From c048f0fb2564842e7a1e17be7728bc3b16df7bbf Mon Sep 17 00:00:00 2001 From: "github-classroom[bot]" <66690702+github-classroom[bot]@users.noreply.github.com> Date: Fri, 6 Sep 2024 06:55:40 +0000 Subject: [PATCH 01/27] Setting up GitHub Classroom Feedback From 8fa527978ea15ce4c612840ddc1089902848fcb4 Mon Sep 17 00:00:00 2001 From: cukminseo Date: Tue, 10 Sep 2024 13:40:53 +0900 Subject: [PATCH 02/27] =?UTF-8?q?[Style]=20Readme=20=EC=B4=88=EC=95=88=20?= =?UTF-8?q?=EC=9E=91=EC=84=B1?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- README.md | 55 +++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 55 insertions(+) create mode 100644 README.md diff --git a/README.md b/README.md new file mode 100644 index 0000000..9a14866 --- /dev/null +++ b/README.md @@ -0,0 +1,55 @@ +![alt text](image.png) + +# Lv.1 NLP 기초 프로젝트 : 문장 간 유사도 측정(STS) + + + +## **Abstract** + +> 네이버 부스트캠프 AI Tech NLP Level1 project +> 진행 기간 : 24년 09월 10일 ~ 24년 09월 26일 + +## **Introduction** + +## **Contributors** + + + + + + + + + + +
+ 이예서
+ + badge 이예서 + +
+ 김수진
+ + badge 김수진 + +
+ 김민서
+ + badge 김민서 + +
+ 홍성재
+ + badge 홍성재 + +
+ 양가연
+ + badge 양가연 + +
+ 홍성민
+ + badge 홍성민 + +
From 61d22739f097f963da28106015bcc10e3921e3c0 Mon Sep 17 00:00:00 2001 From: cukminseo Date: Tue, 10 Sep 2024 13:52:28 +0900 Subject: [PATCH 03/27] [Bug] Update banner image --- README.md | 2 +- banner.png | Bin 0 -> 568969 bytes 2 files changed, 1 insertion(+), 1 deletion(-) create mode 100644 banner.png diff --git a/README.md b/README.md index 9a14866..d30f068 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,4 @@ -![alt text](image.png) +![alt text](banner.png) # Lv.1 NLP 기초 프로젝트 : 문장 간 유사도 측정(STS) diff --git a/banner.png b/banner.png new file mode 100644 index 0000000000000000000000000000000000000000..6114a049954554acf0b60444e5311e279ebe7d7e GIT binary patch literal 568969 zcmXtfXH=5^`@gu$9T{#dKV{QB0Tp+pVr8Y3XlA9Rxxj@x&5^6Arhup^He8hp_oOlf z+JD~DzDT#wdRS|1zn83W+NVScco77dK zCk@hl2k_p_y0-CpCraps9fnA2&S!8GTl4sY{fW!6bsWvyoGdtruFXV-3@47*B;IV` zlN$|R=n_R+7d%F%{w0eTFdw=z9<6<(Ufw{SH1u+h(2=b7mWMBl~FO1P{Zug4!Q=y>i{Zve+8vI<~#}O<*FPRmHGQM8;`PcL|Pj3`;QCJHx_g?4iJ= z?$zB>jRnF=+WuA3LxU@=f7+sio^N8l*Z1+(QTB?x{U4fqeMe}E+IZj3na_UDl0VFP z@&3}~#Rp6F*SASMdzZELnTaLQ4XMDz`+o6lQT~@O*M_#tH{Tf_e-4W;G^)LAi>)2xbhrWBGGQirQ(gWq zO$$jv)iSzbVr`9(KTbG62t@;M7%L?1H z+Y4K_N_+wq$YYb5)Wu(J+!L%*0r?zkKt?OW8Vi|R1!MAz?jt_Omxt|(l!>6ZBk929 zh{>hIEy0N`{o{G){{(?gboqP23{6KDe* zP~_Bw5daVM9iUF#5~gH2K<)N@u5!1xrB7S5OFY>s-!K#z`Nb!6#b|JuYkGu@qJD0Ui|9Zu3*C}Wn@4p{+WgopjPtyC8q zJ`XcD+4237+OZOThSELoAxLGXED|ZtoBiZf&~x5ig!(_wgwD>Y(!mxRXK>q+ZzDDZ z9V~<3@s3xagb2`QhQmvwF)P2N8iwLTh3Pt7%vG(#5HBPSHCBb3B(9M z8^BYpLE#_QLZLA~T$s9>x-aH(f|si2Oxzo|CbnwZwp^D7efyi%m+ui?(P)_M*j$d? z3OSv6I2V1Q6@Ykwl%(b_J}1admbr|$hxGfv2XR+0i32o2Itlxcv7f=^bbbeViG8nV zL+HPNKeRFUnCJ3bm9nUQ3N40i1|t=m!GnY;$<4Kqp|k(&i+E7t-+|7Mv6=iwmB+Ui zX!#+QVTQ9acO}TjRudy}Nh@a1Bh(snq~YsrN`21nmq}_#t3x?N4%W6LA5wVXBEH8( z7Dfm;p4;>B1exa>34mxqNm7q>pS2=OQ638_b5nd$1d+IqG57!s8TneC(hDl z&UbMh%6_CzLX|XC6!2tGe8;_eRw|st&2%nq5;oM8t^gtpbu76+R9N`dO-S?8ZOtXR6oE$<1Yjoq}r&fiVDcb|Q2(Y*<5 z89G>{g!lmTL-KTQYNdMFiuU^%LQ?PiZ4<+qpgFMl;XhZ`bCWshS`+$D@Imx&kUI}m zrW$b~x}eoJ9CTrp@HTbtg%tg!%zv5D8HV^dG)wDt0_HLc z^sv2PCEbWP6JVl(uA!z_TaGVS+>`y8Hwou6&o#ScAD>}aaT^|dk00?ioQyh9Y{$y0 z%^b)!a38g*w*kfg9}_v*$~qYa_e}@1DH{yT4J-#DMY_P_+1ru%TU=qV z=XhJ-m>U=3AvhYzx!F;h<7o7JqeCu3Su%;rOYAlv@Dd%ZjtQZ9f^|&)kVDpouhN82 z!t??IB@@;c1EpuXvW1IbiFI`)6x43&tk2XRcbMHe)?n-Gc}^EZ7J!ja1-sC; zz0XI&X`6Lo5v2Y15eEESv!r_tN|V*c>5hU1*7E-9(Toe??ne*SdlMgAZ;cSpz}d$9 z`#f#U$?}}4y-~EDe|q^D&y(gE)V(67Krg3(jbkF`_g8Q6poD3FeNDAE0pMv?a-8o| z%@@UQf@Nd{bLYPE)u5NRi{qvr7BOXA5rSRsI1avXpvIwg()95luCP7HXN9(=T>4sg zZ%E73{$h{t+ThN|Cwu!}-&q1syBSMaG$#oFvieO|R zxy06U>@r^}2ZEgp)fgJ!?^~xjHg15xA&% zFUp)a6jk1t@H5l)K!pxB>s>as7jh40XpxD{EBntuxY;E@30IX+@&#pqG}tx|^( zQ&15qir#zGZg~Ed09FA@!AQ|2N_&!@$IwyFH_Ad?Hl|0ERZLj&HDl-J{T@~JrKm4@ z^vWFZbb^-Y)ihG$WBzCj?s=opvoP1wRyOGl!}I%LcEmRZ&_%w}=r7QW&Vr~FvUe7u za^nlns%I(rm&egpxBL6Zqr?bjg{cYZFQn7%1%YEFHb<-N9rtO1-TCLh7XIiizQc(O zg;>`)U+*)qUjrZMQfEw%KV;*!Mtlpql4CO!QhHQ?rm^JATRa%C4LVxe!_yHuEp#6BYpUQneVr^nRLKe)RoGf=x=Yv>qnydPk`kbE+K<2sboYncG5-b=OwPz!D;Jb3n&5KBn#jGcKy?4T&R~*$MfC`w7@3&|o zR3LkzV~x<+z&l~ez1{X(j?$Y>p@}I*Ahi6R?-O-V3zXWk3{k8oomYCbcv24l2JF2` z2_}>=Ls_-^{`-}Uqq@S%JSWq4)j|bBF2-ver+@Up;6Qj>(5qDI4Xu-_G$5rsNV(Br zHC?@x{ME>GfCu#g=`_q%AST*VN3vo^`fqG9|4y|O5uiGRx*Ljj9pgi$)vz%$2{{$P zerd6Dy~^Y|XGi<^OAOX{!m<6eaKO5RxhcLCXwMXL|pQ$SIlD&*%6q32SF!BQfSxz%*u1 z=|K|z7}9w}lF)q-wCo2CZh?;L8qRXa55S9%7nHEu!?1erRAcu{tDTa=_Ij1Z*Z6b6 z6@;Xj*y5Vy?OKTcjDuIMQmVI;6yAe^NQwZ_2nNk{JyFTa??cZ7DX)Hj;0ba7mB`Tq zq36RsS3%^GNl6k4(tmHsz9go&PdlivXzB$fo$6!(5yEr7f4lKBXOf} z8oo=64SdrVw7Q1|1N@U9-nliUMJ>OLUw0WHqWr(|jTFhT5oK~jS*L!{Zwm5Nz|bBs zI5gi{443``adIKg+qu=u!H#A)yr4qPK56E}OV%i=IpNL98QEWM1)|MtA5Zgj?2CYv4Ih1}j(*^0{p4il2eGrLBIsQX1F=k?JR#b<8M(Vlx7s51u^cR) zoIJ_U`gp0ZQ{F7`Lc0mxQOX?oTP8EGE9c38%y0l76(MOv9yepj?MLF+>cCM$cBP)0as+EG;81aQ0b91(OU@O8woF5iE@Xvv6*q3BPzg=;kKDAZN%~fARgAN7@&?(+L*H-2TCj# zT0Pe?ay&bGjNa>6LJw@|U48LcMa}E>X2^{`nz?m0SIBOV^g(YaU;4Q@pRiX7SdL%O zS?{h#zby^@lQ<$sw&TJtavk2HR&M*oWO1i*>dkuik_SJ^QF^Az1*hg6(}l@xArz19 zItxa1XlTUGAe?afY&I5E!ff5bCf3o`e`nFS>EUB+c(KrShIQSwKX0$>WVkVt_BN}> zpzyRN=%F$PqM8&wb+sKCH8(6v8)~c$(A?`b|E?n2Ve4G!cGZ&Xfgg$UnDKihT90Yq z$Mc|6ic|J{gQ4-3K&Bws#&&Vv_hhGubFWCy&0+7BEq(9lPWByA&iuzc->Yo*WBF$! zYB;egirG)!;7kD@T2Q@1q!-GwhPPj6TF(eP5~aME{UeP26F9al zjH;M$2(KI8XyB#rd|Jd-M+Q~MKj3ERzE?R$Io36C@i+JK1)OVMKU0M5aW%9r!3<0! zvc+*di);;XYVa5(F}{8{JfShcKRMxMefxi}mF#t5S3E~UIPo2LWmW7-!r~Hqe&+ii zR(a9^!`bUksv&LVcErO6o=KDnTy=FBe<#KsGOj#y&XFEX$_58^<>n-1SWh1-CKa8nRC`ZSYR*Amu zp~96<=X?X73I`6k1xl?d-=Cj;pEYk8g$f1{yUkr^#_R$<)hOdT_;DTnVw7~j46{L% z=ELiUf^-1b zLUr$3KW7E=&RGjm^4tMf^YTSS@EDm3XJH3)M&R0$MAWc!lbWx^r0;|*R2N9=UoZnC6m%L+eJ)39yw>^)2B17 zoB4rhyzJZ1Z%!}=i=5s)4%iJ@!UmBVF%-;q*QD%eUuXEZkIL1r*kR^Ji&X~fu4__wa30ch@qs$kYi}5s;tgrK*KPVFTRHo-pFTJ)Pxay^Tc>{xTTvf1 z00qGb9DbeEuQ=+KYNg-%U2hP05;pw4TmQwb;|r8AN_wHIuDMB|gzDRo%(UUG(w=Wi zz9!;jh4%G$J2@KHbfM(La!_D3puT(HB1gwVyISr2u#cNF+GmC5hay(h0pOfP{E8zg zZyUkQ3Y`oz7*~{}%+p@prz<}}LG;h5f?Ro_gnSu6vaLJSIzq?QK25AfIFbAPwwiz3{N;6d1(e&r7CB> zYAQ$|<(3*GP13Q!y^b4??6PGie)Q`lKM(v~wmgCLcORzpniDqlw8+7?xWFWo4u5wg z_U2YrvAdF8h+Mo({@2S{wCS1S<50t=e9lo zqLtm0BRs_@Y)mPbt$hn~*dLvbFgh(pdDq@ZI*onp5R>Xdlkc#oOWczDC^R|642EJ7 zrpF(jv|HizS^5S{o~zXTIngyt7b-{U-U9xgFV|~eXHHD)uP*!FcdWmlzvMxsFngc5 z=8d{r5l2_j0?IqK?AF0-0nUNYvlg>=Geie-7tP-M`N52G{WbhK3w!$K$~je$na9hV zT`Nb8_ve*76!Bs7+Lv<1b~{kwB{wJVX|Psr82$1_ZdiKOG7Mym0yC*lw&u@?l54{; z%x-Xnkz3Dfp7((VIcBt$x>}h&|1N-WdVVE9n68dV^Z?L*av==klur2u`H7+a6tNV6 zYWC+`=t-4S!)f7i>ax7r+Rj9%#gEa;!vcD7A>YM#QMIVPl2ym;F{3Zx9Z57QH$DcX$A3)j0=7lU8Cxr(ipb5Hy1kA_Kr{(xi zdC5qFO#Ki|vhZKqhdUA6zxdjr+bS`Xu!p0mmt2tB?$D%q#(8*hJ4Nk8(;LXo)zRb= z!-3&x<`qmVEjJkcx~oKXyTYPVM_)L;RBT1F{Xnps0-R~C=+Ue|Bze)?;67bzPypo^ zwc+}Qcfz3`GJwLN!Ob`m`i$(h@wiQWjEA+Q!^6PLcdP1^E*_OvItI(iJKm^$3xg*! zlp!6bzRI3t1ikY!+&J`u(Dl%WVTuR%`2}OL-glcgS?P3*=K-Fc$cKuM=Yxai&aCtx zJH#Q{KZlQ>g!EV5kQtkZKb038?SJYO zbwH`M%adIHyDnyPEAuI2{bPA&z_$)<&H6fO8jTXNKDT*2+aqQ8jb*=FdGz<^wbF8*NKh7zY# zQiB5Xlk3M8cqWopnuNbTkX&3bP3TLw^;JlmgbipmB8g@}SHdF>frebZ3h5T#7ZCzb+H>R;+}C&m^+i$(4e&qz z{;_ua-cRt1?@1b;F`XWe%P16z+k*I3jmIgLpVmC_sYe<0M4ng;7L@Z(sxc@8;uCqn z<)t#;z7U#@?;hRW+=5xQXS;29K>8n1= zeIbH%2a!rCsTqDpDWIqZ*mG7o^625;Jsq$8U4RnK+=q3IKg8Tk3H^H2w81d$I-Be3 zM82vC*Y3x%hrk+RWjDUquz8FyS?zb?Q{s8NW9KHGV2p}}kn=aIc$?65;yLut6VQ3TAEWg0f?#DBma_jMF@HZ-;Idwl4@eXj^!;vi zx2jDj9D1rGN1qN=HuzIF(bi5(x818HCx15xzsn*HI!l96zdxh5zn(1b;!r4KvKED6~3a@{&TBdwj7mdUuSj{z<^pwWfQ< z8l_WV?=WcP99jIc?}7ec_jJ>#SeiMkb&2jbO})UvEC3ClsMl zmX(F)FNlqG-e;5e5%7-g*799>wvSdMw?t=6*1$!=OVMk2eaUa(kn2U>H~g1CGIee( zANK$bSiz}&EB?TzTvZV1#@B<%UFJ1b|B03U|1Lns%;>C#%N16Rq&Q`@^OQ6_H=lTd z7Qtzfcx7$+zewYKLDk1f|AFF_8!?7*;VXcbhX`9P>?B4h(n7-snp?KgbJHP0w0T|t zo-q<`)^ZvmytUIu>Qsup9y*fvx!0Olx+v~3)|hF=Iok3 z*@*4AFig9}bTDV#9$2SYZDfXyg0htub*%@j?*QnRob=3d=#xeHH|-0P9o6}mT?&`a z8vRV~nlbHU(}=zJ`U8320)trK9cS%72+i)#3FC++i<%yNk9!=UhTzla(|`l1Wtb9- zP&cl|OD~^EWIK;N0t3eESK1)}A`InkRVyJ$HfY!equ^3o@L$Rl1aBZ3UYi;k@q561 zv#{rC;PB^gA9g<>MP-_z>s;-~KjAXS_IpH2kCPRkbinrC?QS<8=5lqOA@Rb?n;FfCq@RY)rdx~KxF5qaC)clG| zj_ka6wBv1I^n3kz$HF~I7)5>xE`%~hQVnbjB=Nw42^N0A{Lwn!|NaYT2W=Rm^u3ey z_)9jiI{pI5L!S5Dxg$*fEQ(zLous^*bXYRh8HXtes#x=n0d(sg5WP$UiBH@H8Lg1|$O#M@;eYzpsfz3DO8{*It z14}DskMz4IY9f7i_uc>yhdW{=RK0WnB{|8^81$C8V4H;?MR{9?tfF6E~hbPq4EgWK#PRbYU~YUU-Vl8zIwxs2Q*Jl zNV3=JHMtQSl!!?3p(%OezV4CBYba)W4nw}m0oWfs2_-g=wT%l(9d=6CUk0^iaO-tX zX4^54f#Fnh|4bL=`)mf6W#^n1Bq>(08u*|lr~(BkyZ5I+nJ-Q2?z0SF?&3=v@@cj( zpY|y*V~sdQO-g^N)21|K^>;4|V#8lpWDxd!-oRZ=fwUQ?UD< za(~L#!6wjJ!6qJlZHuT$F4L|CF8+Plnfa9Oe{3R@ptr1L^P&8kFIBkIz%s6wmeN}6_)qx|^9FuDx6Zu>jdIHOpbTt1*2 zIt2Hf`6~Rp5G&`M8+hDQ3AXj9Mk{jpF5AU^!SaR#2cULK^Li5Hzd63Q*B^XRo>RN1 zwTTISS>X}DGQ_oP5H$Zc+Tv7MmtUV*4+@m*Z7Y}imPp&a=ZRk|e;^Q1!cT8A4`#SF zHj*QIugV8cy$e6xl=ud8hGk%o1f>-!b6}Gr(m4*MzR9OP4ZGZXJwg@OJeHtZJSsF5 zlnS!$4A7ME!8@n&3HbwLK4-O1GZiwwnD9QJb9T0XL%Qen#$n!Hj_2J}LS--8l_Zri z7PxOJ^CyU({ra){YpQ-bdbb4jfQ1xyYRX}oX#95wuM z#ndvP+gQc7F&C&-pg;CMZxA2Rn95X91V`34sy<@qQs{ zLM~SvX`=`DK9!m(j-#0a^nE{t+=mgyXz3aN@Uq2LtL^4H=`*vrzPO-2LM(A!wzUA5 z=Nxqhp+l1(El3r9vgKYdJu{CevAAOHpUveT)-b(h<83c}(0u+hQC>$vDoiRe++(=o z0euI0RPHk6&w&+1blFN8^VD|GZgF7Ek-+ieqO{WM99I07OjJWK(|algxNI|6dV}}N zDmX7{cP}@a=WvT;v*W7B(A)8!56oU%hLJ0RaS+TU#nGXl003?J=7|aWvpPtx^{2TKY8aw>vc0D<^i7AfLMKO2MVKAJFBqTdK=c;ra>qMQ3hnwks$U zRQ7cuYITSnAT_b_5JC>b_&?%X);H`3#P-xPTPZ8d<;-}-@@EeA9F$_qrrgA)Wp!2*AM-c4}_NCCk=$ZdHws?;>}BkG{{1~&9S%Jj z&DH{!_I`6mwQl99l;2bl4frhI&@Hc2e^`qR-ZP7Vn$*Y4GENakuMX6tRQBdq5PAEM zJpP0!>dM0Tt;bg<+{xv6~CyF&aON!#JtPpDxK_Y$2808 zHfLv_nsW%*jjpVDnJykY!2|`M%TS*eoPd27`8|7<(&d|+;b z_r^n4g7n$DeAjEj&1TE&bO-lNk$4ZPpr_iF31Wi!il!px6u~1O;UPWclIS^7ovXoU z$lQ~hxgErX+Jxe`MaOR^3qclD(v7XgKZ6rjFXVVKRwsK*4>-&nxz*NRz!`y8@$4x) zZcGqc;iiiWxyZ-5hE*9#H?Dc|w~)_Bgq|=u(vlxetut$(I{DHgfpMGLK84Ehidsy! zVzq9V&Dag^f`f%Wg8}+bLI^h>#eTLrZntD%G|j{#~E5 z%vXFJ{WPk_3-v57t1wya@s!J$yCIRUsK$X91jplqyV{VyBg6gA0>a$gikkwkcfsZT zJg*Z6UXe19R<&@=K~R|r@U6{SdyVo>lCuLxHTnd`mcRE7jF#Gl zL0MZhOctWGQDxPa*6A%#c93$DW&zzejLnXYn5I=Xs7@V8S1w27(%Q~slIF^eZi<#G z%22y#?njjfNAx+AM zv})K|t8HY^bXXl}x_oJg@Mf8ls(*g5hZ7vlG7$NL9=km2X-E|Kz`h8D?2R{uZd~ay z@R|8jB|kveuTrzdznANt4}QarHh@w9`J>EyLs~;k9}Ym(;3UGj&;F!jqt$+mJH_6q z?z7sOC0*=##$a2QmAyzvvgUUtBiJu2b@m8cepUIfzI7sQU$;la;klHOU&Wu5QszvWgPQ?ewk5KN+BO zQYhOCg^>rL@Dy{(#(7R=o#>{+mdjQ!51Fi2I`a*23<1OoXxath*r0*(8nFB$OV15c zra&40mXR)zU2hIL-U%1p8$Lv8S76O6vnM&={J2yfT~MUg(rsS{g<#^l;e{Cbg=Q&w zLZo9OssHvK`H3mnPh{6`$5k*828&Uo6^!7R>E;geN{#jE6?}LNb zDqyhRC=%`iXE;Bwh*TtU(-Sfdi~15*zd7y?&YE3Imxe&xzU_JR;zE<>EQMJ@aXv`( zR}gZu1X`PPIxN<_hR;VwE)3Q{7RBmxu6AuJG;d`uauEmLgnI`BZ{?Bz*vy>j$7u%R zC7;%;*Yi^%>~d@(ofwzHZC)92S?)=`1|ZB(4DWaCRRS=j8-%?Ua#)oOO~6pD7Ju|K zMpaY1sc-Kz2D}E; zGds2xOZr6B3LAAeIfyL;o6Uqi<}a?s%{M84RH*iUPf=|=AIPM5+v zoA`lLm4yoOvBKnvZo38lkLG0Hr`5zbF7Q-!(n!Jpn*zV26XhEs4`yoJyGH2yYGX57 zAADB@2SGtV?D8#k!mP%2dHmI1&5%z~w$>Gk>vyA#c1`y9tcVdU$Rqh6wJjZ7Cm*mEZErl$vHJFM zg|h|q*0}pMfyzy@w(A|p8lvQa99%A-bEJ|}%&_lW zqlRtL{t$Prlz#c@N9j<3*QaJi)BRp;U5)FR*0Kyf3JpuzmP%tT_8ubgkE+S6AD=iv zw2ux8>hQl$e3qU~fOI{f!?yxJ2P zVtZVk;gl-LAGCKR4-RNQ**&37;FJTji<4rbx0ZjEGdIGwTUc>tKSl@|;Hm%S^-O^0 z6Sb6iO8|1mMO)r7Zg#r5Rcuv;tOX&rtsv(|F}0T&%Xo^xM)F;0fo0gluScYI zxZbW$eOV7cFAMDNIN(e=cR`w&ydX%KP&ZY&s$}X!o^IUT?7aXj0C7;X6v!jXUpXlc z@+*RCWxYgedz`BZqP!*#-WNc;n?b_l0ecxdKL(U48QO!?d%bzL2o~+&;Jd+FJm`WWkyL&wxHlDI!A^Y1M^)L+DUCe5Iihgvd?&E#>qu#xB z&2FAtZ&h0+Ce?q!)7RwPsl$x+a^NSA&AdutSwe30YIDJv{BO9VYZbuQy_lko4&iM9QGHLc{5RqE_7l0ai*`$kWliX@RLfMwDt+0fieqWQmFn!JhIrJS-ArtTe(%X1bo#ISU6<&P-QN`@K?L<}W&wG;WMlJbiy z#vO1aOOJ%a@}36))!o`ue~z(^0K5iFo*+w~2Ot_**PDX0v+aJ8H@fOv1O^GFKfCA4 zU`Pfg=rTN(evb>h%nqom2|-q+Y~~soQv+VWn%DR6Z$|^wG?Of-P%$$S3xdhqiDWOb zh*eI6HkK}Pu}h|mzkAY-yb-Ri4d(X*bSA=E8AIo#%uNcVr`UbZ1HJbXBF+C>V39Sv zcs}|k5F2Mg*-4#L(E0nqI2N5F!<@as`caV`iaj&eZr(T}=Tb|lcQq#kUmg)X5 z#~cd6<_RW74UOOe@0RJI5iKkyidd^a9drY57Oa?1D5VWU{^QntZWX z?vE;8tU}mu^kNTcxw+i^RhE9e+H!NUd-G*OFEvx8zxQS1l_O;5jZ~$fm+J#QPjvh< z4?d%d%%Hi9Z>(iJ)ML1O53^d$*&3gAG%&EJaC$esn7*~Bc^LSNo9sSqwCQn57cU@a z6Va`*@#`i-9|W}v#Fhl;+6c`JJ*tL1n3b^(lCc<@4im3p9@L4t(02At;GE?07;g=3 z?Cm!PiPGB7=xRxs4ZM@MZ;`7T>MGY~SG!#{km5}qT3glw%U;e6?y`}ZT4}G;=bl#% zReTbXDnPu)3rn40lT};cP$NBe63rah99uO1eKb-|zEimr%INjRcrZp&uH1coJc_0% zz;`$Zu5PyZmN*ZaBxtnH{TmfX$F8#?>_kEU8x3h8d!;RS}`QmEn>U;3^fllJ5b6a3Ywk}yJI@Iq2%9xgX4~Lj1!{`4Z_7tS&oQ+z((5z3|De3C##I^` zaWxu7{ibZ%U3&-aGQ!52$nc|&^23FBV;cbdGVDr=pH4T>&`D+>o6pD4jK6;-60VSD z`QJmJb$=-C;^Emyr%-Nx#vx%_{|q#OrNV!pXVA9Va5!KUk){xh>Wlz>ikR8T-ZPSX zx@BB-booVA>KWa@v+;Mo0)>PEWX4y`P3q(=p6Pwk88D|fv^0%6$VTTs1)#L;NR&@8 z#q)9&s4JNd*hGq&P<@dT`2nnsTQ&pjQEf3SwB^~Tk3wDQac5zneQ_?6ieT?QNCX)NJ0_HR*-I&uq|bO zRJ(drrkCosbbq)4NMBp%j~>F8k(?;0MdfDcdD(n+NadGT)GEZuO2cZ7V>$G-a+SDt zIkYG(o_xE9jPncad6LrfA%)HB^>; z2lIFS=mrYUb1yjFJ~x*J62EoPTP*j|Yus^)chF6vAlwOxzAD0Ig55%4$5vcy|K-2` zK+lmoRxfFsf1kioot(}=*}DzHyy%Oti7+b9D-IO6JRT>DXIHenFs{f>Qbo-T^BVF@ zd{-8IxV?JRz^49b{P-fT{QQd1SrZiB0=cgJO?G%2qsA*gS*~&8LJ4noiFLKA>TG-C zd%gjQFNpy}kj}AgyVE$}CuzRsGp|7_A#FJs!)xj>iKNh&D(E>!e1$GEYNSJ;XFXe^ zW^wiaoP2}@@ludY$QP(X1}_8CfBU~=FR}`bAlFyVs;D-|bmc%kAp}jW>F8M1t1p-z zPB(p^_Q|OfCl$Qf9TxiL^X&5dgfDhD+v9-yihs&6ZTs>(KJ9jf8*}M``7QMFr z%_KoqGcC*_)iyx@f*!prNG4aUCBI#EWd&k-4xSU-Z`Xv^8<<@|hP+zi-Az|gUsAV| zqB&vyQw^L%zG*!bTtFf{AAGCb9+=*f!t5k1RX<6HES8*tTO;$ui}eI3Fwm;XFpZ&M z!EPHCM+}$cC{CPKRni5OIU{NiAo8(ZNqnVVX%2e{Mt|fUJfuTFyxs$|nOst^#;)0& z-*{4`J#zB4cBvt>C!8UZO^}_-)*2B=)4H_?9fz?eU~3@D%{PXV}cC&-6;@vSJ>UeK=-*#!5B%rP@f9NG{&;XQbCUDT9{p@{W zS};+gI{5HO$a-DLaNVGJymC322jAlsC{8&T^b()KD=V;zZfq0C)!&8Cmw@Q6RP}FY zug6ug+p9)Ld8%G;3*W6F=!${BL;A;F30Jm@qX|+R-7!F=EKZ~8_s+Z}psm+CO`wIv|R-px$n2kzTm3%l^5Xs5;SD zU}oZgBmlLE-jz73$!j2vmu{N#bbKd-rZLNhLX%m;Y%-I17Ur#OHh6XGt}$y&%swFQ z|BPvk__Pzx(#SLRcen`)Y(vIoz}zSIRX{E~ayLeDvVz$jPzXymzU!7DIDmOT?=`Qy zp@S|1PSTc@F3``XrP!3E*|fG=0(c9L>JVlG2dx?sy}N>B79HIr7JaK<1i|lD`Mu! zq_y;L*R{K__vf!`un%>Dk%u`=9KLEN#wI2$&7uhRe7n(2 zW1#l1z6lT^()A8DCV}r@<3*&wYe72NWu)WNIpQ^9%1m{Yt0+Y>!;VaDxqXtQ=HGcaxcGE295~o@CGR|D9o=tn&z5)? zxC(Q+(s1&%u+zN9zZ-A}l`or7M<1>T5~K93S{T%W7F5(FxLBx&h;HP)3No^dnPuC1 zcPnZWJCWH{%7h*x-_a#pkebh;IZ8+l6{pfpU~D90dsdpteMNry-~fL~t&6j7CaX_Z z-VAj*2)Yu9&WE!*_{OdJ;GF^g;NHZJJcE7BQ>I7nMB#?V^A?>?E~h?nBg!`&W@!?~ zI)`Zx30zIk9;SFEQhBNxpqXx@&#s*wSVbQ8T~ku$+&#wkuWmNm^~L&aGNBDAy&dGw z$4^Rre1`*F$<-_D)YUrWAUT8c;6liEnPrWoY{>4UoT3brg8*UqYS`2pPQ03_t6(Ll z3MX2OB9KTw5{3<=SUTO^c6#cQY64z1u~S97L11YD7o7%Nkdi+m-%8x)ksG1IVdj+t8WXh9p|>FxNGf~)_qh?u2p6L;lWAr!r{rIm*(IO( z={q|Hb6cPbCt(ped~`rkD*&qq&U&o&KOb1Mg-lb0O1DkgbA!CNDgNEj?dL#Jn>CbD zQfl4?((OxjT(z>GrBEE|S$fWh?}< zmJ)JY$(-)Dpe`^}%kzm5Z>Sr(P zNA$%BsI<6c6X{<}|9=_~lo_WjtxbGPB;4w&~QiFc+mTnU~|Ru$Wu#K4DfZkJq&&B*l<93x!2|X#>~i0k*zsDD3(11*@{o{6PHdM)Dzrkvsz4~tu0qVnmuMPhVLdo$cYg@hx2X~tUk9w|W_j9y#Qi+bK zUPg8k39npc1oLX%AP%KUHJ@Tyha@OzAGlpai`nDTz z(eQGT1QxaX?$;)dv%75j`G{7d>)|XuE9XT&@}0LfN3LYz=^>G!n$c^(Lc4w{w$uW+ z^Pje?Mq_-+WR{)#LV7mgqc0vGUYucxFmr8O!H!^>cR#!U z{#n+DqZO1wE`6=+|KCKAF2kY3cN2=&F|7dgHz# z?ohMHSEWmO+mO_m@6S})8;ZFC6|^%Q&X#`~Xk%@7Ejc49u6;)oTD`ooaF!K3?A+OQ zB?)l(;ZPCWl1Z@x!!XN#(d$KBy^sSf-G_y8Q3?nDZ3&*6UQ26U2FF~x@ZLK?RXO^| zcuLM}BoaW+3zoqig()zi_$Uy!zkop;ZrJC=Z5hSNM%Y40pIhS}DA`ZAuSmW|L!@08 zjf@hzS4Y~q9UL=rf3uct*6WW!OxXQ5-|;*Q=Iw#9##k%n1kdI#p7eu-vYBzdrp3m! zf1fuHxoq1!3#NVXK;f$v!M{^xa;xqVmeUqZ3^N5>{<`z)ShO%2=FRGU#Uye`2`&Xs zd~-BTU3_ik;vivFd06uojCwT}GV?xH7N!x0Y&@`U{(BuhnWVA+cirjDcROR~3Z92b zq7>xrQ_}Xj9%zo&ki}_bXJ<0FfACW2lkUJGU#R(Z9;RR^^toa|Fz?-c*IjQvNF4dp+@=6IcEt+=8MZ)mnIpzsKbticUcHJUik0-4_Rzo=iOsWhL-x33Qcp&z|;(XdG2fI?teuqy;G6351r`B?9?PiXh!1|);=1g z5*D0Am4#e%QO2i;SL~q-{wAOOBH|s-wc%zf-Vd*j1|^4byNh z>kywockb&6?bT6%KZ-<%z8$ujcpTcVda_gGGMqNxgP{51B}RvNVM;*%42S2`duW}Yhk>U8MBqwF$IZfTM z`--@tx0Q2aH}qxtMo!s}!;8#7s>Ei?ba}qEs6L=@m(M=Bb9b7Jn6dMd^Y_D3;(O&l#k?;#0Fr{mxJAKh%c;7ZLbq~tMn00aKt@jh-vTR zV9jdkoyWf(O>ahKt??OTCb)v8>k+`pGCqcZJHRd z8=}gZ-3>3=i5AW(V4zz6a^(7j$Elx%Q*AH$WgU;O<}aSh^Lig<8_IGkhH><`U3nTaOgS+`9e=_=f|PNDbS zcZ$@tHCFJYmOHT|$rIgjJ+m49P}`uq&aQxC?LAtQsXks^aaU~s3+E|C!T2YS-E!s=rGn~laC<9lQ47J$(ez|703FYYI~elb?p*wpdN9}V11Xv|om zUNFM!$+PzIa}VeS)6j50@?d<3bB||IpPLw;yUhbwYmp*PPzU%gu0a0X*oVn&E~$(& zGEh}=G`-?rNSEMA{THVpW?A}}v8&gz#sp8mR0;g|1#5Q3eFdU!CqFAO$SX|$l=Y@G zJ9ACt#fE1qv;iXwVf|Xz0q!sY%3T$BufhxJvQ5BAHy7qK&M36iRsZvUnLj&Q{Xv|d zUg4$sUad{zeQP_n1`tzCLYR8y#~u5&`<#6_M+oo0Y2iQBCc{YBa=ey5#2BrM*#Jkk zh~)H)EPVt_VpK??N%&qv1t^(|?2Zh(fS+sCt0bXy$mvpa_pxxKdw%~fnaKo?TdLy` zwlY4d+%>LT%uefie)5h5-EZ|0&j-v&HHhw*M;_>nZ>_Qc+f;7|{A1%bi$ffp zV}_riA&;sGftRU@65fTtpMehiC2aj+0)ln@pS1=Rb9nE@*EQ3qu6IIo@7r~vSIPaC z`%a=@ARhxj#p&6Ma|B>W)&4!q{z(W&V@RDgFOFb<916@!vF&Lw9qsCxk8OEfw^F3e zEBESJ3$inBaZ+bQ`;J|6=rJW9rntWVt->7<+(usTk>|y1NEF^RtT+g3aAI5MmLwe> zMveGOnr+>@r5ZWEanCkGrf|5-CSp}w(=j|nV-xtM4&Q1gl4DqKrqQJIQegahBhI?_ z1tjC(cWjcV3loqvgFIr=fYQp|dA9B1RRkzJZ?NclW;ZRri{1wh`d~tlB%6>RjQgB&JR-HQ@`2#*RW@iDTY6Go834F2tzRH=WGV%r&*WO8Sakz1eqDD8+>k2RY^VM(aF^VqlxJ` zAqmtDD+Vj4wy>8(2SvgGT75I8W_ug*zQrU27H+(8%&)nBqWXi`PUpAEGsR{)d-h4k=j-mEEYAxc$< z<5(K%`}l6iB?RTyUF)Gk7iyjSKOTr9heF~;EM)ERt1%mZ+uufC(ouYO^qWSM!^qFS zt`bt{ygyM(fxx0z}B#}0Ae`2G}L zLp(t8pM{4<{xbc*$`qlAumnj%5`2p|U@-LtQ=(Y5|{$~w5|p7PqkDHL7gw+8!m zp@I=sP9V=!GrqKAP0g4;f5k+?BGI%zI85-RZGHa$y*U`7*@$be0C*f(f8|5SkeT1& zwTTA{YvDSSCc}qj0rP)XU&xm{REevt+21XYIbTAXa$oe-b7sFHE5*3tozv6t-A_ff z7{>gMgMrfqh`&#c6bllfE8c}{p#KSb$4V)A-B?QKLQp+a!*{Tfi%RGzR8A8QV*?Bv zB&XZBP|kz&ULRHD4tAu8BH<7oC3T2vb$~!*z3RHteMe+CW<4(uKYNvZ#yy+SWoIt_ zucW9DiqL5LX=c!^BTPu)QR~ywsYZP)1Wc<~@?DYE=#km>-?uWHp&569@pdoeMg9=F ziURPEJl`vWP+L}zN^w!j;c39;csAU)v2y!UtK_|0?QN2ZP*7l<4bA&;$Xn|?|d?fXH|D6}H$UO)~Iml5_HIdA-2vDwTo>*6ATJXD#bP zeRwGED*u8anx+lB6zbiOa_ zbomn)(c-qQ7!f1bcNLLzV(iZ(0LBVhtWEU@mO114&51dCSJe= zQxvl=Sm`CCU)dGdUJKYUA<*pA2tII?7H}e9N~9b(3LSYJQjGI!$WGHE^s%&34?V?TY7jrTTHfj$W7Pr?%&SA3{+rY&xKbTI%24NL+NIl~r6Nu2Z zRiKCX%^Qq|qM%KNvu$lQa@(*t-K__*GMH93lmx8RPl9_f@mdr@u;_~8u3zf%P|Olp zZ$JI2UWgoWH^CZs^u;QSwnX zN;R^0(4kaj0H3rV3AHw8gjlf;dvu&Ry+U1JtNAdSy80JU@y@X0+FH2FWkc&>XoiV> z;~Db|xjBcjVlh-5)({=wTkeb#txQm%F=*)xRWHr-ol(yB`6+!zVv8+{4lmD7o)3E8 zl{uBLagrcHc=uh0fOydd6cLx9srOlFi=DvD!Bl(14P(-fnTcC5=$gh(i_;%$bs0iaW2p|CfnEB$ORjMh+ z@^(8pt&Vpa7a_A1hLc8^F?nGe*0Vizh6D*R+Z2T5nSigar1QCjJt*Gdfyo z_Rc38fE=HSCG1D+GkfgJ7yBqV;;uT!OhN}@3o#TW3w_IPTs$2T%_{Dhb|XEU7npbN zfq}vaVva+Pi>#Al)=WZ7i*?~)>~7#8KZn(=3(;TI{|p#8cGF3%^sbG$-J6cqqvT&J z2zWH!C@+Q-gfAba8-cEdl^9DG%Gpu7Fn5Cm5^cdT!yHX^bsox28ebhVOvU-X*%nvf;L;UYsyBGdPgkb^>xXZ(BOEjZspT!z__2=pc%jTRs#M@ zc>*~MoPKwjKmFi|W0nRqisLZI;)oemq>X&T&&PmMPK}}khjJ1Os8I5T1 zBFrK`i#o66!uKZau!B%HU;J=q?7U0LJX!oe<6N_&4l$ZY%}iz-0=BRQ7583)4(3e( zq`aR>Q=%}=bhBT}nHYj)`^`!05nNAPxtLizlDjq#h7Da|6?ckgM(Zs3lQ&o~_Hyb| zJM0=U#>?lI6=Z7W*{f;$s^l&BxsatS?43@|jga z533s#U2o(2Eft`_2y1 zQt161dqc4hmG-I>4KR&+`-m9s1WK!5CuBY|PXVu6)YBMn`t`H$%}|{nC%-rnvdk*d zIF-&u-I{4%jKrKN+>`FeJvKnB9)zKf-WtW&;VOHfi1wOiAS`KY{5 zDV)nc;@mgkz27g`Uu55a4;4UWE;F{pIz7yh>_EM40Yi%B(YUW%M2TTia6WxU@ZPtvOu7?ddV$zW=A!%{4-&hj^i96A2pJO(|sTz6Q&@~#K zKNKnzVIhR}RnW{Bq)&WGrVqjm(#|^N82=gQFYF5<)Wm$xo~M9?(7yBGt&j96MD zeDr*{FA@wKe2c=o%t@%@e>Ql)-}K&muT?orPTb zUwac-k?88d7nI8Uu@hIFGB$b6XMlW-K4yJCX0e%8wd?AT9hV=TB?G)CeHFB4=a^Z@ zq{gbY)JkQ+_m>W%d_E-H=NMSq%+h+av$|*uoZ%}))$E>GwnjNK;Q~nOKL=U^Hs8X3 zKj_GcKW}j*%srW=dW+Ky^7pT&9^T(i|DeKtG(b3XA;h{!NYkteLS zQyICH^@V6+DGuEIa;Uo4>9fK4p6Za)*;|1XJ36=IKta`S8Eo`>IA!UB&#qgbx~1wI z3QZF!yI1??YweDSefFVo(pBN$WB4#pa|NE_IV9%c`Mx^GNNC@^?el2+TP6^vXwtQ- zvB9YGk55RVLr5pyv5VPq`yHu>Jf~>C3&i=nmRVNjP!vfHvN<`9Foxl|Z_64LixC4b zdo5kkut(sy43Ukng}50!>KM-#l-6amec3~}_3L2T8$hMQ+iEWtQ)ncKsa0Xqdqv~1 z!`EBHksWs@k(d!rhT};>cBj0W zQuK&ha^82*hajc3@O<*CZl3dXCy$#0xoECbSpP?h?ybt`8-Yu=;YSK=&7nyn|AB#o zDH?pYoc`tE1LR9i3bAKv_J9^lq*@qIqVQxMhW|aW%>A?ZwY!zYtjukj$^@W%q29*? zs{e4P=sgzD@f=pusq4ecQge*1Z$@y`v*5A%Q+Bi<$`exrJ;r{~d%U8{x_7Sh{G}mg1V> zbA_GLF+W$Zls!{l7S}KfDov{8d!u63&KaA)D7Hc0glnNL(nn=XM6nx+lY@F#5#Za@ zFcjY*A1g|M>Bs2HO~RGeZic|g*%Nw$zWZPl1l{&xL23J`jATobdHZ@ekesBoXuQg2 zk!PLvN}I%*;Ys)~L-CyNb_N0{l6Rp0wWlN_ghey`bmIyigwc*JWrtO#Don>qEL%2AN?^!+#v9oWYP zkTLbVFx|Xt7JU;i&WxY2GY49Uzh)l>As#*Q%}E{rjxY@P@Byi>6-FJtO&v?sp-yJv zNk$+6j%wL=oOlsxJl1-d^IxWv|NaX#ngdH+(0c>9h0=?_Jy^K{(?pEZt5n>zQX zUCuhV=Q8YV+n~GSCf$d(8av~e&wc7DnVr~Ji05X`e^JLd34dcJ2EK5#j6MLvioH8; zVn~#5%P~F3G)~#JHW-J{(i}~9sPcvtauIvFv%eoxZhz|_$_?lyOx`sb>wmSW`&m8NZ0d*Q z<^_*}$51r0b;?Dvdv7vLK*a6bYQtX3Ez#!Jf}E5b3mYK2{Rm;lVIBf$0(KhNP`inE za^blnHzPc}PGSXA_ySRQou29q*d3P~yPZLlOF#S>+|?;4NoCm{dx5wHL(Sr5do4%T z9vu0#m+lrK*_Qi7k>+SMJ~1d%qiq;xAg>X^*amWprk5D`XUAksbo07J8|9#k78Akl9KeXxn@$HMI2t6ZFr{2@w7ZDogb%?4U zjS2--eKa|guJipr7J6CAzXa6uf=pK8?!a%B2Fqg$puuad3BmRoZK~fBFB4Hl8p+}} z3hF+Mi<*FYEchP%j)CCFG7v0SGPWZaA+uA*mh;xmE+`bKFRs$ z;Jl9Mgdw4rogubtxUdllk_UWq6j-+H$3vex(4S1w{xj^uIP0LWHiL#&)X0+|7o@9K z?SrBt@f$hDhbEAt9PpmYa%{{nk^Uh0qz`@V*CNkGk6MTJ{|%BHS6MCRV1TY~BX7=v zSO%GC$x2sQUYWmieDCirCv!>ApgB*o8}SP&&VpZf&CO&=&6W2-`@n&&E5s-twj}FN z(sjnxqD$q9OWPI)-16zH!z^EKoCwyoV&2U8@C9|OSD?{)B|_~sS-MZdqqz7hQo*yZ zqk||?0NRn_V+GmsFzaMS{QQ|`KFPr8Uj(=(id4hB=#eqjaXq=I#nxn$p5}VdM zfNZ`nYI+5AN{qOlr3R60@mJDgxF*3t_JtYqukNM|#YJ!~KnhnH`dbryAFZ5Jx$^Xa zB|USom24%u`v?(tyy2U6tiWT7kDE`WI(#q_XPiyM|DOeznDn=g0`_wIr~VnixhZqC zQZuBDJh~KP?ZMTcX$E*)!6jJZ6EEMglbrGq-Oid2XVWdh#8!8^dw*5ThWRg@UbrIH zx|bnRvvV>z+ZtfMF8tiqsE=hMPaNtX{pIq}5rZAq{?kj%`Y`!sSU+`J*;&);$!Fmr z9WS8A#Ub2(8lc0(7m#M=eG8ZRs=CvG$!nN#(8fiq=XPi;dW5Px;*r~#5DQ87EZ=7`oAr6n)mZ~vUI-sAvJvS<%UID(~@}vU!q%!DyTvkB1M=8!zy*QyCnw; z;*XQfbO+Uw5oI0zipL0>@Vq>oMD%6t^>$%vYyNDp>zYk0&6_zl>Krxa+hmbPNt{J% z!!!4diH0LM+RRCi!+;76vu6o8qp)CCoV58P$!97nsPM+W>2i-MtaszF|CoDxAB$P}W_A1y( zyy57jzW_*i<%QNajSo6L)yY;#?focMM;aCmGmPw|mfv2g^&FCXR6KIWXeY;oqhc$p z)?&$i|LVb9w9lTao>U0@!x}#;ZtrBOT=>nppzt~_im^IgA#P0xv!~V)u;pmyhZoE2 zsafBmo@`qF7DrZfv=8~ysY{pJ@|(_;E0#^2Xh~O7F^eu=BJ1ZwF7~4wGJxf9(TaJ>mL{#1z!TqzRi(OPQfnr%^IQ6@3x4#k#N<5Q+(%?h88aDShb(3O~{O z8AgAffOagacB#Ge>eryj9ojuv)X4lEGU^UwK|A=q`{!Q0Pwz?U#p9E`3%BhI9+!Ml z+G!H8$e6Qu9W~nlz$*KN%wOl#`=c5k+K18eX@S_0s3A?i)Q^la&XK z*i~1L1L^Pr17E_3Js+?Rh74M_nU_mV;@_2MsmMH1? z`jfX1#D-az)2Ii#L!>Gz5j;lt%X|&zV`x4jf{Az z{b3g?rpR4)<9|bo6Pg*RpU$8(*qMrgFS$k|{og#0b~T98-Sm*Qz@HUhHY)xdS(DIS zw>k64h80A+Yh^Y*W5Gp~@52(N~zwoa<*7H6|~X*@ttZS1S8+SsT;e!FOikgWYJ0C#_qUC;+Bg1 z2aV8=OOG*k+*G%lLd15H!thak8yKN}>l?hXsreK8x<3}FKER$osrWFA>RwQn1CA0x z3DagL8MVKjyBEKUJ2erl?uiwG>Dgi{%FeL#n3u&ju|QI z&`(=0(wAUOi(g6}yVMNHv7wzCx4)uEk*fN~ipWM@u9!Kt?cSxAAWP%a=)YSfhfGRc z9f;n?PKMGJ5GzaPw*GEB$R9-0=+n`7)KVxwJ=qx{d0z`6!2Mkrh`(WI%}YP`%4ybS z^94Dmb$89o|JZgp`|8aacy#1;uAJ+3J4H|T$=xznKaVkpN8Oo^3m(E!2C<3_%~GI& zpHvu(fbWpnNC>0PIB3KIuMQ9C;&oR2ag=uSzWjo*v8lQR^XOyT?Gvn_Z_m`StoaHV zKo4WmC-ugOT2O_12ffig@w4Ru3_G=IvmNmMADH-8o(q$CXF&nLx@Ac4R5!Y7SiBh( z8NFz!-U3N+lIXvZgYz=4mnF4L^0PQ3uJfx6>lYY&JkQ$gKuB9ej(QoR>eKL7%yqnT zK`>8c{*abisc&J5&7$T+!$|(It$l|$p@3c(QG$*KOBx;=Vt5G=NA1{$*$8F#4Z8Pk zceN8i9ih;Hh+!b#hLolTIkmPEcTSscPHa9B`aOtMbdxlh$*t}mFp8a?Gr}$jjMFq| z70b1s#UOj}Tp{zEJ4FRo1=#HlkFv>(r&9 z=%4ql9;L=HWF^fug>fJtgX50Ko@^!cvFZD?$Q^f%jHSnZ^H^>zZft*LU&62f+Z&p8 zD$QHu&8T(^7jL(eo5i*mp4fG`;Icj%Nwu@JaTp`&Pk=OtawUft7U+mR_Wx)YYbNEQOFW(ElAW)6T|LHZ z>O}wLb|cw$Nr#Jojweh)KAqT|^OrsYjgsavPv2v7j4 zAd@LRBg=Qq6~rHw3VG(cvNGPgFS42i#v<4dGFd4bdN@5+<|&uKi**o%Xwn8=fjb~( zZoB+V7kmDT3UCt0UE$Q~22kkW-CldiFW5NE7oGqF>!~2S z@{$F{hD5t|p6ig5tGjN*>iNF9(TbI?wbpBMnRE3K#(vyF@Ktv1mA_iU?CP$$iPCpk zYt~Vco1=R|;#|cxQ94h5yfe9pe46{GMKRJ~s*U`?M@+la!5(zb(TiVb=>ekGj8A0I zW#1e5;B!(B=P5k;rLJ>J7BSwD-)pLK2tscc5=~^V^;FW6TUElN`rY+LWr9rq47S3< z!@hlKiNQV_I^Sy;T==uPi-R#hmy*)@nVyhEFRfS&6se@RDmcj?kK@@nrURbZO{;_l z9={S zoqGj^uy*5srTWm!qa^rd4=u%~@(Es=I{60f2LdYx9;+-_Ww1I_{Nsjc>80i)=#k8R zfT6l(mPQjB1AUkwQ>?~+BYZt9btFbrbh?3NY0Zs1oEhmS`tIyyJ_pU-KFzI9?b96| zr;%27Jl9-sU5^8`RU@mmmOazOo3ui&-9zNP*-}22x*wCpCs;AUH*xuZ!$%->a^v1J zbWoF3=Dz(1+DE3F&eoM4fxg;oe}Fe6kd^JG!PXBqN6R{D&z2)yiQvhKU&gYdHal%T z@^kw8Djq)_U#Hqqv!a`<(Wl_ITqFKpC47Ehs=ZMrve!!}&nMe0-{J&2v0i>yx_j&P zCJ}9O>I@r*mVM1n(F%d*4=d#fcQJ_|{w2cG!4SUQxV2g@F%Gu`aF;ul?>4ZQuOc{R z{I9A$A(ZOI(sT=~39mNt#Ss;0vi?H4kokSOgne1`(!am=>y3Ws}{7S2*w(@qM%3g{0ifxzJUKvKy5 zpjG5xG(>wtXgls;0zVg}t08I@F{)bykuYo9Q~wPE!K6X1{Dsx9P&c{lE|woYvn+f1 zqY<*BK+ehCaUKGQV}+6d`9DLThPI}diZud{72yV-L&5TA@qlhFWJ#K1cv^cMnC3nl zv^SoH@ZzP|h@AZ5ig?m@mOV|hUtbZUBJydS_{HJ|LfS%rTa=zJ)|HFF-#a*@=o6U# z=B3)O6n7wqFRiM**1c%nc2+^V(%@rZ1V` z$`8LO#Lqf5wiy*GZzRMH*X|pAnAF<~uvlbu*gGwOFa!`73(_4~cNm)j@`iFa4RxZ| zQagIpHZP?~(l0F!9l_o;U-Pn?nsMIR@7IV z&V@dYBibn8)P@VSyWN5DX#qYt{PL!f%Lp%NYHk3A-1{3evr_#-BA5%f0k8MF1(!T2 zJxTO2M#Tv!N%H&vquM2yI2tLhrqe`!_zWK)hdKm^oMH3{2e5(#umyEO@3QO98*7D{ z-0@zEu>%}t-)Gpi;%}|36-2sR6RjT9KQUdY-P4D?3}&D`{~41uu8z(2_z#5`B@dGK zYW9Xw4B|v%k#m_N>!$Oj;`E^fbA{V|E+JHhN8lq_$Phgbt{X5t6+-tsdjjthAyb3|pE zQ%?hJg9`h6lXD|`P7S_P$*-kW9-7ho;m~KO6Y}#ogg1{*t?VoY8o$^je!O}$qW6^u zUI8XEqhc&>;{7_A0jQr|m}+WX)w3+1M}r}vv;gM`X~m+A&=)4#X4@*%M`F4TqFIZby0>qb}R<-q@#YK>j{zGE(64y+HctpqKX8%g2 zti`7}f6-sodAe$9PbSI5enAXKY5nW=_23@HXX|{jMqF`B(~1{U&XBo}PVsfU7bf{- zk=w+pvABxbS!b$P2TA-qXp+b{t>dOj6gu4(dbw=J2Bl2keT;+<04r(q!X8wal8KXg zC-k|IzqK>Q31RNEekAGf z$sc!A54j$r@cv9GJjF)jzF2Ii_+TY(SyX62wV07T_V@95EQM_ zzxI2vB{4`x8yDbmrH*}Ya5Qgmg2!%g%Wvhogg#fhL_zSz4vjX#14cl;un z|Ly76sBz0Z^t7(s&ngn1^>)@}g}4~q!DI z4#iX|$VhjCyhrSnkjQTIFE$D=xzM6WL0Bnv)H!q41q2|KHwf9sK{Umw{2@*P-*Fv- zDfOjz5H;FXlIo}P?@W3=q4$OOADDR(dqaFUDI!kko|@ueq$aTt+0iikA+UPq!&m*P z@{Q1Z_RhlPpb+h6B(Oln!JKdA0wKG)DOAId?_OE(y|aThDioR^n}5W0R^t9Tt>ZTf zs8S#EDrdi`5AODFH zz;bx=&b8*oj+oP7_GkRh?0;qnYv}p2zDlQf{&dQa9$N>y4Mt`!_2bXH?HHUn^Q@5^ z^Kb`yyNdi!n7G7Y7L{AgY)j-v2iAU7s1BpcCajP`ZbC$CnJ0wOUZ1cZ zh+DT=ToKcE)*pNfFXkTYy>ZhL@L@=0VF!r2t3IF{K!Qua3od=%+@0mt$eeDK>VP8z z*HKfD`$B<NFAV=avBt6dFXHh8iSNOV#|6%1?PB};5MUbc3kebCfe?n6%(U0K8)^$`w&e|utJlINGK*yg-`)-@ya^-w7?v%7yl zpc}I&^juwko9o-U-+C>!b}UHN`3i1aq3`uCz$!a(6=+a(J9+&(y2;xLHqt2V??L%F zp^&&v-y(mP5Ux#JxXyO@SQA5NH?EFkOx-{EbbG|+W)LQK7YLLbjNta><9l$P)75c` z#A8rupm8!ds#=afzgMzcF712Z=`njaLUQ4n;q3*HX*5bV_SN1t!o2Z%w7RxVOnXk9xJN;iHh*v z&7x;u4anT6wE$8lnP#u(9i0Du7`>`3q+M0_skSTTgSR{gar}~cHJb{Cs_ca?xP;%@cSuX)>M$%gAQr#gsnva!v9XGCeREh=W`DWSR-?`Xw2= za?GE@cLK{ZLT`Ejp>*75U2C*|o_~UuG6Q+?OocY}MArx81y)fI0t^oNdG43#vOT)N zvCIM>kdXQ8s|CT<8M^$C%sp==z*i8lj8%!vco@j5D8JE+0$H>91DrrsEq+4h|1B_* ze}Fx`E|^(Fa?Zt(SRG`SNG1?7LviKcL_q$Ezm9{U>Jxmp7;DA3Bw^g~;ZwD2U?2ul zXk90Z!F(VPNb~pM99WC?5u7~NuE33454=DG#4-vBN*RAALv8(a^!nA~ z!z|QI-WNJ-NPmnl=&XP%b^eMtRD}fs;sLdZZaI90;_@Q`SqwWv@l3pnxh)IuBo=ZJ z-SQPIkgAQo1(_#^LP}o|Xh49uagwI`LOumFsVd|HDtR&q9s<(#J@7Za`T)<~aU8~1 zJcP8Fi_mo%)J(3dvUy*Qo^VZMufyD?Ma@hjjPMk zp+Z^|#4khL-^R2`m%>(Fva8;UP(p4~Wx zwB`h!4(|=cZdNAFA6krKEZqs(Xy_m{o}DjPS&UGhpGV)fcH+nMp!24Fb>De+?ONruH?qE5>Y?E_D|A%ihkdu9^}=(4!-S<-}g9E(*TcR zzVkZzfk4oqcCa*z#fpozFgeVv`~OXJ3$bg_^7G0rFleUbyq#ZG^aeet=*hC2PF2-HwjwI2(IQ)yQOv5eKpa9?2= z_WYV{<)aBkM7|~5py2` zV*^V*ke2U0jjraI1v+;so#{y9BbR&SNYNCPndbtT0^-{6K1og$dC%_=dz1(AxEN3jk{KNyo3U}?GL|x#j1#Vw`j1JY?M7XHT zQ?gC9%4YWw-&inbcS@GDqOoSIjCYWx)7rS{5=W`AOoy`MTxs*xFrD=p@dW@YQs<}r zRN??y0o3=+hr+d%_22hTX71k(p~V>rQG6Q1h2k?qACM0CFYFl{zh^kSnX=i%4W%E5 zbx_Bb^xi93c>hfkzrlV@-gjcDI9D z<)zg80#E6-U{l4$qvk7JHljVZgG(ZO1iFvf_f=ARSeXyNGl)O?Zz=>s)}mEPC#?{s z2uSMP(D2_WY&{{@{9xbRg$f*U&i+3OaH!jI++FC9b)8KJtq^1>Ilc|Ck?26G9vTc~ zP7bvt1@G;FtUg&$DhW}wi4DpHfp?~TKPGQAD&aN?Gr*t-;6H6=h0f7%{X^PMWn4$b z#{z}m#*(d5`|3!r%~x-XU2aYVpl=Ic-^?EEhH7a?>(cjoMouh{{9CBTC;PlvjMsbD zznDT1TVWM~46zmLe(7Z>e%J15lw~6Q*rJiE=W(~A@xa>4N#6Utyz9?WF=?NJ%=)(( z?x>~?*IIAa>YannpwE+!M#ZO{Uyakeyj1?IqUlMu6vYqh0>-F%wEMK z`e!*#akksm0?Zq-@4fxsMZIh0ou}^@Bi$L#{7&*`1ucke>B@Oy*Y-; zL&|8Sgij(@-qM4`{?k*-zH`2k1X^jy(Z*n-L|CzbtDfL_TDpVSl7IB)2PYm@vtN07 zpXqw93~~RvPevQX^JQjgGFf&oeG`YH3d?dRI9@cBmv3cQp^cLPtvAn5;$~?+K1zO)1LmCD6WJ`Z2S+AOzkdm~N5G9p4n}?2Ti|Tg2ktQ?NK#s2anhO%Qs4*g?UA%nHlivB2?DV< zEX2pV4B0%5H-DNQ&xJzClcB`FxXwOuhSRCTevwh%gkEJtHgd&6_a5>HIhy-b8z(DO zEBIA(#bs>=_m{hJgax6lRYH5i<*pt6F~(%o`3uo z*9*ZR0t1K0lohjuS8!&o!$?~Uc5N+ec|lyO$x02{)XV}&BzD+%&GDA|Psg`Pp}M`n z2B(>ctDAe>bG%DncWP{7hF3l-a>nzL)ed0v<{=7d;$?@6xu{_-{XMotW>Uw&TXjIdYyfkgUtIY%J8xkLIVsai|HVz`YtQdR+=;! z9hu1j;$y~ZUY_DawgmnUO=lU_1pB{zx>HbMgvza;D4=wV4iiLFP#6e^bZ&Hu0s>>V zw}Ap11B77_(k&pMB5Y%Hhp-Xbh|vPi#qW6jZ#;alH@aQd^^NoVoLOz6;FIfdN=P5g z)-aGBS@EM>n=FSFNtS1Y@52v)qiA+?J?`LVe6+@Dw*II%f%_vEb@GEK8T@9NT!XM5 zWL%Yn?l5^BLbzxgDG&%1CIurIjd^I=RHnAa5O$3 zC+ZS+92wg`Lc#8+*YxlXX!e37>6qmCHE78>4DTIsWG^>ie>?Y*3Y}@ZCL91RyhROh zFOgyXr;oxAj?8kp{y5H+@@|w9*faW*G+J( zQ5F9#ow#tXqb7Aw2y>Xhgf4Xe$+pwkoD7E1~k{9)f7kb?ZV!Viz{pAjV}$=J6qIW$>D`7%=&TK(km zErI|e$al7(@PcF~{5Y{7no?lRLD@JXtkKh$tCiM~ry|MIX+TrPn0C`={hN#Sqgikz zY({Z0e?9qvt%@3@S_+%4-qN)nhxny+j|kHl5yX{3n}*3>k*^22PP$`n%Kb6x-R9$N ztDKaLPOPL~{Z?}zdaJnE3Lw@OFi)vJEdU~V@N{jR7)-AOZ1xvouLB*=Q%2`Yp*XPp z-U3RHjF3Dl7qJ3OAPC7XqM}+fwv9aVn>$~F#Swg)Ri@_Py9l7?XlyF)vd9Lu9mrei zq4E}q;u_qKm`0J73QBESm0fc}zlpAr`xC?Tmb*MK zMY_$jCDX)Ty;cn|Y=DJ<#TVH*OAV4%3tb4-t-Jh50edI#$)s<$U?>U2XKQTI((>$Fs-wHy` zndfNQ$6-DaG3=%ATbd&o#Yw?C>bF&4OuLSA;ht$=DOA8yQ$A3eMxN2RXiDBAvFDY8 z7Cjl9e-LmBo&e9Z$gd~rzVhxv3Z5y2VApLrg36cvB!g$!#r6mrWGjGDs1O{li3c=x>bm-oaxwL+4#@V&TBwi%Hh$*615&p(^GD03f2eF? zLT0w9Cv`BlAkk9QoSvWe6hIISBHx+@OX#}=$Ogc@0wd4-ElCT&ozOWWNcr$h^)O1N z9ljHKQvVlpTzav0sr)eXx(5(Y*FMf4OYq4C5DKWJ+Ks~9HyuD%3;_)2AE^Xz- zti&>RI#&qEZp$~n2vCwct!=fz)YrejTxU956lw3ex?)WO0A5^-2=yvz@xg+Z33Mlh z!8KY??3d#aqmN=)ZG<_hg!Mi$G;66 z(d?JH10^N!9UbNK;cUmDqF#CShiStx7nyg=SN9bR#F!TsW@^J4@4KQq>Oa-vH{y!@ zKYl_fM#>-88$4adw=lYU*65Te84xoV;*-b;U3SU!CJ@$Rke>T7mIrAiAGqB9k7Z+K zYrBE|)GiROxC8MDT@Ax=&}uj(I~I6|+#Hm>wH_vwMdK`+riq`g>nO|hW`PtvFHS=! z*J-C116&>|Z)wqyF|#Cv=PlW>4(m@k{lZe2C-~GIW!en^%DvU>%^Z7nL_C=f1bfJP z=Hbs^AsW4NA$9W)yuc*S-lrIBpyL=fdbYW?fWs_}%_DRV1(a#mqyWq{yJ21l4X9oHE3;tcEOmg;3s%<`U9N9KZ+zS@O!Gjn`6+a$->u` z%Z(9RpS=Y)G?;6z(_le>bu+?6J(c&9mDf6nTRujI_T6j1SpEt*w-XWDe>>CSC`c z!~9X%jf-aPavcp=U?3akVKy)jKlVj%zPYEpO##U~Yv<(Z5R)~}fjOi~7B~(Mdwo;QV{? zB>wEDAxA`$Z1jfFtTl~~Ah^ghKJN}JYuUQbj!G>5LK|Il=0e|S{1R88bhm z8%D%Djg6+(S)J&S)JK}B~2SILL zhB%J8jXs~ZOjdTImbk*YzFT;gzvN{vqJh`^i8YTpih)ZGv$i?nDQY+<9o zS?yIK@rpcfsYmu5zuB;#SFG}+-1bS$XI8{SUkob6k;ka!uA!~ugwDegDoq5d)+lfc z@a9YrUu_<0vxcQ2gPUXl0O{aPi(Vkx-+#d5BG3h!7*W7R(cL{;mXD$vPZGuM7B5_i z*FgrOTx3U)GG^;jq7M=aL94^*5Tp7W()N-PVwsNzsGYpfy@U4GFC?VGWm=k&PWjY| znYWLtc;|vS|46DMLXpduaT-jsZ$i)`ga&MFp49~jTV*GUPjT{2y9mU3gf zeBZJkP(T>sz%>K9i4n&|1_HzrKKG*{TpPuwF=w%2*=xq>;&Ygv_X#xSc3>6is8OUc zTD7nu7@NNee(Sk4{k$V6M`I*ILsKKW!qsNUepy>H%|sKbHK?1Y=%X3Igy!ostIw9x zX$zA0EvAA6{svyU7|RKk>{R+CTpXr@5>gp$`BL^bgz~ea+DUrl97%!C@+K=Z+ECLE zgByvYb-va&C}!*$2xH`1!y`N}ktf}SEX6T?^HTU|t*w(;znPo1(q`tnt}=8VuXGr& zMh0;Bv#N%vT}}{z3f~C{vqnsyCVSXdc#(nrp{}q`A_mo3Wr^+2)aB3l9q+ZODcya_ zM-lj}O?!y7Ji5m3c5?Ofe?HQ=cRFmp=+Sz+RAR%rn<7^ZobP`gCj#BFKzcbFRzYo*?dsjVk^xMhFV}Da(BOuUNDbSGK7)L$#IxtLE~-d z^~K)U*1jgFBSSUC=YZ&ZSRbrrIqRm)2>)w|L`c$m*7F}*MO-$u&FSL6w@0@7A*w{s>b;dW!D6HYN&yTgAT&OSrd!C~ z-F(kk+B4sYuYfcTr?O;0p53IEP7`E@#`T|=40?XC5!b|+1@7%Uz1$0{=w`=ug&jC? zGNM@bZN9l5c+aoui^Xz&CsBaxJz-cfY3w=6!enWsYW1cN3ksLf*OyW;-Qr)2@@+c@_l2NaFQYS;1G$7O>Ut zV6ezd(CrBDRCp?4^&!58c$b|a=m}Wt%Pha{M`lxRle>cgV{>yp&lT?#u*8$i@xovI zZxgba8=lZEe}uqN9|J6=tuU<7oo#`k%)jYJukq)6D8#(A1hhdh8xh z6}%U#3b!6wG#5S<@d@Jg#qUllXS(i zS3#sl;DI&}V_42x)Z^=kG!`6r&r=$|kRg6SjnI9No;fB)I^N5IsLE^+1hrDh=3dK7 zt-A4uy=?PZ$aJls?XIb)9(~KoeZZo^BOX9^gYQ1ZBMLCDwG6_t+L1mIis7}(TyNtJ~rh<9khIN2do`f z(#eoS_s#u35DI+sO3o+n3F+E+jA#%0$1eJ%hQdqRo{8#s^g|@v3*BiFS9~b5fC)Ct zxqHWomDD{-=`$3I?B#zz;RZ)H;sn>x6@>wkqyFsZd>>q461ma$gg0IH5vV0n1seqd zNlyZ{NNb@?5$vGi*>y}OX;+}WB+xw-5O zzY7wKrgq{`E#bHI0NSM?`p9Pcz*KWIy4W`dGF!_7v@r8wemrEgU*ivbA~gd1B!0`j z=bTSe!H70&T=C^=J+G6+${6N!{2ddewFkO_->kADb^A38wG@jsRq-IJawtWvMWSI1 zkKG&Rl!_H?ofq)J?v-w)33>xdOjSR!(&w*r_3^0>iV1zY znKQcTtK&J(&+yN*_*Y0Hb3ESP=W6exPEF50OJ}`MqpRxbT^rUIQtZSar^U%mo{)9u zLWLsql9RBHJy)aBr{!wb@YyQ@GvC%aZn$=S<B&Xwy7?5j#nHx-RAM>l=`+U9lQ?(mDNO=Fr* z5ak|puCG>KR~NuiLU(T`2qg`FZ5FwVwQF4;4udsV13^gL%K#Y1j#hDfX_(c=AL2PP z45CSacVGmJzAfF*_#n(Ynf z^7(X}HT53Tc&e=6_WSn+y)dS_gIAD+#RK^90o!skg{5~#A++{+&j_WP`LpZlEcvW# zjPKfXXqMo!ZW+;0DFyGCRB8Fi+=UbfStc=Hf0)frFfm|HdlK0b`hI=BHbzVbI*{&< z>jdGrlB<{)T9de0Zv)><@w2f=3DZJnxwo%1&Z%ERu205q=wZps`!+M7RZgRe0vmmA zl@9D5GW?xBM*vsR9a*=y9-)0VAwf@r-BfX!KIVHnWL9fz#yogmC4^q(N*56PSdGdH zvF8dN?XYh4W!V^QEhdKp>T(c&G!K6 z2rMUth*qESM?6cH-#}m_a!ScN+TcUFoRC=L#O&ar`?0s5Tqj;9>Uif{SldgQ!LI&s zolO)h%H_~uW%LLsH45a;-Dlg|Ya8m=Okami_Pt3*T@Z5}ewjV6vIFxPTsGpd!Q7tX%6(;7{^ zK}R}ATJhq& zp|5z}_V9dKpMeaQ2lSbk;ZH4KB;1HyrLGo+XU2i-Q^Ci=v*QvNc{8{~-^NJ{Z5F`< z6cu>|JrK&0RrpC4E=nE@v-s+WD7Y~@#$KfQ&_6g=#Vq9k?AMi0L5*8-jqT}FoV3R> z1KXH2LdmB{ah1O4k!F=y0R~{U1+Sua7@k6d4DvA7cGUG~OZ!EZBJw(@WW-|j8rHdU zbxr|P!@$azf3Kdriq*KDW;>i!Oa6vt8{BtRFR-)rjFuH^x5&4#V{dTAK~DluN-UjZ zO-DQ@2#zrbpG+#>7e+K^weV(q<%~v1`dhfK{8mRQCRpE@lrUK}Qy##qx@>sL4pi)v zR<(C^R*`BpUrOO^(E;&uH6n_hgS8w$K)P`>RDbr`;`L^DIuj7harcr>5J(B|_!$;_ z^VeZ#(ai>d-)?%ir4oVkhv6@;z9J*19LD5Co!*>gTfRT7-Dm&|q2~amM^o3Px=*ZM zyR>KkL;4Y>R19_-0M8jx2L?m!>pqTKv3utKT5^qwSqD9#JkBwxIS2>CB1Ad-UR-oF zO!B8?K(S%da5PKQC)Y9fv!!F7ar}$tRM2!iF%KonOB1lzMa*DYFnO=HGT9PKn|~n* zPP2_VQ9I9u7h3jQ=@tkj(Dc}<)qjT!+M3Er>`TTlQLYN@*PF|l{&_*moUi4hAf#pI z4m_FnUzF~sP?D@k#|EC4$o{O9b zewTe7Yhg$Ss^SftIJFo9Kp4FWUf1(vA(}U?$4v;k@G}P7g{3Hhu8~&a$5DAh3jZ<9 zTW{($n!m(6Qt5$=_Kj4@>^2}A{pTtlPv*bg`c-l%4lZ{CXd`EYnd=zqF^}SAS37Di zVR&!YW-VUM13w2NV807f1z<;R;E**fFf9ejFq8{@R$-CTr4*X;eKq5y*2ek7^;lEl zj#8o$nUk@5VC=LaN834Q->D{P4as&C(@vhR`>U`dX?E^NPrOULBswVxN*i8K)`TH1 z|B?jEVVp3XBhImJfwQ2r4ad*CdtBfTdq$%QFVzC*?UR83;g8%{H#77;Z}dKUE4)M- z1O)UB=B&Hy-}n7(Pg!^ZikhEHu!psr?6}w2LHTjOVs;)w3TDBQEP;t%I^90nXTY?Y zhr+hZM;!kD*Fk^$#V_<*!7*$We&K<|%1_goQw%2bn{}o*<7>0M4^J85oY<}iUSGes z;S=k)F45Dz^>`nzWlvrIQ;!GC%GLvT-PWrEC}derY-@%JkDrfu%L+ytRuxx0att=} zO~ioeDu0xpIl6fDugJIX)327M9b#@I1H;4}16CHs>{gUVq?FNMmV{m~P+Wy_&{b4RM9_ z5}A;3{JHm8MzzEH2qxGQf1-k>|7V;BZpplZe4;m4r72^xU}-g5X35c=iE^Fap3*CW zC=-NfhqFS;f0eoL%0d*P))6djkmlyYH)tJq_?5#C+dIznZ${R z1ydvjgz`yX*I9Jn3JQhTS|`$OUe5dEi-2Z#p$11h#3GoMGFi53Jw=;`%vZ0I6u{0o zUu;NE!K*6&^A7)cs|KUlGh&v(NdX(4qMDrY0ej&>p_o0Qy4Ek_{BicY*z`EdZQ!U) zC$lYmD7zUqLJk0~H$lp}^tbZ;gU?KL+mcd0xqpS%9S19WaFHHBzU2tcv|RtCAk)B= zyJsdE%6XPZRF4X}+jFxi=Y+958n^PC|leexn=B1;>TfYfI`KbBX?k{LY1T$r!L3!A_-CZ&| z$1?`xAB>fv{Z^Vx4N+$+y4e54>43SSMbjr=2I3UDdWgIC!}F#unje2|PAF7?y-JgK zh(UVZZXnxUj(Om=8Q(>dOW85U+Y1a_YM^T%%(X&n-=DF4*uvk*XW5kOVucq!PXplG z3GozKdj8u?N`>5hh){dAxpkOaaw`PLCwqipX>d(ehA{`_IZ&c7o+#>nZk|!+ZvoF@ zG9P)>Tar}ljn1khiqM=^X13N(>;H|xSdgw5klX2XLWOv4Y|xd;A^8Ew6EXyMjNb5HL&a9-}_=@{_V2!L!iM~1Z1cj+UE3?3_%Ov;9qZ#WFT)S zUSvq{DJCEEK@${}C-T7#=9I;JW!UHmZg<;XwPEDMKc44s-Lx!P1~GdLOFiS(SHr}Y5F1)dvTY5Y1r z178yF7ksDT8-tynVqT;)nTkrXVqRQ}4AFI#=(Ex2<;I%LGS`zaGT2lYWucnjSrT3)j8#Gf zgJdo4zWZ{pc93q;6PgQRM59@Naw>VkG+93-_@>ccAKsuF;9=FYXIjeIUoE4}b<;~f zb*GyQM%NG^tw{IT8r2^bb(7Bd<8Fpqxl7Nk_?g$lE^+_^elYccajR{(;fb(J0|R_B z?*b_2=}ZZ$wnm$D)04mhv6IHSOAzl2HAWO54;}`vgvulZ(smVm%Q}obrk<``f)>LfmwuwP)3p#R`ZgfV0jtUB`UJ@ zgFmKIR>T-`M#2jhQ{3QwtoAzJ9CX)iFN*&!#IWYB%3yOk6Iwno#o~GHD(%CRgC2e> zFLfW#QR!E$;1!XRqUZO{mLXl@0Gz4MbaDdH(KDg42^GkXIhj&Oww8(%HreYES87O^ z-nAb=>LX<)Cn?;2Q*{9?Vz)a|O`kjWYozF0Xo3P&(iIR(5gZGl9o7iNr+E+~LJY&$ z3zLe70MOhj-u;iVe0XkZ_PevMxAMb+#kG>F}i?=rmD8CN3llJV$VI)Z>!y&IB_0p z@12v1CQIRw%&<{Cz(J{s#tiAvlTp6-0D7&_-WV6*CDO-Arx@xDsAkSM*gV^q`3m|| zI3WEfjtwxWg*|wHQSFJ;}L|V11%EO$;^@Pb?;ILJ5jKJOJZKPfm)h$7} z>}zY@%L#IJtA`j=hOLmUYTiR*Yf9Iiz9iSMD!%@#L;Lp8_4)nqJ^>l|p#yjo>-clo z|0$8RTu!(h?o11RCVWpno+ND-IP~FrJY8`3<~sVx%%leDq??c2_JBs3e_F5Fe~+4X zxSG6XglGGPX92q=m@Z65=BQ!zzo|6osC?F5z+}5|CON;|-urD)D&nJj^M%{fN$nqB zJDeZM>b|jlsh4oUSE{8q(dvcsg)f7TuQm=PSk@EDZ;W%D805#3(oXgt1ZgzEhOL!C zUb{zrEu;3gZQuTxx9EHUL%qZA8raWu!gko8o}drk_Y2a{fu-HTKMbusSRa~g1Rwl$ zNR>AKO7Ir5-u(U8yw}T{7h$>eHwe!)?|p)rn`5+lzrmf2dl=f{Bn9g?fn^ZDt&QgzYmX)sFPjdk z6EeyGag2NnYpXr0OW27Xc}{ByDuXn3uumAfB<9e;Wh;-j}KsZK^~g=;2v?K_W2rA-a2 zUve`zdUa$&Iif$m#_%-5SEDp$hrcvwP69CxxQYy{)CNpeVs|d>ON(v$hWs*+-Hc%G z2E+XcxoD1-+Ep@PkUP&_LIMxs&?gddxyK;ct(8faDqvFW2PT%wqnb~kx<~p4ud1Y5 z^}Z~@z|Cnd&hL{Q$%eE)XARJYG1tX6z@a~Fq*E`D?*|vHe09^g&w2)gLoAITolEch zm>ofusIntCNORVGXP=^OYqkb3&+n2bmG|h}C&`nj%dKdt$zVEoP!V-bFrC%1CYO|+ zYNtELlLF5(6Xb@5be|&|ZLU#tPFS&LA-STB3DOC`&tR zR-q1>*a~45by&}xI{$38b|}H|JtxBL6&PUbsIep5en<9l?4D8Pxy;6R!mHLaE_WtS zHli@jF<>Cy^FxV2zHGnWrkz16`d>X&Lnr)7HY((>aXeweg&v+LHwJ7;W)~ertHZ2& zXUsfPGpdR9u%V&LPpCNa(wq=r?wAdVWg4{8`WXCml~w_PjXy7LZrbe=la=)yy6yDv z8?a{@Y_u_c)34wc-bTjvt?&H36IW~*vXanI0ckId*8kTfs@`ZXd&~03>ZJqVa_RgH=*6pqgz+6``AW_ZN z!h+J~^s^TZ{sw&<<+QhrtLz%xJzcZ02#rVrE&Zj0K^l-Tt-YYJ7E6qULHS496f{EF zR+jE7-$SoC-_4T!^dQPExL58J@Qb8U!OWjvD-Ac!d2Jy*W!+J|6pED%oZ%!1y%Krb zB^*X;{U1}~$8)-%a2|wQ|CqDME!od1dSn?~TTlGcT01IqS8l$vUfxa_A>RzSVB0Dq zTQR%z53$*zK{H0C!d3fJ9YRT0i=|83kjdaliGbFP@~CF%>o$)hsLFVwH|psp_q0ks zUn;-gTjA>2_Ls{7&UtL~kHpxg{5P7XcB9gyQ@y3HmKP1go2hT!@16lR_$&7vd^=|r zUyPkiCktFC-fj3=^ebL@OE~Wn@laxp92C4C8)@e|0nEO?~GyX|#dIUhh zAhUL%%;f5MprvW5_!aNQhcAE~DWU>^b0^QXwyfb-n+^5uNi=Jn-Y>A%Jl9!622#ym zvt{}nXv6)z#6NLOc`Yb9#4O5=NNE#9I{sB~ZyviLb_KJ1Lzb{{G2{tj+mVr=|G7}@ zjG#Z*Z&v+81z!NUyKYDMqkg%@&Q4rSMDh${8 z2zhIw?z0q`YkbEWy?Uidm`fOgOw-|fJ4>5gg+w3YNvj>HS?zcob<#%uIx=qT7t|PN z3!9#qNpCb2Sj2uw4=7ni=6==u_&jAn_)f3V%>h%Ci##%zj&$*NV%ylaRx`-?{v4zN z9jrl>_-@XOjGh|{Zm>YPOA0o|&L-~3Ry4me8lU9?_*-WaF(Y7f7H@w_0oIBJv)M6L zg$9~?oFk&2*DFUXBNw)A(H$ zR>bj($j)B-&c0fIxbkjPkMb3bOfLErtjr}%(dNX z92BK=N+&mo8~-8R5~qzl^kAVVrXM+nC>>#zMZgPZPvI3IaCdPN=KePp8~he2L$H|v zf0VQCA5F`lBCl*gl!T7Kj`BZR_sg9~x7;HM+|BI8iuCd^Lo4>BnVk!9u!MzU?^CT; zcv^8j1z8UP3y}?&yuex^&hiInmCj?qM0hln)&WkwFn`{<^unT6sQeoMh4n5J$y3Zd ztD{c%6yEf4^CSisbOf7D$D(U--(xuhSPe}wrFUb*W(sPLW4 zOp2o9z8z6W#mbdQ(eCfxN~GhFsZoj)z5PO+^m;u`*5Ir!@O=;jw_7^v_Etn#5#jQ6 zHTSHc`n`=mQR+AK1r~l;A_i`_yNPi+@ssg4Q3SmR#XiGU2IE z_hqe+QPlNlk(yP#C!=`z0CIRTv(6|=Y0AN~5Yn>cGgiOnBKpp_c6e_Ma550bb=JeO z5AXkTAWdM}{g-EcWFVYL(CL~4&y_g+4knoNs*I_oI?3ra*MNLLPGJn==FD=xkWc4W zQE{a!T}l39$gXw0E8hm#GC2J_1$0l7lJgfCUmD{5_$YbrfPR^K;N_{hI(ZOperYwN z&I57Xm8cC^0rF=B1_Q%TrzMiRN~|{P?%;naSPoXs>?x7beFvMBZW`h`g1?SW2Z^A~ z^X(x?2j?6uZf^RlI5gN|V|Loa(_H#a;x{qESdk)oX868$+U9%t8Sr{~;5thyH8X{n z7ugn8y}dqe-7KrxO`lKzf=Ai*1DuW4+F#ZOjyI+mxA?@IECTmoe4%Jk7-f%lyeT%& z?N6-M+J!_I>hw^6!IR!dXVKtu7a3sdSto5u?6%ebC|InR(?)JlTk4D!cCXKx_KPc& znX<%<*Nxh4loQ6Y7xEqn;#V8V8G5Tr8)8ruX(9mPWud|6{^!j*pO?j4M~vp6Tq6OL zRntKlq&cUs<~_j`b!=6yIip4dES$8ChXM6ZbmV+8_{y>uSnGHzctL!P``d{{Q|C`2 z>_^0lA?uOFZ;AKh&s&aI1AZGT+AljsB_&lcH&E(ZUv z^r(mfb0`My`RBk!PEnI+4R{)vvKf9F>)l!H4WSH-km1kBgw zMuTb`P!c87a+a3mSpj|SyoJ2IhI4 zIA}-%{*hPEFv&{ z_s54RZJcCmG?)F2_D&TFFDAoFDs8Eip;Q<%k6FE=Lr&#Zao(d_d+kw;v@CN>?9Ka* zF701u&fR1j?lDT-=k(jTLV*;@yh-e)%TC@i^H25}rf<+$t+&&L@$$?BymeNN=57Xv z*Tt>wDc%Qu{G02~m?AEVi-mzYVsnF|ri0R~=4{C%@*@d&C zZiZrmS;}FhJ5MxE*?(-nMs>|tcQo4Yjw8P$=FW$oHw^s{Nj&Z`sQKGwyqqIKiU5+u z%%haSip_nG$W1(BSYmCxFK^6v5E>;P5mlkv23L+Lo*RC=`Y@{<>3c#fq_6g0Te4xi z8%N|t*?{HUf6mKl1(YktZI*HAc>0(08q#BK=8yHO+=->Kb_Oe-V8t(}!a*{Q-|;_R zx3WuBl8S0`jA;0{UH5N%gdKcx=KRw+8NNpN^%u-&`VHH|rnOD&Y3;6hCXNY?OWPVx z51y;Y2(l9ygm~UJo}w8;)=>k`)=2uVa(J+7can`F=AH|Qzt6do2@pORk_#ii`qc}) z)OSspQ~{Vsk!*cBV!~lPp#LPB%T1Ul=)V8+P~7cvIMB5-+8_&;?nvDchRIA@D)d08 zf8Q^G?4iv%nGRCpAj>XB#jkRYur`6p5)odJKFWcVB*UW|YENMmBfneZYiXT!k4eV# zyxn}37g@!GJ_!V}+*n9%M62q+Bb-L0OIj(c83N$K`05uJAFDd;Vv9hRr$T5IbW(Ni zhj+#Ly6V^Vddc58a-2Cvy;{#vBw7Mv%^4q$mn(1k&ZDBFuZC-2um)} z9unzhVq1Y@`IqSDPRng%M0J}tlbL{EGiT-DxmoRK{~T6Ae>3ZRoXp`~K|F$;&~&OO(@E{gHqUMQ^7IH4@YPA<{z+lv{&^u93_G%uTj<1aowU5WrFc-dsl{VIzP1%g`yIW$Yj7L8Q@6FA9e)M>64R67M*fT) z%*e_5o)SiZ-ji7kMtpTA*;!xN_GKDgk9fn^tNJ(iKO<1n zuNg#tex}baIc>?0Ffp_;1ZpcWUpQEZsS=F=vB7JGpAiNbPY>q7mMB&y82^h2 z_2$c>$mNbkqL5584{%q(N*V(V>ETok$il%$7gOVwdJ@g&v`)gh85`puH0Fmy7&%F@ z;Nmr;HR+LH>D@4%A6Y zc_}R8l`HaI^~Rt^uObQ*IlvBhytfNwHk1y!4H?Pxo~^vj&_Y>({3pgmJtJiEI2rQ> zkd;>J9`RLr;gXxJPUq^KI6#Y3tt%V||L<*l9S7n18N+6?I6&YbwK;24p+llY9>_`- z*o+zj)*`2c>k!^JPR9DQYh8^ca*>a~enS!G5tX{`&4M7hXtoCByC)5cZ{1HGOk;w9 ze7G0CGZ)OUen604Mwjm$$D8rTZa)RG$+3Y(D$Wu z^#8IpR>eC1*pOxD9wrP3Hn&|C?ifBLo6gt^z$zz4H^wYeH(aeyvXMIbL+js@#(k9Q zMCwP-zx)sqB$$^jjG6J|o)~1(uZkCFKfYLsR%lhm6+Z+hjforN06$wMsCJ%wdZ1Wx zu?DfbbZliunsY5v`bYjtARBtmtB14EQ`P4t^sAWqSDngf1#T|Z#*^vuEWbB!V8Kfc zy4(T(Q0WI+jfKz8m3qK_Y$cnyjukwC>LmBlR1h8)vRv=nnG12z-2La{D7r?S(%vQ} zQ_;l0QVTevlzlsLbyq^3H6@=c_2UXp0g{%2*I9nG_mL5v^Jbx z4m9>&vEn7&=LJd=Tv=7-W=$lXj4@OEr$I81>-swLGerP z0bF3gNj}YtAi)m$1?7cS3T3mjl7FRq&j$wq=G@nuNeairm?WHqn+TZz47` z7jk5YFP%4TN8J>pDDvVAbIFYTWABy49?BTp^{`!q8EqJ+gD*4aMB?IylTg+hR?G{9 z$uT_~Eb#myxpA9QyJ;K*5TJOJ>@n*XM_IL|x;%;m0dQYAVaui{RvrI>62(fnQ+d%! zNVu&q+7QN_5OnD)Oy?#L$a?3(O$S-(WPWdK9bruv=Y@lR?^WLgY+fWN-35GVzm@Og ziM+ZfhTeW-UXSBn=yR}=?cD$o$m~GOg4QGfp}fF?)PR`?OfUbe4$ue&3y`B40JjHM z1I7Xm=>vU<)Rg?`l=uumYq#O$JPW}AEB%aqCluv#QiGDhNK_+Az_b{|d zXx!&-ga!r(!?gGPqa|<1+u2?kUyg_wYP@w}Fc!+3lNR#Mkvu~7TGFECj4Q|R&9%mI zI9+O3I`pH^NeAnv_tPkJ#Y5c-LgT3|)s6+PWgfYX%c2qk>c^4SZNDgdD4iM8=1l2{ zu#V7p`jsU73Y~_{Hi{5^EuUX>$Gpx~8iid96G!xhZKbdoqT-l!Oc2bJzmMvBQ9_wr z*7gex$l@f1!mroS6hz9>b`0YVws`rPSUr(FIrT(sO@=*nW;n`nwRZRAL#VG|^YFY$ zm##r(XIstR(`g{!qm6C;msUt?kTjMg!(f%OUY4EH{#O))F26*DSmC5Gi>kL9F+C-x zO7;8CG3n*rS9-9((H%t8z?Br>!J)q%!lRa9#S#qUVy1(Ms7PB3^7o8~URi~CQ&u&> zeYTz?aw%Fs-n{#Am*fJ@!rfZyn90v_@$*hSd5>KLY@P6V(;FB3n$c!mCFPWggLory zvkK)vM7qkr`Y=YIAfGv#vNe6H1a)dxzm7lthfzw|OUv5$2?hS{a=~r;j1+^L2 zq`6rB`0()J6Q&JVuR65LKk&PWFQSb|6XYfUwdB3J7EhfH@c!ZEYmdc)>}8f7iH{+^0-A?-GfDZwb&m;stENM}yL)5L(lh4yfm-`z z1wKcfrLHL&(@msGsN*>SVSY#GRQ+&K2vH++rUxtM`MXT-Ze;dJy`;&UMfZU6$!D2< z%3Or&btVdQ?&;gHLK|{VDVHjm(`SBWaqY%DcSfv*HoX1IDkppJjpTG-Na_;57Qr$! zIP=}AS{v){gLr7t$Oofc#}%6j_UC;% zYXP3teb@(UPZFOjP7k&E4u=+ry#E9&HJ;O2Hu_!97$%QTTIGJRF51-`?E(RnIo8K z3nq1XG=Pj`($O9E2qhZZN-lhU4Pf&i5IB9I&)indy#DY45KNubK|ypcTK?(RDeZD; zKd5sG%$v4#@F~v?*Gje!aYi)qCp)2u2KJ7|TewyWK%ztfR)1-mv=* zUj~B-&2;185Ls7@hq7+;t@-cZ-gVcFpwcV!u}s_Kb+&Cvc3swel2<= z&he{en!RsKMdQYFiyha7vayz?XzPny1p(CW>8T$U?9Fp9@?s^(L-ELlpm~AFqiFww zlcot`b!_=nvsL+4GC2a9Aq+(?waJw)Z>@5ffbTYodP|cNF_KygqA96YHGK-bF9F08 z&irv;#G@1L7LNmC5GUsP%w@C8sNXLXH@!1!8@)dkVURi?2&Yu-i?9MFB6(X(CT5%U zO@>jnG-Em-mTB)k1R56&WnQKWxH!2pMdpN+?!AE2>o|NyS^{RA(%1U#4{70{uE2V6 z89+G(b1q{@mD*UFbpXZ!0Dvv&AGooXCi&wq1?+p(R+wj2=d?qUEkW-fGbpF-xzfoa zQrQGNQ0GOg?$uWSD=>mK8#Dx&AEZI*ZSz_j{Dj&t7O#}J)DS3>1bVJeO`WoO;xj1H zFNEfWxO@ZmW_QAzb5nCTp!8=-8?t%&H+AyXxN}?gDOs7ODY@}}YZ~arO-h@z;{5s? z#qdFK2ZQa~B_agXcKAqA)5H)i zPWt*C56cqZ($jh9X8~`{ZZ~0!MhjfHU^zz17mrR4qjqWgGitT5p&Yk*rOodOkCg3XO4}EYl$s60n>NlPeRHPkdp<ss{ChdzxK>j^LHJYsj6p7e$sKP zOT+k&AJ09KQM`9o!d+b*6g_sXndd$izis_^M%W8&rTFtPD{PcDP~Dg@v;QA6<8wu) zs`Ri@V{;gfqTOdZ>%VjEJ3Hqt?6K_>dhq=G+K{Y?*{NA+Zzz26CpF9MnT=h3gn)X<_6da4NbTT2Ym4kNf^n_y0sxa*X6WY;sWGT^ott7{w2=@)hN1i7) z{Rc)*@6tl73>luE&*#A?r%86vj;7%!EZ~4RFOb{u40EZ=a)pAevAeRN249n*9QFyT*H`;Ml})M_nwbKxt8gNOwccvWBU zOU(#*@AQkWSA+?@`5sU_BZ&){ll3dJXC#Q@LcR$75un#e<(3KC8UO&39EsVCAs#}M1>xxILv^e*ihsVCt$aAE zywf+pZ)bz&Zuz5%Edi;Y8&oMyOy?cL+nvUB8yC`2o{Aua68zCg_}omtl7PiNJ;QI= zj7dGQi-$YFwDcce12d3g+f8Nfs|Cu$ZnHp;T6m4`zzg#p|eI(V^o^0ROguA~>@oP$-Y*AH1BO|}zu?qWR zq4)Nk93JT>PEtfNY@v;$M9xNV+VFvz07R8*6QJC(F1ZbeK^J4T2M;qU47`>rHq zmS;Y{m%N7Ct|3)(GJHtb(vZ9>{(xaPS3Yq5?v2BSs;lm@!dAE9mGtGGq{J(v|cwdeL^Z`YEGsr*m4V%-4L+~<+xtpr7P zj9l9Xx()DznC-ro)Ef&#JX$*l8Nt4ay|0{RYqh6bM{i+i=MMD!ZcX5U^gD&z-Pcs= zM+M#8zrowaw7exd5b;7GlIKpjvU51mt#ac6se~7OW=jPQW#N!Z}$M7OS^ z!QlTQefbN zUBJy`XR%0UkZ?V0>q=;PjT0&umV5;mJ4!8~#{AgeVlNTw65mg5d~YcydRsGLmLJG_ zesSZ6rxrno`TNB{iZQ)`G})!&qzcAMt57Ou*m3=%XZy@+oh$Ai>nyh_Sc{R> z-r0AD@=wja7a=%`7KvrgKWjX#mmZ&06|Pnu7!7XqPii{63|&N?(vK2e#@gj%5sXv( zs{5&wVV@J%odWQmekS~DtaO=#u?`-}{AkPmJnz(1;es_&ksC@TZ(%1^a*-SxB9rHs zaTLHy0IOM%HpKFB9&pQMhtC(4vBNwR}J&CU8htgGWrJ?0oJ-^(l=gQIj$ix3S8uDbY zZQn(G#2WoI5?aC7xH+ldq4#mkiW&dyjk9yWAh4&BvN<+G)?T+t(>Y8x=xknHsU5Rf zzYy2U86`8vf7i)RBs|>s?$n5WgrGt#6XQ!aiK&1`B zBQ5-KN%THrt07Y>-tLWM3h-iN>rW|;rHf#l>j3fYJX``#r+qTX5cpkM{)~h0cXpR0 zTK{Oa%<7S=V9%>S;4h0A9XDm?PY(^b>sKhd3-wSXVAIitJvzziwTAeer-HQ!?nMpq zi>{97q_nPAAnBaWwqKDtHaqoco8(?Ko@=08y}Y~*j!wIsso`Irbv21$L%818-mLo1 zVK@~a+65~`A@aszpdw6rBn)WSV@u6H=VW>TV$gO$eHvpXy4)v9sdEC&wq0?6gGQ=c z4+-(5dyL<$)V_Yd<7T|L#VZKmQ1I|CSWG5i&XE3?iFh<$jRP=4k zHQTt$r6j*wIgf)Hj-XuwpYhK_QFg=Qt=aR)vig~CLtb37!K3CS<~tHlEflV0rmOet zSOLaYpoH~Gi`+@<2k9Y^ynvC0!W^BD^QuN-D4M z!An3cSDvb&e!2tz64ynqZ|(lB5TzcgOl5Vl-YNOzfz!JgnK8Q_!~CWNGGymN3d9P; za>2L&sPadkX+c@i3_$d_vS3%3s`rETHr}`M_E4-!y1$hv+BhhOJ==EP0r+S+v77l< zc1hetoq6X}@V5G3PFrpfC^cBq9Y`@9dq_$5Q@xl(B#*>?_;oUmhr(S9#d6IHkW|A~ zTrFLq-sQs?mpx%ymp+la!ql;upnT0S`^MeMTs*E6OtuS2m2EiJt7EO5+?#&0FF4fS z?^Il89HRo@I~L7YULg6-uV8nEcGYQNQ#U3;i2T1h{-;H6$-a7yl8!24-FC6`P+&}K z(Z=e<0gE}NC~CMf%0oHSO2H-De-e(Pph@vR<}Qg->{!Oy#Jtsf=5@CFN}O+Xq!815 z9B6~4eGcfN3P_!f0>Y0e+1csN*1NjW<{tqAui%zUa>3)8?r9zXLOM>^Oe_5SNxLy^ z(J1pD*OA%l7WJJ0kyY%d9Zl}K)anJq*5SL12-Devalb<|#SuR-eDlU6C6vua?8FE( zv(jd1x-BYKdS!xfmn|`&RY&JoOAJN%$WK1fv=(O0X30qjERk3)FvW{mz&uU!7$daE zZJ2np>W#esk-`XUId_@Yo!L3Lpe9>*&=r)=n>@+wq$$Nf??*tPQ7Ve-RSeVtmA{2s zzypnx0ymrIjd-mc3s3~K{kml{5+P;w_ml*Q+pSWSnTZS zkmoy_j@4peJ=87`C4mbW_K;M+>h`1@I;JunLATUbo^(uD{{jvE zO{@ItR9?-`#i3$d_!WL)`|iSje%ISVu)|<@;F%5T0y(AN_SIa)oh2R#;9+BF4h7)9 zXS7+~95rt?Oiplw$iWm%h4HQ_0k&PuSMh?#|1aotCO zFSr7n6&`2jD|_;qyoDaY2WZ4KOjWywt?SEuIgm|PrTYgcJhsi`90(kX&GW6V+D?GZ zLxG~I;_sxWUl|*>76$x(WeB1jaV;HPy#uC6{N-Xv4G7-yc{Yj-IG zg;KQ;qwg`O9M)cLxfFyGqQRrdl{?bX<;c*+fC}j0Ukm)|W);qhqDFFDF+5LvKSKZ9 z#54T|o&Km;VoH<})|z!&XXDU9M}cul$v17OEFG~p&IkN*!Q{szM7map3r6=Y2e z7%q((Q$LZo@m|C*1g?xYnAf!7Kg9(I<*c8;BQ2_j?gZ{1~52)Z?WuWZ<@VeI zrYutV4ecGa1}8fle^IiC;Q%Sv$u6XOT%?K>MLr!(bF=3S%bOc+m$B0;@X!e+i zVc8>Ny%qeu~}asA=dN6Qw6yKFmS=H&I0 z2`|e`b{fzq>O$gE2~tR`cLQpwm0)1ZZMz}w5ab5 zWfgV+-X3Xo;2}07R_wd8JQ~%Z6&lQh~=q zNiSZr*TPi?F5NyzQ6_>lv`fVCtkVwyrf&$O`?=JuM;%|3kFuy(wEDBO@f~gspf4YO zZKt2eon=k>S3q{dBfS5o9(Xlcir7)qK01U|b`R{Jbd7x5dXBPmBEUZ>`AZ+-x zh;a}AKgtnK>tw|^#7-T}PNi;p^nMvTLYlRgA**u)veUJGYY#pdyJ!RMTYl;1;k}Qz8K>$Y9 zeEsLA#!^S~$8}AZYD#jM^%~p%g2=tM{4?