
| 218 | + all_read_value_content = torch.cat([value_read_content_l[i].unsqueeze(1) for i in range(seqlen)], 1) |
| 219 | + input_embed_content = torch.cat([input_embed_l[i].unsqueeze(1) for i in range(seqlen)], 1) |
| 220 | + |
| 221 | + predict_input = torch.cat([all_read_value_content, input_embed_content], 2) |
| 222 | + read_content_embed = torch.tanh(self.read_embed_linear(predict_input.view(batch_size * seqlen, -1))) |
| 223 | + |
| 224 | + pred = self.predict_linear(read_content_embed) |
| 225 | + target_1d = target # [batch_size * seq_len, 1] |
| 226 | + mask = target_1d.ge(0) # [batch_size * seq_len, 1] |
| 227 | + pred_1d = pred.view(-1, 1) # [batch_size * seq_len, 1] |
| 228 | + |
| 229 | + filtered_pred = torch.masked_select(pred_1d, mask) |
| 230 | + filtered_target = torch.masked_select(target_1d, mask) |
| 231 | + loss = F.binary_cross_entropy_with_logits(filtered_pred, filtered_target) |
| 232 | + |
| 233 | + return loss, torch.sigmoid(filtered_pred), filtered_target |
| 234 | + |
| 235 | + |
| 236 | +class DKVMN(KTM): |
| 237 | + def __init__(self, n_question, batch_size, key_embedding_dim, value_embedding_dim, |
| 238 | + memory_size, key_memory_state_dim, value_memory_state_dim, final_fc_dim, student_num=None): |
| 239 | + super(DKVMN, self).__init__() |
| 240 | + self.batch_size = batch_size |
| 241 | + self.n_question = n_question |
| 242 | + self.model = Net(n_question, batch_size, key_embedding_dim, value_embedding_dim, |
| 243 | + memory_size, key_memory_state_dim, value_memory_state_dim, final_fc_dim, student_num) |
| 244 | + |
| 245 | + def train_epoch(self, epoch, model, params, optimizer, q_data, qa_data): |
| 246 | + N = int(math.floor(len(q_data) / params['batch_size'])) |
| 247 | + |
| 248 | + pred_list = [] |
| 249 | + target_list = [] |
| 250 | + epoch_loss = 0 |
| 251 | + |
| 252 | + model.train() |
| 253 | + |
| 254 | + for idx in tqdm(range(N), "Epoch %s" % epoch): |
| 255 | + q_one_seq = q_data[idx * params['batch_size']:(idx + 1) * params['batch_size'], :] |
| 256 | + qa_batch_seq = qa_data[idx * params['batch_size']:(idx + 1) * params['batch_size'], :] |
| 257 | + target = qa_data[idx * params['batch_size']:(idx + 1) * params['batch_size'], :] |
| 258 | + |
| 259 | + target = (target - 1) / params['n_question'] |
| 260 | + target = np.floor(target) |
| 261 | + input_q = torch.LongTensor(q_one_seq).to(device) |
| 262 | + input_qa = torch.LongTensor(qa_batch_seq).to(device) |
| 263 | + target = torch.FloatTensor(target).to(device) |
| 264 | + target_to_1d = torch.chunk(target, params['batch_size'], 0) |
| 265 | + target_1d = torch.cat([target_to_1d[i] for i in range(params['batch_size'])], 1) |
| 266 | + target_1d = target_1d.permute(1, 0) |
| 267 | + |
| 268 | + model.zero_grad() |
| 269 | + loss, filtered_pred, filtered_target = model.forward(input_q, input_qa, target_1d) |
| 270 | + loss.backward() |
| 271 | + nn.utils.clip_grad_norm_(model.parameters(), params['maxgradnorm']) |
| 272 | + optimizer.step() |
| 273 | + epoch_loss += loss.item() |
| 274 | + |
| 275 | + right_target = np.asarray(filtered_target.data.tolist()) |
| 276 | + right_pred = np.asarray(filtered_pred.data.tolist()) |
| 277 | + pred_list.append(right_pred) |
| 278 | + target_list.append(right_target) |
| 279 | + |
| 280 | + all_pred = np.concatenate(pred_list, axis=0) |
| 281 | + all_target = np.concatenate(target_list, axis=0) |
| 282 | + auc = metrics.roc_auc_score(all_target, all_pred) |
| 283 | + all_pred[all_pred >= 0.5] = 1.0 |
| 284 | + all_pred[all_pred < 0.5] = 0.0 |
| 285 | + accuracy = metrics.accuracy_score(all_target, all_pred) |
| 286 | + |
| 287 | + return epoch_loss / N, accuracy, auc |
| 288 | + |
| 289 | + def train(self, params, train_data, test_data=None): |