~d#J($16A*r~`tDe+C4#heu%4xY{x)Ua zdByY9`wxKumVY{=5)O1wgnnmW;p!q^bh#JKP$u96cC(%b5Y&4+0zC`=6edvOvkZ5L zHIXzN89cI7{dd0CQRlGDmc5%5oR1oH0^U<~EE|2VhhPE@lI7dMnG!7aD$$xEW*%lG z`4`GaJZQ(JZ`$IL6PHA!==Dt=8_J?dkP{o#+_g@3Q?#~YhJ0SyBvre8TeyZ3@ zUrPAhm8w+rR@ab^rzx(<>5@Ua5c6I$4=?l5S;N`^`=7MA*+-i$E}_MF*ywQ=(zd<7{)6g} zKJ~xCk@gz)BFM1j6I=v@!0B~4*Y3{bHDl@|4k71Sjtd9D79heksCni|NGCdZra&xbD!_T&O#8C~bNtTn`(MI?^rC&4xOithb^_bx z@>C)1#c`lzzh?(_Ll=4)`(x$3B+i%Ej#Rrj?zyjiM9u1-8`UXTF2#1Rcb!7^TTL3L z^4BJwbeGSZ{65cyYuYSWuSs1t&5Q+zy=`o&+Go_kPY2F@bp-R|iQkWJcg;pv=_0`K zt@j8yvnmJ2vw(}|n^ELAO2ovkP%;9ZsMMx5;<+)|djAaZMHIq0U(n3$i!xjmv0W-M zoaz{KGVPt1k%NwCE4S7U_}erzFlGQp#RF{&*9(h6^5gpBzq&F_5tQamfnM&UEH7zB zvg=6u?#F-!667m@1NDe*KK}~pGv)iqGL)hx_ceA^#5W_}e>P0StSw4Ler4jk(a!lA zN}+-bd1^L`S*2Qq%*ZWfs%Ejfqo6W|#-;*bC5coz^=i6Zl=LE5Bs7)o2IS ztp*<#euOol_8FePcL>>$IW+3(YxWO2nb2yan!&{QBVrlXpr}ERm#mUa-|J&1e7_i? zs6&Na;b3$Kf|3tg2^-bRTHV9(>w{oejxkHXD4s3&lR*+U7l61GoVWa?eR#US8C)YF zBcF_j$k@$##KzB|8Q>A72EeR1fInRmERSV|e9Ar`&uyU6`y6VW{R#znrQIZpQ1$h^80N$|js^Ol%|-B{w~nX3Y2# zZLl>@lpZGGq^xrezdVd44%0I`M$XGjl(z*cBIu#u-N5l3^)eD58+iSt4a9w{{vrpC z6o?Mzz^NlbCP(pFA-uBW4jE!;dU<=`Gn+-JuVI0PM)lEw0X@|VU$>ove{>%Nuuar= zotH+qxsJpt&+}Cs$4IebLXN~^qjDoAJCjR{#Dn8)`o!7?%N2;Q)dEH`1w^0#AC(lS=~vg!==$jb2&gfAg) zxdM84_Ola8O4y3}w;GlWHFi@Qu~CK~j9j$hm^JqSF&s+QA^zpKp~yd+60zHi;8TEp z4%R0qGqALrd=54)%B*Y9F2Xf^0o&pwGcfGlxd3z@F-=X60a(v^;%)<}eF;suS`v=& zG5L$saarlw>24m7c?B}43KIhZ4CN6aXQDy*WAz0~yhHbFbMPrv3O|jYr7yqZYlR2= ziEkX7jX|LM4M0?b*={b9f>1)xU1?HyDnX}69Rc3o#PXmco%6&FG8MXAqq6WW=x#{5 zM52n-#7MW4!z^=r;)?XV+_z`99MM%(O9fBM6TzeoNio!Ja#}bJK2OjbX?+26B5t(w zGXr7e{s_x=HuGbg4_N=F1z3-S|6;v49J#)H$W;O4g+M!9(7cX6#PV`3>lXA@w}co7 zh!!>T7lxdC{IW@;d^8}x48vpA9-OO+F8rM)JYB;17G|bT2~)`(*YDXzf=|xox*R0m zoFL7^IBkhepj#*^mjI~C{lr!Uan)PqANenmc%J7(ng6@Gz(IY69THs%caIBalU+X2 z4R_DOhf=gAOu9_jgdO9_Fwxc;h|zU{U4Oz@Y$2zS%t^_T{;i7wJHfiN>}&!oGMIUAI9=GV@#8!HJlMs!k+c(yZ5HGj46Z%dkx+`_Fbn?<#f4G%vo6 z>RP`UCDdo`)CDrf$n7&_uUnJJ)cJfoqRCdwy2VM+c4UlN07nFqpXQbi~Hwf)pM5j=ta>pv26Q8&9pgmuMvb#Q}+@nbQ zzfe#@&*BnSU_x_!m;J_{H04Rp3fk&Ww$2c>4|%#=m9i~N+@<*OK0mu#!qbBDdo?HI zYMfqZm2pgRbPRU~Ygbp?+SJPd;H-edf7$j|>vA%g#1ohV{f>0eeK2|f8e|^D5!-aX z5<~qp!?P1qe)%z=li^!jhj@$wMJefRB+eV%@Fyl_S?FFgopZA%3(l&_=f@&!^)*DLr0Coyc7jnB1CT z6AIb#ucKuaW}4_6oQiYJ!93JLK?0W6sV?j70TNjE`&J9ZYQPgtK~+@bQ~nI zdwXq;4?}&u-O;X=jnMZM4V63Z#Js>xXX%FkKa?KTp3ohnepaI&z$hxJU9K1_My|2} zC5w1J^^{c)oZ-Q?Gjzq4Y)U=pq+I#v2hWZt>KT0Ahsi(tnF8TqocX7uvS5<`;Ng1_y4UU;1FJQWCJC!(9S3leL{ zpdT{@_k!n}^#^+L>*Y(AAiF)&&)W1_bUTBEo8A|{O<()DlKV(jes(E2GXSXQzk~r# zrbmf7xZW2nDptqcE}yIE{u_O+Gu7v~>gPLO28>FBTrJZ1!!(5!%CRkuU8gb}^GpXL z^`&?B-Q|I%*$CaZnZKKUOH7C!NB^XbHPPc-({?0##LYdt6QNeVJG!IbHjb4qoof5q za8FIX(O^YIzheK5dEI==x;jl5oN)XM{=G=Mv^=`C^w_h#`H!qe917IEHuhL2zm-P$ zAu2IJ)Pd=w)_JHA%TRd zynJ7crqmon){~IDhdt%Kk5Q{Ip|2NUk1kP*F|b|- zwrO7L_Lx4@uWLjo4+AHa+Dj}Otu!@lYAt9kaz^*8w#h0pFK0p*p2@jmE8Qz+s&)cn z#r399E%+fqSpB@=faurJoASZ6Ta_j4iTgh6FX87L7YNHO2gl`!aKVCLg@hf-80Gw$ zXbq>lO^-y|)6XKoqZ<k>P1F*!mPL#m{NmAYxnZjZ*iif;DOWwoqP1C^Dxo*wBM0$5?c>% zh5c5%%;J5tTXF1743Q1H2$0f@DM#+U{j&7YogbOJVn!p<`~^$)Y=6Z%<}%hNRuD%L zc@!h=)%9F3RIcgfo{JKUR$0l;rcd4uf7cxdX7G;ucA0mVtu^Ep-HL?gA96Y>U{2GG zJaQY-0BaMhZ!ILwL;O{c1}WIuo(((SU{&eaRjLHSP))CEh*4s3QduS)54bWCuGMuq za*cX-r?o!3% zkLtmc8TfsM@9#6|%xx{Q2QRR&NCDVs)L1EZpcLta7G@L<29*uuni5X^iVr`1pUp?LQGnus)@Tbf zUJ30>z?{s67GgTuPSt+DqyZ&4l0wTtHEqC23 zulF720o`DGD>!@a3Fff=%O7GjeV3#zJ61jxj%2YCWiN;B!kp0!Eu(=6^z6<0?Sajo ztGOcJ#9yb~Z$eKv(Ef_5?u=1YM2;*3NF{I*00r3I4`*Q7xSYgip{P>*dk%qw<4OP44{GGS=l^2uqeYZeuwa=NAXi)G` zJHwY?nFi9z^&`k7``qnGe=DUfj$twF#Cl91(yyp0i&d0c6YxiQhtSr}b z&aUd?!=`PHYOzcW2d-(x*fkBU-vtt#{X7I(z1-#F>{8D!xs+`tff>77vNrVC=>fxwE}Wy21r| zZ;-T$aswOhc&30T?NdB133y6}t8R}OKv<>b^_`t{?-fVG)*Zk+=or4YhKn(K62pO4 zHw|%#)D`y1?b0XP>%)81mcWC#M40hUG5>Wpx*12H=wl%Ly-@HdoWd_BG(C1Ryrlr< z1~`d0aWatfULB&}QLR5=>;&lyOkl`0@q%R<_3d_k2fru>T2pQ>;%_*R3%dCLLo~oq zRXO`Dif1@rO}}HM9F{jHCQ^^cHK({kXX9pE;^|S#<#hl78Gl1z?ejhnC)_u%oG;6Br^S*e*)m% z7yLF8xG_~-XZpmz$dy)D$BH^`RdNu+zS~UpIuv6??eeOmoB3nD0!BD%rz-0N=16#h z$v~mPPI;#z&+N7U1^b`h)Z#ko$KME)Z*GpGA^K$A3dm{&o<^WM@VAnj0y>mSU@3}+ zcE-qtT(eMUkiz#eHetOyfLp{HEP}rR6dUE4U--fDY+W2ddIl7l_!8Y#)PgZJFK+4i z9`q7hCtvkO#+XcwJ=Yjx5<72h!2q(@I;g?xR2+cewdZ0RH)TDtt*tdq# z7`xwV`UDRGV!j*7Y+=~oVY{%wt>B$RMZW*}swV5V4+0@a0F{RptCg*MLX#{AbTd=K z@)>$hD-Rvio8b1lBV44x(ZIw9%k`qTFxP2Gh*62<=p>EKbULa;7hU{uYN0sZx^;!W&lg@zXx25BT!6RV1)8H6E zU1$#pVGL#ZupSRYWo3GfjV^SIhRfxKiMO^lNtS2+oE-Y^tXFXsI(|@cOEv_)wOI_E zmv)HA-PMHjI|kgf#0tKjU$C>az%M1a?sVuuwW^L2B+BA_t2|e772v##Io}N?U~+?z z$R9ax5UgZbm6vht8TbxA539W+aAyy^EHn~$HtUemqVZBCIJK<%Y&XJ3>NZsq=mi_muwK-{Hif3U=tL}>|{dZxEp927v=0_g!dTZXqb zfPc=P$z4SO?KyoBfaralp2Hb4?kYoc^gn{ke;``b*jZ#Sc#}i30q21rm;*@X6MjcL z*JsyVv=}oM+(fx+s~p8n9&e4;Wm~*Q7c(uE_17zo+|X zigWh_2{L{7Tt{gG|6j<}-o074{GnztbYJ}4ZSOyxmBLjK!hl_fAwfc8Ic&QKxUadl_fiNScou9%hZumrmK(0N zb4A?STEeO@1 zorHs`SGQM0Dw)p5u2`)Mx1asHuo{$K$uM8-;awwUkVOIRDU#vh+Wn zag>@M`dKjGg3eI6rb;`i17S)!5Vb>?dQw)NEi~#TA8I`qCjX&gn4*&Y15&ASD3?5M zVp0Vf>M988(b{paI!iz1syJHu1_!H(L(Q!oCkRmoL83sq!LhbM%8?XDQ|rwODf}A! zk+76AVxl9V(6+Yb!;BL3!&ckQW{TFjlJsbIzW29G*G9R8`Aug(D}+Y@Z&k^eB$^fH zfTa)9!dK)EAncPc_RWn32u+-HN9I3UHmnFXJ~(e)1f@>c7h}^q0bn_LQbpA~1kSJp zfQ$fwBGiJ3n?Cu)O#MUbQS#Ix+Jjy%xhmJWnG@{Y?BPmLBp?F12Q^}`*X~^`VNoKD z^&687y8!ctted2caMSPBeXgWM=EmDzL7Ag#YQTJadqXQpyblK( z?kp~f4@n4ExWu)qZ>;RjcXyZ5FshE;S=(*kO_**k&T;gvpKc53X5aJg%*Au_69G_~L63Y8PBwbnx>stRHeF|je>naH76pe=brDYI@g=<&C*_Z-5(uhR^Zn2n z>Xm$~LGyA;iXYLlI&Bl1cj=giJm&N(mC+ozcW1hpX$o*NXk?WL93;Z7I~X%v?mrLz z66Bk}7&?tc;w{N^3bEX~I30*i_Y%TvU45FD?8uP_Y77 z2|LIOT@UOs(>A?+@0O$O5CcSEnV_r0P`O#33Tb@A<`*Y9!4`&Uf!}6nI$D2gJPJJ4 zR4wwh0f_Md!eF)?s~S0LfY|UX46m$yIRv~`!3*zRx3YJQ*@Olj3(BO`8A`WLB?EP2 z9C_oV0@Rv{;IH2#2Dd~avwHID> zGLJoh;jw_U+A)Z2oZ_oyF$M*Vy$Yw$BKYxcmxgo7W0AZbTdH z>{lt28wwYA{|9(roJRfThA?qXqcX&xDmS@1dz_=582fa=&z-s_SXDmg%8PFbOc556@z85Ydlm+a)> z&_P%-acse0m*FctEB6hDln*vsJ?UhG4${W#gc9$(~a-9KhUX*(j%xBLH`;|t64Vofhq9zXbk}lv=y`%|Fdheur|G(qBY}kiD&Y4Q?b^s zW&s35Bv-%J58Gw zU?tqZP3R{bptgdLBa8s4;{49^cSu#@pS8H<)G(*=EMGxgA{+c0d*hkMikWQ#R5@cK zFOgw6t`!>4&1&pcO}vz!_YJKoro;wW%JIyN(N-r)8lv_hI@_WnsBl$e2$u~F+VU%3 z*8!Ss;&XWRa>GfTemTSeT)3%u_J3+##}MaVn%Xx}L9V~a~(?>XW7%f2&-LOmdeDxQA+ZvrM-QNGosW> zbrxYDiwpLnUlKjIfFV4^&4QrNKR7~#UT(2IO1et-jWj5?dPR`~o#C=~wqW8qLG zHKT}%%sLTyiEW3HsSJOjg+BvkkKkXPxl7SovgitB3+Xg*50x_CxX5P4X^^|HJ~@C8 zNlZMcqwy0u`{*wOWCgo0qAngQ?P?8i@)MwQ%xwS-0h;nB#?PrjYQwj(&>&-`#}Jcb zXxq`?rZodX>Xq(gD()QdE9#tx(Bb)P8~KWJXH`^sRz(D!&|3(08Ct0Y^lD|<9JA?A zfnQTL4!9)ztfjc{fk7guD-c=xRNTpHus zX9|oX#Zn7TMBo`S0HSm5mDli`K2#S^*VZxm?p35?O?G$dX8smLH)&%tA6bn8vN6Vp zlT^+F4c7d5_g14s!~BPV;q$Tk;MgcyFgJV@axAOC!CmeRxNtu845hWRG1UMwU;_j$ zcS-&%FO5fj@G8_IP^!fR7vo5WKSrC2*im~?ZvuLfHm`?inCp|K?}Z%dLZ=Q|xdjWZ z6b|=tqEVcnkfQPJF9q(8uJ5)XPc0ebIqgOmbO)XT7C^Wtna(*g>D45oQ# z=TWL!W1B8*ma6?)VO8&1VkI_I%F05VeV##c{B~E`uxwGMuKER^ILr{UxD8W|k~Z%C zDpQ^oVM-&*45vrU1hDbSg|4ihgJ@~$R4ozs-&fREu6^V@0iznp^ zdQMLIe7aCirKe}-y-F&ZP6zd)vcE-Cf5ser{h+)3JC}&IcX}!d_3GO@et8Xh%k+oS zLHk|_tQ+!IgJ0aKdUyHMhQT`1Umq(wGqY@Ov&vqoc%pg$g4@(hmY8bnw0IAytZ~!Ni00zl^~+2E+-Lc61eR5VC3jv4pR; zRt=_vVBHPJLiNx3F5GLNpayQxzy0As^jl7%d&O0PbSN;H*1}|EJ*Pyg8-XeZ5Kve0Vt_&F6UzbYXY++G zfFE`15GmBmQa6>4pm&ZpD0mfyz;oJY8El>vgVxs!zAH4=k<*WXr~>@nJrM~dle_vo z_Yt?Ov9**JRZD;zDj9%qWAQXlB(7$G6_Xc$LJgrT2lEyB0L;Q*Em94s)e454bk`C6 zBb3fxpVD{97nV9>s}!<3TkAH@CaoFCBU!t4Q>+zhN!~<7o%6X#b(lWXQPzW&24uzm zX#wocoxkIol!HoTW#`4wtFJK(L@DjmoJgy^dLi;OfXaGF&w@m9U}FA(?U;i)hrM$< zTHG7QzP<@$JOI*8xo-Fl^rlxqXBFOOuOAsI)M+u}9}y~~RFo_8y6x}BOgiu>q!qZN zbr38D?O5+C3hLGk9%p>lMGqb%EA<|xLYt#Z2U8VVnCrOeAg-~FC9Jh zYl1!AoFE3EH6eKXukzydgvW{E#=vMw69KTIu}h)l_d4M*)8=#-J4)&o(W3tS)UXF+ zhd3NZmm$|`>sK}oN|8Pf2YWZPyT;9|se@gUB+|O6TY-ZtNP=p4mni?a!a6>tiY_m# z|K(uymDwTHk0_xm#?kfdWu#$r#nE=gCeuo-37e<>Uq$Ud`SViZeOBrh$7pxka2TkN z#*lwq0FMQ*eOsPU`8*up8Xa61E@29`7nswQ%nUBmLt{30lNf40YU+s`?@b8rW`#g2 zoqt~!q3w=`0(6brA=shcvZ!6(4Eqvu@RM7bHoBGunm?fE*TcK{(Zf#SynvS?w3tpe zS%1Sj&TkgR!R(OZl@8BMs0W3cAum&fgDG;E;1Lln8IN+#jgW4guwY;C62_0SFY2>g z=2600TH%!k#k^j=p_LygvG+IR_7<~K@856ah5Bw)*64l>E;>Ya#^&Xqlod;;7SgyjpQwc|^DX^Qm9mo4I}-Xg`&Q3_QEz;E%CDfCWu?_FAMPKW zSFU-sdgS6^7biieUvM>d^cg3*EQxa$@|YgC2eil{;6bm8poe!r_(#EO%o@=DDE};J zWu5&K5~4?snVm@o?q1S^9#cp(vP6gi=`*f%tr>_^$s6QBORuV&z_cC-@x@^^+S3SD1}BrF zk*}6o`%{m;>-Fe?K}gN&Qq#DjUFnWW;F+`|EC8t2VMl)If=jI=oM%DcS7|Z;*T_e` zn@%EHdPDbX8Z}o{Fl}D=I!f@6X}S>qZ$q%d@>;<(H#W!QOwhPMqogDqpT|ewgGDj=9}^;-`@`#9=kF@&(lOe zTz~&1aO*HC%qZHRNQ0a>+Ats);)xT(34dX^uE5iy=#QEig9^i$ORk5F(h*S8!}mw@ zcud|l(@pOSrU&JjQ|y(z3bU~JT9_jeAY6$}uZH~Mzdu@}e)C)74x_0mPPV(b(zC#L z%T5%&Li+7B-6%thRW>XuUa)5KG=ShUyBdh;6;k+4Q5ru7h*GFc-(K~HB{hhh(8yTT z!l>0ycq4T5B){dK02@1g?D$QMo+;8duO8e|JI6+3o7yY$-qD*mBjJfI1NuK*<7ltp zy_|Z^Kzv1~E>Me{v^~BZ1cKn|69w-N@0glkop%%x(VOA_o_JS{n*F4TN=cdHAkSWv z2

60ov2|O3pjpu+Gw_DgeKtmMfh;zEFK6C683FH!br|=ZrP{c-!>q`D{nCm2s*r z?DK(G=Hg*XW9g&(nHvIb341zy^X-mcosGjOYzFgIWi6VsoLR1;7fD`$Cn|n@zeb)z z81Wks9?zZ&=3#IP%l=2r^at9YZ8`K%e0e58n3nuySDcTu+)%lX69d%zvGdx^wXU7A ze|2juxPOlM8o`??sPDTDKHyzq4G0DNJS^nh@WN3nl5QCu0SgCYknW%ax_0O;5JSHS zxIL8UJ4L$22JoQzcI%*~9__y`|5ZMg{$u*ZypI-!VY(LlMOJ0y`+>1yG z%`xXAc^c+@2JZN^89iq5oXODKlWh+%9Di6M)~y)z>5D)?dIur%zI+ciAtcSlmii)o zrDM4;pjv(1X=*hNy84YBL=!d)&{Mmerl@f2%3U=P_?8|Rs4_bMJ0MwKVvtH!#f$4{!8l+Rg@6~gW6MjKGjtV!S@2AhR%)sujVM?6FfZ(-dh+cH>w9tq={5LrBXi!E{&ZrIc? z-&Q;U6~$?dUjKo02d_`50yRi9g8&(-d29U$4pw8Mc@yJ>QI zoKrgmmtYM)pV-wFSSdg(C{TLb3yc&jYmY+eaMfJ4?3wa`s$6G+;F-Axl|2{IZv^$) znWQssYkI@NKS)3|UbiOPPLU{!JoqlnxLNk$_$As!Qe8|G2pJlx$8}XCyA7@PYLJzx3QpcQ-h;^7c__`8mai;G1AL?iY`i&U_Ead~K5Wkp&vsol zP*8hjck|@^Qmr16mCNhX@+;lj%<7+S8;M{PH3jmw*B5?h4X#Ja4o&c|H2+=Bsz>litr4_}1{D)Tb zxdK%Ya#v|2QnU`FH>B>S7lb();g_t98hf0h8RjH+Si>2!G=PA!Sz29x{PkfB9i8I# zpk&BkEP@hy?yN6alI8avK5!e1a`{LAFyO_*Kze`BN|Br|_xTq(5qg^BZUu(9@i7=d zzg&I|2;J(kKDLG;0fPwsL4Fm|zYqNqo+`1YQNv;qq;PfL!(GS#pRSKjAKXcLgQT z=o%P0Akq2)D)ijx_Y=nmV*J0=QO~hLl_1WvAEnV#`hv)|&y^V1y8aL0IEbqNc|8}C zFHC}I*JX|ZXbVv8Dt_8^@X70~88QHU%mqZrKI7p9zjry>rVv1)Wtljn=o``t$WeI7!^u{73SZ zUrW7I((2NE*(HcxpKmm&zNnpzVqi?If-AgA?)EQl@{;5CElj`;I&rf}Y=wIG6H4bJh zc7HCiSDUH#O|HA`1{^D!1tcZ+wG4e%7ra zJ~ImYNR{>(7<6~DM1!MKGG-E-l$rwZo&u=hW&%7+)5ecP7if$WmU zv+z#9PO$`J2<0x#oND18;+!^`cR9IJ2bG;F=QdA^)7FO^c!@BT+5$1>B1f=ej;qc6 zbSP)Ujv=QQOzAoaz*a44dnH4(uW;Z>8V^U3Khwo;!9Ji>GyO@S5xcEJ^yJW`uZ>1Q z5xX>YUOOJyx~_jgZUq~WulEKFa~%;I>Wde1Oyt)lViy+`$fj)9AT z(zK-umXVoI2o7Vjr4t=!Wuh}C@gUT(N31=Jhas99daNTqLuB)F{F6t9(LN!uTL->J za{RXKyCQs^33tsmf@2bP82KyxFr+>Guzs@T<9oTXQkIMBGvPbFyDO+_dBc&-iIO|M zzsEKv-NQxh(`%mxQ-UFF_K_0h{t_Fips zLmp-MeOFz5K(#_ey2j>8pV7L^dZ16H{<1T&uegWm76)CXUzuHqhaOnqa~0*}d8yp4 z%3jngq0OwP%Jo%aoXp%+ItX5*7cXqLMkXvDp1FDb>?yryRi*1rp83Ulynms)Cmw|j zo(e6l{PHs!up{Zothkk%>(7yI*cZO9z;h}ntb#a&##gszPofQLPOW!uU%DsFu{FI@ z6i??E;G=xFVh~ZJpC072GXWN>O;7ArYg^m9wBv7DzdU#T_2Ox&>z>QFZe;OR(5Iww zi=f4Q4IluB^&|F_9_k6Lam@z+U65Oex@R%e1Org}_GZkJi@-$(Azb1I(v{+9-&^dB zaphtC$DU^$F)i`>`x+;h3}FA31`#nT?Ddjka)v<_YG*^L05uiF45M=SqCsG4XU98J zQzvD--*HRkb2~64MFelZ#x%Ye;yh}C?neH>8|3O=HLj?C!k1C9>-bp=#r_8py-Nww z@6n7dU;5+zHItoJF()iniWG!bK5I{mNQE?j?)0-x)$oN_&MYOHP%r6QIKt}6Yk4cB zJ%&p-rSXSd$eZ|sY);IWm$3UcFszx()}-7&;uPl4M+ydWY;uo>U3Py) zITz9mxK-utI4Eax+@Zi(t_i7^wo@a_X8wYDBCAliQ854ThNM+qd_Y56;+&V3coroJ z4M`yZ-WR~}^a88=$*bTT=j$%K-1@cvHS6+aHvlLk-Q}LM!8s`A^za^!-whmdmnKH= zRZ*|bqjEmBIVUlk3d4mK;ugdSBms&g8?C$Y3)Z=w*GKFq4q&=L(THB7-Up`zD?g|; zwVzKfwvP2r+D?^-O4^ox@Yh&ZAP_L^?J+0*viHSzO_AC!G8foF zU0g@rn)x35lIosryx)IHTU!aLxyO0nA8JlE?k?oxZYf(g%P)`C=6Yh zw}55;ueMBVust+i{3b&b*a~>tnHotmSXer?>PodWJc`@0UKvPyEF`=(ymc`IP`J{4 z0BFfvkg352UuLf%@=?q}`LS$Ra_()$Lx#O$YZUYM)Ch>M@_h5&CIsJk2S_7d*er2$ z0XE9e)Mc&|fT0ehF;3}>wTwIXWOwE;EcY}qs66ZsYUQ(udUpJki%r!n3Gs27eVRV# z$AOwMX-4RxLV6{x#529+h&P1+0n5A>!dvZw6foiul= ze}#A!xW>P`@X#m2gvh;#^f!-pb%7%jXMk_WmmdSZlkaS_`yUTsjhow#S4N7$Ksx;K zZnItBR1+*^i*$C!S)R2LqVn$=RI>*8dC`zh`0_?S#{Z+~+ryds|NosO$3k-MK%+#W zoS9Q1r*f=}=u;Aj%-I~0Lyi?u*vxT`LkM$9PVW-ihzTRa=A1T-IsIOJuj}`ZKOA;l zw)=kF&*$T~`SUZ-X~}Z>uX~-O=!il+`RSL2g5vF=PvxP4z!N`G%`&F3Q&*}OExM)8 zMLk3eCLeYzcOACQbsYx(h&}9B?bFC6JNu8Oj&8~L;KV3ZTa-9KHwl4JEvvHykpUp3RFPe71j6NL-Kh2@aNyHOsrKN z9FN9!GvpH}h4L!wOu4LVVN}$Am(h@}faig%V_sKA>t8M?>R(_5PS4I~P*N=JNBcuJ z=I}N81Jf}THar0OxhQO8F+n`fVm23=m+DF_PuSjxK*@kwMoz-QiPnzSsIJ7|`zHB) zNuj9$Hp3=PeQn-3KsV{;V6qF6{xev^l1^yPwp_0p4@c=iofv2kJ#-H3A~8E81OtJV zh$qG^!jfO5L7?#~WzVA1Xppd;3iw2{9Xsq4^PB_)b)pz#Vek#B{JEyxNNjRkF>97= zBFx{PDq&!F7v8ty+3O(tz+U^^));8XUQo|erMj;40$bHb60Q#T*Q6WuvviZiLQe?( zxu`7SygKf^6J6vKW!kHEA%{slY&u#%dvX%?)R-DM?^K%y+NFW-Z33ZsT5mUcz3Y>X z#lv^L0uO+o_Q|}8yYAqXkAYXq=^!DjkyyLYQSzu&(JQ(jBe0^f@->>~LfVboj@(Ep z63A1a75=%-;*h|JPPiFx>8l-uW04KNl){e7go<6+$h4lp$PF{%=3mm6+mF@$5C+f9 zx2v^(q z%tk*p;qC0KO}!j?!KimD>Cw-6mbU&ciggW z9SO|vP0%*pn!UaHCLXGHj5x@mjj)b`TU3CTDH$G}eJ9gvXi;pCRIuvL*N^Hj-Kx*` zfBfs>P|CMLf1eXiY7WvQg*$(K-0I{TnRMMx5eDlL$>!~Pq|XxXy@7oe9Sx8lz2ge~ zk-EN^IK9SpT07SoVsV6^0|Q+%I-S<}&|vg-j_%_#dg5rY{@@}V+lVV#sHarFdkF3l z{0M~5$P*ZbIzJ^n4s}?+jKZ*hnAYTB`)1(^$u2Fju+9)qmlroKXmy;B6_GTts^o87 z9-w+A(Ar^5eYNq;Rs0EjvRsJG+dGtZ%EQ2X`nb-+j>h*H8WF?l%pavBVAC!l5Cl0F*t1Yt*4r+mBN?NqC{4nKW%+LrW(+Gbx z25XZqTEwmhv=6Yh&k2-t7U{-Ji}evZgwm#X{~QgrKnHVzV{DH0mqowjCAXajqLeVRsJKO022b-n0TGdkw8Ozt8rqV^3Mr z`v{k|Pk3_QFI!2U+a?2WV%IjJH?@%>?Obh-6T7NqJO0S5pf~;j|5c@@wf7&yN>@ty zI149$WQr$ekoWY&->qzPszD9(Qbz-N01B;(USWx__M$IwzSGCEhfUns(M3bfedjEr zup(S-^#!RvSpK#$Q)DK4z0-c_wkzLSWh3^6&s{O#7hXDd8nK?JpKv}{y09`D#X&6L z&@LgG4(qzkM}B??>UD2XaU5YDN6D6{t?c=~juUP-wyM5cVH8o=2)9#r6~#`X`zxnL zO>TQv!PM2b_*`oj#IOFf4Pz?e znC+W?Ers;MpH?~0C^2*T4(mTLec@j{y;4vwlI$k(AA6X7Oh@z~|1U0r>2O}{)FUcF zHr|!<5>$ui#-aNAOiGN{O*+sB?xSQ=#a1;#zsAq^A0Z<6h?RnzwgCz+a*QpW=*(`j zS`_nMcd8`!`qH;ia2|qI@r^HVuI1DA=83M28ed-la1AsclpjU0GEtmtAkEr^cg5e9 zWZ%pSWdP=_ohq?atIkYSHPG%edL+(M81`R6w;*DCa-$m?^Xk@;^`iqvaomt}p^80p z=JH8nWeofhS57rMPCTW=rWCS@NH;oYk#BvdxK-esgJaxYl{(&?FYin`gX5dOM!Jlv z+}IeE2Rf?$+NeYl4opW6M%N#tdz6LzIRVMvPx<<~sZ8d*Dfzm{#hL!!lKc8 zH-6UBLfKWfve37@mM4WbLHfGm55VT8ZM^{5MKzsOW6c9zaR2t%H+m=&yn2lC<4Hw- zAoU4DO5vBGO<@s%x9ktr}$8fg|hURi7vR_q+j=Hgva+ z_FPow4yJB*&qkqBJEl)x46Dym=q(qGqUh68LKgF`Lv%4=A)y?F!HQ*|5jXD5ktotk zzlS9{mlLkxoA!Gtbn&^a7c0zZW_myK7Df5N)V=6~o;d3V$N%Pgv*_Js>Ka4w4uRnY zYuXwU!PbFmY(u@}HGaWo0-}dR1_NS8-$&+)?XJGt@LCD*0Jp`I_eRLgNVVvqCS%PY zmFM&A?ou24vyYx0FNmrSObq<%0R#6GvT$303=t`TTRs$3;vCx0} zqLQ(0Y9y#WcLO!o1J)5i(`gQanMO?o(S06f?(DL!ue*`&aSlp24(i9*EQhx1u;Ol? zbhFdoT(k5T6jw9W!3UbtM(mt3JWir7><%oz7T>$nR3Sg@r3P(i*%Z^lH$1q*a0am( zW+aDNC;Zx#8$ousaKk~4EQiz!#-t2|syyhdd5*aVD(~`@&9AhOH!c;18sRq6I=&%K z8fqdAHbkW)6SN!d>(VOd!HoCnI)n@7Y)@Ia_i`*=&A7MQ=SA6OLp?uQ;p+wsC)goW zynt`?V*d4d2=W#+^MCoBs!cOf9FJw+n{>HATw8qS@B>TrZ1@M4FdL^wy+w&$m@uP~ z*0LbaS18;x`6N-TJisOn^moDD7daMN6x0;v{Iyr4&zB#k-eT%PuB^Xj!R1_X8d-b~ zAsAGDj9sjkz;r3Y*VFoqCH%kV z<%E)-u2*0qz462))WbLSLk7DmmX)2r4h5t7$l_#UGp~7)PU}V->u!fUB~DA5z%tk& zHh28@%A_G_%{N2G6Dqn-+e`BmFrjk#n|lBLCg&Q+8h{3%OtOWS-i8~OO-LFwKBuw` zJb>0rNya=>i0OcQGjm!~9;VupU9TkQQO(a!2@6yG6*R`9hGynl@rr>%z&aYeep8fq z+XC?|VQ6E&S%0yAfx@b;|95^nT98|Yt9Hfxqz+dR-(XYkF<>*{PQ*^GA#;y1q~r+P zo&iY|wmI>_6;{M2J~ZCr?pUIX@vDmWZSU*ToQ8O z^53}=;o5=eyjl@F^Zju`5;e%j_oI72y=cirwee}~SZSYgb%%2z)-&+=IjE2Zii@B( zXQ*-dCvEjKOb{$`|JtuMB(P#%^P7IN>Mb46jydIU;8an<#i08EOiI;HNk3bJGodzb z^*gVwzIb@JgAQV7tr>z&H!nsgjvk7ALwOmEQoQbl%je0%tK_(~J?%Go_i*7+81jR@Rn0%UG1;-(g?iC7%670;$zCUyakBWQ zmmQ$5-IJ)kcVdhESl%kX$J2B%c_-L*#b8W&?h^%FZ!^OTX-<$f?R;dU+8O)JB3ZOj zqO=a@t_|`y=eZ^V_1}(GmFM^5;4H6!WbWM;>hzpfFyyFbX)Tj3=Q!x@h|2l2Hz?8_ ztHvWs1_@=p|9q<=HXq~O`fC95=@dd4(*01pkTM_E;jSn8ZUAjf5(k%#dRS>9mYnc! zQh~hX`PgSs{#tsR2Iw6l$hPuy_3LJpLQtjc-))B_-0B=l3^xJ_#87RtoeoE z4}a&OzWm?V^XZWPl1bFO=b2Z=)vLGGJ@3MtF6H?LNW?cd`V49i6l7lx^K*AJ-D<5{O>}ug}V~ zO<9|tMq$Tb+>6X#^l)yv6lRDsZvb+mU?qdfBys&W^k(HuHR=xqWQ<{i3nh)UyLRr% z$6?vD-I?nJ3PF%!qFNllj)xM~uF2-~PIuj2mCWmnDYz{ql{CkadqhA#>F4ixg|D(^ z{;Nw$=ko^(AIin6ojul&((AWBIOFflG-&qPH*jGtiT$09Nr?2>pcOQzL{}qDXM*6J zugg>W*yi)1B})ibLL$3{hUXs&>88z9 zPr#Pu>P@R1MH-!NTAm%niH*>z9gmnmG$~#{O|5a|?#)6zSoTNfy2iI}mV&sJc86?! zZjXBXm24s%Au7H+m>Mh%@8Oi#ocLDG4YvScuGXYbK)$2*v7PBNGUx!^V53!iv8}b7 zqrosX7#IE9@+8Fo5&0nc{NxDfBkg;r2UAxy5J)hsjecADP4eaB9)@`d&+>Bg4bJU> zvCvKeDtH+{c?J`ZAT)@#k_SOx4De6d&qNL-8z4(gUt(O=#i(nyAI#qt)VGhv8fa6x zKAcb)YuMQ&{XKOMBp+Qf+3rkQ2X#5tQY}mU<&hRe_(FGu_~l)9DcnN;n7404z?T>s zyiRT557r8}=d0=enYkCGIyoj$Ic}(#3dLl<>DhM^@N1upxOqUk`=mpPitv?mMwkIYXgNx2CoFg4E2ni+O^c zZ;EsN$2mUIuEmDCUTk+quUF0}?2jBXsp#@MUK0|lc1)P^F}(*zVQg@4!Eu5B3Hudn ziv7aDra7cxo&{7YQ8FwhqLlmi(B3h6qXO_OXieSxh(yBWiSI2g^ZEuna97IE2-Tvo zwVX_ykOW+_J-z7?q|L^_hkEOCVgZ$Y%H=6zD zy-qfDrvIEyJ{9J+eY-K-;0C&NGkR8w8-8;^d5Bx(8TT>=;F?ICk=tL>V;au>biqCm zb6DRw$_Ozx;98Z@+A-!A^}IU3-QEB>lh}Po2iyTEoVIw{A`Z z?b;huY-U@pl5}2zAH6b6!KrJ92R&66Sm)UA*G$KZEVi!7i z)kR}(8dN^nkeClAm}<9sW}+6%w}yx;9g_S7PvjDD?gnXk^f?xA^B=jtd(Xt&m?q)h zk*xF8FUU*+z;!JLTi{G7*fB>9M59(GYNug>OKb$-r~hbJ^!oUk_9G3aCF?|)-l2jc zxv-;!!o`qWJ@Ip+3;~*mwmgx+Z(8?M;rV{|vDGLO@LL6Ds#2jM-9!u+Xq4iG@r7lP zCk*$gO3H0}I#`=MUOlzL-qe>-1v?2%noNZhvLM^|v=~(JMxmVq>^WRMwWEA;P?(yj z3%Y%I@bXZbgr#dhcI^rue93uP){O>HuR{haSx zyE(6FiMC@-Da0tR*N!P)Ehu%>lIaR3uE#3d3#G;3S(cHF?kpGTTGxagEIs|r2KS(0E$!L5++T=^>sWDg) zm~--*c7O9YG`sySs*PjUws{BkasTU2|NJyo^=#k%T_q-~P7L{NCXei(=W$=S+rCYI zBkK(y8i!WysMhON8Um}-KLu?XDR!~-k4~n{T1Ig|Hn!`UMq*Q?l_NrlFRxs*R?@kV zh_x(=l^@Oq5?0f0b;qkh#rRq|z-g9D=w+yfVOe45mV<96K+mJ{eMW=}KqdsK0VbQ4 zZ+?eD0YZ~@d@1=t4C-`4ZVY_WQtJCwG&bsDk#@UAYJ(_AzTt@@UOTcj!Aoa1N z7Lw*>`Q^fCgenUNC-<$=E8zpRsa@HaovH^loS7?|F7_Rj6emxPLcBD=R070;ds`GF zzuYj!sQ*jD!**6PDn?GlYTK0dGYUW_q^zvqRp+Vkd;SIEb0+3R?70$86iV(e0_-$H zN7Hx(_oxy)^FxA}*9Ctb@XD?qLj9EE-%zKwe;vn{OSpmyMR?|LnA<2I^c#Cvn38PB z+igqz80DWTv0zx<;b5LQ(6}c-uscV1aGm7leGEYrEg_zz9_lCE?KX5-eOB<%i%rxa zqpZyDr}O*l65<8HgqxuXRmH>IW$xzmOOxr=I>X+KWa7Fx&{pf;+)y4;sNm_DuRq12 zm-1J}z_;DPVRqdZ@BD#y4&T}*2bC2bU6%skl(b@;tOjbAc%YjC_*gK9{5(}cl;x^L zoRYH9dWs2SbeTXkdf?L3MOGNOerTCIC`Vj+-=*+T;2K{%6ioXQCg5Xd?%p~W`ZW=> zb%zrOE?g;~RW+jv7va`whd2=)?=e1bE~(x4*sA1WeUxSrd$+1ogh+QmKR7U?jCV$E z+bfK&W5#{yx8ZF&+&D;-A&DO4f6yOQ^v8>D7mP&2mF_WDfu%FAty_uZ!-x?p4GWyh z_&XM=1!9*U61zp``PV;T^Dh}DbM~DzdgvM}eT!{a)P%%>Q#1jdy#s@04TWyN9_SG4 zSi;)A>X|ZuSO?P=a3AUx6?1%L;&Ct={PVNdx+=JP_iN_A_&-Q!QG`07^NugD;lage z3g;ZTTQy#0X}-dDwSG2HnO!?7{%^^o=yeF-F0!(`e7uoeL%eq5!J80!*YH>xVx;+R zPwbGVD?IhLI_^DPOV5}GUL*p>V0y>iR@r4#3^Sl2J(#v~bHQ~u0~Ijn<=boM@TsCp z>!Z-m9nv4YJx6fCPwm+Lak11GZ8Zpp4MHW~907ILu-3!84gKJ`zWdqQxT6evFtjWO zNu%nQgZR;qu_j5juv@w|Q{gCG1dsr7CSh)*BvVp`;Q4|7YYL7yHn-Et4!=1o(?bk5 zw5P`pvoW2V5J%Cwwad>1IWM|Kn0N)$9fCcoo$o)MFZ0nuSWa~KJmc{DuZKF{d2`9m zh^|!p1j2c8y?Yqp1{0*r1%3Zew{if^orP`=9OTrBQCPYFEN-(x@*L>EcQ%H{z+!=5%?`p6`roTDW1{AS>Sd z*nTsz9b;8+V<|u_I`Xo^QJ6Vek_}hp58~|{1R^T(mrbBz?+$p{A@U;uT+~ME|6bDU zNo+l8dYzhUT>Qpx?YGAghpgovVAsu@Uc+{!Ko#C^mxzlN1;T~>r(v8o*s`DI^c3*Um#x$l-Pe3EdH<&4 z%CuQ4Q9K94AbE&slLy$txIX1wCFB0<96QrD;!^UC=H|IsI%UPKeIt9tf9jjJI00c% z63${=6B}~9S{C2kym>0I-pNHXH0)Y=VDPNwC{C6~)dXV_Cd$e*9tZEVhtT_^#8P?rE26dhm?)|YZF z8l|ebx4*7x@aPxC^lj^PVAI)<;-76L9+^Oy*)kNO|0KAsiXXX0LBF6HOA$gP^y1g5 zlp{_|COism(uTX)(Xi}+0pRBKM?HRcQ#*5^E%qqme>`wpzK@x94cHT zrzqT@A=)UMxUo~WlO`tLq&prmkorbO4ET3~3WHm;%7V4)HsjgLLBB?=YXs;OlHpFm zYT5P(fy)WBR^gW{S>QNNN0l=xA@F?XER-y0 ziLkM2S0>e7AXSyZ%#p%*$?k5(<$e$-Nw6|7{j9e9;6jg9RD0cn_|ZD+2>RZ-yx(#|JZ<4} z{6M1eC0Nw38a;4aH+X(5AU)^}$cA5DVnI&ZXeduf1eS`2o!coZf5;x;2|e`g+Hlzm z{>2LW8T#QUqlEUk&nuT{7Ye;?J`6`_7 zGZ(5W8Z8+EI?a{?ZWp#(M|Ya(Qh1(C+()f_!>xBpK8hi2}& zMxE$X(*E{e9hHvN-*fc?u2n76-XvaEk%r?a+C-4!C@Ol zuP3;(kOAoE<4dUxVu*A40~ghtzdR;;*4{BMt|`yIDMUU=xcx_WexGt2Ww+L97}v@Y zP^4CgpkmI|oge&P+NwQS`JDfu)|yGw%q~9lU~i%E#ggzaVWs5^(})$`v77fdzfyRi4EsV`IgU2krN43o4qiSh+;4Psz zeGn!e`JF8z56xeZn<)V0PSCIq0m`k!UeB2?Y4F$=I4{lYIz&=;>$$hse)vrq%9M?4 zavYGNb`CAMP&(hO|I6@5`s8Bp(0hs>5CHQif{F@Vld{?Gt7*7CREM)_0960Om5$~nBR8;wNm z{IPrn75fi0K&BQBA@eOHz?F{M8Vw?(bdZX{(>56&L-C%5bqtg_r_U!)o-sJwBPMw3`ej&ZJ zLz#$^VHqBCTWf`Vu)I03|7DV?HG3zEL#03c%w^$nO&}beNeVx!>e4O-g;ny4I@l@H z)XqD%2tv|0ZdZqo&R(hzRCHLkrwpAZm)r^d{EYM4)~kPlkCD)79Yfqn@ag{6U0Zeh zTe(q?6a3(0nQ#TT4t&ei|%~DhgPhd4$*s&I^&~LjmZgh)ivd%)E7`os=-hh)`&` z@oK%VR7UJZkyvnx?bMQqIfh+cA%GBAlq9<+M#jBz ziPl2W?@VQ|AeSd6rK=tXw(I+&mK$GC%g;|Oh~PqXZStWI%WO~fk`X*4AI<|8$CH}w zoIaOERRpKbusl@7_x-gx78=;dL~6c-GbjvhAwu zC4ODW(45)$w1rUyyqTYOPr_Y1&vzKrW1dTXU@O{pF;I$Nriq@3T#tEoR|`Z{O>L3b zeo8lM<@n@z39moAwYup2H6Z3Y?~b>U2Q+H^v(M$iruc4 zRoB|=KL^RW+FG})JBr)=O$w4d2>X$$qM~K{Z1knEUgY;F!S2f^4fmlUZv{VV`VFL8 z0YUom2j2WzGBrp9)#&b3BzglF@P;qNvRM?3e8=Al-RE;0!$-3qtoGH9d^Nz1q@U9khHtPASpvE|yAnZBnH4&p9^R@+LC+zJ1Shv0$d0p_=6=CN(7SGTv z%?7oYh0%N^Kt6Sa{b@&nQnxFIC~A0kwpz?{;Y=g9hVZgD( z#;FCZ8vXLR=6aok+*&BiPo zb6DqCwP&Dq<#0LIDPHuD^I)M3J-&aJi>ep3h&j(}X-=}K}5em_Fi*C{ngu3>#?N`=K4J2i6pzQ{CW5qzi8ejDCSjKz{ zG%&0$1OzMOvIZ1+-XgVutogpg18)wx?wiFJox`X14i5QyGFCY@ziXc!3Ss9YV}7-; zzzw)uM{zd)(b@YP*4ajOTVvPEMeCoiKTbXWp`HWxVI%KT-Y1w9%G;YfDi_A0(Pu^ii#Y(c2Ut?=a(_@VU5G;>Wo%1y5LR^%SjP#*_Io9FY^39E zTZ9`(WeNRY?shDnn{N5(fW%L|oR_@P5RIznfPJP7LF^|{Z5?{SO95-s0TVG;$EHdD zxLXttc=V7RYQgrKL; zIiJj~JqlDMGr<=Uk$S9|LCl-~W1(iA(BK90_T%F))}YTcO?0@(bqvL2d*rsp(L1`% z2x9;7ji~ltpT(YBjR^md_Jq`~&??zi9@B&-Q!%?|%bLY{u)cyxI(g2M54)E^*%tms zT`@6U{)A-KohpS#wS~1^Aj=@`Ikj>bQErD!F=azfI!2Nkkoi{csGK2JPR`!hyBF-T6DGSK4(|UJ4+TlSn6)h zeBnprFy*}*0l7VXDMtA(0E7MTM+ux|!iCBH&;A(?5=sDc-gb3V$?u4p*UOMKr!x{2$`dR$p> zHYk%&eBDv-dgB^MUWAQ5s=FW1EfRFq3cWham$M$?zi-Y50ChBj+aTY%8?^^X*^bf-u@Bdt*!I3Nrv1h{Pj6{44owZXrMdCXvc zz5Ux>yXIN?{jj!Sm^Hx88&y&&+Gj(Uy0_a~KmB=;A&+mohvg2uh<++qu>TNuG+4BM zl&(d-fr65rx2U4M^JiQAU78ve%#70!Sgl{r1sE438M(zE&&5YVf_EbJ9yxsFv zP>GqL&afbVzuzySQkrg9@*gvRipz0Lq)zLeFz!!}G6R|YM6Dg(JFW-p5E-*t%uISU zLf>bJre*@MoEcu}e`rxO6Lf#x3UW0lz(i%~R>jmvF}{2VmamT?DGF2h2uKAB9;yXW z=SG2K><*Vjet*W2Kvm}%A>@z<(4J{C0<%ZvwOGS-3nGb0fj&OY7^tR0t#BD_cMfqO zJRfB)C3$36ycA*x7Lgn~ZYtY1&=spa$O4?G^WZ5V4*K?HzU#(b1m#^iPrK7-j;p@N zo)`d4;8f$rBE_(JTLsCZxXRt3a8!8L!=7ZB&<~cF0iM6VSd{MrxdYqG$l1^e*b2Be z#DEeOStp{l+$SwuG`802AO1bWS1;I5CsP^F|G~YaV@K4*ApHTJ5n!`21p2WXA=Wws z;pNFIz+Qk-MALqS8XGNYN#$Si#gZu+FFRJ$;=mwf8{dYmm0gi}5}nXnOG zw-IziC(LMkSRA?;DBIDp+&yt2laJvMm@76g6kb>SetEJ{2XFA`3?HTFM@-~cvLHT* zF|}=cRyORfV5-bs2Qhg@BXmcW)t2^1@K~?1q{PPnLBaj9Hrc+e$;eDs#?PnOF3!fSM7(xw!^`tzU^gn^4^pabDyW@KTHtrA z@~QQ3Xcw(qsdl#0h)w_DcipY1xM%6x!;r6e5E5q(E!^(j?hsxMRXJoC10nK^K6N03oMwu%*hs|w?w|VP!<^sYSmPyHxz^w3PMM5aBv+{ti!dy~sby z{A`7;7XjF`2AJ;gOF74>-Zs1AW&f~SGoVz?yygTEplIDF3;*57v2ZzOfCPel$XeQU z&HrBuK%M(vqOv^UU$$w|+985zd+9v*x<%ZS*MB#=4>qOP4m z?_S!|_NN}o_+4kj9wlp&G1I2v`umthqPL(C5c42tKk2O`jE@ zi$o6r=E%tAFJI@=7Ylt1z*z9l^*NuEzJDw)T*7Gdl`QuzVtf>T0aP*AA-4T8t)xcZ zn&9}F{%l3a6L>0b=Y+GC;x+K>==wuf1ivnO;KXaJRpEd^6w1VDHt+C^36u2Yw~KYL zr2HUf){2e5qN=R~?Av;m!lNTZhU)cn_d`EEZrNVHU;cceHicyo5~k!wd=$5Xl#O!- zagrm4y>Ig)|8a(2x%S3?P}~!N88PyeL+jI)0Y=eNk5(e`Ui9=5bdw(6 zL8g$NF!V5M*!wmclSy+dSwwDV*u*XV2?vhJEZ2O)n*io-7(yq$SsI+UIYMn4YcGBu zRCKq_yqI{mdYpJUj$A#j;GJ)>|3pk%CV{Y{`$G9nZrAapObZ~0`CF9U>|lat*FN%u z2CmN^jXZFgLAFSUb*(Qz2gL=beSXSNSURPtO!Tx_G^p~Li~$j;WNO6fT+u1*ep)C8 z-H;pmfjHKbdn12jC_n;$Nqmc!Q&xz1t^*sDq|%?du_i65z7WSMPe$I+Uzf8aVJb3E z#vJvD>{nl5bb>g_`#80!d;Ev+H7`#gQ_|k{V#Pm-?=s*x{DBy7IqK1^**q5H3}a64 z1qI+&2F_F4pXNMviC!e;ax!Z~kXB-+D}8R@Drjtd=FuNmflf#Nb>|B-Hkkho&IR3!Gu11hjJc8B`$_pdIBHY&?UrUpul#E#&&JR#V(!CqZ}ph%#0r0j(fh8 z%t_dK32z*O-D5=LWjI$wyZX7bwvzdPup4H&-OIib&>Qet-|a{=_PLIY|BBl{vo&e4 zPItu9YCcTc#3tuD=J4w4%zU<8PIjg|yL`3s^7P;toGRMpev9%;Y`KrdYa=Hhm^UG@ zg#ifyP{N-h@Ow|0o`GqNj5a%IZ`P?-q1uOgy(f6Sh-Z4g&NImH;l>>U<)?*T^+4VD z+wjX!&oU4}p%tf0YM1Na+)xDqH& z{Gl}i4!wYFy@BIJI<*Lcf$Xq!I`*j-K&<)_t+&=QjljV5Bd~3Z9D6)jGWVjj54Opp z^}*4EiBiAP{T|erqvD0rqUfmP zt{N(WO)npseM~J1nLyh)(16|QN?iz^*ED3#o~jT?uRbh%{P5W_y_2SET_+z4 zn*2zV(?;?QFW8x5DidX{Ew~0&{7ocN9zO{;Iu5IVliHeeo_~cE99EJUC%}?7f0!W* zwP|H1N3bC`Zejix&O*M=>awf<;^S)|0Tw9qIh9D>KfPMqPOTc#i?6ny#M;LQ7Z2R4 z>>LtB_m7Zcxn6E?2Botg|GAmI>TRMloBqQW?`&L}E|TdTGgLhWEaGoXY`B)oS@aYO z1x@PAzTL|#88ZEo7sGsoQ`0*(Q#7vD<9T@2h<@8~E%F!7npt`Q^EQXoOg~|B(Gza9 zCrkn-5>4eWW*$VSZGB3=Wr1dJ-kcEY`8X|P0jPlmtXQsZ>&@YLBmeA-HB*(2S))30 zDCyiVQo+Mn`ELOPbvaMcRTv#SUbmifv6rx`Ze0apHo&jiyfFgFQ`inYX>|RI9a9<) z-I5hS4!zJLl;rtF7wE?R2~tq2-<{g}HzOn@@9c;)S{9Xs-iZZSRoQOY4d3nsB#Yj? z>oY$6xI1l3TP|dhc{%Vw`#|Wv6d{1tw{XF*DS%_~>Kj)J;oi#n154#Zx4oqDKMEHm0pyvU( zv+Dsx%YXkTgl(_khKqh{#B1F%Q(~{F z=xeWZB{{O~u^fZ}ak%nkJ00aQZ3Msk;B5)=sW{YWv~X$EAAMHXk7VUH)CoJQlBm9* zVqPV1so3LEmgn>!|2v8QJ8|-JW9wjjR9~#hkeq;_c8#yoF+E1~Iu~##OeSEhijt93 z`0-NOZO_f?AX~PO7errD=7A$DH5Hgilw^E9G}o1MCBZyFbUQ+Vvfe__I^H8~M9*fW zx6@<)7BK2J3k^<(f;eYA^nea%+yt@>_mGI}XIzXopHO_kJKp#Az8$*!F%VNbx1o)SjjK&eoJF2NkMgIg) z1;A-GnqXX}FLG_G>qv#*wVg!pI4%+{ludl@goDgvySA(FsVcp;Zd|u$3}2WQsth5a zLoO@XJnMYSVB?_6OuQZH!~X`4txN4IyDZpLPJb`;lv0ely#S}*?-;>W84jRX`1a}V zJ{wc%qtd5eTE>ymnY`O#_x?ez!$>8610i-p0Otcr5h~m@X2?kd$lYIJ|2P1AR1C`Q zUyadEMjCq@55|CVy=@3_DW1%JGf)mnI*YrG?l-W>2Yg{`LgBcMbUM00CFNo}t4{~zeqslZ zY){6`Sv%>1rnTWwi(p6+_E@3LxX-pSFSK*{zmp(`ht#N3izWMNR!!@HP6@|ZnHo?0 zal(j03$Laprpq^g_1BVh%({yIo^FY_;piNQJ=C!VkAZ6pkx2;bdk688vSaE_6ntpLGb=crm0J(u% zAk{3LmZvVt?4_}^gGK5}i1V3!o74tLa`zhZ0fZCJPncDs^7;~jTa=%LY##=J=#xnS_)gXyH%e2Tc0b}wVC|(JH{oJzc zB14!lT?hwX-2ed7Kd`mdN6N4mWJbv0dr5m+a)6YjMR%Nx(IqqX?pmO2%(vEmJP*a; zOSl4!ErH_Ctkf1-R30c6xXwYbb3P+a5Jv;tMeDO6Qhu191zABBK89oggq#BuqG=Nk zuqmmrMn!laZ~%(o_$$-IErAl5kGk}D3c$u*g4&YV&yq-)m&CjRiZZ4#%R%$ZpinWU z=cun-iv8Nqt>sOL;MdS>g6_fe94FjpivxTVfvq|B#B_+A*Z|}BKmQ|v$Nwonuh6*w z!-5n>(T+W`zOp_S78@r-j`c_ula$m0Wd)xfCi71!36IZc$NbY)OC3RbD#eGZoTY|? z_RIp|HvyMyUVz2Gx}4^u9y$1nRgYasgYB;_TJl`1@a$!+=*9fOL!Vpwl0uhI%i^>R z&P(4|V5hVVwPk_vGD0<3C;e>mvylX5mbg?6s)u;=LfYFFpq|dh5a$ztymOTMv(j7F z!AnTU@B#@ zq`Ya%K3{+m0lRSdMW|Z+_|^XsjKM6J?%w~i>fxJ`;oCV8m*QcuH&^YiS-JVvBdEPO-j>iUb$F!>=04^WToq2Qtk5pU^x&l)sJPrW355aeR!<~$jnQW8RNh2J^n_nU3s;P^wof|)o;e1t_{_&UMGx@5-w z6^IYwSo|T6x4YNIwLAg=_k*(E)VG#eR@mJc>sA8U$G1Zeia8q0L!AE-5X*tPim(pH z+sP3?F%z(yjx|AS^4&remM1|bYhTFvHz9n0+oW&G;)dAQEk9*f70|ZG1F!I7%u-{yb&j8i^+aNJ%@+A`Ten0k5r2)K`azsqK}-qrr&dKxo%COs=+Xt@KoWvsCyM zR!m&7jHkk*q>bTEbz=b2N}osw}H0TWNw>+SMi-- zv5)HGwMG8N&6KT*Hb3%`^5gwCOfye2_r)@=F)o{IMD^ORE=Gj!>(Hk&nqh zn;4K7e{0EIsC4A}t?KYM>bMg_UK+SJ*Jo^6iQT#}9U95ZAo%fItY=gWu<3Dxp<$|F-bucn&?uHx zS+2Kt7-esK(w;9*DZU5C-(tliAb1L28r}=}kb!Bve-E8!xE6}DZ#vi?j8#qip?$oH+xKk^!E+C0D62Zu@%_{Nwy%(SS?2)OY@;S1_PX1kVRN(oFg=d&ye= zXwmv@j*BXheQ)y*;w}h-cGi`{{)%Zq`fhDIY2Z9rV@9wp;Koy-yX(M){!up9H|*x{ z+BN@dUP)igo5hoWk8#l!<84V?8+s+fqaEuB95>R%pgo@2dtL{6k?DLNqfpN%bI@hhkc54EQnx5USMY% zLN;Ii+4D9b?Zs>>-a!|mN4*vuxfFRGnr%nXiVjc=Jvbmt#eCE!(&_LBupeb zh_yM7EqA?nsB$n)?UKC+j;`kFQ#ehp^c`6xnd%MZ%mEUFX2*1RG_}-#hZM9ghOQrzemZN$D-P>u#@? zIQ#9V(qm>(S+j5tN?A6krn&BKo3M8d5`Zpg@~Mt{y&k=85>;pu=5W}Bql&LxHDX0U z@Y|QauWdXW$a0P(t9x7Td8$-Z=~K%i9({F8x~3x%_35je@y6!+p5>8cA#^|GJ20T- zT-Ui^Z3RUwG|s>BG+omiwjShgtR-$}XkfiGDQ>vu{iE`Y` zDJn)usf_S0q=e1cnB)*SluBXDDN>1~n4Ci;J0QfI%jPtvG0o}s>hrt4|G8W)ySeZC z`FcJd&&R>HGInz~ud}S(-9+|lmn4R36e;@p;36<CBl`r-lXTp}RTt$fJW-R-D3As0WxZ7?t8Y&XhvMTpHSFZahf4Iqm za;v~+NNq+P^@bkE(UJubkbiWYFQH0Kh?XhAXjPW%+P<2SvqUxEq6sjS-K@Zrh~<9} zGS=L9L58aNG#7yb1(%1WkQ=dhMZzxWd$1u6)qiCUY0r5vH#?ZZLugR7z@nel4J4Gq zMaaYJGY>)R=QpfWL)ps2Ya=6{-Y;QgzK>2{wwHPr@{Th$8-6$PLj^gcAi8HvKx{*!FdQo2tYpFJi!Fk})_=6mV`e6f&Wcz~u+vvVR* zNPFwL4eGhp)Qx3+(ymga;m(7PPLj&Ex0Wlx}J7$nDYy;?2JRS3Y$5A!cq)$D98)Ql*d?y-WQ z`cUKEZQ`k!5&rLw;xnx8l^R)Av-Vz8`=_s!J}Jc9Z<%IO*h`WvTaYS@Z*uwdKy~y{ zIbHTC>*og;?ylU)@BdwxcC9wvj4oN*v8|(a?7(37+=IAW(S8A9r*rP+U^45xBB~o3aUBMj=;(EN)Psf#^Hn}r;BFtCa!-k>uO@@SQZ^42?G>PG!$q+5q zy9y8AW9zS&=!d5w(Wfz6)i%TuqffIJ7`H@$2gEK)#&F?>@b{cAI3CuCoX-AzZ4F-D zfNbt{rFx^mop)7UQo`B+p=|auL-=T6Rn0nAtp>3q_B#0PCL(^h84_$F>~T(whjijT zle2lKezIfgnyVZqv?9MVZk3nzRF8xY4A_I7oW?9&&B5k@Vhz|ZsN2USnA2tSYJYH# zd*Ce?ok2^ke&!vbju?}z+<`d;rg@CzWpd~QT~KiP4p2IYPiyjQ-P4Lg0qc2W_|3#z z0pjefkt-7}A@=Q=8@N-ay<OZC5 zQ2V<*RSBUyD>3;4DJ~&ZSjv)^q;^60*4}A{Ee0gZ3V6-0m(t=*^_`a(;YSc8F&C-<=*}P<0Yi%f83Xf{ay=G}o2Np1eo$vbFmvYt$j}Xhv0(qFcv@RZ! zPI&}!n%y`pjTT&er;xj`Xcuer#B%3j46OHW6m~cHPZ?)5<)0VHaZ7DKHnHei%Hz|p z*FmFzW|ZG|#yLEvX3Zcm!t{Q?&JAHHSHUKkY14K8orKy+!x*m1t&to5jQE)r5L4ghEX<=oU*EAB~U zJ3c`HvHiQ@N2>PuReHc4sPHzB+57CFoy124dhyR+fl-T}7#8;zKicKepzY=r&p6T{GD3y zeP#&I*k(%)rxa+x>rm4&yK-IC!W2j~XP3pf(R6OQ!^{94xdZglW^?YTM{Ukzfy znt_o5lp$oIRyPAHdNGfJ(YYROWKzNb=&2xpP{FML4ICfR9(;}n5bgyzPvlS|n~KR6 z;OigbwS1XsMZ91+i%CZ`+CQD+|HFNeP`2i(G$@|%cR2k3Gxhk z4fWOHIu{%7<&F+2ADZ@`Z0b@kQ~fdVqv=}COj`bgD}RKMW(uo?0iAOWBPZQEm}|aM z+8p1gH}FJ{bdR~(<9yyU<>_jM^O2wby?hwW$J{qgP%ejxzLzCx!*z12cKNKe$nsA|il+X5=`rQx2d}JuLO2o@ zXQZsZvh4xEdJbHYojm<>4g3FtO-U zt??x^MuQM8fRA(^bh)lusu1+6z_gNHU;ct*IFpNsl40)4&o#EBNCIdO#kBj$@}<-) z-cY6iZs)^Hdw@M69{BNtmdQhyvU5_eX^o_)-GLn8RQgp3}FDQ~pi zy>QbJgyp~*$$VV%=9aj1+*faM`O~7%kE5?2e#Y9lSx0N{gtLgb^P?2=4SHdJlu6Wl z>+y{n3fl3mJ=%fNMb@;Pt!r$PhXvKG$%95psVaHRm4QMi)un>vbhW1myrqV69vf6& z$>p;l=ImR+DmOU3R`qp~)GIQC3ydt9hS5(_LJ!NjAHscr79}?Rc-aED$Y@b;dq^D1 zeQ;eQr!aZm>T-TVh7(DMrnASgvkFp{0L%h~BUIxnaQ3@aZ~Pw@;CPEKU8r#2bU${A zm-=*=abgdpBgiBS7+=|5fo zY+1T_Eym{iJD<-OcoMo*XU^j}AmYidNm&Q{J}=ji_oE<+?d1}=wc~$h)2)U(l~-Ys zHnE759@+rc1G&cKJv1*?@IfDcECe@TTSvPaK2b*l!C1VHVP}Xv7^{8*kk6S1v>VS3 zP~V;v9X5y|UjTM?nT|lr$PG^Yw{-zj%Eu;N$dQ{~bz~q>P^H{Jy4gF;FMq9`m&xjM zK!t9n++!|ptye#}pf4CCKzYgyE(?G{a`*gG@?rB})C0&&oqCYYdsC@Tf2bnH>9c)d zQJCU2fGZ7pw0;B{xVs7+F&{;Gu|ok-O|c87KQkj)0`rIS?2qbm2g8v1nS%DVILZR! zAs|G!PH-LzQZ(ZlAUyROuVf>8<+u^{L?s?BvDE+a5=boMp&l@RCZc>WVGqlOrbmi5 zz8&lc9r3!)FuaekII3^X9^FICY~z9B3onj?J|)rOlT}=V{57N4>$_Q(BiHx2j-|7Uy&XLO>VOAIo=Mc@OEdCkg86a>wZC0i9dg!w_ z%@pu<7NS0+Sx2)li0nz|1}c0UP~l&_4W_T811Z6g|5YCG0m8EL zkC~k_UKIsVqDN+dR)mM@W6%BX`z?+Mv9a!O2tanv&u(9{A!?WJ4_BpPvhPz)0=K*H zFr>W@2!pyS__YUwoI|k3f*F1xr0rSMBAUVbt%q>qGYNO*uiO{u(jKNPgWDhXM|TN0 zX-s3?Vwryi`MJx>3erg{`M!Uv1M|8W9x`jhp^EqSC}o~tY2|o=&|lM|SzfFd0&e!l z20$RraH^5b)pkMdd~WAcyz~bZ#QGmr^K@1biYU3FrwJ@YL0&Y>1e`6vLe5GCT{I9z z0M@ElJ58+4X}sUVe=))xH)Gop_9a8x_V8l0PgMqZo{JSL-Xj#OXFKsVPBW(-Y#%cq z;cgC!a4^U4f_2U-Ha~y#bZaX#iVfol-db6nwFTOih(ME)vJgpTypLbuea^<`l5+^9 zC<@7IkD{>F#|4PgJNmS>KC<84V?z6)jKCqc=h4?1^S_<2vfXPG3Cm47cgu@Ec^bg-QTY~D6-CXG>jZD zl3adXo75i3+(h6P+V6RT4q+?f_+h|P>0js|Z$m!9#XXgHG-KHpzhRbKJ%FUKEo+#$ z0+}gjK%V7GlhJNbg4x z`7O9FaoI~c<^J|!Onc#hlwhLQrSYh(^T3JFF39+2%{e?dIIjv=;4lNZE&}Y|(_pAl zprpJWQmM(2qpbd%7o1)}2%UK4M+uvu>ph>{we<-oarlPQG(zN%jY{Uf2e_NVOzM)G=tNKF-pJtQIBo5LioZ!>2|yr4QfqyYP*oa+^kGY{VK>gx z$6KJF*BHKS;hrI(cG7t=i1h(lkDouC*S<{BJZh@@VE57UsBg=fZ;W)~eu`5wG{S+a z!MwTY$r!MKJTi>AI__#5v%5NDrebC-GOjK-jcb06xO2ZHL$BaFZXEW%)irRJVjQ8b zHswlobba2Dgb>zBGY_aen?nJ~<;yPF^Tt~dm@|d2?J$AqF_-Y@>0OdjyyO%VJU6-j zssZ#V>w_9v-`cCfHtUb|TjH6df8M-`oTt`z64UN64i`}BTfnB+xbmQ80cAI}T9a-6 zy7VRd=MQ%w(qlyb+-WZdEox5Q=aJz!3NT=Mz;^VDB)329Aux}|lt&KNzNGz0TEq5# zkli|`6XfSmya5#jj`bxMjSi4;--VGS5twrYD_El)Ba=tD&rg@AOyA-K#Y~o%e5FHX z+CvJst85KWnXQ6@38)C#G1n)0TnCROV$n!!*B+^}N^=93Ok=hfQD3HKb!&{2n+OXU zz&5c37Z37qHr&FO(#KqyR}!>&Lu=F_=w8xmurNnWyJ_R$(?-f(s}m=f6wj_2Nd4%S z7j1~ZDpM#twTHpxEWZOi?c&0NVyb2g3bfirX54H@ylb4!`ou97oU1TT;ORYS=wHyC zlvEg;bBIHH3{dbmVE6Ix@I7|x`CjEz;*_+VaJ5jYft5u%`QW`lzQMDctgW-$$Y?oi z7YJI)nyLQ)Lo0~%ico!lxfP4LzVqWUFS_UlCh&wo|3nz4G-2MtD-khc#dt2I-+m}X zwY|1v??p*&06zV_Y2sU{)-exZ1c(on^=7nPq3c4l_QXY6-c{`5DF^?p4nDal_s-=LNq&Nt9&E&Ju!i2A8f ziR&wOv`?+pR91GTq!6^?nM&oxNJq;GREAzkd2bC6?gkv>!;(hby)^vkbKiXF88E7q zC~mm;wA!f23~mU z-aKf>1$p192vOMs;I4~}e z_(`?g;HsbV4@6dzIrG5b(e`AmEx}7-su7Je4eF0wzUHc2JKy@q*i5-z$>X_8a2g-C z;o9Cgrlfmkih2@Q#%BY$0#MvT_F}UHx+Z%fY!`gcJ4&v&vLW8gMhdH4)v< zY!UK8J9kgCeLrQ2sAsk@pgHRk_xMI#0^K(xOjAdai62eljR2_}+CDyHcDsJ6O+ORp zkbb7#u)B2hPEn=jgA3CQz){{$FwX0xL+H)N?xcaVZ7q;-A~oy{0~R_GZple&`%6f= zgtZd;v$}DAs(YMWvqxjffuL0Yq?Pe@L;aqDjrl(|3>Kc-0n;jFq{g4C&o?nmOpP??g9kt1|0jqG6e68Z%G&0dap@sd1 zhafX8Q{Yw4w^bwYx=oe+L4+N~k42|M+%lmwOS1XF;|Wrr&lUQzb`?ZS2~dHs+<=k9 ze1*_1Btfu7e{quFE=Mw}h1}l%Hrz|H$?r_plKJx@kDtN6bcP4+I<8elZ+qooG#U#u zSSYEXf7n|a3j56F?wAj|>xt#NPwv;YMM)f}>sn6EDSZ+da4Q}&U!lUR!C~R!W;FByV?xAp>@>?x4IbJ}$kIzPNCXgCS47Xj^K`10_SYKAcDm14wceFD`Q_CK~Sn9h0Ff@PI?LZ09EGZG<(p({o|3X-e&2Erz}Mz?0DJ% z+f~FW0AjTckG7T$o|85EnJavlbARXES`)?K3_j|@#hS(}&$zmr!<4^4$SOCWxaK?z zS0IKQf!P;s&`zHAVIS85aTn|i^;Gfo%8dr8p#`BUii8C-*nay{M(X{sf2p^-vDJ{V z+hjKlV&{(C#MSLz!gA0vn5Eo-r&_Mbj`Y#f(g^uKZ+ZF7OP5x~^ZdzbeCbtme$mB> z{mY>At{QRHyQQ>AOJ-L2*YqzHzVma+7j{K4u0Nc27(FQ$V|0E_G09`WLHy%uw?=IIp;pCxL9Edea{xmzNW8!!)*B)KG1TLE$i{+ znOZ&*3f8&kWKSu)$(wXI7I9weoli+oSmeZWfTr-RVlLe_(J%a= zcPcl#eF~#H5Ke9nE?n@=ZD&pCmolF>{X#&Ea@VPU=~9wF?zwPNjbu~VxbUTRo1!no zbfxE)EgMocFIB-NJ}u>W0aGK6Ok@0m9Y5LKtclrC)gX;u^l;X_o2Q45^D*HR7iwBV z1EG5=OO*3a25inzfTSM&eG7~&^`6uh;XAdGlrSzm|I9yw4`atUguUBvu1wbfhdj)T ziI=yQ2KO#3rd)`bGcX%WFUgH7sI z=E%>*KL#jfEAQX`c)rpuU6^-o{zKl!U(fSCdZIzZBV`T+vu23T_}5ZHa<{mVZg~;2 z!NXGvhE8kT8)koI!K6*61r4cu5uQ-FHXA5p$ms11@7)s1R_{|j#QOsx?7 zXN>Ayy@=2K#rx=8>g(of9?eUkT<8Oz%1&y3s~|Os7vN%jP$fdDV{#rO&*JV{`x_biCB(hgZ4RGnoT}a{t|NZ z+`VZP?VD6OM^Rrb-r?$e%d5|t%BFrDOSh#0-}4#-VHHc#P#T=Cddpv9%1P7}5u#eI zdjXkUAt};dEBHer#>lW&gqU!VmQ~k>Y0Ptn5Dcl9MzQg;77)&3I$*>zfQV9}C@LSK z$c+_UQ2ko^Jw zhWh~HAK?F~WV6+XeiN|?A*hEJ>=V8tSrwg(lejrM%=n=8H)_Nb@7ixM?49+7&iGU} z{D6;Lu|a?E1wul!42u&x`f+~ah)ng`-L`JhCT?>6TI$>lF=~}&!A;p2e=1J`3M<=>;_U zs3Ygx=XK(j6sfZ=>l_*A_Uj)hPETF?Qnvpb5O8y4k98`-KDuB%M(>!uS0fh?pLz^4 z()&$f-$d}t)%|JiJE!%}7CLBmuzw<}sq6ym(ldjK_s{9fQ@ac7ufvmr)EFw$ZJz7T z_mjGlI~LC`$zOore8Q=t3zFDf<61Yr$23g!9=gQ%x|q|aiC5K@Pvel}kZ!_9_3QLi zk*c#<90g)0(!}+-)@X*jC8Hw8g^|^o`wpf-qSf-D@faOVGOiLr>We|4*i1>RkZ_Jz zn;^3{!mlqzwJSyyfT^X8!;s-Gk5CY__pSnZrXsQPI6RAwK*l+}8Jpc#ZfA89h2>=~ zH++7Hc?9OOnhlp4YVnmH#@$yQ)-tAiD${0m|7P&hs=NgzmOMD zpBt`onk(vsKT>`?)>J;K(pEXBlM~HsA&mH(BoC)eG0Ft_yu(y&EBJ6*fFq3@x@REBQofNV?Lkl*i2yNTbLN~vlqW0oJK z46m5wAQUY}cF`V@WB&eXty14*0!2?N7f~kW_WrvDrIINGLmi;7UJZGFtH%~8U$>&d z*>3X4#!P;EF1EkcjbQ{!B$Iw_d`ls#On+7y780b2yp&q6{hE(DUT>PHgxlN8j`#m~ z1pnrgX@f7Joo5e&?D-`n{Sso&*3gELYwQ>Gh{yYe{`9*O7>5mDp{i=gJhSkPmi?}s zw-oa^7nGAJIWIRAXyFLRuyCIUQTyT&54P(m3bL)VXMS67G^n9{bjWMTqT}d$BdtSr9an0V*>KommK=~pE|j#9mRat3EC z4k6%c&&w@n8FgRjjSw)y+D-31Rdm^Q?^}<@KK6g))-Kt(NB@y;fScaS=s$h_=kKNz zRkfK2Tuskwd{Bm?X|3{~2I1@I_&+UA%e#t&rk8lx8+@WNyFR*&(b36R}Uu`i0_^`S{Mrn5&fBm^v&WD~cEs^KUy5q}3@_e@# zS}w)RwW5wsunt@OD3iGfbC+==k&c;h!D?bcW zY7!?!FXdfcbmvDhnq0t}_9~CAoaKu&xeDb96{|)%Of;*V`~2wfUXpXwEK^l~`{GP{ z^pj8|eE!JyVQ07bHW(B)5Ng)kt_W>-6Xd~h(vPZ{wDwz37A;k(50Zo_dM(xurflDM z%ctfvSQ$S-@62&NKl3F?#@M;Y*pQZdu;SzMp^tY zL_XF2b-~FcR-jW zg{wqa+mP`d-Glo$wdvv8x`CM;Ge|dEp>U8^>%#P_unFOzypTn+^R-iD(ZN}=&Y5Y@ z_o?@%Zbe4q3q@;Gs$zAlJ{aePtLdoA#riDE_BXIW;{>Ukc55 zr}?Qk@uE*AC4hSW^#z$eJ@X{3YaiWnzFP9{b%Ae%^Nmj-Z~+iLwta&5Hb^>qO`^c} z*DByy2nUpeaT2A9w5l;#eQDNmCaP023Tye&~CSicYAAR2oNIg8Q%DnMWDru6>p zmJ%F4Hk!FdJ5QKyH(X_sU$@D5EHB;P0PW+!Smp(sZK+BZV3J&l!M?qV9B zzEjxuRIABwUW8+4CrOQ-fNcE;+3R8_h*VqD^(Gu;)NU$InZpc5?#hJ_#bDvT#fjyn z`0On+m-)QYZIeE~KL{*&f{gEvT@|W+Dn%y)UdkH4^mUuB>6X5(8|CL-C3sOkdrEp- zNUIfp@5#v$3sp4_k0>bca^}44*|;L=t<`w?X2)%Q18Cm3ImC!(wFY9eh3l#IP-MwU zqcJ&-n{~=U?}Fa;RAYzr%NpjNdrEI@tSKn7o;NS~1s3kyU$JN$>jt%Ro@)AN=RZl) zkL#6<=gm%gLKN)G{?ijQt7L7ca?=AS$sYu@gGcwmNV0Wze^t&tQ!&2#SlRYwCF{ed zm3WJ%viv-LHN;v>*s!HQyJ4JJP%u1__d+78+9oY%*1t zL&Bx9Hu}6+qg*MZmoz^#D2@iPHJI(TpD{XQeA#4gqn zI}bL2XdIaM5_i+u_UEZz`I&sxZ^VXU#4cf6fjB0#AaKIGP_}yEKEGZ_;YXbd3?=xX zP~rkIO#-|W#JitMn}n%5cV9t^OkbyBc*t!o@<^C|t%$*=K@BkO7{x@~V;*qbjChb4 zgAFWv_lE6(PLWd6O=q>0oJ2+9XmJm(A(U|jvATEOo$uXN4D0FzxJkn`zuUEQE$z3U zeU}U>-_zrEix*)M8{UVCzD|NwUY$Sfc5aI)H|=VYpVX&Zkl;m=M;umcvyOW|!N*h* z?Qkz%6_`Apaz|S}IU=v)Q`*@v7YG)yTF*Ru(My_uH0mGR)Nwu=H=E2uGn7}0!!tKe ze(-ECRRdDWtk{)MPNsMTLq;7s=JMkcgqWw=G2?A?@{~4S>v{ygWoCXj`B2~Qhtprs z)4y%gF5eaMcQYcQ#ztKD`wE*e0a^moj1AA28^Fk?;PvB}&jZPZ8g%+;1H0=cdrY8= zOqqgC6m~@md#oLe#PHDmyh;m*ehuMj!VrdU``df8yp#Bd*=ATCO0hhrScob2N6V^a zmPC<2VO1=l0jzInfzWi9n(j8a4Y6$3$Sb7@lM`Xj@aXw7J76Fc7WIeO)Z2bUw#w`4m?29&81LsW{ zYf2h%GlnmOD_kH%U3W3-AxhcF{V4~&AiIf;p;A0XJZKfYRH2r7T>n@9$9*TR|JM-@ zmn6qB6(6xrB(gGl%I*P*x1?XHx=ERh^l1S)mPR0rKUZ;WgNJCFkqra#qf$K%1a<%im5kynqqoF zNQRGLeKTEc&%!y1sj|6q!plc@!LaR+XEl=M;?*Fvb=7}eBCt^^bzAIdfwmZ4HTe0p z*mWDEsu(eO<@agM(kF;-*~GJZ7Me}ST@(z*hAQcMW3v1*>5PHc+>ll?T^cc3^UK_!&%SyhM-kw_u$l@Isl50Zn&Pd^GqQ|VcaDlp6^Z;%sh7cqr&izS9+dV@2*2LD3) zx#&8Vn+HjftG|Zu486F94k})F_1@j>se};4etcsl(;y5d_p?it9;N(+FalvcR;teo zDXfYDgNr*19Mo+IOvNI%Nb7JD$kqrR$`LdX>)wia!bgbRFfgWO%pueGnRHwf<3S72 zFoE&ml0*Nbl}Ze|!*zE~&&8kf&3DdxBEh96#^|xxXjM8BJNt9IUBapV0A4G0r8p>W zwr~h4N)aIfeMMLdW_%w*ItLlLFG+ynt7^Cu{53AidjF?aWvXEgiw@0|f&y105dXo2 z%>|hWETKi51w?3;?`zF`2YD88yS4y0ZOHWYgQjuBKVOzpJcQrpoV>Ma*+<^%M^wpiUAew_TN@ z_Md%d-C^J8(CGg=8I;?OZqafmIIP;c17sme`oO;bM+Xx=4!plzIDO=9iN>%QG z2Z2zkOD-=K=BemzXcna5tna$=XT3DE#jt+_MzjLJ~vcB3wZr5ZNKCmiAnEOX|lc%jjHya7Q5X{ElX(2 z_U#*4g3Gk1<1CT)!ur6NEwlpuOctF}GFxa!X{!ZOyQxvanJF|=r8TNz{lDauOPpha z+s2CXe)nIUNS9;$hHD`EoBrzYr4MVErH9A!i6_a*Ls1x=yoZOR3+iDSQ6>ucvpA;0 z@_T0v8LIjLfhnkr7L|&C(G0Fz45erCU-EdaI?wIm12s)c0`EX} zYZx~_7C-V~WayW~UZ(Hbf`YqPoY=LQHcH~>ZL8;)!M{s+Nj@0A!j8-QsT5Ra0 z0$lO-D5X@MEAUfe$MSD-^q8%^FlY}e8h<7HcnLX?{qltpj-p}Ot;Vg`$c5G|kSbq~ zq@aU(lTngb<7BM8AaXRIi$^AwsWU zkeBy@{>szm+*_4vw+t=y`50U5Do>o-Qo-ITi+$m!qB1%SxoHjXBmid*mE_xsYUDK`b>~6qp{@+z$Q$E`3=GxIc@?=Y;b{uo3mB~3@8F7X%MCe zh*V`hh`|KpiBmywBTnDpVNBr2e8ka}y|ddFAlM||%SSC429_nI!7nfT3@dMc-yuc5 z@s-uw_%vOP!2ByWzsK1%s2ZR<)t$(_tUSysY4TG zBG8n@b`o8*V(=B`h%B0AIAkii~!P3XRh35?mEwEiSv`BUiQj1r1(%sLO3%B zVS;Y&ouoMFr!cO?!*-OEcCpt&LP0&bU-yEK;4u^@wxyr!uWvxT;qB+b(3Zk)3(Q{U z96dBREZiaRM4x4?Dwc@K;L_kmyDZ&=ZJ?4^L0VxG`%baw$7kU${=;ka{dlAW{@K%V z)2b|MF9_P~>Wh0HWT0zuzbZa?iwh+u1bkjQpru#m-)M?|*{q)RN(e_y>oZfk`rma# zDKjk(L)2>G-sPbdHU|Zidm7-$rSAn7HPcnqT;#4_uvKvA&c$~}j*d}J=9H*eVkIz4 zoAgKc8vGOu7D5D>_Tpg3Ur=5q&ew{i;2djq{(Bh1er5*UaE}XZ9R9IY9)k(b8>|hH zQg2*{KJ|B_mhHQnC?!O-cpxH9>-oK`?L9p9hEm)NN@ z|I&BqjX$=|{|V)8A4gNXz>(j?kaqWh4X0%9Z>-&9L}1}3!OC~X?&J7xUU_27gVmD! zks(CY{0OfF*jdL7f0XZJ7$5TPPb3L4a~_7KuwJy~p6a%Bd0aSX*U$T1w?AUPCFNqi zVGQQT)-wp9=`X^`JzdL;vo&8eFxqSd*-}pqEir6GazUgo;GdXHSLv6k{uMac+DIhs zNTg!<1Bl;*cp1M>!-`Fpb&BDOl{Or`B<#CFSN48B_ACJI0!wFkjGD2>M&MV~ND3f7 zgtx%gF_w|7J@`Tl>{^z*F>fWZeG58jGWdoM1?KA#@>(uADca--A)#8>$%j3UK%s=$ zpgdABy9+uYgudVAUh4JVQ$Lhx7G1X6TXjojqwL_4-B0RTVXEFnf_Z1qyU;qNiq#Si$lb{_N9_YTIOSeRoia9|6GX8e|emSd7U?ZtCDInz8w zd?3>X^e-G4p+kMRJH=9J{rpR`I0)k4zYSYmxxtb}{k@(v^Fy~^SebPmMImz9I3X_| z1$QO9yEVLC`u)MlKfNgk0RX=i=<0L#U)qiG2pZ?_+mouB*brkxPHwL>voYuqu+$!t zWIJoEcrzR&*-!X}fmE4={q-Q1m#K+w_yE=pwF)L)tQAluwxxuh9YDf5>hMhZma15h zHWZK2;y9y1qjIm;9v!z$n*+ELX%3;!%hq%N&=Q0>n>y5FRnPS3Dw#vVO2Q}L%;3l; zo?huLn0#$}JUF{(p7ft9VSbT&Ebv~^c!(7cg$5?s2?;gYTrQLWaXMJ+$8vzW!RyATTIKc6%_)F~DVpU;p zzns(hMrNSjeSe6I3wfY4-6r|p9(#8;ntX$%syVsM-Q^Bvf>x!Vr~7YPI1)3mOi#Y) zw# z_FLsZq85@gWn&s~A7b=?&g2p70e*jpi|k5FzJW+Kz@Eb$N4v9q5o>iyL5 z*Z6o`)P(at-W9YOHv6yo@cPRu%?*7%(xnGJ)lQu*soqrzW0`|$I%D#Qmrmn|JQNcm zsiv1ycQqZV@`?jEZz3gv>|yVl<9C z{qnTjrxzGHmr#U~0=>{oa0npXiVlU`%O9@^m7KZpY2D+EBV-HB5BNu6=KC@Y`#(cS zileGWTEM2M3x^tJB&&>CEx^Ea(k#8e2djhnmybLk$xAl#N;I)()?V8GrnhN$x_6EeY! zEqm&XXI2YIc7MPR1~=pClL%2_ol^}f2|O3&9YPe@0OD&Do0k^Lit&#V8z4OVdn0D* zLyGgZMewNzj{^qn=6C_NI_0hCmA3$-b?*M^|#- zCa+1|ntcQk&8y|Ru^ewt+FqtIvvUve9BZX+k0kpqANClTuy1%)aI*$}Jf#!Ya|kE% zWhq!-^!$Gx2a|Kp)H8rB)x8s3Sijj zuK+)&cEKz>R>`L~C93lQTK`NuYei{d-~mD3#YKlpy@78?$(h;{z%Rx zY5lU(po^3y@EEmyra*~q6)*_3OL<1oMv5;eu(-;AvkpMnm174BwvJn-eSGFJ!&{&$ z@0WP9KV~^e^LE-^!SMr&4OQK#=-t6{H{ZM4w}FkH?e*wC{0*>*EwTk*}MM7uC)D=a!tqZ`8I- zJJHTgf12a33go3fR~k-1XS%F!e^fJ+`u1R3@b9sA0n6^frgRbY`79wfwEx)TS*5-w zLlp%-Ql-w#Ums?+oqBULi`NXBge^g_gAUue*+bx|t}B0CGI*I&!!x`|{~9|FQ*LAg zgjDGZ?@rO;!zKl~ZELYF3UON^`UJjgA1i?{f17{0aAC3&3VAk~&8g(yVsO{j*2ij> za-Y88Lko6)=xfDFB+kZ!Y;Mqyr0o~&{e3Fd0!-e5&geaoy!w* zk7xAg)t<@?Hp`Gz!k~?CXCKYi`Ypa{uX(LA|NDegr}TKkoC@=?*p^seey0a*=EQ(2 zDQI64eJ*!>FA2{;Y`*>4L82L&aNHd$rJKPSZ#|a>1Q4~Sb&o%0R3`N@}Uqk zlq5>Ef^o|+a(`H6S0BhuTb=q(?xDL|^YN%d5vkqWfVCabtXx1evii6|U8bi!V;}^7 zWJpj&K8P^@VP=JgiM?|)QB?{Mq25b3vk!pqo8D1aV);EQ)(NN|CQOu33$>4jzYI5; zYwK}8aFlmCEp9f)i0T$f-J++E8GhK~wNxFZ2a4Tirk^FG9J-E8s-=mPeiA2Ld1E~5 zb(ygI(m^kXMM(RUCPwVAag;U{)!9m|S`U__eoGlSDZ?+syp_^q14&DG)qpR5VdXgL z>vC5-|3hC&My;bk6g?)#Q#7z@(;#Cv5`igP@xuyI(|){fVC%loC4~2cg&3tplza^V zE&nc7*l2?Psw;%!>K_u!|0K0lq2VIuC_RQ;2RK=nzvuO(zet?yuAlLNgb|{YeOAY_ z_n5AIjH{V^5tIi5Ch^43G^?WU_Yl&q+-oWco`Vdr7AUrU%9(N#G)2#}% zCO&nkf2{>Vh+!M9g~&);w1$5|KKGk*FZmk1XG2Z9_p&FG<7iEi=3{OeZVY+(6LEq< zL+0z{cNDFSEDU-!6mMv6$0UurIhd@=qJk3^IXC0X*zgpdIiIYX-_`ZGd}?cYhin=r z+x+^HSzp$&B?-aDK?*HWDkT3J9ut_CZA=v*b_mf#-dG0_VZzi`92bUp+5~d+LaTAN z&vycoH%kc?QjiT=9>)BSJ6c>?ArH3j2pS>T8pMYL=fn7+5+7{#Lg{`y;*~j8>7&!v ztd>)&Ih*2vMI~UBe$DCXAGz+s2h-2%G}DOFj4Au9P&N@0!_R-_` z(7E5zf-}uH9&bU_)`M4sLs$rKDbaIh#fj$@bCBV5Nwy^T$eI`BpX!==$6Hn< zq2)m}t)xK~Z{}{3koJdnVfv)7`*pP&In67FAn*}p@UA~m?#+wzd|X+_8mCAO%F?@$tX0{856mGaETl3ARJ*iphkdb;U+ph}pMFG8F z;gwkZ6Y|pPLhqRk7c4o&^l8naTCvtfx^lwKPLZz#uFLcynNPs)Zm^?SM#8 z2_#&U*eN}%OzcF1L5b`^xBow+w#vVzUXHSUthsh=(9=20gMRguFsC@Ar12PNu@CoK z7m7*SEgBpBK9!qhk}62`G&L2cfp7|Sl7CJz=d9zLk0T$bN@AQ^1J%ppVFeI)u6&3u zUR7a|)zraHahf*%e>9zYJkx*l$2Zs96(x64(Tz&wwz-sB-!xrO%(aq~+s2sNkc3=H z<&rU%=;9h-bH7*EhB9I9Y;Hrw-21)z{T{!6{HKSKxt%7x;5hxLYr@B=M(cDQX zXcurNpoudDD{{~=-WsLx-VAXhw6zkHT^}Wa%~GZGI%)`NobnqQJ+bNL8Y#x6jaTON z^l;7lxj%$FY>%jO>x&$QnX^y^n73t2Ke4o?y)2$z0hZVf)cs)=N;6rvkzF#5e&5c+ zycB{qzP^>HAxsg-2G1<0mf>w=x?u*rLHp;{!>_+TO(UL%ae%QYkkJ9DWkm8H7VQ?u z&^tl|i#jh3YO1DfE;uC)_q&=63TbRXO{7e!^Bp$=H>6uu=m$nbybHDay1e#>ZBK~b zv_+nND+TS z({*&?YI2k(KOe$ursgQ~^{m{+kW#WW;eXqy#U^H<7l#vmhV3>7@=^J%6Ymk_PYXlq~D{t0= ze-s@1Ae~|Ak7(!9F5;d#j}8&!B6Kv^#iM8onU!IUK3vll<2H&kk7<3a!K5*wO_VZe z{+ji~P^2ur8Kv1yR3La3mV~(r+TO;g+s#RCA^!VZ@=+AcH6yvAA4%VzWL}(N_@MRh z+UHW1!Os_CKd<`a1bRT{|9HL89&y;q$G6=MQo~iTut~MhUjM54+Ug{s#S7OeeMF09J!B=DVHH( z99j(}eO-YCK*;1b+rr4$7W4E@g`0k!U%X;BL@>< zUY$4kS;!;EZl+-tC0d}Qiv1Wz?6wBo$Ng>|E2+KanGL$(%;Vaj)sRiKzUc&~C%aYe z`z8~V)0iPSvO%TswEqyO33p>mM(lG=Wp5bSW#}Vk=)Xxrtw$Ts)z{p?V~O?={Z|y} zMYVo{1Pwh`y}3h{o%=n|(Hhgs{|OL^fe&rL*up+n5cuwbx8yPw<3^8NP&L=TFW7ZI zu?TD;$gm7+uTByI@Tm}u=tYQi(d6G8=K}9RCNq~rN#za(`)Fdk6X>CJ55bv1DYRn> zd)!Rl>H(&X`w^~=!o_H*j1Dg(1kL*{=I24qAzs@(85(;CsORc>zqOLZVE}BJyXY!T zm&pZqG<4+#*K`d(o*OOZ_d1||xafvr&woSaC(4xzNB5uo!(aOMu_6K)6g{^fD3i(C zt<7X$i%R z@jof(m=8yBMaD0s5`a9rJ#)IzM^jp!37bY5SD|n$Q?b@6F&U_C)QoVpm@c4_>~>z>y}7cpesX*Rqf{qkMHA%5!jgJab?skqG4Ji?g06W!-NggS zx(Fl8->naec*{Ul4W5aZoeN1nRz9)5d@Q}wZwy@_=K3Yv&WyW26;J9}NqDpa0KDGA z&oe^R*zVW+WGCfC>yQw5(~N>yXLa{i57^P?>bGc%&0S$`cJe7;l8zGD@3{8Bcxz=> z$h>F12RfVyoTFWtz(GdUIBo_^(d9jyc?r8E*E6suonkrj1Z88fS5ozw!qvUv26C%F z6ug=SEIFpB+YU2Zm9CxBr0Dij7o?F~t~uucaMXjoJrq2hSjSL~V!Cl8=j$dK$+}X0 zLq3k}SM~gUoM9Dk(_67r6GhT(Rg&D4x*g*W7~(X&G$cqsNs)*W@OfZbu>1;zcA8+y zSPL8($>b{NC>g>&X@2`iuOhwD?QFEW7WZ^p?FZ@*HLLDwIIqD`tN&*Km_uNu`NE`b zaXJ?&^Yh%3H#Z6HmrZeXSL6IguAhm-f8sG0vjm%F_Zn+tPL{H6|4h(-=K0Aq(brA* z2!~$Pv%g^>KLjwlv3kLW#b%}6OVNd-{WNH+wIR^H{Wj1Iz+xUastQr{WyXQr4a6=jOOIB+-fq?Yg{upP`$kP-UHNU5$72nW#KqWcgdiT;pk%bdGq?|wggOsHvL>w z*%ME%ynq9DI1$?Z9UWlh2AHrr6ub0Dfw?j-B3eyrBfmV&_NFD5$= zspxj+gt1$&z2BqN2}D?-(>iE@U8>3Vy^0F!kKbsR60tncs1Wa+>G`xes1`SU&LmfF zWCA{8|M=9hv+YOcLj&NV7syRMesTb*4VYOno+;?}23u0yA738sotr6dYB~(5JHaw@ z+u@PP;9Gv^C6mCn^UxVWkA3hfSe<)iX+ZdGhar7F=rw%r3|X&d$J;lz9o()j7qOsP zV3O?7F0LESavdHEl_3j4+=k&e)4i}zx!a&m<>@&#i{xV}pzFPI7?JO~5HYT<;_!XB zm14Sg3IYdFT6b*<^n7zH$FJARpVAn5sCb>a@gqU~GQK#788qV($d#M-AjqqhaUXJc zIY2t0bvN+LuTTaLm8jN)G`|w=h{G%C#$q##Xx}U!F8md!RJfW`&=xc5+ItT0Y#^UsZo z5Tsw8EKQd{b{V;|U45BSv)#-a-W?5DT!J6P!Gk=qDDgh^&!3Ob4m5>Th=(v!+M?T) zCD-are^DvgoNd)f7`}C6kh`BYZ*nwZ22h!Z2osV4TLtM0RIV+St=~M!NE{!*mZyD` z046QI-y{j@%l|Mmsz{c;w>MH>5vL%ZJ!mm8bpAPrJVY`3NJm12N@@m{<(;I{mel%b`VE?49lsI0G z3f|4bey>prCu#ru#m8?govk-`{E{u5F+>pny5GBnaCZ2`BWe{t(LU=vIh=0jTPCEX zC}GUWs!MjJ@8|1YJjrG3P(&SCuPbN>@Zkvj3_NM#1=ls^j6;pUDfOON!`HRrf7($J z>PtEr!U+KC;pkA**3MyG&Zh7zCo3yKiDabfk2np00{fvmWcpO6({4+wE?B+BLXn{biyA-}*hqx@eN9ur3! z!rs}Z`)mCC?(ooq%$uR98YhV zy~r}p4`GXZ(m$R)Ihr0XZKLX?|LOPzW2xF1;arLYp`DAxL!(V63Bl8x0sa4>?q^_k zV}OqwQ;r~EoN(()BXHRc5^PD7I1npfb^z^W)=jlaK|?!%qYI_osR<;jJxt?9>#Xf8 zM57%lKp3rME84q2TYt^tA(36?n&8|TZZaCYtc)$EDODkGwy0bU$y`)_p%LnLssb+o z0KGtR%ZTM1iC@(Ou392cB2`P)c)suHHqju7Y>Kk)=}|v|EP|2iD7fS`ko>xfM%MW0 z$qQOH?av~a$CZ+uh`;YXV?2NWK0V3^7(%R8sRM>~&nA`&l6a{Skqj%2H=|0pNdhT^ zQy(RUcpSTKIB+-HQTF3c)#!K~W2u|kJw#a~FO#A6gC0RYf|yrNHy-$HZB7XctKA6J zw%Uj{5d&G2R5J9+G;CEemmejKY2LbRWC8Au#KeoT)}ww zrDOj~vhy%t7*CSrGB&;{ZK+NwWGL(;*C@Jrt?mwXht;h^=1vTA!eawC*0!Y@T588hWyL|>f1R(U+KvnT^)HqIM&rP5Fr~gXNDN0 zgBTEtn@FkdVKi+0{Kdpbq^PHlIHxswj_s*TUqB_w&pe=*Zz_asiDKz@=AVc-h1!ab zRPcJ`qGa*|8P~SA>#yr>8+=prkI2Cr1@#s?CA=Kkfm-oEP)^});T=bHkdt|NTZg?^ux za!j@Xu?x?9cLY~=IS!p%P4;y^uDG}c39zIn}cJ9swo+E*F2`~g<3;No_isrrt#l^4R}r--H`b1 zUBt~4oZSau@^oJYLkx}cefxtE;`FAlB2*@@70xqsh*YFqSDPsMcQC@eD=gz2P9b^4 zuBtZMj**pTw7F~ynAmE5t3OD!3z_cWV#{Z9BmD@f!qkt8cE%NEZG}RRjDE?z zOLF1B@UHG`cK6AYm1FL^^%q&nU$2s4pItJ?)CoQ5_r-%<|2D8RPZyVPC%0NwmNK|p zDI@FWfSQPU2JuOoP8`{kAzm%h#wH9g1uKv~6J;x+1*a-q?x*5g!AocVxIL!nSb^Hl zY&z}0Ra_VvN(K1O5Q8hD*8&RmX8KKANF~AsES_=0_hm?2lWNfWjoO7EwR^rt{x5Zq zVZk8!TgicySB4G)3T)nH6xUKc+)%Yjy}bsNsP5={NK?j;wn!=(@T6owbKvr1c3L(5wD_~u9~ekY#ZzQm*=}1h}!v3^k)UMPdbXYd@tp*YkypZ z@;;q^N;Yoz{5PmBCJV@on_qErg_3i-oncWsH>*bUzCTz&sScRdJgnqm7Ka~8QQ&_l zRgykE$XAoJ6H>S<(ps;0kwcX&7u)8>*go*ujS(Wcw!aJxl2iSH{3MHarhgQ}Ut-tf z^oonJYnnCd4?Os*^#{COEwxhmLs{nRuu3x_OnPtTotyAE6HZw6&>a8v2gN<3Ylh-l zo0mQ;h-869;x13XvfF(PyM0P)70Wgl=(pyjbG+1Mgg+N^@7{&WLrE_5R0#m&nM9EU z%%wuDAH<`tc&U%~g$m&i#a;HvpSZu7C|)$}ICtgJdJ+8TJnN36Xbr#x46dDB7n_7- z{1e&c-EJffOB&woJ@-K+*b)R##De=#Aa|mtK3`Dg(q4FM-cgDEOrG{VmDRwK73J&3 zoKe-qE)H(13t&P z-vx@u1@n<6EH%FYOL5oM9yzCoQwJQ$%yJ|9*yEzZSMSCQ&2+ve8|q@-uK4@0&S@2; zuGBcc0+=&w#NLVfyD<2GrF!IMz-t=8_MShf*k1I6K+D_STRyxC}6-$fp`L8V`sHgal0ukNG8wsj}tW+ zk`ja~%L{z`BnV^dV_T(!VLf6NJ@M?*JqTK-0$HE}!ScYsQ6r2~c)t~7zhvh}a98@h zr!lT!$p3Lo$o2RU6I@7h)K%;KLEd*7Riz{gimgg?g{ifPTjamDez*)2x_*J^CfubN zR;$iy|Gjj^p-lSO^r0ep?8qCnPe0-Er&S-SlUL5`^!{xi)C+|k_nt7I1eAVyg=q}6 zn`?dcNJ{@>#l+kd_4(@eqw5iF=}%HkpuRZ<>1|>dF7tX;7V@KWU{xFWa)UjTf48shI6?ZcW z4W+1hshZ#w6Wx5x4WB9Ul_t#5nWkQ+F3mrj6PSLag~vo@t%q6r>7-B|MxERM_4w)|P&u-cY=gvV$DwjpkaPZ)E?IG+Su{!Z0RGD)U9rB0GUlfZ5sVGooxr+j+ZBY)Lg`$4{nT60jFccPIj~$6h3Qy9ioeu0Agznl)aRolHF3M zI+51dC;ctkb)TUt<-uYApLC(}y^5zL#rOF}Dk8mdHJ|ocju6&2{u0p4Ol|s>Ow_8SZb71)V)z#8bs~`cWew%_imdORr?2B8~_=OEQ==Wv-e+RwkYKL6-qI z7zr{N&4q^kJVj>!FnXo+*y%eEfQ(CPs{&uu9E4xB$!_~#Qv0@EBEU8!&{bL4y=0X_ zNqn@KyRsFhU3H*;Y;MpQKU0hRGH!BoS}SAsU_hkn1s@etrUrN=7vbzO4|dFDFesp; z{>L-!H!kZHvq$2Q@|R{VX%)dT+7|R*Df-sh56!HOdKB}Eyke~doCf18Xb$y3@-rR0 z1hYBwe9_gBLrut$&Kd zjA<^K7q$rdTb6B`GQ=1*s3Q8_oY z06h`TJP~sglw^&E`y?%#pELpz@`Vd>>|o#AJ$jh>_}~R9V2hM6Xnpi{VJSl8w%!`vVWFTsLK8$Ma3~S>!fcvy?M?mdo0=gu~%CsVKi=Zp(41n zPYGxIFF(sQEu8*Y3EA+Ep-^DUNBTXc$hMO;Rr>LI&)Gxy>qWU@?=h<0l^Qs+2X7({Ok?9)K)wqWzHA}ORk!cQ(Ro1&@R z9MD1%!;c3%ThY}vJB@0g3{CZUr8f{Y@(OZ(y8!y#o*UGzT~lo?;S3dZn1Z(qxI{b` z1I8{=P+BB@I5Q~kUnM20+KAq}NLJcJsov!y%GPFKxHy|fmmX3Zo#}cX6nEZde!Q}? z-Qs$@2l8s+ZpdIJr_Sh4QKM(QWq-D=%CWbyeG$eNYDPW)f1}^^NB%xpe3HQ%PGE~-D0vsl#gg1zA&{#Wb>-zGyZdC0lR6p%(?Bc)!?*dm**UX(4s7X`M z*0|6$*Yl3xg0Dj7k31hf*r4E(WAMj`a*20_1Md%}#o>Js^HnpB10ZXsbxTV()<>(Q z$^m7gOO@bf#y>yE@mB`zuE#83TD!mBSHIlg^ZBwkd;>yn8=8_iT>9ID%}f?(Y4OpJ?xK=>edOZX=w*T!D}Rys>?)#IFT=yU^M8 z1$&KI5VW8+=zi8Qr!_D2p9ZpYV2K@)*#QNIiCI31hq@?sGMInUQ-qp2m+q*8`uFa| zVx+cwYPMXs!Of`-&UZ@dYv3aD!-Xjzwk>U_#m>~Yf>Yqm0H4l!J7nApy7KOOoEJFI zG4>p%j{Uq2GKYpHK%T+)J_*Gu2Lvf`95XI7${&$9#6u7&u`l=lX9|W`AD(Po zjQJUYCRO%Fj7Skv)M9oGehjUbG{ySzbZe-s=e9+}omY5FVm1!H3%N%ZQ?A!}n*CNB zVIVlRByVuGsCwDAkXzCEhd3QPjo9yT9?db~mkUm&w9JMJ6evHpHy6jd2ajo+pH)i0 z;LTM5y44R#rmJWi!Z6rqDKKj(odx98e|ZUX%4$|IOqqZ=>k4KQ$3cScccyTrgs1{R z8a&zWB2a~5^nCQ#5ae%QLejb_)12H3L@T*&jsF;lqb!k&EXN(8*>QnHmQ( zDXUy*y>Mqda}vN_#j#bdM5tQ(ZGj(W49t8KFea0M8IpT5U2o1B;c8!577#AarEsECKlVN~>{O<)h zQ%J!peHGU2UhfQhR(E+QST}xa=jKD_QWj4)H}k0KSN6siMGdOhKIf{^k;)Y=f+mAF ztD7u8vpC4uyFfV+n%PMMPs0+0)8BWI@lBXyHcf?Z^F5&q6N~H?e3P`RgwPS;2&lsNzje0$n5t}<}}VOV*Djzrd^t6K&3d<r@ zbnK>#NyJ~nu@wg|5=T|;QD$41sp471jYP5%Nl`js8`iT^7tZDr^ZP|CSvg>Y?v7PY zXTsWo^JQl0EQVm=i#LRALe6?@Da$b(><$@rstj4*KK5LMTDwlTb$yCA z45fSuOW)Hx0ne*LsUz=I18)XsD|H`f>6f*;ZYv=e2jx_4SWXS;1me*R`@8O&m(H}3 z^p-RKZ=sLxS7^|!xn_`x-?f@(V4YCk_G(W^&y$|4B#&A2p8T@-4;0dCDR zM?!+Ka7FSX`KXn^DIenWDSjsQxq9DKtO8h#*p(hy$=wrDJ{_f%xcw8W?D=Q7sDqy9i|!O`Q5AQEx?#TLwY z&;|MKg$+g}Q8f`UTC<>I{Y8%XfND1!XbVC+)g>rwe?pOyA}vu2`RUNafRrdTQ~1Pl z_2DoN5ekE!TCG;MBi&l*zL#anATHa0H*gB{v^+iUzQyS~Hp6{#IEc}1P5!%4u%XD^ z;|*9QFHDswEs|K5z~C{I3iX3h;uRTR{a@GDwE)-Q4>7gk2#Z$ml;lU-F`)``yJ`)G=$eY_iNm9< zEIp5T(n15-RxbOdhAuZl%dYN$B_6&2smdv-4jx=Pc$-HD*jx4oNx$ARhib2PP=Ka zDOr(O<}|1y>zDqn1)&@2v9J1gUZVY(=+2nS^Pkfjc4Mw@dpQZavb3+$_qN0hOAoPx z2z8Vwy`!gt>f+HPebAC+tL9A!QWsZ`J-=2jCKCK#u1$8B_0SKL)jYbmso z4305I_Txg5!N54_N^L_|c~I54Pw+Dp6X$Afff+(N+78<1RIA82gIxq-O}nxdv5WT{ zXPnb{8KI8aPtZ(ZH7?#NLGXF@^lvrqm9`qs{jq&;jS7qC6^mG3ju)Gu4XuCbixk<9C^%j= z(R@Qst!Jm$4v=N_pto~vu77r=rS#7qr^H!aezrp)SM9yc zcg=%`F}@BihP%0XVSmi|H!gDaLC2zpRUn(m0>&h;c0Qj8I?bPvz^rzEa%{Pgc~MK3 zTKUGip{}+wLVnUv!^?3lRp2otIQoeWrF7?>L66Ut7vY0cr0>nDK{GI~(J)^DowdG2 zy}K8I^#5`9X5Emu0QalTn`V! zxJ8fK_vli(61G2Dfu#>-h)IoZ&y;YTfJ?81V<}18R9@`_#S9@S(0>Z;H5W4@8DO%( z7>k6>e6PPVJPPcqSua~jf!#%>q?_e>TXrKS_(_WNVqpWB(+Zz6qaX~fL|I_?Zoyo* z(VxWjc*TiZFlH452!T%{*hOQ~ebxwIf~H<+c5OMkJZ-)KAO5Yj)#e z>O^r@`HW<8F^^wU)h>$0Rcq&+H$rC$25&!P3S}2*Jng8}RGSeUH-0BJq6Hqykv+4$ zM<4!h+7v#kTXk0N!OQM5V1C=neW$m-e%A?~`Lt5=gm31sU%{|MR8nA;(pDuY6o}q9 zbbzUM-e*HRCX1q6)@2ts_#t-aZuS*A_D1N&b_*_WumG*-TS;*$mKi~uVa=Q>6VC2U z;Olv(V{Aa(=SW^j&o6#yurBl`^RI*|HnfSeU^MT^cG5_aS=d#>z2N^DSERI1BwIa; z?++LRVFvmBfaYkV#c^XTRCbaq@>j)YKPK9QZ@TU4zcFo|wXo3V0OPvw_yLmHhXR6V zwhr~!54en4rEX=a91|Fmy2Y1SMt@0<1Rboe`hcvId-&8ofB~gHc#JFZBY-kM(j?sX zE2k!CpKWtmL!VD=#T!e-50L-TL&CPy?GtWGa zI~>}Y<@rxB!0Wy0bJDKc(9B9|H8l`ER)-e(Q0-l5X})+1l;16*Iz|{MICKJ?j)cUC zarn)5_rMP>jWy!Jm*%Z)igkTI+s=g410-<&?egh%&StPuYWSa!%{sN0+2cI zK4QC{AUsgFg)4j& zV?#BTM=jqgY)9*o-M*Ypc&v4C#h^spdsag0dMU{)sqnT95OHKf)x0M-xz1W44lRtu zgWs&=$9SraV6?f%d0Hc%ezud73S2HWQHXd*i48r4E(;d@`TY&~e$DP*N#b&7jNLlz zqEv|WH>1tWD=-@{#p%~!tqbXx(XvN+e)fK2QCI^X*-L5<@h0}Y!tr#m(a|T06-Ymq zi2(k-^s+L0FcG$YIr&hJp+q(4M6g>$G2A%0szC{Z6ep*cyYAe}2>6UJ(n_oo3 z%k$C>_ThiIKiNIl_mcd_+;8tl-O<1M0h)MrSsSxpGau!ufXoknH2vpo-(v^eV*ARw zakm`sT6}jkrDkNuA^4%X6;&WEo z+*_7sp#t(-ro+*Iod@3?4JrvbfT=lSU_RCh3#r=$`*~t?Huw}t>)_DKOH|KtR)ix`x{gaEMxY+oH*Jr*tC!Lsg zIq;eEvtP41x*A1UD3Z&}9p_Bsl||b+%iuVPoKB~rK>PKb7tT}O&`P&>rzvmmk%Lz0 z2U}w%a)Np`TTVP#Tt88u6dmk$5_yI4KJXVKD$_)CQR35~q2UP|Z@XUtZl~7b6DFD` zT-KNRKNt-ekty8)S=S4+O=X%LZo6^fKT>X}!mZVU>Nn*o3}VC*I*PB*Rv2Z$YjwGE zzctI}W`dV!dG70JzOiMT_7Rm@%V8~jzL=|GX8FDPy&tglB>f;nwRQE|wep=e?jpwp6@8uS6Do=%+%0YB3TM^`1>2^E z7v3+=`!^j2@%THwrQ#+J)xj~4tT_*(Cv=AEPuj^huX-5B@ZZO=OnM2bCq;WCBADNK zW`Xfcq#o;`D;-!=fC7+T!&uNFYcnz1H$mgT=>&iE+PpQAeDfnuy}^ksq>BEYWp|M0 zx1ws!yUZ%w5WfmXKk3|q@kz9e<@O1m?4EQ2Q?p1!JO8tX-1;NiFR@D0nrh#%L1I<) z1;}W(1621vL-vIjUqy8G6p{NXW!|5v70nmpyZFvnBFt~IMgYXDn?1Hwq^r6f5 z?ptoBq3jx?RWiCmb^Q9HJH&!Kd4W_JI0k0hskkER4TPzYSMc1cO0!$}8#-M2wfg7S zd|t^)*w8&RUIcO2 zd00IBl3!_Mmtz8Mx<|M037^}OvQN%tSsJ1csp9%X>780telV^u898$UlnczVZ;qkX zY|edkz9JV0+C54SLweWxqkXt{7-M>(afb$sHyGvNk*XpZ5ZAQ$6T9Ua!q&v&VIdJi zVGaN>2)#!A%XdfKNbd2tIIsdWW%FNdJd}|Z<6i&!yLypR@Z)jtD8oU|)wErcp{F^! z$NakYV>ZIDG+{rKcQ03#l-?o2IpzHquVnGOOw6b`FCakHL6I#{p~ZoPt_wT!J8y5r z{1BVN`UR|ojPMkvD(Vwycl}@yuUw9ud~*(~bwH8XH12r^ZWE+r%#PfuE_Do*nhx!~ zQxcxaG+wPqRNzHl$+aDajodvKxoe`wbxp$ywzcBdxmh4zRv5RHFF(AEf~!BBY%Rt( zt__QJ4&<1aYZ)@mK!YF1QEOW^zCnW@KFq8x6Iprofv7id8e`^u?b%E?(?kj0vU=fU zKf>6P-y8pg{=T&uqPrJ=neBISr2AR2pO-rJg#94>1*ZO?>C8*@pa9*t#o02^OZ(dr zF68o%#b~NSKTz%~!x1VXbnTvoReeIj1#f#M(K+-ffogw{Dliwr@HoZA;G5-}e#UH< z>E&Wz1gTH>HkJ9A&}_Yj)~79nidHgyHKL9g&pz&H3=p))u$|dPRd^>HrM{2bLh`W1 zDb-vs)$I1hAp^1H^e00?mJnV6QeS1#f?d{sH@sFoBu9ei~AByXd z*nsZTDq@%WN>2`Jr{6X-NNn5QaqHaFjbqqx1rH3LJG$`SME8Q*c7XeTqv`(YIE3-Y zs}@CMpf4}ly)vUI^h+yNAC~N1dS}`wc8y2jc<(-#Dj|7w)aY`krjf#1F(#}p@a;)j zIWdf67$8cJ{UFh{piMfSHWy4!5;qLRCD!REC+@a?;ZYdQ;IpM$4!&!V2qc{ewp4u( zG8~aCn!DV%{7$VweP6LJH4fE zd43lCKlzNBz z^4TkNzFBWjZ%chUn(ZK_L^niQLA|;Cc-h|-D|w!uQewGmY(9V?mg4Q)8}Ehraid$; zAWhuHn1={R<)7jAi}yakcveT{p=pCnUsOjLcgoSiXqd7tI5G@sb7Y#!7z#Hd&n+g)YRi* zSwjYE%JdRs@#TFxm$=S(Z|EK^w9>X#)8Ju>=JNJNkBH{+7P=U!k3QkN+dsr@feGEC zg!4GFsZlPZ?a%CkQ>0=&FT_c5MWX z`Gz^^_*K=->K-ld;S6y!VXA!+sAzh~@xZ3z5vW>&%S%IR2MKx~jv9xK{@{Mp>cj0` z#KUIF9IEE1gB^O-oWMmd1BWG#kfK1>=M!E2^W6G#^}Th9#lK7S-E9z)2Zj!OxUjTV zVkd4_yuw(`ys0FX6%<~NnG&(ElcsytYXrpmdv3)Z>5ib3V_L04LOL|Ej|Nl2FMqy! z#%({%<~zl){tD8!UVml%_;{dX4e!+Zt}PLZct>KwBrtdebgZin6y3Di&y6OVC6JB8 zY^yMivuS=_ETTj29)=a~1405n!Qg9!kY(Y*vm&JbBl$DPz4*jkHmPK{qKLnnB*sjS zP%j+R!j@652tjp=6GHeluL-P`8U^gz$h0;TTMQu7>HPJUq~1)a{oTF-#>Ltw{>!g3WjN&5g?+)5sEB_h3;C8bARm*l9GNr6&KgyuyS%BgNr(Lt;QszXg zP2KXL;Vrg|{%4EPs4KN<_35Uq_pjp3AjqN(92vg5v6Rq0FaVFAe!24b&dDar}3582beLLrqUy(&IUM zT1<}AU9T^t+`p_PKI|M*sk%%(d@p0Cs~lZ>X*k{p$^e$Tz5UVpnvXt8#1c-!+c?fgWn z;y&%+mbcS)WH3NQf>E?k0>K_In+^1?$`Xr` z*<5|>Hy{>$E~H|l;qpW|tkimt>=hb36W)Vk7GBA3Qb zojtw7;@(txdn=)qod6M3!Cn>_d@WUc|5wOBkaqjBu`VUnz^q2yN|3G4$w+Mk-m2)9 zJv;C>Lny;qBz%REZ1M=w@tLnA_lsieiOrJoFJdP?Z7p+px!0GPDE;V-(9-3ezfQl1 zw*F-#DGlp;OU?lYG~RNYHoof{p)YR!nUFpSPjA^rHZ`E0x{S{279sOeI2fm4Eqp+1 ziTX!$vUz4@G51PcytV3daM$ds8-|Ndn*yS27wl+3II{btMj~C6K=H%rM?GhC8DzSw zP$y7SgD34L2c_zz(ivQ&Ow-I%e(I5zEO9)Jl_~XK7G?PNv)_8QQPv7CWM46Gq{H1i zJlGV3>pRZIpunWn#?6@;%G!b;GyNqi`OxO8g(qsihhwG&ZF##L=)YcQ`8l+v1=C8) zYGk)4bAQPSZ~KOxO$o?-w0y*CgV3%7UrD4=P&qA%i|rz%N&PY2-}>;*@tvsHJLcyf zEH#V2_sVEoHZ6pZQ}s1opL11Bd4~4*HK%xYDdChTEq^%}>ESkzj-oX0gK;28@!CBE zMOgCFw^2+JC~|qob1Z|Kng5%FoI@O@w(~K0m(oAjOHxtG>CfTzr}c+8L$+Q;sFCvl z`ZeVn*Zj#_CeR&!jbZ(?)^}!S{in8s-=2}*5rM)Z8TCB}SdXvkyJ2J!9$Su4)WZu;cy}4OS_d=&&|AQ%g^&$+>cuWN^0+ z+?q>yey}eeMI91zfjA>{h z*d3$(k?b3Bv?pTgH6TvS(%e&^cUC`F?_|O#@%`_JH%gX= zJ=^Z_Gq0=Beg@#ySUN0gLmH26=}?RtS}!A=pPC9d^-4DJl1JnGs@Cb$`%98LZ-W^SQL{oA$60^JBIFrd@$@A5{M~{NlR>p&g3snQrmrpWFR0k>GFH zoko>E=B&F&JS%D4x#mc}Mz=CTMfyR}m#d-}LH0LhSfns)2~C;!exjLz%9IYue_(O< zbBcm9@sjt^?v+Ej#npjd+T#TntOVib%vY0E=Ug|_Pb(az9!W)fsJKVUK0k(h)Fpz~ zB>z&P$MZJqFIB8`0YlzAu4d}p!_dxmlQGLXL4C?Z2uV56A0K!$^uvg<;VOhGPwFUB zZg6+jhq(?65$s+ups!^==$&&2mX`<*q@B4Ap}(3FZIbWQTu}E1uSjmEz*Njs_f`vd z2+wKC|H^lgxrn#`)r`AlCo%i^(b+`hO^|hl`}+l3l54>K z1FINQ9vNt4SeZ+#*S#kuPOsPcV~myid1+Gp=~xa?;gHTCQ7r#GNJ8dGJ|NyOq&WIX zyVpSInUNkJQAN)fcJc(z%g)1n_izkowgkD-wZtpXbRTo&0@`V9KsKdz+N={vf4bqW z?$S-VqW0TMz;nJTM&1BDwr;|OHHFlU-$>EtDAVKH)65m!PjD_$tQlZ59X8~k;`h~| z3rjp`_e}f8@*@`(EmHHtWkfS1`Y56jl<4^hE+#Fe+!a%0FGq=$G5JGXPejZWPu zcj4Xio*qy_Xzhr_|JvOyrqnI8l6v~4L$@})H0t1QTDv>$$Zd2%urD_lyijBqUNeyQ zr|cJP3mZ@7eo!Hot!c3*K5vH1!)OT!?qB??4@D%O2rMm_&Vy`z>5Z^4J{Hs~> zxwf&~5e$ik4VU!ztYQJ=9oI+mrR>{2ofg@(UHh+*@ zv7%qz2WlM%8RWg1p&6_%Y={x?<=PxNbicvl@@jy?UTWb*W5p8$%0>`HI$6s8E%*$FIEc$=eCf@@hEPJ4al5`( z#kMy;k!0_}*FW8L*FH700wrZ$pkU;VQiUMc>o7+8iZQ-Mx|(XdL`OhZ{3@&ko!9fE zLgx%D!MdxvCCwR zMULunrz<>Vwuc!??+G)zfEgX@TJWzbmrwAxWgZ&jB6QUAapUVA*_2n@GcnV>|9Rp} z43mF(4yuDc-`M(aX2r{6e;y7DnW6G}-aFfn;m;;3G8xM*)us(rhL~gMOWpttN3K{1pS~c4>_*<4 zZb7|^R=7yY-0nND=yY+Y-nE^i+VW=z^*2L7f_nZVYai>CHV3C~o>@&1g}_^aFNg3K z4&;3I;YBI_6zSf%ZDf}SgP{3;iBcmjuoOOAxj}D!XylP08?yB|6yD&~jBe$KQ(YF7 zT7)uCtE>P+&pkyWVK!Z_bqC8CMyM?^FUzgk?_!k^cF(kO5yM`nn@*tHrs6IbbF9XR z6+V@d#QIsyn7(J@A%UxEPouWVO{(7ypATcfH4<5w?eVFGm4c9w5f?{=qjOVbyj`pI z_OGSbM_)#d=1fl!6bDzMhl&k|SG^R;&Cq1C%c#9>bNkO9KU zBaDYsjv9H}*0fL{Je_>x3?oUjbGt-Z(;C^De*0=l<+R{|qS_Zn<}@azP9>Lac*(|} z{}Q*gz|SrPU(A?Jv9-hf`w?HxZ7u+^_X&N1wr9?T7u_6C;o^G2uTYX~=X?8bfX7ER zkQAfmn$17(KcN@9J=)n$5J<0ViDxnA+NF`Ltabrax zr;f-u9V9t!jLjU9R1#6nW+9yz!e-`>b2)6z!^|-@r;Rqo7Jl!~^}T+7)OB@TUE+0`@_&6aBp5&yWK%fN#0j{EBaXxW4o#l()(*t2`TAr>0+Jn-ey)q2>FX+R(4xK)q90b3qc! zXN=FmZw>ZsrtM%7TGgVBGY^oWs6&ppPl)Xm1d;AJi@HuzEl6 zp-QU#>U7I|^pS+R$*JwBl=$st35NKx(;Yc&ONCko8ZmdV>4yy3am`dtt?j&Hkp8PH zamdmMsNQUOFzNfp{mj8B^hu~XPUoZX0jy3A2GqmYtryFpSWu*xJ+}>I=AUyifaW)a znJ)_WUSRbyz|v%THk^DdEo{zD7kLkwsNP3A>pW6keg);&BE!ry)`RBC3v)vrAImw# z4SxkE4Ze*9I8lsD@9-E}@%s)dJpE_ylBQ!_zO44rlNJq9=E^KfWo1%Nuk?G3#5ks7 ziiF%^`|gi(9m!6LNcZL*d+D}2l092X5}wT8?DVYv>@JP{9G3%Ck%xkM8BeD%C9x#6 zZkeP%Va3jya;!@tkZ22$%>!P!&T7X(Z7o#xV9i&+PbV>;t|h0JjC|j5U`S?LcdYHK zN%V{e`?EnCe1x(57w}@kG0{L2JqB?t79bQIOkiqCe;-NUKuhivcC*yqm==K3qa$! zYXS^~HyT``3-f1{!GDtJ*1+zHjx%tHnHSR!Ep0M7o^U!U6O7(D_sxPqC5H;j)kp;$ zdS$Ytqkw9XW(Zmf@GsIg+T^`pvclY^y|%udiM2H94fXWjWw&JGIpT*8W;bMOr-V)$ z74}G!enJXmo#vPEAB&e9wzx-5gM>b@bGVRTYoYDi=6;Q~Oid_GH#5`rZFui^j6N}H zm%mWf1x5V+E7Y=D{ZX%PT6|16n>5Uvw1)3MKnT-&`}Pb-m5hbMCH}mgG=8oa?wsec z;+#AqGAlk~=IuLUYnFRD3CAn=VB}mxdSBHA@frzl=Pwvao>LWyXTS#YFm74gp5W4S zeZrloFA|Ubp9K)2L+OJ@GL&twGJR^XT3?io;YA2!D*|K}yGM>S+SZH|n(}L{PW;mx zvax$u5g$wS+RR`W57Nr=h-4GQmovq*${mI@Vn-+Eh%4(j(P)i5To(7|c~Hjo(*D_J ze}H9g9~Z*mvECW)>Ix6Z{KL;*l7i7>j^Qia(sbvok>+Pu^L z%UWst)Qms9)pVySpp15)1!K?V_~>Ws*-ss?MBLkx_JH7Ht*bO=>eAQ?#$A!q2 zC_fA1?28r!i7I&}?uMBa8_Sq;*R?C8KS0&9DI;Ker~{n(o|rhhRVKm*QyX)>f1-#& z5igDXZ-E|__%yv4FuB(%VUxbvAlvC0Y{|ezh9BzCb8T&nDb~N4n`*#(I*GfZAM2LU z*Na})93AGn?#=$Lr1y|JqF?kbm1T1%z>Tl1+?^3pe+{gjseWVO1C+n_Wkj2EmAn-; z@$Z-csGH&z%%Q|tV`aMcbWZ#D?V{hDv(A(0f?3^~8*r$;5lobtNm$Z%Lx=+1_yc?X zSCtff&MgIoSZ{^}`^r*@IOSEdGS+GYL*3ooruc62y#Ngb^?>=Px1!Y*LEEpQ#^Og* z`nIdP|AMmp6drF8I41Pw-x|CK!J3gU^9A!f$Hl3V*WL+x#z!QB9iVz=w(CCH?afK@ zQ^UIDHZ<_v!ksA>_(CDsOKl_bySLolHN5_o75eqjUhSM-1Ev@^`BuFPluDexhYY`P z&^Xm=ePeKHllqpab|=Q8>>(-wi~t1jG`SU^ z`3a-W)&kW_qI;MHvA~+shzwEgyNW>2Ev8cPRYDlEXTYg;p%X4reH6JB!a~S&zhW%8 z8Pe4T5EU^8mF;)V!9wuSErTpw9{72P4VEDRx5}f9>?-VSI&Z;H@HC>4v`5BXw9p)j z9V?c^<@`y}$w1@n?ImTuSQG7l*nEyK@o$~Yhphk5jWJz)I#B%5_%Kxa#X^n4?l^x& zZI9;~Jrp;@o;1cT?B-_6vGzehj9i#>H5p3L+0K3$VJCznkf9~jbPfe3yovvL!MRcX z>$?Jqe+N%v=Q40HSgpFu5Gqgoi>vznlbg{x-N4_f1!_0rv7GUaXnY_8Lik&I=`=l>loz_I;SJZOn!(Gub%_?@GfA#(=IIx3wqgcH z&^kxmc;E_y*f_$8a}No}_$jFUp+R;a%;tsYPuBS=?6$(wm-#kN^@rnm(q7m9+U%!9 zrvB`ArKeXEOC|cwHReCe33WVDE1UQp?|J!@Gw^+7T;(}ekN>=FiBZgS)<9r8d_Wq5lp2QP_qN;?ujNW93UM$X+o-fJ$`gF$a!abH#C2jZW zud$PO6BbJnE7K{OPL*3ozMj@>KnZT$=wI#fkSwxV2qAs8T=|-M5b-_FFy#+UL?3Z# zb)se|;w5Lv~(de#e4?f%hZh;co~(fIdkN86J?lZdl)qMLfh za6E$N0!oxfpE`XnsuEzaf!a1&6g)DWrP9VDQaUmaejJMH$fz(xILA>dNsB}AKbaj_ z5T*6f?-dtB-wkgFQWgNNiX^Mu?=ZY-(_lP0Z&DmrNJ!=M~1rlPnCPOJ+ z*Mg*)oS4|c7NahFuyy2hbi0|@$&9@Fv+*r8`!3L%i7aTI*Kp;LJ6fI!j4P8ZSv$Zqm2OqvO?bW<96eIW>Yk9PO0{2miZOa+ob0sexUz3 z)%a*2Ec5+$IoBwDX%j{d&ceINu8e#Dl%!~t8!(P$Q|OuERhNHYr7Rt$***}!X!CVx5nOtw3U@DxkIvushi^J+Mll*n@RCp zJXD&j;dvXrjd06PMrI|%S z%TqEIk_|z^^!>A@#a@xt$T?qSc}yHmbM&Gbxgc~*LG4+tN)t?+c@!hl69=4NNGKtM zg;yvn&q3{BO0GCe8U%$KaN+gFG^M|;#)flp( zTp)oOy=bt#v>74WEeK#asgSD;)g$|%P|DUqV}i53;J%4)El6E^`-O1r(M$_@us{3= zx$>PPOqBbkpl?q%@x@ErtKfz;{u|Yk8D=Jq<8l7;{+{gEtn~uC3j6lzRAswyjSE^v zdytvUc~~C`RIRkc9ZlwfqJkbJEs0+)N;yhf9c{raz!zkWa+rs?`z4ra19~@Zw)BRu ztTZIbp5Hka^+|Tq@y2i>!FKh2*M{@Z(7N5z$N$`mzyeT>+d!i1Ozn9^bXZtPMTj!uVw5adjx@QXxS ztX4+N;gKQLhe7$Vf;V(OGSMp2d_QCCqE(JSgI2}B2M|(O##mZqNax!L;$?oelJ850 zoeZ&HdYc?;MVH0F6Nm?@eU`|F=8T;3TOeUF^ShYwc*6Z2y#1Nckfx(ZscRt>_cqA7 zMMJ|c974u^W}!-^^EbPOTzg_S88_G8>J%&fHze?cAqi!9z@h7)$|&Np4b(Toca7)R z#lU)sUkd|^y1wXK5u!K2E?0M%Y|p|!iXlY=wh1Sq$6~ZKNXKPuu!#q{&1rR;Ks3rC z3S7q{KMMn+fyHW&oD`@!7ADSLh|_Tl{H4~-^ExY7*o_gKPngU7bk5gbK?b3K{ak=1 zo#+nh99%Sh8CN`NdR9BgX8*kP*SITZyr%vgP3;5@^t1&xQplyi!gkTah_L)x#)O=?y6_Dog*<1+F76zjrqwg;BvMcQ=6YF zodTD|C1HM6&?Ui@>d|-I3ztU_wT`GDp@$bmhg`yBRFv2)J`#QDn-4|o7UvrNEEy_p zmN*+W5SfvZy-eTCt7&-FF2*fAZxjO19Rt!1@C)T2i1J?9K37!8ltEz55`Fju-5j>< z=u{zC8mqm}O3__9ik0{sLalRU6MofsD>_{`N0wtLhf0M=Xbv}_Ru&8yF3$O!jfsdw z^qQadM=~Wa38y)tgq2FBmEpsv&B&sMB-5a*SH=TpA?b;%$uOb$)azcS=^qhi8Q>Qa zW@|!2lJgB=_GzWmEq+ zy7(N?XXosepfL2LKLuQemj$kD)J(skXk_BAS@GPP%?{ee}`F z3SkPPj^wa8V>9Z#G558-m0hM`(!X|)l`15PM`zrs%yFnWcuUYR67>fpXp!(x-S!1T z<`~xRv9kYyvP~l6nI2oi-h8i7RKOT#{2pq_ATmKoYC=F6LB~xCV-@pID9u=955g3F zvMyYmVBWh{wkgiQx4#M2>&u2JcN%%2!u_SI$9&{esSrM~`R`E~rV10b;~rgtzVsP z%ViT`b!$t&B;Y%W3YfiSN4AF9q&Q3QJbmDD)t|aI2lmqK8@N_<{g&#{g!vA-epuP9 z**usoa-+pId#c{6@m@3V-p_7VIT8<#rOQ z0sK4sv^{!dOD-z*RPJQuw=BmS7o+5T#2?IVXv4&jI~kc~^+uX>DN$tIp+CHc__gpM z_r|+yH<4O>?067LqV!FaTiC7HkJ`lw&Asi;jxGjKv9fw)RZ}OfofcodHgIGN!T}W( zZ<{==T90%@P1diheT}HO*%P0Zez}AxdW%^!W5V^^C_8iQ?Ss-k*LTHBpD0bTgrDek z?FGM`UEy4QY3u?8J`CT9?z4D!uIUk#Z>>U1@j3kbQ|^=`_YjG;(#X=?3pl*KvL|^s zL4aRdtS~*9p`6WzxAj&-tg)2gp0}Zg(&b$UgcwWs)CTxOSBB#_(Bd<1xVV?rx;oVg zbow-7>jIoLbUm4&N&<-4~nkZ_Zml*r4&@1(q-DRAf@t&-KBHRG`xVaHdhj}8utHp;QL7acAFpVWh7hpha{2j+(7>|-+1)jND=D`!9O=B+1N|QFE-Q; zt^BDxicw6aJz*y?hEHQCt*=AL@UTDC;dKIAmDnZPp6;d(OA8l+{pNy%;o7d`@mrx? zz0*L<#ouV~&YJk#Q(u^}1b63EnV~%mzJ=A!Mv^@;!V@%e-VqlRcfCXY7!C<*RYqPmN zv^6>FBR5M1FFxk6l5!|Rl|tFYSCC>YkgC*$8y6fZq)TGG;i4<+oDgN>6qQM(0;8V} zzX)EngPdlcZGqt#f*hxT(z@XGo!4fs8>2SI6`BG*OqIb7P=Y-x#3Vee5=D?(*%2KM z*pvaA%GW-P-+*poA390`Sk_*0q*ByYf3;ufUtvD?ziP~Fqp#E2An$I1>p@JO7}lS= zf04Bw8)(i&i30YypC)}rH{sDahtn}(&i5-dk4G6N{;c~dp)-h|7zW`chk2RHov5^x zMU?zXBPt>Ja&GPHF*#g)K~zMcgt}H?;NKwenY2Drd|>@j6d;a=X7ScH_WF+dYhz_P ziqE(zn-CUEi%(_Owf7^_T?iYDOCq(WV#{rQm%glcF@I&GD)C_V^luJn2V;$B-3?4M z5h9z`w=OT&oW+7-r&~NANH%vy%j~H#{d)5=8Cn+uPc zd%6%Yi`0HnJ5~7+%OxPjt+FH{UtV7vDG?wJRy;}EBw>wG+YRA8;r;)?}`_$KGBn5OZa0T>fdj#ezD%+hUPov$-cy6%C(2uZr@mKe{aPcd?Jpt>=H^P zPOaQLg}0-`E|Orr%eYQ6iUjjT*UCi|+wJ|h4HNToU`B27X%W6=MhsB%MO=OMT7CDk z+=ad|AS8EZtTFFzZdpP2UhO-(C)gK7f%2>})V*$3$AjKNmAJ7cLM*9-vTIQ6XNe z$0AB{5s6-E(OV~kH?NC#NIxj^s2AavyBFSzGHy`o-X6El3EOga-k)sdB^6@xQRkI% z6RfZg);^n$imDs-pHvnxY`A-iu_42}l$R|D%kal(+?oLs;6yT%aF;pw3{q1v2Ww$Z zMd3K)NJaqoN7^a)rO?75nRWCjuW!I(0Q|qw+B4DHr>#7D*HjDHmiPE$s+b{qj5>nn zG0QkrgZv`z)8X%F)pex(o1bS_SyAWJ+|7p|%xGV18v;I6R;(0SQ6vhI>DkfiyzJ;L zb>hR=&j+b7@WSrTyD&cSJa0v3sJ=8=(9)!ST0+6KkVz+aAHhPwR|2h4rGg}QL6f6nvYu60xmruKi}#d? zjP7hIx4LljVi}9@5b-;x2_C6dWMrK-xYP_6slg(_S6H(dikas2qCu!u_dOF~#fNS^ zxLR!*1R`t3`uWn;5`Zt1ag_pKqCOl~4tCTou_K$ijPa~)AQqSPS8vzoi9#%LWxAC5 zX>WpCfGx^^Yq_(RA&hZ84}LsjD+G!LCz~O#eo0!Au#!6@S4KPP#|Zjv(}C)HNTJ>} zh>L;?t&WsBFHL$#4vm@}Bh?6AEW2!8K&}^U+ivR{%ex+Ro&>A3qV}?nldLjm|2UT4 zU1&TD{%9NwGP?*f4L&?n2k!w>Ua zmmt;TQ};z6@kHnI>56SI1H1cUx-3i2L3P*AkYF85*!F2m7;o3s8u`k`JU>g%pwBn zaCHT|KF^!`IzC7L#`p`FV9k^Mk4SO8cnxu zKviF{dYKK2!S%rcUyFt|Eb5}tjyg6>BE-GffzY3o*x)?Rn5T{6A?62C}(Lj&3^NZ+6R;S zmMuq8Q^((DFiHRimOhfZquYcCH1jZ^nSXRKg?ZO^#%(Na|0V9(ggS1({`h(;&&dX{ z*+^OfaUAY3rl<6bAyqf`+?~SkEWW9w?eRn$1BUlC1Dcls9GhdL=H*7cK?+Y`Z$90*jJ0{B3 zwsAIAgt*i4TSu~C~R5xmFy@LPH3O{-6VRmKVI zg`oK2;rjbNAr5g`1$*C93pdjS8iAo?+!*S$u*Pb7lUz8T2NM{F9Gs=Js@|AxcEWLXgs%>-2tCb z5eNU!eD&2&mtO&~^j_E^*vUBlvk})w9BVH8<}5O|V7E5C#MW`F(2o9Wveft|M=8Ck zQYq2byY0Ai&vwmMB@n>bhzWB;73hx&2-kXDoJdjydef5HXyfAkvk>b-XCs975{rNU zY#Ql-Jw1}_WPRXfH%9h-SJnVS`+?Mp%S;X zyeG+QnNBm_NCgchO)+)UvnJF^_hy_VJV1(dHwlEZf!h=w7^O@nYayV1mO)d*m}Tq- zQucq7BmazZl>qQTI@Bd}D8;cPt4~&cN4v~GkFXjA8ul`jJ>8r4eK}f^aO!N%?|>6+ znjf?*13}H2zJA{e$sBC;wshRWQLNDg0vsu{P=nLy5!L67{Aeq=LIIk*pkn%tHp!uT z^P_DrqqS%{&;?8oO<_LMII8Q-EmM)Ixc+^rJe*Y!{a*FrN*OI`w79p?)tLYrt1cX@ zMa*n~tx`Mwan{i>FgHLQc6sP#=vAok*5@x+zH8c-4gjpL6_*U}(cfPD zfMbNX-eSJ~d-SbOyHTbpFL_)!LZei`b0GycEG;8hb<1vIRj~c6dxEvYodinhKwTPe zh_Z4<3L)7kwiooS>n$gERyQJrm?HB>u`>N?J*=+Vprd2v8%Lc8=E-x-vyB(a4i=6- zw9q@8_Q8Wi{dN#r@}y-t0^NPumoB-G82M9Zfi=91~jsFBFHQsI{5>j?=V*A zfX=-inp;;VVTW4P^B!lZb+dz^<4HfuTVC&V+u38@he20Se!0MXW{h9o@yM-WV?JDr zUa`i~IyvixFxak^C-!$0%G+;t54=rDzxV``jPMUa0d11W@(yvl1vHoh<&u3A$ zKp1E0i_a!iFFwCw_`5gu`CpuxBPc9)()RSWqFcYkJC<&pw~rinv+1?Jcare$S_oW{ z+i~B2+BkV|v59U4E%9rw?w!so9Gh_J8gT1(>AHGazTfmn;uI0Y%sc`Zrgvu!Io$1c z8+h#*s!(Zjs^86Wvf}%QhGoC5+9lOQ`(0j{j!3#476=+7Gp!34ayi<&spE4TovuxNRIQ5FL$~0MA4-*X^trEYtQu!4{y+w@kRN|AHU%|uCIoZ~l|vPr zP4%S0w@`?c-Ow@}-z1igt&EBSK5&d9(&?yc-+VJCx0b&o!rzZSp?!0owYK_; zZ4fZ6s2dk;tJJunq%^+q%ZiT0C+|wLFv)27D|7dZ;3yD$^FCvo-PmX<*=f=p9VRd; z4Tw~ii|A96J;JZEJri)nEK!JGC%s-yX#z6USX41hlG(CSBN}*;5;^wb5Gw!EDeg(E zViKs5?0F3Bp!kUOw8o~(fHcG&yZ#ADO*Lfm}m0nK3J(aM8|$62Up$%*@D zhqBx|<2emw@kNW>vN0?A?>YY--#7djWD1K+m@+sDNs(fR&ozkv88@I(0E`k_)X=zO zvEBJK1F~L}2MwDGGVyj}hOT#m!TJQAtSM})9F2(VvdK0-`|p7Wsy+TT<~Dy!1~N4L z#Noz&2)l5O=4hJIFOP<;3y;t_Av)bkSoUqGmk7jN3ULMAsDF#G)m{*G`XjN&L;(+r3?C@XDlW7%1s}>EsON>pw@a&bw-t=dS~)K+)Zxo3qN99Ty=C zhGUQ`X5Vv%@U(>>cLtVY%(L2`V?jw}J(L8O8bq7;T6*@94-_t0-W&OBX+50MoPtUL z90r9F<;5m*b%`?Kyqxas-5xVNXY2t$h$T-?uOo@35D53DQbYdT>18TSKIPsdU-fVK zbMtcbq=8p{`3Dk}j23k!_?#;6X$MN-v!B?v%h)w>cf0@_LB*qvpvPovh#o>=Q#cwn(CSV^#8Xq(8$~7-_aT-~;$SOzu zebeOE5U8gEz@n*Qde%J3t3D*aL{OR8usq@z>{Xy80KXF;V)I8nlBf3$AE&xXg<5`8 zOqHOnyA}tjgO1hs*s;mLwJWzl_s~<{!lP^_q)U9B z(CzZf6Gc7LaS}htT-|q&OnW^Gy$1x{xt0c6^3;n7mJ8G{A`z8GU1uHMt@m$MMWSjG z57ZU3inA|efw4fUVIR}!XyOeCF4VFjKz~U+W~6`jq7$bZAX{55uQ9w0rQ@9LJwuR} zgz>QOgd-akQ2IDZ^olT`QfXZRj`sT=7*vUDioNVN(jMk>j=e*V0h1?=)d^%#E&&No zNv8dCpslp6zD%Os>s8GOW}|1D(G~a$Axw(C}Dj%LacI~ zk&qq2+#kEs%@}2PxE;zH=*j9!KZ-^=_q~~8ySCi&cWvbADX#Qqt%lBb0rzoxjn}@E zH@*&aFE804pcDj51*wR2n`cAqu66Lj%R9}3Y?5c2EIxqbDZ%b?cWi3EJekUTSLs9! zOGxrdw{@X@TS=b(oS7#HOfNC8u|9!yf(}IMEReHp$Kp?Y556d+((MzreQlT5vujhG zAI{!o9SBnc})@tZlp8#u}J463s=>q1TPGACMB6A`1@4 z>*)VsMmNS^t0;_I4+IhcxKB5%4ywpu1#?_?gF<(9)9}&wdP0$gvhzx2|PLb^S?|AIcX3(-f5O2QOvUrq1r>8l^y0 zlp{bAzv7pE=bojc88R+fW&`gaSx==pmh{o!+~`~1t_GMXS079L6j-X2Ai4)VL=BKZ zEr?%tqQ&tv`a+ArF|r@fp*Lpp$9u&LX{20bsHD|Rrgc8R5}0JT?e3PMbKVV`kR^r? z^CN#VbIZ=WU~VC%SC~RM0jzJHLLy9AaV9}Ewyr81x)Fyrcv@Emz?Bdlcq>3O z^7{}!zhnwUW~oxpW{D!mp+O)m{SjD)CzXxzsOvD2K0+@Yb$>O7BoDIpK@ndtq6>I! z&^MhNV=vTqtihy9Jfk@IvU=VE8Y9!xbnLD3aB#+_I!)`39K({b89}3x(#`k>K7y8dqa+;fH z$>~2dV%67{L2~KVc2oYS6kv#nK_regx3*t;e+T5b`6{A@gBDj4AeS3I=cMEFk3+fU z9fm7uKWqV~Y;hrK-qusJs~<1{L4tNn#bhDL&_9 zx8Y|kv4EI=GEYL^kNxV1Ax{BIN?iyqY0%^C|9RXJuF{<^88U2D3WCySa~J9!e_xXe zcwtZvQ=MUz(w*8mYIkPG&2a+;!@#eA>!VfxAT#Ff zd6LsWu*#J1hORthUo_K7s2f^XX%~-88E{Qr-l!^fVHq z{vlYQNj&dfm!pQyLrjCLUit)qA8#oCtRj&SM4yO-wSfBCwmK62DFrpYOxyp*XLq|2 zrewpiZzlNyfyd+lKPr}9Z2TUy;P?{|fE$a|`u79^qT2@R>bh=rq&UpRmS znNxg7*nwB-)ZiVf{Ud(hO1xD^mkIEY$wn%|SeX`+w+-v+kag!8UDaj1W5`9mPOj>* zwVRnrBs7xT4KRqcdodh-=;T^XD8*M87~To(zB7Iv%IKAF^ubPIhM`( za+Yp5N-I`H>mlHk$jKhZM6-lkfpVAU{OR0&D32%ZOXE~L1ae0jUyQ)@Bk}X!?`o=a zmpr)MlpL~nH+xE`@O6MX8mpu9lE2i>COIUx z$KGUa1vhcsPZfYNj0w$EYVAweK9Of?{ZLhW!HdZ7NuxI9;a8 z^-x42d{r1?ovL$>^@$=Sj7&14OhD0cf(6t{Fx}>Kn%{d;xU9!aLU&Pjue z)?SsHCk?*6tYdl*j`06&y7rRkkMd-?KYb8TGxhbLygp{g;bYaT4-4)H4>EP>-LWr% zC_liYJX*Uq5Anxziw&C7IlF5VN#;%3NSTLoR)3?fuVYoQ5{H2IWEDQ@)Tn(Crl@s)^2ODf zn$`2h{K6fm)5-ddZQI)(R{p+o5d|M5oHq6WpuyVy(G=lt@}hre!Tw<3@FMo(U*uQskcaN=)sdW!Gq9eu2 z>&X*4GNLh!{k7iKz+i6TZ#lXBdlYsBPKGdc!!u%(3n;;LVJ~O=#)zT-6k`&&l_Uzc z!7#GWn4c=TG6S-d?dz#QFKsOlj#^*H_jCOHzE}Erp@K6^{k#K({n8W=#k3u*85hzZ zN3%7eG@e-{k4Ec{tFtS;7U{is`bT2L3($DW2J>cC$~venu6U+n|N8W-m@*CbD)L0{ z=fy|PJms3@yCNFW4_1193qQqe9s2Yk#t~KnDj{Crr;rSn*9WD+_N~LroX`h4jC{n- z0+Z^pJt@~*6>?s|h2c0L&XW{j>O^u@a6RiXo3CfOJStrMk$=F4MjptD_d5minZ#L; z|AbZ)6r%#VE>&gw@WDfN&C+X!utr1D$;_S*R`33?OGM#NA;w@Py)7^+mfURM^-7|g z0$Ic}c8+UhD60bgc!n7QMiIRYqU`9W5++uHUr(eSR!{QTPZt{f)Ul&~Pe+(G&p;I6 zJI=xoR8c~IM!x+E^uFu2G^&(ZBGm)7&T}_^In(nVm_R%#AfJ~8Bqvj)0cuM)h!L|| zIzxh}e~+8pwJ>>@`>Sq({ya!Ck9Z(u+)aW0_EQe>44SNJ$hMok_GL|o4lIJ>Ll?h&plk$dd*1R~~d^->Bf^~l*La8WtiFsvY zY5iQF*dVA%U!)!@Viav7_mWK_t>4Oa?dYBU;!82>Wr)*u4GBjGDAz8JU8)9cHYmry zeV6>$JL_X=Y4&N-X{toTQwEENt-=N1_OgJRZQd?B(&~VGAO11nKJKp|VcLMgzJPUB z*p&7}Y9%Ggbyp?`{($^EfGl(V3w--Swz;xADMyo@> zm4DT(QG(NjbzzdX+R;}$y zHK&nyQ@3wv+v+{s(RmTg>N=Np+wf?PPM5(nIJ&P$Lo&NA8|o{>%>1I2s;feV>{z>} z+F=e5_6Mp6nC%sEMew#7ur1-XgEf2KZQ#QKL>9(|qNlYI+``JNwrKjW1fB2b1M2Vp zQ(wiIE}NV6dDHh!H0N6eQKfTVZB2w(erF(&N%Cp2ie73V>|Br zwWkezHc^G9j7lpOXI2`D*7DwVLMb*_0jDcY0=OObk=jMuohrVEvSE<^blNj?Rg&@* zm`|6V#y+|>Nf{@R4kc74wGx8whPzVZ>GH_3kGe4kjhmsX1y=bE3yZKq$|u{zJ>6-8 zyD$4Z_Z>GEX2yS)ICncitga2lcHHO6_{P9HCms*|=kkc|tg+#tOX~7YtSi}@EKjPd zX!jrfk3~X%^_i(F_$!xso8IVY%1zmHbR3IQo2l)Uo%FTL-_{<~-O{$lC^jz)9IA1A z*ZB8!QAG�#c#FuApo&RKY5-ppxe{wUR6^JwOR9vD`H|-pQ zGYUK&uwJxsZi@0V!s5|G$4d#%$Gmj&gmWVaEcY}a+o5bL$&N;(B2XYYSb ztweauy9n3r(IF7-rD`Zs4p>k>P&t!?Po1V<5P-AKfZMqIw;|p=WZfmszmdXpV=w3L zSbn$&|E+XD4gok7@F5Sfb-C}IDwMS!*=ekV-#duTxZ#_2021`Y{lCi zdjB)>>EP6sgr3^UXU$XAqwnOPxiut-zL4PQ3<%w^N;{U2xHg^gE%$~!M`th%G_k}k zcdXHlX7EDp&96yYA1UykYj)2tlQ(1kJpO4Zw5Vc7VjAA!n5z>hZEUZZdO>-i?}J!P z`ks!5t3vcOv9FxoQL*Yv$OG;92Qk|is~kn3H8PXu;%`?0VR0r)KRwQ`crXT#tePPK z@(2A}|Jb?g>!ZWO0yVPIw0tL(@+8`Rl?{$$ z>#YJwVo2M|E+aMOlVC5qsEHml(1TP8%|NgOi1m9rPs!(P=O9mq{az}IgkezPz&0+K zwqi7?fq>9D1*e{;PgWkOy@am}KnO%U80ZGLO{i3|%$ptEtC%S~=@IV%KCDW6h{8VD z#sxFh$V|5@Fp;XlIpPSSds-g{xH%@flJ0|gW|a0FNF)R%UN+1HY3yPS4niJplivrc zqLuLof*9(;DcrhJ?W|g>=)~JRWa)UcQS{wqx{;n(+CZgOfr|S%24;_Cz1H8XM{ZTj%;GO%At?5fYo}}E!A1yxAscAJCyXu-=SAFQ# zxOd|pJ+1q_J_+gEASLBUqI8OTanpOM!r9oDTWeRq1pcnnr(2Q>px}v#FaR*bPQ9KC zd$K#!*jSUkX~uVa`yKb-MzGrS*)gcAbCr(|!iSByw0g&0`$;DM8IhU&QCS#X(gGaN zdw$Ej{*xWt_2l*7sYaqhW%e}v!r#HA*t45>A>?5id%}h5egNw}-Q`d==2)%U-x5hFg{-c}K~Vd0X3-aVarx_vi4i11&gOj+j$9?k_> z<jZ#FZ)9}Ag5&Q z(LkU(mexy2)%AE9A)-0QEa4(ZU`YpadIumHsdP$CnI1*HoHZ_J6GHnNJz8Aa`8wU$ z9-6za!jI5jmB=)da1{bP3b&!*`PXer>H7*OreHm@#FFO$rYn=c#*r-&7dSol0lUs@ zZ+msEc%aFHa-Bo{Z@j4PZCp@fbN>h6Gqq;$Z#AJW^v~)O@INOt<%mj=#9I5ery@(5 zrM`b#;p5_m+{O}Og6|%lwD!fr;b*cDC~!yb$xC*^9{yd#ny7J zO)O+$uyx;9FYH0U?+x0*-Trz{$DLv1>94Tu@N5}oS=bz@Jx+)VXi0&p@v?E}9g$~a z!UQ@ZOiDyX5WuD}4MjKYwsv!Orjphc-}$_l#XCtMb^v6t89 z)_PSV+~;RM8o6vI+CV&h!$kO!|7G9I@oMM7(g2KVX}(#8WVrH=0STS+&^A7!VmACW zx9sa*IeV493;Y^w-_SSZJ$rgz&3)1<5bIV; zu!Vw-x~4F35K`R2%ECLC_BprRy-RMY_gIiDUbR}AZ?1>lJGuw&t{Onqay&K>)B<|@c{$M0Cmw8qD%^$H~vLf$Zj!yTE&f`%y zNf=T6@uG0`5}_b0dLWKdnm|f((OcAYR4)L&%cwu2$ItpFv6HgCuwL`jtA`ne8g#YU zrOhx0QMmEKm{NG+<74!jvkj+9*-a#)kdx&1$d}WmN*u3Q%*i}j*a7mMUZTT0aE-ra zrzxz6F(38r@=+xBt^!9DIxZ zG9Uq?`FLO&vNg}-#E_?n&Og%2K1%dCjQ{LMlz9HlN;@|<5TCvrBzmIgOOx4PM{qj# z8stRnSkza*$L6TGwfxZRTK{uhLfZ8R_VW$nZ)-~%H|Ou$VH0q_^*%ul+)7KT!Rtx9^MhHDWJ3%;uIzkwq_9h@)!j-t*1(+RynnS#!SSwdVCt z1Z(9sgR@|~+fsBi_bz(~w+B@l4=jv$%A42?aNWjvidd@4ytvig%^i+jl1e$-me9c| zXWJY?sIWO@*yb3U(}rO=fA9D2cYXfyN0&?PYwp+S`FuS8$l=xMq70NuC9DSXJ-`v* zrOJz8VBZ}X1H-0wjlHkai|{Kt`;t%3A|C&OSbav`Z1;3}tQ{~*`ZSQaDm`k63mM%IN zD25jP2~w^&dr!Yog6)LkZ(QK6?9#=StaE#k+@XcgO&LIlBS_1=*{-MX~1`qaT_LI=WMx^&3vclLmnQ6Txl?~i$?mT+^vGNr~T zx=^eqomKePN!02%a4EQbl3y^?^V|uF-;$x-{0Bgg(@wt68LB6EzcOu?T-kAkmPl#@ z1X?j4;Lc}^|EC4u3*`4mHJ zvorAq&XqA2snLTJL3WT&u6W_n*Ya`AVEoqdLlPa~3-=%q@jwIjP#r7~SGq z;i1DWGv4VeZ%I)OyQ}5om#3mOxJs7kUGG3Z3-*bZ*=jpoetv({X;aYu&D9;7CaCrc zuid*5(SceeA=j{0AFW)V_#2bMuWsCOQLn1C7{>|^Dex68xrX{Kw5;)z+)9KH1b%*c z@76t>b~%6|>wbsaG!LHPUhw%!oIcD}g~ zJ37@ALr!05@Z(q;Y~R<-b_UeO=X6b6?~p0XEiS$dw*I_?W*%Cb#9G}CaL1xhPZ&7z z$h5sgl=#b~uQdbQ?fYZ2gQ|oL8f1d{6At*44@ZG1E`*2#v5k-8fcvj=Bgs%2XZEe- zRkzXbNsn|BY%xB-t6fh!9JSEuINqYydz@N=!_Xp~Yk8Bwj4MYPp5ZtHZC>G65%72_ zs2#-8dEJ2OB&kk1;05|Yj|@lsXkflgZ{i@u8Hf8*2SYXPd^%FJTTT`jT^X0-r3s%0 zoX@=iDDI@3cbUz{-zw+OPY$oskOpAFjzRdpuk#h0oCQRP z^F||#kBZ^D;F0GBTp>0oyVTrUfSyX&FepexW8fo`;3W#+7WXJz#wgwaMmPt>89O;Y z1~@sJh3%q-=Tf@|U?Bkt?bX{3ldk8sDa46gcV;oeqe5^cihuXgYogThWkY3@t zA(f9Us~IR&2`?=CAgQqEyk>?_`mGvPINvSzH0IW9Z&-b}k9d&jSJTVtTlqypX0Do# z_d6@k^MwBYM}X;K2r%+nJrh<3DmbQyW4|eYj_gD}aTCc7+dKF>H369 z$m>VQ;Ac&XHTt?!sU0Se7y^wQ^x_rW#NAKme!GSG{>zlUq-)@&nfy1yc?N6?` z0*`9B%FD&n&P0YFTy*CmI+u@Wy1<-*&7o@re3pWgOVIn(OOf~GKb1Z({}=b66ejc5 zyA}BHRHwCV2}r;sZN#dFP0(Ew-8ZsXy$Ai^nJ|Ap5L4X1U)NnP<~duJ@QHf-|7 zO~x~mNE72p;)&&HxAw@YOWOSV{HB->I>h^oeAY}X{S$sg`xR9mP&iyjYx%^fah;Dg z(p8Wwbx-aM{u;eJS9fwC^~~K=0N-p@{sX`mv^5C+h2`rp$y-2@i(i@n!}~Mt+RC#~ z%ltsUj%8)*+{y16DA#U#zsg6y7q44K9dbw^b}t{SUspcZSXA6wE55WxeewQojMM!% zUaL#1->Wa_e=Fk=e0OiQ?Je+6)wlHbLPWgFn`1YVNL8&BVoBmx05R3M3mOClCtxQ8 zUbNGD{o6n>2m&vua`&^4wDv&Jeou{lXuh?_Y)UBLqMv=x1h;l+{LjeWauvBNo3?Pg zUt#&y^z@1pIxF$DRIjd>HtU4Jg)bq8ErRp8hCbE$T%m0cyzXTF_XMw$Zx*;-9W5Z} zT+dt#V1kI;P zN!Xo$0B*ZMs=9I3UtLDPUpQ=4&tyw#Z?}X?YV=(@s-Z;9SL|G~cm_1=;bMh~zG}^Y zh7%;dW+3pPhR;Xor4A*)<-BXbVW*zf(kv`|A#Eb1RcJs*`oHTiW%zjtdr5=G@2()j zoqIVM_`ll%)+C|&FtM9HJzHt_Qx^c^FW%tCD!}Kf~y9utdn)C<%qv;nj>XM|-YsR>eH9%A__DJ7(&w_G-WB$*9J zrh-&x0e;7RDeHjM=qT|b(jvhA+4Wa}X}f@gX~eaEx>hJHK%gKV!5-S)n7)+wYE$ni zDO^j{6=~ln4=9Aa<}rP$>6K_mM9;rY z#R<4Y0}9yNT1D6LU!kiK9tWn^M+mmLPBk4tiW$h)^f_?(la7)hVJekDcdb4 zt^9Li-yr3iOWPU8>?O!*^e1esJS+_l7?T17ymqLXfZaf)IH{8Uoa<1LJctT}zyKO# zjvWp0nfKo{#Gk)0Rn0Xf02@fxs%wi-=0t$sw4qcivg@U?^MQV-#RivmfaTv}86SxU-$t52@%*@8TG^p!5GkiFyq zcYTAV|E$~CJ5w+FlMXhDUlvPF)gGDW^TmL|ipBrfP=I|+8UXv$zF?sym@%(!IGegM zKGp)5YB?5c{HG@pG;AoVasR?4)5Xvz=KKe$o>b+T1;h2-)(jy)$qp3*ChYC6BjHUj?#P zQQ~*RSrMh-t(rJW&7W4sy=)quaUu|7_?F3h2KnM&ln5UkH+UAco#V*|Ine9Qm`}v7 zw5I%PMcnz1lNM}D$hhTrQz1ln=s|N;s_ZT+?aZ-;t5s461uC+eRL>u;C&6N*MYTk# z9@l)bJqp^(evNcVTCDkY6eU=xh!!3wufEce1?d+VN}(x6LE@5;Z9bcbQCN$#H1hWh zL&Ueq71_C-8f|$+7@sw~cTBp?>M1zRix^*92koP8m#&Eada69iU(WtkEPmsw$>q1$ zL<@(HrJebtzIw)ct)$B)TT_DU+Dw-r#ucrm9r;YrGWMUyuO_Fl5J{D%ySteV0)@91 zT3jxEIU6AG$oB#j3D+RZc5gd3G6h91@f3?X9DDSJ4Y0)tdfb_lNv4@p74QBsyj(uz zzv0&802fvQ<`1Q%gOpa{M0@JdnMj@iCc zORQ4Sz=Q@Fz>L>5DGAe55)D~OHXoDx6y~G<@Ud^G>Zwur?`H${u}HnbKhMY5Ki^k)ySF9VdbEzO~geOZoJ_Z(ab_C|PqueUHq}{)?n<;%=O#5+_wlyBL}GXD6+m zt}-sv{bLn7AKtn9f;W@+sNKb9b-e<$x{#Ciucb;b=|UXx$G{G)3?kjPKl|v{5(zd|&3j4gSq<%L=8|4L`(4&;x`VH;*Iv;kzs9?7DoSMDnhipnog~hU zK>d5@A}(dzbF2Bu73HLW=E?T`npAMq{eg_u-?+6gHNTrvDvY*IAHQT!M&W~jZ=!MO zIWp2#7giU3?bWd!bCelW)h}BRlDL3_w_c{jYh$C|Tv)&9=vZLb&E5<Wt+2t;q5{6Tmc`CghjWn^PwLZqxL-B;Oj^ zjZ_!>3JDkj-w(XDbDeXp;Y5#@^fO3nnx1;W7l?g4t=>T|&NYMT{YMVV9hwtUQA0>5 z{eDe&-i?D&)O#V4UhmT&Loey+*j1}wVy7Zx0FH@xv*-%Il0{n0kj;QekI}aI*0w>Y z^;OVh;t~_bHBjjucwj(3EOLAcz{1Yt>8_4a0qLBL;KZoTv$}y3WvYgWb%_dV_zK~l zI~CG)hjqLfhAThJq{F7-(h3>_&!20SgjNO$-$dn4#wV@26xHE+ue%fD7dU7(tHKM% z3#sY|U_Er+`}afJhUVLLZE)f86oDrAFNkUwSO&xna;Yb*I%7yn$I(`#aMKpfnfU1t z|2RY)cQ|)gg(V}stWn@;16fWSCm(Yul_kehkk+NBeE z0?#)VexXn)7Uy9r1Whk6$XK|X;ba$%LbU384!FirmQxnSCkm3mhTTzi^}#H*0=VMP zAm}zgozM5_ff_K*YdvhT9Q^z6qJpj+=%M|BdAQ|g@z{AL&uYRi=%X6f42Nm*{xRhF zP`~YDso1B~eSOv2;9&TrN#&r4Q%_dF6TbBKP(>tDhl*HNDVZ{}jMzVxz{oWwGCp;i zheGgv-71p+&&MVoqNzNwpShABY1>2`qei;`6_8%0l;2!}7umsF;#krwZ0MD5FsAn@ zYjyuvVheR))1tZ#Z!zp;pz5xyX=r5km-){w@3fwP4LkODm`R)^iFz?vCczo)R91)@ zXiGkvsnPq6u{hm5jNKwY?1%`d)9&-HVY&M5NRTT<2YdF@om5Qunf2pgM z)Nl-s@VZM|iHH#CvHP&Q0I@0bJ8EFVvA=JtkHz+sb{o>VJf%Z*Iz7u(gnB!|TKbHQ z^0=^aBgD;_FONmqH$RPR#>Gl~ZZgzgd55<~HCG6N6A4RI4bE(+xeBgr{ri=QVl)a9 zW>Bf%J05l4P0+gdR!;id-l%h(Lg30ox{kPiz;d^S_%8bOK`#&f27n_Jhd;K}P1h`- zpN9!HvZx>OGFN^ux1|LhO+058B1lJ90<)raJg-|t2SWAUEYjd(u4)usluwBKb!c3qM}{Has=FdHy6YE1pS4Q7{mGYKZ}S z#%EREo(jMLY2H$>C*{(nDeo-v#q}8`Yj41(h)~NDzXdX(g>n;yx5ybdBL`7 zMA?722-V~2i7LQ_>DO9>;H}wQ35Mwdgu?GdOf|MSKT2-J!^3k4@}Jg~KYafg*7)#9QbG9C z!zTuTuex7S4Q;bDk2!xHf&2)hFmvGs2Kh;A(fS@zEkri#;r5(B$LA-fx70xAD80s7 zHT~Pi53_5AY#gp0I|o`o%s)89RL`0negzx!8MUY>llk#MJTRgDjtD#;mgdI$@vhEh zr}{z+;oh;xOAn9-O&qYDPz?VJ4^_#YvsrWn6DkKgM;&4qS%7hS&ctl9kG z+ba(_9a-EFQ5qqnYR>aU(m=64_kpSLA#zNcg)MeZx^3Ir292e?PNbjoIZ1*EJJZ|d1&d& zlq&(HlP?}bz0A~L-#FF=DZwYyUDb_$Da*O|Lb*^Qr9~#>B)@Ej)2TD2_d}1UN=mfp zi5&h&{d)KU`uiZx(aQGGgU3h463a~f9xV|(=QoMI*M(%iT;;ow=nt5?DS8*)BTxMr zl7U4?Vd2XrJH(ZEnqkpyGCf|G6)kIUga&qD{mq_8l|eVaV)18aM`;j4zfO&h?>I2H zOUR|KL|1blQe%AhGFSACrH^pz zlo*nk!K(CHWpWD5f7Vuw^+sQRiQFA(!c6-C;iq9679d7xV6=8Jtwa;Y9!l|BY$B8l z6ok{SAu1q*ec)?aMY8Sp%=(r3<{elG5gz1uWPop;E5hczhHpi{SlESF4dsg0VDAsS zq}nA-#B;{1#sS2i0cI=6jy7}C0>AU*Uw(G5xy;d@kaR7~^LfdD(b5ll_t0}bent}{ z=t=Qgww|7AzGdUkldAh_$&v1xGXs5~>~%|C`M~Ax`|&i%Mx|B(s74x+7|+XeR=d#3 zZO?QzzNvuZM?*GGQq!`}@rAz?q5%h32*qy}7`$VcTV7eL$D#fESPh;{APuROdbb`u%|sW6|8aOG$D@tauu1xe(euA&Yr2=QgN+ zqJRHylTD$^o`cMm5GmT0ZP?)ZmdiIdOAk15=I5!|9bcw5|6=ic-^}%B*q1txW|LzN zeKF7TXCIpFxj)Npio*$V>;UC@oBH-iL(Jo;m=Z%R_EKJ2+N!!ilihKu)Mu2ZaZGYh zYgE~L7!S6^a}ln5)2%!kOD-3+2I1i@`!nh%_6-`G)mEDCe{xn+=0oQ}ct-XywDN4s z;1`jA>@OE$fkX~LT7Z~7+Ni38*DiWA;nT^l;&zBpfqGZza-`ePi=ap#CC60SY$qSp z`F98Vx6@DeJjEC;&5?{GCVk46E#i+z0)R*rw<|tZbWdD5LN{wb1B#nY2!`I;jmAze zDr=Ytr|Gj8j6xJ*x!Z@67F91z5E?ME4CSOX^YkkNAD)5;ItLbS#K?-IGOrzbIFi(y zjcF1QYzaTbYH>=!p-Q_7MDZz9XmvHkMPNA6qj!Chu+v{IrJD`-tfq z4aUvv+&|S#x_vS*Yh2pTj8AFe`TpAR<@7W9K1T~W-(lqXnnhF-XW3g;M8ai{tdZqgGl98G{A z&rRCgqJ!ooRKT#}pmld0r5%5!fbyc3^oz70^r;$L8KM z)U90e$e|mDZuNZ})2_h>3uFNO(RJnk#Www8{Iqu5W1PEfU4#oe`ryulnZJ>;G4g0X z-=cL1#Oo|*9CO3&A-m7Vo~R9BCnxP^FMkRlm880sk`7+Yy+3qZOf&nmW*T~==P2)M z7wsqN6g2F9o6HqpNte`V6v~fQ{Z}DbvUh67NsYqIeAX;KC~0g*#2Xl(c}W-rS=c3G zA3dlGs=-nmS|6fN^r@_`JbU(3mFqO{s0W%I*b&0)%{uRlfuWb`^lNY-+Ij!X%y!AO zpbKBcZ#O{jlEzs@JKg2k%o8Ul71DJc_~-Ka1;k_pL;dGTj$LY-h+4}pXF}NGrU1IT_&yt!KWR)-_87f8RGipPKweM zzo5wb$|^k-9hy2`*%;a9nu(vP%3)l%u@ayN9aG#04T`F$EaqH6?En`In0g#IXg{gi zEqk#;&&ke&G0*;8gEv%!X(i zVb`zmVzWbN#CEqXcfV}idbkeM!~I}YupI|2dNDtCf|`IWNUR_xB!krrxM;chP@+t} z5_)&ZCO@&|gK9q(wB~w0PfZKX|2O_`?oF*&dfPT^D3|gblRkHJN(Bw4a<#()-sZoy z4f6R)zRyM!83B+Pv`Dtqxv=4V-AIgPcAyx#c+mct$Z_gaxC?uXYU=zay@tL_^)g=>)&Tq5-~z zrBefln<(%(L`lMeH5wOz^sihEkTF2WB6ghXgR}z3A`_dDZo;D@_pmm|ysZ_UU;C$a zXiqA>0}2Q!9K2-EK#jF^JYT~X%#P^F9gdI!usNYxAj5eBVXAx>{i9AC#jXO!##l+2 zi=X7_{}i&d{Z#r7;-Z!Z0FIleB%UH*V6pV#R)I`@k0ksVAv*yepYh-+-9g*#$%+(P zsMvyyUSx(Xi=Dy?Ntl-prgvbZ0OHSYmF8~9QJ3Uf!QqQ0JdM>*#`56YdKUL>h&zv253F8z1#p0lIf4I zOj2<%E{8%#OqhG_WV03g+PIor5gUEn1)~(59$=G5WDu8a%}nmdy9p> z9iW_v0ka|KJOR@as$ZCxCEnFxUW4p4TYmXgpjI_GCFx~3%)ZLMMMgTj(yP8??KS@1 za)W${%!(3_Z*_gK5ZJZ0u{i5gUBy?qS9eByt5z>I`oo3(8=M=Vw*#H)s_~@(|I-49 z{b8X$BYl~+r=%Z-p=meuQeV}|I#0eV)II@XZ;ex#sGj1}IV)dxNx z&q6r>DYdpWAPOe)hMHn0J|^o=Y?iSb=nEQjuAQk1G8)%=j#;KEp`k|#m9nKPmSSCa z#%vyerVoW&2+VY4380T>3SQaj*5&Sd@sz~f&;K>|j?>Vk^PI<}mO4KGp*yBp<+wio zP+4py-ja2aM%By5O%e(o(2;hdOaA}lVovv~B@Y^7YWl+rv6H3+%A^i2?+jF*L}u>_!6Ob1UB|yM$^^ef@ zM;{C&6==HJzsCR<72reB5AF%zv(vZZq51!5=>SYau%)eN|H`ThuYvyg9-~{Z?5pA4 zZIOHzWb(o+fSCRoD1IRhKSGZOZltLu{>nZAHv_(?`EK;hDXdM$ookZ1P$-ypRrk$s zeW+kVm^6PON;Q_=(TKWb7h`L`?CCz1Nk(Dlwb5B}*plHJ56sYp}v#yoNPl5Am~^Tp)olgy)b9?|E{?Q>NZ zc0~9dDmH<(?8-j>Gm4b+=Aq!Z*+dXseb zFtk*CTXn9H`lq9j*~!_s5?L6j4#q3Dr|DSdh|TPjB@Y+%9+CIDuC7?)G&mn4s%G@8 zl&g=A>eVRwkt56J-c0q&ORkxB5{$ftX9mkoN25eKiXRj=9u}M}8`X#}fB#8^1Ge(- zE%oT87&~I-B#nna&_s*t8?j=Mh5vEK>^ye2m_~qdarICo)=(xEx!u7g>c7&hG1%TL zogOombOyz`#m|Bpu5?IBZ<@L^P9oXvfb`DWrxiYXf8@E88Up+~kODN8 zbi_?+)P|debU^?Bf3RI7FKgQ1hwBS5^8J14!c!BPmN_IjSad`0HCD!qXp@%;Chv+M zox7PyHjiAzwh%0!j~e5G6K0Q6pRF&gSti*W6L5f&!!sFwRad3jf{GmVchFQ`pj z%#d{X-pJm2jb-GTPOKt#u-NcEBwE)%J%H}cWTV7mYQx1YQVm221)?jt+EAbXB`Loi z#+3A~snTfO*hN_r#{t zqOLQlB2;RI1gv+z1WUK2PzJAqoUvLz4P$$sfw`Yr1W`w8Uurc zYQCMo3kb!}Go(86HPe3nYvikp9(a}pCshG4s)<0JBwhrKWAX*B z0Ng@20L!=gAhqobElCbxYwXh#oMCvp5=cr+mQp~X_>CKGqc~cH?I#U9V^^jOJi$zQ zQQvki4TUh|#LB{i2!h=a6Rym`#kV&B&bbt--ZVOw0!dirc|_Rd!hWwposuT8<`|FHpm~#*pGZET z7{082o^jD{>Z@xJ;|*Jn2Ls=F z&0;?79ZnUb9tr}`j6`ZG&l}-0#@E*J9n|D3%n75E^kSnej{!lD)3-WKW_@ij3Qm`S zo$kqyBFSOD>#UJS$d%)-Z@brzU!(g^OQ}c?WK2gkCgQU61<^3Q`KXD^Sn7|B6ds@~ z)wiqSEu>vIfIU+F#{)|x@0h{(G5D*9_uc1jjTGe z#-%yV#@Wu3IllA{k@vZ@F6R1J1P90iTS4zD!2r|P#CIUt;kshQ&x_rtE0=gIBnTiVhOa?xEG3;&KQe75YdpvE%Kg z?&QvFZhtG;Ef<4vAZ}Q=192oiAK*-a4nHE^2kp+a0UToQ3{8od?{39#8c*sy(+U>^ zJgr`&1inzbv6yiKUueKIogF*W1tMYm#>wt=0k|5l43gO>-VkJGOnu4NL`*CL4g0e& zi?A2-S9mGhp*4=it&z=^g_D<8MkQskwyDn`hh%~AuOP=4G!BaO2e`)X0=dYe=G11B z({^G0_KRE5(!FM}DngTKOY6zB=IqBA%kcmNqmt286lLEq51oxm&oO7TZxD3V!ysZ( z2W9*KzO_wBFZ;T5+w-^fPU1Q#4bc+jc<6pM(?U>cVmMAwy5Zq^*EKTkg8-{cE6hDQ z&v?fyQaSr~4sF{eJD2#(H$NB*@YB?!p03f)!PE-C{gifWeVDtLb&*o;E*gBIAXe&o zs0D<7G4B4-fsWCeiDzg0&Q2Hq=49nP#=$GwLJU3aX;)M!mZ+o*>a{q4fGmfX^cT}6 zdKUOq&?Iku&`S7Lp@uxxBQo9$C+~(yM>oh3%mTejEY(l64`lAB%^GpAxuO6{-+uZ&9!9coQ*Pdyt7CD9z2bu)WWr<=nc^< z=Qh8={6o>yq4-(RYM>E-hjRxCb}C!bqV?oJNoPdfm}O8<%zrN;=*mNCZO>aKaPUZq|H6fSb6KJBPzfA z^7I8`u~15E1InDpg|!IQbEL=(?%$v1Aqc!wI_+l#N$9EX!*D~|p|a7;NY4E|@Lk_H z1A!kdmmQmkjK?EFXn4#Kv@fKF=kDT!!PaEA6t2~U)kdghp#<`mYJ>%7)QgFRUfbK; zv}g{1JfiZ$Z{3x6n*-s+AI}%c+YdY@Z#3X>lpZ7~qoIK94ny3ghF{y^A{aaBw+aD3 zV%l3nY2Z?RvL_>Mhl@iuV-f7KmEt!&@!~JD56DR`_`+P1@7D|luSM;%Awfp55B%V( zKj8t{>(@Ey@GnwOL&q1SkgvfIZ*H)&^Q*kfcef}_MaLSv-_2f|i3Gnd8e+gI&aztW zC47lVnN4{wkexO8vezyT_}_T=X!@X8AHKa(CKJFD+fL)H;-gZ6?>=F*j?rMf4(!dm z7Hi;Boj9R#hUv4gBF;BEqNhf*3egAJN0-t+to~H5=}JF$GVpb3SDsv)+o`}CRlSA^ z$h=2)|HZy*3&oon(R#JDAcVR^oKcO7{ZH)gJ%|qv%oibcYxdw+XhYg=ggteEE-hKs z9Y5~blw?dFIm3RieVoSAlQQqjLl7Ad8PrSzk0hkd0vD3fm?WMcNvp6AN(YKOmTn(OHSwJUVhQ+YWy*62|FAP$EuXbh?0T+$+xc$UB&8Ea&AF~RBM~aQ zh~VIh8?PVqVm22p8K8v+xd&co=jmJURqyg` z7O!`6>?N?5+k5nE_0oJ5112jXq-@a&yc-!#5?%tH4?~@R)PRc;Jbn-V%86P$e{)8% zi+}gVYF2g3&!`P8K~%fd1+$-N$7E`PgmSpeem;8I>~SP#m*+L+lk^!qcvS?DwX2q9 z_(~3T_o|@W07;#Zcf5BWYw!U%M}~aj8a6O@w5Fa#rc5B^;wI!F{iyA{dI)iACD)j` zGsLD#MH6mu(0B%bx{E6Ju)UZiTi9UPchD$OWB9a9I5I8bZ^y^%`b*Dwvm9q9THnpm ziN|MNW!(xQF)bQ5F&Dx3v>lDUnryZ78C}6Xs~{V1zKY+Y>7`eW&wTAQyXI@Ft)PhWrlrCNp+>w!<$O8ZST zRqVLOHr=pk`#cbyG_%rNGV%A=hCzZ9+6O$uwZrCpqQ4cmXG)WYli)`5jskHT4glsy z(%P5`x5*|&(i+y9mIKzw_?u8tLtZ2`SC{DULBI29#=LwY-BZ^mGw*0gKX*Uhj4p%h z5&#e9|Eq<40&a6vclANSy9aMkYVWbWkrM&}{@``yu?@);H2OqO__FzWlbdT6@qDKz zFzX&&qF3b;>|+^Sa&e&(f!@WF7-Y==Ty3QWY`t5?uVJ|KV<Uavyr^F}h*VVHw(Mc*I-v8dh4}1OeU!PDB2;Wbji&lDPRT{3x zOUaAF4{vX08@m$|J`uw_M|7c5*jC4z(BOURE%S}BZBGjbt0lVk3@@5ML4SeB!i+{M z_H&w|^)XmrL;|;SR!X%|RDT4)!OGyiukAKx-Zwt9)B!uWz7o%TH{Er?D}JHj@%@?l zFRf-uw~*Omji(;c`rqV*1=W_-{|cMvmd zpoaw>hNmxC0PaE{M=*Z=%}0TY`XQ$hZ#)`xbWe(pkUaWG{nU?FXqoU+iB+D-Kh6rJ zX%=1_c~s?(B+($krCE+F`FrNHeOHtR0JQ?o8P5ZbloS;Q<3l1dG6$Czvc zD%nmgr9SjmF-ojUvYlR;5stvDKC}GDKYZm49T1y1x9KcMZM-^>c-VZBX8j?(I6s{6 z!F*>>T~hG;$DgY4uy2E$SiF;63UysP`G~n7 zd(J>NetY0VuaZR9Ui`VsDf!0WHNK|bhu3-zQyP9B#yK8;1Al-|$VNTy#H6cz%p8)V-C#{AuKO3WY^R^u>gq{RCs zVq6x$)1W$=3(^eX@6OO5kGFKFsD`*~TeX;{p8Uw4fj`dsy?WTS8?3(p)}-%R>Cj;- zYT%e{HZbA?mzI&^GjYhrMn#2GaUgis&}D#J)O(nJ=cQj}=2Y&>{YKqcnF?3fk*u04 zw}KyBR|IArjx6u{(}UI)%+t|%C%R+2MrO4h+*r#io4xyt>F%R7l{J?3kFb1wPq&n( zp$U{ugch`GIeaP#6D9d5zD}<%`L96PtnEZO4egJ-h>ZrbQBeN{-Qf2i^cw|n(Iv`c z+^WMHcX!b+SqH?4mG5Hye~@Keqb)#!!i`S)i`ZAKB3o0H_2iuSSqczh1}xFp{sT1f z7bn7{kq1~{hc}S4fMT_=!Tz6GLLgs37V{ko*qw3!sx!tCJz4$6cw)8|tmR>Qnl&_^ z0_UXGgLa=wk$=b{h0~jBF}?#pwqBrXV1>Fb__rNODSzp!F9gK*_b9a*y6TGeD-C}! zlQD8eh_&iEK(;C2&(>p&<;?5u=37DphYW5qHq|H=Ve~$q;A_~?kltC_ z2RL^yR(BWDqb5=??qL8#eBVh@CuQ@(`G4Q0Fls}{m>V4OJ}D({jn+3KQh;rL#5ZL)iMp@f;)(l#hNx$ zh_(sGx(1VD8{)zZJD4AQnmwsaywu}pJ>{{K9gd~9)(Y9UWO{uNbs{OCEl{j&)0rm0 zu!^7~cnKJ&bA1ooF>i?u@eU+)lAt>Q6aj#4mJx?}0X#MOqMI0cYrHkj99zTyLXPce z{+24rLww_8@zE`HeLl2{HOh2Y{uVEr>m8T4sAJhu#t_6SMjhezZXaB8MFka*!I*&7 zPbR(&XvvB;0s$zuq6tYS;D%TK4!TOln-Wjys#BU;0fQfayi7+;Phpbg{lxLYrLe$1;k2FTJPAj0`PWMmWht-mOrF6!wMdL2bW67~5=hJFQ+~J0R>=?` zoM*)uy}sNq2~X_|<6KJnPpuigv0ebQ{7jcUg60$Hy|n4csLXCEM?b;jC<4ID1B-eC zUV|`xXuUu5gn=bL)c1Vl7f1zG+KL0Xuaj_}tkJyAjebWdWh%M2-Qn1YlpFW;-iPqO zP6IMJqjPA8DAth@5n`i-bR}s#<@2swNo=TC=(P8Poybp^NT}*HF>=)Ck6Gv1i4>%X z4r!?YK*fH*caAr0(C9}|`d|2rRUkZD6PYIZc}6maB*UgA0l}7N309L(ha^U`QM2@< zmTI|>c5Aeyj=b`fFoP2aUmbAo=kI+F92zg+jyBBQo5oXf3@bYm0)MRigm+4lgNeo<3C72YThz{ zz$jMxQcd|764#UYNEJ9RRTO*RmkhRa3_GBq(`s*=sD<5O2Rek^3zlK}e5f4+oW}uj%uhga&lOy1RS z5P_L(IWoV@0SC854gAqx;sk66KHRi%tbs_q;7qrAJCFit&Z*l*M)*867Bq|eIxB-# z%8zl^_6gm>FjmeX|?L30B7!4q1bWRQV*dVIM26GA8FCRrLMwqkkdbq&v+(%mOWH{ zpu=~=r*+Go<_Q4Oip1~PrO@I=R&q^IQ(QpWVsHIi8-_#IQEr!?!swN@zHgGAQ%+9$vc zI&hF0Jx=b`X3gipW2N*7K7oHFHul^qK{yUr`=#6Tq8fDSTaN&smhT2ZZ*5o%^mBCl zMFT7UJGRi?Nz5Qo1a3Q3yn=Ar3(!LD`SF%S5610k1l~YJLV&(fsJ$6o^eh-d_w-%NXzX@TS%%n9dwp zm^YN30kn0sSYkT`-At@Ec(9Z23sFdv8ufD~Cxr0gB5m+EV>%mb>cOE@Oa-ha<34d| zJ~G2RFy1oH#abbgBuY;Ss)(p4ovE`d=6|B`K}9i4`p2i{$(aj12sR*-ez$1@!%2JS z&q67*lL&Qu;jG*^2=o=kG~rk7 zRRrC%K^AKQP9Qab*~u+ho0mf;N-wT7IXALQMwufHlhy-k4=i`{jdnF}BMy4y@q={^InOdm$OuV;(z*Stq_-U?kbo z3Z|MMU)0%k+w@(HB+Y5yWGU}kTp z)2lK3j!p&W$s*Q5B)hheL+f(+kF=ckjf%LVTGV^9_2jeUO;crhjOHs}hD3)jLu+QN zuFt9I10NBY}N0eK<|K80eaftR5LP<;4GflS1WrF5CQ?rHHm zx0chgJfUT$aF2>d6&;>a)Ma(qo4Z7ZXyzN|lYhM8E4(o)p!VmnjKRpu87Ka&ZkJ%0 zu1B)XoV&9H+7|=JdfY>T>)O{ZD!ff%2WBbA0K8A%-_T`J(aZZ&9(?c20!TZw$bND4 zjjcoli-{2=N`}WAN}#Ui`NJq7Pj?p2aFYjf1|LO$0C|8$66O&a-&Y91-A4v!u1(}` z`~?JZja042F%L7Z$UhA{CI~gHgvboi=f{LogZd$fo0q{4&vf!=CqkZ+v%aSWy4a~4 z6##OM}XOWh`%igmy7z9PgbKw;kagikW^@*Bln%sH|(Arzw_TagcG zy~YBRjoYI1ZT;a!7wm?C)yGYTuKk9H)|vKheF?h9@}jHn3TBUz88elH0tDhoV$UC* zJ7?^=!8vC7Vq*+p{K$W;v#Lf%#S5YNsZJ(4tS<5NFzxYo%?ky%+ zs6fhB{_(*mf^%3}9rL%T5rT{}7%_ujWC5vUt`VOsmh=EU!T1_-^Aq7TiV4aFaft@e z-wXCD=5x1(avVS};d1Go7)B2ra3TBQZBVs~sbeh>pX5f6bp&$729 zS~=FAD>@{ruteN+Gtnoas4xui6{5|1L8m0|3AGDVigK8^=3-0y#nr3eJA}PQ!RtScuvBqc|{D`!eF@PBIjX+B~-( zLkoMcSj`|8(w=!Z-&>Ttntf)S_nmxwvONnW?-B5S13Ub|B7rL(S3_TFYUoB6%2Oqg zg-KMg6=IOt`uZUz;yCv)&~b&DL11phY&zJa`%_=v5`C2qOBQ4ttm{9VTh;)^e7exV zwj%uBI(?AMj!Tpt{nT`--%oq@nYE&S>I30c4vb2K7@ljXvt0MbW}N)DUqbDzg{-0N9&f{uLK zVqLxsoZm9g>;6D(gg4d=_$+Komb@J_z(c-1F5ZlE4fwJ}(xcTsX^#WBJpLL$=~lgG zS)6aGlSMAuSJADJ$gH9Eq=ikccU1B;t)R5P{fJJh+|ecvUm+QVijD^E{=mV6d(Qer zwl55osyZ4{y`Pj~yGi`|wkDL{#G1?iwW3^x8_KN}%Jgb~$#EIJ)Y915i zR^f;J=27)PVXI6bTNcxAnXOv*^8Z6j4CDdxhIa-ZuSew@@UcW@cG4rC zQ)D{9)GO(#A%n{az{dQ5b0cbw$t7NADe}_zt>}T5a1g~SX&3xXT(UGQqIz)~cBNQ# zL#gASt|3Um2f&+cCBCQKEJ%rY-JWUd6IjS#QTcGQR2Uy};U3{t!t&!R^O_O0NWe=a z@lNNDa^jB@aWTxFdw+z8Utr__8i0EXkr`J)NacA+aK+zXc;QP{v@b!Ned`ejK|b9n zgxfxNQdx>J@X6@U{hHMUf3sl%WiDUdQ{1Y|CE1Yd{tg2r3zS9J6^vm zVZ3-GppB8!=BXYyrK(D*isisR3Pg~jj0{txr5)M-2xq6oHT+}=PWty?#fF=b7)oze zICq~B%29Hodj}F7pkri{xqDCzz=o8#xp9mYb&#*|cQ7jZ6G!UeJUYZW)4 zp6Chek)J%^GZU(NSk%zf4Wat;a%L&hk#$f4>(}u^LcH^jZAkbG=@xOj$Afs($3*;hPX!z)`6?ftI#cGI)TE-B zAQ~){^G>k))9PhJf5sfv!K_K9@~pkjnfZzVmL{D|eng*MTE8mqZP?Cj)xM1zr4i=R zN3ZXu9Am0_Xx9|-d`9QqR_VlVx_OIg9ea-n99(0Zjrnc2rk%cPYh8B(`bU z5)A@)D*J4YeQ#2bhk(R#8IfGAq`XaQ-s4S#W6IxNrgRO#!l!b+K1+yp>k2MQGTGq6eWh35e;bY zv#z%*=p8$gi*+Gb>2&ZcAVy{HY*2@RhVb;c58KgA0Okn=47dus7@;gboq2McjPQU& zZ#OcPoEYe%v;@sJ!aI;B8};Lsbc9__kwcG~o>Q{MR1T}-2G!pg0fms~9kBc3EtN0e zPUGMwMV-OAt^5hWoP_%BDdN#=11IRf90`tB*o~<^TqS61&6Ze2=j=J~J$^>*N*gQ; zKL~Jn_>TmdBC4i^m`VLo(n%45v2XkXXfp>^!s5q%x@F*}y(Svz7!*b34Mr_eRHnwS z`}yABH3^r=CbD{-8oEA|uMEqEQYf`?Bg`hy;e_U`~b?#;FL z&+MsjO=YzTX*Q#w)W}R1eM>rZ)90YiXIIw72^hDS;(*me}cjv zSU4gDLXM%qmg$Yt{Vhsc`h~RBX!xOXS5s~-SnwZBeWpaHSD+vX0~>F1v6q!p45xk? z5_?1sB9;b&F!|mYO~#MsfYv3V2M|hB1Ck#`ORH?oFT35bQH-*zxh$J6q^KSe#zewo z7ah1t)jL1*$qyZ=a0w#ZfS3gVT(oz$<-=s!QfUA5pFMS{`5k>!6;d`ND>#%D<966m z=iK|wDB$P2yEH$*9Zi~3E#Se1E)RxNNOd(E4MB$XaZ_@;27s~4G7CkvEUcSkR*yCl zJ$Tw%FXZT-)ApT5wIB~w0XU)?a{u89$n^sa$@UFD9&m_<-Xmuss7Bw=>y%~d`x4N( zAwKl_W&CJi__GjU@w%0dl@Uc>W0P6YWkanWsKZmO95w>KZdCH8B^wv^+N=z0KJq(t zV0Q=q{+nVk!X5r>6t*gdo0(7o(|ls-TVu`=G* zD#Etm$UntB7i2njgFjuuOfBYQ_r}M|8DckrssyA}<|69uE1Vf31jf}3twlk7SFBC( zjjPY5ty#0x&;ZG2q>JSKwJ`=+Ss!d~|E+>$pymiOM)4|XM&%QoLo z(P_!}a9zo8nMEre_P`>HDzWYAGlq)E9F}rPpd7##r?CS7c3A2dXT;=k^sqBmA;w~d z{j*THY)m1@C~R^+->_i)SXBAAnj+zpGkO8-PgnFO>E3n5XINOtb5-PdD=fx_-GJSl zRKBn_ki`@^vEi|6W@*R=(%%w006Lh{VfPoPuCyUYnSP`LOXhZ-L;qUZzjZmfMjitz z6Hk@Jq)c-Woku*HU=jeND5F_bp5#kM;4K;S8OVM_{240y|F)iFlg2JUC%d*dA*Rk^ zVaL3nZZhtw%GwPSG_ni^sXCv_QIGY(p zh2Spyq3dslMcMVj0X11T-yGu=Q%z%^9z+HZIQFaf6cFsF3yF}6XuEb`g%pl>8FL*3 z5EhnM+Y}{w%DxL!8K@=TUs+$!3}()~TZkI8n=OBB8+FSrw^}Ucy}=nH*cej+`?XIY*o6y$G9E1In&?(5iUQO*mhQQ6~Oh9Z&@*5Qw>%3_9#$mgKxfwW` zKU7O#Gb>j%?9=gIIlU;HH%8^=vhfW1dnq{8dai+`e0>q2NXa_<{tNaUn|9gz&+X<|l;;sL&qg|!}F8dZ(GZxN8hj83L#q+4s@FTxF_Mql}y z9@0c!=Lb|wKG7n#as+V>Tx91Ivgu}ediYZl7V&=F7r7EYRYJTK#KX%^(c2te=(-su zI=LzKC@7toEhB$yn$`AdySXwCC4G4*sQG zJGk=keB!3zBfFXQI?KL;Foy>B!|c>WhoFON&EoC93=-TPNpvegGUn}3JU|n{67!yr z=(eCSkGCxDZxd+8`2Unnpa67Fiss?MWmi&=$h0lIhgxCaTO{ocmJIRXe6SY_R*OgY z0S$$AO`)F_o?gyK7d}(W=WcKN?IfJf-RHBLq211p%2zQ5lt0H#|EaI5>cb5Hh4y^s z#t`*zZ@r+JG$M;TF>Co;{^g2_hu*C7-_^H^;AJ97HQw6D4b{vSuy&~!fV#In5BHho zzZBmF8lL zgb5(clnq83@y(#JtTp`!q`whLV2qE05%MAUF&vOepz#xn@fy^(7Ib45+QwV5^`tZA zL|#6tcIJtNJVm}z6gTB4Iud({uXSxRF_`S~9r#JpJpiI)WN~<|5c||G408*+^1>M( zcC8bRmwv72Keai~j@Osi_FOJ=wLGqJI<=%~xYD&+6S;A)W8C8Q#OI?h?|gM3%df*W zVMyC**MQYp`1(f;Vta`d$i?U5bpG@!#y>}8hhfSfFC3zQ_C()=`*B6*B~wzaY(fKp znAcBn)+fV8R*C)Ejh^;*WWj>Jw#VH@q#`aB-@Zk99wI!He<_060Kqq|Sv087(At6aZ1y@_Sdh(Mb3P|Dyx1J|&40>EvA zS-od8!LOD88hGD%aXls4aOi5nyoR^p5=1t>?fX!DJ|1S`2f}XiaWK=?MJYWI*(NRk;M@aA;6-9pc$ohBqWa<0qcaT~-?ahp3V zUoV^X`3f`|T#CQz5p^{jz6f71g?8<;ouu^V+Q}B=U;LZjS~echrf_G(uD(+VxH0M_DSh0-z$Q=z&v1>!cMAv`yu>;~BCM?4LXX$qO zuf0!9HPJ(HnLEDBtr7xdI6v5_<<8oZA_*wcsLMh!o=z8uHq{{7TF?X!YzZ&)&Opk~)$kcO54*L_>#M${|1+ zupmE!U<|WQM-&(8N*1b)+x`JarH-nvs`KJ5WG>T=h ze5s#^OXix~m(>A4Y|XM@`8xlvHa1&A^E1Bb)F4kF-^bEU1=XUKs-c0)e6A3hXus>o z%uYlZKpDAU-9rCo61F^&c9m z@qzXeWpLW$D3IX;;5B(k@k-u&L>E!h1VGNC#Xz;r;dorQsa0|nZm$wT{SgsqgmkCQ zMLemA0}lf&EF&BP*mlkUyVeb}J!OsT^b53g&M8IlpQ&$*AKkFNDD`y4nMwcSc%%Px ztjIZrjmhFi4nP9*k;CunrOAm3{o3^AcnBQ-bI+zo+5Wsl|5H%()vp`eOgJ0kdy8)? z=&@O_jI|Y^UpJh7+)<1J3%D4ON_A$5@|_UjA)A}0qFrZi4k+oJxVT^XOZgg5ulHEW zH z1Qf9M@2~QgHpc;>8J!zv_;BPvUNq3s{PjmiL3-#i@e%vcna%~F zCR+86CdT$*)BJl+;*O^PIL07Bv`GH6R=a`btCir3O&anEexFL4bSgRRAD@};1JEfK z=RrsBA~<9Fu5M>7o)da|%?GwK?K3vh{?H+0*DCaU_M_enKd1IS1jkA?AnP&FGF+UG z0Dqj>tI0m61uR={2d9vE-WmXp`$YDmvDqHYjM>i;)?TTAmM7G9yUz^-;kDIDzuF57 z#w90!jd-+aJ12z%jLPRh&;-0NYt-w<7Luj9RH zlA2{OYbT)z+V?3Q$~GYbrjboANnG>a7j;u0HSf`}nM5p%2qc{l-tP`xLL;920LK+* zfibW+Fio}h8I9`ZbMFv41>4O~w0x@;sfln2FqjX;m{0#n_ARQdhGqYmk6khE2|M`l zO7P)*wFJOGUPaVR6Grm6A8G1`uWs^M?$z^TY1Yq9@%Rr9A5I-;SS&Q$5{d3ZKenvv zHboDZBYlAvIGMZxjD$X6QkLf}3S=+ri)6WKz7&r{w%K<&1(D)`XZ>7@I)kbY*96g! zVPS|GmDh?2b3&Nj21irmYwOGQcj)vKBgEHW#Lb|>*M-Y@nqH)V>%jRYrau&zAh%C* zDzM;<^#E?>pE1~JU@UKaoivAbuB#hC0Wq6Xb(jJOoclxOT4c;*#p0dHQ0^WucbF%H zbMO#Y;;xCq^B**K?LWwWW?yf2R$?uOeshHmvh!nhsU_4u(WLzWj&J#q^w%y$x9j8@ zVMTuTwy5-lsVGAZa)h<<)Q=z;n*aWkt17TPFIUB=zrp-OO?Q!|Z=WKyktH2+O*KDr z8Z6r0pJ#>0dQ%OjUvk`+9(O6m`<$3MgHBQyEM0mMGu~(}{P!?cr=^RR)~=UrxQqrTJZK1@c}@{?Q2=l&8oX z3&6UAczgZ7Z;cWFv;$roTLuHcDuf9?9e@|Hel&d!r>`8AMZQVrEe<%_1>irGeGV@G z7^BSIDO%4vq*D-0zBiBoQ6Uz%q>6s9<1TQk`^Ic9@SFT$mg{SH{^EE zM9Vd2gLY>7t5rYWr&a`xzLj$>yqoSG^^@?L!=fx6Dy!WGg z#{AdOUWH;!N&1Mn@9fb=TPUIH(3vIDuvFzkX~Z>C%{cMx$HjEXTWU45>whhDxt2xm z-ibZUSoRthtm#6a?;SiuO6WdKT{rQUY^zb|Xq;p|xN}=isUu_Z`f8flH=qP&dfK}P zgx(eyqI-o|3LGl$^xUddvWrg$7vh>zzg$&g@(F%(ORIE4>($(iJLhFfn_o}8^lXG? zKW&Tymh+#62tjw=sKtHE`!sf1hg<@&QELG1W_~Q?tdD$s#A)UcEjNI8A$VO^oMMN6 z&62(cr{Rc~Fh*$j#`AU6_Nkxf@zK6< z8MXDA!W7?6-CDyb54o|7(n-71r-mz?Iy7h;nLD%VwM>M*!tfYz0QHn2U+nkPITQ6k zOcUg)_%%37O;#=c+PeQY;wL0&Gs;|EtawvAYfhXSu$_=snF@VF4*h5U?xR??mL*rK z#_Xth7JLXpJ3dKg-HI%!ebY<0)=xl8#(E2%;e%SWBsh8vO-Rt6fcrxD`YLlSN}TuF zaAhH*3yvjdLo9Fpw(-WTS5H`Q`%_q{hQ{FWHHo?dgBx z@z>n?qO49rRjEKAwQ*o(u>hD&Afz!@x8_EEz24Wo_R68W_T5+ifUPo%v;VIJ7(*55 z0rX8_0GaZ*w1}o<&`1;h8FU@>p%Kg{v9h;SDKn@KI7yS`brO;qbBuf#p}w=!Rq~k( zcQ8=k6wdcVHHKss7=;dtmyiu$Mx!<#h;MUy{gQ-jXy8U_0ZJIkE;;ff9Ms;d)4=doBK?}y;~~aSQIC+ z<<84|xO_)?KUYvRm`P^g^jR&e#?8&jYag3l1;T9;m0rvIE#oqJnKpf<#LkCF|s!z=ZWCL?6!?kXW+cAV=;bt z{Dycx^mMpN{1HuuMPDTXV5O(r`p*m~ULbq|$_LDn`w+%g2`X__6701U22&vWepSH! z`fhe~4p@*vmn#mqP#Ol@3hRTAuc>pWRqaiH4kgrc_&0)c9PkISkYCLo^?g`N@h1da z%#$53K$7dlVD3DFhFDrd$CN^)aWMDND{@ILnduH5)>TauGxA9dk2W76PiD9{p}C96 z^aTHLbu+MCDv;5Lp46bZiWJrXLJ3U7GBGRyGLqZZ&hTQ6lNdagxx@L50i^ZOR$^fJeW!AG;%?-zpUaXcK+{J)-*Ovwwy$zY`7Qo8R9WHNZe<4KZ&1 z9Yi1?)2T_mpdbC}w|`QIs#L*4>nJ-ldTjyuUK|PrSD5g33N;HfgX$}NgU6BCM}Ab# zq!1H26<@3R`e(MTV6^EXLC!Imkaj-u5o|!8SI3W;Xz~mQQq zelxjD%@#KqKW#L}JIouD^}|k#e2fxqMN~#<(pCS$)GcmJg3x@6U}l&0)Xasv>#}(e z+I+;>i3NajWd=ov$8kRc#6BkY)9HI@q?G{(lW!-av}Ut_FiDzNA+t*oIJ}rvL3s@P zOJY{Gs40K|g>Tw%Q?h^v%RCLun|>o@F0omMM+ZE-#hWhd-3pD(H=*$%n}>f@3%#rw zY$*GJO#7zwfrb*G=)Qk;mt=5)S(KQ4=PXLzbqPP_*6uRQ;orS9+co#xP}fD@UAsJr-g8zWQtnG@R@JKzFW3c&=&fy%sfQ{xUUoMN2#~KQ88EW|h_=C{ikT zq6^s5USiqmngl;ld1DaC>>{{Gt+<1EPi6>IOBF+~kl%o0?@c)J(}2}*3ro_r!sRak z9c@zE?1Ns(wI9KTjd*jm-?3jvsWd-&PQ}D?{|4BG$(q5l8d9=Y0~@fnrHoS1oS}F# zwxO`@SKbiRdU}eYGeY3-v=VQ|`@bq&Bjj3SFJJ$9UNFb%n%?0u(!?g# zZ8_`^8i#qu*aa2Fekl&IIC?UB{Z_Fcj_?+QKF88=7j$ns(h@MdhsDPs@N6S1x_8g7 z7=7xw5LsWwBfa`4uwEiLljqjt!F5YO(I+^RYi?tam%r)V`{M)@0>|c<0$`U8v7P`k z+9n512y^a&&ytGA;dxoy^QBD*zZWxO8Oz2^AsTn6OcBM>%>+1!1Xw~hqBwuMJ7a5w znyIK;uuvaqIP8h5nVx3#_~5c98aA~m)b~UF4Y5EJ3IwP8)6*~BbYR;G=wmlBvau+D ztq}?}sNMj3OK~62z7Etw-C%$YK81I7p-b|w`3oK(>CeBbAQ1jrdx8B+lH z@*jtedV;d~$@==KB{tb_-_}{Ly?U{65HHXYOi^>yg^DQMyiNCbB$S5&mVE;WOpmCd zrae=}SKk90?=wfZc_j2$gNW8Y+#vE7%f_LyjA9r2?Y_aSUID(&6N@SSq{9!?-##Vz z6XZMty!ts{7-c}-v>VuK;elu%JsMLf`Hm|2S0D;ygN9GL1XnWW-!ueSI@vzwn7Y#2 z8mpby>^hOD>nhjfkG&Dp|NT1gol~4BggY?Wnn}jHPG5Iq@vd{0OPU`rq3f$UWFM^K zow0G?_X^! zu0eRn`$ws9N1HM@I1&U^OQ~`qq%jz>=XC&J1A^BBuMyR`9BrYiEZ1v zvX&vUl^3i3#u+RhY!