| 290 | + q_data, qa_data = train_data |
| 291 | + |
| 292 | + model = self.model |
| 293 | + model.init_embeddings() |
| 294 | + model.init_params() |
| 295 | + optimizer = torch.optim.Adam(params=model.parameters(), lr=params['lr'], betas=(0.9, 0.9)) |
| 296 | + |
| 297 | + model.to(device) |
| 298 | + |
| 299 | + all_valid_loss = {} |
| 300 | + all_valid_accuracy = {} |
| 301 | + all_valid_auc = {} |
| 302 | + best_valid_auc = 0 |
| 303 | + |
| 304 | + for idx in range(params['max_iter']): |
| 305 | + train_loss, train_accuracy, train_auc = self.train_epoch(idx, model, params, optimizer, q_data, qa_data) |
| 306 | + print('Epoch %d/%d, loss : %3.5f, auc : %3.5f, accuracy : %3.5f' % |
| 307 | + (idx + 1, params['max_iter'], train_loss, train_auc, train_accuracy)) |
| 308 | + if test_data is not None: |
| 309 | + valid_loss, valid_accuracy, valid_auc = self.eval(params, test_data) |
| 310 | + all_valid_loss[idx + 1] = valid_loss |
| 311 | + all_valid_accuracy[idx + 1] = valid_accuracy |
| 312 | + all_valid_auc[idx + 1] = valid_auc |
| 313 | + # output the epoch with the best validation auc |
| 314 | + if valid_auc > best_valid_auc: |
| 315 | + print('valid auc improve: %3.4f to %3.4f' % (best_valid_auc, valid_auc)) |
| 316 | + best_valid_auc = valid_auc |
| 317 | + |
| 318 | + def eval(self, params, data): |
| 319 | + q_data, qa_data = data |
| 320 | + model = self.model |
| 321 | + N = int(math.floor(len(q_data) / params['batch_size'])) |
| 322 | + |
| 323 | + pred_list = [] |
| 324 | + target_list = [] |
| 325 | + epoch_loss = 0 |
| 326 | + model.eval() |
| 327 | + |
| 328 | + for idx in tqdm(range(N), "Evaluating"): |
| 329 | + |
| 330 | + q_one_seq = q_data[idx * params['batch_size']:(idx + 1) * params['batch_size'], :] |
| 331 | + qa_batch_seq = qa_data[idx * params['batch_size']:(idx + 1) * params['batch_size'], :] |
| 332 | + target = qa_data[idx * params['batch_size']:(idx + 1) * params['batch_size'], :] |
| 333 | + |
| 334 | + target = (target - 1) / params['n_question'] |
| 335 | + target = np.floor(target) |
| 336 | + |
| 337 | + input_q = torch.LongTensor(q_one_seq).to(device) |
| 338 | + input_qa = torch.LongTensor(qa_batch_seq).to(device) |
| 339 | + target = torch.FloatTensor(target).to(device) |
| 340 | + |
| 341 | + target_to_1d = torch.chunk(target, params['batch_size'], 0) |
| 342 | + target_1d = torch.cat([target_to_1d[i] for i in range(params['batch_size'])], 1) |
| 343 | + target_1d = target_1d.permute(1, 0) |
| 344 | + |
| 345 | + loss, filtered_pred, filtered_target = model.forward(input_q, input_qa, target_1d) |
| 346 | + |
| 347 | + right_target = np.asarray(filtered_target.data.tolist()) |
| 348 | + right_pred = np.asarray(filtered_pred.data.tolist()) |
| 349 | + pred_list.append(right_pred) |
| 350 | + target_list.append(right_target) |
| 351 | + epoch_loss += loss.item() |
| 352 | + |
| 353 | + all_pred = np.concatenate(pred_list, axis=0) |
| 354 | + all_target = np.concatenate(target_list, axis=0) |
| 355 | + |
| 356 | + auc = metrics.roc_auc_score(all_target, all_pred) |
| 357 | + all_pred[all_pred >= 0.5] = 1.0 |
| 358 | + all_pred[all_pred < 0.5] = 0.0 |
| 359 | + accuracy = metrics.accuracy_score(all_target, all_pred) |
| 360 | + print('valid auc : %3.5f, valid accuracy : %3.5f' % (auc, accuracy)) |
| 361 | + |
| 362 | + return epoch_loss / N, accuracy, auc |
| 363 | + |
| 364 | + def save(self, filepath): |
| 365 | + torch.save(self.model.state_dict(), filepath) |
| 366 | + logging.info("save parameters to %s" % filepath) |
| 367 | + |
| 368 | + def load(self, filepath): |
| 369 | + self.model.load_state_dict(torch.load(filepath)) |
| 370 | + logging.info("load parameters from %s" % filepath) |
0 commit comments