*qzA8nRnmHx2qUznQGO$@tQ+zt#pm1yUGemCL{Q)M~aP})B@ zN0FeXmCx%;v=ruqA zg>4doB%IJ>})|ZO*jq9#V zXeMYGc&k_59W$CN&;pFBiZln(lc`?1h5Gf`g36mEn&YGA1#tkOPy6}evsMJmAr}-D zPo!oQZpM>(L(QP5#Y-bXL)+(Cl>~4=*H9#4e*tg%dYo+s^ntKLl^>Mgyj&(Yv>gG# zMDb3WHQAly13@{fBNQB#>Zr?rmQj_e9i2h8d_{=Kh*H|*VEgIYO0%@zvj*7UNo0@n zHnGp{Epe?rw!I4MEZsxvKJ}fLi?r!l?rI|S9}=7KZ(B?p6WZ}tm%?bR`^3v%{j9!n zdve?%<-VtWYS-67l3PBZleUx}=i9BF!T2|a3-@ow@bxa}j!!?kzqIJcA|93fd0gBy zHX7?tLl(j9#T*5wGAR%Nkx{N|(LTI1?1{_NtFNvN?s9;LggLqoR_$)(()l##*8Qc& zXV8Yn&ORl&z5r$1Z2`YUC#cLv=c~C*fEPd3c{3Pb0gP_JzY$93f66?JL8M(iEt_~W%#cyh1~hKUn~* zne-ab!XqET=GyT2fxW3Wg6@M)W?l1R9jtl$Dk_FevB+NX1SDb48~b5y*r&cPaH-C_ z35uwWSZIRAXe+wh$>=|0JNHj|wCP$MJO1wF?1nF*2OPsfinoN1dJWqt3Tl=RyJ2kI?UJZQ(JV z(i@(wFMpy1Qnqt07U085zP0hNZJ4j7=6~9wK9mj}+k4VhT?Qgl&^`0J|M@pG*H%By zzTa&8VA{1=SobO2!$+(V)a=PNE++qzs$<96oMRzusw7}BElS92tz{V(HcX7(xVM^W z?-|e{!thkToHptR)KrmFslG-kunc`AVR9EJt5-{DnVJCouY!j$U-oi|!^<)6nwkL8u7_2+`h140nO(`$e}bF=-(Qs(gp2&{O<3`P%Nc4a z5cvYBNEV9Bb^z!w&_%dQT}6Q;Tbk5-6HwPg8Ln6O;qw_(>U+H<*!|byzA~!qzZ#lW|?efcI)bZ$& z3;c9kR0=AYp-+wQiRhap$??&8y{|U*bLZXEqcNk$)W^kgO6T*U>iZ{53cA+Wi*kWOEt7eHuV@7-i&X@pT4T#NFT?Oy+^Qn%5E6^R)k zJ@#|+$-};2vu`xXtHSPJlVBE{?*~zLa1pIXymFq%PG--e$t{cElno2xr-X|+u*}7N z#jd!NH8#@jwRVo8#lnt%QnKrhBQ?)__sbKY=Js6kG1O@uK7p&wfVz4)P&U8&$6+qh zvvR^rtBIlWgcC!tm7Kt*g%PLfuG!pD(riWz4)p0=_>iUx^NU}i`17XE+Qx~Nas^pE5J05Jb=q>@5>m@VbiDq; zbu#0hdtklrbJjdYP{hDpXBo)J>~7oH@8fa@+AsKB28+)!Z`}z5Ux?JwlQp&PU3O;C zFXJ^?gau9K_ntN~Q4jSPzev$cOJ|%lzZF)B_FC^+ zaUw3DA5ugL1k-f!NqXi?P>3}svIWIAPi)w3!<=1OCLW49Zu}`{O53mE@oKxHeE3<( zNjU@tO66m(RcjFTQ?>RCaa1y}SnWz6`GA^|N6katqr zK`7Z#w9GG#3R)j+IBWK@E$@E0PEUGJTjWemDBcJ!uzna95}|lKIFB-E&X)oa-Yh64 zB#{&Qy!?MDydh8Ogbn^0TI5vtf3Xx#^`Ug4mLbq@M5jHk+8Cu)0RCx+mh-1CUdNn5{%Ktz|b?!X7wW(_EO~W z?P~gh`cnv;z}u1mLa{Ng7;G{bqqiRlE?CDYYM?_f5sDn|M77+K-$=;2E8#g`kFD>S zAhU@~v#irCJstim{o6s?Xy4D3LE=7$Iy>|3{%j6|Yn4>SSnG7j4DmZ|0ksw_TD-Cw zF_MfZqS-$WKJ<<^prg)$Tuw4{(jE>U7hG{SjD|L+M9>Vo4x>O&w&4|(Wv{TFtG2b& z#7(acFKnI@QrfC+g7%;A4D}*j{)x9{A&KWv)NuKuoKSmymx;w$eahtZ%<=dbXC0gg zpiw|djI(>Pa)qgX|;AHB~3>7HVS!26ZoJ z&%F4(*97J&2jOk5{0u4h%GMO)D2XU?O%&zC`3TJ~qCPkI8*5W%qUWQUj@1ptBYq_J zPG2;l&!gxW9)B6V%G8ff)9?b+kuh5@s*G2$y%$7;DUxGY&;Qyii1gwwQRWVfWpbfO zW1#yQ^5Z0rUYG|up6oj{Z?Ub>|7lO;&0I~l$F#~NSbyLzr3EE9dSS#0iscDtvi}Io}ok>QU}C^+wGN z1k%_j5;&vwu)o!i!cV8^W&CU*ETZBmTov4>@u1dU5=L*@t>U2^#e#6;#}51p<^WJq z%NRip*V=(K2pYL^#NeRJvg>rVecu}O>3p*398j4NWXO9Rs#+m<7%mYA27Y|9*kXGq z1_*sycQ%Hy{Mi;cvjm=78SI-D?zI$-Lkw)4FPCVwHHtKkU>WWgdF?ut_)N)v>jKx4 zkM^Nox5HR5Vs`=}aUq&$XwHf&#H%C7vx8@vkRKkje8WPDCH6pIG%$2Lkw78?*V?eGrxi!M{ zUmgKYs;>2$D8aW}cwMD%(wx@4n2_}_f8;rzYV&%eNHc&^$$V{Zr0s#qW6Ov?y1@=0 zzjDtRa8+?z2nSASzKzP*dRcVpWsD+DdrL*um@{^^0~J|#aPEZxZ7+VQoQ={L51&ds zcfS8R(gSVUTweGSs>-@_ML#EZGF{u(<>Bk0q$a7>aDAG@wbbu67j;^1cS4xA{wQ9x zSTle36CLJd94x#j9qNvW*BJ2B+(*a^;G)Sa%-dq=Ic-1E1G0Ic37a(}*R4Q#QY|h$ z9bCg}icE*H;6zmxZi59ssScAsTfYRTtV_&8>K4M`)+~pc?3Vk^ose1_Qq8?<+Ha$; z>}i^tTS`!6>seIQNo@4P#PX@%Kjs6@zj5767WSFxOj-)RpeRP~Et@~efu2mY?rk0N zZIabt3A^Dlhxu}qSkk#yeK&%6kVm=Qpn?;BLuh{T%PD6;vnQ@EO712u)(^CvJzs6P zX*`s;*c%ve^~O2!_fv4cIO}l4D#X0WKItKu9S*S_T5F7Um7j@va+L|4C#e#0R%bfZ z1JEOsy0nfvK>wvl5o57qD4x1>$(Ry*hV~ESD1_sUbLW!Y;X956(eZ;bp|M#Hrs6;S zb8m-ysbVP+H1%}2@%M`Vjf?a9{W`B7ocUQYjJtVt$;k7j@}pC?bY?7Txv_$;bl07r z#mVF3`XQx+_%?-)Z0vc26-T?pJ9Hq(i zmL;R(jENN7Z94Am zil|Ctbn8}0`!@uy5~U3y{7kTz@bOtN+waPfQes3^O$u0IKHAOMzA~Ax)24HjU<6Ir za#R^R(act=izBiv_sH4bU29P8K`~KwB2ebk5+?ME`NY2kL72;N2Idl)WGRQ`o=ZOG z59<1#@)wQ8ccjqnjvNL22}$J5Y=FilKcd~#L#DYg<9g6ctBD(xE9(dU90&HQ&TV(% zdh;2hp$ASFTlS+Q`?(e6;D`p6k#6hk-B9^P{Y&UV98sT~@QiJwdpxuX%GURONbGUt z?RT)&YprZA+3=Y>LuOdCC>vU;I2 zEsaC!9UsUkpt^IN)=lS`Gu165P*oxtAp05zr=wF+0Rb!652O{5NQio-<~p&87dLic zihU`nphb~qbZs}J%_m0kIuC<_s!l&xQ2$;HLbKD(7$GzB>3WgpyjE@B9p-qe2b$+^ zFs~10v$1x_#~ro2_{&_AJ*G3XCFR|0$WQGG8@+;XZ(^c+%>L(7A`=DM>TQ@&VeEeS z93pos_R64V==YIGM9*aokxF+`H;kDU)t<`Z6xVmHxtm;FSjHcev3cK2XqBn765u>$IY)e z({b|U-P@wdPkmd(nS=EuG~HK+*HvU9pL-P%KrYW9J8)ewN@Fx;&Ag>!H*}|X#10AC z?-$U;g_t&P6^&fCXUy9-x*zmCPIHUUV^%&kCh za_o5)Qo2XE8KR7btBFI|w^iR?8RX(XHop91Dk)_Jy^gmPJ4+AZhWnT@@<+oTy^;7) zDj&!vHAenc*K!s)aJ9>7gu7e0-Q$*|R^s1lS=@n#f0>;%wI%S@S2`N*b9uKuzQu&d z&CB#F7n+$oXVwI^Qvny;PjFhyp51xEM}4(9*Op|Ux1J}#cWlM9RnAr{5du7w{t9Ie zZ=o`7qZ%{fqDV{KAZRP}Qv~z1Xiy}pl>SAd>==mP2)GpJAp&mXAqVs9KJDkdUcSGv z`t|6e)~bB3WPr*kx!|B;JwZnQ$mfwL8;5HGG6SGP1y?=ts2&;*fuX7=`&DQOQ4A^8WZHEW`?;DOyJ3C0}DuT8esD?Dq) zzVzRrLEU#VSc3yVK#aT5-5EJ_Q5dA%SZOzq}t&yA~ zJX%Qm9wfvq63d8#c;^Wg(B@7H78J#tJec}Aiz3-0+#`?Qtm$%_V9$kvJGAW+)8i&o5Ry!NJT%)?cTdUv}>%iPGsY1%8x`pg|h!j!X z2!EIM<|Nb$o*!a879chYJ_%*Rp6Hjd4$nq5Oe0O4nS7ZS>cr@-hoYJc%6P7at;*+M!w0~v5LO12yS6O9+&o>^MJ8C}u z6tV;c7R7z~Nq9(mXK6v!%ik0Mpvp%Z-^ymDh7^9gfg6+>%y-IZXfqr2e6g@}g z$*~AL@)bM!UVBQZYTNzKzk4U$?!7FZ9t2v2g_)st@A)^~4&hJk%7~}+^FN7kdxqZ1 zn-(pMhkaCK%bWh(x#!RQJ#ghfs>$0}5$t*=PV^&JkO^>RAL%&Aqug^Ayq{6&DW|N~ z^ITHJ^<>6|2e6ZQUYaTQ#9CS0e$6X#flq?nM z<(XaO)xnQ12@}u7l3JN@g8h?$7Bayc=#H`JAR3D2o06KACLLL%8pQyP^Xp=iY*3_p zV;SAB-Ja#JzaF%@cTxXzPBLxNQM+eFv17}pShef$@P`Xmv23X4Y`nGU8n@>T^+Fld zEl#-Z|Fr-oJ-c>z`HS;;x5_8t#o2KZgijYXb-&8u7&S$m$A|y8*HfP{O~)Lojx7|P z>cCtMtHt_1p>{yLzX+B#e{=4w6a9jipFBsfeyO;z#$K9Fg#eqU4}>06tHK4+!$sCb zoiXPbRBOP*9Q#{QK+=fP1{XIG`#Y9nIwCCWQS7tJIVuB#B7tcTwh{F}A5&dgYl%=; zH*#*LL7^$yiW^+FI5w)#6w&ZvZ9j6#q!gfiCO|PSKmgngkuwVEf#@m7?Zl(Q(;*Ls{2%DgHd zU#Svo%VUn1b4(W~c)xSmFRFlL=zWl)a&$u@*7rl|plfPv{bKqASd?7pr(%u3ualgW z7E#Qj!(JEz2oI(Aw^w*Z@977$y2%~X(sehNWMTZ+?9%7a@ek7qu~vqM&yFg#B!uIN z_IlYnUG2*;`x?8{-XawblUC4H?WzObeE&&G zw0-SH{p9Dc!VMbh$az^__|Qg(oWayMb>|jNu{d9uNNTi#gxK&*FC0xi&29>BZN1kC zjbCAHmH)%}i@f=}p`cHhj>Li&e?PITknH;x5*<79@az9R9m;qRh>jMW0Yjn__<|o%`cS{O8!>{@6^+ z)%k9wu>GG|=?TPrBbSQD{BE^Lc^y3cfF4}^xFLGkUj4fvI&i|5xBR-GDx8>bkd-_04 zS86iEviaw?e67%iqmYn%(P?0!`Yk7P;`q5~6XCVqaAVwNgMUu(jb|bLrJF?7++X~M zEpeM6YdODC0)G75?Qpca03Am) z-fw$n6lgz$e1Luf?ilCyKQx_tJk$UC|HqsUA>=%ysN}Ga(=a8Jq9c`4ND^~sb3RKB zIlnu}aVRQG$Z0cYRyl0Qd2@`-`7q}hzt`t`yZ!#!_>jb$>jrBGIYEh1Ye@ ztf81Z+c#N2y)i`NAxls@C_l%=7#mYdY%~YhQIU-l%?!E-MxfP7{yVYN$Pq03UzZkK z>Edoo4;)0nT5o3xX9yRR=mhG{Pvgha77^Fptm)hh?J?f~GDB^W+YI@84cK*Vr=Raz z4!I%V6yVP4|M9G|l|=0z)@(<(q8KI=(k1X)9ZP`{*|UXnamXJtf+u0u&9~09flyEq zJ_%)&{xHB4hx`w}ptB6$@;t+MnYP>|ENs7BAg0h`lZ0|i;8;)`qOdPKlKkw(@H4_% zMQtfG217~Qq+8n9gys3nB?Xub$iBlTE8Jtyw z3LWp7Gi6Q;x-Qo0GQK+|v>FD&j(ddb1zJA0tXpkGj_a*;_MQ$|My_7Q_2_m!oV+t~ zmN8%Vh{%RkZnk9DNdcMU+`WVAhbgTPPnE@%`DjS#pM_TaPdN`Wh7!JRLAr^wjs`x- zg<{mCuEMz0bxj=0zv-pyWryzHm2r1gLz8k7A#=SM{vNHT$8I$+F7jr?ft>kM+VX#b z-)aOy8GHno;-N#>4zc;JjqfIvaB+=($ZT)Q8ul*V39*r*nADX(0EwS?(`cbP>8C>- z@@@&LRde3Ehl8rTm%~dTHLT?3f1SVhhryAEw31g{iW#9TU(L%K zdcE(S6tH$hB*Ocip3r-d_J$bH{IYjTsR2iU0O_^rDZN{$$5c!Z#uFu0Bqhv5f$a7A z5z1k<;3CgC%|CjdpsT%tpS5{z=54teJZ*=S6WZ1Os!!PK5siSaD%FA8Yg*z>-%hGw z=uXSuUnV_#oaAQotL?3~Y)hf{)9LBqOB+)Ke6Szt;9Y|2lZQ7sRukpbiOmMkWi4WJ zPT!+Cje~ep)}-XM=ee)4sMM*>{UFxf_wEj{9tB;#ekk@>(-5DtN}Y-F6^3>~OKoUz zBaV*B;lm767VshhCxdNr*EXR1p9F>tGnWuW0x4zfqR>J4^=x&#QKZ*ta$NggXY-52 zkgLv%P*jxcZex%LR6ls#ukZYVrp?Ck_et1{zq`~4Uun`rtk3hqkWuYO#+7m~e$oQO zJPk$>4BZ3{UN6Coyg3d)&^1SXPzNXL{7!u$C((A}!5Cb)*~Wb}CK4I#3nui`jMnA{ z2TL{noWCiD4Kt|a4DO~%tc+w#B)DFe0j!)dYf9`nC$@G40%jONiwDF2dx zNk)Qu`EPy{5Ae_7e0l&!wIU7v=moIom21K6t@(!$B+L`Nm6tLDsue4LE(>Ur;<(`f z`Pir>j(1)AdzZP?Kc@J$(nuNp;9>ULwt_k9kCXX-iHdyu>JJ{cbsv{8<5gU5Qr87_ zO_{8yVJC(T#eS>_nCd_nH+1KX4jVUAD#Y6ae4qBH8wbqAcpXH4MKAHcGy}Z~DHWv% z6Z>6(=Y|^!DZ5AUtKJc zUNW`S#+WsFKlX9=@po?Cn#)~2AwblPqt>7LuVuF~etd(tv>Ph@nx}6Xu73Tx!^L22 z<~Fh{7su`n^z4*YoOrDH2y>&5dH0Y`^dU(0yVS%k3?C;IWK0J{7%thSS5 z@v>ZP4gdX*fq{_P1G4B-rRM@UeUgn9lQ?8A>vS)4yRJfc2@pm~qUJePv%=hx*@klB z1K6A2BfO(tMh7BtrSvJ0dw05)nq8&|a}DejGPE+|TK=DA7t2}_OI|?TEQFtVd$nfw zBxf*p6}yl0hfTW=Lf&?FTMZsrlz6ld;x`bvg-s943df0VrF(ah3aEmti82n#MEw8@ z;p|azO#M*z=*_yK(qO{N)b-rGvAr*m3wfG<@biawp-Wj((10qOfwzT1k(XyPovqtq zux_Y6b`B_YTAPs}XU%J)uvKNNYA*6y_^5vnlRqW9_i5g3A4>xAAUbB9c*b} z8m`%Fo~q}vdFv))VTkUHPJMP96mtT2<%glGY;*aiupVgMGmaB66_>^owSCCqG&}CD zj>|UV&gg+F0V&#v=|?kv6dRuM=kHrQv(}nDtHCjtHzbKDqykBFM$-NWwZC;pQgd1Ldgtm%c4EMLNc(E#tC6;SA0~iY7R&%is0*w7tb(IYFKTtZxf-PgLu>Cl||xn zr`4{;Hc3k~@;u#Z__ej4wy>?x6>!t)Y$g7|uboRnl!pu3mPS~X1zn)HO{aRW-a@&G z2uH`JBJ!lb_5oRO0XY^=^>O`IS+EIA>zu`D!JHjzSog?sy0u>pD>-J82b~8@X`WzN zXsZ|St0y0ngRmY29=3UX|HMQ;=eYrUkD?6aatNMvYppN0>6$(i>3|6DzhY`+HAfwF ziY&aQoLxfnmU%fkc_RK|Cgc6euM)mD=?>~8!ZtNss@sAgt;59z4Wy7=6vgh~fO@GE+-KO)B-rrHR4ssXUdC``= zp55GV{B_5i+Dq2aUe8vR*Xcn<)9r_RCNK9>5R?a&KY9q4{F$sNywq3doTF<_+Cx;o z*|u)Wi#Oa%{Ke+K>^iIF*RuCgpXSAUG6dOA?Q?hkzH~M6C|RrNffzQ}VbFU*`?~>K z=D0dgWKbG+P~%K;iCVMuoi*0q5`>A#Eijfbv33~cFO{2x*k3N)+YtnUP~{>qPY!@0 z$W}1y#Ul4j%auEChhBYKh}kg6$n(2$5w%mG*1K@+CdYJ;*!*w7q5!!ITJf|tW0SMh zF5%7~q<~<7ETNm?Hk60~9Z0}YS2nm5*6p0hx0JAtS3H!wJ(~ZOZ3kbJVk!?N8!jXU z`zVGx6cQ&LXRXTG<#wrrBuz4xP{C{8fdfjKR?!Nu6s?Gp zQhMUaFo?D;QX!635zQ}*$&9KlAxyVD?TpVeNOpZYB26Cf; zv5LGs%|9l@RJmqb<3cAsqJ$j#kLg`IH3LY>NU@YWukmJj)D!>DNY*xuvGp&x=EE_v z8pD5rEkStUKk&77eMvN7fh&M@>zls5G&l#k%!9518_3Df*l4Mqp6{6ltFmn9<5D&h zXA!b3vOeNyUBiJq#^N7sRQWp@p)It^k&O%^@gZIU@7Qz8c(0lcxVFFEu;4EY2*fk2>ag@^5UnlsYWbx$CUi)!+B+gRuCK{PwCox&S)+$!w~43oH*Lw4rq`;KeE?k( zNRYVHTvh_s>EH9-ub1fBS7PoZ?<;L|E2#u-BwByEJ`Rqj3@4=CwR~c4s%HIVYwFci zd!6tr%oCx-j$p^QPZ43|UNyy~VyUVCYq6)7R5XWAxhh3TTD>l&;{eWFXVS27t!lSfuqNjbg18efk(1PJ>Gp>H6K&dN(}kY~!ephGg<(e&-}k*a;`^VOwg zZFJ=qg81z^CMgX;zxGiOOxem8&KAxn|K4&=s-UZ;rjMJzo;&b3z^T4snxeY%_}69r zmj*7@6?ym*G4niM>5_Ov0geA*07x&d@C0k`oZ;ervOT1K&{97KO=$d9pX(kC(`$XG`sbTT`#}r+0-P`0SHeyd= zlDV#N#B3wJOd{w`hVNE|N}MlVl!DfF_}8wwP7Y6e*z+gc9ww2Sk@(F_G3z02^jy>Q zVV3XFhpkD$<6F8Lsj^VltKjFq5?3HBx%7I8LBr7NqKAazvrR6?CvbTUR!r|J;oC;* z{}>Ng>D+z$k39>s$JuBKb&Ck(g!IQS7Mh=U{ky^`ea9}BHEZXP+#5bqRA4Fh5S2k( z3+IT-+o+vn{&hRrSj+RB8J87;?Z1K}h9Lj$hrd$!loROTrtI*@cC8sjhX7A~8X1Jd zOfwFolOr;Bl5-}1yFEKvQw->yR5Utn!h9FQWmjxkHQFYNa_av(klktu3yqlHog?Ih zw_rcZLBdLIMB<`m#Q4#9-g2@F;puuSIW93v;AUhlLk0*1>|V)5j?F#$yHU|4IhEq^ zA=UoRiX!2%%`@GVO~oYJXUQq<0W)JZnkC`^4sNH(Hkwf&X2*jU4v()@*|BVj*=Wsn z3=VOb8>s@C5Cxc#5P&S(t5mfUCIC<6{(098C}fWDEL+=QDt=Ot$5=!wN^&75LvS*o zsnm2ND!PAAH5!OqGg`vMizuw*Jfq`aQP7+XGXv`B^ffJwZ#ip0WQ z`{!Oyg3n!~x~QFj+3W;~`HPSO-Ohvx+VbkN7kGECbyhB0Hhdb25;t{q%l47S)^xeK z?M7dnCCAeK7y_lqQU{2psCcwh!b-a^WPrlSew`55QiPpi9H2=lZkW8?bzGV~qRe{P*Oo1$X<5tiI$7 z&rYmHKU2h6BcvUcr*=75kheejVcJO(5&7Vkg1jfHT_#!p{lr5k-q3{#QarGXrpL0V zpj^IKjbd01c1*<;?D@9U>7n0a7gXWiF|0H;s%GE&C`@qQlKOt4-pzw6QFNQy`?KYF z)-zxD!vWGRCA}*V8hYI@H*}W^5~9qT+K?U<=V;aTD)Fu>M`oe<~#_Xx<_ z*Er`&U$br@@~N`MDCuozh~be*RWl1Eho7+Us^@&V^F?IUb&(90cnwJ0V+@p?WZ(`n6@3 zU2{;XFNnW=;tupW)0?6(oLjZBWkARjG?$dqTBTq}N4cHE;%rWEj=8EZ(f` z-OvN~x!MAcuC#InCU^k&`US_KHytDnubrv~s#<=pX1#npgkNi*7mk$O*?5`Mp&l?h z!u@;gy+=?tK6XbZRXCT|WLSo#`6tNU9j)f$#0ok#%Q}ooW+7LkfG9xbQOH$LEe6ps zQf7R({~8E~!h* zica`2dK@}1r&qf)E>7*#td$4)fBA-}CHdh+hE%gx0i|QFMoy1KPob9@F~Qbqxi6El zWliP9gVB>$(aPHD&C$^qVqt(J|3pF9%T(8{1P=N*ll zDp_cU(UGW69A2Hk}=B3T(CUlHHUSIz21&kS9-MsE|n?isO zuVvQF26U|#jhl|ZG2ZPkOIeIG+`AMVtj*|g~FPfjbEkX|z3_4-MOXXl1|Ao$+ zJF7{awVo*UA@08FFx6++=%pl&;@6mN6mNkU2mm`dS!qA}9UIw58-K3%fV{-O1J3LFmbE|F1 z@rD!U8!wy*!JF@Vkng(}4;IxOvB^ycn>&9Sx{@$r{~vm0%tFA~CIRC0@d7>6an$(h z_2$M(wq@$O65ZRmAPw%hm^n%G$CCGqKR1kGUge(o#O8hSB%Y1>jElr?qWui(@ww#r zF5hP^6Qk(+j;eRVg3Rf2i3z#$YX3dl)pR`H&((*AJbjbA%8Bc9FLYz1TsI4jEkF4Q zd}T}VUvQ76!bio*t^5)P5BBTs*|NjJ&+@Y{NLD{+|NAIaw7t}#YTB^6VS}~-TlT=_ zsyA09!j?iYY&sRp#Lb$AE$}5?0-f9rj`#Qfj6R)@v4QY&>+94Q0-y`ZzqP z<84v^qriRjl7Xw?-&&dVl69C>vCL;^m9S16!!})EAX@s^S9(Ln>_f4H#9XrTXSaS+ zqah5oPZ=jDfzET|%~>adP*sSXHY}+lxVBt=599n32W;7<1Wxb!{bwn&RQ z6{=CJLCT5Wdtq3dlGxPD5q#$M#AF4MgEn2Xzs8SVQ|68?JWYOZUq1?djx2B|#tYX4^Uu-P>KM%gGT{znheZJd?HY@x5u4gj+@lj7ut%FEaO zKMP=Z_6z6RdswJ$wQT{#t;o+Myp#JPY?I%CxX+PTWhJLrCB@tCUKrr4>O#4P6U^!V z;<@$DzuWCI!%$|Sv4mU0zu$b#h!nWs*Qi+p8^ki_+XpC zdJu=~l(NFI21GqGYn_+sg+P_7nVri%CWbY+; z6j=DYzbO&h`Od}sCVOmq5cJIIIZRSXdzub=kDA**Z0uyG&PQM%-`Z30OPM9O2h>LA z!AdDG-#par%<%;d7HtkJ%c6~m&Fq`!4mNS}cf!dVwJsS|WnHW^w-dd|35J63BNbxK ziO{@qIv8)ZEp2?p#z)V}XwLXd-n0My=%?L>EC<|=hI5j&XrFn{T#_N=_WPTchdtu_ z?@zSOeM!B9vohuvxnpl$xz3q=-hVpiiZ7=s%hoB+o~fUvxrxvJCor%Otd9pdf?pP+ z&`sZ14x+ww#AG&(#f5H`%lctuBT-UlTaw-B zaV@x5JY@2X(~_+(eeu-t&hb^l5dE?7(4pglX|aYwzuU`nCn=H8rV#w1p0=VMj#zFx z7;W{YDV-rsLQGjKearJ%i@nS@PKqryM6}U}W9svXmy?cQkz$74EuRr(@uOnxg!6c= z@WLsnyu2o!o%QXFh!9w@&)TLQtm%K|4XO1|pcE)YBDN}iwpG8k%&^qRnX;2uT)tUu z4P8CZVLABQ!|%MbdDKqZp}!mtg|L#6qbz?RB>4z+6DYt1(CpX-xqc-&^=Yd&u zVEA?Z=Y`sAgJR$I4EX5STW`##+IItkTxDV-9;%SS+D~p{kJi_-O|jsv<5cjL>-N~q z;@6gP6Q#HwDX7<@s_qd(CbbBhBebdt`v}>x0Lhe>B9`1V<+K6Vbz7R{VC_;X(}oq5 z;5JE0`7JdD3 z$Se2p*VALg^V8Vh^>zMtF_FlGXL)If%1RfiLf6|vM>L+_HRJ$B1?cNRb)L?us(IOo zUB&-qFByEaQf@}OzZSn#C1}&D+A>K0p$h& zgyG+dMdR=U-x1rmGm}v1%?}DKZ&P21j*d9yri8hkAF(gEiS*ABPFuTR5NZE~QGxR` z^7p-=3!7&}vC_fPQFELCw7Dsr1Oj9Y<;dJK1~g8*W}k36&8d_jFFm6pM*;bb->`uj zBrs`!X=c=XV@~dxT(Iih&>-Ne!k|sOh$HlF*cbEN3Nea8`l>_{YFFs9az?Ik+N!o7 z9+R37ZgSA)XNIli)}44}E{i?ZdCC4+S?BSTN34WYw%#*r&5*>T!<4&mW3A}^#APkR zu`w@itViZJnq1vLJcZ6fzGGB?cy!ISCEXd%LD$T{=W2@LWtMx-2^+M-sf;x@wy$|$ z6QI4JEY&XytO?gcSpLhK*3#?(#El7}G(dgAQGjPdO9YKeXYOpA`nPYpwf4awOr<}$ z_u($eO8Bn(=a9_wp2_zv#v&&R26)P!4(qxMCBN=v(lz~KaH5onNoJc03aD@8?5Bdx z&W=AQ)|IafzA3;{GH4P_1HVGLq7z*m3eiCc?f5uWlq>c)iVsyQhWEbDC}*d+NsTs^ z{{%B`kbPy#^@xLpwYaBe8u3uH#Ax1}yJ0!@q<3~vfG8)O=%4l6*kN0OM0>&Ug zbO{Z$U1$D;(JG_xwU+Rj3Trelibw3rj5v^@5c|fV4y5Gmef-`zoK%E`!0F2>@n4f5 z-Cc_vo+&9W0pq42HF`I9;9M%GfJmrNcOkP7Vt!F)kC>FU*uPHWH7t-5e^!w47op129mlSOpcy+=ufp*(DUmwI|QxyIzYb_XN`a*lYXjkrXi5LJy zIQON$buO&p1<09zZw_1UR4e)l-3yg!oK~Z(yNi+=izPJtx7lgS#(9l}+yeocE}bdQ zZXS=Vz_oXDZ8$Rkf5#unBY-Gw*SvyiMJ*V)aRv()d3vzoNTVUDQ-@s~uG!w-I+gRJ zJ1jOJN%r=!LS1jxyE*FvXDAn8JJ0kW`?fqlg%BNg>dRErH8$!(owt+ZYVs{`{=Pwl zM4i5(a6sqNnUsu+ zWNg1@p{f0LW!eb#@)I3j#)1Hd*#rXj2YYAmQNv1wJI6>CCJ zUYK$t1+-x}Jd&E~6P6bruoUc%_P(*!zWH=8>L_;=emv!)G@;+kwQJen`<2(1Gy35V zwfNDH=!^?8G#T-xYJL}hgFk_CMGJqPl%0HYUH{b+PwnI4Bah=I=3ou9VDiRFOOA)_ zI<4rkATVFGnXezKnH^8g$IOtEuVH$S2_6EpU;cjG%`Y(=pSx;U=B4;9*0NwLh%3mQ zAb@PV4tY^X*ZLN}&j9l2daHR}O#Y~37eIKnwcF>6+~49i4eN{29}+B3UN1}9v?dFm z>chZw5y;FrjNfX;f?jKm`eD%nf>73H=Y$?N4@1AICd`zG*TcbRC#m=NUPg($NdN+M zWh)lqnkwbvvg-SFF|Q7BE3v&pc*m%rg1=3>)~TDylJwSm_f*nxB|FmJPtIp^i{rp> z?L4`*64Iu9dFIm|2dt_Q(gvsjCO`?$4;u#Av(O(WC6?b&Xa?qQLd)NUbC$kp4Q61! zOt8?>!;kq!9_O@j?Otdwe?^I%aT-4%s2!`rk3!@N$7azviu4(hZ%Ssh#0y*ML4JrY z^v9e9ON^4-O~Ale209q2=0Fe6ysoYeeC94%lfw^pi@`OV!ehR@ci5tS0W+6@=Cb3# z7WR#|4I>{!$)GtG@#-iw52;h4CV1LY{op|=e`}&>9DkR>I_ss*K`MJfvN8g|U1eba zzX_sL|IcC8jP$C~zz=;AyUZ&!&bO2~tL=^2)}w?A3r}SL@V6 z5aqBjvx&Ms`0($yiMN4^uP&&6&m}!>3G%Y-+Z;lke~#$|7}iov^!q5tzV}Fjq9iS* zEvDIJ>mv&vOo{D-1B!nj&-N}tf;PRzs=fyBah;9I9u4JTkg+Jtgz}_!UApQJ)&yT= zW$!m!WfN-Fcu?C9bDOlGFQu&0^A`|}BF(>cMY&f_-m=0O-HpL*HF`w$dO#wIB|jbA z+q}{pR_D?vhuqq0I)k-ud`*?nEbG{P>g3`; zuy)SB^wWLE&k5mY;XqNABI>p5gU_U|>fPo%@P3ZA_=!tE1+)a3$LNRj=JatKywq-G zz81X|=;T_Jl;BN$ahk05A?j#Yi$$mEa%9uary4E-SGCrauz7|>WOD-W zq?lrvTX~S+tWB-ca^)%5aX2_Pv`|u@W8Zh}@FiKRRwSVNd`Fo^qAxw^3R$P8rpG;# zI*CM>B{`?9=H7_HzOY!6f>U1S{(4K}(EB$)?9{r!)VbBYRYL-KM zSCQCM<-)bP&}UE%;)Tw%(J$h9wIajaO7PvOgL492@jFvR;sRc-F(KJv0V*%`Npbjj zQ82Sl`@(v=tpkjX5l}E(#|f>LT#$)`;OZZP01aW*T-7^(AI0C@VVcTDG$=DKdv5x@ zR>*yV<8$zm&xq~oGpPazxtF9%&$SM2bUF z=M5q$t}k}p$$;Fv7mSzH28V)1S)`{Pf|yVCjeYDGhjJ&Cm+x2yU+IvS{uij5U_K@I zIfN*PX539*wlJ$y6aL+JQF_N!p(CPQvUQ6!iss&U^7H*se9tZVdN;<&jfl{Pw+b@PiIQ~8$YiZay=0tpaOU> zTs5Eib#JUc_rHQ-WbhBR)!Kt8Dc)+8#yU=W5`41vP^BuU3uR&WTg{e{5O=OVgo0t} zoz<8o2Rb{eS8eQL8Wltwy>?^^LW#v><%OJyv^4jE>)EW1Pm#k)uV0=L(|F4Eb>N0K z;6GuPIJq$&-$ckJbQeYbWGIvj~3aBU{lPWVrB7`8WpA09BRoxGtTC6$XD z56kB5;fGNr>z806=mE{*^od~|f!DN79c_<@b#l$0o*ER|R%lgU)1=7jrN()2Px*i(4ifugnj@97LZM06Q4HneG0pASyVjDKt=jNWqP=xXwcBc~CA(WV zBd0?ZWm<bnl#0O@J3T%>8Vn;CuHGGXdk1uHT9B)L}0<;$vI1O_{n>B zL!b*j0*YU@;@=ype37c^$NrG3lJXtJKMegRa_U*0i6*1}ix}Q^i2Y}uZrrPf&0bqE zm%B&Tu51~~0XBM#Mz1$qeZ?=v?IdVCnaXK^++SmQ^X(l_*rxSPuJ(oa-VuNQ>(8h zuZ^eP>bu|V_7#sV6d5RT)>e+g^aQkdbkv&tpx5dy7nz{zS*TZM|M<>b5y05dI?`Sn z+EtKJTX<6+Bl%v5SwFt_y2W?!QVb=@v1tU9BS^_rc6ot5O<7XcTs-F$vU2WOxJ0|n zYo+wtV<}g^d;}dV0N&qyi~pVDY7(@Md|SvBxY#+btKPg`W^8ji)oztC`C$9i5?QGe zq{&;W?TqvGa_|U8FiMifD}Xxv!dvOt+G5&?tpvw_Cx$EnH$UKqpy zSy-U*KYq zW9)iAe{a5f$Cj0~-z=gC+b0!rpA#FzKd<$TasD&1Ie>WB%m5Jn?+F?>5NZe>@c?_A(TGuGg?qC7x-;-whrRja=g;u_wiK)W?CgxTw!72pj zF5Lm((sh4fcmyj0MJVdzJ&Nf9(yl8Xb<~Agp6BRMX-f-o71t~08@_ms;CBaNCwmKM z(?P*NfU`vmj+M5nx;b++9NHgs^mP?37J1a@20LVrdXx@yXpTduKs7`S5PHpFiQMwQfb8d`{@6i4mYJJjxqNmpm&*Poj+>~8T71O z!%h}c&s{nsq)nGxDJtjqbfow6VCjK2wuxg@US{Fe$+Db6dAD3J@P9=_-k@j32Eoxm z`B5~zemt;d2g!Q>s`EI1U`>l|>L;d;kJnBc3pRSrjh7@7XlWjvc^)>T2zM}uB^ij2 z#z7QdB43)n8MJ8Hlm@bI_GhzYZhl;*&&Kb@ZqU*GB_gnWG9MtRt_?o>>8`2>nEhUB@l*~-%W|dU)qes?S4&(@ zbAyRl9liRSi%c3XTW23p0u8E#?|fS>G>p>CzNp2vaQqu&U%HaW_lLng-E{3|!}bKA zX$bs{fOr**a~#|sqXidz-ge$}>Z~tu`pNkF*XyR$O8fFpRTH=E)2dXdi?EkGeV=#= zh`?{7e|nj0guYNJ7){M3NA1UrL8)+1)eeM!g7*1+#x)~{;o2bkYn93+c8?Zb*p{L) z=N&zSDeblTAiU5$zo(4PfJ1VFt`{}0=DqGh9^*-Rd?#sImO8rti0*r~3xUhYntyi?B07{$j2z0OBGw@BqZzgxJ&BP&WIgZGAlL9g~!JQl`l@^$aa*m zeN*DxrLI}SdUY0d>FTLq-;UEw-BZ`hpn-i*zQ^|yTAp1DG<@!KmP4hq75#cp{LHD~ z_wDt^H6VMx0)gZ*0_h=`#LPI-RX%5Vx}qBp+MV(R*wP}pkke?!l@)<4$RN_;jnAax zNG$X9%Bsjur>5L6c7%GBwh>4RF_JYIYY@Z|@De;y=oa9m+`asVzxk7e3~eN{_k`ch ze^q&h&fWV9fN7LAT@$z$zPDXWF}fF-`(V|C*aqCCM#7FpOhspp_KGf7kcwA$X8txwpvz8s@tdeCO6M>n1D%-QbrT6t=#i=hRKP$`+dbHLiS%VW zdtKKslC#>i@$#C;jmM2`MveE@^43Nhym#JMjf|d;%&A!7NE-Ku4+3J{i|Ra*l|kWo zBUF`DbWM^Bo@p#Uh?~h9x$H`xy<|9FylSCmm#0tg`$K$b+C|zaMf~c|LEZS!Dr!Nk!n! z<+dvKZoc=kZ&pej)(BBxFBo=O9@AUU|M)Oq=Y#Nfk9b2b72{wP)3R?ZKULf~NH!IK zPmttZ;ZbF0&5jc_x1n}!?7Locp)6?sPd)p|JJ@lkD58z0a-_vIzeMEg6Zl|mo;cCz z#?1LZm0UyH$i@%5vmT_O-9^2xT)U4=ybbihVWkPK+A^~xFNFG|EC=lL`uFXIYDOkH zFQoo_tZrB83$CxezD?yNxUa)uIFiD#@Ny!SM!pQ9 zlulE78e^9*=@`#lw+|$^xBqD}|MLBaO{ z=#u~-Q)3Mtz=vv7V_EkS!&daMqa#qyIIz5=k}vo0O-FP?L3=`d+}MI@sBHf1oWvKv zD#M?Ya` zWo01v4b@7Y+ZFl}3b3_QS#`Ii*&uy7O3eN?v})NTAuD>gd#Zhpin)P{7HD$w z5`y+3vabj2tpT@g#9R8h(LMS`(*W<^?sM(H0&#Al+sCQRdN$e@@k_NLHi==Dkq%K( z1+cn10qDs^5K3V6F|7rk7%GVl*`NVj{r(35V#91({O+MRefmyA!#kl>g1X=AJ3xCz z-7qu59hbEGmR&i2SO9eEn(Ab#!Q2IG&c@15qI;GZD~(|xFa;|1Z0c^=1OpwdK1cAV zF_(#wxptv3(CQkC&H^54ceE0qORxm*jrgvT4f#6jl;d;rjf1fOzm~pi6#di`$KXv{ zR6`l-;rf_Be9|XWlbD2|(S6xq(M!P3)xS;#IwX5y3_EcH=2T62Gb>CvchIF}Q|ebQ z6tv7w6W3m&@xQsushd>j@Qoq#AhZ_1df`?D28VFt^vM1DGcA`_#ap__G-#s=k~D`h}J1*Bo%1+1e1gm9ajZW z7IlE}vS4j~(67tWK~efiK27RCCEzG#3SlRT3Ia2L*!>e4tRtfENlON-i5Iw|U8IVE zW|${r-PK9WuxG8~kAgvCJaDQ zZVx>UxV!&qC^OGIE80FS{cg8*4G_rcigQJP@E^n1j4?wc^E`8@9JoO>=Rkk3`n_S^ z_GfwR1=;r=W(>Zfp-k&Ngbm7s@3`l%_KQiMaCW%MIj{KBX@25V_sFfZiPD+zYCnL% z6rOFw3k~QVG?b2Ko%v2l@SE%$*-^YXK9uC1SfN>XXxuIL!MtkzN@`DgI|vjBro*SZTSqy|=-%3*TGd}4|- zX~yN!M>Ru^UUbKM@tqHzdZorLJkzhOq$#f%0;U@t&>Oi zaqbeQE6BCf`0KP&fk(fJE=SE{!X{$lwCnIx#TrU1E$O<=odwAPUYHUbm`C-D`KJn3 zb_xCv#&|rmM62dd$pEU&_?-;o%Oh__`3=18#UOVwQ}-IcO4}bf_|Q`~LdGACu#wAo z;NIy}K2GX%BpC%{6k`g8_r+HS?3&yk@D{DDyt5jD6+7w9>+bF~btISEU&fLhFQRI} z_9=+x9f(i?NB^nuHT!j9$R|ck7+p9P(9tOyh&s2cp#EtHQB9z3*BQl}&HHJg9n6#v zr+uoPoarE@&d#YlR$m-Y@ujs!j2P8mo6Sdg1PwBPP1I*dc zsYnciB=gnb74#HLJB$h>i|KuUE+;uS+Qt=sw9d1S(Qgt&=j9QvDrA?t?`^&?3G@5F zffep>C~OH*F@?^Dev#ZsM%wyi4CvK%BYClA%Q}v~GyM67d#WWbW3$(@zUPDhsFyj#z4_=x?)@`l`R%4<}#lH+wBB9N63FGi(Q>vKedV z?`l}|PQa;?-xB5x?@uHuO_ZYw$lQNM{VbTwP)-lXnLLYgj&Z-B*v1VHh~CjHRuMacmwi{TBo4BouD|X<_PgO zTuEp6R6{8n_5U3EK-AFm>n~;E`{5e7!BrdrDzG<<0@%sE@Npnz@KPa{_ARy6?R)N- zVpEIP_v?c1LSie4p;uI6Y4R}Hr^Fa(J41P~h*M82pXVkXe@aU{&P{uDoSOlBzKc7~ z?EX!Nxb?d&;#Lpv*+n?cx)XW)>CriQQx(rfF)$GK^cPaivpo%B-e94*)_EE0V#FdH zd^tdrIJ3$1*PyLF*@KOKLO4IbGkfWgv@JOG_))E!vw&n6nR~Y{TEt4>KZ6J6JAvu{ z&UeUrvz!R7tf+;twa}3|xv2ylibsuF+qP1$$y+8-Xsg=EFTkWTGail@%O~osn zALFk+>xMq!9vO}Ex`@i8O@nec^a{!D`N9QKX_iv<##^We_I@VhsbB$vX_*~T)Fk;R zycNk$>bMf1-;ew(g%_$1w|ooPDJ+p^1I+yEGPT&g`W}}Tb{Q|wl~Lczeu<3(fw|AJ z(qPirSz+uX`#^-;&Znzef;!=yayjb_T2FaWtI_KZOBQd}mZDty=-V}2{}^NMzgeZN z^2!ZM!BajeM**nqE?ZhL!H(d81lE5;SC`=*F~PjqSwMnK7lUPE^`rb=6`$1^ITLLo z56paKqo9FEQLXt_n5vON6piKIn@crI8}-an7~^H-1@Cu3jkP*lZa1PW zV;HM5a^1@pc%lWv0-#EoMU-W!UzWEq!9*N8TDTx99YQbgiUQgz?eS-#Kr{@l+JP(5 z@>Rp}f(KfEy#Z}8GnO3Hc&m-RvcG)Irt<)RW=E_^ugW(=e$-E$8Jf>+WqeZlajwh) z{qJzgtGnkC2lg?A`F5{Nf$Ro-ai}>^zJf6J%^cS3>j_p&l~|VyGb(;d4#o@^q(E2G zPm>igH>n3OW7cpJkVoK8F%(>a1IIC#2v>WXRqJq`^WF`@bH%h4|n%@zhAHCgmxT${l$~} z`p2jM=@UbGWf2g|7? zf5?{Ldq=12a*aCSUfST=3mJ{VpCVUa4G{z&IIo3yr0N2!5Z7{j4jaGB2Hf3a)|a>3 zn>kADU%6>U4CMS>__)V3P`kN*?@cH*meON4p{LjT!Wby< z+{B25Fa9|<)G6r$9ila1jSA}G4c&Zm@5c?NIDa~COF9YPi}zXlp>|bcYmFtJ<1XsF zJ(Fhjd57qO1@l}WSm~ivEat*tk@4ssC?L`+1>+c2h+{A>j&L;wGFDRkDrPzpVLw?X zzPvV8O>h&d2v&$U2+DSj4zj7|*t9^*BKR$SB{YaZzaJstM^2$2w zTQ*9mu6ISNEK2*v2oY z*ML1zl`&?(vomd0GA_{fUSr6q9Ytpr%lRSa(F;#oQ!}X)*@1LiLd4@fy|es?S@fRg z)fXlLW9@tBsUwQK>b9peal{X=rLFpI2LGY&H&wQh8#JAkV|_K56zq`zFg`H9_ODNN zN@#T>tJw+S5kKWin#6%0$uK|_`@Q0fB9NV_X+fp>+CzI9?g8ek&gPGLviD8E6U^gb zSG2$0*~2Q=Pcz|1opy7D^NBwaF@T4ukKU|Y%1LwRLH-e~V|P_O z-Dl^u!h&(27C67x*c{v z)2CN@b2WUF1Ic&K@gPtpxI(T>YVljE#hUTk0^jvE$Gy`_6%NqHi2G~e-g+T zqXFTT_4wI=830VKpa+;LrVt!HiV{da%zH%xhu^`{tqFa$dlp%>sykMU<)~z3LOAdf z31#@c_g7sJAkrzEWRiqs|Iwoi1|Ug)T3AfvD;kmr+YklJj+(b4{<&?( zR4@fI7heOs8jOTG0pPuucwiN)ccuHk8Rtm#lg?I70lJ;8m>N$QtIXEt{#C;K$F^E-Ud{DW_wU4zR;DmBzW98?Den7 zv}0Bx`ny3IlUDBJWhYXzX>=4R-QUF~#nd?<=Z2JZ)ZxkBMwb zbb$n$r{%X`d2{IEfpdm;R$SG=?x33 z0qGAK%pQt)np7*jWEij{2_iaQxoPc3IjBc#s0+8T{_ODU4BR9u@kH}_cJkUbGTW!C zE~YZcV{%=4mY&-JLc!d$pK^B-F}e9^E|vp5)#cYuf*m24d|*<_a#j^-^kxtx(KkAS zsD@Klo0LFB{EL)>A8{DTDT}RV;3AHDj;YUMARW06%D9XCF7|y@;05@^Fh7}kpp~-` zv`l>Fh+??ZQ|@2#!8~?*QN~I{K3JlLa7F5m;2=dpNk3jQf@b00s|Bu{7^Z;TYsoxw z`I}BT{&}?kBI!g+0_ospRBDTT!pjplFS}6mcJ^wjdY)vCyF6ZAP;& zk~6$lWOURzZRu^RwgF7Eahy4i^ENPbX5eB!d3G_$Dl25{#O+&B+WBEo!2NX$XcBWMJj2@SN*! z@0ojZ=HcfJU7KiT4+Yku>^33*X^}zbgt%hc{dO!i8$)%>H6OgL0hO9&{bZ~k{(6KB z8K!$h@;4fR!VOQn#B^g&rN0jO1>ggp9}Rm<1tkM#TSzmc6gcXB0o2it6fuzko=SNb z#H~4DFPstAI?F_O(BG6m=~%uTKNE^i90Vf1G!{NwGXzpfVQ?miHctQOcd<(F4rC^G z(NBlqPUKngZhH`Ta9ha#qBY|(OMZxskVLq1X)Kw$$Radask(=8h?pSMqd6?iTAsx;Xt2x!4jl?f1B6!1zCK-cKf@~fy?fkEJj&JG zaLXog`{?H~G8YcRbP9La3kI`s`${cjb^tcKgib!vrvL3S96kB~(_6HuJ?;_G6^Fr8 z^*$4O(vHrmh}-+v3CFbRxccX%?O4^1OcLOXfT88xFS`rz)NfZUX+9O2-uD)keOKom z`N@{9Y3TMnB}knh*CU1G8$KO>zw+r6PCV6`AZ{62$uE1VdDw;1dcGg^@VtBh>cb?Y zEQjT)%^LGqt_jzP`IYvFdCjD{Bb!z&S42+j(V15AhutWzrAGU-Kzjsg-cVm|YI!jv zzZ2#w%U2x=d&Jc>fy_J+}J0*@z1rMzVU9~oC zJK)Zr)zD|$8_-ysIq;-L#eJE>gsD%dEAnf!x%OEqYWjESFk)hgL1TEuZZ(^pMp@kX zs1h_u6v^E}x-vGkd^rzI37l8bpxOSwLQVYy^YhJ?n5H*G6_TB>gKUdEi~#<1s|C20 z9nY{J(rBZ%oggCZa#un_^Y{bbYqtzUGkHU~MAAcA5p)zZc&R$DP`??|ms2Nt=p(t$ zo*lp9q6o7mOmSpRk^`=`v70jYZXYbMtTxdQbjJ(VJ6f+a7>KR?L^X`e^gEhiYcyW| zbG3dd9HBDl6Y`Xuu(#O=+iK?gs@?LNzXu~Z(WLF%yuV8^{u;tG$ox&QzCs6tYk0C8 zeH7$?DZ&O&!Bn1|P?;1^i&%`+qwb1JmYnQVo{XEIC=)~4_YXx$ZV}`yDn6X+KiAwh zvhz9jgr*mKOQ&;u91Jahf#k^7f3aYvPU32t;%_#Z05NNS%7`Zi1Hz7rvMx%Be!jk@ z>PLjyD^rF8Fs?Y7RXj|IMhQ;hA*lGx zCN*FHsp3d*W{KVh9fmg~8_4zZaq5DyG(w7UD5J{egW!$lf(N<3I=Da62vfo-_<7PS}r7dl+5FFoeZ> zI9aMd9kk{%2qsm$zataMu3Lu6d}OX=|1A}n#c17Xsd1<^l%{73qN;}8f62EZCU0<< z%*I`krn%=Zk!AHv&pk>;vH{&|TDadt%E+pkd0TfWNWdKg2yL_c{F!qhMD9;K?enn#%hkXaU%zI<8EpPwjLA7w=a5w*schnQPeQ1;LA$M})- zgr$1F7?22{TjWR>xr@-moGAbMqhk_OqFRzaCUIq1(+E`*B3`tuS`>}3Qj3%Zw2>ah z*+-YB6ZPWp2;8uJ<8l59O{fomHgUzcTdI*>FYE89mg;$VA5C+dr3Q0RetgGFk^Yc{ z>aS4Qsiv>(T)zfehsNwj#?u6Lg_{noFX*gmwr+4JRFOoAeA>(=_4dzSb3x8$S^VhH z;!p^3d-k5u1=C(s#@iVtj$JypoA-7r?$esmsid984dKx!pQy9j=^45Tcp^W|c_aQz z)WE=CZt&@C;)lKZziW&F|GfB({vN4x{xc8LBQk{c?>zrmvAOwzr8)51Vu-@}%KluW z-Gp}N{t`?2A)c0cIbb$)BR(zj^tQl-a6IpgJ#ka|;1c23hWOb};wNMVQmMT%4!)W) z>Qy!}HK)#xKq1niregR!>L2bg4(-R_ak(U1+g{`dYs41q<0hkR@>}rmu>z zQnvGsG@3CnHE!#9)U?VK=%ZAZEWn z-U}x-WYvf%u-NZqNT0r$Rc;rd9C(-Q=@qR+Mt<9(v#DEDv`uW&du{)t>`3r{UuHiq z*LtU~9{#CMmv19<>Z#tmI@k9Z`6(K6quQi5TSveEByP1d*Wfm>ZwbssmWjkU`*|&z zJQp!U=h9+-W28<;7%&XEc0G8m?xe2FpJVx>Yfx@!f%x+Ae$RbjNMT-@{QKpFoRPq- zibvS}fv---GoYa(9lt&`Rnf+1J1`;_o-9nf$QaIrD7*(4{GWkN3J!Wm{CCoiJj|8+ z4N^d)tY(MQVheMFSiOZ&?)1C!-Q#s~T!Qy9SMI6BwpO!Ds`|*l6!kK)7cNWZWY0T1 z7fms?6S>rH5--KOwJR<1MZCx0$W7#{+`|Q@Sv}XRK5#_5KUy3m4O@98#rc9KSAH)n z-VI+zCw*Re&fkD0^Snwu+9Q4$nnOX>-~koAne`Qw%LbFLOV^BnRw5(!>ynw?P`mtO zj~>$#X;^qUNcWEB&`YCtO{fwJ4XEhK8#Bm&q4^{ATWBq_ARuVlwuUmCQm}f3^Em~_ z(_-5=G?8YNj4{Qj{%&DW!NYMw$ON8~D*{W9ASnvJ1zc0xY{>g{#&#gCp<1BCK)p`*lyE8L}%zE5#U*I_Iu{B z)Gv;IHGQ7l3FH$rE`M%r8oqV+eomMx=HavFlvan3`0dxAfc3Nv$(o*Apy$ zG*5_jaK0Xe7KSegN!VL$(=ZS6tXXmfUX|*wdNe7TzO^fRlaU$!DuL{zHNaNtUo?_v z^=&4Z_5fGmg#Ec=LxVI#PN&SM!R%v?E5x*e3q#HkcttpZ?!P-i_`D=o-4mYq+WKVY zz512!4|`cJW#m2|P7qwF$~8zXn2_zjf(v-wkwGW$uBpbE>4OGyz-mLG-8eHu>RhJ($xFdpDJx4MM@Xl0*{`Vvk>))snuxjR` zX;RWuZe$U|%LM_l7>KZk?&#JnPm~Nn8+K=UC$!y3@oFgO&drdKEIAokQa^WEOV81k zpONI;-z^T5V{ovJ&?(7Xjgf$|?U|Mr$7G}4?iCisMQ_)_9!C3RGw*Tc4K|ec*+M9p zKf2J{+W~#YkyGlknQxc*=ME2mZ24#|%o~^V3L^jFrw`oJ6o~Ogt_n3(E2Thr_z`4! zDcviFYrO*moyR^SX?Zzm^PVfPFX@XkpEXUM@hGqz4C7^jUqU8$QTpD|6WI%R%r%yFA_U14syd$X`}^QUay;$=~YUveO6P?RN6hQylF)7WJa= zqU3+UEE7*oM}vwYYV;@5qV6V;%$?VMN*nFvBrJ0SL9l?U65TYQO$&Vgu>xrWd11w+ zH`b0h!MMO8@#-%5?`$+B7O{ACs%*dZaO@jqw%kuzgueBvKGi1j=Kf?*=voz2=igKN zc7GaVOqg-yk$6LB6wolVtn*ZPBb%cD31Dl7gUrM9H^yLxuR&v2ah;r+b-kNFTQ@?}%3P}H-jabV{SUb#3ny$q-sZd!c|s#5?R%8C}XO@fVVZX_z@iIPHuz`$!} z!}7_elx{`{R{q4v__H6X^c_a`on6*Wjn_2N6>b})2(TDe|wJU-SJvlB5P3mg|>C%V!dg*mr^ySs) zmGV{>JnTL0+Q}8NPx_2Tq|XGiOBrb#3hI=^p#;g%ELjMhjQLIgU0)HdP>PJ=1qK*q z=Avqg=Ufz2Q5GMtIZj<}zm(2ITL17p!%u#z2AJOWA<(L`(9=Ar- z|71t)AQ6!pJxA5g?QoUi(PcEHW43Myfp3qr@G@rnv45Ca>IA41O@g34CCy*M*&@x7 z*y$NtGL{3b$^o4P!5z8wE1^1Sky(;e+x9p^!W4+Md6Dc&9sEYLJQa;)ba) zwe8(??DoB#^{6?C#i8(Qt~xYO;pp!Ya*qET)4#;8W8b3E-DCW()4y*EVqZH?)DL1? z3>tNc+q7S3`NE3c+ATSAa(=rpkuMs4hQ-}pZ5~Yta?R4-$e`JfJVlQYfYvmZSBc#N4)_U`4BcmZ;~iJl;H z^$Z6(9B~l@Ht(||TGF6zC9PVphi>QiH3$d?l+AFx5H@;EPFw{UKf93r2aO_5$^{4{E2LD` z;p)SJq(aO79&0(rt(af$oGk5*AAjM^v8n`#PQFLvTiC@KM}toE*ow~FE`YYMt zUF)5+ZPr*(ShF8|eJl=3L*#zVlgpU8=>$eCI)S(6JZLicxV~D*@NpH$KZ~YIF*beX z5P3dD#x%f|hZucX@00dWMkZ?Ld9-0#0DwcRhF*#o3PNABy!J(v_B-7Q{))7A?Q^HR zC->VBsCZP9|2qH;P7Mk%Od_ca!*@&MlcQO>FPAT0~_#ignFWsU!Zt*yc2BpUrVqwSfe=Wd;!yX!v zXj=pH{>GXB{q!p&To}D(T%A}}$+xVc5tz^Y&g*r)vE%%s;{IVFL9#R6A!Nm<0q5wt z^MvFAf!X6xnbAe)&+zY~cds^0nflLY!8TTfeiS1TW(R1#$%iy0Y_oi_7`F;N&7dL0 zL4p?5FN90L#-t{h2ZD0K;!BxNy-k`+jepFfhk^+Jrk8#&VD`<=MCXBD?}gqPVUfS0 zreDbbBC@TxdXYottb&1fxL6lb6!KSxgEzN9+lpGE5vRP-RHZQfYVxTscEdHTj7?tU z?Pply&^;y9mOGlUW#nV{yxv#`mf@S~Y#+6M4?<&f#sH?`+e4m3v3Msz596p3W8}we z@zZG0uBcN4vTmALdZRm0Po{;Xjh8-gY8de^{vmNYiNfP6N-P3i`M=d3lJ5oX@dqSq(K+1}y{t=n zFKJeQyIhn=N76O6jW7kF=bFuFP*t>OiD{zY7%bdB7SoQSC;_RO07&I+DPBSF5t|QF zJKP71_q(8z)rqA>wN>ffmiZnlvbLsO`vy+hIb4Jb^xSuiRu=@IHQXvMd58H zhcdCznhorR>Wb_>lA887IzrjC6KyhV<42;H%DIhm*&$yySZSz>s3Hw_%5w%noZik& zUCG5&gV@uxf^aZkiMo^2;b+E(OCTb28WUAIQOpG1tM;YhfJYFQ>OE#kgHnv7AZa=G zLW+c)h&1U<0cWx@9vj$%#e`KKNjZAL#waLApJoHJhmBVismpei#_F{zkk3sM!CYG`C8{h1 zTkDtZaDV==P47BHvYc)zbe|Izn=0EuAAz8YWVRQX!CA5Ycr&-Wp3s{cdH_mh= z=sGvQo=P8GsdD)K;jG)UU+Y(_*>C!X2&!pAeh*>5tIljsRiJt6+|!3Aq^ur04>~xh zGtN1YdGZ=9$>(;nz?VEg8!lQ@4P2D`CcbkxhM@^54E7tn89$l(u`rrQlkFqnL=zw- zoda@)4)dPZpxFC(|H>SjT11ud%y2l{q#yv06i_5k>qaGD;`N`nYeSO8<64)_Kdr`e zKUBcMH+06PiFETS&T!f}79c@kim?le!G2%5n8go424x1ECvFF%OSB4=@(S=nP<7TJ zB|Mlc#|U$>wnig?{-TCqATyp zbktNd>TwA+RYnVUvhUov3C1P+$Mnchs$!QCej5Pz=L$;!&kK2e=)9J8yJ^)kPB?ln zG`f>`^7|&}u)H%-|3>#G9}0pdqSze#o8HOACUL0Z(^h#Iq(8ce;dp`j>|?|`${V3k zey2?6pKh&4#J{|MLBm_EYIO!8m}u)yK10~kUw^#0k~YQ)TbsEPNZcQMGJ_GU{NXaE zU*FLH2&Qr{=S&GLKu zJ>wf31Yu4w3&wEtGHlFaF6bG?X(fUDPje|8K(w_63h$D8NU!Pyc2@<@Ij(im+B|6V zV=oQ^C=Aa&g_qj_Bkv-ot}2U}|<*tYo183`V=+%HS^(wP6Z<$3JhESO__@$TjbGvBfFaD3s7uk&&|$gM>)`DmS? zRB`Js3o(h0_rKp~jfPH0f)1BVV)b-6+Rz1xsHJU|qRD{iD=UU=0ajo{!D4$Ak~I?4 zvccL@M0+yx!TnqjZIlf&g94;uF2{V6^s`5x{;QEDq0q@DA%M)H?CT@ON2zzSyd@T# zE2??Z)zq*?Fey#t*_>I&1ygSJKUtDi)V!a1+nPrPH%~z)oa|amKNq9O-jkXPH2*O5 zCq>x65@8Wy2N;JcXZ>%%HsLB@1Ov%o70+Ygn!^?Xv(oR-zT4p*Q4H-e)WE? z(LgRgJxC+C)N7vZ0#23jQYR1?5R!UA3Nu6gdG2f%OI6_|Tm8oYJgAI#T}v~8H@}}# zze4uGtJJy#ZlWK$DM{Fvoc!{db^TTOYQg8cg ze|1SpgsWEa-ctE-!rC~vqQXJ9cp0yoTro{Fv7d9wa8ZUeGzl4e&kbQ-4$@Qv|9A7Q6o-LlYdjE@Hx4c zDOk(CW!d|x7*EdFe&XUd?Yve)P*Iff;zU!coj(A&dgeS|Uyp4Zh>6OwG^q=LI==nf zCkZDVU*m`v3UR!*`M!?V=SEfNr4~U&B}wfnK~+_fksOR;LH#Tfj9U5q`h--BFE48- zZerQ_v!11DxS3htHK*LWP8pPeafs$0iwfrB&5m%#l!UT%tKzXV?GFAhl9=}3-+xlpCsEGqHu)0f}VZ&sKAk(R>91z z_#v{WKgvWoae0<`u#i79EOrTH1;ZXv8@L! zpOjXS#C@-|Jrt&-eeY^fK4_HBv)Tq8CVg>@{*bw+9}J!Njs2ZdD?EPq-%00*au*nJ zmNjynL3UiH63#ObB3LyJuU8%EgeEj4`*Lsc;~N7@(sB+bFvoA;EdI)o+#m?Im9f!wxL&3#227 z%FwGsCt!Pm?HM5HXEl6a(Y5@0-Qh}sUb-_!4r%Q6=PgQQynovH@F_suvb5Gsa<4J`g?76QQJb@GXkA_fd9KyT+2 ze273ZPR!I`90r7AMFuDF&Ff{dQ|}1D_!0gCQIIJTZgGkzt3l&0weKtyF<3a~<9ILQ zdAf?r?G&zxPn+YP%)u*I-CLmD%bS||pD`VwE>2B_llh!z&`CBQ5xwh1?Zb|u^_Pp3BZ$gKOHHl7fUu5> z?9?p%lV%<>d3`S40uE&-qdNHpEFHi_9+`A5r!f&G!XVYAO4Xon5*LL7_$^!otc;D} zY?prnf{(JFPKGG111n-<>;`Z%T5U&jtTF)nt4m{-AXwapjwERwg-sxFwAyC2ppPH_ zgWI@V{8V|w)WsCBA`Pe-`i!z8UYW6dzSAl<1EX&k9Xzm!5EgU11!<)gO%c0tnl^Jm zq^FvDO8}EyR6CL{)pqmd+l;I6hiyFYMV4Q$Mc`(IIKmaz~)yBY08WJh4xG4jZ%+8u&_B%2_+@g2iQJ zrT6Fd1{8YXs;vG;C`JU@y)T1jTUv>qpu;hiKG<_dvS2z@Z{CjjyE}PT%uUuw>vhYr zkkVN1?9(^K)mlvhF`}NYPnI2xjvg!y?B7ig)K5`b>@(---!C*{J=Gpg7q^;w*pnse zxK(4ne zxm^55ONw!_P1jd|bkFf`E3Z8eHfizf8mXvEp1R)^AC>6v_Evnu731-jg-M#G>5K2k`|sb3=By_zuA2!C2DAc*I_uW9jo1tt0OZsy~13-YycTDUpmYPs8GT`6E^Uz~a% zhoiu%6OB=CD;yBG6s?W%xMMV!q$h{t$LeW7wTD`YcmSrK?ZeT+54Bi)=pMJmsUFab zUC8ED#Zh$6$~+kn{M*o$9>A$@J3i@OsHG_?=S7>CeAfb?YU9c#(2CGpJp*`pIu*6S z0OKE9+G5GC*pg=;LC@s?x}CvSw9^#tUJbq?i=;4~%=1?pMuuoGM@@uRw7MNbBxF8M z-bfUHTj6Ci0e;M{e{6Ti7jwM>S*L&|qTYl|J&A@HHE2je+E(td6EZTlW!JVl{OJcW zO7$;tFbp#fOa#mb>JXz1kx;^`;K{ttKYyo-*7H5)pC(l~JReO+e8iTUGo0{dg{Ulb zE$hKp6M=d3No-JC?p}zJLak3ynElC;i!tM2cDniv{KK6`=5qMQ^Z%^;dVaCqu^&5q zx<=G}^Wp;dP&)W+NEs?DJ^3;JX0v5)10(GU9qFTQ@(tZA=8r_d`iPn=8mlIz3N?qt%R4Cz5qambE4;(y=@yCHjc8-+IY za)sH-QnG$@(hg~bO8iM@bblNwA%@sIv$n>JKD#DuuG`;ZZl5L zonQUnK7VzC2cX;eUy~hgW;(O}7(yD*hhMp9$`K#Oq+N3qAO zC8Cc`0SDkhlPY;LIFHfqeIvcnEc#B8=55`DDzSZ_xyM6S28ec?d2 zJ5mc&F;Or1CLs%xGFQvD^PjJVR3l3_!Z{8x$TY2nD8~&xa=LH1JUk8wox(;Dp&AI6 zd-Co3*Qz6wkJrP~XYOVt%|65Lw+c@+KB&6~+Kju`+!#~KKJ;obUjlAYUonHsN_Lg& zZjC|WD|YhtjYfg zklow`+gk+_W69Q6D;jB*O*C)M>@!oA_!+Kp1v1i-PBbF?yH*`5YxDWrpDtf_w!V%X z8oN8wk>TU57E9^T71ljfX(Vivj6@;f$)FS6b5oJ*9>F-};1C5*F{=CbExtV3xj{XqE0j?H_&vi?MH?k5 zN~-v=m5}UP&6&Av)A`>8jViWiwEC>zG0r?_`bhFzOn52XY!)WajdVE&v~JyF=eG9x zb}sJZTyIOXkhQP$S4?NAJX`>0Xt-1EUa|F;0ZZ8cI5u=vxdbj@jgEB9j0>&Ov)=^vU=FQzPiBPZ?p)E%9<)A7?u;LB9v^NI&K+DB8&gA;Ec;UgI!xaJV^ zcNy5&;xrot&@cgVir97FEEQe(QkV~ech~upf~GGo!;NdxeChFZ+vk+>F@f_ygfT8* zX}AXBM6S56f%Pxsp>S7LFzwmP6W-9m!Pb2%djXgg#RZ~WRSMgBjNZ$()c^F1S2(t_I5 z+g=Grg#t1VC_!f54&;>ihs@~;Z+$&qG6JVvX8Dq~AG#jN79BDc2LVHm7PM(df#~VQ zNW?Ygs_w5EgY&m{nkM#t-i;_;ZTVLp6<_|lfJT%;N1|J3Ha(8K+FDv3BA}@3bEL&p z3(4Hk!mI5asAzrC44pR{108-?x+6fnrL~*;cY`gcns(zv4_WJ95mNyt&4Oa}ybmq` z5!6Li4I>{Olo$WxWECfrLk91RF*m<<5^wqUmA&7-pyS~M-}M)?a5C&Hf)UX2^5l

dL8B+e$zWUP)A?pl;`Vqoa-9JQ!E*$b(bi z_-%ilXyfuQ2X+X@&kn^-%VA%=nfO9uhs~GFcE{H5c+Yqrb;R6InxB=+-P(A5>x}DB z2ZyA>el@V$YYxSWTdA;~JS-8^FSy@vW>vpX{?fPcajMw-DX=VjTr(K#+jvhb?K`I( zKKOa@lVGruszpzuw*Salq96ZZELPm53++9w=YvpUV=tztt zy}=xnPNde@d{{GRIf2C35f;xt;1Su9d;yOO&6+1DF`k`GYlsJ zL~PwDa@Vf53wMnXSIehfUbCpk}VDX26TrIa>d*16?ttMshf=l5H(>e*|*X z1M!g&Yn9c=A5Lso)78kq83+O&E;wU269~&|iX@YS0CfWts3y1dS2s;kJxPcu~NK*wpcfk=YO0+SF zqRtVF=MOF-`|D`J^shh%gumjETC$qI#sxtAGBEx7ehIcO{R?>V$v2%Cmqn`t(MxL@ z8|FvbLZ8p>t-;1hCz=?)KZ!$PERunfc6c^i^C{GXk5gQa%I^I*^LKI?ej9^rcR z%I}YQ(jHj?!%F&_M^&K(H55T#Nj#b}D*SiYjX|B+2MI?Ffq>9^EwX<29efpf8 z`aNOcg10*~E=-Ov#WZXz7cMNzT~u)~L;;Vkp`;^oKrQr(FYhT`C=+~s$uc+lPr@TX zg8Skcc|+e(QF5xQp-D-$o-?cJv)iWp1R&bE zq0=l)`^5Q1-xE3_5EgVsgTo7s0FJ1XXq&r$m_iSz#~cmo>F1mA+eiH4LyEm| ztwZcng1&uKL+Oti7J)i?Octb5OZRo>oSmg;m28j#= zc{&|?f>Ru7Hux)mNV)>OmbAQIXj?k@r^WKNbp&8JK9_Ouj0Do@H1QQpuKYv1&2RRAxm@!pfrfs7CKnmMTN;*e5qbjA zQHbei5|2&=7P%YkHklhy)Ju7@2Lilx8&Xw`^budAZ_G}}80`TXMdHyH@^j~@%h`5Q zsf#ij5;H@oQ3nd+WX-H7`VIHOMbRtPKD}vu!Zo>Elq6vo@!-W@+3uWHM$>hdo1;`^ zE47&TVO-Yp(0@_sQ#M)pj{{l#t)5v4h;fZ28_PLzzWNnUS{z8`_BQyn#n*4`-4V~D zkQ@5h#;EE@;?R@11>n`E{>J=S?K$>P0DJRIDvJ2@vi3PDDb@&ba7FuYqPaFhDl2$1 z|4o>_4fsHf(j@DfY%|9692G`B<4FU zjLF5sLct+_i)F7^Ju*NAvhqnc%q1=kI24RN&9aTGmgE6TO(&77h{}5os_rj<>a5O- zSap&m^iSD;dq%@xoYh>^cAjJNdZ@kAU7%Q}>teZk<&Nl7BaT7G8HO5AhDa_NXF~FbTz~$(l+>?WVTl}#!O#0)=_v%i!Bh&SqVPEB{FL~nR1 zGHo3wZfXTu>JE0{_muo^vzcscy8hjDOrNlkcRe_k$_P~}z`U$M3iM{%@gk(~<1g)JHO+?O@a-je_1Tas`(dAlNo)=BIjPAj+kWkppphj{=h?Co}MWNF>5mEgez!l1*;%-zgGC(|n`FW{IJQPN>OMa4c~v(<)nmF5#GlXWb{ zv{_zGbB_bQ+*v6q3hc1vaM1ggekhnEsCp8_S<6 zS$vBWE#eVijXjNi2>h4Cp-8x%znGGXK`g}(dnC2B7Jp)O^QJwjNKqk&i_&RqrG(M9 zj~;TRgYO(mrV3ycvbbE>Igz*zSeIx)80IJO7n&(#hPKn2p3vje*t;_xM7hniM)R)v z19zcIE5Wt;HW(F+@49i>*civ+uMWq=5>3~Ft z?egAtYg-i9om{N32K{?7?x&v+wfkh;M_=OWY^(UudH_v{_&0qf^Vq=51IDX+TE$q3 zAu*qVWCjx0^e@(9O|JhZoEFl4N~9yN$Ayi7&=}NiQQEiN5~(lzEx91w`A$$c;F`$( zV?gE6q%aN&u0Y&y6r(}lgPKynJe_DIhf7CV2RJ@k_$oQ@hWv!IVwL0%%pnt5Kz{Md zZzwy7ieHJ9+@DzP%8Y)4XwlzJVJAGu)?S>t1Uz<+ac)~$m6O_pYXSLW_yQOZ4`Q2hko48(?=0m1Cwum+^dNZ74$3#fga9ZuZGJ;HM$|mgOwCov_4>vq*03GfAGg2s#wICm%fFSTpeZX~ygA zP_}q)WcJA9@-A+c0m3 z9zcqgv$kBnD2cuPgfx)*dL~{lff#etwVz+9-j9FCyBX=}t?K#ysz>-ODOs^fW5N8_TpV(|K z(K+Xkn{>qYx706PG{i*P|6Vq2gAwoCdlKOIyq)ah!4eR3gA0>-$)J$lih9@K=?tqi zOOBR7Sal+V>S%juF3gV>wo%tEBLOYeiUZW%y)~xP>(pe3AICrj=Lvvl>7K(Qfj5>D z$cBmV$=ogiMOgvDyJFU95J6+iy=e(99n3;lG4ayJ*%UVoYcu|IVRPMJNpK;Z5?m$$ zlAgIJW)G;SncVXloj=Knf5LFk_vm13 z#9vAKMy)z+S4pfd$ATeXIy zk=39V4e2v*MG?x{Ee%{x6iD|qd!Pp8{bW?F@L-SH+}&am9pQ5Fn-jLs@EF=dznujH zO~{iGC*uaBC4MQ|1UuU_!NU!kbvYKJINp2me6m@fW*}pJa#{d8o#6%G6(=xVXXs4) zs}*96N*$ZU%RJ?cn^LlCyYBtL8Yay)Pu%VeGHV=4y_GgQTYNea8a{a!jOjTN{%d)2 z1G@$Tf-f`&#*ofn9A3*DO9upDly5ujl<0pc5#jR7@7-EZ&p%W8#$ooX&(7l5-7u33 z@1H>Op)ezl^qvlFriYLHrCsSv1e{-}<`Bjr4){u^02iyG$CUAn=H#RtQPKr1g8s?5 z`E-ANz)P41G|S!-W}7B*d;c`slLLz9x>wE5-CgdaHViHpZH0Y(l<65HZYat;R`qIQ zKCwkj05?Ss&3tgKIet+{a}P_Ph2a99`QQVX>uJGQiZme3*%Dy>7UYVNfMyLX(`5QY zkr*CQCO6VjiOQoi+^nWJ{{)Mq@DHFC>J*^b_og?;M@b+`X~?}1pMJAgwPl&+1OfY4 zpB-lo1VuxZ`|aewh#Lx{q$RrCxfI@XEvQKUMl1rf1c$Uj8Tk@AI$adfM611ujZ zo{u$i#zLg#E9jbEE5UKSyt({9UhK|KdF8)%_|1Kw(bm5<9>s56uP*F)rVofm$?OqT z+=CeXL@jM^C67t1{wYY`-AVj~E4$~#)PTX~_hcNBpJ^+R&J|eq6Xv9H?A^Y}L(Uhx zKJ&G6akyESGg#-6Zo$#GwfS>)0rDRu5%SI@un73_tL$=6_yUIxv~;N^;p2by-3yq|Od||RRqnSj z$w!O0b#O@a?^iQ>9-F=sJcD*5obkJL>YL_noiKYwDh^9ivv_V4wN`_7V%|RNZL_{Q zuP<4<<-$`-4?8QoKAdsmku3EO(cg z3u{01lTQv3{szzheR&(T$X4-ygQEZmeJjwvYc%ORnLGvJ-4{}o*LOo}g1<$B%(r%F z&HOp@#El|5E=ZsMhIJ(OKbje8#Q?PX>W>tNDKmjXs)qC#L^4g~fr*xxvoC(|FCIyu zRKpmd5rjn6mTR$qEOjW(Dirhm%>qBMV67jP`jS)EB9@x1!gK3KKQ5n-dFbcA=KyWV zYous`8%Y5wb#q=zRlGBNLVEQL^6}}%zh7fXo+gcH5NfT;4|qG0<4V~K@Ln5GUz*4P zrK&6iBZ=0GI8$l~Pk{y3yKTM8{t#38k1{|Gu*a;fl5n^0X!(q?j+`x!OM4=6MdlV7 zh=-tTcOb#TWwdAr>H?Smj1Uio-KT5KzdG!7j(oeK$H=n?GNCN2R@gd!9Q=NDD8Tp=orGPxPLto6K*YB5C?@5Ki`fVvv9h*PEi$3lDn3NY>hTY>5t0Hr;)D z4G~t_k-LHG? zmu$b8U)Q!EQ5k-{acCzwL`sKv3^Wv`hizPDX{|l!keoVm7A4&tzGql)i z*%H%fC>6@`gYu!z1SOA~7yaHDU1>9Gw53F5WiJKYve7GwXXtdm`UCr~5rm z(tHIPHO2P;RTAp0>C)ozMMgwAq<1=@v`Zl@e--# zvxqJ~ju7$u7Cpd60CXyN3^37yid6qhGZM5@{Q$i!_kTC3vD1;0ebe*ysm5yJlsT1q zu33n?2(aS*h=Ro87zjs7ol#cwh&M6Zg9uEI`cG|5N5VLex<@kM{~t}?9?sLc$k~6EE-sMms%1|WA+2%CoLphTUl;fO|Fph!A4l#D`lU<=`oxT3I+hZk532ouFb`ZUX2NbO-JYg5$%%bi9lC}0 zp5&NSO^01SqxuJIWrEvTmqWWAhuhrSRb2eRzoB8o{5fuMWX3+AmMH717B>d-J8F?V z*wwvFwYL<^S$4Zx+?&@-u-u>aaTes9s8PQ*TJtEX5+kypRWlTQ|9m|BH&gg+!Q0iD z=!Vr`Loo%;{rN`lCnh%~=ZrnO5$nJT*wOFWdq<_J#D&&6JwuhX9`yar(AsZLd~cCP zKaE*d%e}qa>Yu(h>vP%O3nS&3S6%nC7vc;sXdJD;4d8gPS?bAk!Ra3S=6uob<#<@68<jN^)iGz@Z?f+e zUMreBdC$w`2VYQXLn=1)quaWBPV-56>_35fJ1HZN%g3p0Ju76q){pa*GPeS=SCwdB zG{<)~SKQtkfFCs#q@wZLQ|Yrb*R`L|kKG;$3XMGv=bor(id47u<ep^xnP zoWHJwGenR~|JRUBDSENm*ah2tjHJ3sJIl zdmeR7)y`DuZdK3{YgX|~TJcX1g-L`PK76vZ%hZC3e1h~IVxz|nT&|d3^B!$j}6XsA$czev6orh`3R&y@da8l=V;ww`6u%2c6 zmdngH{L~x{7)r&GjUDC0dQE z*Bwl>T99X{T~KsJ*sv@2i z&Q?*bfp6E8n2QP;jgoU#QhQOk&w+l8^L@DNx0^R9V2pDutgonesJt?f~?LWJfPbD$Al_n=#DA5i$B6DC?-;%uX7y zrgr6R5<^(oy&EHaU-QkyEdjBj$BU5%c(;3S=AL4hOXJYY>m3$_X!Y&%7+brmM`m&X z3W>i`MYG4o9Gn|nnhWpMv-}P^^uS**4g2QWswf8+wri7a`{s6GZmivW%P3@<<<7Bp z2*;V=%f`SMg_*P1K5he4Rri_OJmSvH5A?D?Lwm^!6t;dFq6}g$71; zx7F+4n$ZwnoURuGe#94Ik5| za89>vmHOR{cS>aN>XyykAUUeyud~^VP_DeS;(jX5Kc^oJIl3fv>AG$sxLvkI>D(`c z4UxV1)|b-3K9-mE9LE1A3v@^Vj?O190#ZTqTYI4&lyhQ9aXNkhH5L9KdddUVL~-78 z*g+rM{hc@wAG;OcInOY#;9Yk8u5w@WRYl+l0PbTUhDL9#2XI-mRKhM%b0yl;I_d$p z;Juxk0RULYxvHr#^GY03^{7-%@W#D!IpRsSqJ*36dAxbgl>58f6P~s?qg4hvFX;{< z0Z00`T=4{xxAasKnKy7WnCK5YRWcq@l)zO$dY3PgC-%%jiO4c=B2wj^1JkJ$CO;9o zT=nHq8r%W6BBQ2GY6cHWw2tR(B)CmxZX=Zja?O!<5B9P-TlfT^mtti|_&$6<38l#c zr_=|~?wmxe7T<3$`lYc|9qELU^`&=qA9|!kQ?KeK#i1R1Y-m?VkVbE>3VDDqNn}c~ zx{jdu{KGUN7m!9rv74kbGr;81DR#NHnyq(ei=PkBHj*?-(^dw24D4~5-Z+Ghj*UG? zP2e`agHNo8jDm!sqNz;n5r{1ON`WD0jg9QwR!1W8v4;dE$b*Sm=xTHl&j&BDB_QK4 zRa9`P^9!zcqoUl}Ze7K@*;8nxyT~kgEQbHds1o@m= zyf+y7E=;W(y@g$QVlJD0Mc44@M-l&f4|v1?6oFNe@m8V&Xal@jHQx{?a z=B~cSNi|??2?G127oas?Ljf_x+$qB|0j{**qwJ-7eN7GT#E#uE8K8Avqc!Tj#xtFt zkbRLUNMo+_0h;dIrrW;KA?vYRBk=1@@ zmMu8jP`&kM`P2tf+Qcaw^rQ)_EJ$UGm!B?MbU!W7IC@LFbYTRD-LWrVg0cjyw`D$I z;rc7Q5G(#>mA9RRI5IMOmk!I-yaq1 z>G=A0MRoAs4WWSF28#VhJV>4_2ToVI9hG5%TZtew%J;vZNiGo4_Us@?N~r(-DW>lD zn7(RisP=Wu5l6w>7Sx_nF9ci#E|g?ax~vwwua+Wzp@OB=f79<%9^hkL-;Ubeu--Tn zbIB8=vSK%+0-z&B`2a9Hox~tSnr*akxz$UK<(_bOmp;DK_!qM4Et`Kqa&Y{YL^*`yAm1j@EAFx|m29p!T z+-~fq7p%A&<7_NHrLCZ`l3a!WZr4Ywb$vmT^7dki3&*SkAcv0#5j=NvHT$OBF12u2j;Zs#VL8;F5vc}S^t_rP+bi7x`h{(iHTZuglu$|m#~LhET0m| z`1s=OEt4)*iRXH|Xjp_q=V=wC0)lnJRD&O?vubxZ-zP ze7FlvU8T@aKp)$OI$Z}T8!`Tr4N2SUDhQS2Dg+{z64ubHqGO?TA()g>M|G&ZF7EPEnWq)u~D;-xUIN;*UXXmoZuWk zTk=Bzq3^qilHR?i?krs%-hePF`?kg;4{`$o^W`Fw`yCw2naK9~8 zAy2?d%_?Z(`?%ZSyx*9E&`X}JRnvFo#1vM!%)Aeiwx_<}E|zZjk`bgwO1SxEfva}e zLkrp75UZHV>C&yI$9^?@X9|;1XR*I#bhw`$%QQuu#r&F`61}-UvL$xB?afnHOz5c> ze$z(dMPvZ*KPz`u$`+JI@qxmjhW_mtEAiybjZb>}U_ola*uF~}-tbl^d58?|r&< z>86@>^Y@!7o{K8KiVT`Cd&K1{z%b(>H?91&^(!SA-Vr`R$!=h|RE zA$)dE9P}4*0f06Mp{+RYOXsX#9bLAf5TYERm!Mt(b3o_XM7$0wk1L)>@Ulo=ne$He zyR9Z$To6HBs4c-dKW>`f{#`ur5`#yK8uik{b8dy7mCtMbr}z|uL}P^|_1j7Ycy!&L zblhuC%U85ajGHsK!7?}&ogU0%`%Lk1Vl0oX(!GxVb0-YNriUBnSwy=_b3b1HmTUVb ziw$VY&INFXqG1g1T!#DpVEDt!`I3)}11alN6)cs#-l_Ola;9q5N8pCT7Gvy24qH_O zzZ@N<+-BU#qI~iBV7kb6?u5FkYkE#?sT8JGY21iXW3}>191NaJ;Jse|;c??`FJKjX zKWAZKi0^;+RwQdx%OWVo6&M`b&&|qk=(ehq&bJJ@eb<#kcbW#L?IlpnPbWo=`sEdr z$xFi^5$6~m%5k)I4TW{2lKWL<22a?EOwCC^AQwEo$5z!Z7mcS7k`pLz?^)Vre~wOA z1>^t@M{(TiD1dE+xJ%}X`P4Oj!!>ySm@|bE1qVEYHeS^G=u9JV!rd;bPia0Px_NT7 zsCK}R`F8apHc+WSm8*;=y%POXn)OdCQDyV_TPvMfO2EoV}~d6q0&DvzGp*IHFj)m@q`W{{lcu8NGXL7!dKEGvD;f&tZWCqQ92mHo@+H z4-ScZ$fU>X+WZIn-&Ww8h#w~=&Vgi*MbK6V=8`n^QdXb^;8^O9pC4%y5A8yFW$^p} z^b1pbL3Ju?T@dPjd)nOfxKrKY(+}_p`A62s?Gsy-KVdSFXUrdG^>#-S*7?ZGtENd+ zGC>9+m14gybSzv1xt!4gr+z=Kz5>1d5>W{B(%jqeRS4rGveW`=TFR?HWioYD%P!3K z2k3u+j53_5XJwscvZfzy{XP2G8!PE!rPy;}3_eX@?9YXew-@Mk)Hq6;{XfA5{wF9C zocFg;yT0?M4oDXK3(K;cYuOhgRaKk^to1>t9uHj47tu7EDSe4V3*n8)79rG_?K%^1 zpCLJW1s+Yb>M~|p6qhoQmQ)j;GBP|HTom)&D_eN(xYAp8heJAjbf%S>W~o}&94cF_ zngvr^cI8RTtFU&`mVElXY&N$=tXtJA{+ETbDxrw6*-}GtQP}^AM%uF6&vkAckBs3Q zVz6a!KTMKAH82$fh~Y|)kbqERr@sWwZe<$m=JGVVNpeQuC~~O$xLCS6`k8xWcbxPunt86~F|kc`_l7w^!Bq zKZ;nk5F7v_g&(`}#8l_o9q@}&0~XJWzy8zeQ5kmfrbpwk8C}L~b;UL7i#r(hXO@>S z!;s6$!3T4zDwH2rhKH!3W9NProCM2QD7AUe2P28QOBbI^-U{GpP~zkP&QmuleeL|6orZ$d-{x{Q^D&FxR_Gnt`@_dq z=j~N47B3n$+y}^yq#23f#je4#YFBOx_dWn$11}X!zu`DlNiKd~n<1|s$X&aIj^Rms z=tZEPR#v20nR23JFV0Rd{8ey7)qe&!5I7q5#$ZQ|BaquA=CnJj)X8oK;&%CozJKM6XND{-ceLReG{ zsGzV8#MEgde$YYoP9j$=>K%QX4Vii6iIDE7zbvRKgi`bU+z9)~q%jmcs38Ah^}DvJ zIKb1}79SJ<#QeiAbjh>~^N>0@Ha7}d#X0R`I81zT_V5o9$@8++WUi1Z`1)?2%$_J+9IrRx0bQ<`n2=Dj=4x}K4TN!k;7Jnb#Ov!%=M7D%X4ocydedKWI384;o zcGDGOO9EvrA#N$F5$ca3B%dPz{pGl+cilvKmnWV?sbnVN1p#8Lwyr&H+9V!-kmDqIyWNdj57YiUf$t1RfQi2!8j9+G^o9oYKj0A3 zX@m3>k8$cdeZV_p?~Lq{0x~y({uwO#OkKSmaJf$_2+h*BEgxj?6<*!H^1)o&r_p%_ znP>jz=>u;#xGL-qrmUKCP@4X;m#4vXE(<}Fn{Qt=-4e;=sr%u5H20cw81=aZ<|*K5 z;7#Z56bl1#@N5dJ89Vt@?KBQsS9SXeM7lZAVO|`akVe9|7;mM?ga0BX3kiRg#FB2& zp;;z!y8yE^@fyGvia+8~zAF9ywE#(v)Qn#Ud6Tq&EENLag;4wTe>yfI61*e5h^YSx z0#xT#Dyo&`5$W5AX~E?Rx;eqvW#zYlIwHuTjnV@zY{4$4j)UCZqdWJ2+WX4#m(k@M z1^PwaO4;1oMi*t|Vx7@T>Hs3R{fz>-1SF}}6Lo2iE>Y7OQR^$LUzyfTe^oscN!wZg z>Y6D11!%{$bv>dV=Jw*qU<)>{wVI@K!^CxcftTE5D-Jz z>rZ02(JOwn(t0-Xspi!?vjqIbn8~M+nXm_&)3;QFysrsE5*KY69{S+Va{btm*6j^R zg8R+qn1sw`5%v6Q)M^=FFZi#yJpmQx$db9mulGm-MiDFgpQo#|43O1$pe{@~vVcE{ z&7vHCNu7n_!+?8!U6AU3n+aG43J9)gUQq0B8nUet2peGl7^O5WiyJ@b)E1Lq^Y`Kp zv`wX>XkmxO2qwh2pv}~qnK?qse4T;*UfBA)9)N0RqzCb7@pfz;D(&fHh7F2FP zMb=ISy12I5xNTm&Ir`pHvv}7v^@!}i`Q8>QO$Hi?H6hsF!F5gVwv0(kU%j>c zWc$s6FbE;w#3Og1@utIMabQFY%d0waxxc{g(bf~9lmoIAKd3x5pUwYQ^adRy?FB(- z#^6KBVfa+(pLa_yFH%1}-Do#k4>ka$E&dMPv5m$1`-p1SQ19J)&7>iT!TnR{49J+b zltosq<2hIV0>y6HuRfcBc^d-Fv9|m=&pIhbGf+>wa3Xp`I z87{*PfvV1R4)T!~279hu8qaHQ-o|8yQ0~)H|Bj@-P`tY(K2rW~3R;zRchXu6Yl$BU zPqF;b9(L`0un>I~57&3!5tu<(H3;3TT8SluY_a}O(00V~AjJ3e5y;|+QD!Kq4dfpT zvx)Whi@C{$utGfk7mI(nSH~<$vH)|XXA-*qlSvbiQ`@_uK+DOST-Z5X7`gn1?ed1h z@+WnSP;g-LTLo-oOR3ydV4%~@i}6Bbh%k}X=2jGkSnO79KzkX!Lm@jViRIIAwna~+Tv`R6Tp|ZN zYONgnCj#W0D}%@=UJypc6^K}fbfENuD6|$2;L|?xk-|g^g18&%Q^zvHUZAJU>d8%4;6P!;oqSZ}`vn zRU(Q{0Ax{Q)Q1YDh;t$9i<$FCreQ{T=VuFy*fuweSb&iJp8R+Fi~gPJXM1J${JfrX z*98X32A~6341BQyd1};_K4J7MKUB%J7jgkVJyW#bJZLWCw&ko^(H878A^EH77o&sZ zo(Q2c@^jS9oJ5!A!vS=mw7$(?YS#F*EVX&Fige$!Vufi!l#`*>^8<|It*FF~d!}2f zjGD!x%y&AJk}V2RbQJn7g_kJ8WA=eHkQzsdBturXLTPZFxM0ft&kRHkp0uEp^v75LKllw!vo&erLb~2`jTmxRiGVZsQIx3tJR6w-9xOf3ebw020CasUqz_j+kQtq z$tLmXO8?x(+83LCqu#xXVN0PZ`93!;tnP}p_6i?@k+o|3tMC3YXQJvf-!t9j5X>?^ zPY78rGk8=}c6W?QSMLF_2&%m#DZ55T%!gv~t0B1@g71qAM(lRAD$!3(*HuF|B?`%A@fYn!4qnItQZ~bY)`ZKljx_xY6ix{h&xmJWYR_I2V`uX;W z#sI~Y#^P)!^p%ld(}~hk{VsLh$HvtHls#ETZ)eTQ6rfS{B9)%VkYzXygeQ+$sQtV? z?r#bebK1Dqz353w^W(Cya%%XqP`*EREP*__cMX?j9=Wn;JPSqr+zcNx!F#^G7C`f3 zz+rIblGM#3qto+S-t|45Ikuxslk5uI)={jf844)j-jt;#A35@Vj~;(O(U%5vl#3li z4TLpvRM}N2HceFewg`|H&e#q4o9Hgh%GK>tkVW{C9VZKRqxpj2;~^%Hhsuj2ARBr` ztuIt6L%x>V&d{ah*jWsCT?7J}kP66VBIy*5O zj8Q!4k7rcPQ;NHW;KyoCxEpUh2o)WiOY~SsOlVuVn{q=BRDVX5~6zsX!-UprW=Kan}K_LVzSmnW_;9E`J#a-2??q+Hs~9ZCKB7Hj;2 z$8Q;_ozE%i)aNZKf^q_gv%lV`1%<$fBL%M+muifxjU6}()&!L^n?X~!W+e*Fa;fTsyl@q*ALiF4?L_}E!9}Xqb%If0lKmMl& zBFhkMV|cOcxbH&1NN1u$52{*G+kV5w_a_HYWz9-HbwDh=f7xlHPR2|cRAZq&`0O+P zpI_bOCf}NB;?b)!@n@0ZBZ4hGY~;Ihq%V=UU`N5XOcr;h@%_cfo9N(Gx^|yxFtJ0^ z)V6WIVa{Z}nvN#Xl;&ukpLu~Ae&K=9v2x>P!uE24>I)Z_-MTdlg-26-wOxwdf6P*R zzrdU-p`41Vr>RMXSk)i=OMXPx$qS}NOU)s#%rJcC!N;jKS&YrmfAt80zbDk`S9UW! z7n4+X55hU3Dw?i6P1BK`81gVMBQ>ZkDI|u)h3ENR&p506SA`cpQ4HB)p8-O+?h+V# zc27zRDvUyKVwlCxpZ%hb>w>MzLpdI;N5G|jvoXUh!MtR zM(pWGx{ZY{;O(E^xWA2JNN(qyy&3mfy5T}U1AC{5G>S>*w`4P^@%w>cwxGz1fafs~ zjkwEQq(=Xqz)Kbp!rJ_^zWwj^4ay+E@QXN$lWM6H=bK6S^dryba-H_~gU?qgx(&Za z?ES}?db=Z-2hZx-l;f8w^K2**2+R35PgkJWl!nECY4O_xQ?GN>@Pul_Qy`1Df*8)BR9Rpw7Vr+ z=1m`L`8~h!bTLsRzeWI7;9gSa&i}FN%Nv8*9wWklcMjfj$*ryqt#;2;;?8G=r_Y~B zG;i8?N zdx?V!oTh0P(F>|g1!JBHYT;pOLDh_u3;>0$LnW$wq#gty^Y*6i z50vwUAZdx=mh?To0;ye>9MZ^UbE}Ohz3Mfys$sbdwO>DxBlB(@dtdp@6Ti6QE{!hj zXG!Ey4ZJ$_Gt-P}6&8GI3!=_6{Cm{C6Hfg}^A%CuP?6YFy#fpjjPQDwu@F3pqO3Gb`<)L)G4#D*XCY>Iae#;xFX_;1 zsSiH`odedHgFi6X367mU81_@75PRzOo#kNl+D1BRSvU9kb3-)b7pm+ihVi(Ko+<@Q zGw6hb@?BXnz$baU5OP#{5+S60hE{n6<;c~r!V7gjfu4=uLu^Yp`D%E>5f)kGg;CDc zLRL!^i3x5q!BNXGp&E&t5r35m(=r>_Swz!CllpDX04sJKyl+Bkfy9mW&>Yg~m#>42 zCS`pS_0$>}3E66n8N|QfI2IVz&X>`rFk5&=2qbjdd_Oy0<9;Z`|JB-3TjEE~b-TLU z9G+*s7(~S(Q@F;05yMmJ_Mg(#6~!Iy$d zh6XguFjgh?%>44jehM}?>2uml9qvHXqk@E}?)tX}%2_qVysL^%)l`2MFww4hy=bc9 z)SD!}JMi%z9my2=j;vM>zu8q+aX(`^Uit{ZWeylicpnQ<8dnxJu;XXksYSwB^V2Vd z3Tndjw;wH*#-n40)Rp3U*Q{(t4&Ag;+aq4kezsdJv>rSh=b{*MnTphROY0?J&lnyu z*Rfrt%~rBJd6fcdQ;IKjj&)2;(FT&B{Ngx1q==*)<@n-h1lwOwPU1pUeZ*tSsn+TV zw?XUDZkR0G01%I$#9{u&tO_(8;aYFur;BCVxt+e<0p!x!Uo(Pw{&OI0DfgExA($95 zv%a|>@8G0w#0dQbR$PZX@UOeXqztvOMnbOFr8yAF{d|$4+R`x%2&*66j*?9lt%Z_7 z2HfjXhu7$DcF8}0qPq|-L44%NAeOF+ZWA9F^#Tq+%)J8|N(wLT*=X&_dkMCUH^GlZ zcSVE(3K(d$7*IU!P2)Cf{Dbk|*kL%IoPPU+Vun%?>37>6)I{2oZuWgJJR5|rjx`7x zr5`^@`?ss}E$fR4+h8L0wEt>QqH!o-GL6pMmizV9h|Q6%8pKSH^8Mvj z4!lPKY%cM3P{p7Ip>MHgVA|>F+U1y3%53}ZX4G?WGrf^w+OH8x0^vR&lA+uh*uKb$ z;MWBTa2wploP`$@{i{>&i(0hDqTX}O^!j%U`OjEV#1N)iEA)LX$tz8v#dqdTnt#?u zk+NUVVow7;<*RqT#>#;xiZsMmgNX}YC$c8rq##fXe<6KyX5Jx`?fgKDXdB$|m5lmH zPw1iTx2}IaZ`V}2H&d@ng^Q9rybZc^IEn4j_U}!YWCDU8vq4|fJmonrZ_|_odEO5& zKsO!l#7z{hWzWT&xcAP!){}WV`|-RUa-i_78=KgJEzj}1<-Kb~kA^}fk}8sOu}a@4 zPnsF4_%=>`Kxn?c-Uiji@ULG2;_Ty}jRo76_V6gX(xN=|%w}7qq|2>a3dN3>gyF{l z+JZPgM=0F?2OU4zkbBMG_;o2yeVh~>O+H@C)iOdZJF45>lcAT*L>QHwabTFm>UuE= zqH$+#OmH9kY*F?daw=M?$!qksbc+J8jA~d5?qeLmr~V%yXLs_s^4iV^>2CvL^~cC7 zrWA^}ffz(hSoPwE9k3*#Jp!fnI!;lKEQhCfA-6uzq-6$Cm$hq^5=HU|9j~ zuw6;GxwU#N(WkD?QSA=98IYC#q6&njTLg2}T0`z!&;q61RfJKMHO1vDB)H=8Or66_ z-slz^mlGs7mW;;_U(+pO-UU(Udm$j@;_%YGp%S#8eUQ+_baRA1tYX+K7mL{kr4^!= zVtYlK(QH{8IdxPIr9Y!7P@vHTQH*#>7J4-_bfwx^+CBfwM;|glVNI_LLA<&QqnsOY z-c=Q!OYPo12T3<#CkQ4>zQEDcq0)6~gd+-GPuKYky2amx1K(p?9;G=jzIv$VKjg6Wuuy!}k>~ zi?KydUlKrIUMlD#2&~W%`5v7;q1%Bw;yzsYIvK3Lu%;`y!8}Iu6Tm(c-kApZ{}?6& zq%*YLPoaX_yk)^Ik#9^Xe-0nDmG{EAWby|3OecIxhR4F?do2sy(KZ1F;^`f$4Lsj0 zysuV|l=c7bE6~n^fHLI8_pR~T80M~`s_zOdRW1AAKz^DheH^XNn5DI<}vdBouBwi{iJcX#H1r&z>3 zv@@Ce_-qJo|C$4y`Yf6)y||e{jy46mvB3IlN5`}@S0KRb6`}~BK-Ej zt!{r{R8FB-XMS?Swc}S9|988yCo()|__Z0@Dvdr@3r!hxX@?ydVZwZK7%?wmeCI)F zv*R2QIPeZC9X+QYx9rw2xQiFXF%(mTn<}E59i=uRE@63$N7%RT>hHV^iu-ULqZ{NL zgnqxalMSX@Y6kf$HmTh{=48W$Gc3o;A{2B#OI!AWgH8^=SRyl~=XL>I zeQ3{;(hkda$JLgFE;YR4Hzw1f&FM6&+L&UvH%1`~(O>p-!!V?z`KHX6Kws^~$ zL;xiB3jrpn;gwb;P0ffjz1@D7{jo5L(yMbe?$2_M+;pC(^jf)dnd0o{EGbFS&`Yh# zBRUwzDEX;{rz6fx)PKnIF>)wdl2FTrUJx!6&GtFk$62^IispJrrM-$rm!iJ(6j^;? z298LZskzmE;itH_+ch2h5hEZp@HN;dx!dKfzpwaA$o_MR6x15FVA<10ZOAyUVC{(H zagNR|368$GQ}QaSU4FV^0j^m;5V7ucKlJ56YL4m7i=8YCsp{{$$Sn@MT3!Domw3S6 zy5Jmxd=$TXjqIo8o*v*+>eT2decE{*BPv#ieZmEp0S&%ravg8yIwL$*jvQ@`%76#W zEn>a^R@yUM5IARGG=l1kTk)S})ZYff-sCQ~gBx-G1;*__1aIXoUDWRNax)slY$D?0;+GNB0bE17Zl3iQQ9q)#tUm??WIFDO*g;bDQ6Wp2 z-Kc_*14Yr0w8kod`PVmVfWA6N{V3fM`zVL5bCc&Y1?@XTpE}0l-D?Wz-jZl`ys8zL zO4q=`8J|pPle^(0rV8DA{DC%_db^mRzvJKV%^g4(6y<7VZ$`b{`7eu+ab$)Ly%cOv zfe&)!34zJ3@eaX{UfquGzcRJ!#7^XZsFmybGwxoc_lfU3QQA4p!=s+@&{QbC*<{fG zXU8_lU;c9>jNUVUk!c;_TN&z6{st$@E|(RHz^*(Wd2T`@-Y8)4;3fzrH-#b@eUivP z-&v0La{2~RZv7PhjnbypwU@2(C*ES7V05wf^A{%9ZPln&jb4#MH?A4yMikxBeGoPJ zJ-BL;>13Z89FW7P3`P%)q+(Lq3s*JK_r%vD9ohvS)&f8(Up8gE-74KX z>p`=xYe(o8#lYuE0dl$Y^~uOEl(nFu%6RbaAC*4F3EQmbPC^SW zybY#FF?R9rhO;)_>1x?``*AOm106onQKr5c2L+}W2Nkz0&b^XozNH~s0TS2MzcPW; zssM1Nk*gu|^xbT(O}r-J2Axd&%^q|38$c!_3m8-jn)>=Y=qxok-bKHsx$^tsbc)ff z%}^%KnWntoGVXVUzSk@_q)N4Vm;a)_@#USF)wj^U|I&2f6ET`mcGAz{dGntz^xnXw z0Vg0d1pCPYH|-Os>s;Bp3jkJ32=sdjtfYgnXU&sP=d93u;Uk-jLc2aIHf80_WhYei zJGi#eec;o|fyKF0N<-QEn!(hnG@<-pxLSXQfoZu-u^FJb-ze;AbB18;hPe^acVAmv zD_#DXU}74+T7{V(u1YYS2n%^$+Gqa7zc*nm*`rsiYT4HkNl};~0E`Gmv+V$MLJXzb zoukJlT_hr>m73kx<8jjj1o~pD9)ARIB?Eu!oDovp{Or{!3{gAI_MR#aq^m91un}2a zN56A!s~$0%cr}#}=ZJLxk(1*Ce%+9iz0oDQ8 z^_tV%m0*Jg;1$NEVXxEX1hL`#ynZVF`W1S%q)(C%pb( zqh<7}w08YuNPVGWlgC3c{`E^WTzWm!v<44Ns{O^E)H@a(O<8T#`c0c{8ar}rEcC~_ zRy-WK#1H>E*W~kivk@$qDlwi0h~VfFOx}tBYgMU7t2{KOe8er;qlKX|4~O{ObPT!N~-0Le=k1`hL>F_ zHhE{6b3tnw`4-OvM6Ly>g3t%GaK1elBJT$*_Y%-AU*U{Rrc!DLQpZBe>Z_Xpn!pW-{i zH46XDR(-KN4qimAL4v6cv$a2V16z>ygWhv0**_B*BCT4+xdCzs?4a%nvY-}!YFpZ( zCQy$P+;|t{@2op-xTg9O4$3hQ*VANB*Zty!*`$Uo(`2jE!yD_h z!E0Mvk{3m;ZKf3di)3VWkzIYOWVIfOG`HRM75Lrq&eK%`{r|N9k#6Tz^L&`G@mC;f z=YkAC=_1NBxT$F4ifr^npj<9ii2B|Cv=dx&a+lh|?h`nmhOFp{PqB0l&YH^4tB%Sy z9l3_hSm)V&UcYsXf6-|#xr6goJW2YZEevdnvHZ(K25Qz%7ujoL>!@OX&P%3F%R_d6 z8~2xPiRVzO%;Cu1S>14>0Dkm^jC)c0{EqOa%QeGC$WSVpeOEsIFM@wxpUZzsx%x}>ukHs@ zonbhYe!(TR7Mc&yCKq@C98pOBU+Hu`w?j9&SW!#Ymn}$spnj^a%S+m&so)t<`Zuj} z=U>1V+H&EpP)usUVFuIhKdoX(vLKwpqf~GWH@L4I&dxwIDc&=u6r@vaEYUWBzGr8N ze**KUn6tWd5$zr|P8(75l9;@QhG$W*-Nv~NFWoc-Cx zS2{nH;o!4dj@vFR%9}1F42tr1g!2S8k8?)-QUz8XO{dO|5qMR_gL(lOwK8n!+>B)q z4|5jJZSf!=1k*C{s;=6WBmGa^R71pjZ-RlI9#j6?;K+`Gj)5)4FJ*cjFG zk&q*qv#r@eSQ){;LgFNLsPjYonP~T>gl;$0YN(1w7=ZlkEY9NTGE<+M=^A3P%ZiAN=@SttO!Jl0i>t)ZSrs|rG9AJ>x6(EbrjED}!)2DV3GQo!lEu}i1 z&eq(GC^l@do9Bzz--0Wtf@V61+8=BV(N!fCx~*01N{2Gi)l7zVKPQ1nq481Y@p`!8 z_(>*7UGuq>aoAA;c*XKk>^4jKlpSJ6G-JbFyF!P#_cw;m9txs{%MAVMW|AY`2k-p% zD#LE)G6tA~x*IJ;|5=iDp0nZNU79u$@oq!+_;Fu1n)sv%u46SA#X&|ugQybcRdfC~04wjW3YugdW*4mO&BYI4u7YaMsGJsUq7C$lR*v=t+w3##%@O~-qnf@aSAR7%rHI;U0&M>_( zmwIz&g{MX&!eBF{drKE|NLp1#mgU6G9F()DBMWqjKPefYiuXeFfc6QAP}B4R4~3zR z0+Tm}HfBHCI^hkNs4SMpmYp&KH-`OJlN-UxTJuw%uBi2@?OV`2+q(U{by4XV3HdWn z>8^8BJgtsA6_z-1)@*nh$@1SC-cbvNE4e_WZ!!5?EwD6f4*>Z%ktzn_8#3Jr>o1;| zB&CDY{X387RRwk8H9Lk(I|F?Q6H^zT+VReD%UMPj7$YI;mK2 zCe>DP3utBLM@^NsIOkeACD(FD5*;@Ro!E{Pg_6WylpboHr`t`qyeNT2iYYgs|ra3h}71r(< z!DO-_@_bl6bRE<6LbQXYh6My>aEl+Pp8mXw>Twjg-b!<7Ss!Q}g9bjbw+B>bwDAfK z-0LLqRFVBzMpEf7uov9ro_YM?aYt=}uU2-AfqAE|+aMeK^m2m}qoz2u2!t{EGtcnt zlPJklxIqf&M-wnjSX7S5TLa2L8ee)}M;J^1iGUdRKtbvi63neR6_XPNCQcn~8g)<1 zx1w%1dBcZnhDouOH^-MDyE1)KG*6IXQoYn+ZQ_Dqj5^H6cd9Xh;2dKvFj}7q-uLTz z0K8HjSFnyU|)K z_GNn2EM!qjF?99cbrX&Hk>CtBzG=J14Er~dmYodzdkOVQT4g!_8Ta_z{$2FtI^l(e zGj|shn8N8N*%s^q>~R{_tcu@H9AppnALywY#9e-Y!yf!s!tiLAz)9R@k8o~4FMIVS zDm9{*489ifeOt87OA+1G>1$;%`gb8cL-CrhIG|RIGy-Tsf6i3ZYr=VLujgPT)uVSb z&X(9ocoDY2$4TUDZ*C1IiODI7iwM2R51`x_H8v=>+|^XDo>(Iyhgnkd z-jv_a%>YIM!{;tV-XJ0P%}QbZi|HXqrUIZPxRXS7vh_{v3=p>@0-sHM73d!;?v~? zxJKvliQk$sLYlmy(_yI*mA}_t``x$L(Sbl&jKBDH{IRkAg3jY|@W6$iI&_2K%tSy| zq4^V5+aF&M3viZ|0cA5+vq>O|XON{XqpwBEv$$~p%5=VKU?S&EE6WP{cz*BT@qp_p zpnqPTxr-(%LvQ!_KAQc$46SF07*toP`%7-^%WKhpyg^4YfuhUd6UvVl<7ysQ2%Z%J zcI_vozRfHP>jtlk3r-izB~`e8Rv3FWS@I6zIw#MNTKGJp7+)<4Akv!Ixx2w$ZHn37 ztYOQ~eR6Uc;|;iU@y;28r3|emE~t<>ixY`_JezTup%l}e=*Zo}gqss{V@11vM7*yK z`<&STy>xdl;={a^u>S>olxqQAcFES(POs#Y}y+9@8D&oT|xWo3<*A z&-X#KrUmL;BEmm}{;Y-88ebx`eAK!1lNl9x3mTZyuBiM-^`lRVdY&w4o33cfQm<=x z1=ybVgs9*APqIkY1}v~uA@jk*1OciTVk#GO`1Pu^vtKzwV8m4X6x^waj}7L!i$vJDOcfRYH@b7qiaiczB~qkG2;Di4>VUQ17paGx>?9|FjUYpq zG5Ow3)gy`$b4hQ=W)_s;(uGJL-=qM+xlI7GbWg+2F;=B6`|=Jk@>_h9RYreKRMbvRuVZG=KAXtdq5{r)L9p zNepa%KUYPEHXvQlYK|BMe>vNf*vxA*$+XBdPL&3L+>kuv*8ZsN`luf;&T+=;h1mE!O zuh(&tqg8LN-_JoIJ~7kN3kuH&z^OnJ>IusKO5ytM&&%Dg#wyO<7>CfQkl+#gpbk@} z17{Wd@~`sfSF~<0zzvh*(|A1lpw!ql>C8kk6U8qF<=LW@a#JNpTuaJUZX$;V(z;8F%jM z)vPW!Is3WEA693Hp6qjP`a3P2!oIC|bKGD0GcUB@3WhIjV)#`Oe+?|!mx*LGBSeWB ze>Fex41rpDJlQztrw_pl1do>wcax7}$)Xg-%nn=Y-;jzspP&9j{$77KuDP~apTWxW zL3J|#+9j9@`X-1*eqZeao)5~35AfDyVs-1=N1G8^v5*;&K)RZ7>Mhi(d1i4Zp5&RT zPj|2t!kH^5r4CvD9!ZT6iX>`i$GM#e;VUtlg2*3Ue0W)lfhw7K@|M&yok2$e^2PqA zCW-MRO>mGf5wCB4 z3T+G8+G|UC2&bUx!Qkuj@HMe}T!62t4k-BGV^RR~7AeTHXD1LH(Xcl8=fb7%>T#(9 z|o6$5QR~Ba!yXazYwsy^xied?YD7| zgo?;iQuXnMpfe&3NhKl`g+1-}EoipRGuE{aAHHn)4LuvbVtB8E?`(pJ{ywux=ewx; z13#ye?Z)oE`LUtJdg0u4_Ky2E@9UM-Uwr8TdrWpsm9oG3_-!vyi#O?)>F4;**c*dz zQC`HIOr*@9gf<};UJbsjZB@YIMDs0WY}Z7F%D1nA4rCIXdhgO_=Ogr zusqA?%kGod!D+Y!Kfdnq?`3~L>J3-7GFNKMvCY^;V{ipJaH|7#s8Gst19M>+s)t= z>!$2HRCD=!d8@XEV&mSEv)Y$2-K}2cCP^47e~nxF=5`e^P?mnJa8!kDLujl@o^CxL zq@AV*=pVJgIwmH@X{%MwYR$X194__Vv}F8Z%3D(dqwy4}?0l3E@p!LP|KIsJVN8Cs zVIga=#Vx?!X;~n15@FVEPSEm{TlV_1`Rsj_=G{|_MKlxMY7_JI40i{5H z!`e3(syPA5)2CsYzyRjxqkOe0?|q(N9;@vHJoA*}t7iJa6k(*qymQ%1rIM+aHSxYy zwdo8^ssgebm%6nFMJ?g#+eTh08~+FUTkruX>E7^L(OT>Au*y)muI|;A`(XQdv4o8a zG&w%lLtA$bT{ZXc`5hl7Vl(^~pR1U(R>IbqfG+v9VFWgqiVY|V$UpDbtia!=)&CPx z$4_I5#?_I+U{oFMi~PV^){%M!Z6+q^zSLqf1csJo7G7>Y7%a=au_nm7x13`W@|wBn zZn=>mL?$BVYWXeI(je8Wy|kGtk=|*hcs3_NueHlP-iju=A=yhY!E0R@HQFAAy;qRH zqpyn4FsMdqS8$Pmm92O+78Q$JhZA{kRWw#LQgIA)L1u(hgnK+2dnaq6iw}KjTq!=M@*O!B!yV$m97*vBrn&%v2CJmG`Cp$v`Tg|H`fv@xZGpb^0K|*r#%+?NxQ6Ue@Mm~}oJVur7ZJ(Q0liqu zWn3zLFNiG}%&n%&Lzm24e9;Q~wMQzjM4`CVg<#wo`v~tdDG96pR)J#Uh#cB#aW0m> zulx+n#W|SY{noQKS@{aP{;!VFk4AnhtDX~Xl$D{)wY_wA{c4g{1BS>tNMr>!rJ!A8 zlVf}<8FW~dnoZuZsDxFolTDLYFPZU5+I;pK#3SsW5L1dk9jUu`6}kYbDwOgyyacO$ zaN$>(Hy72w9c&pGiQ!OE2SN%9ka57cCSkf}nQvk81=qu$Ss{kb5y|n%#?k(-?_n=? zT22RGap1m&qcApiNE5$dlG3uf_;-^BP8rN?1wiY{CdtQMxF9UU=6FgSn0gjZ%|D_y zVT;|d$YP?bn%tmzO!-e=4I@DDl*S8C*e4_uNERAg$Z^fbWX5_X0#A`-;_VM!hPOSh z{VI&wG|KvNa8)N&T+Swnp_i55$F%tFHu+bet^g>YX)=|%4`5bsGGiZ;#&UL*Pc#<% zR_rAHT;v~1`rYOjc7PjsgRq@8s>*W1KT@NiPdz7Vg2;% z;RbtChp;NUH(Q1fpN5;%hTD!#g~h_Be7T|^+|tVeTMd!Ii+;fuQ;is?LQXYte^@5r z)`!`ypHZPtU=xmM?_z@gFjq5y4T6{(cJc=VGuyz8XwYo37g%(w)SQ%N8sOFEiuOLz z0?A&zn}*vk3S)O�~MvHKuJ9y!8k!aCXd#>@6mF@p*H;e7SA^w}aiSJ~>OxI!-g~ zdoi7&-&$Jxq&=JZy^~cxvp1wZcx7X#>GklkAlbN2-`iB~t&H#KFRn6gZ>XH^tzx*|%Gfg`!Ag_=EvPHdv+exBk~<*Ds?dAEGo{tGF1uR`)|;C`}fzrD`lvaP_|G7;`gqtiuND3m4x)fT`y15Y0rSu;+;!{-MTp-W6R-mT_Gd*J#R>~kx(GwZCT z>r~`%$gkd_vXvg%{5T3uvbt7>`swbUdMJhQC+|PshZVRR;S?xQL>V3vOoNhu*GDI~ z+A5Ip%UQM7blxNtcCFr3Q zjcW4L{FHuPg`$|(o(9RVSw5b%i^{uePzc96SD=%|XfkhZD`=8V@rxJe1q{hwPNYDPG>70y%$b#Pu`BU?q9cTtcr%gsC@t| zqUJ1@W%%$5eBe<45q4?bIO)rXgnF_$N^^t^1L)dP(`j(|4f?LgsGmdGkxbqKHs=md zDzoL^%b0-iXwwnxVaw6ivJR`mZH`r9W9L3-Q`E4Sf}};}t^o#l*c1x`diM=|D}3p6 zVT`SRytR=S0X}KAJ@?`XSn`4~Gkg^n%m~r8WYZRgS!JXxn@>6HTW+7{63c3cpKq0P zlG367xpbIn9iH>IwGL6D4WCqG(0EK)_SSrpIEJhEK2}^-Ds>(kug(~Ws@-B;SX*mB zj@2mGM=_98%k6JG2QTp0X-EnOb>I}j2JEA)QXkewC$tmp5}E;fBo4De6PCFT(2<^a zP;e3g6)_g71(q|4fvIpN3j5%IVuGwobJG0!hC|0TV@=yJ;uA{)h*b&E2iwDk4uu1n zs5#$dbaU;=obp??OOo-Xk)91>Km*$*`>f!b+rU1^-FTcmC-->r)&B1X^6sDREo3@W z1w#jSc71UR*>3Iv3(%3<0`96r_@f5t$-HQvEdkzjx#R1?GxgG1*n+7oqRZn+a-mwF z*O*Jbz`nVRyY)n9Z=Sh=_c$`4AbVej|5nS50WZ}G_ViRf1ej|a}D&ASEC6+S`yEi;|Vd9Y$-1ku+sI|!gP zWJO!>#^K!Yo@9Yt=4k8bwpv-8de15;dP$sHI0%2j*ADzBua1nXxQOHdae93FmKKuO z!yzX3i<2|tFRO)2ZkNT#bHokM1Xns7KM2vz%6@n=KeyH0kxzp_r_eTl@T91h2N>i#|#-A<)vGnqX+6AonWg` zv`b~9?n39B)h}Y}Zx~d9UClZ3R5ZS?Y%nl1B$aZC(J?`#KI%Af8C(GcC=VF}Hxhk) zECCCJD7WBF3C`kXMdTa>b3AC8j9TjXO8euqqzk76?b~bpGrwfmKzZo3=b9vh1)&s- z)vFJyus$R03YO8{bN(ZeyHLQf&9|Etd`gBnygD}N+;*6v8aU?`EQuxMA@u3G>^kC z|BXgO&FmuX*V2wSSMx z-GUU^i%i-`aH7pr3o7rf&INk5HuF|eao(1f^G}j*UugBHtO&T!BRQv4E#Rad=e5=% z*lXOUc61$e+_)xzp2$B_dOl~QFZm)ebm8eInXy{PRFv0r%{chW(d}$?y)8=6zmVQN zP%a-Dl-|FkY39mcL6#Z;q9)CR3>H7$xdOY1I}zROti=IpiYok4#!Au;T~W&S{soF7 zh>8+pcQO)pIt0~}9cAi8lU}Xs7O^&@77K<1c}dw#dfPb~%0A>DvU7XP`u0Xi+^y_@ zP3E&2@8T%8uDrb@c)hhF+pPc_5UJE7m<%+{5Gz8JvZTF47^r#&GWiz;??HPd1epjP zU$5ykld>28p9Mf0e9ixPV+woQ&;#X=;bF26FkqN%6~l?`m0o5u{oqBbDc>nk{z%JP5a>tI*D9{il_i-sxFr>uB0Q@~3Tmv5Yt4~A zL~Gyl;c}ETH#{G5iT?T^Kx<5;XebQXPxuraw!)~Q<7rn7Hj=SH3Ppzo4BK-s!kzAw z*8W={Wb`RJJ4wpnEk>sZR{*0nC?IsPc?qlS4pB+3*h%sV5PCpKY&j0>`OOc%L#PP< z;8&oeW-ZSVK;J`ucVb?S4{Vq=o3zy1xIFR<}sa50bMADrG# z2ho#y?9`3ZWt`u1)8?_&Fry9h}n6bBN8L{dgFBhqRxO5;ZB| z7*E#&yi#l_9Q~;;>T(YJIrU8bwY)3xzoSPVQE>gQuE=-Ud4f}br$k##6oL+Rlec!# z)C%&KQ_&EduUkLH5?4sczbk%FAGUr9KVy^yv1+us-nqZKKj;e#q1o=ZFa8mwa48`? zoUp;&DI*m5#7Yk5bz%8CijnuS}U{s&jX|x+|BvRcd)Ml*798 zAQ+6ZDj14vUF&>%uY7WR(0(oR;NH3j=j4u_PB>FRgaFt725cc8x4RGaRoa#k3D{dghPX_l!~;ShT$an>?5beXu(2Un0F!_w(6Wpw7QAUVoQ0_2vzhHEtW49KLMnG=fNc5A6L0?U7hh8~b<%nj@N zmAp1yo=doF+rlPS`(9MzmzBGa!5iJphj~o?{3^DyzZDqh&m+(JZOxTnj3sN1&j3$^ zaz#W)$7crA9-FwCEd%v!Fl6F;mrsqQL8-+Xs~y&-4Kc2+JjQ)q9PEW2$${V&<}+}R zK(QBJ4;-}^-;m3grP=?{;%_j9{$TP=$`l}L=yUy+N{Mx{br<$15IX2tRA)0G-(~l; z&zf9T?eUTbHiO&LLXZKH&;z!ey0E)QD*;V*lA8kNf4WMG%Yn7ld!*_x~~m1KC*34|@vkGkUKURJAPd%c);m2k>Sykw!8AgLSC%G-vHe zTWYDgAL(iAdOY~}{TG+)PhQNKT+qdTi11ZDe32e-nx=Sk7XYy*O`l%WL@ew6NnQAL z`N$fjQ_o|CJ$mhX-c!^H>(QpsxVh3>rFKq|U#fj!?rfwzzN7uR;vRd?h3^L^Bi(a8 zJ&1TGkj$gtH=UJuC0W?MrFyH1v75tFG%4(zJ<{uMmX>L;I(z@Q!Iao{4l01kk>b%- zf#P}wSUBWvx z-p^dskv>z{?s%a$)}No>A7FkVt^TS_)>Nn{fY_!dy~?t>MT8TUH!Nj6+IL1perXks zyj~rsDav$I_3eM!2&DuJn_5M5E!}%+W_G%!ny*TE`)8pWLT@!#?RnB&eK0VtRj*Gu zQ^=YM5FCav6Yx0-AI+iPm%+-ZR6|@vB8;koz~D)69h{`0OGa#oMrwDi*Ky$-s8@1= zDGwaK)#xwon>-*Jq@Qfv7`hjV-88?ET%*YMFfY;1D2D$YbYLI+LrNS36*}b`aX1g5 z{Jvwgtq*KB*YU=6z40-|;s=nwl<;$bb)MB4@%gJ6!@i)?MWh(1uByg*$*A2nskULP zWgdn-@i`v>4o#4sRQ=eP8+^)+Tp%c+^M1^aRoPK}H{{pas%J$_R-T2H@Naq7Y@i(Z zv+sWke5fjVT1a~+l+pyL<|I0+d)vwq_OGoVMcyw%4muf$tfOL55baF({jO7t1OWDY zm>s)nP`SQ#wZGtM_J5V7QvynnF1KPwX(Dvja}6p(K&vxCKBX1%i-K_qK`)&?Uj8#iDQD(V_dfYZ~=_BPrX z#aJ@(Sp3A2{>(tBTsntRhxAuz`(8E`zdP$l&ZS|<$4AZ5@^X(CnpQ5pCVw#dd5Q_! zUk*fh;)gW$5&$(df1VxGu08mr#^oNc%mS%CJ|!ofvcSjE1Hm{8rH-ec@mnoyuypBY zY8Jj7!qGZ))3V0-wb15jn}$KYMP29WMs3X8Wd6ZuvG5qsN8Vk~S`t88#(LV!KwGN(_|(#h?4G;#eK;dbXM?)O*>lnR*bm)=oYRCz=2#6F ziUSy({dY&4k^(JSJp-N4xh*%m)SjC#o_MWp&`oh=p*B09V0MJ{J>F@$z^G!GtSVSk zt9zN>UoNwyx>FLf?MEz+A1WZ(|KqueltDu zA_5J=QHooiyym)?Eomr`g5Zo}3A*O7QDPTcU(yn$Yn@wnxBr~^r&P}E)Xq2i?HRl$ z!gre7+uvz9a3?czqmOcCL%{S!8u!J91cEy5@0FmmPTWz9bj#7H>Ev5T=)y_jVLrI} zn4xqIFI7X1j?Xo!+6nK{0D~Hj2tdghM|ZTcDh8;XmQ0J99qy3M2_{Rud)Wg?$rvA? zcZ_pQ;O^TWt2BPy-QH0gU^qW}GL$?@zb=W8l1Q-|+4B7T$1+(!7}2pW{+D4dlt=_#sJ8=*KE zZ-D82|J$dG4_H9wmz-mJRd8FA3r0vdXP8eJ{wGE`N*jMsX7Ztv|mO=o{ab_0F^UnFs7>x`R*ls~~}M(P^uv)JVC@3Ca=H zMsHM3o)r@&z)vlrYMC$&>Pj*P6c{S zkQ8>bQs2ROU?rk~0}c(x2sh;e2LU5AOz=gk<+g|*W=hv7GF3HJI+FT=1L`sXq z#|eM&n(%#sZld3Lf*AdPv2%+KEgyM;_D38%1GCm!M;Wfj?aIFIf!vSkij4Bby0=fa zm%CtkFVt(F!HQn2PN~>F?Mpk&OsN24yTr2%$7g~eX7W>93>5xukCvAwW^{-#TcEB) zE%b-ElnXHuZ)0`FUT!(nh%;A5lY73I)e*zTVW5zaIQ(@o8C;WzCI{UbE9o%#!NZpf1F%P?) zHo`62u!EEa#j&A6##Av`tQ-VipEYUz`?YFGt+=?HV}P23L48Bq;>$v^LbDu$L9N|C zysOLVzc)_;?cD!BtO~Zf-|A>xgMX^0T5I=26ymapJdY&Qo)%VK+X;lAQ5udX|K z1TXY(&y+n=H;9#OKv5iF z`EzHjznr}%)|z}2(e2Aj5uPjP+Hg5B+I2YZN@y>8(q$1`E0T_r10F|Rz`A5C*Np!1 z=GaD;yCP=WZ1TIv7H1FvY&Sb#O_lEHN!W>^U##eNZgTdBQm}sFXn|jB4{QQ&&N}jA znD`+AG7%kH5X|3T+5alfjP7X=%5Ns=?_aBxYFKt_tT2LxEw>US&p6PVe(>ItsjaSpp2fetlu`5?l&?-grdg{}UNV6E~ep2!4i zR=O+KXQ+*V%WVky>V9}-KylQ5F5Y6zkqwgpp(=n?XCoUz%3n^o2}0>>W~3A|9A7(G zHrZG=VASQ8nX6ak!u`lyn`b%vMA9#`;@k9czPzD%NXy{RxU&uQy6YVkgdULo}zJHHGyAdTGTeH zB*q<>skc=*5LAm_>pXFmpecvg-In=t>CC!WKpRwzl~A(RT{K!m;=l054Y~p(_6|59 zMHw2`?i{Q*)+SSDTfTC*U$QwhqkS>$;MCKUKmxFJVswhBq#DG$dRb85^o$t|bGM*` zx_^LM@a4KsNxiW$92IkZQ8T{fX+&oy;Tb=8(B^s^ZjXmsUkvKIybkY)S1i~O;TzqR@x!uKB}g_!R|$kSnuY&{vpd- zC@#BPd{sB_niY+oZmwfptxTeSDty-7@_Dt=4F{KS6l>fL@tgUySXTMBSG)30`VC9} z5W${0;%l2YXPwUx>3bjVa>hD2^(CV}8S#c@fR^EY3ZLoE#$?0D=SN--jth~WrW}cn zc1-`PxyuD>N+o?nG4mhS_XyQEo zWqe&LUx^p(_BBhCf;+xeS`hmfU;1nNTHa{mxpL54Kju`)=1~*tS6lbU8VgK@TdZ?+ zcW5POC}Hbk(kq#InA)P8>+^l#<%2+4_0!i>Qy^6aTVLYH@B7fn&g?dy@4z4N%yNjJ zvhmaYlgO#9#S#_j&It$QE)j{sv*}BPx|~!CDNc>cOAS&4Eo% zU2Oi#;56nRVRBA8v-J#lT=y^SE1Y}Rh5S+6o(Zs@;Qr^~+&L_o%f5`rGuy{>P(Sc>GfMVE`3T(Y4jbnjDTL!x&H^8EJ}E z=nO7K5wd%L|as3lNeBDcF6I%wHB7k)QA`<%9LO;#2G)I-7q|0fN5SPGZo|gNB;O z^KZ|pLn-|*j0?Z$SpRFdsxLq?6-fsIv=3?EEdCGilU4#_z0T)iH07yBTcVfXIP?FC zV33}?Hh8{5s@^uj43dH-gtLJwoY+CN0|6ekP%DeO=`=oL0oEs&D>fiu)#gE zDwZX`+L1P8zr*q#qMyX*SW6Wd_ikMNx=g5F7PS4sv6>A^=39N>|pSmJ2TlXrZ32zuj+0eU1#c8 zmHR>cPjX0pCYx#<nHVJFg zoNwee)dhCuUP1Rx`?tr5<<*bKrw~K`nFbzv5oIMeoy>t;3hMz=4V-(IQzCh1l5EeK zEARYtd4FNg{RNz)`y-J_u362a(d}t$iFN_7=hK(U{FfadcX2{a`_Ft~oDc1f_W$hJ zW`-;TW~b`Ev08bA{D5}^t6v=iZc(p2$X@A7y`XXZ!>rL-G}csEUtl*13(Q*HkH;7{ zKJLEsBu+@RX9R>SY*t(z7V7YSOBG&h7<(Xw`FltBaQ9Ns?xvIf(T0;hQ0?qZlDITZ z9f;YP4V-RSeNGk#y1_)yS-$*xZdoBouavWWRYB{gj)sk%=c$QGpVK1?8mJ-Km?$1! zva)4Cmf;SXb5-SY6&*$t4j+lS2NyHUvD9TUG3uB~smbsfvt7@9C3$x%(yKUR(q@j6 zRV7#j75E2n$pr%+m~op|TkA5-9@+0_6W-nQe0Z_7gnycv3;p-c8Xn9yZ~LrgI(fS4 zq#pGdZ}(wypy_4Jt6RBO{)vBOITBiJ@ykrvO-noz1f=vH2AUgbclUM;ABfhA#)pUC zd)kLGwl?A^mdU~?Vejm`z3fn;#!s(VH{M-6ITUPnD>ZbXcdvGx5tjYVxo1$_sEU7D zrub<-zrxugb62@~zIS<8bv@)40rQ9A2M;1W$>;qd9f>VpddD`mhr3;qj&^5Imeg^% zXw1lKL4a>w*HgBZmo>O&!1=bb{7e-Jb|UJ2+@s{smf5qf=3lqIzIO3(d;Ej%oE@zX zUSE?nZlS-;YLvd+M&~X|zbyE``SeV{iQm6+q4+2M)^VXRVGlh$jj_oy0S@9?U>a9y zCBEPG>w)XH6A@sy_BGU0+~nvC1O3CNe8P!ck-c0<_4h7k(FqkPY(4C0^3B!U5oZv{ zwNa}fRO8|ucUNMg_TN}}n)lPU94|<)C>{j2)sl~m=?o<2 zeG-BJZI=VNyfnN_7XYU0- z#h;La9<(VnBjt^1cy5uE)=R{C%ypBM8GB{l81rfHCoKZ30!Izu#me1XWBffIeij(T z9LpFgSJKa!qy+T;wH0fvuEr*EN~mJ}AawA1}|X(8+W4aA3bsckkLE#_6l(?$x^t+x0L~(Hl3SP{ zKZ)OsHqJ@_mlxko9e!ZT!_fQL$oE>GmcUstR}0+;V}kl4M)cD$D5A3aIoGfm@3SvP z)$;#bI5CYEuT^C z{jQp?O=yCVJK<(l&A^uB$`*%f8W8=ai|;3h5bn1uFQh|J5o{QflzCJl40+!3iF&&I0EI6WpR9k5rA+urBrdzDHTsH z>M{Hh&X`YgWY~8uIbGeT2>xl&Oh{adP^d0M#w}Dakp_G*!MJs;-+0Iw1yV@au6S^T zdDEth+3#zRiSx)2DE-)OpR!4G?IsKY`(|Uv42E{wu^(tJb>`Qb&3w$bLP;AtVgNWPs5PvQ`u_d|*Dm1X zN!0G=MF6x6O6lzXuUaV_fI%D2boR6Dx>T-RH1NWxC?w=kNqp7Lp)Tz#h=xlAtZv%r zV~<$A*?b(p9ha~2+CRodfJ4x@1;%EF5k^YsZFG){g4LL0k=Af-V^vEX{I$DOAg1_x zce|`R6bE(^u34&2X5UIiKPF+N28D(D5xT<%$KBIK=b}s}$}52k{n6S>_m*6tPT*sv za55)&oJw>T*;1LqSWi+#&wB^W{+2|E9veb<*w$!5QiT-P#_^cDFruLGi@+}=Gg9BG7V7nql-b_-U*=|{xL0Bncpz`9LwXvlVsuF%evyA1K!=XFh5Zm@Dg zSy^8^^-~eQaXcO(ZHiu!9J$SK>$|L*>d4zG(?57>ol9Si# z{2ZNpo%$HriCgF%ZCX!?rk`V@lkQf1;lKUx8Yt)gvj8|<&RwLT)Y{FF@R1AqUQy9eJ$D-hgT;Yp7$j6FnOI0jC%3udyrRpBlmZ{D<=>^|6na2nYX(OS8@V1JEm^0&d zASkv}fSPz(;;7dkDbt!KQ<0h{3E@|$yIJlg)nm2r0tf8~smphkeo$Mj5|tWwc+y6~ zWJI^;+C#=)-gK;($p{qkIdxET9{cLmcClhf$w_P9Y*u<<99sQLTUd&w5An>*PrMXFI|6tDUsed90Md+n&~U9 z9_iMOk{cI~XQd^ZWDK$rr$U6R7C%e>I>>rqS1X^+B36eHs`q!|>uMutA8l%C%!&X(kGars?b zAPHM`QF`;Z#IUu{X|PSlG3FTQ(n*BhPST|Uj4M`DBzbH@%lkj$btd9f2p#SE{1`v3 znuBB-wC_JbmR-@s=ffs^lcJW#MUfUrUM*cEtSILcE2%<29fIzB=$d{jNHdUV^ZY`~ z&Ih|c74I_%pKti2T5QzDZ;VHMf2b=xx|2J(6?g;q#z*HoJfl|1pfU77SWTiS zz7&=sZUv(@J_)79K>)H;+WTq|G~)AKb-5$gTcISTY9shc=6|mJfp=?e_9Iu$%&`8B z&r8h=&flq9(c6x-=ICA2cTz>mNKB+aQbfqW+~E-XcH1;8B*klO9+g?4IEWEDmgJjR z6d?c0SIusMSHX!^#m5kk9}dBA4>-n*m8AyH8;gO+q-jx|=MjfCoTQYsEgnv4CfDz& z3lJ;o@L2B(akQ!K@4QlpgTgh~qX&mdhxhy;G`IEUI;MkNw@roNm%&aQdgr`8g~vt* z4r$bLQlG7DWHJo2vk?W)g={3YmAPPbm=yrnVGmM*XZ94pt@#@DKv8f*n9YR#)D{;LE40Fa5AGs19dXA3nXkD_*lzJI6%!uH6#OBxYXqSWR?#kD;-s z>>KSP=CqWjw*ad`?+Ry>;&rml6y#-2QC|!byB6Ri4_(<5~%b0lc$GleDkMFKZ zof*%p?w?u$>CD0u=T_}&vP(^k>6DFY(*r#RA!c6dP}2RI^ppBF%A#0nNeBkQ_2)U9 zuKoDL%p@7)P$q6IWyQ-@TyRPtoGY=}T`G=JdXT~@b?gAu^D4}@^4pH@y={$ao{o|2C%$PkS^IzFve z@z0MRPJo~vMb~&&Xrc$2XZ+4alumoRr*7aAsbB#pY4Hlb z^P6DS3f^0)oTz#9(1xXEpO44B!OhT!0bD)7mBp-((n5VNH(o9o0r#eFQg>j97M>9N zpPjjv$3!;e5#3&$_{9hHowJA`ka8xT_Tgk89Q^=WKg>*_wX%?$@+plmvxqy?C&y0z zv(qj3xNLABnxb-?_1Cffp06T528hmZ^m&9I#0NKmN*3CD1VtHEw#!e6DBnx=h#0Tf zvp{=w3xgQ=mw$kGF1~;a?P#tL*|3-n$Y}ZQhrPRYf?R+=&${2TswdX)54Et+u5qWx`L}iBK`yygZwQfV_ay-oD07C1b-hgaeTFapuQfng!9uFP+oBY%?mv;Gc5N z+#NMi^O*@OPPpXKPouRKR$s)hTISLn7A9`F=_p>aB87VkkvhT;p>Bx1skuC#($k& zyu0@-&()ta`)t%!QX^eDD}!AIJJ+6C*HZe=woEk7t~C*{7Sj0$&34~k)#nQ-a5)pXV3t)uC0O3Amd zsV1TK9i6?53BkYIKC8`_+a=GA#@?UZ+K3zT-h8d;y*WSS-o}+Cr+3AiM|5H^@*FS6 zwJ&)s)%4Xz7D+M6%0h4MmhdeqyS%YZ!Idtdl(TF4Zr{>uznrgtt#1N}N4LTQvJ{02 zwi08Wa3brvw|_z~bLV@uVxny;?1tS`t15pv^dFEVG)aOpYcD85F)*v?0N*}zM5%-o z422_)KuH$DimS3haXfO%Y9k3T$sbH!wpZerNXXb>oTv!F!+qk|4UniuS<&_ws3VVA z+%O^C!(AEhv(5p*$mZrIO>n|qUIJT$Z>r1LYlSg`??CsysKf8yv*{0^ z#uZkf;p+)r=^$6=G~FM9c5so>KUK=+Sz+X70Vx+)>|yb-&u@;n6%da+)0qg$OE z#7Z1pIToZfR({DUHM33i#i@1f=dv7xHluI=$>!Kw-L%QnQt1~g)T=vGgb;i2=3<5F z56V*OLsVDQvF3LQ*R8fEga1@;isyJi0&d5}kDXk)>{s2Bvh@fgd@k+lsf$ofY^9p2 zev(PqXKs7o=%%X@ov~eZ@W@8f_Hx8_SzK9xBP6`=^tZg?vT`(chVnodAy!9$OE(8g zE^gDys+n4vb>YSqv|s*#yn>=Z?oBj5TGWYfh=(gyJmtp!q0QF+V;HwULHu~x5W2b8 zYGz8aWX}QjnzZ^0%?rE%I;R?Sv=nZuiPSKD!~2TZuWHsVYkfLci0e`QI%Y|zLSBYo zo<`Tiy6aYhnO{k{7~xkn-TNAZUVmU#@w676TuXcTAVh4%LwXv~T1&8B=RM zr&YLm*LW*=RQx;>3I81iVic}yN&i5?z#SjubLR>^$1cIB!G8YH4~xGN`y3O z#QeUn&~#b~S6fk?xXCb9dFu2H!wLYNv{hdEp&ju^VqD%@xRID}Gbqr6mL@MGh6q{h z4w zLt?Zhnra!gW&+p1?Y@kHRchx=dEe2z-3ujQU>?)^*BO{5nBH{ej+6NiL&t%(?L@4Q zUqvQOs|8blCMy3dCqB_^VI|4O^y2EX=N-5SN6%jBqlIZi$!Smes_|q=$Y_4AIy#Jw-jmV#Imr3I3H70N{uMQr=YeB-@5{xmpa&rC zkNz+*&`BE#c(T)yotR_~ZMt3nFBjUT-FL+w*Vjo~&&J|6uc@W1=w zQ?I2|nFf%z?O)VrB`|d{y*E0=lx-x&ds%hE5?gtSb%cMd?Lk`w8$wl^LRaG;Ii&ff zyFAk|z@cChJndve4$os@$}u&IX-mI1GK4(43Cyu+n}cY6c|HT?oS=qp#BCXm*&*UO zSoA7yZzhDa|Mb&~y?=a7X2SlgLig@^rp zHrCUQ=0)HKaG*Sg%sxEyw@>B2&-yc_B)Q148KYjIy~OFS)3&D6fZHVVF*=Rcj(q4n z-X7d6EbpH6ZLYicM7n6b4iSGnsJ29ELc=g)a^76+FLI_m{tmjhTK`B~=3k)9*jN(R z?5CVsH3m}3#<&`Z>}&h|*`)g|(R9vRsYAF6TVEz53`}%@1l7O6`Otd&a$07@*qJ(& z0R~cz+%Q}gHUP924>Fx!?<>lBrSa_(k2*C#LxwLoiLmsBc-^ex)3@}l5UpB$pwv|D z8(-3?^~9O$#D|?9Wu;u39hiulYwgilI^(suV9LAP@&xlvK3 zw%+qRZ|I*;h1pmCoxekK28}tGa$1y>T49TmB`VqMYvK-GF?+%k$5kWk8JPzaL&eV>Fp^g;;pJOv=5B7to!g0K zQ%mTr?3z=5?*D&Goe411k01BfO>z{a9J@+|l%tZH6-8*H9F?n*RBpTOYaNBe=2woe zT1SX1%C+kzR>|(VuU*&1u4~=a?fLe9=9zhBnyIOo%-FB*=X$;0?*r`C**b-WQ%h4$ zccOQ1|G4ON+-X$g_i~u&m-ayHq(=63%=6?)gX(13-_cX^4sY&1KQT$;8}*v|c1L}2 z(A8_URl<9Im3>d8;0XWkx#b)70{6r(zJK%?^)cNpuSQL}zy9PbQ`OktMH)RpLFZfD zd4Y8r8MG=e_i z`mG;n2MufuQuwWN(#wNmJqdW-dfB|9Al)qPUl5h_96>JR3v{SVWgh3zY{rRX^;#*C z?X>>1z4SnRcSL0`+dU4#_IrEOcF9B_z^T0{9GcyW3_l`zbP{P-HLV`}$Nd+_7bnW> zjq&^noU=q#McuQHsFKUChX(8-_fkwmuMg%FemT~5`Lf*0mj*BAVIQl4KCac(RdR4L zrro95U&Cbai?>SiBtm11K~8eUqDWZBgZijt+f0Te+MI&(SSnT_3<36q4*tGBN^LD~ z4i#fOpCJL~3@1byF_gWTD@)60SZ_p*V5HZc=;D8?vXjC`Lh%4Li+vMeKT$jZjU#SW z)qbtksot1Ts2vo?P1pR5_Eej(P!DRVNl$Qe1iu4uP-LIG@awV%u?LU<*}%e z0ky2Pq|_hDORcyvP|wrvu!)(+!du)*^iTXCZir7q^&WxjqdX!efH60x*!Odohm@G7 zfj`^qyH5qrY;QfZ0Uf*mRh^RP68sX2+0mz1U^Wys zGcpp_UUV;h*A0r^RenAVfo8HXLiM zLwA4_ch)(pffdMXlV~I=JV_3iiZKH;#Pvc{M1haV<6|{WEh^0|WwmQVIGp-xD zga9>1Z=v}Up*sQ=8@3L@Lkh;128H)^Auw5OdLahyolV-LnbDvwh+Vbk!7F!e)r^<2 z?NlFy>K&rMX6Z|Wsm0Kt2ZJ$g?CU#B#(xi3G-^E215t2Ewo1f2hSVBS3D;w3R2$I6 zEn~nkiEGQ=6>HH<{>Cic(Ig#2>M8bA_xuDu{4^4l8WXct%V<2 z=^NW=8Fl(PWYZl7Yo3+%5OQ1X054laJ{4kDnHT-(E9zaY8u+7!C`<}lQqs((eLT9(wf@-IsOYCfTpU<5yG`oS6Pk=r;^Bmcr zeiT#8gts6hko;yYk~^%EJYMiyN)Bo(W2+-**3|&UoxO!^Y0;*t$J@r$>Q0lb&46=) z6;QSjR3LiuI<%TjRNW7lJwFJluXiNqb?z>P91d}j!mnIHVuMM1z|1n3`xfr6t@ru9 z)DO!ETv)wbfhqbJ(@BFo9h4<^s(t!4o7uzu*Aico?Q7)E^A4tiDH*EBzuyf`g8Uq` z=20K$z!lS19$MHmqd>3MpBy!+rEH2S?Q49Pij~-b znJU`FFZMOBn2L6)1yX~5diSS`YAI~wQjI^n{%nk%7+voOo^oKb074&I?yG3iHA|y4 z56p1PZFZmnGFc`Aew+@?0{q+R0+r|qpkG~}6>dtz!U}eM*Xp)<@kq@|N-%w`L;Nsw z4SEYSNa_{b&N%s+J=hxqudru4QKo{trqAA`xC8qYO`;SgljuW($wI4V+P#^ai*uPX zdz^I6*^`!Pgn3?8Q`#|RMDyT@cl9r`-!LxXsc${2b0=}YBRd_UCdf(&?GB!Ai?FMp z3BTIAuxjs7hMWB^4?;6na|Otr=}P8yAk}J(R9`y7B60qGXc0?$Jpli+H0-;S1jS%3 znfFrS`opu(#`8)0lVGz?M(-DX{y z5vvH#a!KsH?E!WHL&PVsq*C<4>M6Yo3bCcl4crW{TTwrs#3T!Pkb#~BTf;UoVCrP4 zefp#_nq}F#O73nL6wl!|Q={=A6KzuwQv>JOVl=&7?>&w_6{9O7|5yRXf3>C3a)3Q8 z$;~up)F_edkD1`(nI6SIcH)xRHDC09US7OK=>h+|+%E`My}&xF_{n2U*UXU;CBMc| z!~CSPHSGl6+q$de^=rSYhT*@Ve#jILp{sdhh8mq{*e*5+*{?d1sat&15uQBR>HTFZ z=iccCVNX$;xwOt&c^qc=56{^r`M|x4VZ5-?JD+2$i)Ws&#_9?P1{Cx z)9S#iE=y3!uNPg4S7-~KG8Ir)vJ$o!1d9C?H48hLkrsiQqm$fND&&m)xDDlmLCWBG>F z5O;B)pD(s%YI=_N7RI)$Cy4NPO`3GG^|j|mGY%9YQZv_WXX2nelghuM7~ zOqCq{FG~B1-QVjH$8xIO^gY(B|EjvT&de+hQ8H1NySRo%?4nD$&JV!?#_q*WrCj(} zQIS*O%=7z^U-q~Ds8wr#OH~;0%Z*$PA$V9ag#(DH0^JIuo7p}*H)DZ!YocwiqExpy zQY1tqvDf$88QfcL7wwvnld)L)8CCAF;}y2{b4B;jE6da;Z>2C=Pw;SEb}-5-hhI|9 z>i0zyoiExqx<8l_jGN@b~U-`fDx8e?W-VM-24{kEnv)Sd9?HxiKNsg}I+m6eo* zjzcbB+l~+yX%!Mw?%7GYl)&>tI%}3x8B(?3Vj4~?_T#oFzZ$!WX8S0org>%u+@ItC zBadNgyIn(~3iHkG;zxT+HG3*QWGDw~C$2F7FPbdDb+6O0j&!N(B%=r5xpSzBI|L0h zJtubxiaLQ2`Q{o+wD8Y%Q9IgnFI110bQiSlRlQX{1m^oB6UC^$qD`-C<0khOb0%h`s@bioEvsI=p2Ef`H&|L}-Dc2r zk3Rs&{74cZ7jOZhwiym;Bx z*F+6jk;j-LubIvMVAjMaDsZ`kz)P+_1KR&~3`C9c6wZPqa_p19na6Gx?Ei}DJ?LW! zSL>)RqQ+u(fMMJGx^^l~s6dYq1sIC}U!-DpAJcGsG^UrgOTe%igpZ&*aUdYX;4-N} z66;B~X?;i0;!VHMyNCc-nIfnjD`5nTsDJIApcxl?sC*<1&%CoBhIi@fNI2Wr=-H+X zFE7Q>)wFWLDXbb$oxtla1QEWUZ)L4{ouzyk)z!x9rNY*{QgPG3#*-dBOW?k!!R`AuPo-?f)Yl=vTqJ`@{B^;IZQ5NNSh8%X9fdf|RstRnJ(ZBAu= z4Zo|&t&6$ppc2JrqDJNxpwqd==v35w0+8@tXK|L&?<+bB&lB^Fczd)PB?DEf$o3gz z+f!}ir?E4>=p2b1+!p-WxWZrKbcJ1TijH+vg0<-fC2rN4nbhI&JlL z$g{1AauN_2$2?FFV4ex&QX30IuZ9x-N=NHOp}Q0A8qm_{NO`7#TKT$X8mUJtwB_s8Ed;@54Vos`dQ}sXn)BwY1Iq?>vBySiY`Zz;9nW0!+2t z5m`X0HcfZ%7*iah=h#=^5#Qv4Ga~L@-&)N`%c4a5LPP?RKlRoO8$Q7@T9z(dKqd)dC%N%xas~c|p`| zby>4ic)5Q_&KwjafawkVmeb2ee z6MpFuUSReCKA6A*F{C04&Nj7n)G&1e2PVI~TLx4lq&g~@CPmiaOc8Oril^3)RMS$| z)a{ovBki^F@9^y0cd)E5I`EDLZA_2udQFRfGeL}Fm~A`4$iHfRa;duVga4_Q=H@xc_~E_m!UM0Y51 z>9B!KY_IAhee4T$#)a?NT{*(w@!u;}k!t}0#71G8ND}E%Go7!C#!K#8!PVRoejl#e zaP+f`HZWh)ElUG6bmx1>d%aknkQS>%RPFEO@@SusKHz9t``fHKP-6_@_?Fe4I-%oz z{-pXK7S2IR{z0kf3XEB4<>ldChob zK?Z;nH7c$BGej`Oi>e((LOk^E^+dmHH89xF#jLi&C!^QbLjxGZ!GWTWv#51!mWhSu zMR1oN<_}W*GPIg;e^3{o1-*7bGbyE9Gilm$M?&|x&%ow}e zy8Mz3*ATvpjMeflUxjVc-xXL8>F1~RH%e}QGLW)K?G^Is%g=Ok223@`Eq z!lZ~-4jTMF79jE$d-5Siu3w=RnlS}KT?YezQvizdFW z<<1&MT?kUGDnWZWOAEutS@_CLuOft zjm3wxM1*ZwEFIc|(1PoIzuEGv1f;(dL5isy0S&K&`4!%*1awP3rwdJGMRL>>Fr=CC zy3w@)+Vl?h6C1j(-tDgVV2olYMj~l3pB0XC>it&<#PKG!Jb7nhy$6h>^GrCNI}TRGqG(L=5{T<)SmwtOi*_CM`|^O--=ZjKL!p?Z0iO!}D)NuII9oA&>KF{mlZ1 z9eys+yMxbzmn(-IxJX=>80h*io@LjxJ!l}wXy6q@aFFT8FsyeHn0eSbxZ@Oi^L%jP z(K5C5LZ(N{S}aIMvJgV_GgI8`K-#yif`xNX0>o)anJ27R2%8}gX<5&(6_50~vAPUb zXU%R8Nikx0$hC(~fQan) zo*dR^e(j*`O11L*3Z4ZsfDzD*HmW`XT_P;~*!3p0J5b6Sc(9fAXQUW|!kAJ-{34BW%0hA;q(=D;}>{(2WPljs@o~!Uqbxpqp7E{SR zTND)nSfPC5*PEDsG{7~cMc=)=Bw+-6z%KeAy+_C9pklH>UCbsa3HmmG1-jikND!eH zNbJ&EiUb|rNnc9ZJCm8wK@32{yf)rSU)WcTm9XJf4)g_ma5(zdg{0SKFs+hATwCAN z-BT~;7`!|h&u7Y-n#C^*EH0T!GoraM0i9YymRO0dx$_bDzHjN+SL;IsuC`F!8#Tnhy{3@rMipZ zBxMNkKPc*>CAVee=Whg;nX2IszqF(sVsLq3-H}OlZEw5Pv zw7Oc?l|`*$?*S>R$A-I~fcyLaWV`8(~}QsIpC2W)mg*zDvr~Rqsay?a9Tk zwfpubq^})5yP=_*WS)ppc;S#JB>QplWAv2}=?2cFc%|lGT4nDZ^`x{v2tF<8k0(j3 zEF?AI;9Z9GB3X?wXEFZCQ=!K(k)uqgO^ zPm#@;T+M!_dMT`RBpq=+?iHybhzQ^$-|XZ6SnLp;06*OH(teADBNz$#wj9V_lJWbs zE=+bOzg*b^lv9h4&tk3~_{!A4VZ|ET2u2?OF19JP9QLwIRI(2IH{0<{e{MJjhq75{y6O z1qGdB0ruqjeG5<3@P0WWIfIMm%m!8VRJHKtrs{5N>x!0IAWa#{_-#Q%Lsh!+vBDU3 z#PD%7bR%@I(AI2BHWG%fM<@C&6G`{TQXCYk=~(8D|3`jUJ{QR_o5kd#Pj z(%B&)jx3QXTl%F_Z-9fGSkMB<-eCRV=&&#NA>U}su~JD!R83eY3b5gF8wU4AFo6ME zjJPq`q9Ii#$+&yd3s~@i#iwDh0Hbu^7}EZl+1Aa;a8Yj9e*&vZjY3s*TO<3TgB2W9KvBsH&l&|$QJ#MWc4pl4i0O+wG89rM8MOvke>`QU zbiCTv$*E)(=!Ue@B?Z^JG6zL4kTaJc^D8kN1gF41a-jW^ztHev_VvsWj~H5=1WuK> z2!1w*7%dV!TZn+kf@%W@;`KmXm!mpR&E6@%@2^(K@ENTPM;qSxu6T;8@_%2qw zO#$wPE+01^TRl-*%|KATt)cdaxV`4!@I%)lRaZCnV*!R-SNnUVuH znAIjcJ4Il-wWn&>pauz>GLBFUwji|w&)aI>pK>$U_AdR22-7%&XJe=V1G!an@I5g_ zwfC7A%3F_W3PTW?H56yGcITZZKzvqPOD9(!`r4&SDpTnTP&E*>hRoN@*Ug0yN|=Pw ze+@gsc(k?1Tv?qR5CP+#z!U5Go>&RF#Fz6t{24}JFxZnRO|%{Qik1Iw-p-B&O9O)V zTD;j9`GV zweOrjwbc?XcNd5@U4TMtqJwLL5`XnXC@u%b3DMyH*tet5>N7hZ4F!5x0v&Xpzp20Q zcMnqU2;mnst8*v@kMVK#ch{qIW`MoK6xJ$u1*Nu*Gt%XdmPXvPfL!>qGBs0%^V#PBLgF)ToMk$iq>AxF4Jya?KL3i=tX2}WX{XgH1B6wiX& z=TPq0?1ZrU*2CzlSgcLI(W5aLIz0ov?P*%!8|MWn;RwA#W$=fjsSEP#^xv%n@{8HM zZy=I}FG!*Qfk#Dd34FYdi<41XHYOzj{S1tK{Fu>yc{T1a+GiS#bksh7W~D%>vq!3> zroVe|cuVB*i>5yCkC@8N75QBZG*y27U|NXaqNObKvvz7J0rhoFtLX^nfVStK5mLPs znvVVs8PsVVT=23rV(;Kw>*+qQKGiS8m8mDLo{95ZAM&Gz21szMXNWNgU2)m?^W`Fs zp3KK@PNoRId;oiVPzA@xaw&f(Uk0E@O`?n9eD|Y~_|v~aYn*Q@UAUUFKU=@m=A>)4 zS%9wDYIq)!dTf!^H#yq)wRyM^+pZQi-Tvv_i-J*#RbuJSUUvsJy1%^F>+QTHdcraB?#1fB*O4=a23}d_iHE7?Z$8*Nx4-l-`k~+j z7->5P{n7ZHF7mB-KYyIU*V#`&WQ$~Ggf97=D8{a_a3(8ZHhg1C7u$F3fSiW#rkk-2 z?}P}RZHMjdKgB$3qxhFdKR5WRCyDFFwQ=>_okjCWJrCkl1emORUJmFt8r$UyxEz_O~V1Wtx{mdlxfVfkBC5NG6A zdV-|irFM#YDgB4>V$PS@ z$@_Q?v<~CU9Q5>L&?xvkzDGkz#(2E^Zbb82sa+XE+|>~sj8@Jl{@q&Ua%MMEbBvl8 zHgawxeD)>;@K}~Xmos4j zx<0zd1YcSdeZc_uN3@rA%C;5>^W+7j+jQR1sXQu;zcK6T=P!wkq3egog0&9|L&4ljR+?p~J8c%V0)~E`Qr_qiljw-MMF9E1AW9kNq zn}o|M3+*th5qjFQ-ByZm z475XY2$?UJL12J~cR4ecM;sIEJ!7DIUZ5LQ&Y|-hiIo}U%2Rj&X2Zm2k(}5W;p-E4 z9QYDNT-yv8b~Km5^(_WCDIu~6?7wrRt{#D+s8(YFi@ZYZ6Ncd~8f5sXX$M+gIQPG5 z_Rc#z!>DEyRDYGz4}1*KFgc~&00$kqal$)q0C`h6t}Nsj|IbjQkNs?jefw)L z2UM2x?&UfCLw)bhou8}w$LmWDli)uNL#*`Gc*lgqFpVpuaHofD!r&9gtYR(lEcCFl zA7GEZ%Gak=d>0dOU^JgVV3g*q1reIvO4i4ipwcCnNP7*EOgZ zkET(rj?JUADBE{X*(%eR!k|aHT#rZ__Z8kkxoI(TkqpJlDBm+0B+| zI;iTHJFQtwWu%fL6q#N$GnYe6$d7C*X7R>maa^X>a40WbaltZl@g!78OAJs%d8-?u zcz+6*3sGI7=E=UHFu$@xuR!6f2S8QCtl@co@cjzB%hz>tE`4LoXI$vNE|r-bMTa6M zhLXu!Y6KAitoec~uOUtU^Ig~%`cUh&-2=LyJ^s2lWsxAVeOv+@)QFqjyRQ3TJO=oy z_Pi6pmYKWJzz$QD%HW*69qe`I9uL-Zl@`R+k} z0LNLot4nekWU+wd7yvm+=0Fct4aNTw6x-=*)3w{T(^?gmVaa#ee+W0yNgYfm&RUyz zuDJ>r$x9R}@Zci{HQRwB=E`F7SmW3Gd~&I4MXct!W6`+A?Rf`ESrh8($)jR&9w_!t zo^}kv-`Bbn<72wTNv`cuN`p@@Ku54U89m-T1Cs;Ko{Do5(n|#CSn~vt)ybzju~IY9 z)8hH_?xl&oHv4q(bk}OlT#72WLCIHdEa3h)lujQG443Je-hanS=0gG0ZJ^G=ZIpaV zJ#neBi6g8w`iiJJXIO~V)R50ZxCi?fy|WrY@hei5pe${AOi+zXxq zhB;TSO(~C%{mqNOUGYf4dCN%!;9Mw=J?i*Y!HOov3luW>(6HyHUqzFXlahsXf){ka+*NiI>TZGcZ^OL7s1PIeV*XYv`L@=1Q&m*6wCa16 zXZ=O)i_Mp_t#`i2(>0p6HMvOl%NsOLNEG!ZJ^YaPE&Zt5w{9R72|cR$9qkkpdwsxJ z+S1iPI_NJi>*%w7m*|a5qc`-08)B>gw_NTSd@)da36t8MK9TTGz{cRR#QWfL{|<5P z8fSi6o1-7=jCQ~DFj%LgxV`9h2mX-xoCoUJBaH@NlrBDErH?oqI(_|kR&QW~Rn%HL zyW7i4O#}H)-CVIvRTtD8USV(QyK)?{%`op9$!Q9-aFuxb$RCsEoXSp*raxMgvl6Dp zd_Ng66Fpn?`%x&y#8%6E;8v_h{HSyEEO$4-R1G(IwBYNt8@B1}Dc18+^eJy#`@Ge|Px?d-@pUDwWz9anKMWLxrQ~G-{PtA6{MC(IkC@9esqoBPNz$0s(opj=v(y8`E;4p)BYIwuo{9FFw z8?Qh6`qmLkeOB;peUz!_vf3`eaapnWZ&9q+Lyu$@+c6n_3;XQ|E~H@s1@Abi|-^#{)O-iU(%Ad5ZrU^CuJZw6$4v&Qv> zqPas9fGwe9q5hFs;!FB2+o=ER60&+KT01M%VCmG2K6{U8P zo&fa9yd-Nlcx(ZN9CO*}f+8dc|!0(ff*w>X~!|wc-=-a3= zjFSHqW_D-OY4xcRHjCa|(z(~+CG>QFzt-C+hbeC(ZBL=aho<>mW7`Q4VoKZvyruyy z(*;wZe?AZlMC|y7?_vvoX7pC;5n+zgy7hag@W}&Jbj_-UkjEoR#7k4TMgZC*C&Y!> zZDfkcPwyBV^%0~8YKRqP+3US?oeAjIxRiS?(ssc>>4;&um>%?e?eqL7nsdtDEmc&c26mMSXIM+ zx*c-DuAOi0ys35GFcO6b)wQw`?cA*#7Oaea2L$aV9U^|H; zkADX+us>$`ynndTSxz^lKt{(`eF+;BGOt#t zK5x^nzE*WHGs`@#6o2uWI;yluZ0I4(U!z$=YKC(fNDT&Lkab7jz0mW0&d1wzH$kbb zfM&8hyLB(5$Lj6j9l85G#}=KpgwZn#A}FQy-KqGMtgWY+qK-L+z(>)KeOw*EICe%u zKk!^3m=Dugex4jkKd&yIEh>vMS$0Tm$U>bHoyhgZZH=FHU8x-Z)+Pk$YOeUZSmPPW zH6z+jdyT)9r&^QrC4WQjAGZy($kUWBBrL$IH_|j4TvpjQtoT842g;(CBdn zEGwF{tIr7G1Ty;525U}__-3IlUnmN-g@1~qE2&yJ1>fg5lFmoWu%L{*%}KEqt**+h z@#T4I%S)cs2Gm~?IU@PhuChVJHf?y3G?5&BZNQvIlRe8737#{op2WO~W}C*Jh`I8_ z)e6vs!n`jRK4az1%emFsJ^~DM3s1%>juPPSINP@Ok_LqQFJJqv6KSh`Pc-yiJA z*cg-a$KSN35!nhh_*VClvHMa>SeY^4jKjWuksT36>=H8Ek|Klb!)5az^?AuuMs3o# z@%sjz^U+IL4t)W$Hz3#S8AjaQ<9;BWld&+_Aeg~BP<OnIYX?ZagjZhL|?$X z6sG`UQrksn=Yb%Ci>xN(ifqtCLX^e}Ks&5=96Emge!>B;LZfBB5VUS|^qS4eVrH=S zPOGl1P~Ztey?r^*dM|h#sY#Weg+kPztX4katRd>;Buow8n*^3`v1eQ78S!3(FQzq4 z16G@cIEZT+cp(13nu9TAh|+EFm13NksH>6)w3N~!0*RH=FH9qVVS4sRiD zyiW}R#jbzk`7`u-!`zDzH_CT%$r1&^(XkAZ$9?Owuh@kdLZQmkYv%4{$J8> zIYDSK|LL}4mOptn%99-mftgYirI~nq1-zj$X~BGV*I$leL0o)5rE6ce=E3hpq=#n~ zr28ETe7&i^=Nl|$eS)*RNV%{*d0U@raL{JGdAx+?J1w*Wyg%i3{T6~B>Nrs7M(pHN zo1>HEm-jVWbW)`l;+VtVpmp1;LCWVVc|KSJfiByy5+G$Of>dF+q_b3QvcNU6bCx;uBl}Iu)-=bBRB|0)r-UeezKUQ8GC==61 z55ihk@x{scAXG~TE3M{dP`;GIqovETUYKN%d4SB9haqu6B&MTNinZ{4vYLR6Ml zE*#iJAvUA6(2G41in+QDQmuqzdHiO8#jSMEma&(j`Dl}`=2$9EH@KK1Gz@A~BXPq4^?&su4<2YEGprX0z6zU9TJA00YE0>7cFNttFE#hyma2K0B-EI; z)T%@eR1U>K_#Ni-SrLQ%@N;!#5^9%Lr!Kf;?mmT_YJ~xM#=zRAOVH1Bw%o~K8$}() zMZvH*p}_`{Z^YL@gCOXaqcl7FL6_tfDJX68~6=F_=-Bk z*)(Nv1hGk`7qBP&!B72(`>|$M+YRV`9?JC1G`x%pL##LCGmGks5^W{DFS39o#t0ku z>tUuVA{x-=O=s5gj6waV%2gL4d0YP<3vf-q2~Jb4It4^;y!q13@#^!4$4B2_ciUdJ zZ(k)XNyW%&E;0c!36qvOK8&q$x2g3Fi(s&K$|P`3+6nPY5#2cmr#VQ4ei5`Ffcfi| zT!`M$Rx6Fm)g``JKoA^P@_1aQc{qJ~yJ|0uQ@aFsy!tA>s1J zhvtekp}qt=CMvZjE5vNmpQq4%JSnrQ{nL3u{m@O4Hry$yd}wK>qI=pV@@{+Tl*r1L zEk_%9-IP{`aRq9^0J3D;2x+Y@$RYvzB z3<@k&=xgNH#I@SDD@;K55u>uW(iYHIEDVY5B>cLnM(eGfp0fQ>P5VuMyHcE-9Pr%q zyfv<~44cjCI=A}X8Xebf=qpYoEsPuVBL4;Hr%$)hrFM}|nEVQIEC`EtR;URc}HtKwbH2k`u`5w&lf}8W1 z0%uy`@9BeqI~^X>7e52jICPF;YymD5-_;hFl~DKmqETGZg2|nr3Q!P7M4;lTIKZlu zoz9S`k}iEBu{!72GQ;hc=}Aawzv1S3sckd=$X~VEgjeQdJ5TKZmhVH>b0V|y4J$ARc(%2`-N+_Y)br_-e#1pY($Oj1f1Trn4jJC@6F;U+*sck zvszj-3Y!P{i1R?9x+y*xJA`-MgTkSpNi3Z1=hrG-fq?AfTRaZ3w%4n8$}^V)#Zx23 zP#cvT4;)8PzLp91IUd-+uNl73ecXqt?0@81!~<<(|7E0gLDMX8<{GN%z}g?Pw!=#% znD@U2LJ)g5R)_?_hvuQa{g}51M@w(syP`sq5qn|(lag3{+&v>g$2w6r(hci?+h$x? zs(0OEt)7)edEMBRi=2r@0U;d+-bjS3ve0LU08+7gF*hNJ4bW^T#40N5Trr2}H0*<( zy8|u)MI8HIIMNydAKa{Qd;;1zygZh$Be>eQEJ$%5vTw*P*Tr^f41d=0*8})0)a6iPa=UsK8cvCVga0u$b?UnosGf(YAn$=(aL9+C z=+%p%`^S`sAwT0w^}e-jp9WMXz;;z44J_ZjU!fO>nQnU-?!!PiWS-3L#qDFn3KWKg z_bXaKj3b%jORY9vhaa(%HL_sTB^ymzm;edbwRr=o<^`x;uwM*-g7EC9k^)sc;cD0W z1f^>ml=>nZT%Z@J^jvlF7ykV;R`ww40c_n{i`beAtoC%c3#C?SJQTj`h%4JrrxP~4 zZDq1zNaOJ(389ZB2Med>x6^Ac&(fU`A`s;A@G_Yg8CX9%}!?rc2>l|o7Fu#tI~$i^!eYBo)9E4c0=VHY<1Zi&|t7k5w*P$ z#8WIlmdrjd{DIi8`octEt{s2Hh$qO9B8-;{|Dn6QD)C}YJ$f+#XmMrStau9=a9CPFg&7hTMxkO&xQUFUb@8dOp-xVHOCycKACW_)u7RukL#nFKhZl zYrwl>Oxv9mC=(QxN{y)noKT{JTSmY@J!D@`)~VSEqy`_XO;fi%sguQcl1`iQ1nnwp zHRpiB@O8Etq}ii3|NWC_Oe#^_I#qikbS*T<95vdUS^ksXpIzpv6r>9jtiU^Koi#eHpz3dntx^v; zjK8VJj-?*PZEb|Ahi4~>(&5GGtiOtT(q92dO?N^=s!{vT&cMTMrN@tMK@{!2Y1MN@ z0zGYv=V}gsMp~64ypZH|3U)n??L+ z(#yy7K@I`~+kjxl6~KdHDPr_m>G#V39uy*5E)q>gU^?fY)Axl=&t_5LmX!D=-ij>* zE24mD0=^Af3w2)z5#W#K_8P=XW5dHBVO0S_igzgq5LsqBNo=v*w{uhajISQJbN-e? zC)?4wZ&FNcQnBZr1Rvn%FAyIJI6g=3-ifb2f`pue7DS=T=LKbfMoWYqyd1M0I;qq) zk}|lCQaj`VVx@b&s$gqo7=&Tt@yb!+T~yQ ze_Yk{_MFqDd@hHO{&FS_27p3=|1F8uN@`mSf7z>b|r2peme(hk!2pG_ifV}7akaYf%%P4o$+c+3X`hx25@HO2wu zz1Nm6r4WSkO9pns=5{$0jf;iuZ8aI8+!Z2B$F*-_LM8l#yT@mNUk#o6$B{5~m@y!$ z*O-)2VU~l|jY)8IS08r+rN+3~I9;>!T$!QMwZtLT3cz_FiGx>A(o{C0vj=R1Noy4{9?SO_{omx{^xpwnX(mw(Al&C-wmRvWt%jaF{X0pI0$YPzOsN)rr%( zotrtAfrt6_EgFFvAheBo6X1z5&%$dF7}98zyb0hqk=4DYlXf<}nn$f`JU(LvF6wQY zH<+(D#BaN+?91jnaPt3CwGOoGr(L)=Pbu()Kb5W6j5@|V-mi-$uC~E^(?fTk&OsY} zy+Kz~IF+NQv|H7Re8}{qKIaneFxPuc_ZYgHDgF=BaTWZ1N8gq&9Pa|0?%k`mkKU?~ zWlav8-%m>!ioZ?ro%-FlwbC2oH`%jmySzWHI#tW+Q+RPuqE)ogHCp8L{Kk2hNI{_8 zYp$--zYc~^e^KACZvQ^22q(^7lf7o6vbb;^f_e& z5F}X}K$H@cx;@}G+{B#v|b#D%UsslD=HjTpkY5#HRSHG(>3f(OxsNNLVDnd z^8*ib=%0K~dznb%bXFhO&ON|)-OO!SQyr4qJ)!M54`Q%)T`ezHv77`{qb0k4u9kn* zNdI2;RRhnNQ(S(YfB2S0$-}bgXnMx`-s3lq0N2{u=(c^J)R{CS#g0f$b(OBtVZ zHTh#0`mr1}2~}sA0`CtcZ|-!s4@GBkW9etBy??ON0|ji$a8DGfuDKCr-mtrQ$o(8> zKknvwkzjhqs>8ELU;qB)Bk2<6#+BD{%Dz0*AjTinF4(Or{KECxgfjTufszXZ-=q5?w!zWJN+f-W zJYlEhqv29lxdo%Ko8d1=6a;5K9}D^WD>9^l%#4^s+UrRU%v%3HjBK4 zaxC^6>oWiZ#VV-h@o>~DI*~U3tsT=s266Pc^0kLP%Dm4xx$*oNXPw{oc?aJ}W|EI4 zMFYa0)2R{Q@o7yZ8}-i-K7-$WVq4lrTyEGe(GJ3%OZhRstD*^AGO(8Ny#~O|n$3ZZ zX*GV=K$?>{0itt5KK_ss>JJgD5R(JHl)Rytjq}cSkxPSNz}tcMir>5kq_kFm<&$-w zFx-@T#XKSouGCkSX}-stGPo6l4eoJ|1xUGWeTuUvUo6T$VR>(m)+cq7XToxehTeUO z7Qx3D!0DUi+&~}E8w&1@P=q1qr=&1OfbU2EmTiYk7*p$@iL{jh?XOPndi|QB)&xA^ zY0w)-#n0@l?Bl}ht`%^IY13K*@4n_hC@F^coYQWc-~(KQxw69PN)92rN`S%(%9_X| zT+`OuwTMIrkV!#5IZDitio$@;3W}ZKlFnQc=E28#p-$4k$1pJwaQ-|6FJ?RtqQ{!3 zI0Y;OvUXRJhjmRSfre*TH`A|?X(DSZ77I+VfS8C*c*xrJChh|}wl-DLjEd+PsT64xxM=@Fx8fSuj(yJ#m^ml9}F#bR{ zrOvj#al*dLa_se=BU03?hus3N3~(hIf&svCZc(>DWWR(C6#}U4;Y0xpj~Q?n764RE z5Gl;nS32qU;_>Bvz#S_5TZ-OlCj^U=dU+isnXP}*EF}!!14>ckz0HhPifevMKMjf#m&m7a5YUrpJ9uhf1 zuI#kCi4{q+J@N=HfiX%npl@@1^gH?rNle>-T$r!%RaNVre|3j#9pIXV;t2dX27z?n z&R~LSpw#!n0oBmopJ2*MoD9xQMA23DtV7`xt;1tmD%A^^x3P5J<41}E*1Xi+o4sk* zs;k=iFX#ICnJWDP|$Tm*bi zI53W8NDttVUswxUjscl+sE1pCgxva728pb$z$Fd3F8!df@jz)oB1p=eTAKZeG~P|# zzNj5~2&FGeNPo0OsmLa=nEiu?T!Z|4dl@`Goo)2(9SnR|2qBZ9lmd0g=;(lWzeB9}Ob_L=NhQ1M7+?jf~oUy2hS^dZ|*6 zZWzzm#*=gz1G-O0<)JgVUa^b<$Oo#>qkx(TL$3z+v5XrgW9M|{Cp+@Pp z`D9BV8^}$bH{fiuG9bK@Bd=NYU@jZN4?~!Oy71sdFs??pCWI!j%MMxROJQ^FTOW5Ubnb%|f9>3^zpq)HkAao$;n;;_aWLCz~;^f?&UYBOWm<*B1c-z*+ zRxU=CZ~!c|nyI0t3=FEK{~oUn0m*_~3g6G?0||fZP<$L|l>o|(TIt3FZZ*(m?uFZe5IomD z16~$6+qEh;Z?|q7szd$PGh=|5jdj?0t|76d>N7zf|7m!nfGik93tSee=B0fS33#Bg zF|MX^tH@|zg1bIMrrkadFOld?MLc=+6r}cN_NVGyW*Z5-GTFo9HWfst2y=Th;-LuS*eqj?CYn2D@?jXHSX<8C96bu zKxIHUA6NwS!NSwK$3|_8!%~+g5ZDPvj%n$bYH1|9%dp zkJsvF>*`IKBtmbgCck+n-U8puD6oaWHHoU~Bjni&l`srQBm43mym_m)Vt*6a1_>Qp#0*3;7ys52nr zqlNr-;cU#+dcAJjCx5(`m5m5WdbJaj+2cYAy6?9_ZK`Zva1u3#>O=0Lry=uPO}arA zVFNZNE!HRIul$8{gB3iNyu`+%=mDSM8`tRtaCTwyNC#FU z)!-lh5&=jUvkkkJsIS`mn9T2Fb#;X88$)yCxtiDfOSYBIqef4eUL`s)h62Hk9CWrW zwY%(9Ln+U0Inj_lYVq~e%H+wg+GV)e`k|It=H}j2mt+oN{VB*_b8VMKx*bbk*G|3(z%Re><%`_1bJ01D0NYM4l z)Bkep{Qe$mu|E&R_i`56%KQ`X7GJ=#dxR$ou2=htVRm1#?@w?W1|KM(eg!h!>;bUh zh`jv20F2KWL7C#e)Vek=a4r1005v4N)^FWF56RQLic(vKwiK<;baOvJjv0)JrVYC4mDRxuK1w%Ry*jwD?E;kAMvL z7myoU!rgqk1iYh>0|bkt33D2uwDnNU%$Ah zuiRiv1JJL%@lprx)bksz<@y=Z<}ID-SG3*gl2={2zVSOME4L(KH)bK0v#e!ekg9reYvRbmf&Vs8X_ZwX1ZO}RD++}vW3BMZeu z4VqV$crv46bWdH7C+l^F3gNh>0ZmpK2<-@j=7*@WA;Pe!?E6hHJt81W)+jsSUuExT z>V>u4*UPSS2Gue{4XHcuO7r*Iw5Mh_CUgA`f2<+A2=`X@EDnCOWS;gyQ`v^f)&Hvf zn3NwhH4*Vtr{)GgJT%|jn=4;)LwvRsEvb(O(w+c0Iokr;u;fTfbi0YZO(&;Z-nS}t zZ!n@>1Grd_1J?GpvB&2)^EFnV>{Izl0a&EPt^T`Q2Et%C2p~_+rS9__$#6GUVqL*1 z9W#@Rz=?kzK zBn;=YMG;SagM5$vjg}Ye1g>kY$xT?y5G00T)C|<4VH)%%EJ3(JOAK!E)RE?e(?Ug) zZ*~cDCO?gHZ$2GHRr*DkJpE`So0VCEV#9=c{)$$H6@FZ6mc*#B0GA3n3sn|U9)8b8 z)W?u$%Z9*>@Diee1As1QciHwA+h`zZf?PKX(@;NT+Pm!~Nw{r|+Z0BH8#iqP*nD-N z$kgItI~8Zd`wr%|E=R*2B=$=_xHZkxR6BYCpv?7wb1z&KD+`!=DAj8|AEpYSOow)Q z#AYV`@|r33di03%vm0(F^+v60Bj2-8SF|DX{SUFo9s$+ZaHAO=C13`EL+|T%%K`Zw z`U>UqY{c)=^&jo5zls$V|Cy~hI?b*bvRWb?5WKKV-`d=NwMEw~xB&M#EsuIH{Zl*8 z?tP^-GEnLIM>rq?bFc3i4Q%>ykyGs>P0yj#|HH2w@p0^QB;Rn|jnB7!t{1ofk%QL^ zhHsU7T?;)kJoLuPGF^apjug3kj1#~%tYrcQ%-{2b!}6>7(dWrO9?xyif86AILT4i^ zl8)baxLy|q9M+;3AWvA-jL_C;<63a6y6Sz(Gh*mu_ed!2H?UFrX!&^ExWXarYcQj) zJSN1AQB$d(J5xR|(XzGrgEgQ2Lqa>y!u~l3kx`H}{*^bO}MrXcAS? zHARlzFI4*Uba?-?a_jdRr=NYv5%dN0&b-M`zedo8ztnp%w4R z?;M3u#qqR@qGe(k7t5lG+34b@CL!T(21@L0k$PrAOU- z@lCc|gzv3UJ@$`-b_Ggk#FG4RB%#oY)aSZq=v= zhckKj?KBX2bXDF_xRL+mCwpK^R7Yfl$lA)}CB-4;Ok#IIhy%>`?bkvvMcQUU?^L6g zudh6g@|8RzZYA{2kJbNeU-jl^M$FNJ*v(${?%pruW~qe_(-81hg8&LNN?e#b=+S=7OHmRr+XktcmZ$gIAwgsm@Z0~3_Lz2 zUR0nOCYdZ2?7;E8p1@3)8fdhwq#CPhg_9~}%)(z!La6mv0kd*TV^_r;sW17RRoeb9 zc9Y46zd30f^UycDt{~LCcUT~6K#NGO`v-NH?=YQ{)*jKl_8L}sV(tcWgiFY^%AG{q zQxG}*XLwt}%=B?eAz*$|7cTyZ+`+=rLllGndkd-zWc+|C;#TX!!9kn44F}~`&}u-9 zU7+>EMp23hgxkP-98xd1{u6}MvjV7YLqN|a!sr7dS!tl1QHeJW97NL)4?w-bI+oQ- z$($JHWbb3myk^%)o{*Ve&1iXl9| z&nXhHazH#&dA{%$e=g(G=cz{>-LEB^BzOA{319q}lyyg&c1dn-_DpVG7$;5X5%%i` zN0xp$Kr#~xr;QTQeavBKyc|vDcb$U(QjQ9h+>sfJH+dLsh#%x_cpZQgM3~|r%H;j6 zuteGnbp1Imk#%J6u0i;=&~Wx)#HYh#M(ooKuI zq(`~#8fZrtYA4;MeaW)!-lz0n54pD5TS=>d{KRsF8Tl8qa1A6Xl;_Y3Y|y^xw4 zAa18JC)g0_L8ME%2Bf9ifcfc$A#qpmA%IE*xkwt!e1jDyy-`MYE!{B6WbjQf&Ha6!-CY(rSTep5eNQiPfQ-aGQI!o+@l! zl*|B!aL&$P5gJd)Vd%{8f?doQd$(ZSra3P1AaMy=%xmV+251}+iF19Yia+g2l-Z_a z9^SJc0@~nMlbuw@tsM*}Ee%NBLKm}Bs2ca)7{;3H)?XS#SqLxH5msXE$iMc8Ao|)A z?4ed`{E~+j>*tGhqbQBY=s$C&v-8@!Fl{th?dnQB6_8Y<16%W~r>-!1b&m^7gVZ7W zOs+~|3Iq|PNCuXdXm}y1arrk6wmhqz;z=b~J6_ZK6sz+ZWsfT_j+eJBShzf2f6zBY z;a(Kvky2SbwImUzzP7wzveGdz*VvyPvpcrmhpz4AH?BGz2Lz(Op6qP41+7OKJz&)@ znz(?P-e?%*piZq$n0R-JF!=Fv`w>uh;{3&ZyHN00T9`{R)O#}M_Qc63crLQLeULdl9$K<^7lgO?YZsxu z3Tdr1L~Yq8)k`?Pyz_r80NpxMR73-WX3;nJ2%-6Y+rQ;ktjr58c>&R%G=*4BnubJr z@4Lh3Gr?Hu6yRN|oBN$Bssr#6}7;frzqYP43`rZ{w{Uz{fR>S^ZP=A7c zIRp0eJDih-D3bAm#%h$hZEfqhn0@|;EROk?w?wnWJ&|(tu!a1&^6e;E7FPI$2>AXjqm&5vejq}wdAYT(qlY{uKb-3C3@4=94YFUqM8 zYmWeothaS>xKyFb4N;L@=8od{^fTd_42TkL`I+F8g^7V5EJYp#h?I1o9H3d^pfO-4 z)?+?pW-645RqQ$~ES)OW3L_^@GIp%M2F2ncbO4xzy-sRR@1@|#=7Y;lxi#DSYpJ5A z!lw4*=Tb%3ero4K%HwIrNb+2Sj_k?I1>o=%t8aElL{a|z_&sI?a07yy$Kw#2zpe!B z6oEdlIGoPy)3}|+niLYx8LRp&zr?QpLMaU*1g=y>1?nmf3hX_2WN4km!1sy!H|K!R zl_iyw?>k}{!QoN;<)joWaRO~(R&EHm33-VHHY#zn3Dbm60!d|ZbMm84isN8JtX`3|lvE--@;(*_3fH%Z*H9 ztQXP|CE?1VMR*Xz9A`fjKbgu4-XTk1rlykMD~l4`ono#}Ms5cDcMT9jl#ET%!ZGkn zC&sK!vA>SsJ&P(Mi0<~9Tlg6;qUrF|<<@%nUFJ<7fAV~+B^c$H}DFmZC=s8%RP6Z6!+`MOC)T3@%c$GKI#uhjL{8$(Z$GTVH;? z^>9;_(JkA`s!hB74~qwG7&+RM2%x>2I$`Bu$&D12UKR_FS8M5Bj+O?Dz9I}nVk!^O zMVfo31Gv4xcLoA&>In9-?H#<}O6FdGn&tU^z*|L3AB;aBY8e2Rsb(9wZcIF{;9;B& zn#M8y!UkJi-ViXjt}9l$xLdfu`pv97pvRsMZ&aAUuDYqjZ%O8GJ1T578rhp(L4A`y zJYLLL0I7dg97+1aRTR~`%)=8{NalNI>9s$P6fzGRVLrOr@EFlsSy5C3#8fYnw$}dx zsY3u=xpHRD?yb0>$yA|D@h~wAA^%dsu4ouWEJr3z-4v)2p?vW@(b%&45*)3s6gMcr z(otqwYJ9P>EC&c z?|`UZ{CQGpNI5&%rmkGU{wIJf=XQ&#Ixxv)UpE_3h5w)7gI zrhdw(61PiAzVp*Pth3J$3hRo;LJ^UsgwPpk0oR|to#v7q1LW1NzkA}1bwwFalP;Uu zMYxgf&VTZzIPw#!W^n#EPef=X{7e?$qx}_+jqRd0sW@)TME=R|nvtXRXF`>5g>Z~P zv+ViZSL%OUTR!an-O;bVVXDba6lz&EbFtG{Ej<59aI1q{w==5V70)nP{)63Ul;%bX zNd;k{FhH?#PeX^4cbO}(lL3rGnT?OYxKPZZCL&*zrJl?VY0>sjkuCa|>c&dH0s+@0 zlGz5(HJhbykNCRwM&J+pd6jRPvrtW|mIS=gEAT>;O4K(QU3Gfvw8-;|7*mzlu>He# zF7EpZdl3**Y|O%+&RVfjfIT|A3I*;1UUAHWH5g>QUT)!P3vn>txL)crU8F}e=Va6s z&Pn(c{euflM^}J09sKN-Ro%6d5w_76CM8_bG%2aUHf|#J8`cH5V`pV z#*yrla9s!uS!~b;B{#aTXSypm2nwCa54c4`PmbWDT6z1@$)G!>2?)Ywbzzjo(A6M#K6M}Rc?*OF!PW4 zT{WBm3NZse=>66mEc5gZ|{swTXD-lrkRu1W~|mRLo^I zB?>0;HVYuAfd6aSNVF*F``@&A#C@dGvW(XRwcyc8y=iqmUEQU;zV{&rA(STe9{`?B z6mVdoP}H*56X6)&OR@E_kI3|X6x6HU0*?On8yGmeN2^_{v#kMYd#?1+{XU3&G7$QO z>luAmq^u4%=z$;mVm&VN%`1u`xa8OUT@cqJllr;({gHYO>N)Kn0iUXYi#%LSisU{r z+x1n38wjW1CGxg8^Y!Q#R4g`t69aF`@!dVmKNs0lBh49jYq>|&FG%nS&02JkVTtI( z75Ig3mTLZj44wPT5M5^I_t!|GpOb0qw>W6~sw@O(&OK-+4pAnff=i@%VIkEjivKa@ zs^BvW_o4z`vv4m1Ql&N^fBX)i_sLSlmaSo>YO<_CdfJ2H%ilNiDG93*r3H48GHMDl zb|mcjU7=E$2yAh9Xq2!G5LirZ31LGR4;$;YK}bOW*5=5FzSH8G1oVHwU+N98q;!Gx zeF*=m|GZ*s(6jL!M`FJkcKr((d~+-YF<^-m9&Z6ApR&UV#7mj-NUbbvMhGe1L_RqQ zKN6XF*~2wc-{CR)eho0Jn-%k6#7cF0WlO6~jgOi63L)z{tLhIN^D=71AW;N;vhSmc z8^STF-Oh~1Oo7m(ncr@@^7(2Urjy%Lb^>oJBr?nG^|Du?e}wj7SSd>n zsr4q54KR(Xa957rC5&hCUwD+g+@g z$0`OVn~X2E?F(?ygu(zsE)52V++#KghQ@xtxnFL9Af(55L-*PsH9A21IRWjHD2Si5;p%@3g)>L-KV0F@{cOvciq>OlX zQdLv(_1i1>fq_(R^OW5}5yl5q2yGxGm=ya?-QPG(yB>UV#h7pT;mg>DZ`hDV`$O}B zuH(>=!!4nS9#pf%-Jin!mq#My<;NNFfcD=P($gyfrm;o^*AFKR9*=82N{9kZT@}GA z|GZ1Jw}g(x9Ypg;p5woFR}jHZPXbA1p1GM`3;cfAD&MRE2t6HF)gYT7b_7QC`<@7+8IH)h1IgW03*w(K&|4E@U zUb*sDPXXSTfr(=V{FBDMPDDXtSAEy=|ab*YvU4V@=7!L(HN0l;7W zV_vKBQr)@p=2D@9^zKJ}%9V@R&b;jkm&#RH>Z(X^ z@3yCPXmj9xqmp~w*YEJNjyEC~0HX#ifdLc`5IKKT(%PI;4a>s0m?w@fB}APyQhawn;thfB zP(*7Oaq#p&-D*ihIbcbL(BBzZ#~yBGv(4A{2F3DL7tvoVqEzsqrPa28NfP1*^(JvX zhMTs9GM4eIh((ib$mLP{jgyUa4(;Ds{K3Y_;->+I4oVudLy^{dif2GTYDYoNA0#9Sv+LnpV8nvq~X4rwy z61*^kL@5V)KGLyS(H}1P;>5wI+X}cuy6#ym5BV4!-^W{FyZoOP540bcM*f|t2g11u zR0OJ;hvG9LQ-!3?(YuU3%H+zor(fAk&yj6UKQl_ze_fCx*g{i$Gc~b^aTttOhtQsb z*0(umYHV!%Cm$PEa09wNbA1)YI!~N@t{JxhzWd3oC&_oTleg8lF9b#Mkj@z-s}(PN zkKO+wDN zKmcgq6A_!%cjtl+W>V56gVo_2*Rp2}OPHJ6O4V}V}etTWmNQ0f!JBO7D@o*5EgY$q^PH|JvDU5E>PXl|Axtbi(j&D zHuC;-UObtD&We`viuB?8@7;%^#D_(0FVp^fIPvC|3hPQd2R#opRL}Ha#+J#m@yAgz{iyZ>x&U1n2lY(zVzk(oyJ_Ea7Ll4??tZhf0-~UsH$i03-?M)Ze-z7&$5Vn`;(Fh& z7Rt>d@^(SSt|j$oqny036klD){2f6fUE_Jz?4cjYVQoy=`?`Ue{u3FGVEHTUn@=Gl zqqpPG=^Z};&q(?ejo(a%T&vM3ZFIUf#@}uXu!@}zu^CLAqcvYKRd1ye&t0=gnErIF z^Zn$n-S=EazxKnhA1uvX&+(0qlt2q<@^(Q1R_0M+f5(qmC(t_6fiI;YG&b)e`%%gE zx=3n!#(IXyi_}e5PkR!ujK$B-Jl_=qBbKdLB}kv$2v2$5K?e?u+O+n0<1ePhW1kiJ zVj5Oa^NsY*6h>%iQY+J|(xEX%!+hH+-<%s~v6E8P5W~aQqYSLc^VQD}B4u6&nFNfB z_1=cF&7ZF_F;9rvE#SqdohAJ&zCr3dS-Coa*2c4A{69%8yMK-Xy2VH@R%;9KgiU z_?XT8fhRPD6gJ}F@}#wJ33IGFV#1UGm zW=41~+f}YBk9OQ~7eUC*s|aC=0o$m2_pNuv9cMSa z$tYoy4rA+#U87$HpHvg<-by54o-J7xOPiS{ylGSXkI!=CmhR&c-2tn{SlAumsXKO;%)v5vwyJ7%jE}Ma~gC4C1c1aIg8TiEQiBkDC@9#xRpiOT1UZJ&gwi76oTb zb2erS)r6+MB$&8m6O+`$c7nB)f4Hpk*!hNUS0wJ10aXoB=LOegT&&pE)hDV-Wn45E z?GVjiOf@?>?yq`EKslulP>q!myp|g3`ULD$s+u1-b6~rJ* zDCOp^{8^E1swBVE=cewsz&7Ujq==(gF_dTS-NspmS=@hDX6PAh#%CFa%ij`gYQMF7w}VHU#Q zDd&lW!qHqI1&fiH{zd5_u?FLhZ=w2<->=X~&AZA?%@0hmsBipf56c&gj$i@~cV?lm z_u&Eu_C;?@E!({vew8%Ue$I7oy>XjVuW`t7}bOdR~OORCK8SFj)Vakwn;V`;vMVGa+d%<%bQWko`+Aq z(c%4al<8S-#*FE9y^5BNi+P?16gQ{{5(UnxoM(yivC}w~_<07GwLhzIi`0hjeE#^f z%5zQ_diO%I{uTDRg;DmcUJ7|@MHdV_v8$EaEdRBXmEq~7@eiwgu4mR} zwnFw+MlSCCejEZk`1Y!;z9u~Zb~{ty0K~0F(vy;|Pg!>(Ta21yV--9yno~8prY5gv zgm>o71kGMq%cv7=Ktq{&1}(gwc!{VB1^`sfK}(>X(a1q(GfoZv8&Po()+u({l3^wS zBRLxg!>?xK1xEN@<(h=Mo-)~^oQ<9-k*k9`OEV^ipIJLcRbiV%=mOSumA}pXdu&cP zzn$%PcB0|-XTg-0HkX`J>^@xn>qh;_F|VEGuVUoTwzF`*qVke?zBo`>{6#aTQRmtl zbvPlC5ywo!X*s@H(x{w@>)uHZ`+M84SHNhhKTptED-TQ6+h@*z(7Ov}3PQwd+(<6D zg&z73Kb;H9e1xHR?6e#87Jq;B-7+>HO2 z6}w_VGpaV$EjXrOk-|x1pazoYo$2bZ1=08Rir6YQIT}(nuqZmt9^+wqq0KlSs6cYW zQMaY>#j#uYa&&-VlU`OAp~;n7xa}e)*;}{Q!MOJNl?VSW)XFh2tGOb@Un~yCiAfFN zMohiX+hz856NbrS_RW&y@S*_}<98C7gMp1mPl;ufv%wS!7mc|Jn~Ok=KKJ~Z0%hG4 zp0FY8+4}(0$);}cs4k9ufVb~t+y1p#vv4xCi(=;D$LOsE?X-JH1(!q)h7Kvcxs|T; zX+gOE1J7WlCu+m#)x$6I)m<&_>n|2AoN!UF2rM;d{&S=x4dzD0>Zr$IUFC; zq({V;8W0Il6*5$PV_IcE!tPNJ>LNF8(W;z(A1H^lWzg9|`+*C$aqADncx#>9xV6;S zs7GxwDTD{T!=*+yl;vf6pgc;p_X}x!gLI2xJH8=h@Q$DXNhYcD;m+zP z+p3>q^r3tNx8=Ic39NW@2 z)o@&n9viXY5J8`FF$WP%cU)l=zBkhq-v$y^sr8|lO1{~} zkE5sM+iQmtg4JGAoC|D&Kl%;!inIqE6X!OB%!`f}3Ad4s7XChAS1Xza1#O9I2>#kl zozi-|)ibY;%Xr@CH1Wb@wxfC=UY-kxfLj-Cx`(Doe!{pK#pyr%e*13Z5l&+b?gR%@2|fZ8u;3xe(=G*L znHsxK?WjdR=-WyTdF-hmnq(Pb;?Zl{0wVxU)2W3W9j678_W92?MNt4m-) zQgFaLPt(WBpCk%$F&VWi5*@Ut+O&U<$D@?#HapHfPt7Sdjb28j#8LlT;Z)jw+>$HS zy%J9i8q<1Q{wuTe9jkW4@GtifSrq4z=HaqhY}@bHt>+cCvHP|hnN817mX(+fE8!y( z>uN^%hEKOov)9dTv*&H>fxBa7Kk@w_ZIZw0SvkKjN%fLPe*t zpYfK=`jJDyC$=77ualkl)@8)3vITOwpWqftidqG2M6ipWNXnxq=LSz5bl_ zj5)zh8*`TD#E4Y^5hdXfMh(ulf7LOz0F9;`dE)n;Z>phNas5|PU1K0e)Xg}CK5@6R zqe1OH^-m-6sxSTrLoA`|)cTC1%#)e1X$8}|3(5EaHnyI(&rz3z=Fk51@kC~V0+&r) zA{Z7>PAXT!t|B^XlkxRQgeL{Wm^vTFt+Vw!Uzc6!F z4dBn(4cOWioIc=nXHx0hu%Nrmdg}t96*kBO1CBW7i4G>G2i2NZE{$rN-hd@B4TKWJ zk_(DL+!rl3Xp1n=zCN=Xusf~Ppy?!yh0d1_p|f2n`;(Hn6Dzx_Mk@;Y#?T1H1~-+D z0ub-zKwiIGYTHXt zO7Uxk&VaBHUxW^~SKZx0JY<@-G&l1}GjP)n9llM3h)w_Kr5vW#U*Z320nS99!15_% ze0mYFc_`-+ADeReJ2y2ql02`F1!Z0q>yvkdy3HfdT^F&9ZqwUQ_kOQt0*RkVbr<93 zV`V&^0@KZ1Kli8M?YT37u(x{3IgW)F)#0${E{Pc}@z>+t0A_I3H^s^Aecbv0<@Z|( zU`!ySX|%oqzV`->ApXt)M5JGBP6VO9WNeNcFBEy66i)skrm*8A*xRVWPdYo15~cIf z>(WC3_lioh%QsG6mtkhR6{Oz>Qy2vc0R>tIgMh}sKYsUN@k$xjzLfQcca%j;;(8RmZsfh?;b*#$OC}#4L;&PR-YMn zq=Am>X;qd|J$SK?kQ9#DB~G-2#M3$EugPT5LChne=-NkZ!xEbXK`p~M0zY1OhZZsm zv*YQ2lD(ku&nEyf$e&B@`qmXKYeYTZ1tGeei^w*TNS$s32w4z`YSOT&{&>WQU~@~; zXQ!w7?!^|nouyM}#75H|1znsjTs11sHm2&2+-epWKNdEY97fTZ8ue2iD+tJ%a!cBq zNAfqG)04E-kLn(G8W~f9EhnA}RDD!NnP_3Q&EGnzBUYrFe8h+fU#OtnEBDWux*j-q zH@#u_1CPiXHMdI37*|xnvG#0x7XxQMZ*nScpCL~_AaZdWYwGHAr&z7ftfWu&G15X; zZ0^|BhL(uEP}6hqHSpB~RK<-A%F`)8b{lo? z;9gs6*m9vh0aeoCHAIxwZTY~J8ldw=)LjwDVV7G3z_bD3LM0DaiXXxkSInPtt&f1# z&(Lj2BbzDI0`Ag}OgAdX-;m3Zs@Fr;(`CTJFx=+U$dllm$t+_X;l_IoAfILKlfA~3 z_1uZ)xE(tMH+sDW6YJZCAofz&iy5%CU{VQGb`i>9RDy#&{|HB)FJf)&GMGK^#sEXx zgL0okr@?T+@Z#YS?PrfSFZ|KUY)yYq%s?XLXxUlhI7H}M_!&LwAS$$Iabiqw-W*}` z#lhBHXlGG&2G~_}o6w5_1IfYRt@1`ru&v+REOkkb&u09r>8kp$AXTJl_$(?_aK@MO^%ksEY2uPDj%rbSrWZ{u z$IVL}90vn2XI%n)DqOTB^KyQ2re7w*q*?p$JhVrbdM{kQQ`V+VWdKMFs5~XxVtr+o z0|NxGy|mtiWn0ySQyNqZVFzMpy~8#8=$VvDARK!i0ri!iy7z^jYBZKeFaaKWUj}H| z_R%{t*z>4`5__r8ndd^G6pB#j%+x271I(S`eMiaOm?|;f!+Q$72i7Vko1T&;Ho@4C z;}cz7b>TBh+Jiv3nn=wPONRPhe^qR5DJ!aX0#mByPoQMVb_Uu!cvjofg8d zE+qg)<-^4kd!sKWlLaI&1EFUHz4?jaZydNW)ynAAP+7BLzm;^_EzsU&6sWPA|^$$Vlb7RSK%K!UN0ejt?P zsBjDuZ_4)_ap-loq|73}bl6hS41h&HQmRA`%R5Hb4ZEhV%p`~ACN*Qy^w$tXLPCzF~! zs}zO_l1T&s(^!za&0eQcw*w2jQ&Gc(0d(1@?+gDWVD$P%lX{EbmxtBTEYV#JPcemS z%h@7~3E#q9(yheRxjArjhxC!`)vQ}g!nB;jh4xDjCWz{7;Yq4KTl`blfQ(YC8UGAy^OdsSn;_z1%ug57EvidbZc zLiH^cq(Av8dn2&prG&BK>%bHan!44B z=0Cb4Y8B|iM3u1*^R`sRz*-RLEWs4$CbOPi!V@*76G)Mu7S4iXV`0gtJ;j< z$M@L~;CYD)?&A&E(Q)62b+#^)Bt9~Oe?XZu|C^2LUAR~8 zadr~KvDbGC2+P32tAmeGOGJ#tS0P$gxa`x<3r3k2r5Kh;#FoB9HyDy@0dbM}p<$K(7Bj3|~1B zb5LDp}h&YfJbq0^| z0zQx;K8y8pq3?gZyJB4?PMToeEPi^V4|)H58G5?Gi+v@d+cQ&DA6#yTPy;Pvz$$L)mJ=WnpDSNsIwNKw#uoNO_VnNa2f$q4(b$$54} zJnNh^+opKYm9EIt%~u6bW<}Z6`#>F44nIMrI?Kn$pjSX|YSI(e1DCmSq73B%7Y`}$ zuS%VEE1d255%f@^E7JT5|2vD1Y!=L%FsX=1HVgP>;Xt}Ov3n%UfUxMKILq|U?wUk6 zY5%?ZA&cae(jf8SSNHJcKQ;QI82c(H8VEiQtob1}q~s81poB{aqn@zR@DH+q+4A%B zUoip#If2)R7Y_C&H?&Hj@x}=N=x=P~_E|=$!a>M8QI$*A058LUnh|T;3Xq8#l;A|7 z236Q+k-eO>v4UPW*NcKle~N@o-)tWViP|!94`xi3J4TmjHXIrq(<3!L7a#@}<2rw? z$Q*&c<~J)>L)Fq>0c5ly@Dx3~B8a5;>;CMfw=n>d9QMZ6VvQ~<_93Y1a;1;ZPP-hf zuQxr3CT94hoU_OQ9EXkD-6%+yD)`( zwcBe_j9!`6SV`Ho%x9T*&mX8wIQ>Vo!!Ebn!K6RY!D!;)5b$;| z-NERQA`nc#Pc+?BY~41=la|B8u2a$dPviyr@T;G>aTpY}uPmO5er`b2{so~-n1(p$ znw(h>q3WA&0a9&+M!bvy9?$JNWD*lz38WwWWynV_0FTW{lfv*=1(VoV0N~m( zF>26{TVHrR@=I_XXzEcy+JA3nz+rC*M=@7ikae15?k<&|p$xsj@~3|+e*~6sy;e22 zUwp8ORx%61@RR+o1DoP@Rr#9zq1U6J!j?q&88eq)>;NY%$SMJkBj~5ILzE|;jI=fW z@&r1{#}42Cb6v^4e~q6AiC|z;hxF}PdP;byN)8^Jsd^O@Tqhyl?SR-PW*>@#p);*HSk(?KP-=XwchB*Az& z+R_DGVU(ldPOOOno6@Wd(rV4na43{a^?0csO7>o<=cMxu zxE$lgf$3$E``346+u#h3ugBvwQm@M55fuO$)<49B6B~{>*=kkCM6%rty;LCGe)6M5 z{}g)c-o5wIql|;{E)A`Q6VQz-Mz^7H=Zn2tK67?VMk?e)nHjL%vhDn)c3ueYUicU6 z_O}7n?eRC7$Hu&x6)o%mk!yFk^^r1BJio03SD$TY%AuQuw=~9FXt8OGs>J6*VY~9T zwwY=lmkAH$s5|vYk0aAf%T}ZlpvRH>kK+i zn5jmRZ8^)|r{P-TAxmGfZN69{NjkND4{D)1|7oec;Uy#w2yKj1!^0@Qu(_*YFngI2ljcZx>~uDr(m$%{&hQ!&d-pvhm&9SM_}gOU)Kk7DGN z6T0X*M3&e)nQ){K)}#N)Vh)1ejaq1F28B?Vw?+cQGsMhXZR>D^$WLlTB=4qSXFwI& z_sN`T{d~3glsh8S;^6!PcigO1(XV|Yql>Iu ztgKfdjWKoqZp@*=u0$J=;F7OYBkwTz!IbIRcya@D^4_mV(}pP#!Zsr$G;dK;JYVf> zxg`X$fYXiPvtku44Wrc0L*kJL;H;?Q9w66H?l$+{S*-c{HnAKZOikrp-E~>c{Z!b@ zzT=|?E7oAN)(|$Qaa8*zY%y0>EI;N@8ocfUKI^$;s60LNwkaCKq~CPlNtTF!EidUQ zv_DQTpJ;d_49`sn-p~X`Q~UO}#t4S68Hk+TVb?W1YR28@d2a2k!R4VX*2*o)>)KnC z?`zImj&3JSjs`^aP+g{r=W{7f66PfGnoY}O2f4j@dw;`**(h49=}0%}Ng0=C;axei zEB6GnVtw6CALO?f^~MEKE&@Hsjk5{!z(nL6lOG2+_APHibk;{vKeMlc^m+Q z{^QxwgnAw7`%or1>vAbyBR(AApp|zWrO17*-%4_=UY$`0Y)cfn?|JZx&8Xp%D6g~j zZC8)PH=Uwy23O3kZ%CZD_0}8Wb8OhTYQX5H-SIK8Y`2%mfBetz{?xX4UvtUsqrKH# zVBjI0xX12XkdU4*7iv?maJ{NtowM-6xsCTD{hl2gCw}?e7V=LmU)>6A3mWh$$~bpT z#z+!}>k%)jUYv*vNd#`Mfctp59t%RHm?5jKb}zCNchgyQ((sGl?6jn+Z&a4!d$HB;Q&3 zhs3{FBpWV_uOj{e`>4R+t^2w}SW$XmXW+u{q%Cg=OyWGe8abpA8Bz5_^}UFA3q(73tRuGB)mb z=GcmzMj$B$!Hub1vAu(bmB8~u>)0DByg_f}z)p9#TQRWLGAhU)R<)WkBEkB;_$Al6P~c-}_pfydXh26QU|#pJTF0e)4Y0m{F!B-7AndnG09Wsh>>r!z^}}sPA^f9+Y%8*7?6-qe?pinQ!T? zTWx|Muo)Od0k{tQ1AO>99-#dh{}{ll10MJYl>J1QDUfFN?61V4GE3sW#S=glnclWc zE!xe)GpYYcTrx!f?aL&`ZomOYBM^T&cI0&!H#iAmzd{N!+kB3oE;eiqnSC<{c2bt`U;5kh_JTOL)D7F^_UKU@S;#=z;c0VvC z4vzY7Xa>QKd>hN(wb-f+8We6^_*Y*Gusaq(u*YkjHGK zvok%4GlZ3^JJd=LoV1?Q`xdRd`FOdmxq9K5q=w5O*Fa!7z%{7Q-UxV9-T?a_?JFoT z`r_p*K!)NCC|jIj>=KRD#OPf~#%lL-{heFu0zS&LVC;g7EU(kcmG6UNYo6ZWWv}OJ z;48VK3vBCG-HWUzaQI`3@|sg-^fpA}WL>WiQz`))lpS8VB9)xjDn8v;D%az!Jn6=+fS*o(-!{&y~kV63Te0a>|j z3qIQJj7C0V>+08q{M%#q!5*CA}ZbHEo8!t~5 zFY=4}FDZxQF-izfx#MB<==%(n)Uq4SE9n zYd(A79)EL@Z9p{;6zyS9G_9H(1)bOx0uWBy5~!cvMyK2rw{LYwmoxp>Q%|^T>JM?+ z8ADY6tJV^!hE5|1GLVhg7tb9&-sjm#0v5InZ7E?Q(+iSc6k%@X6LT{}9?%CxF_9Pr zM+otyAEZuNdW!r)>!6s6LLPlZIQS-3(9kFajjk0}Xsl*GlyXmse*binKk4zuqCLPv zx!$@hxz!Q@?(bbY*e(ePD%?T_`c7X!{1!L8AO3tiQ z*01RWjIWE-`nK~l7o^xvzK`#fdOwZVunj4#lhgWrQK`I=b5Usg_01}-t9LvB4@U>C zN4nD&&`K763A*15NE@G&-X03de{?(d)sHbirDAIyrqLRzq&qB{uj+Bj^@6UG?-%>7 zg`IZ+N~Tk?Cq%xeyZBk@;MZPkbOqRvLN9|ae7(R&>NLuK(Vs%I0B)$i>iS6SErD@c zLW9qZg)_7a_qT!$P5V(V(})l0F0VH z!?6yBKn>&;vVVF_DqW~te)VKZsmH6&)Zt;N+W2NJkeEJ|oVVli_c!If^PI4cUteeN zqMp_T7~>SUWz^SAt8rnQ9naS{ZUOK^vjM=CM4oeqoh9yu#6RaxSJayU<5LM9z+3+} z-@$wm$7)Fa^wqG0d4IlR5a=vhopB;l>ArLpEM^B&!@ulR#(5$P=ByK3O;W6Aw0k$@ zmbSOa{kK*x`S*Lbk;zB0iz^yx>#~dWB{Hae>d7TwKMX+pN>%`8=BmYMSE_?crg$Mz z_S=%QbU7PU!i*_;1`-0Ccsi!6xhctF+K<-_?YLpXWd>(qE^k2GcselB`0d>ptB?h%l!;HR2Y1S33>0YbDfp7Qfh=h*5=(Lij+QzaMZ*Il=+hM^L9 z(@r`Y8>Letl6}w`P?rY!@#?rLf0CSz1oGN0>!GMoQ&{ubvfaE}E=!#A-1&gHgl4Y5 zGu%$5e9Yn?KVKdKQPb-Nv}N2(Vh+Oe2mbg1Wz9&qAf02%3KVfhK7nn;)4Z~PNz*W= zz*P?;c&A6-MDbqzldyJa!{cn(IWm>CkT$EzwS2`SPT`0`tH{f=Y0J*;j#xSeLV(ox zll3rhI6LZ$d7VUH!4AMA0KB<=Y4W4S0mZvFIwq0ilJPDBAtU zC+SSh$+VZ!n{t^P`;XWV()qyMJ>fF*GvL~mr7ARilmLDN4ukFWQl;~}zwQFA4f8tI zG@P|L%V4c`bFo;n&GJ*Kn$>{ zZ4nE|OfC;U2cBm*@3_qE85AWQkk{sWUyCKh;$cjZavNEn=nD89=!+`AV6NoEq8Vl4 z?(rY9V^1$9ZI&hw0K4F;I4i9rrKEczijm3Krl*RKd~#5hJ=}MKG6pq^tHI zV=-%cGG%-}+fNvH7_b3Sy*u&WPo354j#}O={*P6}MOBYyKgso9(1w~G5NYK)qaRx* zGJuLq2}-NWAW0LpTE;G|#7x2`ubmN@V?E`G}vuPG1t zw=CU*<6PuY^*lnd@NW)$(}54Yn!8lOIQ$KLaxC~m{i>~r34N6GH(W>5C`LenyP;q_ zVLC#@`0U}o9?-=aw-Y!>FL+~v<*~U1#_!g61BNKV)auEy5fcLK(!bF|$`?h9lT1rB zpegmDU1>glGI7=Scw6MS@Z9HyhauoYHTludqsU6bsLQ;Jw}5MY3`pDAi|Tujw+pN# zB2JR2JSxNcJ@21UjZS4mT1YPpXfzed=&1~Z!azGNG%!>I$J4XoG+iH@%K#%+Tq=YS zsL7zPMm@e?+p_ree;_P-0Nd0iSSz2L^b~1|Z410wvW zz0DhphvH!LUH=JpT9ZONEJpi7l|X)IMUtsPwBHX(&xZJWI=iPra=0l(Fv<|^!dlU8 zplO)0Qa5nlezCj?=A(k2QKbACP-1}}2ru7i1is`8h+Yvt)(j;rG-T8C3od53e{d5m`8!n}Dr;$OJV7Hj;=`i%3LwGVX{ z_N;vj4h%}$n3+RYo6vndU_4iT=JdV*5OFGipOU$i%<8=PSWzEZyIud#dJP$Ha?5!$ zr~CbM#RKcL&8!D`$8Mda!@v!v=PrCKa*4%?bOUMP7u}@WQ{jhsB1GjDz#=_&oivF+ z4$i=27as#=4I8(^z7h5YZDWzuW(}Ew25pY1s0f*;teda88DGAAFXc|My<_Ed=E_a7 zu!@7;mnz%f8ahFQnK37mJX5hu*ABpa5H&;naTN@R1>Q zF_;`c)Ru)YohbMZ+UGhu&Q%I8NDU17U@t`ABdWr4)z#8;m1nRDGjz*p;41JV`_BcA z82N>Bj#kERhFl0h*o{;^v=+wp{^ZalW`>|BnsV_LA_F>dceDSe*MxX!xzMqZvDZmo zUz~lU^GLbu1kb3@_?w|`65_=FP5yI7eBELvy1Zf+Li-WP5-~EW*gE{8F3Y?&w5*QE zg%P-~w+7TxzEJUX`elZHH}(?4YuW3D7#b+KcL5i<0I`UTIecN+OG8=@D5!zJ>(|^- zas=Tn{byvPoHkzt=A}PDfMp@7*sz|MB51B97BlIo7-pGfib#P0e60?gOd^1f`K&(x z2zSN4+?tm&I|?`{C-duFK5W^1G)@>oR`1@Ro81oPynbxP28mkgk}Ib(T2G^>OE$oe z9Tdn@XbD_Efy&x`V#h{lLb)~c$6S&}1Q6Gw3Ya6~KanLa^}`&wOJx%6vhak_h|eG1 zVqi&udc+m}Li<0*g!1hdtVjj%0}WpMV)?mN$f5W6CT23(2Bx1l>u?3fO1x$$T!@2P z;fRZ8^f2(?Y{SZxj}X&nqyKQLwtjXzz^iD#^oMpEJe*8v11=(Z25XVAY7$wU!8xT zk-E8PQCDCSqY1=dn-qNDK!L~!RA4(a7l0NpZQk7qBS@kXI%~DN$N~9f0{iL6Y+e?D z+`F~8uYY)89I;y&8KStaIQZqPsiXdvp87j?+W`o)W5Vk@Mu}gK7nSRr_;jJ{^7Y5J zxjc?sx^jn?s5~LZ3Vke^dqx&@F$OaLNfbKCrjAMB?cS#%qxYpu^#W+ink-prs=(b( zrE>^`;efjY5DgW#k=kWh=lyP%_vSUrO3WT_hV)>p@iW!n^EfgRZE}StjDD0p#LMav zn`nB>DL&H_B?`aA-7ZU=3d^U%+x!7>MApmPi0c#cOW?FT?o!5aI0{D$C5N!E0nEWa z*3vkAqT`OJ>x==#QR33zJ!AR8+@DBz`91X`nRamL;xYkXp1_XI4Zk!Pi?5DDuHM5z zSBDsr#kcOwXt@p!pDv%)l^s03<+~}^P;wcyzleBTE3)6JFNiXUUiucf{r<3Zg6R!%Jr4;RwyZ*6_-#`%+v3i#G0GVg zM@z7Y_Wmr$3>)f~chGc?mdU@|Wc~vVFnk7jY1xFI9Sz<$W7w!WhK(U5+YQ;e{*^II zP*c-|81-Sn=_TnDj1y9nbQ18l8$T;}BxtR*1Lx{qLrmV-ix@vKQ5kwv;3h|16kw5e zgM+FZv+uHc9p%r7Mm|<}qRN~Zn>Uh&Gy`A)HFktD;5nYtMaE*ersWmW0#ol#7_PFx zd2nz70AK}ylC60er6An<* zvA{z9Ot=4h6{_w{&iTmzABesqQu3?kuhWMBcz;U0?a{e7mfX!%;AQeL(1V^t?H@2}WepL7s$$LvM zRF0=KynEOc(+!>vt+_=GuYotm1cz#(D8?>&-U|6c=V2~$QZUQ70Ita!r2yj9h?5$Y zQa{|7cvT-?VDT4A*w^ByTbn?pR+YI-?H&cH~HGk5u zQ{_=D48cW#EaccRv>(1)tI3LJFw&KdmaCUr#htXASfCicPBSQ53h;B_$#_?z__^u$ zqAl0msn;ogbA&=F&v1FGi&xgnT6`^YQN=Sll7ke1y132$wv4y$bQ`1Etv1xFIsjD# zhzK)U^46D6JGeN9xaA6h@vdTMOL&GvmS14ULpMr1oTF>L?u4!4&hQIF-G%#rOO?Br zk#EB`|7^aiB!4t3wXbU(|1T+TK>{FNFQoXt|Al7^fBtdI85jw#fhAtu1dt*U<``?0 zdVxN^Zt|QOYcwl(@jQ~G;cOaWzqtGJ0Rfxh$$Bu_`PlA1zuACG^&NDmL%Z%Hon_PD z%bJ15|5Y}A;5C%F_GbKUtgG#vk(1|Ff=2%QPK3n4W&UUi!vk_;?z@fHBx0^N9^3B! zatiC`XkFC8XjlMmeUa3w50%^erqr~t_2BK1%M}hW5r-1#hJ`Sc~X8o^M2-9 z#7{e}rF8qa^`scwB{*^r<<=Z-RX8aVoM4Hymn6%tG%Q{Pc&87ja&%)#(6fcss~rqt zfn|)F{c{7LN-usB$qb;C$ry147pt2>eVVQmdaq*HDYrt!vlx+%D>XSPgRarSSj&nu zaQnkmzHxP=ObiCbe7nh^=Cfj92Co2ZB&RBR8Cs%&Pmzze8IQtY=Qx2w@QIelY!#)qx(Cz*{Qc0Gk-6g zPy8Z$qGU<*ZCR>f<<3#JPf>i<>S?oY3eQixH;F4aBHxx~?be3s)S5|E(gv72S?u}$ zgMo~C8^15*rixFwos;0%@tDYnKEg@WgBd*=^_&6iTfYSU5doABu1+NL>|~li{$e&z zYV;B??3A@8AjC{aI`fvAZ*_X~e5dRZ%3~}+<*D*79 zof9I!+f;{8ZUYe7FCc_;sy$~X*&AU*tj?E-3RwPvhIHzEvi$7b52cNc;#He5y^}B zAC>0`1NjN56v4TbN(TxIz>Tu~h^0G2L*7Au5j4Mzf(PVY!`ymff*25_?^Ls~Hv1=a~E0y_RWum;hHLG;!_w9IoI0oJoNLT z32XBr_avA|(WG@vJa%>9&X>_Mm@znEAV+cdUTQerV^o0&dOi{MbqM!I@{4xU!B{7G zs};ww)m|3OE=Q?2h`w+2^iz5`%lBx@AAx#7Q=}Y4YB*PoCBNuK*$tFipgW9-tf8wvWed^>-RRbc$`)-N7ED?NjQOVzV7z?4=^}D>{A7f zzvUOJ@2Q*f*mkLW=LeYSy|jhHlQqBPyO3_})J-5LiDE-cH(p6a$Q-jL?XJIEWHTBX zYIEy5rg~+Q)v|}$f^$>ZCK@3Bv3k`1S7Lb?nLPfC?;x0qR7ai#o6Ek9iDvi@9{0me zHkozv=0c+j(^1xU`!0hvw z?S(w#%0K(5^Ggo5itZmpi-`q;yN-=~-s-n1Yn1r398M+k64GT)I*64@%t-Pzz1tE-sXf(<8s9dwAyMRgi`Q?XzQYPhmx)lAi=bRgcsT z>Id6hso8aX<`&tBs(~m=j(MDA0$}&2K>S8I*%?;0!UGyV9JVx4{kv)mlgFGf z-|}wBEjWLxP60CWoJ&8JH@N3R!}_Xx3$P~IZ^&=iF2Rdz9#zs@l*Y9^c7PO_>hm1V zfbM>7j1N$r6U-digCCJr&FwDB2Oj7DR{jAnT=iB~y%Adp`uVUn^j7>GiGMj~MO9T; zir`p-`o4ZQH@LP-(k)k6+OyS-xt35jZP%5E#%uQ2eo6o8Dy*zwu61P zBmz{hsrUyx=uA=c%dqQ%AC#AV(nFJD=-F(D=M=E(U3u&`W>yS)91IEN9-HFS^9yB;M}~BEwd$BIj091jzb_qY|(p;y4fbTqO7w+Xl@j zQgz4dHc~e4n}q8W2>~Q|2yYm5HM(KLL6Y?%g(=;&&=IL%CHZk_5mb7{AXfef#)ssmSW9!HZ`-4@15)dF9n)+X?)_Gu_Vt zRS_2zDT=NF3Q^)gCi?&&mP$8cCb8`x1=1c|Ayc-wzfa|?axg=kMP_<_h&Ews6x@U4 zsPd*Jil9gro*fC-y6JVzyu-WF_~-_Kg6IaBg6Oldg$jN=JKYLPanx4Lb8Y*@`U48o zj&Av^y2FVCiZ;#ku(rP5jVEUErTwHYGdq08pT57pwHLX&-tSItZ}i-^`V2`f-$>}< zVD5;1r^PEhUzno+nK;}h$53_)pC7sWj?Y?ur^ZMhk2Dqo6$s|kQ%>Qc_YMMr(e{5$ z{k~~3uWaT6%D_ca>2r8OCP~nl70L+_0dm*_c*24;PGCiPBCU)Q%Moa2*0#660LRE} zJ1*spD8!YQJe8HNhOAm^vp*ce_O!3+XfkgJqouiDI~+B4`jGOFf_wTTfPQ=qpM6cz z9&?KiZP|tU_)bu{O8r#fDCd8^bEA<;_*_ey427NqXxX(CcWYa6NjJ(79#>FX;>ZSV@l#HyLzdHV5r zpwzU$0jH`KZV{qts(RKjQT|9Grdt!_n5d~3@!pM6|GU3h_+lm=F0q3DkkOU+PYS@68M{xA%7xb>0u?t`SAA`8p4Yzv7fC@EWz2eVJrqBqpd}TX)!RSDpIaBa7G;fR_!v)QR|eI@pC^jdxqafSP>C1fhJ@!V57B46FKpxcOx3^q!n zcUP(Fvu4LO#-65wP&ZcC2m4i?>Q$5oBcz*T5{(IMOe=p_D&KJA)0MVmT6s|fASczA zn?%u#3eGvtP00BhlP`*7bd>53 zRs~88pKn~1e$uiG5m&)NtPY1*DPb_w*8X<`nY%0mJL ze77AOv9#&Ld$GA%{7|)tT_IVc-9$sJlV?E&rPF*nW;>jcIc=mT{c_T<`RHm%JETT% zHBF=aUS)~CdJPcTrXlHn0K3GAX2Kct0W5U7xQ(K59{t4${b4#OzHE<5I@XWt%Qo8G+g z^=!pur^{Tr7wMOr$POxZ{949(j(jb*=@|QB-f;K*Gid|$MO|nuw&D>OU&f2)>q$@X zN`IqSI5&aFgL^d_m~Ah7y4Lz6mSTJ{ZRrA#KP~yr9tnFh5}e{=-@Ioh|fQ7}HY?3?xNB-j3Vj~-vm zb~}6S{MDytUfd81zIbfK=X9H0ELE!br7{Y`RP$25j4?&TF)u9psCTCZa}bd=jt`-h zDQ})HB1(aL`V%-XQD9uiT+favOan^wY_OL?^0?ulLOAQ#6Vko>ms3aCRgOr%l^w+M z)m^__CHKH*$h)Pk_wCvKpSq`xJiOfUGbY?`^;2!+J_pjA%eEkLY6_E<5(CF(JNPB0 z6rCvj%(&sHhtY5P79{JTPl`-8R?Sbls?!S=zFN3i@cP)I02{-cbkrOw?g}lWZTirj z*=DQ1O%O988dn6RFHR^}(5xRm4S$np?6uUw>m>3DZQ*r9V{j6sG1=X++V=pADxZ+4 z=cP&!xduk@ksc+c`#a?w3@&!uDH7DV{TE{YM(cqG-~td|Rle_ytO-g(2p9HU3JdZ% znxZ8}{8*A@PV$ZB-g&2J_yP4f2(Lr(+J2ZHdypVVRUK}OMd-g{DP;qwDLQGzcy2@)Ba5AjBa+y z!6`Jn2~4}gfhfhNsfWsoP^|+?*HGm}TT2TkBBCyv7_)p7RAMzXCbCTxI-mthnFds8 zv3`#7386xF#Tc0AzP1P}W|1*xk7i9Pv#P?@-|XJyCfXlEPwk&!+wp#Die!rf6>Rs5 zYVK`-nl@Xk?`EG*Wa5f`!m=-ELho6N;rkoBIjG%luBet0Zgy6t++x zW2$$T&apEBq$f%d%PcF??=Yt129l^z0ZrSNdbtqfd;#Lrruu52GOPhv z1jmx`f4|L53@zZHnj?It=rssR1e`56e&GVm#ed>bgxX^a6|eIBetiOELiKCv?9E)5 zp66rL_w-^^QcKin^sf5M_Uwl8C-BxGUsfGsK+@iAn*~7pd=mm@s%$X344mY1+c>8a zW33OB^rlX-1&4>gD){2-*f!5=r$G?SEJ&#ChrDvUWS^yxdGp`xfUWXrolrUlcy+zt zaqZ=3LoE;b{?XVe`wuSB=;>(aVHhiG+i-0vDOzN^GPWwGxoAwBV_Q|BHz;ox?-A3>|#IyB*HN|EbfLp`W0O+YEDR$D$cH$72GFwiDn zUWX>lluDI{{(6983z=MXr_=BYdr zdjeP|cOq&gNrWL4+^GSHuYiBzkA%@v>bBnYAs6^djN#6qzyYE8P&z7K_nErFs?G3@s=Wo`|n`id6|0Vu*R~hv!#gC>M zVQ(%G($&`~>bwhLd65q#@wm!s3)#(3i}x0cYYlLVlaoz_H=pD*uXJ6Dh0hucE#%$N zJk9tUnAi31Nxr2`Z!i}Es>2uv)#x>D=LmSYrk5d;S4$ZcKG0C_vBkL#QpUKOu7O+^ za;EMkR{4!R7ui#k$RxjiK2LZ*i(dxs=?*4KJ2}0XbVzu$AYQEVSE)Rh=cZS!Qi<;6 zg1xK$Eyj0-%%^0jhtXg#`x&GW)`$+1NXxl>EPKdUtlA`5$15a7198^Y-i}bd)B{6 zz+mMoDr#`zDyjg2t{264{!3?L0vNu9t!gb9gWd1ND$gh1#Jf0z>jwJp<-wbHl&d}^Lb>k};Oa#4PhZ_^qwlyY^oETX)*_{YE8m~coi@*!%r*y{ULg}}zX=VBLd zw%4Ho$Xm&ja97i`8iUV4@e3!3rhp&^5K~%rUQ19F>@P2HF^yTn-yKK9wihe9kP5!Bi@;&b=zQ|)IPjqz= zDa2jEmHuuQg`L~ma;jHH%b5F}EY*HPpD_?a?dDt}twNGZ_oK3#wW1qZ6wV78CNZ%m z_BZ0;j8uXB2$M=!`eyQ+fQt+(4Q&>)|Jqm1guNyhdc3irNZ};W?Hy9EaG~Ys@$gf` z5yR&T#!5R!a=3awK6U_~-%k@C5Ez5{%@}K;YtKJ7UXdKfHV^Y5Y;$DJv78%Mp9VtF zaLhInq7%&?X+0-sS2}5fwtr}>PhxNnKwlH5*>^5ppxLhP4ZkS*=>vK3`-S7Trp>7} ztNHU2X69O`HeX3?-B@G2!scw#0`*V~Wx)zv0LqVUW~ybGHkbTWgH47Xc?mzYzEZBd z)w96nQuDzcv|lyY)+k-z9weGseq7YFnY!-g!aT~>$a6?F!;M1OQT_+n3H1OmOS&NH z6Hh_dHy)e9=zkyN_uAvhHx;74$tZ-Qc@%AT+lMAx& z^LvkKHAjNdSN!JSJhEuJ7CMT|R0MJ!S zj!6MlPFFgX&=%29vPLN?-jq_iW>!IlFYWU%P8dqLYH@<|HJ|85c`*>HLD-oCh-?L7==Kze6ag zWDO-RT}&p?rWz7g*q!Z|CPpET~;nPy%zXf62sFTV6~y#RG{I}mjWFBigcYN$BT zm%Gc6#JaOT_}!IKV7(h0W&aVfC$**fTEi3mayqU_s&oIgUPYD0Sg7knweEY((}oXb0GF3Y5ej~wEf^!(6LP#D0HfCYvvh1bvU$T_uZCnV z17YQAn(8G{MONg~X_Wqbu& z@G+qxGu%={$PIQQ5VhUPsrN!i)1&@#n8+u*j*tM+sfeF_I?d(_IhO063og#hnZP;{ zqOT_~V4qtJ^hndIeqUOrFrV6X)60rib_!JQ%zd4|qtAG8EwAziJ9P4TY*pr+S)WpT zy3$*HX;b$bNmc3U0Z#&-dlH(I;*jN^ItnnKIt+Oie!UMFPv+0l3_&T1X`Y6+0f)0T zK50U%qVK%nE(Am^?XPEJ1*SV?su-^4?LMxFxUUDCFIwG;>OJejk|%*bHrh)6tJDx_ z!G_;*(=?8-Jl|B06R!33ZId|JZ{_XNfq%+r==AdS=nt92jcluOTT3rn@ZeI7V!0-V zXV9WmxwU0-3s!_`lmC%ab;nS>b2{|$aRAF8(XUrCKNhsf~e&HP%(}cUF1{P^;gXYbF0FO1#R< zx>{IOU4Qk1p0zl+7+76Py}TwisQzHLC73RGL7Hq^)T{<48px1~2lpR^J^m{4zB1}| z*V!EFor$ZZ*4{`CDmPK&1MZd>>NWi#4vj1Bl74HfnwLhn38AouZQ;(h!Y!CPM_JuI z$H_l}GarSKT>SBH58$okdW}VoD1nC-ZQOT5`h3%S7WUTCIhf|GZe=hVxf6~IH#P^N ztzG<_>-C!TAKavHB4AaURf5I2&GEKHgdD4a#`4`uY`bYQxEK2!z?Xz~hk7GZFY7-` z#+$vXVHI5r6Mc_LxXv2nJRYt}RQVNH+An9C>1+FekvF>OL6#jt;4m6w%c!aI{(>6h zgm8OrTDJK;AO7u?TWZVt+h?d*=4QJ|zmM>bLA9C+faouo!H;hw9^3x1LEtS!Za<}C z4LMNbdGYywu7!vYjB0oLjguvQA*(rANL~B3ck%@gLY-dv6DsSBz zy$CDQPcFFKwSuAKL-e_wizL8I~QAVMu*-)Oi zdNPAGy%)YWdl1S_>0ronw(P+ahKx)PZT0Ynw)Sl|@9MptjE6^&X{3sO=4==@#%wzg8FGL~(_^?Z1d9UZk<*;1vEK zFXnIwgo{FY0%=HyRwhYept~ff{)fNceRbq5Fl+BO!Bm6;oKA@{WXb(eu1TpESV~?J z;9-`(S01@$TJa#|TH_3;@d0PHTlVlu@^tcSchyoOqdLGu-c)Nf>&mr7wHk*MW$jr~ z#tLk2!~&zdl{4(<05p#imTqE>exU=rQ&F|fg|(x6(HvpHph2F$tIaGifP z*000f;$iG$7iBeC@dvH&s3QfT!JNHF`PRb&k)du^i3H6;O5;}aTDFcddmmj}<#ajq z>y|I^E^%C?&o<1JE@`T#PmishpcU#?h^%y%5M2fJG$tbRL{N;IOWdoGcPZi2YU2?Z zQ%4Bv#&{>(wn#mh=RV{FI;}s2vR7}wI(ClIoLjI*iGH%BciWtjc1C}5x?ZN+-?rz| z4@7gSCzE+&?|!#_)O(ZX-PclQlD-$!HHRE;?lX9$-~&BQ?z_^wgyg8(L;6sRpAJ%K zJZr9=v`G<#!CggP^5|HkZ-u+h3XGUXQ>ri5*W?QvuW_yM-3_kty^i8Tj8fo1<9IWm zYm7r`W%Sq};ukx-weDfy1Cs41bFlLdYxarQpo%}ZbaPhz{0IHkv1Ui7M(gAWgHz`w zy@wWjP7+v%Gl=H2dG3D6ALO|XKRQ8|G~wH+Nm45w*IkKQNv7~GB~x)PQp3yVPDbJh zx>W?BVjecvv9E?9n*O~Cl50obkY)`Wf$#Q(y1vA~eAuq6pYz&Xib?M7k?-@Parnkl zcTl4B`{93g)^wywwr%n=q2o~T=8dYjGSBC*w-ZmC3s7pI73X|0iX_8_F=E>+oZ|=(98Kfpu`Iw`~_;>$1=^uQP6RKLJ6JD*-KUH6N zvt`d!U5UG&Z{e3@NEtem^P{S^1%?j}%@5tm>I_Ifn>KwBZ(xtxOMhesqqah=wczCAxk&Yz*~_)Q-6REkw{7m3HQHX- zS4^7H$*~u&YMgvL&s+*4+Z7K#x;6-@))o33^x100sUViQgSaK+X;o&wai;OaAH2T3 z#giiUJa4)x9+=%c$sU(lc^07O39IoPbdjLM1_=aLS%lX~ouj#kQ`r}sXYl%Z<3648 zn3bPNFiX4K0x)Z4!mnH2XB5*-9$tCkJXRxs_OlG;@y3Kwp44DX4JuudLyVDJW+=}< zhZ@)ZCcGtKJX5IL1#h=HB6r4cr~&0Wf>h2t&G?k-5X*3n!QUAv(4QAfm} zoExx2vy|)?a6*1ta+Zp>Js&W?*M*_#Yk3 zZ*EgMsW0w%vkSS-9Jic1;JZkt^c)v>#}=d%_-!Mc5qpbg>4`2dRKt4l8@28X`XtJC z!7qW+xXQLm0xmY|zmWQv<9@L_N55hh)O)p9VLFX3PeBrqQh3#=-dl%^2NGqSiZ!|89uE_~YMK4MM*a{jy}P*bd$A=K*8}3wCIr@AD)ZO9L|t z>$&BP7a%5ApGUM&3xo(g^A>(G->IBZT2H7~VVAU9?TrRSj>jQk_eK2N_u zBRl^nv7JG*|AeaNpvo%}l1Ks;^tn1sFk4NqyMA3We+=vvC7BYy$J7%=%Ruy2CaPqv zv?_g7FNODiQK;@*IsfQSN?3J$@DZo_r7It*tAdZX{n~?DAbiQj3h3PJ`R;U67RXhU z3<95Uz3%#Uk#CS_^fLhLTq1{KB_%cN@k zt-Fer7)TqDq61QLXbUG8n763L7<-CS4J_9<{J3}YGtQv>@ja3xNl zQh;u$Ei@uKc;&6RNFPKm5mVl@|Hsn3BC;M-pVsosy@rFt$n-thYJ!n#m0XmtnhfRa z4bF0En&bVEv7+xYIGsEPh&Ve+I`|sgMpdx)!D)myYDhx1!F(%Ca$IW$60GG5!w|6x z3&;3ppKQcJLLh6$Cbc)n8>=PJ_Rnee1&|y|{9|E$d)GKw2dC&$s<3dC80tU2#}#j) zAD$ZYJ%b_)t@fw#PldG>6Dv*?e@vam{kWmxcdXqP2$!2I^n~096SRLP+iApgtIo(< zR?k-&sp`UMs@eDM= zIsF?gTU}Uu3-p@%*r-#EJcN~+*+$Pfj3-=SK$0Md&+LKjXpC@;N;b$H&BQL~zQ>3v zv;>8hBkk59txIe;B*tFUHJ!@cDU>RJ4!@4M4+FWH-U~2laQY#|8T^_YsY|%Jgevcr ztV8WGvs@^Ob+M0Yob*gr=rkjjjfQX==e*wYJjEO&{nc4xRY7X<$d18515**5JG{1V zbjHnt+)UsJkbfDCVQ_%9-A>)ZkgkmtbT>+^+tjL;c5{GD4#z%*t<9yx*D3Fd9_R$| zn%EmYEBGif<37~4Nw_I8(Sr&g4lNzq|p-i_LwM9YX@xS z4PhSCO`F>8VZr;K%VmZI!P*1yF-^?T6W_8fLD~1YuYOSYw-%9|sjJXhZ7(wO&vJLI zpU15&lfKl}+3eHJW#ZlXF=|jnW6WevOGy7PBP z^TG6YlrG&a{#~rpS=x8Ydo&02e>9zYIMe_C#vKzXBosv|Bst}Lo}$Pp6>?TWa&B`r z$5aSK5jK_(2^EITh#ZP+4l!(VEE_V1jX8wh>+`*?-(PlJt`2|f{eC^4_x-r<*G`35 zm0bRN-d8^AC1)sj&Hu*w{Gfmt7sjEykd}JY!=!?t5?3q`B_3iov>`?Btgr>@MFAu$ zWOtB+{v-vceVqhN)+*3b@Fy7^!PW8j;cKvR_ z>odZdatSJ4gLBcvedoRFwccv?JTwW3epk|$r$1?-9aPy__(1WEu5w__>y5u$uvRN< z!XwV##_A3xxzJNW%DzB|X|>W<){+6Wd1SDQ7NSizKo;D;Mi;WZj~i&s;}c8c8#=q`rG9 zL@7$PHld!RE?AEo{GfLYd9U(e5>3N3?2lnX=~Y`{i7QtAF*#1!s6_-U`zkOpOqd~p z_^~~t-%LIP?ocd#?OSY>s`_662SL2Zpp6VlEl;w@B;1%nne%6=6w9?kwNmIoK%+<~ zyU~t}$9tA_oqn-bY*p%PDNwS;J&?B`Wt!9p8w(p>@WZmksHMPkLhY-b#;|R(m*IEM zVRST8w|70uNk&idci)viKXqB2glS;C^DhDm4!JLqYCVpqA}bb4sA#>ABx|Y-x=TQe z-ZHl?A6@KN_f<|dR6seq5K^A3k|{-(tw}JpA*(eqPZ&DZ2SdKCUm|B+gpC02^D~$> z#uhtVIs&{;oEvNFBVtaB%FtymBusVr@~^7#60`GyVn5KW9*@=RsDi&WS@G~kbH_ip zzdC!-C0ZxH%{_5gaiR1^T)LEwwaA+enWk*ngce`6TmxdJ#mL6&j0R7L>JYV3U}n(H64c`EZ177iax1)m_~@~ox@Tcl zrX^iA&1&j`s7;$3?KNu$SjLho4 zPtA**A+5C%ViUtp`QwJtYRHqxMemu?RZrCV52Fe;mb^tV{tZC?@TV#%Qp6A@QfjsR z$YU6`sNUmz0Z2iV-1X0`;vf!wdCQ0klG{2YarXeG?NMTrF@t!dpXxuYR7J8m+0Q$d z@ZlsnfNUe#pC>ta>6$Ml#;^0>Q9JJ~m4B&0vvj-(3r+pHzLiClJ3>4A{rPj_W$MCv ze4a^>9&m$ZsRcXpYssA8m?yB)I&W>-wVjJC4CiX_IwcBe_3gfUaZ)#-^8~P*rc$jA z^lKzkSCKgxeYg|U$53>D&jt8NE|_v8o>^5F63$NX_gizh1!fAQM|G#;T-j@^F|-rt zDf-?{jTX+Vb-qPeI37qAL*Ez#?*4i>)~b@fL@iROdugFh-G+;%Usl_{`@1O~W9pwo zZL^=uce9VTi_v&idEVc?5bOW#ydgG_OYGyRwq)LgL?4k?hmSA{*$zSt!_Oy3>MwgX zCb*}yZs-N)G@%+%pG-r1oC`}g@dPv}Ydg${m=xOiXwMZ!DjC-(4Yc1eU@}5qH&Gvl z>^jf0WKadOZP2z>n5-y3gm_KiRG!0jh47EiJ-1 zLDM~9k*A~uy9c7_#7sZ%WyRFP@6=^L2l_A%Tx))s`D~Me7=g}B&L>&p7@nhZvI+E3 zyw^xmTj*uIx8$!8f`gHkLaqr;tGb8CQH7N*o&#h(dO}1i&r}rN;sZ(aZ?ijLJ_=Vx z3AN&)Mip7*?%a{&2(3ZtWeP7^k;1}5ee$Cl1Es-ov}7Rpxi@DW#V*F;#~bE zR;2zC>EEuo-KIsJk6SWJ(Q^hEm~DBzXSLIKnZF+*khhc7a;^nmy(xn?%b3C;d}2LC zCPF<$_F$$W6CvQUwYuCJIaTRuJ9+?rqQ%2zj`u>n^~d@(?C49~Ntk^XjwqAsY!umk z9U}Rsal14)9(H0QcdoPEG3&OPOcXQ9oH@2yuWL4Mf{S4 zReIkN&eOO(ZozHtwt0$QNX@@Nj_Z(c%g zI?mB`kbZ^3=))H|FalIM+8klA4PKUd`!RH8)4e8NV&Dqd12dyTyeQD$FnyanDy%#3 z{<7Mi`g^$>^b}zl!q?h_kR3TU_FX2cw!~^j>9D>50A4IR^|8#?) ze9np-eUO4X-B5ZwQc>o+pW?MxKM_7)SoAwREgm^=tU=>lW0gqsc=63>(zDseYjDGo zYkHrwuAi2B1C^;$cm)l3t-0jl*!e}XAa73eXWCey!FYUeIr>4(wUAf7P}#|VdLpV3 z$>^&$z~Z&!@}Vt}i4SW`-YRnb(Y!lhn=o@jh`_JcW4TlbvGpl+NJa`h5P@C2(eEf@ zcf9gyOo(Pw6=Zwjj={!taY{1mUX<{4jMI(5;Z)pb&A;iUwnx*7)kiW0M-5+f>e^m4 zTVD8LY8E$;b6Hn-9y}@~tg}al#3AQ2pIxYs&inKCKl7pDIJgNj)f^T?>V$Db5gQc) zGj+Y#3_>nb0+#9MRH`Km{m5s5d~Ret)>lLd!Zdk6mpof2p>*>S3$E^>(?(03Db;it^KZWS7&$tDDjgH8=scHH#W;|l`M`HL;Y;rl8V z^q!WKM*D(ffv&*Yg#7~s*$<{&V9v6khDjrm4abIf={3e2yB(wk<&*sk#p0riD4%+; z+~q@vj`NRUl0&;D;8}IQ)5Ob6=G=~%XZ*aHguZ*MNFhMdFn2)va1KXI@p^jJjX28Z z7`!Iq)_4Cmu%5g${0QChJ<;YYZu-2YX7h6mjccnOW9MRlG(fWO369=UCEKs25=VCX zxVBeizzw{pxS(a*i$4lF{*bP&)c0N4{0HT1yuV}|lM%lM3<=jz!6J8!_%v|+XL4rv zZ2L7wgT|EsxA)KHl+9hgI?_b@jrvZ|1W2NEX^2*BfAs1qPZZ~~J)s1!UvttpsI2v= ze>;dsDvDg*pwHXIo>~9pz#hNF*yh>+=dK$N zeVfNq@7LaRE+-St8)Yz?+M{6Y=xic-ZSNv1Ht_Q+LsqC6igbeJUr_W({q4l|Ljojj zmkqurN`Eif-(Y{_%FzXXhGcc>U4O5>Y!j+RA{96emz>8QN1oBAs!9=f=ev1mO5Re- z8>@2tv+M?M{`=#*FTb472gmdYVcL)z$8JWmIT_gUM&wW~t!3@!B>`MaUY9G723}^6 zzL7WJ2%^;bOGEWu{)-&SA4g%>VaPbT93g3*(Rgkf>bZB3N$pzolINtkdk?zIp>|O8 zZ&8B3M0ySGGIMbYV!dG9AcMQ*-_Esp~De9e_ z)9c+@KTyBRn1gb)D?VYIcpM}}2)OQQWKms9s0$!%>F<#&K9}xqt0vLhF2E1v8fazI z>}MF=KEX3YBbFWVv|UiiLO;JQzT0A;7V+VqmwCygok|KREOWN&r;tmo?qdb5Bh!3k z14R-qa_Ez8MyJi0z1#x=Gx?#K>4DUD?mp74-gy=hVc7sL&=n#lgap=lVP6e>aUE}5 z44t@sz5(zamRjX>b_~yy;R}U8WxGanIUFa8uOG(T!{{eLd;9)AN`~Sgxh0siWxU#! z&cv2RphYC-lH`IBNgz^8pns=%jG8+8*k7RIly>gp?T6IuVbPKGsOo&MNH@bUwac@O z0t*v9*N+Y-z(_sF@7^mTKb2WSGlu0m-Ny)u7ySx0xM+VH611wwDg6h!0HcU^6`<6h z3`jjJs!=r>@AMU&4y*sCwfz7gSWS3tu8-H4hL0Gq_S^Bw)NdXfg zSk9vESD4+9cpYm?Vw?m+DTZKb!*C=o*H(o7_rO^`ci$mNy7=5$ZVnp=ij=xbCd(NW zzL1iCb7IkAljY`k$)C0b57H3s zfL4&MDCL5VrWG0TlW<@L(o1EtDl=O9(OnZiz!djHV zqKBWFRb2=F*zs4XM70*`(1C*#!0O0%cj{gEaf8p-Bp|L)_c zjTYDM;|&syJ6~SZDogPFZt|xnbw`lxuZbR{BYf~Wb4{0sF%2l4X&0w@;Xdc2*QEU9 zllB&xkDMO89J(2g$cd>S=Ufg(gT{GzKBo&e`km6-N1~1i)xGOj68-Dzd0jsh7jSBn zgcgVn=plc5RG59qqlL(!v;5~GH1bJ<=H1KyLg3)sf!?&@(DSL6?5aEOH;I0B>Fr!o zdE9=Tanr;v34`-APpKh;hW6eqKk9fXgVfNph1S=u2 zACGP!g<9{uKJO9w`NItlpOWSIk4f^EF+~vKIWQFPTgsO-@D}HG>RO89dLg>1xStj! zJ1^XXW@Ercd|B70WCuEU7*tq7*P`~Y8gl}F>CS-vHmK?wJW^oPccIMUpr zSsicik<>O(dTlAe=Tp^>Un6BF9(Y~9gqUCH=wvpUBc2ZZNy(z=i?&#^!^2F#b1ZhL z2pLa*WmV)C9j+!v`8Oqv3pr3Ak$KmZqN;DNlRo*%dWIT3HUf7V$4qvO(O%}R&dz?k zWgxJ7n_x(!$`mHV#&}3tm$!vVy;*1Loj;n~u_U+?qC7sxS#TE}p zL+yY_zdPu8HEu~C4fq;89Y7Rm^>Lp)%4Am$Uyg>e;mm?#IFb>W^xMY0+I;!lwq_=A zptZ+u(k;lTsc2i2jtIp!QOnQ{hdrZ3dB6kkla<8ovpgj)FHq+t-=SijwD%uyuzi^2M(7A#r;ZczRnRNWGCaZi4 zCyL)Py<|WU6?b>{{2jhIx1F%%||FFl~vZs(wqqmf==Ee`wieQJ4v9bso_ zY_=wxAmkHT^u}*vcX;MYSs!=UVcMFwKrU{F8HMZmD{(%@uSmAJe{7K&hv2g!<*m zc*(d-!y(hK{T-Lf`qati{eivv1sT&8gv?oz^7GjbR%aWd7%J5i{pT{iXB)jp+V*qS z(=Tz|EBD7#^>6E^zdqUU$@7rb{pVBTR!@UV1LpUZs0UUFiSuEa+nA)rD2nlaH`|C- zH7t(DnwKcgJ%_RT47IyvQS)`(NokA3{4n}~eyedZXIL`Strab1afgFu0@VUn(DpYi z$$g`|YBctPPBaS_U5P*9wmjikJ+%D7qkdDVsN(eU<){c}BZ6#Cy;pSmYv15bDEFgc ztN}eit7d?KfLAjJNY7~orba$=*>OX1>yS_MkB4c$Im&T&n#VbG21fDv)W46^TASrw z=)0ebpr66s3sMnLLRp;``z1Rn%LcPTE5sNr8C{`McYfwv6p(HtRvR!6!80NS;8Mu? zKtsY)KOLtO4>VH9Ftyqf`5H2U@rn zi|8WSV)}BQNE>t$Fz_F}O{5;ImbkCAH14XuECln}c5%kaJ*?StI(gQGphb;oVeI3a z8VNZNV#YDccfvi6S7LX<^f=-33*d}4NbLNm;f;$OK3KiGBpt&Vh>h885nD}m51%QD z73%Z}3~G}L3~0X=*U>b$u1$@u-`pwiTMgG5nX1Y1TQSP|u$ud0IAU_`;6%g4#M-ee zxFeU3U_Y*-3Bd7rF3D;Rx2KZ2if9Kop0IYdzU=^M=oab6F`J4ph18y%gG)z>_2bdLE;p>!yJ7h;n9g-VYVqNxv7S%40Y(oFd`;)39c}!Qi>UCQN64h< z4MQVfvEl%8c<~-4F#NvswF{(~CZwyRm%@hYcVAKp!oKV$4RO`(H zOQY>v8~ECqd2HYQAAwl@)2wFUq)B9*lvfqJoOawq@zyTo+PUnlL~cjQ_Z22s49vqJD|LnU?olkyD0E;I7qU&d*ak7i%I*U{-(f-;L# zk5w_0C|nF-jgPUp8V!MorS5Lfo2wpi?2KNU&h?;wT-$%+t<4A@iLbU_{d*x@b@zbs zuT$R^7EX}eHBY^-L-VBW!~V z-~h*Vr)a;j^Kg(b4cEBxIXBq$GGy5;m}58lKkHtYhekgH3z*&m+5SQZAE?~{^z7UC zJplzc#D|}iMmKz>Olgp62>NS$eO>iFFDmoQ`yaPsj#5lvcrzc1aH~>~t5h543n?Si zm!xA$N>UnUpM9g!w?HrdH;{Z&By;!cEF$8S7Ap!93Ap|i(eklCJ@rN@AQVdE z9+C{D5W*dKx<2w*e#I`I$U4JN&j?N->A%3aIYHf9JUCOdmB5|WS$}S7#cvSzCmYe za#@xX;EcYkZgiY2EQvZd>K|YIm0oQr=}us-E*M5sgvcTdv>O;rIP_9;;n(U2{NtuE z*$Wmze!KvgmV8mrQF~9b$aB0~4`pQ{aJOmd%glCVbJP-b9ZL&;6J+;dV~Wh7&Ej2b zc1H(%p}2L=^36)VA}!bK(0f|b8@3uvPhtr2en;hfop_fLYiJb708c%oPS zVBI^Y_VjPuMj8+H07N(SA4JzQS=kAe<4&*~i^oAdH71H&0;u^80O}vU)cfy{-mJ?8 zFRcSwaLH#45n-(zM@YTUtkA@_Yza=_DjV&vvi zJ&P5jT<_}auM7I0-;2tp*Mrm5#M@7GP&^C-)i|i~qqnmYt?EBojo!fu6)b4pgHpUp zeg$03pNixg)R}EIJe7C&ZTgNO4iS+th7c4u9a`++XCPuRTIhJNz-JcDzh_;7S! zf~YjeWj=Likink&NxJlMNc>_O6J7NktvDWjt>KDA8{$EAyi)ggc*GJJeq7*6Y(yUy!oWn?>6r6Ht+{3eI)QrfwGUYtFquAWvx@ zaXQwZdC$fD=s&1Crt+~9qUV^rqYxOg$MW@cdp;4tNB&g4lfn$=LJ$W zL$6m_Cc@2I$RIKC_|TltF&HSX=qw?Yu2kzkAY!Q@@p?F*+)o|EkF^M_fb0K{D=4Se4e zEVVkGsEDB!LxbuxR8eZLtszpzaN-UV@VhUbf?ff; z9?q=qEmz8^&D(|M>MYA2mdv@r6F!>TetD4PJ7#(t!cAR2Ax0v+OawZc2WHA}1&kBN zcE+5%NuKvU&K`VG=F9{cy&`i26)Jfe0k3K(4p_;1y>*L+WJ4#eo|lGy>h4X z7+ne3p*%W*i|OKIIHyp9ICR@9pyB(Er<;EjM~~UY)WEJT^`Y4Ea%F2{` z+k#?=+=x5HMnONwtvPDfFIe?K=pjEb_SoUaQbW?c4j`0v9=Mtfzx&|l`mWB!xX z^U!L*(S27zN1L9b9)c>;vFiY7L`M=GY15$=TPk&;vMCa7*Ah zAmM!MGo%|{A|Qx1I1I^La=ni82Nzc#Cs2mn6i+b7$cIJOJF zMMNwgla!Z15vB$PL3-aonAUVHIC?}Vf)|#TU^q>H>?0F!ja<67<`9ueodHG(){uQZ zYGLnRXtp{L4Qvu>tab>XDE*q5O;*|1JAoeXlYEOxS&OR4YhV9C(ZLO+g5boMjruzn zYMCe8yMEj`xWF?NFbqnF0{f+WO9ueYTTg8mlRZBCbvCn$${?bT*d@p_@6;v_*{$pj@IW%hYa(y&_XG-I4M#FrL|l3+n*CkiHq13!{lJs zJ{_xBEMfcoje7>qXkjhbe@NtQ-MFu91Kbi_!CPIb=5O7xAkbHKvVD+wm;42OsP$(- z`!^Zc^gXsAT2uCBTSmx5(xpUG`74cU$;N^Mt+?2OgM)C2aT?8kK30%eE%7xJUB9#L zw_~trPt#lp0L>OYSQ%S-pJBsSy3Bycn9OJVFWu#{j|+}r4Ao+h{Dbh54*y2%NS~lZ zB%)uci*qw+g#Kv4IBYpq%Zpwz-M2Fq?(~4e^%H`T5EnZ6ECf93C%PHkn=*EM`J&F)veS?EPTwA7ETfxP1|Qd}+E# zE!;p!x|*oVlEqvde?fqzw?m6}*5B~c)^MP})WGIBnuhmL2?-ppdJ0mD3w+aGYIvgy zn!$oeq+vr|FMnnHBVBKIVW)85&ef0Ib8&8{g=6I}x70x$Ap2FjZ#fCztAp3`87J2T z<=U?dwj+0RC3e>xC%Kr(9NQqZcTcE)t5rdFAE9uI3Lu&L>ufn@{NZ?gxk9if`VX`` zJeF1{*=c8UXu3#hq1%BD7s{O&OCjv(Ux4-*tkd%YF4ubYRAaaj92`G1m856c^!73#cbnUTx!ur!++O%+U>IY`!7M9pdy#V*IqjH z)`5HF?E*TwK8Ss)h&rn|;-58sySGEfPx$7Y^@5l7Hrh7ESK+C7Armh$szB(z>)|7I zN}b>2#4G6l64e4Bal_$G_;{V3FO);4&1Kbvs8alN+J%+!=PraG{Xw{2CWJn#BSbNU zjs;F;T>LLMIe}M?x_7>4y%9hO2sL=1eLH3fq-&axDMFN~rb1G{QR<~`GDWr!%gelY zzd@mJ8BOvZz|T5-A_ZeFPi6nD&1#mG%0U_~!p-0eS;}*WEWCM^yUr zBh&)io;T0oz6Z%)F$T$e=QHR1E3Vr5DW*Ct+L9km#n>oN3mSN{EDAO>+jab;HtN2F z>Iu`vKj7@Vi~SVBsyhP^*>ne?1Q!-JxKH`Gm;9?8zq`&FcM!gAqoS%J=_nO2NIXcc zeN@mXx>V*GeHS}MRlSw3t8DuAKZ~=dRQI}Vzinb-2JXwz{-jPu>GuY6SoKX4CL3rO z(PKxZfIYD`UC-y8ShPG$b|4S5ueds6gb5=3R!3dgLAEC7nz_T%iZ}l;c4wlRp3;=T zshN65+0xMjNX|m8?8sn1&|Sab!?!E=LHDU`-%T_3(+@Qj0k7Rv^lPA7zEV&|btsy@0nEksS1JA^61aM%C z0SYMdGS=hRVV24&A#D!7mSM^dI6C-Y~Om|9quY9w(*8fW{-P=CXyrh6jSBL_M zvS7WO3_o=8iUn(WVrV={)>gFOa_r7AK0WIezP)&MWB^IHKDY>*9?hX2RM@pK=le5H z6Qm|lPQq0B!y9^ssQLOfV4HU0^zpMX_fmfYgRVpsZ=D1dDIJkauTF8oJ!OkJxz6e~!8Nxqgdp@rFsIk=KI%Y}m%A{Sj=r&%T>Ayt_$OgEu~pZ+Xa8 z6pfJ*Gni0(7TcD{j?)V~pv%5Hd-K15o`J`V%i>u9X8ihFo~TvnnXO&i<_g>(m>oU> z>~j;NWqRNze7(#LA};o*TEF{YNI12qHXRE_hm{^fe(LTf4Y|8Hiri%frnr(+f84)+ z7NahqFm_(R5n}@=I#LEIXK@6^eJ{fx4%4a>3#Tvq2-3!1Md8)p>KBCv`wQf5cqp_+p4{paE_0H7 zLCEsdH_T`*^Z28A)Y@_OyYERxrS$3{=HDkOh{ZiAJrtqvrVj>bz8(q4I86!HOvVY( zflQu$wVrFLevX!zNp!CALVLs1x-YihdzQE~b`*z&omA{E|}lVE{Z zM!(jZjU|pbi9>HB^uvedS6?VSYl*!b57O6!^l8RLfv&M0*O%myUfzY&KL>s-ZBehb z<R1Wu3bSr(eGx&I&E4qHHDcWN>;!hi_@k z#RY0TpLK5a6h|(RQ)pK%v0@^-&IeK=kF$9MtuDJCiiM< z#FLe!!KhZOj&Pz>$LmF&;B^eUOD&-2yewGtmZcJ#b1qD_S887LUs?5GT}_g= z^yR(?_ZNk-BcIV<)kRPZUt+{8Mm}ABMqiTC_E|1a@D0STM^{aPy{GaFrh)Gf52>S9 zr{Hq9FfE2ydegcf%zxW|5i-en%c0h{WYgFrE(`rAR`Dma?Mc4k#dMG?!+%e-+J} z9{(oBF==t^wPGJVD=6-2I3AnKXq0VcRU zr!;ZjIan}_cqs1#b+8(KXD;8J@%yw=T#3MBV~vFSW~i9qPFmPd@osnD=BR*G+6J`M z;i&-mPI{|Fb^D}XU#`Qfat;XhOB|dVj#&QkusPaMWCHh`^qBFmSu4dZS?!#cTRKbj z+Qs~9D;Xu%*%=M84&xhtEgxemf)nelGKGHtO0GI_MzkMz?L8}^&If=?*T&$W_9}#o zKe~)Fg~<+!P>;-Q$sbNd9{?#&wpsN>dQ6Dp&^nHI|Y3%JO zj@B%@>zpm0^xOH8DA-Rz zdpJ0k{i35SKOO6%yjCR7vcnY~6?4JxhCYj7QUl-OtJQjHbGglT$215fQJt!d5@9H+AkA;hUX%_+ef1VFMZw`B3&-s6r zz?dTT#n2c2CKKj}|8Gs7vsifv9V@`o<6mpM*Aa;9>jWc$sT-7g&H2NP(VL!aAjj`i zU~8!obY{MZ4yo0`bnz|)_qF<-mr{z^7oO$3{glqj;1eY9k4L8K z*XbQ$?H#>AZsU9Mq*u;Xjp)-SXfd`Lcpw0ec+z5>VI%CJvT1hZguv*S4w)P7Q?0ZdVi~NLrV4 zvt!N;9xmQlUM}7~{?i|33aj=stbWP{^iqzfD`I{dn)J8_jd<4U$59^E+t1iAQ#$Os zY_}G^0p9+3e)ScQx{J?3yZsGVGVW|K{w4VaayFZWQ+sgt$3>)+9-Qic*RK7>x!vmH@!i3U=_h9yYCR4J*`-pR%pN-iV z-A*_N{NP1Bg32n((wvrXpKEzw_ae*0L0)gGB$IEz#z05y}ttqd0UEC^;Tm+G_=t ze>Bn~&6FZQg&`>9$Oe5fRb(I6UL6HEm-Df2HXeQD$FDxgy)2bb(wnDJ^v*jODmE-K zK)s&fkRh$sF8UV~ccA8yH`!2XDTdL$S^rE%n5n!aIW``iTSEE{VO*_>Iu|{vd12__ zxW->>7*hN02<6(!?y09Q>jF3=Q9=1%!`+T|YiT~8Uc6ZIdgpiyq~QVm+<=!-6o-EJ zH2GYA-$gK%^OyVSQe+2Q%>?8Iy(Uj@i}_207dI7L*Lr4{p{%cU1n8}_RO*56I#h&* zH9%P~;51oWIITB*E8gMsZB_L*ngXC+1HtYnkb=~tOV;W7`WYqTcdkw~SO}bLutMn_ z54@oRX7P6X?%Qat1)S&f;!^baUup?~q^ia6!R5On9d8hV#mH9E8J~IV8;xg+c-H6T zvg1mXJaY&3IRXFGi}RaVo!qyMJ>xo#?={#{-N#H}*BYB^c&KL^VU%b8AW2iP@>nf> zqbI%Y$J>Sro`ej~U1`+yI-cgGxqaMzPO|M=bmmOTpl8IVhyw}?+0`orS6jUqg4LUp z(=CjDr?n-3v=n4v!7?^xRuToK#LeFc5A2kbV$U?<4Onx<3i(hGm4-%8AEc(>nze{d zk7gs_N*WR|rZD#CY)zIb<=m(Uj=S^J9Tutm=?Z1%P_||64uUIcDiU8WSth4j_CT@H zDi7RBKmvJ=DGWc=g#L9m%;@ptgoY(v_*-6y!?|2I)Uw8NoMKT&id=|IrH~Z@$gYRn zDM^ctTprZMl7Ue7nwP^a?|-bBW?2)*<}tbfBnow$Di7Pa5zwF4{jK{SJZ;#r&tjY8 zD;2byy>m)1-010#kTL4c(XRm?+@xKd1{4x|)%@FCvgh2eEXkp5x1&27I?dj%bBb=V zh8E_ceeY3rtnpaPvh?y9!ZPQy%Yv`#Ze7#Uxzs;L3gr;V)x-%gcY8NDsmHq=R4x#M<0@<%kgjc7o7t(Whppm|%@Lf@#1=hqnM z($!BlA8JWg#i|WT+v$(d%%Uuu|saZwH#2WQgQCS(DM%hA+{F6sm=w`=FrQLX;mX(e_yVF@wxhwo27bC zfT^t?f2w0Z-}#4rmu>58gAowx^UD67!^P!QM@$3iWo?z9!+tkL?aw}N6Rf%%tDg7| zeUQ&zMOe6q8*4-CZ}@g^ZBoV$R$Vv9x>FSleZQW zYgM3Yq*9?6x(?zq{jT~{O(1u`aQL7_$v}qn4JrOt=LU5o3~n=IhTso0mk62Rae-!3 zGHgV9rW*2RLlird|+Ax{>#$D;zlOQ+h|`;?eSXJLkPr#*_FZR~OYXnc~`UjSgRdQMaD*G-@@4Cweu+ zIguui|GTLTH2qmEAmZ`5`z?})aCgv92#z2!NiUi*lq4`QlrC^x94AJdSRzWWgUFrK zr)Smiu@gwR$C`_RQi3E84Zg`l@~mctAD$_qOMcCz&vytEM)OKky0y{gPU!8s*v4Gs znopghe;{thSJ#3gnc%0PHpuUE6$i40EpYVfH`Tn$4o0sHkI3RRPPM#XHo4Sn8ZIwz zVsf>KzniKVfB>*ITIU7sh$2Fc3uaZUmVjT}Bc1D?b;k65WB`lf2^FOrd|>-yu$!^A z)YUR>=JQmcb03nwV%T(rTu;OAZ`^K5o8_mVt0?t2ta+;6J+k|sm_*oib8t25APR`f z$xwqrFu8#E*=IsJ?deNf-^v-4OBaqL#p6%V3VJiAw!WN=xay6v$v;8+qZaWhUWu1^ zb~AKZi2PD3rO2FP_tQ^^97-9l!pl_9vNGd9*5+C9vqC`OYEuqgPoNI!6U{p8PYE2U z34HTuXLhp(+Ll8-`Ju?;%Tl3?wCoi0%SOxc(!_)ahTuZJ)}dqCXePV!x``|EF7Wv^!_jBn4w z;7{U;&S0?%>tZzx=as*nY`#|gIT%kE7@6CK|MXF~2$YVUC}b;UK8CW9y)d`6eG(+- ze{Ai=xU2C~Z2A@>+x(IrRVOTa7g5H3xg4QQ?!r&Q(lXN4$EC#VxZwj!pBk>wnvH^MuxUv{=~D@$H9?AOugqQR(?qx_ zbOux@kkJOq3ApxM4hKfFqzj9AQKqp)#Z2tGQA*faS|Pprqlj4^A$h$<3nk#Os+PhA z7qoCVY_1sTeIp(|e?d~M(|*aqL8^Vd@=5U0P*UT}5B7hIv+&Ix9Ho(oS8`$21Z@5e zu-e?rTv&Y>SMlv>V8yp4&}bM}Ro*oz>o8rD^>8J(w=zUi_)nHfO*=No!*r$4>-E%g zhFbO=A>RQdHE;%+3pMM>CmK1sfunh{&?TWkNtyF5X{yN-hW3-Q#NME{H3YQMmz*y; zKv?~xYs^`8m{bp?1jB)`Dq_@bMJ7^XsF(hAS~=cf-q(4=YJHx&cep&lm#wu=vBQ9b zo@qhmMW`rnX8tan{V}8dQHk<={dEDjYa4(L{#PF^d6x_anq1wL_4oA{M|cz}RgP)K zw^)7E?*rvN&GLu+ha^89N?^Du&W{df9jNYLsALi9YvS>KZ)D{%6kZYP>49evL5x)G z!0S{bG*0i)9nr7r`H05bO=Vr-dFaJcBsgT*!y;UYr~%@=n38_Z^Ym{lm-8SnK($1L z(@m;>DfvzZj$;;Gn5R@&`J(i}917Z-;O!hHkA9$4!8j?4PoXO6y&P`7l1duWAYt`e zXEnwbqI|O4g{il{@?`BVN^ z<~^{LM_wIq3N2P2Nd97?)pOL~yalsZKjh$_Bqx!i-SXonA)Ou^A}PkV&mDs#4WC51Vu%EDJdFV5|pHsK3mP&^1WlUX6kqP|X(RI#S4-N(+ z%&fJGLPShqQsYUQ%bHq%2~VKKfK=oK2(fAY$$ZZBh7G!5{!aJE1jVLQq0IRxlxv&6Jq>5;1!!sTF71yJ#ZaLC%K9!Eri{0!-rjhQn(Gfy4|)F8_P@xb z?pfSo=a##a`0i_ts0P1jx0n{EMpkF`EOk-e5+#9hJ_;|5!0!~t2RVNvb^Hl7#*(^K+y25K8_T}AMOh{e3UA`LcRvO998#>>g2;YC-464akIsb zYsLm3s9CYE$);;NDd_4DKmisK2R!KiXnOZ}rXTnJ-&y1o%BwJ)goMhO%^?aocc9E6 zmE?TbnA03Xlvc`_S#n4+ggMMvQiLIfnKPTPVVKO}_k4eTx9=ZrH*WmF@Vu_;aXqg4 zqYURgP0~qhw#dU@H>PMa`Bw2zmyVtEjE#Gp3Sb*ZqKrNIyKosLAY94)lVaht^O30U z@xN}9&J}LIwutNpzoCsLY|W2^Tp(KUDl{n*ae(W`a?b~KmZ0w#936X4K?%*PT#Sjl zx1Jk)D4{>Rpgl~{!yILuZM?C^E2G2D4J6B+<)9iVhxT*ry&7sEujiJ{0+Q5b{uLf- z0`R56^P8*(M!>lyB=v@VaxZ=RFZxscWLYmQ^h5?3`Det&-&<)?1-~L+s39;*zM}Hb zx0`1ngRCu}WSPq%s!U&f-Nkl*8t)*_HUP$i(^MX6w=_m>oouP{2zt;90`?yuyRk3i zM3}A+dou`+@{NP5J`pQ>{U_XZDXnpWRTCut4~?gr0hLac}gr*@Qzc!txXJIz;C_&nVyl)9B(73~5j|U>0#$?*+w% z>)n#Pgum}Uj-GdVb+O6F!2UmkjWTn0dRVWdxMgvQt$rKEnr^>ysBm{#52MS5ip*F? zoPA9~Sl5d7$cFlnj~8~fU)1Zn2%w`5sj;x3e~Gep>;E>GIpP5e1zk%yGjbkl7Qtv! zi_FzeOzg3qAM6?4^;iZ2AHJfyS)KEl=E9N!q+CM#Q>jnt1Bd0Y6W|0DzcXDUz}1Dr z`7lEN!RP+#0Fo$p^}^oyXk~>U-dO-H4Jpt z&&5Dt=4#7N&*yX}iO(8Z%xUu(Qa9~S_rxgKx=<3sVoG8p)A95LQOe$F$Gu5*oqR8r z<049g<6fPYp5B)YcnQUVMp4ea6K1JW2VqV!u*c$dAi z{Ug+&En7@(h_c&H90Q$ z>Zzq!BliXWf~DQId)pOh3w-+M68oN5fB^s+Q}#H#I2+;Ux&2(P(H{__>&i;O%9HEP$8)_pG3D?FGE=2>8;&4}X47a_I8LQc%|}HQ~0m7y8G~Rt_VT1H~P?x>p#CdWc zh!-Bmz^I2)KwRA~7``3if4s zQTMWDv_FEKy~q3igyxu|RXzGot>wD?4@OsXS;||febO2fz4z;pWTB`d$@cnKOlrH;2ch7P_t+rDTi=Xj3VDP-dRNN0#c|5Z zSYRUj31yue)cbs`<#@xem(*I0zhIf0DV$sK1u`aUZS~^k080g+aGpm-zs26P@cS=Q zNU{Bid43{rKz3MlHvFot6A5nuTp$+eo^>zVF}(u`v(7ZtG_JcZwj7x~@rIOmJ5nN8crQfTb8AThSuoslDZOu4mL}c6pLK;xiwZxLPX*u~U6n3pI z?i7FnzGz@=wU-!Gvz{YJVsqKO3iAd&^LN#J=A2-w}xF0>26XZ&D}O5y;dUg z&m$vw)_9hM2)ck-6O;`s;VFUym30AlCk*S(N#*vYfXqH7zKq=A+v0wzt>wZ`D0kAf z&06<9CT;SUt&b#8nKPoHQd{PuXPPUSty1TC-HFst*a5~BRFe59Wv;<+&kZ3qc%Z}2 z5%!W|Qp6p8Y>|Iq5H|PEl#39zBAHO7hVfbnzPaVP|0}^Y;!)>Sy?WRGWLj4KJKSuU z-yJ)6vO9SYw@WLQs471^0%(wo8E`E16%LN#&^dvuy1bfeJb3yd;jZkkQj+gmUy9-edP-`yE)Q=CF2M>pRU~<$I9cg-LtUrG{E1`mcVM~7-DhkX5U(;aF$ zCJGj_ilj>c+i&Oy6sbX>=I8N0}Kb>V@y=Kn@n6@qO#Y@R9yeKmEQzMOD0>{;WQ zi5)$1JY)KMyC#ZUy$V^>ZGhl^+~1iW;MdD{Z7kmN+b@aDyC?`ck4y|M@W#IP>+U5WyV`&H*c1AAB{4{&uz z+5sGob(E3;P79gQ9eONfUvL)$dLTJPI%rp)Yp}}{(Uc-M4-{-{>OMt&Vy#*OQpA-T+|A zl4Y2414k{KGL6mB^rJ|{DJJ<@6NS_l!qk-9&~I@@O}93HS`l|S51%-Q9g-U_HC-s@ z^E3DQPP*tbg?ZG11<@auQ(nUWy82L)kl&M`{o*jku)C0{-{VWE*WHI4%?F!=Br3`R z?yo$WBxKw8E>?n1VpuOhn1<$lliibSdk&pJECJl8SvUe0l3_>x9_gX!5~o?A)D?AT zcg=Sy@R;=bBVnuk>9&uhF0Rmrx->JDANp(ZZFzWx|8%<)_$^FCUvV`uN1P>Tm znFs}v7*g31e7O`{`uU1-0H|Lp|J={O&_p#^X9B3W=lq=~29t)~D1QhJ=8bk<0!-bt ziAnG{n8(^wC%{N%;KUc7<@SCBUhulYP_0hK)Fp-CrR=Mk$5g20JY|)2KguqP?_4)S zJ91CH-&q|kCf9n>%MEN*K7y~H&9~D&y;Oi_C{tcDD!r#&-c#~bc&PCQBl1#@s`Btf zfWU5ROuX0VwWimm)_7?s>o)PWAT?oG_L_mP2(nVL=nh2Qatj#ICDM(yzO{4p@bDJB zTu$>|)AQ#V;T-rBHp6{SSSoGk;@-7C7av@}hJcG-0>)-9-hyaAE4?&Se#6H7ah?#T$+b@q3p%S6}Pn5-7cOmy$ri6+d6;e_F}={l#Wca;EQp zk+_wim$U&B{oyCAf=wu@BHNb4Zga;)9Td`(_~B4ZN6SR7y@6`HZk8uTW6Q&QWi+hM$mwrB0Z!j-v|ph-;>q))D@E(=?<4djxCdf^>_J#08#f6L4V(W><5H{DtsBOf;K=XP2T0$ z6Hz|mV@F;yt`i657ZB#(t9r1OhJj4SBD3<%+;uyy0rhui0c!8LJ<;e$N?^3!Yv#1} zd4DVL(cMIfjHrRk34_+T!)p;chlUaE+|gDRDrXB2^*9>GUyF~dXubH@{-Tv!_B=B< zkcH*o_y*r$M_1%syXwGHh4AWb;7U8zjAL+{JAJJ3dQgEBh^Kz zEYBZR1HdDDgMaB$t0>=A8o)Y0%20}lmT^ktyR|_s-Y(G2{DD)nQZeABtKY!7;u2S^ur(hwR4%}Lhc7F}mv3tY(Kq)uuev@}m5`s)KCNS1H@aqchJ0t) zQ98F8sY}917JBI-EHOvw?8xd%zeDpXLFu*r2t_)Kd8re~yPFNoRC6ZSn7;pCms6()0I#xW`fI@;HdL z@I-3jKphKyUqJX{4)b&@$;+|M z&cb8d6J$nQlw|r3M840k09Oz9nES;b<<`?jDdVioW{qW;^oWfH1;^$mqQuqQHg(-g z0Z;bCTLK>O9A)Y!=BMZX7`SXbFSp3pEr}J|jT}`QrRRJX)J4rZWTiw(xlBYjiU2WX z02E?~O7xQ&%%W-xPx5ZMCs9=9ez-e-_rxK9&>?d?!VE20P;xu2Z-Pc}NgcJswo}ox3h++9bf}t(5yWFjwFWdWv=Pf5pG!i1p#CLB1yo z(}@5bLK{_5elq96%Qe?};ibSUX5KPwpZE~Kczxwa>twbZq&K|0ZAUcPcNuONNY_Jv zaK6G~%R5e2vikM)jt#A_x9M7Fnj)fsBNw}^Y(1j-3z(5VH{%m~di6oXWrGYB2=RIC zkrSP9RlkjuwpL_;;q{q!;oYj{fP2gWklJ9{9qW|YA0#ASoc>u4owQ>JbrJ_YvFMe z9FGFs)3GW2e%!0kdtN6xIKe2{{&_yQ;r4?wkWB~kDtsC-_G$Q)n3l&tLTBq!C-q2o zOTEJdnadjwwxyi4w!MDu=O0NV{c`zOgAmB+Y20Xwxjfli#>S-ewOe1mzEM3Hw|jF# z4}2fTJ78D*#Jn%qyNvW^D`9Pn^i7Oc8si@9U;NLRdRvQ_s!hQLu?j*!yjxhL0<>N- zvzzF~P6jeie1XgOND=MkuL2%LXi`Zu+WIPrJ?!O-4k_0I?zMsiSn`8FF`vrMxOe)e z?n3JH34?)~hv!b&B4zpDQ%^#Cfm{{T4ZsnXw2c%Zu*RJAptDUX$3t_+`~NLL9{ybW zW$as5hP7A-u5!{n0pShx9-PX0HTfoD0Y|w|(k#-j*7eg%@uqV)_ojp5JEB9}J}ykW zM)PB3^U3(NHThMlF<*OAv-y|8Pv!$o9C<#IMUG`VSA(X?tNZZU7n(WUAU^WTxU8j( zwCcWx36#;|W+7SM$WYs>_(|(bAhAK6KkQ54W_VfKbyH$3KX>XS_X2POf4E|M>S@Y1 z(E$netrmW98UA5vGF2~~F~%DNQKnVIraunzG^j}6XzagX%}wP_a(KY~QqKl;KHa>q zgk!59=2>MjuUd+8>hl!9G%uQMta5tw#;-?pWuOli!)#Nj$G@lr94m@Dke8M^#+K(p zE)&%QZWmm*ppEvz&vg-x!)m?OoagUQQ;jK(TkJTv{+sNW0EOabMp{giIv~C`rsZ2$ z3ogE@3uThp#RxgP$ClmMsZ(BeN(SGbXij@cTZ#~i%;10@O^kEsxFB3bkQy2$dH%qa zr6Pb}jR!q$tc4N(0Ya=a#~eRZgW>po{Cj{5q2#GA#GRP9J;A$0McgL)>S@P-xPjH; z_z-!bvHHD{8~xe`1dy%dCt#Vh?1Dh$-r@z^Bqr9F%k4W&F+g z+?9W{t^8=wXA-H#L=DJbWM0?!xwORur{h%Jp|Et}A=|6KJrW^82=8#f&kku0V%LRA zv;{SY?>#1FnNH)ql^~J_b?iX9(jYC?vOV@OWW_8VuHpuos~4sOH$^uqUFit@J3$5~ zIw>*62AiT&EKAm(uW`_@xt-JYee<~N;rd#deSHzl{@awpkz%E9D3V7fQ(k{~2w>i| z0Z-+d$LkMg)LK61#SFlB_EbOZE(~|CmzLaG_sB3fs;Tjp0m{5CFi89_WHN+<>^Ix; z9|jOq&iF0*hM>R1<8c9i$}ruS*KN2G%)Ql1d)B-2$4zPSVEY?B!GApA-ZJA)c*e9g z*JwCxYocyi`!#b)`?Y=`;5huM-vBe7$qfMlfb*x-V^LGO39U_j0{IOpF@6vR2fB=P z@|&);YZX@`dsqvb4hb*TKkqXsI4t4vs<9Yw0RXCl%F$lW8y~yInh->0q+#l^@;lmv zJwU`sjRa!YMpZ$W+Xw)L7i`;@4KdTI7@%wfZ_E7dGIt z^AD7v2V@{}Zn>8&tuvCf!AleM`ggicQ(>tFttC%|5aQ_X`V0Br%eCd!^MK*=-^`WK z)tq>?Msp0{d6FU=JuAcc9(AO9JootPxB&)_2Cr!xhlKI~y2OjE|1jod!Q4PJt3D9u zcftU{$M9FNz(l=a5Xg>joR3_g*mrfLuLmq~IrVV6V!ZiWCU5<6Nk8{!ZHjKy1B#!R z^ZYMZGv#io2F{D0u9r@#D%Y_m*^rjJCB;`*|K%ns&N{SDnmFS@v~ie(%bNP&{dVmL zt4)BR*{U9e=z7Er^H^5a$`zoNp2!=^-QO4a6{_?-(DIe;=c&0?4e)49BY;nAR-PV| z?xia~x6(qi;%f?sz;Rs_=%3@J3D=JH)&VCb!~O5UP`~qG-g*{4b?=}1LO4~%otnvZ zT2LfHvv{y%y$*V5BW+DA^_E;glsZzhjA=0&{!s2INN1Rex|jO{*~Qp(?dOYFX;T}e zfx3gdIgcg-9BbVK?0rEaYI{qz5uuE0j@8Tmwe+a%RdcPM`+CaMdhiFi)~D`6n3gKJ z`BK6h@S=L8u_7MWhY+)7ejT%3xb#AWp9)GPHM3)M9fb*#LuAlB$;V=!=bvMJhVQPC z(6|89d}Di)@NPu#OA0mxU*pPzwzIBUNg)=S?espO{(?ey6#_D@+8f*3)SX`DppJea zlS^iN0f!2WhdRYrJYC8L-4V~^Zr1h#2j>@6zu$Sn{72-bXVilx@fR^-DN52b_J;O` za=qB_?!j@YvWIW!CR_J=cCtVD@IhOPemhB&I(w$LFAHQZF3b$URzMfB0Wn>4nRdE8 z9Ib=_W;gRZvHo&rzga*ll6&KN-{!)D?H6ToDAzRmY``%pnGa4_$=6C)iM*EV6%{F9 z4~YDyq>0Aa7-A^L2!>~t zyYkww;D9zM*R-Yhj6_9gVAm6S!=cI4g;%nKPxYYRIxf(7^U)VURWXfi5mFSszZR|4 z`&^CFqhxaoLsw)btI)+IZu((f3Tpap%GOj=*KEU)aJSVyzsV)5c>xMY#R4hyVCzUgm8|2dy$p#RSQGe0kN6iS$eU#n9LOGb2>p_gxA(f zbi*JnPq7VN!@kkzDC${$A-9mUq*$XX1sc#VVtoTV1gGPO;$JLSQ!owqQz@MEQPw3| zEHIy)w+Gq{w8C@ra9T_*&En@oR!r_2frX#1Vf{J-hQ5jIq2~fgQrUHB7h0S7|M{r@ z^eZ3#?l!Ij1VnA~vyo?V%WC1mK<|`G%I2a9 z4RIRCJil>maMEkmx0|18yrm&7_h3!l3XahlOcJ$YTZYJ=t~p=K$Xq#BI%M2h6GU-@ z_umj+;l3x>B>xtW$gKoEUcUCCC&u-jkd#sFA9+unABA%Op{_u&kjS*|`0_DI)BzyR zPvDr=pQ>Ek^A*#rW0JNj#}3I$r7JxRR7*Z1L{3(JbEO^nR^3zJ`S9yyqy{iUMy;J| z%y&S=HRjt`2kh?)G~PMin12hn-rO60uHUgk1JdcAgNlEXMBi5?#{oIVcR$tCnncwS z)7ZkiZn(F3v4V*|$g%_|Z;5P*@=N9a%R1w?Oyc_kI&(N-v*0Nf^hGzt{j}52&Lg^=9<+drzLmb9;f&Ezzskg*kz(-~HUBulu>B z;6a!t?2!s;c--3BaUfLkxcNj)-M|wG#n>f&>T)^5)GtTkswQ}P@H#3_iDByU?G$hD zrC~R{upB5<@Q?KqKS?hSFlBohWT3h0>-@vw)AVMfd0vEeLn%&$m^U`{siyo@Hw)IAE zx57f5^|=b<9lO@}@V`&u0`-%8KchYKc-%1(K~@D1>_FDs-IL}cxC4uwD|xghI)md5 zEfrEt8K$4Z-?nU0l-^7kN-}|V0jh|=X4eb91BaC7l!LlpQ;1o%yhosT#Z^|ptw;RqjeWXxY0qi)VJVjgns$Bj5*C>1 zFQ;MwVDg6nBev$5i;*7?9CadN*R5xYIjbL3BTf<5vb)qt>M@6{bynubnOBjtCA2vy zcrN7F0tXdpWT0tdZ%Q=&M{&}DD8$f!S*a5ELxSmZ!7Q^#4K;A)1dbH?k|Na4Hyyhq zM3BZtUCs=^vaQAyv+v1iS{e2jHvZPHd(!UA?P2**F2#y~F|F`XMQnv^zmnV9(0oouI9DpC)ROz`6@)YDce3Da;<5eCt@TV{@} zUT0j~&p`Y@!s#alT{^7It!MjVwI@@r#chWd`;+?v9F2^pZyOWGso%HCG*V_2B~3O) zQo8*QR4>$DGuS!@L<-H{aeX<({V!;RydAZD^!2dLV z%sTFjA39g4u3_u-xIAV-XX{)WS{=L)=5L`odCaj|>H!DQTJ;3&&TL>lV)Y}gs7gI% zEp(7N*0#z?;Ke6PN4aw~G? zm|i%O4ZB+cir7tb+MV%{4mo0y)=j28y24vVUhD7Q5~{lnJpplUIMo-6YSpJN{ z`{qu$c7mffzg`rtNM_rU_44|kQdl=r*F3dO%Bz@Fb=>&p97ulTjAa212n0PSqB%mN z{{aFvDl6?54WxTN!8RpE_v;IM{!vt>y1vX(tfCNF;S1@@|IZ6hfLuMo%>UGy5Vpp+ zhX^J9u>SPqsnBBLt*R0%@4zX$*`!Gha8`bb%PF@4Hj%NF=` zO%?mZQoR?^BMp+{PP5*yeuywzUYpee6lWMwZ$b2T!*s3v8yKE>t}Zd81&pb73xD%l zZCd5mhAPjNo(w^_{xs#>XF1>rSOtv-puoaz4W}s<+3shj(_;VE(mezu*kIa$_RqS| zMRR~0quN(=6K|eo-UvS4fOPPdt>6nS{#zRue*Nt*OhlV}I#ok1*Bt>e4t7tlGr1I~ z1GxXtDXTcCr*(@L@Z}=oeIYYX>@92JpaflcQk^wHjwzi@5(O`N%)_0Gb9} zet>l2B>(JM0EjINCDkhc&x!-m*YobUIpxW(1bQ%N!5_>N(25w%Plb5CE=Y>PZA!L8 z5bE5H!2Qh*gOPJirdniBnCa#xw=T^$pcZ&2rFK(t zFaUUtF9>(a7O{w8Pva|-u+7p+?qM4=u~GN8xP1*E2Xl7UiduZ~^6*075c;&Dq1rrv77a0$ zE7shyK31qHWKmF+uO82H%Dv<`+Bz({zgY|L^_5^?!$t<~*Yg0>Ax1@AjLf_9{Cr;9 z=~19o$qu>Xyp2qV2Iar%XB_)%-Jn5NrE1+U$QL(2aWvq3fsJ2w#KCkR2Xd%3z+I84 zP}7)2bqt*f3=y?V3iz{)`uGj8KvX~IwjERj!)@J|S8ubP*#thHRnIr5%c8_1k7I+v z#ecrPOP$@`M|0;&V)AeEQL{Lx3=uH>j)6YmbSL9Y=xWM6aYB)kF0=;P#pbjT!M^O{ zU;*6Ke5Phr~&GMDbG`VBO4)`$8k93BY%+t;{UK&Q)xSS!J96Cu@ zdoWB@G|y9s|7-lrnc^AZ+pWk;mt`X_eHI&93mM<;U<*r%gT-yxixWr!zvox{OgJF1 zl!VY9pq>_{vAxnelUPQcJtCxbTRdxMGY@ToS7Ix8$YYwV5Pj7Gd zdJPN==)zPtxsB)Jd|(H4RQ~PBho>5`c4(S@Bg9WgQ{qH3fqS8;H^`i|Eh#*%XKd@FR87{8`3NvboSARn+E^Ku?S|NSX8i*W4~$4=t0jAByqRlsFE3(Mvh4{nh%h_ZW->A0 zNbCFhQxW0(68g!rTCQO3wr)Cez#giLFfWFFftVI4rt(HhlQMSJaPAe0s&NoVI&*7i zVFw%wz|PNH+z4GYAk&VcyII_W(#c{)5My^yr(tTs0+-v(%}3Ki6r96lG9+<%TQZ#k zFs3mEg3|1kVky}M5^sYP)-LYvOnl=#Mq865AN>)z(`RTMUc zge<{lD)cQ_SbusuH|dc7kD&GIM}uJz|7m{xoZvq{->Fz8cgz3Dojg7a^bC3SpV*W7 z!=(A^#Qnb}CL3M6sJRNdA620_$Mo}k z+pu)xf#i%tNZ(xy3Sl+sI5rmZWMHxF(9zMkat~vMPSgA9J_tC9wa1g?6X^le>>BJT zKS%pG&12bKk~`*4(b^jTSqUcVX?{J|w7K|>S2>V~i|Pa-wINrC695ou;3a!V^o(+q zFa1dwyAE;YG_Cq4WD-Gd58jMjNM6qNtmx`m`RaJvNpvTz9=>fDF*g+mCT>UBgzkzb zlbnqsdtZHCl{O&_ifO?k*blm`KOV>*MKRCr{84-S#P$Tbf1pG4CT~?0Tt*{<{sVS@ zdCa+*Q+EaDYCo^B>T{{U&*Yhj&NqB;Hz5L5+}r#j%&N|7mhpGu`6(7N|PM43O~Bq(EN}v^g??UTt|6iqfO?0M@F)ZlX+zWeErcQSutPV z2t2KIKZl3#J}eLY>8)UFXU=yWdim{$W72A|=Tps*^Y~KGxMj*u56@dxu;YO_(09|5 z3HwXI;x%wgWv$pvA1C&L<7{NZMR&yJM_r zpmN4L!6ljMBY(RF|JUH15!|v+Y^b~zUofOH zCGkAQ>v)J|fpw?JRx$gf(UXA0Up$!mNC6EEN6a<2=w-@Dn{P(Q0t?u>08ImZrrKWo z^OZw}Zh+xgUltuW`V9j+8#xcm7cMpM87vrkBZSzrb}F4)v056H)0l@`WtMOIz@ zn`83vK7F4bic`cWqE&!|?w>2#yy$8jtl^zFW?6S_#WxkJ2bJ+$pQYN)fb&BdYk@^Q!x6k1g9808E-UYiOrFxpz}) ziFuaC$0p%tP$Ph0DUGpf+a={&=FsL->%9`WmkUJOVqIQtY3HA|%vVi0oG=CALCXaQ zt?AlvDzxl27cqjSD8Xc7LoU%xXwN-T`x1;WaGD^alPp|`#3xcpMX7YwvTc(JQ1*DY zLRNxxU9j=^3-WrX4eEx zHMD=6LZ7~R1qihppq~*EIWUsE1$gtjnxE9iDoxTYXCzxAKsjES1}M(P$9qH3*tN;d z@bnv79^zrYU~w?$-H-K7^I;lozM1{*tjtJf(Pc<=<<3U0(H=Jkym-i|16_6`dAZmH z2;*fZCo7SP?&AT^%Bi()IIHs&L6<*Ij+#~0Gjk?84%7vy>hoig;_S#kZuRZIhWH#5 z=(iC9Sl0=gyMHD@8WV`jKmCt3vb*j?E2|Q`o>evPUDUYWKWoMjwtNMotgjG#D8k+x z0YczU(T*NmeFcR*lg11@?n6HmAyfeCc zp8D#8xU~r^*#MHNlMzhgr||rJ)!wjnJl7B1;VwYX6a#G2`1Cn%MXM{CQW@#A_6Yb< zHd)MxQ;V5OP0kalB3r|g z=bvfho93AmY6pNabT=aW;DzIp0x*{!K0^U!iB4>7Mw3)mn^$uODvx}3ny8TdzFkSi z^p^uX>-$m?MzW29vzY5Ce_tQm4b=ShpxZ-KO_|Jg)TY&3iCamm+MaX+Y}fgR+RzT* zrIVho4_^7NrO8d)-Url~QCQBB#|Bmpw&Favi2Ax;YXeN}4B;8K>NIGsmk&N01>Z#6 z2wybJGONtlF0+O>|ZPp*^7M~m|^rCU$2 zHL?T_t7D%qbvoA{A$2U$c|&}sAw1Of@Z%UpP$`>J6*xMuquxICEe^10#i=#w-DM-Y z?p=<&1v0^)UwTJNU2174QEe9-=~U++VFh)VSIVVZLHhcN2Ew9rW1kG=I(4>yNR;^E z)jTcqYie-ofzU?yYPhyVRBQ;=&5X|0U(Vg^+K?xS#Un2f4#XQ{bVw~g968d2uH7E~ z3-KoQ@G)`qp{po)X0m)};vmSNP7N5>r8-lrU*9edi)Hkw`$UrGpVTi^orqYTJr^;X z@6zT@JM-bxTGSz@CUIX^DOD|sshPdbYs|b=#9?=ab#B7LofvDzm+Ty|{2iuygUe`9Vh-F6a@F}GYi{BsR$6g(_){mh&5_+|Oqx`_m> z5UJ)1a@VvX`H@fLY@?q3r(G^RW@{Uham-(_q0(v?4Nw}p>@F@K|7TDqs?@H~c z`*pVCq+_WMoxN zmWuOAD*9Je@$gD|y&JSa{r++3sfOBxvMTOz%kn$gmdTWVO48R1h^J^>YkBe>bYqWj zxnx}(o5{g9sr?$|Sm2PZ)-)~nL=V)dcgGH>{9N~kMqU>vb8mIf!o+V+GzrB+(se2f z&yl|2Lzi;Bu;mj6X{C%xC*6%E|I*ZdORw0%{2ty>L|6jhOU`eADUlZNf1M6sPy1+6 zCd!?7*|zcq*j>ko4N?`d=XjSIByajh#hG*aXNISNYk{p-C0{%?nJ35QqS6$}CbRN< zp=1Hz4D5pEp!!E98WLYRYg|264jA5z;pG%tbO`%ml0+?!<9TG;L?g=7i`f%nTlvND zzVPcCipEt8UCu^8+*sHD|abv2vk*KO+2#KwhT8hhU> zNG{-*y_k)UuXcsMeT$;yvNzY$FDA3BzW40Z_bc7m7+*RrPkUwe62J|*b3n9x(EKBv zT#dL;7lRn{g5#OY{tE+N+}Rt*48ujZiouF_VB_7Af$^uZB%+ug4F8QE65l%n zCU&oU-jCXMe2!mV$t@=d_S`LB_JNI!YoPMjF^M4{>yL^BE8g(pKjq?m&31HOUmYf* zs!98=_X;SzeGeR57pTFCC|rvm#7-gW?g2W5>b>d#_A7_I_S4db>9+qW3#2I< zB@-P7NMTSHD{}Arlwy!L9XTUE)w!1>Ozo^+%@^!D2=Xv!U2SnSCF{QEr9sa8S@acZ z5~0VPkp88QW)vdJCa5KPx<6L-}ds@YqIZr?Uh)#!9Y$+#p?L7@#f0^15c%IlaIjV!N4^EI zxORx$Jy@dU+WTg~d< z8K=v$i`FNxeI5CszH21GfnlIGDGxi9Q)V^ef%8+z>WV9pTetZq1-g>oZQZj}7!Um9 z6rjn1?p$ffx%MiDnfN~#0p%G+l`#GTVv&E;H>&VcY73Ksul2FE0-XIv&sHA4)k^`G zxeR##Y<}d)5IFRFg?mo%^!F_@Z1_6*1<82*TL(BpNWFmqz%heCLXG{48V1Ba|7rkm zfjPo32+H{sRnTZy{57GQBR4tE!r=JDaH;}fH9C{;vA&@Xn^#%B!RQksyQusAvTZ#p z99!zSf+vV*MVs97NxlPDe+$x?!($PC+>tpaK@l2E$z#fXxgFhHdx8Y=-!^U2I1?MF zZ7y9gKgN_saEy{;hX3-~pSE(50IRlz9#}q|j+$ocS=0PBeRo=AcS`7&e#<+i_Sn+K z4~2-1JCr~yQU3?4d5&HnPq#Y+RUPT=L043_k!04G7n$|5dbeehM5Qcv12oEp&FRxe zeTRL;9ufZ<%&sO`8MnTv9%Ne0;$UDDhqPs!JU>C5&gZ?2>{K-gxUljt-HQeM-;0HDUO_$9 zIRSPyyhAFg7hFgh#vr;&`O{2D)O?FL$QzO>|s)^N$twBT-uUx()*y4st`uALtc`u}&;-HIQ-@9kyH;t^ik9IYsq1_n+ zcd-=$Xw})4=X>D$*CFXIg@=~`hjVCOvKh=ABi4nQ{n3qb9hvWRFk}TIENAxr^9_l( zH&N|!v>PDOS8$qL*8Zj%UGBb>jTd$H~&R&R`P7$uU$wENaTl_TVzWJ%mL`^xO zjv`@@L&d=eB;*h>yx>tALUO=KRdf`Um2HfUjD)Zz&NLyN1gCIVyP5qpkL?haCGfVV z({xa*W0uqE<|IAUggXUz6S^daJOh#*X}iZlp)gBtMP=elYHe-uZ(v7mnb~U*sDB^u z369*aAG?kHx7#d^vDdl>)T7|mBLR^8Y{3ZN3}7+Gz0~`#Zvjg6oHnV><@ago%H@Dx z6M<%!qeUm#kgv~#!X2Jfw)*~e+OqpC864ZRBw;(Y$?+w;n{e2{x0RwaL)g%+5w^s9 zpR^*1ksvd!^K zXZ@rjx{Mp8d(WJ&cMXZAzoV@Gvn|Z{fS2tb#{z0dY=aTZqjxGV#@jx2F_r?55IO*~ zeAb%w&*y!e?dcIx&y~L)7C&C~yVBK?z`t5n@uOwWVHLQNJlx}1t?>IElkn`Rn%afx zs*?|e2-P{6H~fqu&G8><0{osxBJ9GWmtHUm-q?u;;R@=jxx1XcJ}d9PB#zK1s4wG_ z{px#aK(bIR)Jm)Fe6B9oeX~i9YfEHM$qj__Vv12p*C$(*yPJ9bmqb6&z)ZWK-*p9U zo>k%y8r5_|t4=&jc9SKYF7|uA%S$=l`K+mxyvx@wZwGeP%xnCGPms^%mATYTX@6`s zOkUo?a1BFkw8oNS+wEfDmY);>1QDV@{^R{z>Wz2zG?Op9oT5DYB#gQE&cN)kNRgqm zp~qZk>9_9;d6^KyFXsb*o8&~>Ygc2FW1etOZH;A&f{y+h3v=+2syzUqp^^x*LX;RU zpgTgD3V(P{#_Et7tDW$`spdoA#5mDxOTiEh1SaoYad6srU=GDgek*YRmKA+BiM2ld zJTKs_wYn%H3(6{e{AMz-An5QcIWZt^JMF8&QZ6e*S#=;I%8J6s-3Hka-#tX=DJhZh zJnjT-E$MqE>p7M^5kQhp#+JH!0#wi{n$Ooffb=^6YR@rNu>;v0Uu3=hq~5;SlCL{T zf8H90bcgs!=k5kkUdaLTl{(y(G<*7<5U_|apK!dhYVoZ^zCDOz?=c@kJ`>o>G5UqI zwJ4XnODiK}!!15~EuQ!tF7cLfxx^i$O^!T4I5}{a9f-bW&kN$u!an5*>*f$@oRivG z(4HL}r!;yw;w1SAKJ@VYke5I48pAJ!!65L zZ_yE}m{!Ykd5i%;LRKMVBT#iXqw_BeSdEsCN|dT1u^$`CdpjG7djIFV#H+Q2*T+DK>MLgpbqXQL7P@Y)SqBD^qG-)6>7N&VGa|3kxo z&H(n!Hy+}mJqL4>uyItKPaT&I(Szyt^8m^}MEOPRSBt?$>m_}CHY)z@*x!V|loJHO zZstgekrxN+ucHz>bt4>U>cWR+pqsxQgXga`oZGvz;w4U)|7;~+@v!lfb-pBK;E{Eo z#ZwxvJj>_ah%o6Bz>WNVWIl2w@?j*$(H)&v`KS8khL;?R4vp{=ap2_9gs|T=# za@&Z^zQ=3mhm&vhUU}6G%zW`t-Nly=-^qeH`Iea%!=hkg*#F@dmOS5rYP^LfYOTFUJAICwTiVcuZVE;Wbis!N==Zo_ z2~#GUlS5*({XW0H>N_)E%ubl$8Jmw z$zzczQ|8E3v(mF{CTj7tOI*8X#!Ab9;P=mgdTitv&J7cRe`b8B0VetYsvuIDXre1wH8_qtv@HShlZ8InGZUG8?dsPnJ8oeU zqV%Ky!Uq{xso3T%1N*lf<(G|7S1(bRVo%K+j$b^vW(mEV+}~?tls&nug#UXOfhbe^ z7?`6*eLwzZQad`+Jfg|n9hk{5Bd;NI4`TdCYwqnlC|mzx8WH{G_BfDoiqXZO8$G zo2kb68xWjkV`9}WSJyea`g(1@ZWQ0Tr&k87p|QUM{I=h4R2AOyI96sd@AflWB9X%n za%J1y^YhDJVA6RP$F%!Gk`1uRVL^6qE%xaa}v!z&hZHKMr zqk04Gc`}f-#ow@i9%Ckb?szPES9M^PLvdX;fUSe22xX9(4Oaeic0{SE zGK8b!N%H%~HSx<**K$cQypaQz%Dxg7Zv7V}Ilc}W$FLmsiv|0xuoZiWn>)EG?ffo$ z=zm4DtziAj&RgR#7qnD|6d-rz_*TFZS;hmT_l=JYchKvf0Z3`rx3$TPYN3U2H9p$s z?Eu$J|CeUjjTx=MMQl;rdcfFs0&6TW5caZtRVqiLRq~b3iG-gqP)(9f@Y1-x*i)w9oK}ZaDVU>BmB}2vvc)lozK^w6@K?392mKV z#FZ(^?U$rCHNIzyma=(Y+s)G9ull~eO|rv(xv8T@HhNj|J-VAKdb#9%W48q7l1I+? z*wbG%qK~xEr#moLJTT~%GmWh$cN-d%1N<$WI$UJ}S*TYKYRXFiSDk$FZ@cD~MLM~% zrW-6f{T@%KKtI69dcXJfqh zYMW5R4DIM%iF#w?J7s?ZzustuRFxIG;GVv)%UXD+^8{@qot8EsFy#CcSaVx#1IzP2 zEm24J&Tes*=QsRx?6vwec z&tT1>O!KJ$RQp@N)+e9l&P}__*%j};P^tUv9dvCO4z-AcTx1wo{S6ky-lZC+(~=i9 z!xU42sM6+{nrniHH>gyTXFI)aEj$&aX8re7D*!&t9F>|3+$^^vB*YoHF?A2E0h;|B zJ{!UFN_ZeYD#209Znw2=MjtSa0JsI~MM519(;m)a*9Ue%UF z(cEl6K-$H0SZsDotL)1aF%UFnqgVcGPI0sRm!o@3 zc5lDNL=i9s)=7hadGQG=Hk-;p^*n`lJwby#A%$Bbrv&W~QvYER{_B9j?W{7F1rgk6 z|G}l=54z{Jh=;nS)d|S)HRh=3%Vo7!0iZ>LlF23fUWe$eAi zKknC=`R0$cZk(>XfBD@W*CRIVv}b>XZ{8@?;H1gFQ*By4oE!6yYG9%)pO~9dwJ8HG zOffU1PL1c(PVa=Z#>V$r*n4|)RVG?9H*G{|;?FjE_TiK#t1$};fLq@ zMr+FOep69+0p{D(&sSe`ckmAoOnbbjaiE;@OT+M8ZlI^r4`8OL7GIMG2=AY_1cpw1 ze|CES}FbXe5@JT~#C_$@xn5d2mg6YhZgKX3_!L zCOQ{jin=J>trL^U9C~6rogCn?hO{$tNTe|bNRe%AVK@b9%+{?0+3u8t_UtKUuvFY~ zSKg$q8G0m-8V;@t(TDXEDGoj}W?bX`uwEX{M41dT-;{`nsT@_(0rKw^9zw?d`Z!6{ zF7BlrY_`N_l20yUh#_i4g|z{mm5gKE-|_JWx&~f!*l=IO#qcco&@I^5Px+Km?BarS|S zexbcj8XK_Y*i}xw)tj>{c)q!_#0U5hf9};>ABkK0_&Fp@mKkaZk!yZfTGTl2&+?D& z?wo+}mFVzY**q(`v|pxT?_f>f{>!W&6SP0ZUQ0&+c3qYUYq>RTln@eh6H4|g1e%xvMsWAfrg9|LV%$#6lcnR z@6fuY;?yU00@qB49uU?(xu}*4rrM%%>AU_s1Uwr)a($fHz^5`B=<;F$j_ZC;7Nm8= zkzjx7^e(WHvK~6{?-B1C$1(S}EVUWy(JGKxcXVZ|Fg z-Q!87?HEA-=x{cmX161C!GCGv<;dTN?InZG5Et#q_P5+UeG*jvCmW-!+7Z{>K}=LY zx@4nkMrMXu+&f=G27vkpAU5jW*bnTGGHewB!4bIe>38nBy5!y#%e4&Rzrb;0Bd@^K zv9J-5_96~1m$ZyK<`(3#lKLWXF~@8KCvo+zNl^k=d40{NBOF6qYlZ-het|)mAx_QT zr*PxlAYt06Jm7dse!xs$Jvn^6QSvM5?fsPonX6a(F8yhHQBn3+oZBO-;!U9+U9hF+ zVy0!K(x9nH#@fS&ZyXeIh!d%xk>_K#U#G2(?7wdY^A9bs8MQua~VjE{xq{+H&>DM_YVg|f8OoYagc-ozVqjR z_WBPdh91$V@~q`YPmdO#Su=!>JI_Br5P(^SpW8Y z@az;=5| zxTc>c>c{(A)}MgH&#mg~`5GDXb$6TD0Qf~3O~v0@Pxlu8f06#4Eg|iD^GZ)ZBl4zB z*#~T{q>MBF>4MECW^omQyJ_d@o>~cW3lAvYXeqmxyvY8Hdx<@bPej4MDTiiJUNvaQ zKKS}NzhErWm$amMb0B+?Qf(u2&2fpT3p#zpoc{{62;?b`rRMWxrT0`B zz=BFlOpK2(K7;^rFi7EVbE!CpU5P)y_&wkyklj0Zkc?mQrf)7L0&_AeK!HRK{Q&ON zE2u|i_$7BHK@d$3u_654>jgv=O|hWe$URtI6$s<1PEjfMb#u;TyD zYj$_MQQH|}jk={nPxRRzV7-cM7}Q$f;Yu}%>yG9nl`n2fKxv-ANa2ua06ykE&0P8i)#l%8jyUZ9&UHfLf?u66ps073v1<3XK-Q z0bqm#%bv!y$49$LrP5c~fOW><`$DEYr3AFZfkXLTI|IRU)xEFe9W!!054ih$Dx zu$a>^3Iv&&<8jd0f2p>BcA2987Buqsd-*cS{(Hcap64AEyCS^!?FoIL0qjF82J)PK zz=!IDg;;q>6O^2O*M;dc69D|+T){sX>r4&)C6&_q!Ln{L5w`mgID2aI!&lwBNMRzL zr%bA<$30>4a+;^BzFPi?WlyHqn|U;jg_k$b5R{k@;na^bYQOUtY}Jps_HHX%#`f^n z!vJQ)t0Q+yx+^!q=Y91a8?wPDt^cR}YE#ng>A8EA0nm#Ki!wl(>e z`@vu}(kVh~W=9{i4GjCfJwJM)%yx)ejRXB44=u1PNohwS3rwcoDXT{Se~IDf|7>kZ z_Y1ZM`r$cfr3&tQRMd0BOJpJ12OC4i7?SxsQG6^eRM=db&E58cYJ$hx@!q%h{99u6 za&MR4cJ1kEpT^$n>n-r-O--g>FXzgV50VAwuo9v-~LjBUA_4T43dZ^>3j<&gYij9^T1WiirI&SX`5 z_E{_p_XwM~cfJ>blZTxSB9cvVN$#y4dE|@6p~&A@N}m@q^!YZ^0IM&*55OorbFqu< zo-p=g>*2#syXX1wiuZBRpb4WJnYH#!oC&fiG3$qaVt0)go)2`KCj@`A&Yp5} z$?FCl+-T)pNh0WP5d@#de82 zV9?`xve%PT)ckz+ivL^r=%>F!%(BZP6G(iOC#xS%G4H+Q{sOUtx?z0ggDE?!uj|h% zbm7=K+Ty9Pd+#z_UC&-Z`kh*1B+arP^}%rzs}&2O&(R@y`|TT(p3>xbN;P zQ5?V{R_=OWeWQM!O^=0H1Re#S>gR9EJOB{(@Dur4!ED;mWl21c$oe*cnH%sS@OA+>n2qp9|>E?>)sa4z5}j6b|-DA(F*eH^V^ zR{LoKZo;z1%=SH$Im|eFDu|}e*pW#E(9XXA6mwDdsx<_cMtS}1@ugKnMb&dG=ak7) z|0kX^Mojd$w)@2N$z^5(CuD;9;?|8nf4!Aw zsq(F?;oIfhyTb_}W}pu<`s`)NlAICp1uiIRe8BFTU!cWZ58*9RaW(e@kaC?&dYW}r z)!0~gY3mc9Z{y~=n}lR2C#ulp!A&wiGe^?x-g`>i939dX{+EG{i-x-* zihSkDgV`0InbJ9hZ(d1bOFyy5n&Nahm`xEFktp;=F)Olal>L@BkT?EJ7raH6%YR_d zWg`I49_9Eq;MQUOe^GBt60uB!t+COTJ+t~g)qr(AA$9W4X;1>ie|7CFmbpW5@b%Rq zn;U%_ohp}vr2*W=@8|#?(|PYo2Wv^n0^ndc{2WD^achw=$*pKNeb#ms+8@D1=V;0cR*^lrPU zF#0l5c!>J!v;LsxFu)KDoC4HQNxZ$0(#w9;W`AZ0HaaR&x`2B##*4~wC)#i!-)0lw zV36F3&4^Ig3F0E$YjUCWK5%hD2%@XS20nY9OrV??SyIW|yqD{B#-?ZXYYRXn_D>8U z?#RX=H}tINlm>_oVC&RnCluM2N+F}~09^5Xcd;giEQ;}f&mf8dq~}H>w+yl=nLJ~| z*Ufwk8Tu>WSAD2t{VHAD!{}ia9c{H~YM4?;{QQNZ_YXwT0CrkUJDob!7%MSV1ekJ# z5WaEpAB~QFL6C`Y%)&GuZdz${6tC;SPe5=m?|HpbPLwT8G)dw&`Yg#YOtt2sizFOP zmh#E}H@#THTf{R=<(~gO)R?6(gojfeEdW~(Aj$d|#-I2&2MM?E;bHvISC)GyZ?vH2;(hn50WnJjQ13x`8mk; zY8GldJ8+E z*68;0NF~-Nqr&c#x{b#d4*|=ZZB@_h(}zaPQEH_2uh1uTSw zl(IP8kdM9>ySNlnZx${LN*XKV*?dTTo2T~OzBGP1ZoPRlia5DG=^|sC>=4Ujh;?bSJYo>;4qC6FV@N2F5S3+Cg_KU~#3q2zP>1Iby9(P0w?U5_*QS@* zZfOtWm*9+(I?g{KSD`!;Tn=?`y571fQgv3cDcljB#S`9`86WV>FNtxeP? zyXJiSx*|c2oK^tOjnkAiGhbN8JR~ZBCnWj?48MkuaN=uKA_lEtQ>Xf{h+A4x#@<5n z9N+D>07LqV2?IG0sjY;LdC+lg5D~t{JIO+W{|RRzwB$nv~6H~|SZfk_Mik{^d5OgwTuODp$zzZY;&sn!|c&!OO9B+F7GCU8vc z0@XiuAMkYN-(;|2GpY8)WWaTal+t3<{2U0oxZft{0lx>{3QFPJ-C9e_;C&_2aiX+jY5n3aAkp7gm4aWeFXW!HsPl! zEcBDAtOlU|ZtBt7@k z_bcH)?*oji(~WZiTZVNXa;C082Kgfd5yL>M>=W$4b=d#`B{n5J4T&5ZPFmE9+ucPz zuf*De*Zjs&+n;%y4BoihYs+x7sSA2WnRKImL5eQlJppt6Q!^_WZ04r4?}fg^|C})OUnh&*AKfO(H)EM!YiD{!`=1?i6}yyR&qY7+;gi#&YsDdY z6E8fApG{gMOg^m`6%|3FE0XHj6SG7)=#F9y1IpD)Pp(RwN{rNS`F)FRzUvmt!sD*{ zj)l&Ga0XXS$Ld&}T1O2K8#bJYbn}uCACSN)g1|~RMeDfSX;0?KPoeQ!@R^t<(Q=oU zh>MJe7=#53uacwDm7KgRCpT|HCg!VJP=(xB{+bxBD- zj>1_COuLR=xvFe9kv1gwR^6E*V5M}u_CH?dzN1Mf+x%HpPu|6ATtltNPM3_H{+OwJ zbLP67zIrMy;i%XgYExNawdcs&3N#cAEvKBbLs+r4hRYeHT`X)I=%^a@5g5I_{!BBK z?>tf%-jQIRquykaL2L3bPy%fl9TuA{UuRLP@%1nV5$VAw>u^@u*(53p?e`F9gUmzI zsTpqLSz2U1v>;(^E6BvVl-`YP{kWL~-0B~$A&0RDby8Qqu)PNZ`7neoUHHMH116*0 zFnP^;@b%5Rcf9y2k8e?j$}zD4nDr|OlZ+*mCqbs+5+}2Q#4AKsc-|OfySF_zoY|c= zI?n+zLz6zJ!kvda(S9y^8nxl8^)?9MvQl$5(}qw7Khsu!bUyVdm9I?oRqZbmqCO1> zcU0}3N#E<7|FX^ghoOGDG3Cc}WcGBVJ%eRMNKZFmQlDQpQvIG?1TJCn{($Z}p+H~W zpc<#*vc|dPva&BkBOf8$yGw4~AYy3haMc=H3#9u1Pg#c=4PqcR)aK;HJ+L|#)W){= zBLSIC{oRdVMv!_+P0MPZ?iwlmqRjDpyOgjd?SIb7>tp!>`y;1T-|q#wo@odHnrvWB{Tg=z8OAk&UU{hWNuA`Jgq=@2scwQJEm_} z{$m?3iw8?nIcb$eY=o)f&*D{D&(#y`HSrqkWx`de6+qikwIG5CAxPn*O?)_%lWSu- zEEhMaNa!8`^h83OS~XrSYi8I30AtTN^OXg~ZHnKmJLVUG^<+7^ek#&&;HM=m=bdBp z{ll#I3xQmLGH?Sk*Xv$jyN~>TR9Ab-6YO8DDGX7K0DS$E`8Yoz+R#@DGQN9-m(CM7 z0|s=xLQh1(+8JzHK+hX4Iu8>az9G_bkc!$L`h-w`9vLW(J|{xIu$AooVDB zp!|i~Hz^9k>?2%34dFAQIjV1X=rt_Z2c0cWM6K4EU#Fggxx5;U)n!&wfj-;pe$+DC z&N|22&N0nZrgr`Km%5FmD$So10Xf;H7n{5*>s?Jf|41`$dmW9sR665OWcUUZ0nQ`F znZeeb6=1?gbj)6s-@NHf0=Tyr*4|`OA}2cr+vQ5g^-&xv!ucao^*+|9J8Lk+a3A;CXj4vW2PB~{J7~7 zH_i5a!iBa!iW~Q)wPfoJo=p*ZvZiiIb_K|qs@u$Ed1!8 zOXRMM)5hL;G!`1$!p$Kp=;nOXud2^nBbawOYu-DUUsrTf8|s2UT$EOqjx+j=#dme_ zFdPOSB7i6@zrJQ+_)xpN#R9_|_$9;`bsbk*?Mm>?@ok{FY~QcvDMr zP~WXomN;*cZ{cHByL^KO#?!snEb?3C#=>${YkTH$v7>7QqfdXev6?E;vJf3cDmtj~ zhyQMeWS(45FK&$gZdYoU0G?=GhS_s2M&aB}j%^1(shaGwyZgS}9z7+`N!+t7Sgw%q zm%9rbByDq)+Bm}JL<=bb#kllNDxioeJY7j31DWh2~?r z&fzGdYix^rZOiLkPh#`ig1zkaVpOzX)VJ9o#qo6#G;W%|7d(Lp+q)g;Os+r>4tA*L zHZp7b&3xky`z-(c*4W#8U%E5f#}A#6iyKSy@19C##1~C>o{WzLWJIVfTY=8;w%tGk z{;M*IEdIq%SL^;j@;T3|3ElGPFrhb^udZ#bsX2ARY&FsT@wx+AwQVa&3-F8C_XZZO zdbVM*JaWCRlHeC>wJ$7&+8}~1eo2Eof7I;$t@8qsR2Rw;WS?E~NWU^tX7pX{Ti7x( z>YcneEPbc-SJ%M>n8!_;dYM-^e>rAWzxvl=^WvVQXE=U~3(5@3&#GPjNn2;7+lAd} zelO}8sQlSSt}Yj#1kzbgKGYl2Q&*wah;N;FsGOQ5Pmr{Xq$<3PvahJ{mo7v!mbXQV z3_QC;&$NH|=zLkFKlk?;1WL zi_bs0HF6plqeQ>`^zF@)KNHS&39`vNG$(1_)aiSAPcIZdm(9FfCX5to(Sn?6)v0Xn zl2E)Q!$Rw|@7;F1##W9yVbf8eyqs0>PAUDv zG8-rkR-YKGQ+SQ4e~N7b^JiL_&#&p8)w+?oc8<`M3ZCeY3)BS;Y6Ha~cKoSfm0VQ9 zWcHR|U3xCFeN|C5Z$(Umz^OjVH-Cn9X?a&0!vzpPrl`U@HQgQS5b+=9H~)>4L0WQe z{tMa;oc^`kPm6CLSfxz&B<{3DD(;Sbgh}ShUWpdop$kxEsDYRSGA#Wf1-#h(c2$r$ z>?x34Zj>d2iSBI$gDnBt)e}HKj|HI44Y$-J_ag zBL@aZe}iZJlA;?tPwB~5jK1Z>iSldtb!BlDtH*L5Hn7kbw@Z5|z>^+SFRO8-q*pB5 zVP@OVes-@2xQYL~ME<5p;3D*Iq*1>HH!wpj=nlrZSq?+wZPOQ<7od}I-n_({hm)md zz}FM6o8D7P-;F#+kieHJSjEpVfdnb+bb13><@p*D(C%x?V$6{Y`2=w;Fi|pcV24_l z@|0yqGaV*hyV|t)<>6SIY(m_70g!tKPelhifScpae^S}b+sZ>c3k}WGe9ND>_~*zl&zP)T)Vw_0C}Bw$ZUE`6$Cc9jXYE?%A>C_LqGZgD;AVX#xByTWx zwpYKm9cS(^4H3Pw#S5hN5WA}_AxhU_P81IE@6}s(#2(coY0osigZ>IES!2O4H9W01 zUo5a{WztP-V9}%0CaBi?;lVSQvX01ev0~lV8izj{#A=L>7CJ8#7uQlHK6{IY=YZl% z6ut-EaTOpg|COPI!2X)_LC6Ol)v;5252A-@Tk7oX?B77jMUba+QCV4B$v;Dm&N6Fi zfEpQn9V~{3T82742Ug!t*E4-~-2U+(dcEc7jkzENP93Ku(K@_$v(0HerjhH`F_ADK z-Std}A;XXlH;uDw9t+k>+)uZkaed755AizlC}RFhoS@P3{Vm};CEA&WJJz-gj}t=@ z!$6TPl?^H4UzICiK4ZFcy!qJK>VxNCid`j9Llx=pm@*R10_BGkszgY5}wKyMA@qkbRy z?%95NBp=)Z5B*3s@b*$-WYs889(QB?W^jz+m&-cE(f7zCEJ%1^QhPv~^!P3|8WEPc z?Z!eH$^v=6=c$moL$$(m3^e2GV)xrZki+WM2O;@YwLah5s+#(z0r4#IYCpS&i<$Bj zBK3WBt|hP(GH7&8+GsdKm;)uszkW`Gkdv*x$8m;}$6dD%R$(4`fk#DCPkOxq{Jxe3fjRIxQvzRH7*@ew zj0HXITjf9bZL8{N&w)xR+e2+dTw_(!ReKaQ2c}vvT&@AYEMg!tV!!6xtZza49nJmdC}CfkVdBoi zOT6}9L$pj%X2vC;nR3?-9XVNKM)b&@fG5K9Ps{x2Mpe#T&^X5+|Cy;_oH1wOSuHVR z<1z?$?8jeB>l$V`)I_NpMA6mT9^s!t5r(qT1)nh}sHgKn(gN1bfBYVoO`qZ6#PTH4u?w<1vG9Srtu+KO*juWv_6# zToXyOue;~NmY8*sHR_G()1ftGo9Hvjt9}-K4&v3unVxwDN_s)TKdlR$ZNoo7-2Ed9 zTl5ui^LPBbP8x;%8Dfn}y?A(rIm-8q=%mdRXh%bI@Eg8cNq?%7{&-ghQe4gWv$Rg@ z4fzIp=91Avk=_FHmj8EozU+A(5G~hf)Jnu`0=@1+;=GFV2YF95bgJ9SLnYaXBW%HiYGMf zTl|^jQ4yY}5!6cOGoYJ`tp!)*;E&9L#NkOI)X)T6@!4(pGZttD0iWQE*bb zvnqq;XjBaaNAWxa?C#6KER!}BkM(B0027IHpdPJugl7rN(sf9~uwqNB7;V8sH(H$v zU4cIKgoIfR1AD+sUo?gvpJ6e$kL4d^CkPW1u&jWyN{_g^l?RMd7!R>$_Kun9E(*i3 z2_|OE_(kz*yka6s6NeaIKvrQ8240^rzYL42For)peTr*6szLiKPp^qq?}?gi@u4RVmMs_n5OV}$eZbxcv#|U!9)@`%i-a0VbH|pE_ z!Uo-UuSd9UXY1Z*u`vkI17FF_TbUw)b0oSJCV{)j8_YIXtlYNm|{{p zguCl8GiM1kq$!e_vlxH6dH%xPEcMyC4VE~!cuCVb!%R7%#&mzC&&Iuf7kp*+qyVf) z13S$+=B$sX*8&&3|MKo>$){G{%myK)-G~dG5c6 z=hzcJT3ozkM%7vCkuu~rlS`p|rP!4TSJVROJ8$WN>+#1AAO8FJuo8*g8+3}9&L!R$ zY-E$*T7EznOY0P)fdiJ^dll^wrBTtS+S?XKK+vN@~)=0 z``~sj6DJ(If49x*Hw3Yj4Rr+N4g{Ei71tu7Mbh!PZjOQjj(g**ojou`O`X&JzjmZ<*nr+&Eo-DQ)GP1zrD<)~}f_#R|x} z>(k!}7vex#8FEzIbV`cP=Ce+PHI3pv{&eNUIPQ{AYSWsd5KQ*^>}afY%rmA~2NpJ( z7n+3e-!pQ~U-Z^7NW?y)u`NDb9Qp)UR*Ap$TZ=~nIlm9LLZ%Q*t${Gr?{$#Cd0a3G zf*<%{4Y9BAmx7sx>Z5{DP3pwppF1EfvY9e?Xde2)+%sFh9+=DIteHc^2Dw5cTxEVM zTyzn42tDtfJAUQfFbjV3`IgWVRRw|$R_=U@77ZFAS zM?iI8$FJ#{=-oI(3b+;Ono5nNaE$CiBnDd%SW+@PzMeUpld#z3J4C+Mjm#f8>SI}N zQ$YWHl`)hz`7*XQXkur!z1t9@12{U`+Xr$6#sbUWd9#LoqnPnph`r&CLTP^VyX}}v z{eH&J9%hiziN<53YQx^TMm-~%6z`bx@vp?qQc~e(v2aDb%sA4K9@x~(kM8#Fr}eZ) zq_xqVP|0i;WbbfT<6K>FGq6=@(o3^T@d+XJs*rQ_(>&f>wx4}TQ3@GGagjUyfguz8 zvy71#r3K<@L~UDpc-pL1bp7a-!Ky7cX!Inmn}?LNBo+Rupp7}u{{DVQ$t7};2|9rc zX#X0Ge0x_<;&Pw@EK4QFV=B?SWalru)n++-_heou+L`LthAw$H@fLAA-`yedC_LX+ zmnigtr%W|<|2FHFC<@j!z^K+g%*&M#dAZ*6Qp{punFkYs;GRHC4w332Zbm+%!LP$g zmt(UGSv@x*Uzm>{lYhsuN3qi22czrP)Tj-AF!|?o`+w=%XD{lM|(#3mm>GNYB#pwUuhE1ZPM#Sk@^x(5}FZRJr--dHznSCO3JrQzttz`fmY9h zhnkaDAb8!@=`Jl+MBc&_usTt@@A*{wHd1`n5TQ)DbLdfp$QjeTfPA) z_O~Z-WN>B4B(x2U#gOfzG?;0{vJ8cvAYj8lwPoFVyzDPuJ#D{yIRX3-3#?9XrwEHj zP&{F70UbgD((|x$fbEDS>LhC7PO4O#B^O;`=c;#8^dN0@I( zrtctFE03|q@7Mf``OtM8W zue3xaT%y<&FCT>1A#Ep&PUi4)INDVEZ7NdX!XNyrQ^F2!SU}W@Yh^F{Z42NHG^}VR z1~dWblfF>m{He3ZhN-JbiQkj5t4up@W?p-4AOq+!d9YB-8LTY*DREC=CuFFTH~Q_5 zrj80;!yiB2cfAuL+178^xSb4tNeo?mt6c{Pl6=XWyZ@_+f7a^`(WsrRPjR91kW zmY$S*D($qAWbceGTjYS?A6=jxrJCynRVImQ=b4B*$7axH{~TK^u=H|kHj>pQTGH|A zl?a@#{pwh(+IYjG$lYAYg1=7I6M*UEx9iD|RL+xrI88Gl)@L7XaXz3MA=Dm9?YL;ADwYQ`PEGM5xq)Qn&RD?zF1@^Vv z++{*|*F_J}@~$g6GFY(jrDmY4uz%iVr0$n$gul=o1wyQ!ilpjwV7Z|7P&g zUeMB7R>_oc+R!8@z8RHgp>(G9a&Aih5Vj)y z8uM9=Jj`s+>Q_6yP;5|Ju>01d1-Jz2K+$!hxthvh=Z$NGk;|Ri)47^C?p93>=Ls;5 zTVG=R77&J9bj{O7wOiAe;qF*2vsyQ*z1o?M;a?`}1+Qn_5b8ICZ<1O|Z&FtQ;#y4@ z5arM*8*a;>{Wh5-S={XrmNzX#cXd<^b^$$VQXiaWJmo>C4v`4^(jIp+A0yaAqXs`s zpJOc03=j57a6X5?mvv8w?4956?DZ5xFgzAQ-aOwRGa0N88$pXR)YT~bZ5JMR{ghbo zHF@S!BD&#A0ZP@p`Ai!;J~~JOPx(#EP~>xUwaN8t_?PT6J{XE&YYg$_ifP5|l^Q?; z5|2d^x+(0?Co}2^vaG;(j8KQzZ^dWLIo~RbvPz|f`E~g_%dQUjWK3Dd;rwW8Q0P==Lm8y zC1`RK$v#sj{Fx z4zo>#zsm-2flALCCsB*|2(C{yQB(<>hDw=I4k~m1id|XHI8#>`2eUd0GzcVVCgxc5 z2wOF*65Bn&hLywn#p|0X-El~vhF%C$|L=3#G-?!DcyWJoH8`qe0!|pMk%Er^OU-W^ z+K#fOEATz9K0)Bu7HY%G8(vQ7n$hp{%>N821+N2<1VcIw4L4G zh5WNWQVGBz`X($P?Q>=<=oQVyZQ~I8a^bRQ0psCcmOgiCldz;A3Oj@)%(`s(2UX-p zhvU`MSnJJw+1xC>O!b{nd;~meiX}Bm9{CGupY{o*B~%-5c=+}33y1WzDc0q-CD9en}WM+^bJRZMnVN9<%A@>tIt z6Ww)Gaw6$x2&04671f1`@|=7Y)5d@sWyfWZ6wM7(2=Nel|9RbY#1|P(@6CZ{&F#R# z#4v094}PYooZZL;!h!#d_>%9!^Y2P9-_$_HL*v>(huLsVDav!YHMvDK*#l-D?7?X5 zVEgr09m`};JxE;56TxOKEDFRvd!4DC2DMJ)xeHh-5<|ZP8eAhyj;?VG%UJ0$_5dih z=Y3CCslmUR5!zhPL!)E;uCLkT^r;qgewum#i7`f!x|?=?PIb2Ei2jj}32jW2mM|g& z>8~9Lp6J}ikMB#xlv+BfKR!*_RZp7tp43NQ*L{OJZLf;Hj~@CXnq%7$zAWukzdfuX z4+chJI>ruJjq!fJZ3>0Uc;No~fB$-`8&(rAtsQ>UZX6R3!|~fev(s7v1!7$y?57lE z%7)*IX;d9F#e(-$tRXh}K^gkN-Qbeb251oDG}biMB}Q61KP(6 zJo)Xb7%nn>KO|;8O}PF3@`Z z_|U`Y;0wAUVrt>UWQWSrdL5k^kQP3s>$QKk{I8rN^(Rx^b?mNSaIZ^=#|CoXGW7sd zqT)B1fDS_SlXOPr0<}mn&500pXsum`-}svKi)C^U&rjnMfeWwvE68rK3AldH#!j2J zmvLD~gnjCoNf6MheGm1mv5pS)MNw()6dlHsEwWpKsrs0*HPoi8$LFCu_`pv4$Wb?= z%g%Ysm2rLtm}!V`E?olwM=@<+PWj0xGyWEb(_{LHAJ({T?R<3{G0ggbBsx-Jr85s3 zD-NxA50!i_3S~cx2$!S?D-o`%3{M(}v~cDUk-*B+s5ou1@Jlm+=LDgHzv7J&&zG(g z0oqUVH^&z(4uL(R5VgPnEoiJajnm_I`Wde3hgyV)y$9k6Yqm>9#xb@mKpf82(=r0( z7k1aVaTw3dC-Q8XTz7PaE!)v)))P3!;S(QG-`%l5UWN(J6=s8K z@>pskwT%}*W3VpI{pR;x* z>dVHZXEdb?z_WhsErY_-QQECAxfkU~+f6bDUB$YR-(LQg_Op%Y3&k8hf-~u74XzjR z;fqX04GOH532+ZvCak6=C6TUxzvg<{E99}6k~FdSnHVn2i-~dtDmHX#@KDwK!^s(H zM{I9G+ylPYMyw))NSy|b|A__?VwEk*OFQgL7P6%pGPH=sevjT;Wuqp|gU=vNgMd}d zI`9Fb3Tk$jCb0#nVDxLi89=9WP4!cH{w3fVCLGEiY!tMFGMJ-wr!9WG*oO2&ETF{@ z^=6#PeVp>7!?HwD7JPmL0>{5@(XYjw!r{+EB-s$))17}#%0Tj+E`#l6~Vq9 z2BcQ?V4dE3MBZh_1B}?{At5e=foCT?-r4=ZMTgeWS9Y#ELaR+Xc6hY(1k8HkOIeYI zsrJ6$^Y!yuEj01!LB(8q;;*wLi@&Ua8Dp}b&-r27{}>aI2USPBvH>wN{05N0V=>v( z0}ZmAvFfQ^{&C$@`-r2y;{kw0(O&Z3@>2@!FguJNm95tcm4UVm)FZ3)O}5; zutwRJ8`28U9e_kmKFgh_*pgu1+!dM)W5K9t|P|3lMRM>YAs zZyZKRON*2!DH2K!MhYSz14TupY$Qf)beAY7C?OIXNQZz*jBSLp5*s~gq_80{z|r}8 zKEHFmf8aTI@W^1#^W5+IdR^DWBn^m6wNf8Z5*bYw3xn44HTvgdAK{Lhncj}YqD z$GHjSkgmEdJyv)WR6)S6pqZ) zO>*n4_Omb|H6~K;*?$T?6UsWq+9e!eTiwU%dweo|uf^`R!*>#{+y8?b>C@W3lPd-@ z@&SEBVF=NGwWvqEqp~^Se(38KPnNOmY{zoq@1_umV}Gxi5npIBGBLyX(c1Jj(iIo7 z@1N@24GuE>H@-E)EUA6Ed+YT0<*!4WWHk0>yLS(;=+M=Qw&Uh4>iRA(8_5z6T^Q&# zxv^F3CiJ~_RZaYg`D5A~0F6FAk9LO6)%D6xWnNtbT3TrMa~_lGi8|nqdLDyhnOJB9 zz8?BPulp_HhNnUx9yaEC17n1}h!!UcQ%W}!fBTsD(fcyHb@+-9wlf6dCnG8+!=!9` zcO=k~lg$;o{pRG=P}gzj%;6__D5m1+1_AA`(fGT|)Q2C(AV^ZqK1h~(QRrpc;n^h8V zea=Jg;H|V^$K2ul{|Hew|3)ufe~A9utW%Z5@IdoNHBP(b^da-kje8r>4txDcB__cl z)8S6+Co}8DoBGuEvsHC!bIl$ut>NRMEjga?v$|?+A$+wjJ?HnAV#u~re4S|`ZS}5j zzG>J}mJ>$4yBc3L#^1S^)f&K3`_fshikz{;NOqHR@#xO*gt8)FjZnY=k}Gn7OtW}` z$*XC+3|YA|`mn*wF61UB+(n+^phrQ**}plX?^CN z;NrY#=VuNd@>@2L1qvG{C6BI_j;$f@LCLlZl;r!xb?XpKl2qUF!vhEY zK8EbinzY_SHtSoo9@ZY=UUqBui627#e}+N)*B6Am_U z?!+GnZ+vx_xbn^b+HGz4Bq?ZqoISL4S2Mce`=m$_t<}{ zDDYPjW)+EZU~5ID6${xx2LoAS=bQRenSr&t+AxJ8Ck|tMX9N8wky&($U_!F>|S&H zIp?u1ihxaeR4D*44*}3+I0#|5RmewqN3LK8Dn>k4K-sRBVyu{U5O12A0nKb$szIhd z5SE^?#z+AGd^;?A9^dC2^}+z?N=L`$2xR>|;}!s-+*f3x#LTj-u+8^W#62qY#obd( zRq-E~nuanVgocGj?4UIFt+fHw0IWAXH?ePF=I_$x<2De%P!>{raC_?t@i^5y=_t-D z&+XvI7y6}2Be0U#D8NgZDGwLB#&De4YcQi9t^EAfL&d2zVTzuC?5%J=4q~P-#p57^ zKPTX2FTW(#0N6&RGa@phJ^p6SG%=R~P1TcELpDmU+8;~Ry6+Ot>21V(0>~IV#^G>b z;oF=&TFgLJMKb~#5GGH5d|vf5dz4#Ov>MoeWG0#Es=eIErgNA;hr7FRNK68%jzq4$ zUaUxI9oMr3iKMxXzr@@9-ppU{j7ARL+%c zs9w|NaAyRt^FY$2029Tj4Uo7xxTZm^3H9cqSQPf#g8sq5;iW2}g5bG_&z0>qYk+NA zB<6JNOQ%-7+*>@bJ@(16nzR1Hf9)@M!^amyux;N&xQI5(zg?JNpWoY@dl(|?CTPbc z^G#X-&>o<3sO!aEU6D5RE;HE-6sH+J@+X2*&l~ul{hU1j`(HNC2=^rbMiNuaE~$@z zcB4ALH#<&-@aaY>I}hGMnB^bxI5_95yn}m?Drp2o11IfBC@Y*E&g9(zcNy|{qFvnk zVhKR|^gRccf$DN#JF96}5NYOLJJgh%ec#Kr*Y}&PA<{O|8~b|pVb#4?f@ek+n4ij5 zctl>7&11dAncD;JZDJS$)x4`HdXF>E6iX-URH`YEbd@Hr=_65+W{5+_nL3x_N5Sc6_Q_)dbf0hHvbrYP{y#hQqjLHDhL>VUi;dVNlr&9x(~ zQE>G@vDYLjr5?N>6 zb_E(s#g6X0p^Bm}kZ$-eySpxU7))TML9R3~G;hkRzGpXYfn)W4mY+zCK=*OiRy|N4 zmxCrTBiQk^p#bdq2$L3k>+H1aO64B@Y!2YZZqbsgH}qub@AC$dK|kq``DcauU!brI zgMz3P)pR@IIVTxW;(9I(Pf8=F+I@hQQ0cUSxBQ~rCLIl*p>8kgNg;@I0X-8 z@^-s-B*US(r&tO%@@F8Y&ewgPO8NuTsGep=*a5wYhmgamno?&qApmbis(c;-WK0CN zBo;$_$lAaCIea=0du+i>Nqy|3o4ryC*fD<7)FSX+O3R2028lKj^bwMJNh_yyLa5lA z$Zk`=J#OYQa58o^WQWL5zcUlGF(BbTCsAs0$UTt_ID(@Gmv(P#I-!lv_06C$tm~xV zm|b`G)_WqE8%od&n?cAs|AFt8JPlc{aK`m%-Y3S+fB@8~qoFasCL&Tl-AU^c@e-EC z12H>&*PP|h-?G0y7+Q*7+HtL1G_H&Noee_ovgWb2SQ^>io+{{Y_^A;9t(aOb^^IS@ zWKev#ExhDt1}vHUJVCllle%dP!hF_@QO>$qURE8I zE6?V?D(y#K$E_FW4&WRVS;L4X^p5&!Rj?(U?v)6~v+uurlkNnbX9&Plk=J#0^_(fj za4YlVoa=$(b>H=?Y8;~1S2nM1Swf#lp?=T!IkRMF8p-=N z)tLKzjilP3M>k+?pk&@G-l6K=NxkWOvzQ-S0~a!ucx@7ADJ4FmgNbjKszADJrih*)p zVHetpz;OUYL%8Ktn%S4)s9kef{~7`etC|mz_4Sy;6%lOii;VD5q>c5V(#!u0I6Z3 zrr48E*>xO%_rlZqTskqm;9|^DuX=G2E>bA!{Wk=H<}!oLmixrLgaT%Q#iTU-Foj4tp`kIf~vv61f3LpJPw*F^!?#^o_ru z`RHH0G#UeNj{$8pP~O>KhCdJjH-~+F8(gOTSQz^gPz_FqSr^lT(W4BY<6Vg~AcH&(& zU$n&K6Bp9=tLt;_P*~>2zUe1!vm`%ASC8`)*NV;BMP92WEbIlz0A~{L$dx9nEEfww zm6brQZ_4}_Pj*sQoNCU#DrxOomB4X`=y#wcr2;pf^cDcKX<*B9Y92~h#w!2zi9}5A zd;zzV1>4V#b-uiTzi0T36C1S@^_$s7ASU!o55@ImF3oxWB~rCUCxQxs9V{g0-S-lj z(xeUQ5^~oI!sRYZDt)%gtt847>8!U*wKcy0tE9uX!j@?bZ(!32G`%x5if8<1r>1(s zQ)gp=h0kKWOsBjez8)5VOwt*v%voVV1m;j_Lo=6ld1HdZ5(4$v7K89j&=V1hS-8$3 zH-yq`b-bQPALcBo`MljQ{0jU~&vivF`aeLH`c+FqEOEiKqj=-yA_!HfA3ZaoI6wDq zDBxQFR~CGs{&4mRbxbqX?wZy7lCBMCS(tCHQwjLjk#>F^UWa(^DNE}{_;AY2^bE>N zE^MTGaj1@@y7bV#9>XXb(c&x0Z&jNd5?7DOtvv`j#VaAD zn}`RMk3Di0*4CnCYb=RZ9ttMohym+`pVl%TlMA%g;7{%EqZM&<`?_okG7f-ns;J^; z4Z!rI9dDr-&LiHN3Xg(qMSdR>&pc4@=`oLhDv}&-rh`{r&Op--m-2P$sTRnU-OX?= zG2*iz%Y(G(SoV1jZ3jC{4{m;eD|N_ogdYdwnm$775bNpIT`DU3VfO)g;jg`+!yskq z4)VL*QaAhOV0scXpSF*9Ox53!0qFSv=vh>yjMuIPz>^dPQr<1^d^elgZe{cc_u$n$ z)_WZu`0w7-H{WxoN9@4lk+jR689sZcxQAQ6v8mrI*5NcG(&6Osc3xS-bVJWP)AQYI z_j?}urthrlV`rDJA=l5@day0%W}V-hwtT;*+UhIoE8dcpl?A}GJMZ5IOm;GVopb$@ zy8j}p?PVv%MYXBLJhRv`RrB-yl18?IIA8MQq@Ysp;3RX7Kr?49&a0Bui++or-Gz0lV%u{&NuDNdpK2)-aeHM6!KF45X;nuZk;Xeu1u+bGhAWggsL{ zakr6d+6xdsm1o^}xhHkaEfE*tXvMna4bA1tC7X6x_d{OijRKzup?e+;O1|B)cIGJ5 zT_~X>M4oN*d(5G33e8>mbz6-CXzhE&!7wzW_33lVuT`_Hj>LSI0?rq@0&)d0zGO+j zQDbaq^{K{t9USwt_{VJ@DHdr{pTH%s>_A{sAU$KhykZk5Od&{zSQ!0J0M#O=tYu}O ze6z~B%4PRy#(>A8YL-Jbo>c{-h%(!6*}UWq(%o3708b|0XSB^k_C$@)oJvce#nm4d z=~q2Do>)1Y!MPa)6#n3!?6KJNaS^VI?f$O#;B7hxw8TcPvMvWiomIJF;1~_j^m2R{ z>o9V6WX!=PTG#hZ1}7tV#Qv~#MC)v2XG_uf=O(TnN%jfZuM~ZwCs;L|9E$t4jS|+#pIjb!Rldd@0i=c*oWG)BX=@ z4=2;LN#B{-K$mcV8Y2#16cGB(T&Amnf9xT7@RyEc{>iO1+g8EBV+pCuy1Wy}f?s>C z{RLCd%W$7pS4FCe;d;-LKr9?YNtM|hHIJzLF#V1 z5vf3^SEaP-0PA4%B~nq)*=rF{T7O|hu)cX5%Pr14HO@S~BAd&NQGAp^JfL(#ghIVi zC6OwPL0%jq(F-NQ*(%Z>pr0L`&jLopj z9g5$1J2XLHz?OL}2JOOLVZ0)wN+qE3jnWFJTi)AaBl~RV3jSygcm^+tP_I z4DyWP0w~ z?e1*_TwDlet{_(s$q?>zkiFReqt7UUL`*BWAVm7N!9MTwx(u`l*EQh-U}V#q=rwka zhl(Vau|Jv+p+d4OJY8p}^hoy&A>s7LYS*!?m`2__h3u8gkq|cf+Yh(3Di~K-vaA*i zdO$lh*)4SxVTgcZdoz)+;JnSg=e-~dxk)3i4q(po3Uu|oL%1nngP~Ps%_nB`jhk1( z9^1A(Jj$KB(&QA*ygQ;iuV=K?S=&w>&?bqMrpg)k)+l;#!awM$E5E{#Pa3>uHpb= z63UHz*BccMl}A`2Cs+1m`t`s0@-P4WTao|ad>e~IqPN5GhE|E*&EIfyq`n&dai!Nu z5_gxuHjfc4?w0q8pE+u1mF68yPO0DdXcjU!Tr82%?wbUirzKgxvzPI=3b;VGJRc0Ls%c@D2f9&H;XANX;+EV;(AGgvu3~oeGPGARLEx0H# zi$zGCior4xv~=Y=?bTeVIi<)orpL#ZZra zOlL(Td%iO%K=0eMo16|vQO`*Xra8?$N}>sg)H-iK3-%8@$Uy>p|-ARuW}CK4ZkI(us- zWmfHgcun0GTJCShyG#{D7{Sdm+%6(>?JXwIvVD3LKVX-z61~EstUUr_oY@MQe0eK% zm6;F#i5mRjK>m+f`I(I$*bXyJm%`xni4O-o08eWp;0o#z&{z&Lv2bAWbD)d>dc@kj z$7%vm!fveh1bzpqZp$Hrw1kfb8o2J{)x(&;9!AYxxN@G;WYNXS(z-@lSSLSNcrb zZtyg2-(O`Nc>$vPI{0+f@PxDP>S5rKC}>}*;2v%sa{@hxX0QpV2tEo*F(B@KIfeZ; zCw%n3ajN*QImIRaw2}{khB*eEZ!Xu3c3vUO|Nd)obWJVk z@L$RU|2Jokr9AS-DZ$YBqIbX^#RCK^qGlT4AoSX~E|Q*s6WZnxjxV)}co&R@%R+YP zv1vDmjP()?wQJa~_d!T+$2;WA(IU4$VamD15F4ANOd}_*h9Tsn5^RzQPl5@xbLJLX zWETgcLVH1emN`1Pm1YQu61ajt`v6jSIW>7&uX~SbxC`8XnjGkYw$H+nr=i$j`-v92 z4;8sT^PrLuE=@s#n&oI&9d+OJw9Nc+VG*DHM?3cu8$7_s}ojWbP)-Z zwr&o&erX!>g~zkGnBEiD6$N+gf-d_gxlLw_!{+LT^0M#DazcM+dv*9Yzzj6IATF?2 z_(Sj}OuEa)D+|AT4CS?N!E&Wns8e9NZP9DYT|^a>h(R$dtWwX^Ht3Vb%HKTgaJ28X zyu2?#7w<2nRn_@orJN(r?L0D>e20UQ#lG1gTefj)jsIFJ-&kA3$>kkl(#7&89AL|< ze@tZSV{xFMCq3ulCpxXCH1H;7z?&iI(ir&lAl3WsR;P8vo9WZbWr?CDeLv4UN^FjA zs{F8c{67}pt(oY1!hFC}W`?2sR}w2GinV!EuH0NzAtr}$xmEm)+g2L!mIB+NMz=jR z;tzh@9?VeyaG8AWKeS%BSsHto#pKr0m^1ZaYG|~;Z$S21$u7ckqHMbDQ#ZePdu*+oWbw%p-juXRqnjMes|#fb4}ufV$6ArqWUk-3X?E5 zPPU1H_z5@bvDzk%72R1_+lm=$lHDH;#R(12#OsAOpG^1=xedAa5Vt z0Dd)Yw=ajD=VTrPXF%bDaZ-hqZxN4Rw`>j4)gymdi+-GYSV`HqB0B(RwQ0|_#e@tz z#h|%;sRls*?6gMmEteIP-dkYH&5CF3F9p{4kqCvfCjMMLxg3Q&W&h(?hC>rNgn6lI zUhxUQulwqV6;y?+0;bvGenZx+%8wa<7{k)5?%Q+`WpSQF55SxPcJ<16?r+;M00Vmu zH(7~X%F6OvLk(ku23+tMy97Cn2&J{j+803T2#B8mh#%0LNmc;*3{IgW$iJzK2rGF; zKf!g}K;Nhiq!&o^tI9`uq(xz>&qvtaB`(w`R}T&K_6`&d1TItuR_r#1;`+VzOzE@5zic}+S}_11Xi-Bu@eu$YR(^e8Nb4N3 z>trc#6_(LOT~gh9Hgr+ELg&5HFtRgAM9?dIk0Wf@_>IzA8q2u>!fc!+;^ z%%f9B5Vnb+RqCF6T(6<0$-Rv6RYleHO+v8F&(pIX!2AGM~9UuQ=3{rLff z&cv{5<%}<0*cj~{A`c<*Ya^{XXpf77SDzLRviA1`8CQqSZfl-3*Hn2@O zeGNQjw5ljYGds*uz#F>M0p~I&el4O2!R{|Kpj;EHQ|seDQEyj4S`K(ZQ;X;L%$KK% zGF4^b8ul)hC4K*>I(7vrfrwbN^9v-Sihxm-6NU4e-;{-Dbbsu(9cxAqh0fu(HG zJ)K&2ZX4TsRA>RC-ThTU zxt#jcT()k(6F0JNPXT70&mM-DJd7h*W*`M3acqH0K@EeWv1uB_VN7F~w}0{w#nC{s zV%+j?_GFDsxgWG7YoymOU62~Jlxz*;n>c^w`-FRppUl2Vd^Vj5L_So+XR%?h${Xen z%2g_fmvgb@Agn|r(64ymTb-|v0nr(|;;S>ix0R@+S3UG|kBV@C1GM8)Y+gWS+7pMI zF9sfK>ji{=1oQM2em|stGN>KY?1MZM-y&^#Lq7zcK8{ROj-!O=H?E6$_aC0!6IAhE z>ZUcv?W0w4=1xQ~>ozmTzB*f#TCNdJjf0r6+7Q}qdhz@I;q6DM~FUZgbj1WT~@loKS*v|MoW z*73?-DCr^OQByfu6$2U?@& zAWW&5+TF7+{%-dQISdQ<7e#*|rkFdt=$qaz69sbfZ^ ztG`%Rso^zL$3(&FhH%!pC1upD-e(K_P42G^N*Z61!UZxL?kdPALYD)W5J)Gy+4j}1 zHrATu3>3jK)!gQ%yp-(D(YuE}tZ1x+u-im7F7SPp=8C`97T;BGlX%WNxZ zfEmdz+-xI6cYSDEX=8=Fa`iQwJJaIOw=vOXCVr*nUu~wE=7q}jNWu`Ee-CJLl zK1`ub-$hxK^g(#kDszYBd4SA!&YiqaS?ZG!3Z3b?tjgz5RSXYmWM3QI4ysb#4{M>} zhx#nSH-WN=D&~HSrA}?^j7H1aIPn?)qv3^Qyboztr~Uy4nq&W}d5dOnJV8$_!s<9r z=yWSZDP*t3&z{yMctqOG+(gg7I)Noki&L0F>#Gy8UF%-8<@*4FOy-m6m>x~FSuy+f z0bM}Y$#-C7GksH@cIL$0f`47wU}h>tK~r=7pCxAiSq59l<7qb&p}r!0wdv*cOQY_o zcOXvrs(q|@;qH~G@g;HKH?~W!Em@PIL4*Y*%6wNm@;hrkm#s1hjZu!BIN%5^ddP|; zvgKAiw7c}%#}$n#QnIrk{@rF=IJoslpxfo10g)E;4&~HVF*VaUGj8I$D^3#?0T#i! z5lSV%f2n>+oBrUij(^U=>i)uVrrC2f=!KL=^~BrkySGKZN|->0w0!abYjf8}XI=`E zV!oVfp_DeDrU&Id1JS!KPJD5stlPTWxY+pL3BX_NiQg zUchQa(sia1-ep7I=sspyn$D^40jG-Zd2L}JO;P$)37dIQ2!y5dzCZ=Z&jspB;}dwa z@4WfIf~WCN`b=4E>CFS00AWD+Z#NmUw2zGawUS#9C@I^=ZIa-v!uzwS^TLi-f?pKv z+G>ehSI?Jg4g3W)flPHg*$OC|@*V56g1%Cd;D-W!srQ~bn@IcJzIW%|W7~URKVs^o z{L18k5UWt>Ya%6=zoEZ?4qMZ-&X%^el-#{v!xoo!?^oh|$zlu}STXIFTg800XStDK zusYjBne~|C`&RsAe!qKPO3Kf7IE=_GUo;j{%`G@497l$9sZ@{DA6$zPo#ZoxsNEBDkao0Hli!0AH zfr6U-J7=hLdtlIk7qVAh;>$RB=PQC9Zl2HbI?MW+s9*e(P^ou6d0(^zJ^llt3w`jj zA)r8D+ST;;&8&g}PN1Z)$NWR3%N7^o4Q-xWwF58BsOzLN;I%0ijUWl5w&NnX_e%c_ zsp(wr1Ij{vp+1I*rU6Fic-Q{npKc}RFIY>MZa?lVGrP-uxxnUHD4TEe5cFz+n>NzW zfp3}m6=7Dw_gR)lIJ5fl934OvR~sT=%Ty-;Vqu?-^Z@Jc+6r6*xFvAq=3q^T6Wc&( zC?J9D)cwTB3g(jx8*r$-OO=)zY znRL2g19YS;?HtqnpO9{5XjZ1_!_(HX@~vN>f(BMZ2kk;1ShE_>z(Ky&1L=3J0^q$G z3`_S=pDr1wq6OUN#D8_3Ii^j~WCcJq&m$uM-yJfBtdVOoIH?()?fiuRL|~S(B0wIU zRDeRsG%ik)BmtcQMYM^!GvthycDF;rvo2uSf&8(k<*8BRBn}rqy%0pcSlloFmU_4A zqK~$q(!M*wbph%X_SsE5PUlnU4wI;dlQEY-c=Jfb_*NXl=n*Y}i89sH*f-f3YGQyM zBL6qe>OW7Ecm)KDQRG)W_1?dG>AD=oY^Bk=kX~E7!I$}dI)HgM?v#Pst1(d`)`bhW zvj6r^-Pl5da)&s!)`zn@bidfttNRN&P3pfF@y}`B){!xc2qX0X$gSR6Lc`ewz<<-P z?*dexgBh^B2B)8a$7m1Tf&S;6wdF_kHlX9o;-||t6st2RH{RpFvVe=I%fT3ks>8x$ z`<40oXFLZ15nf{AJc9rMqPa|~i8$F{)ay2hppNRpkUzV`Gd^I*cCwIVxJbWe$kX#q zDiKXoV0B{~$hw>V*1xJAcCbOXhzu00mR%x0aD=AoQQbo_WwoQ zk*JVsWA1QPm&^P!9Q+vin9_41 z^z)jc8df!5JKL7WMh{X#WFCy%#W<(c%|Ry~rVJt8Gc;=aQdq?*%z-aK7BKE^I(|ZZ zFb+*3yvK*O&m3suoWBxEy-ch>Jcy$MEiji_nok_}MYW)I7mg%BjUqw`FD8R~kMo&A zlY$x#smr0`ze9p^n&W7mPns@0L#L_v<8eS)vX`MN{9Dg>mkiDE7MOUgR695tn2IQ$CFB&!Fjxf-oyaeRG zeOGvmJ2%kv9hg7Kd30cWL zmM@_ZsEIIArc>n`=s7BbHvpXfoCFhy8P0oD?^%bOF1O1~0CL@mhz24^fC}%zMPM{1 zep;Vy$7G~aS$w0Oor?OpT6whm@K8;)BmN70sV|lXtVv_xEdgL96_00HXiq@aFFH5C zS;H5<;!V(Xi69*-=^gFTVGXdox|*;J&gr3Jx4!lCdzB-B6a;~!oD_8*nT03wf5$Z9 zW;OD4Ln~8^&=I6K(!0e2jup{1FvEcywP+#8600s2;I#UTOh>U;02^W+gZosSaIj=P zvKt!NPEtm-Bg3V!2MnVqTS&3rs-Jx3iaC*( z5je+40u3-OI@Z)}O#Q6sl|f&%LvK&t1%hN*5G=qR>sTRDM>h$uCoR)lENL0|D*)DF zbU>p=z!sqa(0kEn&yptwr~ho!1F$baxbx3`mFPzHP7wbyLW`D2bbQ&+^2zM<(z^D# zfg<-W%d~|R!JV7*r680elFK|7U}NI17X1eY-*DMNUA-$IY)UfV*k;HtS<`=g(85zA zs*^bV_T1|Qn{#Hjo;-fZzqSxsBH?2E&?%!Aw2r^-ZKV_+%$;A5bh)eIM3i}}-$1;Z znLRgxT7+k9v*Z+trX$%QlxFR1H12|cC5S*TQ=hzphfrkThyI4b8uJ)jQcnA{AniKj(H~;> zjcwBCu0Yf>kW5u$)Zfq$KNsR`!j!*H?e_7ymwqW9D;oT_`@inNjJq7<#j(i;iJ@~o ztDa>)BX3G`-6*~MVZ{EeJHUR#*)jDq5z4K{3}$kxY0LyM17a#z7EeN8r0{E@<4a(&>17@jfmI-i(&bSd_t`L~cmL|VcAo`e zLoIVw&WqZE`h`bW@dPo#vUn8j0znU*LP^yw-dO=`*K*=qaGnB%?DTgrA1f&kNvyqT z1l43K`QsV$8+k6>Ia;2En>Vp{tc&kr9b~@f-Kqz~74xEW4jbPKD!1M!eGoq{c$1rR zS5hm4vE|F9Go0KP)Qr{N^!KY6wY4>1D@ZO-?Y^7(@&8($m7Iel#<%dlpK(|`}%om-5V%&h$|_g{VAhkr9 zfijGD_%9c6=+-81eTX!ugHf3V{*#y?43MpU7*a)Rz#Cgld|wzdTarpK^Xbd@oxx{E zl}_d>um5F|-1X^753kAh-;J*J*B08ZnvMSed=nq#cBaj?8V3xw%n@hD=x##OWysI{o=CV~rRoC-0ml;muAp$67;M7=so?n;gM$o>v$tb~n7&Kk=j+G^;4*98}DCV=aHj_T`;O!u?T|d^D;i)IqNkVu zU#pzvvAh*aZ2z?W`xPqW3Sn{S%VEXni}i`B86N{rE2gcBW>nS2^;#d#9HZ~UYVniB zw}&;-?!>}uZpsmx8vA)E?DRpjg0_FG##yrVcDqEu{_4LU0>@br(8hqZX5U?5 zz&<$`$n^F^VZH>uStdrqabda!=$L&Y1-qYdM9#reA~OO;)RSjLm=)m!skd^g1C*-g zczvuKKS~{Z#9EBmsJ~xZv;kIw@>}U_3wwc5iSNhx_69Z+_FBHM?{!Xle;rp(>_R6k z%)x{GFg1w{dQxpL zdE3~)R`j$TFaM3Be|<)HmyU!7Dyp7@YJW%KfL4G4#S}6lVqBzB_AA>mjUFpK^!B5n zv{XOmz>w?!>t{BUNX)M!jN zH0;gn99GN@L^|D!a%69Ic4V&tzJEAT>}yYwSi>;pf_8J&Mik#D7)YJB7tZ!$p$$v5FLw<|JG2Ttl*nhAW4LFR89_3_Lmm-TE2+KvyUVXHlslf% z_RTmbV!ARGmqca_R>t%RZWzC~=>35TjoRI4C>mG44YW$WMOc=K z9SKo4ZC&sSrFEN$?>et`^y2zdiT4KV^@V1HQr0uW(1dP+f;_wpvHv6zrE1`0=q{w9 zPkz);%;EtQs)Uu=ZsQi3~q&;-j!L9GtuFalWhDQs~=! z8hgOeqIbxNW`4k4`t^Vfa&&$8bq@d2Z|weIRh;X=MNI1_c(bX^J{bVO(R6w;(I6Op z-0|pWaj15WR;#`@q&^ZrbIrrl**gc>yS^{#n`x-z@(jdsc|NpF(5xzN$s&%-a}!5q zIo-evjcip;4sVGSm8~nI_n+)Ps(UV*iF?$+81!bYMNhb`f)k6gYrmBU%x2t*}#sx2skd|JsQV~LiR$yj#ni33}ynK(&2gt zu53uyl-p+`{iJ8UWUq!3(QD`Nk*r(pwolk}SqJP)Kg?)ck$y7`j^``xv>sQDD*IeC zpb!Mj$5si+5>PFr?ANt))f0zo@+nPPZ#v;HIjWLrfo@rKt4`u2f@Dzp1qZrgxxC^; z$>ziQ3s|X+LYU4INL18kdQ6=cIu%n%6~DgY82$+}A82SLSo4Mq)}Cz8x$06$>#G*% z)^V>36!fvr+Q}Zh@~7sxWO*!X0$yVo{ERDclsxAJ<3B9V8*>ov!2bwwSH^dZwuUrh zIz?Cx7&Y*|NZ5J$P!nh&*?=^k$zqTHhWU2JEwiA4qswe0%k5qnyT@ys?M;T_FaV#?HK?TEx1r zNg&}|cQ8UJ$b`UjcV{m^?`_%V`<8^~yePZ#q&qDC zH)j?1XCs8o^7wwHv20Osc?yUU#!H$Zq(JpUSz*o(mYu(dT$r4=>g8q-y8I@robH$x zD~eLcbGkvKvydd6MV5yydDW)w8?7`87&JdsoB}f(zoZLg?zmc!H^x!(8DeFgLm2we zn0t8n&gGjqgfl1>7q|t|pI~%{dhmYCcrb80>lF29D=Kml(gX)n`V{X3XPX@aKQ!^4S z8HQNxprHso?p_NlsnUTPzjpAR{$MVUml7tjd&yFDW3sk*(xPXlNW~j?7&;&N;nm0u zG&(|tL5^&o5?O?o{`m2++8YYXU*&}hLzHdRvGD*-Wlj4w_(=6$alCLy^S|>=cH25F zTh6XwEHH9Y4S&!9tyw#y!JaeBk=^yla%P!5p3WTU@PkpaA%WX=^%7+$ z#)OJV>9^u^L82@HmD-8#4qX0ZH$-KpqF-WbU(lyJv|4 zgM}kFsR8x(9xxKqU_~EJpMiAU#|St~w?OtAEOJ#t#e0qa8&-4^v*f3%|HlFx`tPwK z7!W9S9@0d8oSXe^k|Y+dM}!-)IV3M@h>&e{I=7Ij`yw)< z>a6Z`=kqFMirYr#G7W_KeIs1G%9me)D#DYfZNX>CK4H0@Xx8J&YJavPMt_d{)F5?d zP&9-bDvRm2RAA7f?F~r1ZHs0D0oO$$xUnW#(mh_Umd^IinGCa@)nzes%(c6JeDa*D zA?^<|<)HEKHzF)SZ_TlMEZ=ik7Ipl(Cl==YluQ4eW2bHPe8ArgCP^M;b~JsBpAI{9Y1c(3fWg=B8QxqrnMHNTHw-IX zCGeZ1%RCgKM3pA3O?k8F*a!ZotaE~#D4SLN5givENQFAQ(-a7Y; z#l;UIsTM1NfmPJdL&BvTC&G%epB8l~n=gO75-=A?k1-LBG0WOkx?t%_uQ12W>@iD< zA4QRn#W>S|uffdk2R>wKf4la2(PeZJwDg;GM_Rf+;~IK=$zDBB$&6;X5D?{cGU*NZ zH+V+;pyT0G^LL5eqY@E`qjj;ppZ)@UGbepA4cl(-_nMm?apN_d6Ly-9o{F73bx=GB z0X`6xoYOzB=RF_Yi`A@rI-eckxG=cn8!&_o@@fKaX0J$8l($IyFu|p(g_F)BVNLFq z(os*{{378+J#VMES~v&!Hl}d+!vKQK#2w`CjoI)2M45r=QQFt!C5@xH_P}~2rvB*r z>w_rL+Kz??7y;$D8fxRcaM=P%0To&ryd^&!n&X)5!eQ3Yr!9&p!y|}hovez*E z!RG7gU+z+QIef;>?EXcBTKuJ|7dP)v_Fj~#@?_VP<JeSQImhjKyG z`K;?j{VL6W(`~=S@rSP=xI*_ZBtqQqNly86$;IF++}X|^6%)q=80uRxI9bd2FVJ=R z!|&y#K{Ep&hS41^*a9h+7J1k={tJ>3{jL)tT9GvC1!H6>&mVK*=|KGmS(VBZGX5^D zAKy11r(u#80Is4_CV#gK{{CqeoI<&kmHrfN_;z-GH1DaqG)hRwWxk>2oX&U|(uMZ# z8wX+czQ9w@+R>)-^MR5(M8T)w4qxcBH|^;gZ_+njW!zejP53x&A9JPjX$x)j)6+jS zpDy5P&yCaPreCN+n*1M4=N(V=|3`5bB_t~vwu~ecGOtloWVKLs6J7gWyk*aGp=i97rEDnn{jRKHSRU8TqFG6-#>nTs6X`ZNDtln`keDT=RmV~d*kQLvzPw5 zUFXcnEMYa2|C}0}T@oiQWT+_?D_i`YRGK_n zZPJ1^I$?R?R%RT%6;HF0#xnuEk_&AU(~2d({#wHI2QO6QjbtibvC-6eyzDUHz}cr*dzu#67zN>cZ4m zC!#tWw@KR{C*;|u-vFmpzYhD%#uxe-Mj~C8L*;>c9AP)V4;i3vDcX{thnt?^;H0KH zvSt?A*cnPpQYcLR6uG|mS%wtQK4eBLCmNs8vf2`D%qH3nmPH+;0Vjw(!Q>;j<|RC= z=*@soGEdZSJ+(X%LhfOO(Xmi0(fx62a+gSCem*1wXb^UY-7Kn_`~DG5A%9 z$XoU6VR^Xa`H4}{lqy%;DGEq1m8H%-#lrXTQ`it!8RU1GEc;_X=9iMMc@Emt>44qNDAh`I`b1a^+kYMU> zaErdeNqz1gCLFxJr@@4hm*Jm#Pqe|K{M{LrCQUL-d$U0Ol(@#yeXamaf(vZ#Xs9)O zu;*G+!ip_nGJWJe^p0k%>*CWjF%ltDOPK;gD(e;Hv+jrr>oAp?SMYfec;4k>L?tA) zKD6Q4G3U~Zc3VZ))xoa&Aq{@Q6JP3MN>eJLcZHxC{GIu{=0A>Z>{h>;YV2v{$(-+2>kwYlwlN~6m zL`&U$m7`OR#0vF@5`~Ru$ew4ip@gs&PMGffgqule5vF6J2sbzuz}%!7QP4GeqTKi1 zd^TLT)_|8hpEbIp;Vri#wiNq#9}lT*YGibtk;GI)2GHC=1JCy!y%SJpgBV_~lP9ze zVtK%)!rW%G=;K;3yI8T-POM0$JoxC;+;})=cJW^=^_*&ks}Rv%u6cWob)gNxvB=$u zkJy=J*?W42N-|=$Y-%lw)BOW#<;pHaH~iLK#AJ!L;A!BHZuan#=-Jy-Vn?{o(Sh)^ zz<7?{J)Uq+8A-T{ziSVL1}cIU;Wy&i+K|Hf&z$V-piLOZ(Hp;zKuMT`l#oPntk_9v zu)j_ZgRjvJJ^o!*gR9M^z*HuKJf%N_tw%pyCK%)+x3X_1-c8eSRosqe`C@cI(}Z%V zLEH)Dc?<2UMo2wIO_5m1|OQdwJIgGPwJXXv(FyuoYg#qnpt!HNI*Jod7w)gOOG(Q|E|R}H^w&9^Cfhw3 zt#^;=^0ByTb=5ceUV6OJm&FTzuHQ}-*Yx1I-51l!TAk3!RY0#wmY`toungVqR)F`m z&cat6jy(|McYL71-%3Wk)>xAo8?SiOUuBkcT+}M$<+%J$IPVD0^SOq@_vm4<>=QLM zK6>nrcRxZt-VZICOx}a4gext*1e9!x}y+Sl}T*+!{&^=CAA?r)U5yA$b zfw+Gk(o)_W=A}IpK(i*%viOX{{!Pl*h^4n^ep8w0Y_ABq_4E^QdN{doD|B4F5fQ>_ zC0Y|s1TH<;zy-Hlg>L6+x|qk3ehiUzvUx@~?V7|JVS4{iW<}3iv)l7JxPJwn6t4K`^P6BllF%@|n5(_G8O-jt4Gl@Ew;fj`@eQ@YgY~8^Ht%@|t&{+Ua&pY( zVFR7b@I)m=+vq7tc-+YCYCx;I1y=BvAcQ=EQ~b7c$=jRJ|Mm`bzdUx~@&`mq&6Jk? zAd1oDX=S2WW))JZ+(TSi-&XhZc1K)hSWsA@RvzTW3)u`kg$DsBg3)C(RA>#CsEuczxD zSYH~itUc@vaG;7`2SJWJiNK&!f~?ra}TDt*$0Q5sQn@LhSP1R-ZS7c;uRp=QLG zv$B>xA3Mj|{nLdmCK$^zeJ7c6tlv=tVewKVP4TgP0@OSf#_C8g%fQ6@*+vevJ=5oq zAfmck1hj0S&K(VT-FIw^5cZriDHp69QcKTA4XO^OKHR=hOe#L#zJxv3x)ikk^Y(cL z>`D5EEU$QfIieEUX)%vjmAJc}Z%IA6VV$?dbnfbKbvoP5ElVkD@H4TmvBk7w6D}_o zoczAOcv$iIK z6IxzL9S_7@Unr2mP)`XMt0ZM!Mh1drpNr~Q5{AU+2d1C0(#5YYPv2M1S}{Zx2^`A2 z6|smRn9m}fNUr?$oyF>W9z-9-lRICN-bR?5=k6PKnB~q@{7mWekkg@HM6i^PuYJai zv?%(vx980>I0h}WC@&dM*umuZU-Rchy}R1V zJ3K@^f3&};J#x&N@+j;oWb>Vni>;|tz;WS+_LVI5Ifwon|JhmihSj5MAXxTxoW+|f z9K7!OIfWEK^L@p%r+(`z7D(6I{Zvia+7t7(Pz)Y{bj`VrWk| z*i{JvugXYWD^Qp9tYoc^mK^t zL6EyoDALJoMF(~2=bS-cOBFn|Pu8C^pWxV{fGjfFZdPdDhOq9c>m1JSRTjFw>musO z_SQ{g^7Qr5bghxRc0c78|luuk^IM6CY2?acs}7CS?wEF zTK=Jp`^N)d(MltwIg`iD?5inR52qdOQ2MJgUFcKVcPPlqd91-sr1QBtu9weS*(S^< zP^X+eI`B0-I+iX5{~`IMZd(5nS~xw1>cDm{t9fnn&}u#U@OAWgD;!XNq-zHu)d+8F zduV!;e$?I=d>$W5d5$phg~0LG40(y8f8T*^XM+ejZEutIbJy6|RV1+VecdmkEZ<`C z_L&G{LxbO{9Q$tJapH0VrPC&6emxw+vU03PhIvSu@?HlO65yg{Q{zp24Bb+XdYuXps9CS{prt2=2PUHM5f=YJI z?H5d|hTilSnkY(O2n#cT;gcw=I?ek8BAct>Y7Aa9zA!b3@=v61(wfqPwMSqEKNVfrtd%uKSuDE9!U zF&N*g7l!O*5_zY@N^;S=tV&~?R68&Y!JiqfFYV?P6j~9!U(M5M^4(8@fCsl7OD`#w za|8UEG>yJ({P#ftZ;?dAG;sVK3=()t!VCMskf zsKz)8=@_QYZu_%kX%(3Cqbk~r{PqwR_ zcqL4SWOFB@7T^Z)mS?RvsKrh4;Gs_QTgxn-wzr|p)cjyb5k<6ba2F_zANr|c$Va9n zkzUSd@$VgGAz#3JX?Vx3BN2Ee2)mOOzp+4DP>`B( zo;SPxTB$Q{FVnWuH(TyiYt@|}KAvOn4CONw4^GD}eJ;y?#x>fVzxHhSc&I%z+SyM$ z7$HEMvve^^iKU`C%L6)3icdgeh``s0Ds}oEH7dW_TT;V@XkAx;R;J!8`8$a<^`sHh zYcW|dxqazZTuTjhqQGV6#ICPmRk}j|SoWeTw+RL@P^BQcKa3ZZfbLO-R@z5`! zmUQ8RFOb?wKk!nZWbx4|T5TZe6u3S|`WweyY7A# zAJv3BlT15&rYkcUD}8sjWdL+`L&xr-UN{W`pVq>zgKZDHCnjZb2|7!&Iiq_ji92ub5=Dp;N9=cxB_Ly7{?PyPbg@ zvWffDeN)p<1_3StipQ*`7GAoC7z7I$==$=gSnpXr%{}C;fNs$bsja|z0aHZN3y9+Q6fZ zmTtfQHwLM$>+JGJH#JkHTm#jHpZI%@MlorjXTLK|U4$>l>zH*1m}Q83SwhxbU%hWg zet>RtBT zZKUd@p%KUN)T+Y3iA0v#RDDg5?2(NwF#*{QM-h+> z2xJ32$fk8qEw0ty)wgKse3~KAO(us|y3m(zI8i)TQzV;Ls$b{j7uZxu@!0h@z~PR3 z_24+-=*KVcBeIT0XP5Mo*2m#r;xaE^Jsi3fwA5Z0DcdwQ) zjr9Xkjmtk>kg#WPmua`0Yb!(+N#kl~zO-zo{FCqE&}yaV&bjF190|LsT$#}dQ0OiCj5G?(wauSc#&&La8M zkxr53?&OkiEcx~k8%r3!-)Ms4biMIrfaugec!ZxLL+ODy=1h^Aza>;9xl29=6-3aR z3b|F$6TfI$(c^u(7uEe*(`q~1>z-GTmm-lP2#Yz+JCCuI>UYfp4hykiYCU=G@GQxm zhq(Lo_1n(~CmqUX`Om-h+K>UxO8vHC-*y)VY%IgrzU`iVLng_*A0VRH5Od?=uFN%u zpeB8~%(va5j5hky=0^h(F?ftwTyB! z0bFQlvK4(*#k%|rG8!`0!ZRM=lmOK{IWX{q`F>v%oMZ7+y*9>OL-`^S$9GG&EUttg zda6{g(Ta>rymB1&B}F*`%R)6qG$Cw);RjD-NI&*X0hFE@(qmQ>ijzIm*-j^G&i`#!7A8b;yoh2imwTABZS zQ3ZErgTzgUS?*Hc`vmH9PuA*`$en+GGWXXs0}p_hGTr;FdcPg#BcFX@7kK^P+KQ)? zaHXre)&(@lpe>JsL(O}6Wo*K=%P%mu5vH-z=T5YAVs!Ws<>E$miBJBn*C0QRl zJRFlF;A7&jLb+Y(=dGO6S*h-P4QS!c(SB0-=6%s8c~=?uHum5`xo@0Zp$gd*7PVJ) zAS6|^l%eZLh;z57OmyQr_S)F_P#E*Ex|RO1i4TOUI2(GrA|x~GmKl(F^~}G*h5rq{ zlP*z#rjBKgcCLINJFi^2!>^|u;pKv@mjif&2PjNtuMI;x8RCX1X5ozO@I6De(Hgbr z&{Mmol^+GR3N5>(HP6Rr*Hinc21WG=E7mCZm@;9P(QeV!kQEGD10@gcu%Q)zlz z=`esjJ`3EkE~kHL*)OBpTGN%Jt@}M>H<6>er)>GQGr`8$QIY-C_;yZP|m) zA40g33IEMc2-?@^8Z!GSD`+eyqLuNWerfwbJ>!HXD-~RopobF|>^bIrxHtV;>d1wo zW?1=B@4#?+K4EW9_Yh#U=n}j$4NKP@6DJ#%l-^*usDb>wz;iqT==2|(v@=^rAba_b zwzlA(YMceAzyw`8uWCR4n2x-%J|;lr^d!ISgKh`;Dj!P3&j7$4atmMZnxO2Pbdvwy4k)%(%2ECjKk9p;})5f06^97~Z)G37rC z1FgcFo;$>Li03HQ>abXThei7}`J<%i=Tt?~M4U#;n^dDinE^^@Ua6N$Gs_Lg*O{+F zm;_xYj>J9D6qsa)%pk2wC^BWj=nAG^6xUI1gq3#eoeL8Ow^&QdkGA3MqDl0CKP9BC z*0{E&`>!7dhKcOEeDCz#gG6x5jS4OLhX$wJ<89(a)ypye;#*eY3gG*?Gt4grEPaov z(egPHxJP!OLF)yMcY=acMr*;H6QR}UbK%vc>z`L?%iUY4)2IIB{0j{FI32iUx^Og< z5C1$r$>L#qGk1{3%1QBIAm7j%!(#&-zqjfN^-Bx`q03vs-yM-EH^DF02e!n`vIPn8 zW9At9QUB(RRg8n6v3#yQe_yM{N{S(`T?R*5NlkG@A6^r&DU~r<+_|~Mm)SZ*39wR4 zHp>}f^FAoAwyKxkt`ZuHdJJHjR`~iSmgYd_IN2Y9GR+yK^mnda;-r3ChjT8=J8^^d zg+^WD6Oz0TvcN)!*yX2e2;AxC`6V7SFHU$#yjzJ&G10wvWDb)wb*vYOO(Jz3<)HmK zMBwS?DJIXzq6u)Xlr?4`;~-O<|ol*q8~5eQcC zmBDrbjACgR7JXB^+C6oX&c13(Fk=NjZLI-xcEq8bNw7{Yf~m^{c@tqe`^H7+&)_Gb zR`t+V#Jym4UcInmOoP!_R49T=;$P>n`h&XSAQH}gb<86etMmDVYuBBNIzC`a zT11Adr~P5~go4O+?S2uy)$YzTmP`dWY{F7YK4Wx|#j$*Bq%sVAbMdmd>bk zsfZnC=*cN%qmtCZt?ua=rlu@=bc?4nR!f1?5IinL&V}eTQf{2Dm_b7H{x)2^U*b}7 z6B|x>{x=U~oAwl%qEV{Zwk9IXrmb%*vkG_r&jPUSyvSqwW8-^Fx0{m^^~dpII9bTG zj06Epc$FeSYJXl4&llsemKj-f!)9{#k(O zkvtd7aZ`NB2x+DHb;t7Kg2T~#<)f1u8%GEZr!N!RFRSzVf2?mh)_3RX5898*Uh;3L z=|5<4Ij&q-c-Dylnc!S`?xM4lR9zF5*QXXnzUigGEVWh$*Ea5^DAKDc9RbngTDUp( z%44>=0-#$z-1_kIog#4GBB{tTRs5n~5*|8VZT!AX$O-XK{Lz`>rmsN}a;f-;%su(x zOnZ>^SCfHxbIf&asUS-&m9uS|Int&XfP(A@5bkrhVPCbP^|65An4(pBF1!Vqrjhy^ zAH~=MY{nPYxu~E}lT{21@=9HJ+D*_E8|(k?F~4etP_Nnt?$_j;_XBou7!9_KhqGOc zNANWEzYjHc>yPuBW~LgBRGJlT=B85s8I&41zu%CePdP2qOKFDZ0GBN!$SV$TJ;bF# zVN6{YJXgUJ`rYvJN9+7LY+%&7LEjSM7&JP9pq5>^j5)k(y0YVj;>)+#}0pD=C#n} zm&Y$UO6mn1zUrkBd@D(=&y2mF_~|#F;|MFra{DIl zz(UnUi$c=r9A^&j{^q@$IkY&iNxRG)_#t)NAo}fXU(7O2`m^8WJ;Mt2 z4DA~S(m`^4#YZTNDLgOrfdG06Y&z5y z*|2fg4Wp=cDf9yab_793CBcy=0jNjV`vr&i8&HQ2k);w8U&9t11}GJ0p+YvHr1Qy& zT?l-oCq*a9gmiShwj`$g6va_ZXQmz|ti5jz56fbw-ltW#TzsG}fn|h9XFD5RL*45f zoqt{Os){(}cGIalATqd+gG$$W{@8QD(nJ4Gj#>u~!E;dfKc|c1=LShG0{e2|XFNi8 z=y9#=Z=n(1YQi+1qT4Qb%d{=Hm&vurzVhKJ{9ug)I`8q$u^(JtznlvQq0U4j;MzNW|-BXVt_EvQh!#%C>>3emRNlIkROVkUg=zBsKPP zlh)rtmhI&s;^lzi19JEfbQ^3!KavS8{Y$4@Uo8P21ZO^Qki4Q)31=CCqD)h8wtzpl z_K#+~vCX3Qo$+AHjlMF04?VfEQ$B4A13pSNff(r|dEAra>vFN97i~u(yUP zZt2FMYKpJEz(^%a>^VI}rV6kL!X>u}@m!*_ks+`Vpye$Aw4v%f)>pPkX0l)#++&nZ zykcu8krhbLhB)$NzSeifpIX2P^=jLWS$(uWy=PO>FCIFD*ey26mMBU8jhr`6s(^~} zZgM;5w#_2_MR&jEM@rYY4mk@zi5~UOXLts*?&>Bs3=aJHiKNQ6AgL;|R?}d^6Pg-$ zi+}H|YmQ=0m~SVbeZ|`;PN&-Qo$=uuIP>X`Vt0akm;lim`kJ}R(i`}nZ9&Tvc9BmL zB>ufvt7%O6>L&iV?=9scV{0bGoC${Ov;tpyEr6=p>1}oT#2g=)4Z+52d%SbEmyqcK za$e??@mK!d45Giap=(a&q#JF_b5Misv0Fl`5|ZVS$H&0?cz(pEezUrvt(alII2L7- zqc}iKMrdIEmY`^Dd#D=T@Dx;R1=RIs;rFgbR|i?%(44$4nUF4-XEGRDKFYLyr1B{u z?!JAX(X&Q_*#3W(X$kYYtNoKZSRpr44sS#T(g$Iq`jqROyGsXKu;B}rk5^z8sD9u+mHuVNd(C;1;` z-&+#)Xdk_N&vp+wCh~3+xlJH5m49wbVzu;ZVW+dk)ee2`YXS|L^2a*XW~a1<#6GkH zp0Qnh`%T+@X+LE9{C?h~YGeAPcx!;omG8}LjbXXBFp@i3;^P+qmHrageAm|SnV+^= zUhxL<=^{BIX-nm1*{E>kNdm<$oUoe)zzJZG2V@no_LzSWaZ;RA z^wCYTthr8%Ht}Shf2WE=T`96@JC^iTN{@Z-0n&R!S$`WDR75P-VezeV{ZW<5yYdF5 z)Z@k6{k~G=le&S2kpV-LHy~Cb5BOcmVTRPJ*qc~!B2VewWAH!0N9p_e1`+0hIYPx) z5vmu4V#xC;yi-4W>|!=kJW?NRk4;hD+^79lM?L%x-t2dIQ{6|o#*^~*;<~tF|CkTP zO?)|hasDFZL)|8AtO8v(wcVr)NYTwV@9fIm*^A^g6CbvN>w8)A44}?4G!A~mIQ?to zwVK+SfVI~(!UZs}{pwQ9se}Dzf|XZMZ2LRzgiEE(;IKO!c16XlE zvu#)l-Lo`wc9bog)b4Yb#KglTx~q7CUvp8aSXvt1;bq$2+F{I2k9il1S3e<9Dk|~g zZ{x-bOvI|aDVJJ(Kev^p9?#vZ8JJg&CdkxsP`k6v8eRFhj38LyzJ6a961ul9 zGg<*;1`}Mv=ib!fvmM_gGYRi%om0$RrO8$~L=Gw@g3xs9)P8F!d=-?-2bI4J4;9w6 z#59+zLzbUfW11VkLPWo4N45G#Y1w(l>Br6Ru>J5jdE_=#Tb_6>TT`&tvFcmqF7h%W zJzo6RRf*)|!4D{W3A)5jHH`BKx*Ru0^y2)agS`#9P*xvva6(mVVs2vEiGODK{`5D5 zJ!2O;Vfks(gF7KzgWhH2bYg&dABaEEWAyX0n~zNt1FPZ0rJu%5fpXGh;|-753O(IX zyx{Nq9)0v4^`roWY>NNW=5x3+Y8~Jla|gsV|H!aZym+ zpZ-`UC;gYi>r9Dj+5U_HmfeG{vEF+251;Jp*Iyj!sk(~duQr{o=NnDnD*IH!r~4-- zvweGBKEY8aGM z86u?dyz@Uh^)aLR{Jj-NsO7?sJMF5V=0v*Z^#E^E*V?2RCPk_B@$`xW=Qm4#*7Th_iYU-Jy*uOfF!R`p zY#@Ebfryoyf<=~E1lHk2D;UqPJn72cJ@8((m!==FamcPl1e0&?E&JJ7qBpMZZ{4T?##c^3!uckUz7cUvOYHRFOFg!!ft2WqQ-~tsom-7TNMFwE!)A`Vn+k zpQ7YHZN7`FL|y9^vtPvcSe{SHRW$pk=4p9;<>-sf_;CFf%Y;*pk?&6}yS{nC=yCi8 zJw^22#K$gj{?{-tLxa2UcMVv_QB3dYTS=o8!W)~AmUrfrxaLscRV3?$GAbS2XsF1{ ztM&=x47#E}VWgVP05(cg4_x8NRw>EVx9q(EUs=FkHLX86{w93nP~&XaxitAtJ2V!A ze!lhkk}ObIOtat`JJ9c5ZuC-C3I;hIboDzXD0GP>6X;8c08?Hnb@6VsUUsiZ5aY2e zE1;iq`cj+lcP@1;YQ1~QYw-NOh#>V6sRci8T0GX|h~nY2hBus|;`Ad3+SHL2vRSsR zJ1ZzuAx`z9@nDX<3B%WhhU=C5Z)^Yx;Qvm|=2`&{p>29U*Q#yi8N_WzP! z?=r5OFwBx5PLzk9WZwuZmFPeX$;e%gHDVy3vLPDAm1Y*aZ7B~EA2nB? zX)ne#qFHTV4uwwyp8IKg#eb6gxSt5oam@jk;x8TEHB1EYNm^tDK$ zf+%0q2BPr$j*{mTRxSc0-`4x7F^jlo4Nj=7NxeTPe1tWNo>+#;x+nx4W-YqwKr7B@ zi&!)@{U}i?kA;bq3?AR{B6XqF?D25%;9H`=o$d>pAHg3Cl>7dh1d>lh*iq-|FA-i9*j&gDO|9ELG#w-77b34V&I2Uptuf zQb`mCt9K){buzVieQ){o(!v^HHy~sqMBURMOHrWpIK)$r^~lD11!0d+xE2RiA(^yE zo<24cupdJF56+xV7=XOeIV)VI0Zn;cllK8_7)XIaH6?j%$3IcO-YYy?9PfRV#L};K zR5ML3cgM#gyrj?(enHW5ObEMe$LR*3Z5FM*A*(E_X>s0Op)4^6`LNIk7~0~XL6+V? zRPgayd2fOZ>1jr?&;v>vu5I0q?9_RQYkC`sqpwIQjfj0?X!8)s6V3bL33Dko1214h ztiqQW4yh!r%g`wfc7-tFDq~gus^4zW16@Es{X6>|ZL@#2?G?|6LA}~5E844>sfIg2 zFJFhcuwoMTe@|&OW}rC@&ObiAciO2at+k@vc6Dz|A!JT#0OSOyFUUDxm6A9$kmf(&+CMjGProN6hjOGl*wHh zE0jx0Dy38OH_!1=E~y&4ANAP}COcW4uk}z`hG_PL%cJSL3vm4`u~?#KRuZ$@b+vzP z0it&?LVSECe9SB+-+^&~%mNKxmqgP?@ZAim)8uH6QR=SJ11}=QX~265%d!5bDc*;!n9Kie5Lt`@e7Lg9`u8L`>X*0s%i14?eRz3g6;PjulRxpOKZvsC#di} zL$<325l3h1`Tfwmt!@>{bl(K#`-?o+vb=|U_GY`~jJ8u8R5mW^psUZ9&7-e=^J*DO zd|&Ih{MbY!&~pj|SGu*YGKLs&CJVk=+-UYgG^4X_21${d@Ux51*qm1tfKNBRMaq^8 zzVE>zAH3_6gX5MD9=$a@5wTODM-?@A(YRG6(~puT=J?MZ|4RJ*=}Xk3K?LKRod~s z+MSquSNrXplWaKBPXH|rmH*1&R{XLw^l=9tzV!z#d{y!Zno@Jd3d4g0)Tgi%4qQM#dlZXTfqemu~RsJ$PEnT3hAI3vr};RKz#~ zEUB9V0b44m02Uc=gzQC_e0>9uouB*e>d5yc#k!R2rSk}a1#clu9kjcyLA4`5$4#N>dro<4XWQ>?f_eB-8$kZ-y79f^Lrn5DbaSzg6!U5Nv1|e`Q#jmch{H zAo?RbEh#r@eVc$6rpL$Whq0m!>?=|4St*wV(86th-wjjbT{p(0S@g;?b^FFtGJk?( z4_%yh%*ZgXAea!Cn$a8~tZ48?TzUt_OEv!_f*s9Bpl&vL9m?j$sz7?t=FT^!$C@-R zA+eZiqyW0dLWw6izq~Z`G-^@hkv-Y^-`Dwb8h0H!!c>}Gu2?(0SJxTEhvm!di6X-E zgKMj4`}om5aEpjb)>iqHX0X}Uh8ZQO^>R{eSE*}S;yM>1l2&XC<*|Z&2H&2TKh2(C zcAeax(tOU~H_Zk{8m06I^-RrD-Wy}XF!z%ZH4sBr5#~0_9?d|aSS9S*)nZ|~E4^FXfjG6BZqk;SJhAbXa4($?6j z8IgLUX)YWbeV%u2M;H6b*s@TXI1GuNm~iL)F~)Moiyv)22Od(-!u1&xEG_>bGM{UohcvRtH2Sy74c&J-%~obXv>loJ>yV+6$9u z^Nld5>MPgHq^TuTM_It=S(|#DNMa*2l0#br-OVmO#^1?Sr#y9edTYF!Yr*`(iqt#j zemq4yJFIJ@c2ut<6ZNMNtff5GWx8nW9M_W9ON*u(lEGWy;z;$9HsLbqJ~dgLS(e!; zF{-U(3XgzShw;v5S((C~UC{!qTV)KVWCy zIZS093P0Tv$Wqc=g}m@r2c%N$#Oa4A%Na>UF+D>q4&{R`W8dwP$a)&3qf&VCt`r0z zkt5VAwC<1HC1aKdo#jw-Ub-)7_D}!pF;Kz~@M~#*T+Dtale9H{9P{^5)JjLFx+Igz z%eo9-4Mk)0G}ztr^C1;9nl8wmV1$V9NXqCHDDR5dztI~RAtFuoD=TMEsZN1>%30Rq z9}buU?6m>xM+T^nZ{UTQS*uOaSpx04++_^(;a;!rB?mU!Ckq@M<%NX$7mYktcwTcom!PlR2T+~X(p?^Wok zn4Hdp_esooY>0ijH`N<5xXEAiO?!deUt*v*uP%?^h+;~ni&y#vDvia@u_F{nJLE9) z@CEZ?MIG)k?p)ZqJ}u>s9G-@Yq{06}9Eqif ztfWHv--^5zT$Uked&ZA!q_-@KSh`zG=ST2(7+2`2udYAs6YVn%NnmY?dRE zTW6h2W!<1RB7o8Bz#21p^zZM%+y6Fe4^ttZ%}_|xSlRdOw;wvnr$LMA{`yJrU8TN| zlf3!{al2vtv8aPQ5x{&Ot6!;8O4bPD7?_{<(iygWLu`K__1PN9iZrQ`Rnp$%Y`ZjB zFAV&zD9!sLAr_a$%c@U%JJvG&BdW_WH#&2!&j-pcsq znx@m)^0@ZT`D0 zKz+{0zTqIkEJFjA5Wcy+ZVgHc3IzVm*}~VNQ@cS>@05qK#P^hbebbLHRx;a0hMLxG z&G0kHS0wnL^4YE$*sC@Jl79E(Io^zh*o@Yg?fetX@w6EsfGdo11AbN#6Nojs$lt&a z<Hf^9v!ms3;b5Zgtgn7B$#*tD+{lS?(YW@=0>C}sW*Ho`Vcl=JdLfqf z$G+LaUk@g~_%-kF81t*WufsvKgxDUD0bMS9>B5XZ67bHrtoUp~@u5S11Qfm(;?HZ2 zLT|scK-zuy)IRbVBpkSpgC^@2bi zf^#k7U$211EL;Yhz>xB>R6n7W( zIi(bRJH0si$1{sV8)GttIQHN)4ct2N3s#VpH@-=S!WzqQ4$D7sXvYGt- z@l>4?dZ+pr5A}Ws8QYpCZEi?4bxH*jPeB0aW22hG`>E1Z=IoUnPWL5C6W4Q@aiNg+ zC12yHdhvO2B^CYJDvqw7mqHK(6W*>We_M0c^)U`aHG=eP^$r!hw12AdU-{5ts$c}V zzOVqMAX-^{iXSxKiL6bc#!x^z4}Yd9V@NI4fr~ukbGUX|dti}^qJLh6eV*H~&N_`i z;lF9cf=D&Q!Ik5&U`K(PK-mnP4kLrc1s0yuJ~Xck?VFZ)&1>83$nDD;TsNDL zewv-S;Sg<-X*Tm$*HOeYGEFP%eKn1X0!%_VB2TXnk#pwof&=5cJG~U+3BZ(r zkN7aJ^6+u}*rR}IWu=Z^Eak-FdM1NLk7|vMSz$!d@=HuTM=7mvtoNYK*bVh+jd>5> zP#zBZ7M)%{p5*<_Rm|)C5#V9EH1=*IFX$a2y82`zJ75d@y8v_ggrCwTErHMeTyL-T zW|l+Ab&n5v+D~7NMEPx zA6V~fY;!oB?qlD1G19149=&^EoY8V*TuH4L|4bwhT&sRzyDBk~e;E(>h^dFEXI3fM z6CT`wa=ined!yKEA8I#`CH!QxZ6F1*y@AG~aUnwgJm&_l$I13gk!!vuU^8d+Yu<2f z@b#`B15O5-B~D=zDXZnKyJcPjlGX2=u5A8P`~kyu)H8^n`GDpy5p%l;aRmcDCS6S=&h0L_x>v6g>UrPinKU(43lE0~CObNxw4OBJMIpL7hpG)#g^QpI}qUgFT!z=-) z?M+fcC453J8aQr}xV=5US4tDW;45cpvRtt5v~Z|M<6799rHOou*>niX z;WlXVJiIW}f$pz@Yl>2kW;w8>O+NX2Hjsm>F;n%X{MsYJgwj%|H^3D%k`m4Tu%zr?ge^mR9c!vlx~f0iJcA5kBqs^4E?k&l|^ZD#pL|U@O>pg7jQP`KW@bTdu_C-VfUTIakPDuLIICL zHz>T<^uIk4U@l|6lXd0SrZRVCP7tmgv_LFAg-wAVn|S<;VtVRoYh+bo-eEEC<4%v{pykV_-O<<&6 z?W1x5gLXzoo}Bkv7F6cKVcb@R%+-)OO}HbAqic~M;ZPQm0I7Xg84+}30+I|yQv(+4 z{1QE9_0C$M#pOC0Y$(Ubhbj(rH;^`Z9VTp#Q2VRN4X+%zol=P^MA(Y1@8EImiPj@F zp8j)FK`aZGN1(=t>OkH*R2_M}t&8E%ST+P*%s4j9E3Smki{#0(GV`bbg?3>Qx@SU+ z15bjG;O>QZ@km_k1mtH@h1L($_)-mXSX}?BaQJ)frVNkJ(Q<{Zvt!=7P+O2SK&hFTG|Q^5~!IAnE}{Dhl) zKzwfJ94}#SqnLt1Er)?-{72ka>VNB`$`M{c`$4Bt^qdy0O^>V`UTua8JsK9|{>`O7 zB(?i?s2?4{uJgum{=XWan7K$Q)b?f5j@>cwu;}p6(;vEtE@t<=xw0jSd^r&u)axRL zbE9=fYh2a85hN?tj)DN2WF3+PuN3tIruU-Wrj-GYt1Ks+83`5Nz8&?$Tf+E3C&=nx z-d<{Y#BwOp^=7Z{=|h?5v(Uj8$@h*vY0x{nvUKgLxBS-~onEa!iG*@BYUb&dh3?ik z3!WU$B9W>np0kPXKTh7gE46p`KYQbf>&_T(64zGv--YFDI!#&%V+;F&U(0UtKqgG}BkLTYocb7k)k+ zS>id`${sA`r_1$vw7KdC(kAojk4Gb8AMqs_TJjkCQ^2fCmBh36JC2N9|7#NX)1vAb z?s%|j#%|{e(9&em*cc0%nIYV4S?(nRU*9* z^1=l+)45Mu>FgTtM_;%1eZ~;*9w;=W;Q~uc`K>zJbTk;ANz7V`0)+?f&0*a zFW3OjqkMX17xrXSQB~g_%Vt;DvG=Pz^8Ard6;Xi5d@~*~2I{onkMdv7NCi7t9qq$9 zUEcVI9dHpUd+2(TPsA|PgYVGAD?5@24qOc~oPA1ffF@2b0cVabbMfS8ZQa8cfwtzK zNo~{p^O?ot#f!PL-Q3DRSJnU0sb65Q!0JGps=5_U9?tz;h~%hkW5nqN}^z;Pv3c$ zCCu%D*xjXcg|g!V0Ba#+nLD4=+b`wneW4}T;3^!gr)FXTLIGB%vMc=SZhatn)!PQg78*HKD!P{G0$@iyy#As?bR)*ow?7hG%~;fdL1BG zHMDY&e$*#g#kdDNjDVaDH3gjSUz_P|Yg;v~v0$E9yRg`(=Nm&Xt;wf36N~ISPN~MY zL95K&-QT&}SA4MajOx%-bsb0p^6+k6$-^*)wWwQTLX`2wJRdQs@|RTAQ{U%4v>OA{ z`$rkG4G~)*u-aXU6=pZ6@uVT;{6_nOZK0J$MU&XM1%lG^`TeSPww)&&RIbGl0(q*o zG9asCJos~;$^+-tCmy9u38`O8z`Frz&UV#YmXbp}#ON*d-~9_F=)b13y#TX7*|v^s zw{~N`?woF15TK+$an>U>^0K|M(N3m@O);0EZP&Jc75tB;E01UT|Kpqcj0ib$bSZKa za*l$72r< z^Z9(<&)4($d_AA?u?H_t6ae4(;S&FLr3EJ1S_F{U_HnL3Tv&ESR-!`Llrt;j7AE8S zDr`PX2_vKrrC{$v^D5E+2XQ1vz~*EFutv2$9x59!6Do`Fm0_cx+XmkZLS2s&k~Y#e zO+qP&bC_SD`-n@A@GGJELTghbeO(xz9? z%&v>U*07{OP9*PjX)oa?=@w*RjPyr~lc-|&*vETOC3T+K!mhhFl8IQGWS8Ru970nS zj?y9JsX3|T%$*pT(e>ZccUG1u|AI2v={3q;m4^XPR}PHE^QasV>JtzE{sY7b?4}5f z;gN@|e8*uR4mJe#3 z3+`9@31qbBrQn+l;*wk>dy6i+eq*0n*#2qhw+t-rD7!%ZjW#@P9jSoY32`VpDdErlH z%6Z}MBUQ_$BBAw<0B-gQPzn2-GWWvg$|fclsf1=_{x(^8$V?eln3uvRzfwNdKV3Ox z^#r->!|9mgM>D~)!%cjd$FF*Ey2jqONMe0QETfoRmrA_WhzxJAMy7e>bK$xNk zwJmIiyFfo#>3m=mTDXdH;7kJTz<)S>=0hE6eM4`KTd-OCW`0sK9vOxsg z&ZP5_>R}>GT1vk_@B#JL2y%X#bYLEF(0*E0U+1}^j`aTaF@O?!;bq~u@o+~5t(McB z!LPOeM9AKU!9`qkzH9F4oK9;+$_TAv<^9M;)i43yHJs_LL|q1l4p5l%X;|z1!LeAB zylhP{3k`eV!Y=_Afyx`&nLgg3l6t}Zn?bmflo!G0xv6@2B*K)l zMR-IEjn-_CAzyz5aS1y`KgxKoE_8P(ZWK(A-cIs~p-w{#6lZbx-jMaNzo@*ymLhp) z+8tU)6{ex1B{nRX8c`0Uis~>g8jy+t$f~d&=Xug>_?s(@79Xcz)E0&EeiF>$1+YKr zqNo#Mz6Kf?Q3#*cZ528obb!cuM@mTsrGYAVF`T{79ZKR-1)Bf$vMF8uqCYP@S`ds< z8QK4(JF@1xg1e+c!Oq)^rLkjMxG3fQtHJDu`otK^n~2RH!syU29@p(bVMFF{n87w3 z907M%qa9H0Hqg1(Lh;c)9r|sNB8Z4;-e^`W*WO^3&!6b1VyWm&xYj`z)_ZSa(tGbb zC0qYO^ny3w9O{uSgy=ig6X!FCW58>44tUL~+!@_22sWjAH@gfkj^1xA|M3QQ*|qiU z+GI(b!!;c*NcZTVMwb1=^W~@AbRbmeBd%p<$;BeL?y=BPbd&9Gg>d9^I;hg`8Zeh> znERg(s{cVZONHZ32;HTC(cJ1ZFcwq?ZZi2JZ|}bxXmk<%A2h4CsRpngWf`_P$M~CX zx~XE%;3KWAgs8cZk zxv;S?bxQ6NdPFzu3ak?d&OC{ckS}Ni-9!OX1AdC{<(em&6^bU?#>mWv71_FYDV#i! z@ck49vD5ug_w}zrFq%Ig-7_i$NAtU;4v_)#Cc#%1{1G zYdp_>XOm3LeS-^Ge|1B`wEiva8QuIix~TLOl(|%3af3YBVpULeD3a}T@rnPLW%@@T z8^T$*C0eR%f8_Clu(hd1#nS3mct+QniOa8DnW$ucx6Bqna6|mp(R$vxJZS2MaljMt|9%%@%J9#J|+fH*DCGz!sRyk$NY3O0Qw1=rHd>9}i8A zzH2Ox-V2pw)e_t*@}RB;7}rgZGjqA!U?(@@*D^ErHTphlrNYcH#0L*_`n?k+M?&qM z5l>@dn?C}cq4|2PtUvUW^Lw8oq-H8|0bWQ~bYH4<@l6dP%YHdLjo9Xl3Khy&B&E&k z%27ZNkFp(<(_PcH#0nedE@I0aXj>fK%aR`x{g4S5O5FvRekVF2b7NaQ1mv`#6d>ja z$2m078EH1zQ2j>V3v)=eFuC)MUYUTza$s{}0pG+e0Kf_@IJW_-OZrh4U(`D`a)dwS z+b=VcOZtROou*?dE{4bJKVSqd1|!t)0Z% z=W&K@K3$ck34qp?*hIR(XmgF0m2)skMiQC8#{HJtVu01cL@DoTNsfs>UCfk|pePE| zTqVgqdCyQn2S!HuDx$4877KKPAbDrbwT3#ijaCnF4xNb{6kjSQ8PGYw5Z-Z7aHO%w zYTSl7Gr@1>FpVwz?*)L@w0akfTX588Cl6Dcve3}zHL&xLljt&$ozYzrBs8>lva==2 zrHve8X%;OgywBvM-b7pM8h{C1x>P=D(CR`2!}}_1e#g)bd0<4F)@;UA8#03*_m4+z z!V!7s5X3lyQ{zeIXYVS63otfJFC0`rZsP%(d)HU%JT?BNCC`yx?$WpgSoqirMxO z1W^T{#CNx(vVjUd-ezmhTZ~saXr`jV6`1BxBod=t1 zw16}X1WnuSdGja720SMI3k46YqfDLoP&j2E$cw`TtvcIOYx z@%ItadaVtvpA?^NAs_457e$(btkT6c!8`}+kIYAlzO`Uku!k^ai1yC&~xh- z4q8@&4er8@;)%}RK7HZb`}j-d;Jmi#+qXxXb{pIkj73VHV_TQ{cpjG_zqlrO1M1>l<(KiPO>kF=Zb#nZ&W`m zK{x2unl2%tD38b#f3cx!b(8R=>D2utAwvo|;g|S}CULBBFy4?Dw#@aFRhjMC$Of0I><`8%NUV@bx$-MO7&_(e^z!~RVo{z@w81Cm}!YM~Zc~D4yn^dT8QWWUd##qtxJgt@YFsMattffi$O! zGA1_g<62b;Khp#-Q6DAJ3LuXmLmAV3x4+F7eY+-yGJ1ZXaj~X#?0NP}hyMiLU;@>J z65=%p8Tpk)+?@MB!a4GI7-Zu63eMQl?s9s_qI{8tozi5rqeW)l#9Uh8xT9kVuAPpB|Oz!Wy1xKG-m(&$bc`lS^mV2D|mv z31Jj2v>Z(-_Uv_E`X!mQ%eO;mY;f>Wq{q3+zIA1jC?f?d?=8lBEZ=h>LhUCq8{>o0 zv7@;@uR35pACYysJ|wNI+vM_DlB2uUxwn!_x$bC#+@MzY9lVj3M^nx{uJAiCmZu_r z)()?{w8}KRlM!dlh?q8mXhxlB3P6`UDG$NMQUt$C4{4r6e0yHz?-ki}+AXu>Hm$-C z2rJaR^;C^-j0{U<^5HXH)W~~%6x02B`IOhQA(%nl>8i`WzD@c~8YD+)j)7l45^j-h ztn&Y5&NG61DYs%0RVuer1^(5`bzAs^=>z!vJCA(G9%<N_ahy--df#zhwL zJcVk0@7kafoPCIQSnQKkzMft}_GhD0C}Fb3u*nALUxBL#8{^qK>NCpOpl2#@+XmJq ztu)k&k=sfCrR)bYW`sB_yYosr&Y;;a%4P^V&ZS~7_I;{ljI4mls@pLPEI78B#*5D4 zUvIhhm^Q7(g~b_1rwLC3mNY|(izg<}An8g^V}Lrxz^1M8pAA`i{52+!#4 zV4ScDHTTa~e&p)kV!+ep3-mzKH>9|zZ1~q;xD-_u>RKsJE-f_q)Y|fxdXjYPh|5jG zegkurCT_x$eEkn7oG^y_LnEwNBoK!@hDO$|Y2vk%H3;_0QOh8d4UKQ;)*GZJlk?G* zQ@aB1mEEgq+%3BEA?Q$v*cvdEgACliXr^a@J_x0b5=JdG^7lhTBRSVcnXurQIa*{4 zZr$GtgK)0o(gR}?sALOvxb3u>AR#NB@@#>xzl-3E=bq{Ku@%VEch|#XYv*BTIX)pa zY+FZH(}){}p55ELdJzN>GiA;-8b3uq#>2&>(28y|#Bgz>BmQKWZmg>|Zh;a^`SX~} zX)s(FBPZ-B>ZINB{Cf8EH=(s3`=?%N|LOXkvmM)ld(&%h7+=puxC@21=G~S?fyhbJ zfccJH?W(#x1KPl?*%fXIG$zVq@>qF2Xg~3U7Y8Q#0sUAx@(Ek?Iv9R;;o!MzM%ORR z^2pl@Y>bh*ACYWw$OkfV$mw4Nc&oUb?=VBCT{2FJ>9cA8kEMcRXpU4q!r^6JsG{lN z?A?xMU~DXv>yvBC6B!X>dfMyDz<1I4*GGo#G~3Ae?;?`rH_Zd7z_WpSw$!(6i`SDc zFXGjMNS4k)RQ&USE75;7dGJQ{bEjMX4wzq*j;e{4YEv>w9jK$9bMr&mv3WQL{Rd9~ z@5-b!<-)lu+RntN3hyHXfMQ)W@X%{#Rv9}SOz%^OxEjqSX1UmOaeT1FpzYjl61xQs znioHCWqr|U_u0f$7!@d?=je!)dx-kt^3!}~oas(VcF^2hCT{8wRYj0&2@D2)pP zoWdMbakMnQ^9pJ3#)#9>N7!ZH0z4Z(>$H#qJl_=q<9*QmhCBq$d;l(~lgFxIN3eMu zI^50={a|dyq7tuiZXjli?dYV60K4z1AZMk?unZwW_pYGy4|7nXP=8ussYcyCoi}2P zoyyS{elyfpA)N1&{p=TGAMo@8swLDXrqpQ4=}Oq~+};N?bGFIuBg~bbVmF(VOUS&1 zo21~TCAap*@{X18wod;@Tf2lw+NRjr2`X-9bHpDi6VxUMSDzxhu2 zaEcnOo$zZ~PGfxKDf+NwRqk>`dLVgnpSXtZEkY;;p2*-`*%Uf<2LwN0F1F;=5yjB` zUY`^j-Yo2T`g*m`$rg+n9yR9oA@bYdf2W{S$F`#4X)mud~ zV>7z&F|9R*vNGLXU0XARUw9eEF(&uE8ZP2cwlMD}R5zQ33du=-v^8g+KJ40$&2 z`sC@>HvsZ7=O0cBYfW@RS?7wa%R1E)SNGs-z>`x@Q)0ns4FJU@Z~WI_c&MGI^UACk z+EE%JDZs>?0WX5tohw$PE_J7E`eHP%G)$7eB4{>*wesCkFtz6)apiCI`M~-TQriel z6`_Jas0GeQ(PT9h?`vy}Zn7GceWrPHIP>+DA7G6G@ai*`q5k=A8{3pjy%w9=h^)qG z#lUH{?Xp~CIgG%YEXddbVfpc+)6+O5xLg!WZNmRTKs7=jgmX|FBl=0Y5|=j-oiT8g z$PAw)L4&~ae{~fHy^_jP%UU=8+qQzY9po`c26wL`1j;R zHc1{XfN@#@opNQVvqHpc8|AfW+xxYG+byj3*P3B|qSLkIyw85EM`FysOwQ0_iXTT4 zcdxnUI4&6Q;B;pU;t-{Nz!?m~=@YRbU}}E{J-n?oGL4lr_zSmBLo50)K zEn9R|Rojm9CHIH?AI|E6v5B>7JqC6Qxx$CgkH@%I zePL`cZSE)E>%W$he_2bX!R`)Oy7^-oqjN`ZzbH+=a}h6=3xf;U$t2)^>=-gr~igl(>-(JShmEqlDRXs@r6pnnIE;C?_w#% z7{KT!2`zd_v%`wM(3X$>20`(fkokUzZ(x74+5Mu9HhwAn@^S0(c7x_{5ZM?u zxpb=Lht{p{l75yid7fT-Ur4)%$=%p98%Sim^pvKde8My8>*mc$Z@oIDj)FRW&{GI6 zO7qE|YT+KTUzw&P$hXMrxhd=l^SO6DEUca;x5Fj!Gt9g7RTy8XK4YfQgU0Y|YR|Qb zl=S#bn$2xvhWR_m<=hM!-Yg*bmNX0SZ6?_-8Y*7g$Q6d9p9NES-$@}*sc2})z?D2E zC66D#rBtVQ`4;B^y3WnACiaou2D?+hh1oe^)OI??-xrR`D2F=RX%XxfTJQ0U*l`eC zA*rqRbmxelnymM3taH2SXLJXpF;9!Fb5Q+r*C!DVWm^>Isk$FFoWNMupgfuUqQnK| z#^_?HZNMI*2KAmQ#O??GcU{uw!*$)m2yo%R2B+|U7HP=GDkreXuRf%n3ju}C5w1E( zLFHW9uoVn2}CBd)~y54d~b{ND%AI$j;X5)$+;>)fe;*UxK3_l z)DytDQ6TsDlv&<&hZWsD>`t(6sZmDW7`nRvz)EHdSHV=a?>T~IcK3l9i>>igfQw5o z@)DIcPBofEqP!98gqd$lsasAl2Wi64wy0i?w_H@w?Qa!U7Ulc3ov?CMsGK%v-)?~m zg9KXIsLE{A+;|$!IIo=>UA3jF0;fUPQAqcES3aoXO{*gW-XX=n!Nj154Rg_pc#~Nt z6*znUlU(T-)vd-_g3;g8f^Z^0uxA(rapjG-2hw(Q3|r=o8Pb21Y?EFCZlX^|NeA;m z5nfD=s1TiW2_;qef}QA7MJw9h*A0`{z?7i>9N1A~jd4L$_!BXfpc`&qh*>UVK7|}k}eCd(jcoNZFUZG{_;^G z$7!IyZksGIHmZ2`$R*-`e`ieOtIsVzS~7q}ErNDm1bk5bmp0jxgOr`Fz;w2Fa5WB& zSb7H5JkiU{{Vu7V#YU(;<>mHDCdxHC7Kiv)N$7$?CaMOkqf>#%1lAO2I64cw+uGAG zU^3IM^=hNjT>`k>T`Xe!FEFx{MYn^mvZ=l8{S)y-2LBc}xBSZ9_rkl5#AeC8d8+2Y z{&&r&SHWBvvbo<(B=6pDLyDBtTP3F*WaKCYiTW{|VQkod$(+pJTNN~j@;}fmwahnu z3)S>KM^zpud!(_$?-I+$fPWF0+s;^jFl&oo%)AAk7%>ov4<=rlDQG7d!;OQ%R0GRo zzoyTf&baC^JzZ;U8{!pAxp;VBZSb`BN&P?@g_1V!&H4mt6Js1?FDJka*2!Z+%e1N? zZpzl9+?}$g#WCd|qVdz%TJOufK`2f#_OCr{QD-m)D4Z4gtPdE?J>~vG_OcCZ(nC?B zYiGSND~MxV)7gvRxWg0Ud3~%d(7^?o?m;X#Bc9U23?-6QylLDWVY7(ht%g09TPO65 z7BrredekpzuLsRG7(ZQa8@dxsb*l)w)(8#Qk6ezR13F;P%x0dv?|8p)t|09 zQufe2#`T`zyUipkWmNUgwstARROd#*3tgvx!}>?Qj4;v_X^2L;zJ}<16skQwH_c^N zFUlTvwCzhvw;O-JjX%Z$I zDH2HRzrv^4o^r0&5FvCYW^=F9nCxsF#__?|Ny=BLjj|0VXy`1~_$l|tsTIC)J0uJ_mA~r6ZfbfP%*X70m6QU6tA@9kV64Z0cOxgr(>P1i# z{w;5W5C4Z94*#$}#}57gm5akYMJ}}IsT~^s++B78;NV% zF7n*lsn6Lc64IQr8oMf>S#-PgEo@M_TQ6F15C&fM2G;W;R~$E{1GM{`VDJ4}RpVwP z)Td`17t`&d#0G(%$ad({0>0TWwcZJ5`*<{EQ<%FpYpG>G4}Ds~BHMt9rUbjez1k=% z6zUYZ6Ka=3lKO?Vq1jX==A7VVPbok25S>pse~V*gEZAGlauB$y z3PS`OORiV8gmdWoT&rvf;gA&Utu*R)drFuOvqa zG@^PlXCh^G$cm3tsFy)47>W*Gct(LWX!qhV<_QyXIpXdA7)_E_o*eSr;J(%kRg*k^ zHRzBhg;j9w#Bt+^S$U--?%QJ0(80%Y-o4?swI|cKs)o3S^bJ#9PQ2EMdRt2?QrFQ) z8GDWTd{TW)?b?+9*}us2ll3h1^hudzow(Amg7K-$B=Vbtaa*Spl?0Dj8M?~VMK*lB zxXnZUl}TPgs&Z99gNVMxm&)o=KK=fZN{c(^D{~3C6V4rtOa3-Z#gDyi>7S||Tv_vl zIga3TDM)FZ71GaIxyMRf9ZQ#DmsmNe@=wn9MB#J;R605?e;Q8}BBW+cxFip3ojm^7 zGSJ1>6NPv)U-@mEay|S;=Bc@6m>h=EM}pxD)n4z06bB-F>2a}_%zhfmsgJImiC2Xd zMV4~`L-y6K(R2S@;G*YVN2+Lz1hCHT`q#Xqag4RWErXPr`K`no_!|R7pfe`J?g)bJ?})QUA$D z3h%s9_{DD~WDLK%W+}a|bEBXlTo`pZe6jKtxJCIiqj7cO@6b@60qsG@>r0$plSE#ZD9mf3FE%2x+zkaKCs9b; zV7*(LrKhho#QEE2l?EVyGkm$vmK~@9EQW@CrN2iNul<#`j@I|Ya0@cJ+xLcn>7~6j z4>shuR8_Hf;gSR1-H{$P}En3m7S0K1C!!53wP;m^}=DEO8{^3pQ0}}rrY%mF(8}oc} zsjhCnFKC+(!6rAQetw6VXs#}Ye9A|>B>iclPjF#7NzrPa-wO3j+eIgV1I zIQ!MlkR%g7iNG2pc*mJ?o1m+9{un!XoZ>AAJ0pY0Sagz@E3QhqmOjF#;97Fm3`a#nX0`oFX zp`ZgqZy7UCG{8RwmRJnaYp^;zgl=QN#Fnjd*{=J~Qx7N4e12249MR;1n?o1SO7A*8 z0czWO?bP0M+-y;j*TzEp$aY7o#nmB{+Pzm} zkW0qYZlzF8f-?s_1a$V^%D!?R}aoHHFv zk+>YM{q^^Ix)RTF)?e-!c81q7*VeCgG~Jz1-K0;Gf?KS>P2lm;N7@>LgTb8CyxZUX zDMkIvOau$xWbKj`bg>)7GDx=6Q9bl~oV_A<;l7FUmDbWNT&3HDe#P5dI&6H-!w>^EC2`1D%ab27>Tr zOoc`l33dOr4D{V(xz@VGKxgkc6&cDvC}e5cn8AA84%ZqLgaTSmHnphZ1_EzTul4H= zdqBywptWMC;h8{ki7x^S!+b);khJl-eUc!?dY-V8%ASSH+p?^ zr<#whdz{f%o+Ms7z3w8>f#ew>z7Jc9Za~uqbN;jj-xLkq7y4$IG0O~Y1@tppbEztC zzxdZY<=DKcSp(2uq#N$XmQAU@mFYt6B;6UO~cA^;xb=7XEzY<*gm1 zi+v}|RD08P%QtdYPR5ioRq9>9?2#`~mKgslyD6aX+KWSWcC%`-Ke{6ImH!wA8(k(| ztE$yY@f*Fk`uX_-gr5LX>ROfB(*Y@}`*&a4WJ^($WY=6BunjNQJ(Pa?S4jHFik0Jk zWnzF|000?;KthZAx!)(QKA7Q2kp%z3_HewFVD?&HQa^cKHu*!S8_${e_;V+y*O#Gk zKe&*$4N0j#?&rlYc86p&U%(5V)Nrp=9C;Y{`*_cMQPBMAv1{`+LrK=!V=rFCUiuYG zSupcD!h_3z%U-c%-IhuIb*k)(a1Ou4MoE`PsA`Eoo1W8iyT2vC&c%B_mo&dKZ^mys zJV$wmjXT?>lNZIzN=h}0Ppa1!U$`Ewr95emx9rLd(WT^w0t&FD^|bYiNWrULZ`{(S zlwH4hMDxwOo5lNY13GG*v2RbxJXYz6y==ril^T@1e6IULy2zsx56eLRS1Pll3U7cB z8f*N<#wcj<(3x~hF9_KRa|zJx{PSgUZ2)Flx3UK-&yBQX0UY^*P~7h=rDkVPq`6!9 ztP`;wj1fhvarVD%jhlBJYU(W~%{IE;DRdb3_o3T8QuXn1`z%l-8Q8 zjyBRgPdZc;1mPI6;8Mdp3cO;RY#B-e!>b4qaauG7Jo;k~xpt7;;z+iPi8?<^YO#|K zufQ4D1(vS_fH6~2h%y*c5N_MZ;?iTLdXt)F)U{}Qg|Ew;B|0RRk@}MEAAC@(R?E9{ zs^VBjqJIfFENbyV+TPXY+w{`(9d&p1*V71EHW%z^iN)5Hc7 z!f3a~Catc*YVnPR_Yb8@RiaNI7I6zpCa{Jl>jM5}`s|%BRO~_Fnpfcd+rWe-A>hm_ zVx!9HSg`@39zgfV9bsp4^;hhsNM(UU*d?Zc^_*oWngbIc56x@W z%0;MN2H-S0_TbkuZoK^zE&{%A%&;y0 zPzb0?m1v}g7XH4q>a%|s*g)6TnG6PpIn&QkZ(u(A9Jz`LIu;`GN)hOe!$IvHTf*)$ zvBQRK7h=!@4(nBkyJD4uXcovh?Qi3mo59lyiOfqi1T6*W{k99xyemP9?%t#s+nDJa zj}84qzxK1s@2>&a66X2?YUkGa6wvFV-V5*FkfN$W+l&GEOA-S+&{bgw_~eS_DjUp< zKx5FtF|8#y5M!-|paPBVW@EV8ef#t9sti7BaIW!{u7RULk{2Ik<6dlWaP$R)xRJg= zd~{!KkC0Gq2Xh!d8|(b~ev6+>y&t-rc-d-Bd8+8oqUJ%6L+1cg@j_N0t&#TcB9xGJ z{!LojgY%C?#`wEo+v$+>$Z}+P$XTpyWAw!PFo5{FPv!ao-1Rt}ta0R^0OOf^UP&yi zqV!Qwkk4;YWM;X|8d3D?y661aG2A9d_rsTa4J_z>^_bbG^9MWR2PLEm){z{l>S-Zp zP?>LiFm=f=fxvaz;!NY%D|!@vFE2sRl*k(N1{n5Hwm#lY`x5^(FaFmMDD8yu>=tol zyK#$d5J+o>;~&}uq8^TVISb2vc3`44j9{~d$XhcVqx+FJ)>`&kzOR2f$ffBs4DuG_ zj2Z}2pb)fnb^jt$nYqDSVGl4=1~QE-!v>?XILF09kn47!^7Y#>s=d22T_AXISp8Ph z9&XgM9v{A5bExVej@4i}9q_cXZQ?)Wb$c=IyQ7SR3udOlFh@JSNg*OBRkkpX{E;nd0ky$L8LrLYQTwi9VZ?Z z)_~lphzo)CdYL3t=kHJSnJ{UV{eHc=3xQ9b0}gZIH7s zoPP)cDt9A+sm?Bu& zXs75_>KUsMCtp}uaQ%#Pdu!Qqq1Zpj6a7vP!oJ!V5~E!AkL;ztIsy1`6iVxmI0r?u zwt(JmCzEM8%dLg}p6^F4)N8HrkpS*Rc`7Yf7PKsmp`Un0*G@SDdP0g2LHtWGq`aY9q2w+~PBE*y@cnP&{0W#JHtyne4iB@ALK-|hfk+lJ6B*EzlHhWPO zDq(`UhUJaj`4X^`Nv{9KiysxQZ=d3vkku4ogNL0x4>(?ToJSjecpil^rvsEH*hg3S zzByO63P9}|%GU*(1J1|be9Tv27jY;)=2bv+;u$Ilv;hIBG7w+Pj2CFvrbKxoONg>? zKz$mNWAYx=oMIoH#kPwOR?j@^D#pEe)J zI+qTAG5eTu?rBp`=2Ya(S2HjHPDpRNRvYsjh{4uLpMLj^8yFY)@JY8xc+=aLgs=W- zSHE!q;9scM`=D|+xWaE=`k8vim;vxE*LJP7Z%DUrZ=NDQ)}2m5|GE9GG|f;iT8iDP zhp^?K{UvebC4TbnR>Y%v%AB>u2N137sz<0o6I;%f?QCDoCEp*Pzro&*hU(UfPo;QQ z71VI)_kXFXZobpLLrb}YzhqTWF6`$2d!qJLi;QIO;`mAeP;OG{r44w4#%J!o*iXBv zL%4r|KB&8pJDaQf^Ny!Urb`@q85df5p_zw!>gJJJi8<@*7cZ?vz_f7H`e{LE@^Tl9 zeK0lXW7Ba>{H>IiBX?iqPTvU?ZmAz=r?+1EwfV;4KGB8Xsv7j6al#H0h+)e`(unmr zx|D7c-~;!G=+dvwgRmA_ML)5=Y1WCE`U1vD!SX?Y(ug} zl4h}&Vp>H)qu}t1G6)4drbQRbJx4l5)?NWBG)3V9VzH@5GU7K#+|*)a zvU3csrITJ+Y^gy`SS;Q;h=6x8c09T!VYRqmXWpA_A|Ud8svbM!Q6BQ&+3#^h?@AN* z@F1{TL1Jy>Mypr8y0K-^Lh<_?SkHy6#rNBR2#{pUQ>bcu5)a`P4}qUs;wBGXOZ=@x zAuFcXo4J%Lqj>+74yI}j zG3#=#0!d-M0eTsf75vE zv0k_u;p&NL;@SMFZdgp-o>%OanKpV*p+&#c`h*ZbpvhDd~e?(H`0G8FZyp` zw=i(uM;rL&iRSAAiie&GycRzw1D`R@3ZtF}VR2Amux?EGwcSyxTeI0kX9H{5f2xUL zMy|Cbj?%1d&YD==bYPF{#Oce`+pKZry0U)h7#;vGY!I8=jApErpFtYlSMRyn;a@G% zAE3vp0V!jI&+hE^;9bpVPCvEA|9!nVCQdc6CyZ?eReg?{d-bT7wP+>+XHLHCg#om> z9Gf*`hX37}a*YbLKByHh!Rz+0M(QxS-geQYXNMG-^|rqv(C(c77gBttQ^gs_6EXfP zWBWG{j%!f~pzuH-`Xx6FmuI)&O#HF?W&rAXI{|QUa4M4oFIWi@b^_GhJ^+6<<->>p z@mS4ZxEAdW8J*t=5rY<`;e2|`tbqFR&9ze4KiW+WFas%81Ra*yQ!go^#Ap_aDg)Q; zK1aRZq_wHUl*8~XwLwRKEf`(GyN6uiJeUy!uVWaXfD{URsf;zPAm5itOdXfvOXz^5 zn*VzN#Pt+*D|m)1C>u`23Dm2w&@X|uo&|>|0qBJPkY=cIdAAE$v_WQ=lm6`r`OEfd zU$&b4ug1E_03#(moSS~Lq zgApYuAuS3jvC_lyBF4el%X;i6Piz$-3>Qn;l8s#w|4%x`e@<5c3o|TCpxH0=xi!LY zxN8z_K6ybO*1eA9a{Iz1o{5f0xgk%ildrn1yJ`zh085lvVxOfKCb(;+n>bV*g)gk< zRSUb|C%i74ZnLByM91`JNh||qZi^zQ9JQYNyZL7mH|=gREm|>hEP^(_vdh|N&5DwU zCD-+k!Rvon)}K`>NdbHWpS)Z3c>8y%^!}Z6I9-2U&Yaq^#4K~0u87e-i`_3s66QhV z4Y34F5vwrADgWP-D#G>FXpl2KEDjbIyq=q|#5Uy2PbQr@iya4UrGIGduv1neYHo!k z(y-{pR)6Bg>=uCd^?i=4r1$(W>#*O;e+b5pHiP3Bia%U>jU>?B2$)C%lORANX{R|d zr9z|ly*{qL@6qNN0mQ1Yn)9TWhOtc}ia{Bi%cXD$cEHS7mS!mmk#SrB44&-6R_=o| zAV(AHx(ZdTiVc+tO8>)!H>#eq!pD9a$Ge3Wt}6Oh5109G{{c?QZzgg_H$0HO{lRTnNx*Teh9U?YLn#^Q6-? zVk!n!HAoz~oG}aWITcFTKe~6YpY{q-?g7#N5GHz%8HTY3?IMZV3*?oYKjoW8_d2jV zaTH%6b-w~Mq zm$cNY`x+gjQB2a{Pfjn?$g%njQhkS*+f?xR7*)LOoKh^|0CuOJ27Rql)-)Uxfo}?g2oQ8B zPV=@6L^m<;ZlqQNkjHcId(Nr!)`9@T#kX9t^X(S}--_oCyi~xu$1h1`JP3Fszydrw zm?uAt8Al)0zL2jD{`t|5V`A+Y_0;z&VU+y-W8%5L;d{TBFHW{0j&X_ue-Ch!o7{Fi zb~Uo=+;3^)+cWYhyWIP=(Zb#A@#iFGCn;W)Lf!F^=gyeP{l0p&RAThb%5?l>mA__s zaKTz_6vJxLfeDy+2GcACkzJ1!`H;S^N3^oGpC}lpUA484{OVxwa@01?VA}XJpF0x5(mYfk6T$@@{7~Z05Gz< z_B6wc=^n8=`ABc;<7Jzo{GITGU&XV`LbToea{Th2!sArs*u_4YuHK!DTQSLS}{fevCbkshn7{KXf-WaO=Gc{|!q0xNd)d6x4 z%77u$3zOr3K)vy|Er!?I>iNMtgE$xaY+WRL$c+JoAaVu5Ym~K@GOSz;greAa+0oQ`;Df;-D%BXHL*-J#3A6kkgyihDt_StEo8?_ zuroOSyQ-G2`P;6+=S@@TgBZh_Stv|{9kMLLh~G3=9%j(*QCB5AnaJ3 zXnsi~nl3KLsOQEs2}1<%VG&1@!pnuBh`F6bn!dPzfn74Kw8zYjpKSjcw7IB6`sX2f zTNb+RAn-%%U6LIeqYzM*e3UB!5Ak3EvmTw$^RrQni|Soa^0Kvl(I7;tC0*ha<&Wu_ z!9nekjBJ@>`zb+*qg+%z{LJNl-Of)i+Rd@++O6l0vbUrI>KW|_n4z|s`)yPI>>o}r z_3rlGTl0wBMc#-X>{PCgYIS&k1h8t>Ig;i&=TG_I7-JczDn?@itTO-?pas0iyLE{j zzo2>U*B({Ysx}2aMVC=mHpQ|hnHo!xD3pnIgYMy0A6dz~bzroJvuOf`PxIPqX zh~kvr^=N0za6$1ezFi57`hIo1OE%elG2q)F4wllK6EGSEfnXOZ2lM_bGDOuvk zZ*w}@TcN!4=)g0mR?QINrn%s1 zS&m}+1l4uoa+=yYx+@JSq7LwJ?Bt|nE({&(g<22V!tGQh0DP_bJ#9ek9p>#<(W&R! z%_=MQFNJFjciGUy(aNS)8T>kS7*#rfy?V$mq4r+0BP(|nSRCkBd5}rVSv+#V?z8`g z#zw`*Mf6;LLU;Dr7{M60kL}3rw8v~IxR5Z`A?cDg{epM6?dE`I0z23g5%3-Ec7y00>;r)opZGuPf+$y=gd{;OX%wjJ!9 zG4+P4q1os8D6%K2y!f%*<8raJRvX%&K5>G=M!1!rAB&Z)8eMGVFs$$W*{JM$*nF=^ zI`d!$;(1x`@LYnQsP=kZZy7hw&_crkAs3Yvb>z?`1dRXL`kdlD1MGFBUQ*tl+Y2K_ zhl(TQa(n!c_*wCuu|`o$v__gRfEzzr{rJZwm-+}9Gfr=ia3;(FI@$Y^bZBch^E{Y( zaFgMd(A4>t6=KB$Wu}Wo=$C+kYjK4R|D);K!qJ}PU99KHkdc2@q9|40INj&PYpLr z5YIOy+*+L-wLBNUyHx!Lf-!r|GgDS;Gld1Fm$bY5# zBbjpX>wV;irS2GJ`#5yusjrfE$ELDR+wNw=*{w<;=jDuX@0R}wieollIy?8Gq;|sK zuVdL}^=6N_)WIYa4Xm;8Jv?-PVptoh^(-Fy{++Sa{q>o8h7(;#y7K9%O3>j zE;k$6up@kP^zZg>TgQ9lqMKb>)-T`E?uOs-Un>t#JK%O-ef0G}jjv*O_-bWcQbLhGh2jL$xbCDPK1m~cC zdu@()YE!~@G1f)GX{+dnyqCPc#xEE!>#wYBX_z>;dq9lhHcqC9QmQN9w=jv=c9@+A z7{(*Op{F2Yx-$Aj;_57LchyMb_zF{mps|g_XnwT3_q(*a0r#Xgb1nvc3g=JULw3Fx z_&$U`%P;%Hmr>AFaqztD;GR@uib@HZ9}jK$vzodGrpZXj|D^e(wef@qI`P`jl|XQ! z;E8Z+vWhW#_HYk5c>{f|Z`|X|Q2Y@q{bzzi!1Sbic_4Ap5`7Ii5I^$Lwl6IdH+x%x zV7u2nY=b}bxN6YDXvz3qwQl6yJs03zKi-#r?=4j<_J+Q&yJivv%g*gVX4!gKOI2_lL-aGq27lCcT-2d6e?Z*n9;n z&8N~Ih4?*Lr;nd45(H4@3ZS9%5hTZcW-Gfq^_!i5+br%*f* z6aza?+`JgFY9@7{Gm;I=l5M$f!(T0p0isf1ZYF{+_@ZvgkAv=<%rdii69~zW56<*! zpL}`c(y3RHZ@fB=+}W#{rK*^Erpxt9LD!GenxU^pjOU8Qhr7?->o@=-+NijTFpS;y@6O7R`Rmq4z2t#!~BJ9 zSYvQ3(>z49+qgsWKORCh-92`!`W!e>f_TjoUJidms?Ll-dKUKgMF(|^?}5v1R!PzK zc{Zk4AI70B?oEn{Za-Jm_fP;zforkJ_P~RQ&Dg6D>uORD`5w=Z#mPyyLhSGHM8r9h zmBvOzxLZ5v@rYLND5?BS2()(h?x&sxGA2cdA9#H-1SxIRO!MTekIfuh+>VwCqbgm8z)p1Cb)5ZDR=M|FQxyKo4<|V4~JmpiWrBzXLROgYRssh(d0i<(e5_L zHVnbLc~HBD=EJQT8Z}Ad3{(yEAZ6|P^E&K&H7B|O`BLa^{+q47m-PAo!!@1Qu(ppU zqAf>K0_SibcE?7Zaj>`Uu%C!JAH$q)+sT*@-u$of`?7Ej1Qz4Ys|=P8HinZB6!{pk z{jXP57Dy>XO@I#C0r-}h`E$`K@AC?lflUex&p?#Q+ z7TJ**`pdzfy#j~WC!_km?|gqmqu^YD)2SDM+jcP^lHsN?<1=X{m zo5qd^ST1^mXfP9o#h_I-Mj@2bk1H0g;9BD;MtLUSpFxOp*;l4FAl@^M1JhPTnVIPJ zA`c_z21oVkn3UU_FIdAjrBM~WT*Y5Qmq7T@Wcg2VA*CD{@8-C)gfXlfG347hqE54U?`WdU+wV_IpPC*g(tYM;u^regH|$14B=U^|?F zpcrx8(mTvw?6?47urzscHsA2!N!@g2(~@U_-E@bL=h7u$%pq=yF-J+mfFuiNAM+nM z>*rZe(lx32KM%8%!gd*&+|qt7WB`xW={8i3Qqnh4!QfmV#9Oss4{SD>KGk?c8%B#= z2@e#%Q73w%7TDSMmmBYwf<}!UU`&QHyoK#){w)NF9{OS=lJA$J$LSfvGAi_if92<5 z_(>{#(S;Kp>FSQJins|NYuBkotp^g#2+>}F0jF61*s61(I$US*`!Utu@vV0Q`VWqn z{=UUnFzZB%arBxqxRMhc_f3uBzDP72`lJzt9{18Qtrz@zBYQX6`C$IYy9+`n$V7w$)!5h|5VH|Dt}-1>9?eYCei< zXyuMS-3Nub-+fnGuNLJ>!Z%Z+5=Z_-Y#X6t*0JPEs|4+z|FU@7dw z@*)`;@L|TR$=lXlC>o^lccX!RE+82vjhkSsk2FK1`4u?QyldDvxG=D4%MHjQej0@YMBQpk^vzc{sl7_8B`+HPAs*E7 zuW)Sk&$AEIDEk;PxVi4gKP}ii|A962IUu*n2F=uFbmuy+l117{D~7=Z(&PKclZTwrLwo z%jC=)^e8TaYusdx+O|SCy~V{*o!;fc=ccy`VIey_v5}S?h58{2Mg_FnGv$RP_iZ0A zAF+uw){|?%0hl6ZJN4Zwb#g;od#jBs6u4+dSngIvO`JD-*tV(c|7|?7Ng!tXj?T`M zvCTRnZpMbUYxe??&N z;Led#v4vD<8P}i895^@=^4+Pa?0cC<)8#djy*x;sVZk@({zZ|-2H#SZTBzo@`ZuV1 zELNmd)2Qi8Y{gllK@`Q>jURM&%qe{b!5t;M4j(JTZq-%p!O=xwF^$DSU{ZDG%3ny$ zO$iT68)@R)-AlenhmT6Oja?GkJaSF(K`PLjSgUNb3>?^7t$j_=N8#eFO|8ACz0-jX zVu?f#gPud@ZSABj(RW`_v4D$t@^ZY>qH9F|@z&U3Y0h3@3(W;!b!I_CHaD&gSzZM` zr0XWl)BZUc(&C}{fuBSL;xVuC5A$_jDWIK53n}m^l+r6W^j^Wwvh9JflN~1?70KV7 zWq%-kdCkGD;JwElqNwrm!q^@xb$^Ryjo$R~N1L#RzDJctof120x-V8XKY{)Y zGcA*J7Wwd*m@jfr@9Xc*Pqh{N==o=#o8m$iir->F|Cx{c<^6Rf=zXbJqCszc>4C)T ztRsp(?jkRTuP2ocNakF>SDSvAm@;F?E&AcFnH~{JI-But281hqdFRJ$4IVtp^~7*L zRnRK^%tq{=6+{*NSiSz7YFgZGHt1WS4kIg{5Gn{+d^}VBaBw74IUm6cPfuXf^gwS+ z0+F$nOG4}9<;RCNig-C!^vV6Vn!bP(p4atzGlYO|g9i17&~c)QwGp~9_`ci-~kX&rt&oldYR^Fo+-Os$f z>`yPeQoX6QQgH2$rEqsj3JK2;%+IMdhyZTZ3=1~|Y{U0N8ph(n!m*R5ElQqNAi8~@ zr~zN|In04sjjQ^e5d{Opj;~X+KH?P`F@Yh{ljFg@<8<)=UpJphR9_#Vw$mCpP-`s1 zEHD?P#WMbXjbN?9~hQ;7YQrrK2kqP1M31{#ON|D)-{QYNqIqH{p!0r2dO`?l_cN zyZQIe#Eg%DP15rw-qpsw6X1;MOQl^ZA`Z>!_G$9>f=Op9Cmthe&==k<3|v!J6u{+` zDs-#6hmJfR2wudkz2xzogAAcj*NzoErk8tj*h)yuyvbTMDSn>EQ6^IjWLhf;@rE$# z&uY@S`Z-=}`|@jDnsrh{!^)W^J4J8LZU}6>pS%kxoUdO|wy^HsY!hksTP3=nNccfM zbV(~1)L(_FmokY*+8)`7_7jH#}fP1PBRfDSa`G7P#Hy-F;1I0{se_SLPn5Eb~G|+VLn^w3GxeyS!xhJejpJj;#)%m|W3UKzz>DEE!Qc@$OINyyh|#IX5A$9cJxrkU zzbZaAdZW6EK(pJ2>wNB`NAeTb=P5mh(4(vlIm;xWI$9#QS3ZQ+&fw)4o_Zn7`~N-U z+@QD3;Kw@BYw*s?8f%7Kesa;o&7wQCXyp_p)==~Dcrpx+B55~4eNB)ttWzhCAylk0 z!nELiA*Qbv;4{>_e6*dday)p`lhb!<_>kMR4+ir0?l|l1x{8i^smx{y_>S7lTc-$& z@XS9$>Q^$!bnqFcZ<~@x^XrsdE=2WY)gLOBtud} zMCp6AJ^I!28$v?7Ri~vLD2tB*BtnVYrKa=)GlDoGH;{E`6#b`a9q%5?Y_y*Tu>XK}T|ZrZJov{i3Ry z9@z2DVBj8knuw<_^}Z5#_(9boMoQs>>{37xeK|0i*SCruIJo0Yed}(+f!fz4++?DQ z1D!VxQf(EWev+u7;masFT-69X6<{OlLFi#HXjf85imuG9+6TT@L`Pb*)7+>4P94no zg0U!oltpQH%fkfG8R+|uh<-p%HUERWsG;Ou#7p3XtKmOB4ssM7pk68lX+Sr&wo@L$ z&h^clXEP1s==@A$+n>3iOGL7iLTPBk~?}8}#fO(NSV3a2@!g&14 zGa4Vu2}~iL^WveG+t%(gip;}ue+PMFAZiS{f?E+xnOB-00#Fsguv(T5Wc$ql&>4ar zg9JopXu;&FTyVhU>@7;N@gs^-gh_vIr-X#d*+lD+9D7X@h_$wpq|^3*P8QypMpRBc zu_;*pJqHI0+QQlwb?RC@G zcSPJI;1jzm#hZB^d8j+O(*AgCV=tRH&=N9y zHv)--8r%p71g9Ike}mF+6c3ArM&NxWu2 zNjYMr_H4sOL};W%TI|fB6Y_Hw-6|~+LeGRouNhHOpLOqz1LwtgOCyTzKr+d}Qp-R) zwRkX@F|Vu`@CdFn#R6{25CniZTmJ62~aveUH)@d)U-=;xPx|TAc<%{ObVwP zCQlfe8@7b+!zov5fx)EcDP8W#k@NkFck?7}z6*TcbEA$;z@RJCC-INDj}J$Dm9KDY zr0$&N;oLqg!dH6U{rAsHhx!h<`P_sxe!a$wM>eVl6e@)mn76r*e(ELsWriR$^lv5B zA0X?)JTnqO_QUrSb0&nHDZuy~q4-%F*3iNm+KQ-h2&+&(jL!ykdHjbEKoOZ3(4qd% zy(_*OPU01yO`MU(3%9G}_{U$lF$yvmNoec#S9}?P zdV~}&8}lwgT-;CzE;#=qS+Xz$vbcP=nWlH z!4f}NyH^K4|=?;YhGSAwONZRM0r%27IhrbCBDY^nTYJ$uj(2$TgFBq!P9 z22B%1x)D6qKbHhPli^8BrZ7dcq3{XgUv9W*U95>`5d^+vvfqHvS-9^|5|f8>L6wj_E7I$*r`tG&xG(DOl1X?J(KPS3iA0``>PGm! zSCuC|UTNVV3@Gw@gqgS>9Xz_Sq-I}I27p=l1; zZXNa^UdsX1^rh($0Px0O9LpmCQNF+l7)El!lA}x|7AtZ(J>iqw{tv z#CSj=j`M6dQgihZbJlF8ugrQaeS?3clq`M2cm=kl>Rg}Pk;h*-R*jL&x~pw zDVgRCHYOi#nm)BMD#c6wpGZaR65V>XuAG|V@iAE9oOO)ps_tdN?Z5sN8A!p!yAp4m zdxxL{4Y!C=`5D75q za*;rbKINMQor?IWC^AZ~&!RK85Hui#FGuL_!^~Sl-YNuQMR0bV4Zv~X!Nb`9F-TvA zsV>C0GFVsgXk4UQu2RFgNqRl%I5Wf=5PZk!A1b#tR)E|k{6omWSX*Q0af?AiF!XN> z*N}~n>S906q+g#NW3X%z(7fItXfEh81=TNE=p5^MA<2K{T|mWIHrPzuRAH6(iikgx zWxjUPaX?+ztuOoA{rrw1_D4<|8R5BHwcxn5J|U(wW}Ff;0zH0q1Cs-?<90`Cbn3k6 zivE`ip4zgh35?LD3>|WaE#WiCW*hx}fHpF#-+gKPJkUhqeQyGHoOd>Px^q@IGOMhw z4zTF0CRr%kQ7XxlJCmmllQ;m*SkVo?Be5N;ARzI>C+hF>fChyGjm3e{ra}_9pDcKn zvWl}na$5ySjB}4d%^WDUb*W(W$Rp6CM+mZ5Eri;aTo&Y49xOm-%D+FX_QFOsVVI=n zaaZWDLEL(Y3?ccSUrR&On9z(*q9)I;>R=43YHhRUDsUZ=9r_UO4$J)3_Ow)1O0?|w zkk?6CfN^H?qL5Ubu})mI<%5EzRJR+h?V9s@dNik=t^k4JlHvgU_ayebPF>XQLGA8< z;Wj*jf3CMqZ}Iu>3r(l}L{N*W7J2P+U#-fma-_p5*xiHs3QL@i!fyeoEB1Rf$OZjw zt>z+k8%+JQJNnOotO)HNhjO+|&#k@)QiA*?>5;FGe=|bq4;+xlniCn8@ziwkOCX94 z{kN`5jiIyQasA z4IF&oBT7M?TyOOU!j;d5MU*aC?UZ?O2cwjusuzK z)kB^MA)P3KdHS@Z8Q~F@XU!}2Hr-#5o*~to&2)?sciL{ZR5)e@Cbgq^ zjvXSH*_2$><+tbCI5D+)p(|{huPclN7P;1Wi7E8knvJSRi~R?B`r5PT-x zSD0jTyDR#pfe)rvm+tB?jA+C|Gy2XtD8MHT(?XOV&1k?-bED$AD0+@DTIg-%7oD!k zFU>A9Y3j|kKuVR}6tC0D`U1g}SZ_yo(QIq1ON0jFUEC#aug;Gb!IurH0 zWz5TxkCu!(ZFmQTsrIyhyr4=^UDW@Sgjosx6X615%O6EtF0@4gp}B0t@mn81>n*zI zInhX~rlbp+9d2f?(uCGP6-2ge{f*wVj1K?@uBz1ZiMjhO?hEY`cSlWYt?7z;1hDt5 z=}EZ9u(j4|#in8NT6=4>&wud@6^s8lCx0%KtFo7?#b?l?6Pr6`{)Zzr@j$aT&80X1 z5+23(gEepIs+@*?*}>teR5mGuZ)1KaFf4XpY9bFsg!XiZt7ytU5U@A+@zv^?;OHNh zKo)Fj$~)GdV|S(42XZ3#+DgV@?5m1~dLCiN z%MK}^2Bw$003<~4DUHhmF3)nQeeI&j=PE(F;`Hg+?fYTcCA_1Tf4#f~e-f4QcWC^^ zv+c+9uHyzn02sDzx4gZ6&*wPND@X2VS^qKn55taR*XQMHk~wGYg}gaTv~T-2Q)EDO zJo0n)qOGD66bGjZK1XQPXAC0#5*)+FKHhbU9*@1SI$!e$-eNcikyblk z_x5)D(2OoguhUGf6n9jhjp?~b^Ul=qoOk+e~EGlXf=K#M`j(b*%*Jx z$NYE}Y9(E)ti=32={`_DUyr<1FR|y6ngvFn3sJWo|Jt#0x6tJZ}vr9?2*>nN4r7n zg?SaBsj6{r_kX`Vn>_i?@oP%%g`5Mkpsuc-;2FW2OfSg0FqmmYA96$v1qP7FZIuW& z`9kzf=9y^_=TaKv^=%VhI12?XIyKU}-E~K?+}pWYv7u>|CtxutIuvsJ9a>anY^WjG zSCzS1#Qo_`*zDjhuhlPZ{Jcg?JKmfr63I7!PW^WHU~>GYdeo`Z#?Oy4#<~q6Ea}If zN2_+dmf8)GX~*~&M+I>X?XE%|Fkl-?-)mCxlnG9o&{!q77$y0MT(k7$5Oko8=R2VZ zd;%l+A^X@>T4ezDa0IjY!XFKgM_I6&0ZcggiMJ%Mnn?*2;2THy$-9QiT9|i=^<-VA zP#fOzV!e*>%!zb&T|N)JhXY{V>3{RI;P>`C8^3OSrW6g(pw@`K8ZTV>AhPJ zvyjj$m~RY$A13tG8SmSk^RhEm1-AO2ND41o%R>JqfCy^Glp`a0Kp}19Qt5v#4Nsf5 zzG`>!?SuPqgh8fcq10C?Y~FWEeQaxoKBiUeY{L^fv+a|O>r|`A?IQcz4IYwaM(x9O za-SNQz?2uwH~dlb$2`v4zr~>Ch(}9!m`vc9H&gu4>OC#Q_nZXaWvm7iu&{YsEOOYx zH(%7H;l@!oGw-}Nx4gYCQQ-h{@wAENEav=&eT8VQlw_w%pw2GZadS&@!f-O|%mXEZ z64rcO390 z(_=4Xvdm}hd&y?)R}I(OT%n7@%!UlScp?-xkEm`Q;=?qX9DTJ9c)laf^P=Z4hK%Z< z1zFLky~aK>pD;I>dY-a`+YH(KfQrip6dGDH!Kdke;Y;eE-5S$Y^)1K*F5U6H)c|`c zvrXzBBFtnEL}dNUl~LGk;dqxWR&==S$0 z>Sk4sz*kn5khx(2qUUcWneFm^0P_Us!)8x5yFh^P15myhXJ&%VKhf?H?n;Tm?ir#7 zj|nhRqinALI&yW^O8^*1(cR$;5%JY9eI6s04(#QOX4^@>fPj=c+VL1CF8M#u5rio9 z&g<|(k&lXzwmpP!K*+vtAfD=TcXMed7M?J>Mi8K0;X&eO;sQ5Kh4K}CEWiR=BY7Az zu6(O_6!T>RA4TBJJVN6IsY2HL~hQ^|Q^XBb)|;_5T`@u`1@RHO!mr5_7#Ox!UBX^qdd@AyUX4qg#$H)&Ko z8^K$2?rcMmVU(pZO1dFc}5d|2&p(&lu zkvt$+&`qpICP}Rb#JaEQKE^}jxpCKIK@?pa`J>vr&8Q`8bGE?uc zh>!y(f}Pze)cAN1mX2AnIv(nB)=z)avnsq7ehmLjq2t1ryUuSHZ@;yWx&Foa`j=B> zb*eQU>Ti#~lC-*c>#4<2o);?eqVmG|U1G830XmRmk?y#I(vrA0T;(Aax^Xbdjf^1Q z5rq7Axdz2<3t`g3i(~WuynfAY;i9ctb51aC7D^S64P&vHMrwCOE1WMm^tpy*e>Lo- z8)aYg5`pIlM-W4pvcF`=GM%efGs{>PciNR7IfoYbgKV-pH$yWyhLs_=&@zi{x2t@m zQ7rkEIrz~!#HN=2_}QeKyeM&fKM;_w#A++q{V1BZ<-j}}(9u60&?2Pd|9#w~?|Dog%j+9@ejmDdyYw|=KK*u3;)PI&(M288LA;J0 zuJTy!Jfji8w6J>#(_dYb1+6fT7_vRAP#EYd8R6qJg?;7c-gj{KwGqWuF1E7!;bHFx zLZi3ouD!|dkfx#Em|F+P$IzvwA4 zLJWLgAewLpb7En^;-$_v4Cch_f<=&*&@;lwHR{LSCsRz>tXEjA%V?*-x{?c$bW3#G zqd%5t`Jlp*{fUeFdeS6&(b+H<{pVmfe7|r3q3KXaNd!e}-v!*RZfgno9Xnmvg4C5C zvu?u?Z+!aJo_?*{j!@l+&zQ#?qpi(OwdJzsCm)VD#GMxSI}}={h_=0P zBnM4)>>azEN>$~Xq54(4(1>OBeNld>0m90yv!zIWt<>E6O1W}hZ|37Z@(TF<9aHpC zw>-?v(s3V)mKIpFbPvV&&eba>@{`rC_LbTTPK95FvCf9s!UnIw1~)=&3fM>Aml2iD7e z<1^A53%M5aarjDwfvpPa`$Twyi9Jlt0yWmgb(6&zTLs&^VOt9#FR=M)-ojr-etwIg zdnw@6F~XRg+F>Ip#$%-Z(~7~M$BX{RTQyR@obAXFy}=Q(il#?#zM!VKqLlMZohJUp zH_CY2_YPDK2W(Ab5^i%r7xa?trwJf-BV=h7sH}rps|^PC)bb6+i7IjaK~xodBdIqL zu{#n)YqH(;x|G7$@;Y3IjwSW&413$h+kw`Ib>2B%dOKS;mSh16u}Z9QC48LsuPs21 zojgoa%EWCC!x|@=uLa+--rie+{4b$vj{aS zWx8*SW?qg_4`fE4J(Nu(gRIQQH#Y9`5t12Cy^*hN)l$KK<$WoISYMG8tu*}3a6ug2 zzSeAVwja|$_VHXQ7y-gK|Gg6XyAQzzp|cJm6uqY;Cob!3eVovo7;gMg+x(W|9#?PSic)R$$iXE5I~wEc?lOdrwJ0YW0cBa6R}j_ z_doIO7n}#<&FT9O$u!?3rW{>|wTeyiDePe!U2m3Z11o-gLMs0Hw1&)Lxi{DIb`M=O z!StE$+2>Op3Qv}r&elJf&x;mtLo;Ql4Q!dnfZZ1h&9vwhlP~dz6AuU~GK&daRVTc$ zZ*?nfIbS)WZ{ocls__Xc(oOSnm2XJ*M%w>nsy&wJj=JNp2QK-$S7psd9YCyM%ZKxQI4>=rg#qcUoGiKM`0Z zoLUh@l-J{haB5LGf}V=d@%J%V4e>d_MHQ+wn)2jVB{PKN!_4BwFIqQ6nmB|tNyhr4 zaQf{pJrZL{hZw>IH<_#UKO|vx*6*5-XY_FMrW`o|&=<;m4X(aacizY6?!MuQcIn?f zeLnR>E$!P<*->r2+2h(<`C3o%6m#1pg4LGb#oao&G)8&Ixb`#6MQnS@LHkz*YWY

}}_sJK&SxqOwImt#>;O7`plzstGoXWw7ZKV^ak8dzaQ1m^j`+L(~Haz;a8b;gGp zoR9X~Okdn!@h87$PM=UM=v=bKy3V>5t3}(a(twnwIY`pk%1QZ;af}HO{kxaQ@IEo4Ba^yJ94$S?6GND~9{(11isZ&TZFUrgqhJ*HxxBJP&D8 zKR^hDMupWrMJA6#lDJi^G%y=KxIvR`YZ$EdF`d%rzB&=>$5j%XNt#JHq%1w%M~LiLPY=G_aKiM=^aC~h(0TMT4B?pE+j?__2*kq zfVpDY8`6Z_O~lY`#D2Sem-gun`ci?1PF>{#kutVwkn`H(W0ZiJq-ex<1Ao#Tc}z9a z14!UbFkd;Lk{Q;8S5DH7_0mqFtg!0EtV6BxEGMbic*-CAjmD}qTB=E{caTI+5i{xl zcTei*$xyW@(hUL+xWTFxG1~|kPN<389~I-8FHU=-_-36xGNGWp0$6JL#GmCL2}cMY z5p+#~A4~+_l3+jF#BE_DvT_2?H?y^ud$4R|Ff7a;0xzRMt!wpIu5%`a=@pe#vX~R3 zWAzEh7Nn{DZHMw2%Ews_zb;pDs+fR*VIhAtvgh^YX+={st31|SxUreuZkFS~_bo2&ZoD=KrM7|&*`o+9KZ_N|8Iv~LJkwHEvYUX&q7J{}jXHd!xd zoriD;cY<+!hCyY6!^!;l#vr^~CXBxMry(2Ggh`+4_?z_z%4)Cz{RKM$;7r3v)&g=Rlv4A93M1Qw|777Shvj)8Z6@IUQ{CgP`KOJ;Irv&|2~XSLi6lk zH!_0%bjkPb(1@OiU%m)NxZhq(r3(zFpV~T7H5Bw-+>R+cp(jIr%QPRxXrt{CyG}EV=k3Q-f<2i{1OPfzEd}AzA=J`{-s@KQI>> zllX7y08@>evD*lGDV?JfHqa{J7f(1L07~Kw6m6l&KObbDmnv;cc z%Tval4+Yl$b7jd<=1<}DEjn73Ay9eC6GjOaQ*ChQ*fBd01(fNHXhHHZZ1_YNH3PIq z;p|ca13?N60FivVD^o5!@MRNFAlM^A39re^a=iEOI!2}58m6Wy)h*EDCkbzHks6(G zouopgUPc(=8VztI=h#JgMS@6W)@ojdnN51b)|a?}F=vZGenMe)5dpfNA~iQAJYT9# zoqlk@faOqE0^vwepW4D|12xbTP!%h+ymcg%leN55&&n_L8T_>-O%Il2e1pn0gBNGD zx_I_J=_|gEP|}QGn(dm&QRpv5J;ANR6xqTV2rsqul7ve!MCidy2lAbPfS#Bi-kQZb zB>thq3a3`mg8>(#*QUW3Y?mynTH{{(d_o!nnD&`R{@oqS;ALcAY~p~{b8f*Xl#vqT zOgD|srF?x}iURb}=6PybMKzN@)Six2$iCpp;9X0cc_EYCMxvNt{WHIL=;?e>*hW9* zY=m3obZQ`r$(46_;XKrg7q!zei!b_fr=P!>AZ316Y}DL zZ)W}qwtS3iBQ>l7%>7oh^#5rA^k>=kApi@d`5ojRj?7sQ+ z9-T_}{#3*|sZo1tYUvcV4150KoxR~*2m@*Cg&+fstG7o?o=WDNRl_R3-lo)y82vs( zvHo)=1uNeThjCvq{^N-{94KidcLQIW&D}qk@p!d!_^H1XUMP!n+Y3?;Qk^B-w2iLmg!k_ zvb*(V-nZVC8dtHq5bTpc%q<`D+As@R?-aYgXw5NxK|&k<+&z@(R$mt!8~u1UrNru8 z)d!l&#<4%y+)!E28Fq6~bPb0VMkdqwk;eR-N6qhbWJ!F}f|P$7`AJy$F51SLg^HaJ zeIt?z+2FO%FGWgp$6R?e+hi5%zht7C#8jn#;B$a;3|H-kob?kjs#~}3iScvb{l(vD zqY2SRo-FojKP&hqylT{-%Ln$arb@wh&8dsH#P=&Jg8jt z{Q3X9SHyBoWZe5FExT~B_9-F`SsJK+$3GNjHz{h3^|Cf@+x(BnqGHQYwPf88jh_gc zboLE{+MmHq-=WNY2lm1JE^)a@?~N%oBUD~O{9lbX2+dlFIez%Jpxqm>Yj!z(HM2hP zld6*ot#z)OmFi+SpTg<>p)#rslS_tU0et)S>qCDY`;M;4g+Vb z;-2bIIJmcm>8~%I!&_k#Tu|I%qBpW}{5*p0)Z$`igJWX{+kM&3x%C4<+Aia-x3cjW ztS=#p8x1?C4RDd(MkjuJXvd2*54OSrY^h4Qzl#TE$k2D{uSR>ng|H7%pH^IDs`VFL zrnP|cDzoJK>*Z{&VD0H7_2;A8^jBvGy}lg9jDI7az_E45Tj;8X{eAma@wqcuTvyef zMNcq!f2&C<13z}yhs_c8y(G+xb#~g_E~YlM+JnE$^+3B>K$MIdRV$VZ9Z0m>E?3A~ z4>GRUjutiLT+-QLzPq^9A8)?(jgM!GyveuTyUDx$8mwus+E&fCJOhCB<)9~B? zy$O^sqn#6Cifv+F1$I_CU=xx{I-Dv zi4ZZ+zs;P+7xw;*5}{kEsSn>rcHphBl`e2ml5-?w_SGmn z_2`exqra~#+-`bTEaG)>4tKsC3gxG$f1a{Eq)NuKOb${ooBdCXDfX(A*RL6_8&n}q z(}uZlV?(8gvv1CFq@Mz|(!VXa|IpB_-lvPzw4r`VJoKIaf_TW`s?SoxDVQJLbFGcV z8Vdo;bN*F^Tz%A0eQH9zY&`wnN52=|zHL0VX!X4{wNqCu)kTb*uJ!e+o;T3kZxV1J zs5W&fT<00l(B{l>s0{#B7T#&*LFVjZ27^Z2f~az2KTD4}Ol-`c-^z|6A%P28vXf=VIGNI#{n5^})@KgG?H8=phmq@t^dN=-x865STc zJDNoE2d5m+PZ=Eo-FfQ&wN?BIzBjPHTix$I+7NIIISQbO<=tD6tVgnZjG3{%FNjJ! zB*NKnZ?(h3Rp$i5(Qvy1`g#i{+lEihAL_U|6eM;5^Y_FQmc7>o!!Ca#O>iD%7XMr& zyeBGNfXa+Xb8qGMVX&7=1Gp!t_Mqt|_s-5+NJEpnrL2M#W^*>!Cac6)hWuJ;rs&ZO zC}z1muEDZ-gpli|`L>34!#)_TI!W&h^tt!Uw*TGLwHNam!PrRJZnMgDSa$;ppEP=a#p2BI>I8HoNAp@DUPc&W2;<{2-P*aMr5h zN>p^85U2jZKIXbs#cgb)B&pXNEwyr#f7SDkW!ss@$RmV4yeLlXNQC=W(cJt8wbns} zgO;2JeTCfx+Xj+`2?fs>*Oa@3Xa8QG-!VFwPrrI_)t6S5fBx)C(^E;Vr=N1PGo4T| znh{Y*#azMC;IzXJc%bdN1k9Z#t73gg%BB}cla5!ldT$q3S3x1^608b4x=kjY#}Y&t z{wFb3U`N-;ov$_zc@5LITD1U&2HNRz&AoH8>QueBic44~r#mY!dhFns8m|#6qjiB3 zTk&+IsD&Dt*f^fJ@+~@aB`+O4emsE*Axs(C@gP-yAF>#PGoCTBt-Tu1oBw$UMGR(@ z9*0EPE^S#L#~=jzY1gdB4C}o4I%D$ch)TqfTsIM1j_!uy+s7P#Im$Ntf5bq?eF8l& z>HH}>qh6MNo~5~*+V&2jam|(qXrzp2oX1|F5&Da9?L-rsJWYcTvkiqGelh1y(xkK+ zXnh295|)3?+n(WHM07!DZYX|fm3tvGlO-}pFZ`dB`aj@%=#k-K?5{IUKckaonU@1> z#Ak&@W+o^91z05zi@O0C!X7!p%|qC2+%KWXkXQST8G&1?`r8sy#QENdOee16pU0jr z4rQBrK9EJrYfdCIhnqO+#OK{2PYCJBb}P&*KZuRpQ4ae$x!YC{w|m<)g=jyybM=|8 zMEATfBftrkr)Nw7yR)ccL0vTKM8&AilX*9#HacoQ#d2v@E^$dhRFdJ3A>z-$F!c8>8DO)1A>cD zd~IvH*gP_#*LQvDtwYefs8`VV7-Btq(g0hQ-7?m!7~F<1*w+|){&dv|pR9}53{vk( zbO`?m;#uhl6!TQQ=HsS@%W&nzDOl*wB5dBV`)&k&u-}I=A@Yaf1t3mhr z><$-JnfPJv#_s`@miK2I_}(!~hL1&@Dib=@Fkecq4CR z-!_|?;?FG@f3d%V?w3Lw__TSu;wJ(jucAM=wKqI(L0|tTB8q0_hao};!)Wj)%_!z^ zvUsrqHRLrlV$lJk@BpRavXsuod_=5Y+E_gquq*l|qWo9h`!VoQjAH*?Vq)tKy!+zFTy++peZ%DZ)8zv~B2 zfekiYp#u~Cx~^75^$tmQqc~fC>Biy(ljys9%}(aDY=6@(pY-SC22o#qYhX;T698rK zar5-Sg5rTF@*d__Z;l>6=dreTu>H8L^&p0keTG{`)eG^r&AA*Ce$|I|Jm~a~u4DLw zfYxg6Zxem1mG+TPo7|iR#*VK>c@As2Y*gy1GcG6TBdh}Vk@At;^^>d`IkuVGNRE~} zY&==r&gy@IKSn}HJd#-w{uz9ZkRQgIyGiUmj%gfSIPBFxw8F883+POX+QAJ#6j47u z;&O3-H_R3OFBp6Sc1a>(5*;$#4PK^ie4~g$3ywM{k5{<0T&^Mc#zZR7c0-QsF zzZ?RT+vgSqyTdESyeX05QgqFf$^S>wxra0T$M4@+D2I@eGg+lb&djMq3acm`97{=Z z+!%9=`7CVC#OBQAG>460jo+)^_xt^$E?31R*YKZqUe&FZ$v1Vu2}o)j)9VAGdww2LsBBzKT5_ zd%;mgC>Etm;sU|FwA0r-MUT$5cnoKYVc^!xvveH;k^0>Vb#+da)hU{`&`Q^%=}I}* zH#4=-hZj)UEF_B*_a@-_!LWsP4u-L!$aK2-=J;iAu|CnBER!m_L5QhBqAv>=O9*zDt^+E5jGnx5aX)W1pVte({8Lh~#Lq?cztf;4~E z$E-Sv%3EAzU3gS!?UqbgL)?()-S4mRz(T-l{@?;k^7|AhjmP?Z`8Fek^U)(DIV6Z8 zZNVcvi!eKSYy2hYSyKST$(9<%!M`tDddj(f$(4 zt0q^xq`&N0O}ot9R;MN9?9vp*91`+oMUxTF7jRP(KI$~9LoyZhx=D#63qr43ZX68| z#m4D<`ZZWi-FqNXLCNcAm0+k24N?c6I%J zG~PlZ$Q-G24fXrx*~LxYj#|r)Vt%$puXtz^*V5iiTuc3~*Rx826TQ#@oBB^kIxy<} z+cW$$GEe^G1J9|y-eDTo#L}9Xe8LNHB)+%7&KlT2*m-{X2t(~gQZw%T5^lq~;`DTW z18v5-V(K(nTKsclV&ikMUX2fR+9)a(@y^&T8(T=1ieKEL1|HkI*B{_i>OB$W77Nb} zoG|KFaK`X0$Bwvt8I_c=Jw2kPHO6A)pzfp!{YKVjg{oZA7U-Naz1*=SW1l?V>0L^X zXGP_)f~(19EzdZh|4i@S6m)Br%`kBlXWqycjuN_qIccOa=avj^BDaeCl4iVJ8jNY> z+Q;;j+z{x;nTMp2BFbR@gn_QUBl&QM?%S-} zYh1m782bIyx_}aF_8r)55{{RS@SZqT<~Bx%q9R6sqWeIO+=GjV_%lF2RLdBj)rEzPA!qFf~1ST5_aO_r48$P40*UQJV zNTjlnIK0>}K?U5Klfg!Yr^7>?LDNJJ)|f`vj(_8ZB^&RB3iJXlz2|kMG*BYp9d26? z>|_4;kElCcGvR2-x^Riahr6dT84v!}k`<#UMwtBm)sS09?OB)}#U6%J!Ie$)2Rb~n zd%N@Odx3MB@MEl7U^^!7A~a1Imass97xckTeempG(y=J)5*%`U`zL^PJQ6-?0}^{* z(^`{2$p-h9*m~_=AoTu0fy|!#5if^Lews}<&b8P(>;h}=DnCN37tCjV7CAuTi((Z1 zcZ3}4z3+3U>VXBRV#UaHkD%CV_+3M&*YHQ+s6y}g9LMq~KZ-$)CC|aDm9KbX`JNpS#2{0CG9$3_=4{Y4wTLAm5|nl#G<|N z=$pX@MiMZojMl_-zEQE7@XNq6^h~>Ce*N$%XT=`KO#)Q5*Bi0-%66xjYx}--T`|@{v3!RUL&?N++jk9+w2`VYS}B3<)N zFnb0Y>JctAwGSA8GpzPYpfN?81 zWRcr$47D{HNlx9L+0aHCN;Si8CkOoU?Y|CEn8(`N9{sJCRsFkk_i#P*X!D~_$?r@L z+!_@^5l(DLbFZiMg3LBb0PW(=5cCZ35d_6xuT@qh+7p5vR;fN3GXfzEqHOMXp8`h5 z@)B{yK&xWa@pt+~J-q11W60inVgfqgXpgWrQE|Yl1N2p$FfS0s)2%we3#+$>AJODU z7eOCH^>mdtb{ro?)|hBB0jRJO0Cv6LGUg9ph6SzXT`6J+XI!Y;G`e~!&s!{ z=c6wDxFf>ya)hg=hh8%>Ob5>I+2*|EjrvU^La6QR%MJ z1a?1C$b?$_%CY(of@WCCCXx(tc+a}(VGlld%4TBQEj=)nAFykEBOJe&Ce?qT<~bSo z^e+Kg&YtzwOOrhq))McO1LZ^0Y4;@!6Ywr$(^7~R{^bJp^jzWIBXvp>&J_PnnBJ~2FUDoJFr!re?u;G|^^0($#gE?Ak9M@d%`l=1 zzm>|o(t|_1A8c#aIm>4GQ6wm4^?qxo@2pBTN(Nbqha@QUnOPhqMpRP_VH`B$Vjp2r z5Vwy&v|bImKs;80t*GZ-Vwk|qbx=mkYF_rXV8T7kvX*33~ zRi7y5vmYR1q=`v%l3nuZwp#IhWd8zJZ?t6-p%r170VnBv9gij7ng)4!p$tvw<|X26 z)g#hr&%n?_jv-4L!PBwUJKZXK>z!e%ZDygpuLShP+a?VLU)Jv{4=l)9_l1VB?`Jbk zu0xiWH`aC8yVG>V)E&pektHSVYsDT7x83j6 z;s$IglycntunK+kk6E(Zs2osa4nd*!r1uBt*XXHTVys?w#ee!6>fu%w9Ni#7_~b@H zi3`jEeSIeL!|H?q{6Tx^QwrK5!~GPhsmQz3+&3iKfK*##L+_uq;w7>_fAO6A=czNL zbY8NFr()ar*JZlO-d0e@?_bXPh_nggOpIKQ=pi#RWaDf{eZuWFG7I_UuG_!|nHR+MNhdjE(tqDG4 z88Gc~eEiw?x4cqG>`C2q-*4=RE9SK3+^g|7 zBM;Z1Wg4&lYBmLyYjNu}ohCnhcV^{qUW^lNQ88aDFIC>#bG_y>1_OggX#!zml_pxc?FD-WvSk5BK_3bNCcdf^V@_ z)af?%^%d{{13ue-v^yX3@!*6uP0X_~YakHHbM4XNuDAY3>Az^!We&-_D?AxVg52z{ z_rAt}MaYY;xNWC1VoDb`2T9W}FdXWREaY1~KmdA((dWdAaUvd8%b_0j6C%AJk3-$? zw4fs$(o1EnA48?r`S#o!H_-Hvk4A0gSr1GMN9${J{ae?e+|gD$VqwhJf;~6l14&nqt;mDtCJyfh zUe-KS+mw3}d=>H~+DE28BJ%C8_isW^_eV9wSmt#(&>T`tP#mA$hI04euZj~D`eCzo zX|GpIwPNiD7g@w-qzxe%QqgxJ8Oxe?6jlTt3^;MNO1GG(iY0~DG7AsOge+`V~4 zg8#6ue(-s{gb+$Z;Ecw{%viWut36x>@L30t9LTAD58hg)+$Kk#usboCo=2S+e@n@4 z*nPcTdps9>3C=!{w5IE9^nL`mT^1S(Cau%BC92SNUh_LUBiBXj>KVj8Ln2W`F2G{|k=Xo^j}LQAz>+_$(Q@!ML0cUM?d|Ra(LS-vV?c5q z5$c;CWa0^|S=xk1oO!V4@&w&NZ)lYe>DfRigI8kvY7wZJ+N4I@gs<@sa^2vFO^|kJ znUeQ1^Kn+nn@cb%(_x8Fr%eA9=g>IH2og0x?kn%|ac-}T{FRGn+z3Own_j49UyQF& ztm;{#ve>IW*!VL6kWTA7N=?$6)tTMLj`&gL(!kF1h1V~9naWq-bcDk!UJK}Du3LC{ z4O-d)zFh?KC*B}oS*_5A{iMQ=C+kBYYCEPBbjj_MLYg}RpMS|} zPacBrxcxaSbuMu_V;3B{lc_IgE2_cr?uWHp#Z3-O+fI8D^&)NunfZ_=ZWd4Iv6<(U z)qS~jzA*~3 zfj~4{$Fk4ZP z{VBU|oAkkb`CAk2cSVg?c#68~Or}$5VI)a8N4UG^__>j}YPP+&pradvvd1I&I@7?q zwCO`Dd*H_Wy$S<)q4X&`A^kHiN@Ecja*pDlxfbi#=qadw8wgJY&9ReGXr(7ue1Hc? zXP}Sc-wpyxPo)9=5W`KPAea138-{Hp7xTX_j=If)2kXEC}ya1@1K>TWLv+qplq;)Fw7Z;XfWA7O7kbojNb`i0m9Yt^5bad}&VBKPs#IkQ82XN@^|) z&J_I>4k-9`bUg9D*-x{g9q+Co2;Q%~`pR?2i&As% z$Qdtze^O7>>sH?@)F@XJ)D@hc;pj;(Cn)|Q_#p-@e2Ri!*_vlXT|}>?i0Dp3g}SXL zg>meo*@wxS=Ux&zj>^aS6$~dA3RU+h&K>PNpL^1%a)|QonidF6*ZLWY6J;>wd1|qg z+ZeOMxzZc&$i;{eRYqS|m9+gkvO%ue+kdWAd)`Z$tc_W;&&7)o;(8`DRE9|z7z!pL zbiWcs!QmF!cP3RfT`kKX_RZ^T6IiLQfPjT8^uqaO=AuOTNqZq;0X~*g7@$9!U<`b> zbdwQl;YErA?GrK&Yfig&uX7sEN$u3q@^Uh2zQ*EVNYL4rVw!tjMb(vSB6 z21$?Hj*{cq_99$R7;$pq zI)c=7H3!@kK48(x?^XO)75hX7x8A#;&KkM;F>cK&bP{cL=N;VR{@%iO!E*4*=u7qI zj0}^QmYqSpM2@}9vjn2LZkeAM02`>6)NZW;I=i^--pY}lhYy^%V8gg6R})(LJ?MR{ zXtR^bGeT_DS2m;Bxw?dLkJ&K)Cet-&Zn(h`>)w`m_&#vOHj2P60Tpkty$c3zLd1Hh zMo6}NPR4Fad2CEw09%M4FZqcyro`7#q&LLmV0}P-Dwtg4VkF(hoh{xPjTUc?)=HRO zvXtNHC~yvbJ|JW8ebMg)H4L@wNBHG_Two=;LFJn3`pO1%bo@emO`Dsf9g}xjcw!;CcnE18;hqk(zw04kexL$znXk;p_Z#d6t`t#WNVT_^7xziC$esoAF+$f zE|_j8@phExg&g(I0WvzS%PI%XjoRa-H%%SqjhvN9$69{_JGicwJ8gCs?8UDc9la(f~TSL!c!E{p$E;@{{iz z7y&X@fBE^(SVpg(z#jTOf_T0ua;`L&vX$NOUJjyFqdT()7_A1Rx`mK3>-y5CR_}-1llL6*AC3Y71O3{oHg2@5*+KGMpnf(uwR-vZ9QO+s7uz$>oeeKM*kb9GzBFvcA1${?+8SATZRYA1`U=`lO zRT%F^-7UQk`q*l?9Ujf_jlOH}tbYM(`nYn}UeC;j@yj`Qwi;fwxTsb&9eetJscGU4 zSwPQwE3ae+8{NFK48UoXI^m{+zy5*;k#1BlO(grhq;mc38{_)BKZXLGppv0$4=Mua z;Nu_<_Nw~Kr~3xEyL*BY?j-%?hybzVh2^F156`#H>|%6_r_@e>I|jJx>XV?c3%^SB zS@CN{-1JN=-es+tdyeZjbFO+OkXL(zxnP2*-R>m-chrrtqUXp$;-KZzstLA1qANuk zHDk>l=4o9M8#ZomYIn}Bg7(C77et@D%a`mz{8nK_pEdu#t;3cM7 zi_u*@PM~NZ{WI!k!$WO#?sy+PO140!Jen8hXC)RrceFl}Lt#fn75Tt`cA9bq!G@BR z>Q-qV#-O0KCtIi*vNbmbUV8ZTj5>(5mA*O#CXGh)4ZiJH>2Lc6Ul$jAv+#!>*Xikb z(&Rk%>*dEzD&g0Yxe6`WvOJz$NlWcssisDLD|vo@&D;ju$5K-ff34haN(zsb#w?d= zKI?_&Qn*Br+&2i#vS_6otq8ro>p@i{=($+xj|t`X!aWQ*ZJ`ryS^`%abOr@dTLNc` z%+=9xA9qFQ==Q#g7ovs-2=#iAzsgB{`@cDV*6X?ohB%22Wyzm*M{&;gl;xDVA1^5^ z>}Bpr=sILv2HDXlzp{tzANimEJ~VBs@*Py`z+8r%FIyc!|JI9jjZ1tq-goU!d|lE;B&q|4l=@(p=>TN-xK~2h=J7m?L=qgyH*#Fue3{N!3a_kUb^-mV7SWw z&birYWrtino}lVXHj^UeTBwL{!0~Bhp_go4!uCr|SCa0Uh+WVM z@VvEJGmJt$SezJn6=6^=X0Jrlhy{7`v`cGhL4D_Q|4HE?EN1e$Ei^UlW6t70ECqJ& z*<9OapMq!-iDul5CLlRg0rZM1cNYy_V95FUmK8xEh@(d&6#G6+WQ9vrHe={K@npqV z+*!I}+VS+gM^7n9vIN5@ZxA75su|>VdD0Nz`Rx}p_S+v^e>D=&hsmgVg1RoU5Sf`~ zOgh1~_x$%FRF6+G1ctimc&MLuux06b79iJC5|^$YSTL!d^u*-$5Z6pdp0sW2?*~Nc zv$IChsm(lk?c56uMKcPr7;dryfE#@w=~(#dm{MU`;JyNA`c5Sz`}%Mdz5An!aRLJx z7t~#Kd-XcIt~;S8zsv(k&r&ICs?C8*UANq%Y%2Lrs&W_ktfjWUNR03B%7*Fj$q=vS zjo(Ld5BZs46b7t~Fa-mmbz3eM?YDEf0)_6K#{~evSej_z-v!myIWM-_{m7Be)w6Tj z3XygUuE?UhOb`|fk=pfuyR}DdDIF%iq+f5PewwKN*3V?yY|5lwj32J5KLtkALUc$% zv5zBYVUH(q_1&BHv|db5>u}5b(D@vil+{QLCRa@+KM#(BWcx$fd~^j4=Fehzr-Gwl=t`C(XwHnXPhOJ8s~`%EZ{`Re6$5 z8UU>pFBB|<45A+44I^ed@>9jIY810$C z3j-^b0&tAhI><(a2ta-SUIq+@mk)-}6wD7bNuXs19sPoAm8n-Zx{8Fbjt#Kxh`UWVbjs^wN&t+(Z00L?*3|c+< zPpTVWo?~C>;-DEF-Zd{jXCz=H3(-!<3^)99WT4|qw&@e5`u4D;vw)dUZJRAV#>TuHrXOyPrC;xZhSZ# z1%d(pUISj;X)p8~f2X~$*jBH5|4ibpEffh8=s)$TPOvw2Dcu6rh7jnfZVzmoZg%v z0yxWS`a;-{bM?M>NfG3W;1eTUy}}@=y1jg{pm8^|b$eOTHhfzTKAz0kr}d4JA6l zRj1t9DqUXB4g;?Co(#EbGfPhLq{=DDVRp$ACD* zNvmmi{p%^|(Bb)2&4YD$=fA|uJv(2y#eovSKZBH(kjNFaF#KMQLeC`J@z9!s7zo9y#lq3HB_7|-P`RYLM>fV1 z6?;W{>W9KbCAjfr7_B!|bVA89F{84`d|VoICjH>IGLnC=g#@L8~=MF;l8L9DWaop&56ol-@0OV*J=QUiz|bjMFsGI0x!&3Os0axIAdhGE~}lq6mdF zY(5)MnvNB;rOD&??^zMW{lXg%K_gL!zW%!ZuN{x9-f`QaXjc!S-6Vpe+7f)uq85(^3 zypgKtqNVkF#mmja!CiQBEd9;+unTLg(5?xUKR0loX_0sOO;&EHVBF(~(@VU$pU3Z1 zjW796@O`5T;xl}z3UB*oq-^=;)o4Y0={RF!=3s1ju>5&V`jV3qN2B%ZQ)myyzW`^s z2@O8WpY`8>3C-lfS!(CwZW?{x7k=af>+=p?r`b9bG$iL3UgXYfRR6V=(<<%glZ@VLs*zcKZ%o_3ok$$ zdAK2)d-5ub3(*RGD-x%lI{8YN71{JGG!RK!MsJHWhGTkOfvmnLBwir(YJEOrO zb2q9Dz8}(OiLwW*R+PUSO5Rt@rV+x13eD%_mMgi)`IcY7s&K{3P-M~cqe35pqd#6= z=)K9_<7@KlAnOJGLM|3qXTtqGi8NnCy!QZlzI4LQKjEPAC_d zowdE)s$!7~*Fvp?QSm9?*qH(KNhA}Hl>->C7q>2}z7Sr_2z4|^+B}kcopPx%934Y$ zp~gSS{IdN%d_p7oQeqUGm8LA#DTZ}W%t3C1hz-C<(9+|nD%(`2J?rCRj%eP zJJ15>e&PRYBm=5P$)-@7hu8w=^eXaCQQw39xUYSzS09>fc4xC9#PQb^+B_RZuI}%1 zhU>c0nopN z>h5Cdy$a@$?K3#=$LcZen&@UTw0Ki{ws?ynG=x7pXu&V|F++yZDbY$7Xx(V}e&V@a zpwzuaKJ8KU_@)9k5slWHquQ}eZ9F1Jx6i#v(QLoj-?Fg*W$m30Nj~k7{+>xPOMkw1 zhqX44K)F&`($IR0Uuje5D>Vg%LJ=tCN#Q$;Pq3scpi`Ri% z)o*>f%26?A{NUKTg9m+#c}OoLCB?|=hZC;cjjc6d_Oz!&If*0g(41^jwbes5A}8(g zM^y>Aoanac#%lIyPB%e))?Q*3=$7CkbH}W_P>q~BV)3caDo;hA&t4r?=PzXcbsTI* zPrqT9%GH^I(wFov46@>YMFT_!M!#oZC>Vfc(ND}YlF(^9v%+Wf$kDs)GObtvAk2^) zK6Lwfzd2R_fY|Pe-q`Hqcj}e=z;O&BS-#rdFj;ltL ztw=T7ZnyYYFZ{!rw}2?xos3g?0+SyS93m1ImC+E#FjeX`R!k$DZI2X7=8th)(ohZ2 zc}l5stsZ6ks#~j+=&cpO6!ay-ASWmX`sqZn7azJ@9F$BLcEy2qedtrV`(&8}T19v+ z<;9{@=5kQ%0>uUQTVIIzs`y?JoaBJmU)w9lbPEnSIPBSz(fXyvjqvtlGZB2xSZ`iK z0~BkLbQpVvRbA|nA+IU157eFMxA%gv7ZR~lh&O4Ur}%eTL&=}yCl_PMvv)tJz8Y6E z^|5U`J?!#&S}ILQu#0E$op@z9g$Pl=C95*CuIB(3wh&fTuNIDbiT(43lBJxpHcVW& z3@F_Tlu^~!4;&?0M$mzxj$;U}5&a23;MQUQr=}JE_CzM^ba7wW zp)xLC5M5>c+quWGzl@RD2ZqLqmZNk-*gfe6My+!{G=@$TYYEb!b8iGKN4~pct9_7F z!D@E}>Ik;Js5yRDX7S?aNxNEkw+{5K_Lp4~|KkHl&Z4EU*!d^jiPR6sk#R;;5%q)n zv+w;^;I$6+?8%x)e9PSKZ$0;hd*A4G%VU8@aekD~ZMXdoE%N;9RA4d}4ARTq+mkdO zQ&yFLG8jv`KjN9Zz_wWY-1gf-poCHksq(fnr?XvqvnN}1tA_!$giUDx2=T#Kdc<Pr}GY}!v^dcgYP zdDntoe}7Y!tTTwF>h3h^kL(mdk(Kz5zu+809wd&w$dK8mBz{7p4x+{Y;@56=sqE3( zTL);y$+m)GLCq)8>x26&nxv80w5H^Mx}Qh&y1KqsE}ZsdGkZH}_bNh@q65jXO&{|& zM~|xq+Ui`(%n$s2W#gzZ^_mFscISJ9?KL)i)q9k}-^t&D8$-(ecqqHUgY1{U9v>-q z1~ArYv~N9r2kKo;FOLf+lg#e^kt*6&Jkg&bKsKQbmIoVE9!JadDBtiLSa_!`{n^r@ z2J3`Ioc|VjEqSV-&VFEiu~APWPNn#PqjJuO^KO8rw?0U;;r%MBDavAp9P__~uqKYv z&*l^c*>8WkE*W(B{#AM};W`@2gDB|MS!5yR_v#z1$-m=1|M`Ipsr=LvA0w?drIWIY z)H>6-Esai3MDitp$Z(20N{`=U%%|7NIG-4Sg7C`OYl|!zJLii49F}+FDdX@avXV66PhH#pQ1>_5e zxCD3#=^I^0$~U6zA3sFWReV8V$5dy(bJV>UU=X>$n#i^%lKu&kH#zCJkrvcf}IS6yc!l`uGqkIqvy;nfBB6h5*;LeN3$^?!9bpk`YZ zp1&q{>qzni6?x*a^2xDZmVMQqLEjND7PgGY5Csj9_ejmoSP0TitKp>n1P7Lk5Y4g^K+lHrbaQlt>X4 z7jqz!j%RMz?$q5X6d)=3c=nUvR=inn45DimbmlZ2?_P*E-g#Uwl7W3SavKhvJVL9P}SAozzzZK8{DRmvoci)ji-2 znzxe4 z*uc?dY7$gGBFRGva3NAHg_`xR@Lu}yVWHEa1T0CSF3br)67jQt()j|;AcS;!s2v`< zN$i$t4r7_3s}ZCG;nTjLwJ~HdnTN&`KfhpMk;4dg5MSU&#FHni{3e8dr)k49f_scG zET{lBv(-cSj&eD|SJI%v*2ebJAY+@GQeoL7UGDfmskvGU^dWiGix^eDsXO!^q@ZPB z5QEKzT`N#IpaRDYWaZ1VW)Dt$;h>7;qEJR!oz%EQ9t8{6Tc5C&=#)y>xje8)$A}(g z9C3iI1#k%~nGlT=M~)9p72=K*U^P}PQp8RT{t^b)XwWji1!gP|mJ?I>)N6kOxQi(x z&l7@--`uG8{?C-=q7L(0Gr~LwoA?H`fN_%JNL_l9sB8ADAsg_(@KP|lyLw)hV4R%k zcpEEQDEnkRvtpH({Nlu%da4NO4%6lm8~3HL+yAiuNN#*! z76)1HOX2rg6xbE8_0v2rJGCj^A~*Zn8wb&5H4_@|C0%4*`^Mn+8r` z-jr)O*Z|zJi#l>Gg^T9)*ZP%S(K}M`c6K<9gYMg+d`L#hh?ebcVM3MTvg?rN$~->vQqblKr0=2Y;`@7ot_JlhU%VUS_x$&;r>FO zpnZ`$q}FfSP7(q@@G6|A?%dwW7`34)qKiY>4Zmt9nZ?cCMLOB_lfUKZ>l zX9vt^dgt=Xewia?cD2-A`FOR(sMSa}X{{2Fgyp+I^^R>a@NZR;Tu9}aCh6aEr(2s^ZUb_ZWW|IXrr);qHiGkJ!d&Hq!pcVyN} z+Ox?qw0%X>R{g*WFrJU}!m2c54DEo1P{x)eo!D zExwYKbwFjemVa6rV09X1l|eNCPyVhn-IVX)$}u?NLb^IB4K&6t6bX|{*=iMFMa@jhu@ z-gaC*lLW9j#s031N<-zwX6~eM4ivk?XOD(>Ki2181)N+j3#vq=bNt(25imiBDZT(v zNS5S}NEYUIa=gw`U1B^}!Tolmk*8x0$>se`?IoL)?TrP{uO-2WDCp%&(_Z7vO#wgr#=a1bB%ODixu6y`TwV++siz1EeGl-*tK6nb9Tb%qvmh^wOvovPAAf^rMLFkimeMjDk`Qnf64S%DJnAbG?#e$j)7mdQdhceeK1Asa@y07c z+eL||XD+k46JkmBqW($M*}5Yb|B}a$REBlbLrzfq>UngYt1~Mf=$Bax^fd`eNy~KI zwW_-gm(H!p$Jz3|PN8KP#oAE~e6Gns8b*%f*v@*loS^6+7p~G25d7Cs!5bo|*oNIt zr+PJX&`TB%I8}yLid|v$VtCAUQ~q0CI%_$@t}m1Hsj0dytU4UM6w+C-8V><*qhIgO z>L3g#g~%>6TNhdMZQXtUv+eWU^*zoDbpY&pRDE zx)`7PQzfoBgb5gq@KA9x2Cn1%R&B(Ox_lz}rX{%ACmjdZf4Wd#?Bb&-Pns^}a>{pe z+EqJ2eZkns*-yQBsxNb2($1&{UN#wFxT$ZcMU@6nvZq-~{9$eI33qXQA1&0*PXTg^ zpEU{B_C|ZGA2)c)85PaGm=1&!+RGrUeAb(Z+C#a8*N}Wx^`B7mxtF_}YxeJ9e&@q9 zXLgm;$n%+5<}3)yf@M(fSLLW`RHlG_U{pp9lmFPHAHoaZak0nJAnGY@;#iC$w!p6_ptXRqRaP7e??IL4l<>6ixofi}q-GRk8GU!<59R|7J5_pHd=`&)p*qc+AEnsg= z9B1zN2T18m$B&LQsdgeu66v?r%^TL_FxBYGrJP`Df-4sz54PC%J}LBCv!Jv!a!3Uw zJ|n1YnmP4ngO!oM`HK#hz`L~d#Kqenj8s}~sQoAzKG4CBlgZnF{^ESH;X*vOU-9Ia z;pgh`wITfM%@>>T0jV)){vINzHwuwLN@ul}a31T0D{e$}^AO(f_GW|grv=VVigkT> zRDZ|{q1emhr5gtacjeeroivi(6ee@fN-pn^{}T$+Oq$Bei014ztP4DpSw9JlfqCde zpG2Q*`I2I`?zFEUr3XzQ!7|OBI33%yRMS3=zGSTZDq_K0MBQ@c22~+0{n3xf%p!PJ z7dy@T{RMMSpJA1nr$MRFdYEOUk5grqtcpbB@o0r?q025`qqMEs&+S}Bj8WvaV979Hvl#D*3g7+}#wW()U; zjlaOvcU?T8$v)~Fh1F6{FYk0}dj0p(6^qcKrUS1>a?=x*AEkL<4H*kO5^vL5-Yx)4 z)H%0W59kC*bASNZcL%@O9`E(owCg9~l);b3`cv-_tMPn{;;>j|QN!O`XrYl+#z6Sq z10ZyvEE^ps(k9;+d{plAt3&@BhfYrn|0;}thx`)k_1Lpx3DN!71adS3r~U<%D8|4Z z!T$db9C>?@yq_82xNFEFzZ7-Q?T|qv<8QZaSUk4d&h@H@*+<+voRQdSAm+3SVBV*nr1zje zAM{=H(gY`UZW-)^`AXQba9rHa4&M)h=IDW4oVC;xu6O=vj@z~DWX#uK*&L8p$#`XZ z4#v7lQAS+Zt@L*Qg%J?|^+pytrs(iJ#Moe6EoZZT6s&*B)UNvx#yi=O(dZGVRweHx zjwH2jtX}r{OYS%)WoVF8=$?8tjQs%gs~AEr0(C2B6XMN10Kl!vn9v6c+MdbRkPiWR zWcEG12o8$pNRz*hzrfX=ce-buZelQUY+b`ymW~TTXQw0qAU)P6x77E*PI&`pxWZNnC;;#9* z8)h%oAYH;YB{2LW-5wG{FXNkLE?*8f2+5S0Ksp*tWd>Mj9}odGndP^23y+KQ7wEFr z2H~-pY8Fh&MFFQPO@0sUgD#?l0k+Mv=zpsar}4P-4F!BZg5B;uA1pIeUT)ajMekTx zFL2>t59hNW-#7V#j^fv}ry)I@z2LGJ>juv-sLu+*`_XmWhb((Alrv&b*ym@+bv@R8 zjhmid#yRn}szW6WR-YB^##^c*FgE3dS92iwc>DE*3cc+hjWdAYc|$?(rTOx$D!)-9 zQYIc;px1pptVD5ojFoKl73jA&g1pxQYkE*=++?Lx16V96xb9HSeyA({A&;O-0Nur&WJ@ND#BqCns?@5CckpO|W0`%slIzX5 zl#xRa`ytY97W5=In8PEiW&({Ag?b~kO)jkcs#w(omYMEG&Cjo*W*9y1;^^C}Ol_$^ z(V;%$L6hj4BZjYX@_S~VN~B(zEpp3<`1zs9LLa@5+ET5PW|Z`C9wAZeOC4~jOm)<8?$&KpA$q0owv1OH6ee@zjZ!%gmH^3rrF}a> z6Phg6_8&pb3doy-RG(lwW%56+IWH|L_0cyq;m{IVCU1z9lApSyA% zl86m==(nG@`LXQBc`Zot0?E%S%9uKFRsbJj1j%FsglhX9&Ft?me{a&Wem{HJooh(U zU<6N2yIYCd+xo-`%A z@uJ4&Fc@!;;vr`6gNp4{6ni^+Zp#c3N8!b_ zYDk>~Dd#4_iqWJPPlI$MN$0JgHbZzlE5H-v6_r79PXwj3xi|J^a^w|zr~J2x7wjSS z+M{MBYsX9s^WA6$cd+Hd`VsvG{Ia#u(F`u{{56q8nrf`44D;^fJ;8n^lU(+(=`u~W z2yWPCW>V=!tGk)Ga`K9$v=CTbHOsc>_s%5gqwLX2VRq|9fHd4tPi!N2l&Hbxa^AMi7uaNa;?ns0ALp9kepW%7Q-qZ}ccn9N0J@GWJBT zDc*6~BA=r(-RT^8Ehw<@~ts2M-;8JB3>!N+=Z$Bax%EhYQ$`51u)#FdCl5 zdf|u+>zj!%89aTjW%>tEu zO3LV;4@dvD5W}zX$t>5LQ)c^8zIQKzg)hg0miO!H&SSis!}nnOa<#Ujy)m#?QxL6AKXUbckeh5F zdv`+iwBDlgQ%K~m4Z)DhEcU|~fvDl{5B3dM$Udehj_1g%p`Qbxn7WUp!@tS|a+d!K z?UJcr6|}K^!1|6IQEM!-KPkY|x?69!<{FN!imX#*&(iF(_WIabr&At)#F0GwE9N%y+47m@ECe|}tzo3x2c9+(N@E7g`IX>gbYk8V8P zv@*{(0<_SWmwxNrri(I>AA*O-qTiaqW-9xanlJVYEJkE#Pm*VX0%| zWP!}ocJ@Gl%aq4&hePOk%`o%DI>+N>j|JY0}Je|M6e_1}L3BWFgPI zk@Hh}=eq*(B5g7Cebo_bKkZtt``z?7nPp6y34E?J7g*yhl|;gSzeb1rQO0E7u3l4g zQhtuO*dG|mWC?+J%5jA0c9!ew#Ac5ZTn{W+_BPyB`kOqcS?$cxKxoJ2Tpx>+UdzYb zT0{N#@vymO*E+2@SgmIG0pppp!TvRseab1w{z9PM{?he3e_KQO_W$iZH^na4^ws@8 znyx$=>i>JsjCJhU_p}*VhV08=$WqauERnTDcABw`ZS1nvM`axb6(tn18&SwMGf1+N zGJ|Xx+4Xz(J?Hn2a~zI2-tX7z-se8gbMMU(qcW2IA{nT*k?x9PbyHi9qqri^55#hN zPHaUSHv65Fvb1t{wW>(2U>|qdr(ILKElr!s?1%8{=$|T+lo5*UvnNxV6E+C6eo`K zCh)a?z~vs>)cS!7n=eOQA7*=zN~2Af<}p=W=>2f*g0Szi1LT`Ft)h_SC(`bSi)A>B z?HqieS&0ID4Fh4YUlY>t*FR5Bq;tfr@ILV=2fv0{H#MG#2h(lc*S)&t+HHYNOjDaL zfo2I0KCXh+pih(WWnU%58|@#hy*)c_z%!F{i%kbHnslDHg3vYQMi_P8d^34B5DV z$vSisEshVrBl+wh&o4dz;3I|3FyL*N`GoaN1=cRnZ;)=3BCk7PXq7FgXKfp`yR_bsG&~^ZdwH*ZTRAmf zSM$bNS0@{c%i2Du;%nTw3~BLzWh4ri%7)Fix)Wd+?xOOVIp6-NjseEMP~);~-S+W= zF{J>8PBa%~%4%cD>k+Py18t$R^6HtcmzqwEKb5%!M|FOEcRW_p0Ijyt>OTIf?yghC z=`@yU*uLZeB)1C$$iYr#Hae_wi<7MbBbSh|Dy`0h`4_*YF3p>M7ctx#@u+ z3}oYi9(!u9yv!eaV@*xqP8tBW+2WaUfMS39F+wkn2Di4%eT<^wKJ&=7eT0-|-B&-j zTFf%$%UjQy%!y!sr+WLtE7 z1Osi8*%-oRH13Cqqv_7_OqrBNVHzImNo$PkO9P+kQN~UnZIr$Bk&23C*nyr1<+Hxt zWy6uC3_caNXSbbs9{S(k@S&4I51S3%=as?hbRqonSd>)M`!^k5qptiaGrLvv>pTuF zH+K(zXkt#!n56My&6J44H>0z#Sh#$bT$elsJhogM`~$&4tNj|a=SbIY=O85ew*gDQ zwe4wD90V6r6)?U2jCLLkQ6BXWg!i8QDUH1$rprYTGp7#^L1>I0Z2-gF0JUd33PQ1) zGA$2vuMm^pai5|A*ergTImKV8{lXjRN6v^xjHLl*k&1%1mofbOzO}8qJyGicGp&!Gs)@M%(LV z`$lyy58z3i`%J!CQ5;At;K7emfRjS6Pq0l~tc*qPSAP*Vd1!Clcr&WCq^te2i30qR zFc|A*!NEwm*vvt=8LTs>U!L8G4w9ZhYS^}fZe6FB-QmUul%m5>AiPa;WAA221V^&= zov>Dgektt<8vpBHSPH3e_}t!dUP=X!k|WgI+Cr2Q?Boo?npG2O_(^vHLO?oM2V38C zRKjS1Aa3#E-eav((>WGXOYBXJ_s=ZIY}*hC^+Q z-gRgv*@@N6vs9T48vV^$7ifd~(vQ_n{d&Xd7U9J@mHP3UEq_l#7td!Csvs6*0Zk#w z&5{45ToLma7h&2%%fflBF=7B*+~O#hx8rXIJF+7k-z&p7;+gA(np&F58k|pKQCv7F zwpbvYw)kFGa~P;nc|UZ4&tgEA|#Aff| zo4vBAJ5z5oehWL!P`?Eu1D|&O0tjz9>Kxb)cz2G!hzK=+-wHNq?(08pJYIu%6($|>u;@( z&H!l^l0TqAl7?+NnoMYC{Y}49=%eHadf-(OP!FG{AS8%AEwJL|ih$YF_z5xJA7Dei3bi`C~DUR3AUpIrzz6)8Xs1h^vlNPVrnNOHW z_f2MM=3@UX?(t*S!II+X_El?wnh0l4brj@p{j8@^_Pm4T1%s|A(v!zYn8y2@&!|T7 z0=p9vE#wQwRFL<#hb;@yU$VGLgWUN&P1^26a*|`5BYBMfQ&?(7G!0q)y|0*W0>;T)$Zj zNyE84!~x7uxbXS$IBOEw*q*u1y_gV+7SIVHgl*f8)CM-6q#$=~h)lri z?e1b=2A}DQuO_yIrME!Kh`ixt@UBYa9^bogbM1)Z_~C?S#kc7?6G%5*e{9U z3utX4z_F?c&rlgqzA?fd)1_J|69|32ctSl-sE14~HQkbrscItXHeBsMGc@;4y2bz}% zE#I#if^M3Qrf5AkHAZc4D7Ez`H%{5E>OCs$iE@Pwnv{>eKk@zgC%pSL2v2BcqwMR>Av@w~ zokc!MA4D)wGIrK8jrrv+2FaH`x#MD#Cs;cSC74?IXO(vKxM|z3Sg$$zx)^0HvT;pR z&+B6ax7w?j+9soz6fem{b1J?8Dy>k(T)WM-r~aLuNqd7ZZX`GX6D)?_~eE9oFu4ibconkxzTlonGF4JiF#{ddb&Qf(w+k zq(L;8>?7e$*gp7U4T@S6Sl_O=d$_!feHyXR1Jdr?vF2%i+=-ST03RPdTk#kUpsZJY zxaO^i2ndBGV9<~%sOguVJbZTO4}ZC{P;n14wiYl!5bCb&cD~(X2Yo;MY~oq4)Ru}j zr|$^Ud>AmV{eUu^*rf|>?*r4DI&hCg38NhW4vB{^88FUcq!5Z1yOSBud-c?lHfhMEPJhtU94RzuDCE0XHGx;HF@j!rdwpWbb5eo;+9QAhFeN{$0UOfr@JdD!C}6Q&Q2X`xXKR_G;P)PxTfhid`cm zV-pd?03b5$7*MsEZ{36D?cLY>f>O) znas)Tu6EI&)_YMAdTV$Kxdq#U^)`A4CEKQPz|+UB2^P0D2f^rvcy9mFHV{}HE#R>l zgA)UK-+3W|eTk31-}-+qfT)FdUeDLdIh&gW)UCu~)O^F~u)x*Oq)o*+@elg#D_y-E zlUW@RuY~>x!MHh>l9;ltSVATBk(NkgXxSgMCP``FOm3yPiJ48pX zt=JsR5*^whar(LY#3s1G$G?;1&%^tmnXbX@bk8Bz5()G>ziOKXpUuK_wA(X2shG*Q z!E&$BX&$Rl`0C{QQP%<$J}2-pZ?5P1jg`qUpIY+MsBLS(gX@E;uqnq6=r#UL$0>OE z>k#nA_c!yYrCm-D{(FUY^0WP_O>HaERMzoqW7%Mgf3m0YTLrLIBSp*CE>`ESd@}8~ z0|W@aU3zmKphYM%z(%F`?}=9ir1gFCI)h92WJ|}}3pH8a3{>imqenbAQ_4UEn<_R&wtOzdYU3v4e zI+{pc;)HJRognhZC4BN-`2^=UD&LtV>5sxZBHCg-o6S5XMb zzkQ8UHdUE2rt-9l?37t|SATh@k^)}<67>vL69L0Xp5~(1+?s_q4D@LV6;PdtK}Br& zKGNC~Kjl;Lq&H|~aw`QXvVjuuC)9A(jK@uhg&nl@d%>=tC}lFBuXi+^?q-wI?s)|?)Wr~i0I_~bKoC9s%dqXqZ@( zu+8kLLV6})QYY1$sWdwS^=dowA&*fp#e2pg0+#m>rQY%;7>GT)ybf(S!z*}ZmgVUB zaE7ic)Uoy25vQtP&z<#O^1$Y)PPr7x5XD>&GmU9UwG1RS~?yD$f5x zB!L0r_R>N|LCU>Sj!*QVI+p)9`;^rp39M!CTMdnhqmP}@2Gie5wXjk8jDWuc4sBm| z?ApRuK;Mp|ukjGKZq_8^bX5QQX^tT9DJ#b`Yx#$L<4h#UP3A;4BFL=U7*e_l!jCtpTp^{?g_Efq1XB@n#rM6IcVIXo&M<;wzd;!Ft$H3w z7HIQ#_#~%mw^bUR2TObmubg#Ja=8mSHgg((dpKz0TbcQNp_T`zvlrIeq}KbP^Q1zM zHSQ$uW9$!sb?Zfdk;9w3tsZYh6C_<0Pij~^ko)J?N;-b_md~=ydxRWJgsC^`#{;~F(8LbI4^soGlk^qjX8KHhZu&SwqN z$EM3Ae3$)zg{D!-YxMw2crBcyGL!_LVhyn75N$&}YQGIA@W(S(d~TZF#z97iGNZ5X|UO z$+7riBs}t!D;If*@!jG#j(;A8_DH_=++s{eq7-(-=-ms; zAxPb1pKp#^D~;*Wd7TZwW?vL%4Z`21$s%&bLx1!V9Dc4g6LmFG-**kt+hqJ(W3OCk zUD((Q@Fv8-HR9g?2bXbKMgQJSA?!O8zu4VKO?2k@=*Pr3!grY*Am`XrVwtGJ4W`TZ zE2hMr>{3In#a09>K6ls!s(7x&g%MWCvTM7kObGi^-PNf|f5sEGR+gEL-bRV&uR3&E zwAyZd1T-D&B7|to*Ry`Dc9^;)9E*9}o4T}l%Z=yucKn;K$FHVAAxppgFv`QwCmWZf zV?-l<%as1nU2l(U__L2GI!*pjEm%9WxNW}9A=5+MIB74=+i>qdGen;gL>vz;-3$H0 z5#nhPAk$h~-l-Dr#PNBwr}?x_=Ha{J&3g!}E8Fg0U*6F6g>Gtxep~@yXwwHkhDF;* zT1;49Y)ANTW=HgFX2(&jKn!s%J!?&6(V}i}Z?WCuXxLfhB(PW{=Iwa;+?-F3>8``( zaFlxF`80X7ShV6mCilIdTPK~z>PM(&oErD+ABzaF`}Zp^zKr5$S2nI_!6yRCA!*lG zD|!vk0t9qm^ysLE<&T%mScT$yzrJb=1zXNC>}Zoz?K+#AUe0V=QyinBZx*`EJ{*Ky zv>uzyNQeDrfQI(!Ji54shEPYOg+4gNuTAMZx_U+v^)lR%A6M=7%nV(Kf=+dtXp1ab zPZWU~F7TJ%%wM9M8gf7hj(7YmT}{D35ioSR4*bb4az-midRCPQC0F1tn0Mi4okyf|XHh)9HkF!FD2 zz}UjrO+U^1t6isKQ( zhq6>;kgSt}A|tXwC7p;oEw7xz(s@m?6bDh;w-^Q4*8X76DW%c(&eFC_+V@evji}B`KXFn4LH(4MGcYn6N)y937Zpc9#uu~Fo?D_FaE$rBCp^&4jc>^Nb z+V(j>)M!0V?}z%-<0)?we@_@2cGAk%PXK@(WAQ^368?A8Tl|aBVYBn=M)9reJL@PQ z?;t$?Xo*nq6}!B`FiX;90wNf*-4^sljGr?XsHX05JNXxkdeskzAcW@5beQSR$>HE@ zK~SQ`1JN_>TRPc!3sAC=LTkb_=5_Ha(G7#Kro5j&nnYj|?NGWFbihtWuBX*X>uZKA zbZ`;HS2vh}Y%|ZNT_uUd{=Cpf*w2O13%fmeJ;Ji?WQ+z!p64m2GJa0`n$52?v*$zG zb+2Ty(lcm?r*ww`_3LFfSAdjQ$y^ z6gE2Db5$`h9^*`f%gsb-{wzr^nN`WehGdp>>SUTUJcc(6>$;Z}vl!5&H;h&JuIxIR zq$U63quRf=kLsjxaUbXDq`^1D=S<7-n1cZ`J^L-afrb(Ls#ZnD%9KPDl=5nJMri4# zFoZDb;(upqc`;ID=IYx>MA9tu+7n}yQJB`1(2;58y5aqk@Y7RfSs#pnFCt$ zx0nOC(~G~iHSw3U1rqOlXVdP|b?J&FQIR5Ri*onxK3(erYx|YdvF+M; zPhT+7S1|$P_Y9p5=V2*qe2zRu*Lo42?OMieiF%8$M>ThwU?E5slbz4J_qV5W>Aq-z zw*#wc9Q4QctgCElPMq63b!Y?g5wtB&CciSD1xx(O%)sJV@PYC*mM2ZNme)jX4Zj{0 zL0CX2X%+qL{|fOnf)G1H``ehrsM8a)NU@o)9x>XWVW>ih_0@+DhBQW?Z(+9W0BFm= za6VTFBetRBbg$nk;;n~u1^E|MGGo7cVsJ(GOM5p61IODtfYA_au*qBIRkY&#jtqT? z#uc%Wq0h`1@bZ`z_5K z)SRx1gB-HSirZQJbVOF&6kf{Yc`dOm&ylKQSRrr*=e#I&g;XX&D<$F^NYGNTI^r=J zO3nbLHy()FR(iXvO2pHm0O{QiSN*FrfQP_mO_e^F6a=6uM(SYs4A)3OQrG-LLU>BD zuNPO`1z}Y5%edLqS78?W5^SHSJW(njZIUL0A^6z}+SLmKQpy)8SN;90q}$@~7cs-iOcarw(t zz;Y6x=F-W&V}*!#AZhV*D7Il3`dr@uk!+f_wAmeJk9a2Z>CZH%sDEeiRU0V8vRy}H zIox_f@`JyiKn36V@(Adc#ko^b9VJS)sy;qwNG^gD4TScQhGJJufUDID`$~iz4oXAl z;t-nmf1Q|}cI;X&JfE|V>rU@Osryrrt0ebXSX7g)0W5b7rzv zha)FA7}~*v@B}$AE!~MJRR4TYcJHfeiz<2QadXC5eV7IG9n-h3u9{KhIO>%3T}MbD zmw9gLc*!DH%NYbUMIa$I-4O>cms~K-fwUuw^L<#oY47 zN24%5%KuH^#=O8f2Vt9&9&;2TL3AFEYXla+-r4wYDMBYxXELa3IMdgYO2Crwnp$7d@;eO*Ma2z{ zA8}_~&el{>O?>v)?7qZK*^GoyYXsL?+4foV{ZMk*4lglZ-A&GV9mTs}_h zyL9Tda})$fdKTWS_$6u_4XE5jTgE^bybZLk2^bGP`OffkKV9#Wjj?;5IbsMj9TSK^!t4Le6#A1TrbeT zlvd$l0T~dvQtlA)bH)VR!rXU3-U7?Zqj5&Sbox$4AvflgD+^|-T%2+ z{4nh#-BjY$TFOon37C@m#%2|MrUe1b6+5Rvc@ayRQ*;eW^)&iYhh~U+Z1WyANuxVT z+v6h+0EPkhqPy=2fH)99aVMn6hQ3C7K3xaq8quAcyC}`9V7jn8pPd#`=pVHr$~BrZ zeCb`>pNC&S?ZHRd4o2SuTPlKJmhh71EptZNfpiNojhJAv@t-XfQA!+Op+P`!) zq{aCsAX1pPR?qkpP@SzxnI~#}3Ai{v;3))kJC}U69GyEJW?67i(+gFayu& zIlI_QxWGLW^y_|e^)b5nDG`N3Q5?I_%KaA^2NyqI`bmCWQ!gz>hxe1G8iUgelG?LBlzcP~onN~AL`rW*J(>C! ztHj!0ev3B2;jcyORbcVb$4j-IZWPb$@#G@SlP*Ui9;C|x>COA6cyy$6Txg5nv}e>1kYXD`L%q$q*gceYv&$q6CsP#1_!^G zjJlP-d}Kc$%M9EuHl(K*Ai!?dc?CLuX&J?}oC!9Nkq8bbgDQN}s66sJ5q#m}nGol=cR~REEzrHEO0Fn%xPjkWW%nPLb@s z`SZ-L*SV&)0O8~3_+i!0ZYz6T;OKdTi2i+-u5q&b_htuT2C?c11Kkv0Nv%QbrosQek_{*7|d z5$hZwY3CV!{>E=ji{q-}BNunq`tneBK3T*U^(NyEGQjj1D8(`HJ0nFgjiT1h?i$L~ zO+JUynOLg#L!r-bOEjfK#Ds8#9#N9Xk)guH*rCLj6RhINmH_Nz;U4USoW@A<+pDbk zwkbrm-|{@H+Pn2kAm+b&ou>g7CFWP1QsBw3rvd@{Crf#Bnj|+_=esu}FQ)gzxL_&d zh!m~kf2XIJGtV9&a_HykCWU99r$<4Gvcs#v7&&2Nj==hF)mv0X$_p<^mO+8-!q^AO zLy3OywFk~){;73C%TCu83)M;8qP@WtW$ac zhCT4qmKaozR-zcydZDPfoKwVix3GZ>Eefq&`NJ`ZjLBCYF4)`(DDD~;%MYT=#+}O) z6c4SRPbg!WAlbU>0Q)7TN({EUPT-cQj^d?4+_{zrO2+qC__O~2YZXfb@{o$KwdR_z zQlow9i;XVCaF+I{rD~50i?X~7^w>O`&s;u?(2Rdp0&+->zb}zzJoOpjki0}uR!#f5 zU|*j(SQ3oMZ1)j?{`UMx7r7K_lI{Mhqw$8E=y52;{>$!x6}2rL+j~z{6J9bL1TDws z2qOd5I?^*cMS!6;A5_05cT3=gbl8&v1lu`^$fW_1UqO^}!g@kIGKniw_ejYLdKNso z%;XE#_}AG_r59!?rJ#}yz73uwk*Zz2Pwa9FTQf`8FXfuR%R2RvepjF24{5TbEE|>d z#obARzGy%_(V4Ow9#79^cp%iCw?@zio79wt=@d$7vp15oRAHL4i6(*)r5Xp?oue7d z#aGRabD_a{*EG(HTZCLgMt`IxK!bxO+OCBHm0m;GS#u$srK{@wV@|){SHDjUiMI!| zSHtZwj^CKsWr`yUAfIk$7c8x0He-iYCIqg)W1HCq)N=j5=~#qr7lN=s{g|?_^wMaL zyMd8T>R9ci1JRe^vV6Ly2PJ4E4z?D}P5r!$rn%;P66mGRHFJJ!szF{=@7GS61%`PwFWU+`TvY=tORdA~|&lmGL#HG{B z!@s!W{t_rEW<2=U{r`Y2#@neLK^D0LTouRtNj$jXnqq(?7JRHrk@zaTr9R5{Ls^t26^#i3ehjH7^~vwB%8mVPrc zToAHUUU=#meZDzigSTklrZBC2yP{kH6Oy`0r2EWd*sKFC$-op;!&{}K!=+Aj$|2|b zsi@Qpq5)ukXknz)e#eWgFjB@->qjkaK5ack@Y!{L(L3HMw$ays!p$UML!fiVbd#b`8s>8>&Dh)!h-J%eGH+=T3?>J31)p~k3h)=jFj zvvme4d>4uEd`~M4l8p~b}_YB)p)CCSt**r)3X}v7TKsC7hr3=`M#FNSw8>c$+T2Ro%f6g zF(cYnaQ9yF+Y344Epw)ux8rHAyr-X1gFtxK7OvsBnt!t6sU%oy&b-cq4pw?@^kS!c zr&EjVoF5&F24gvj$;ZLcEgshoy*C{jDSam6e`^g}#(7i3Vv4^|f9K=Er{C9qnyb9| zDx~AFc4&J)-mVKaEz}ce>h{Ed-pW?iR4$XM$Zs6z0v%E}-ntdeKQ(YRtX4k3^L1BP z3B3Q;wnj_M0!(*&tE}2*&tuyL5h|O6e|pAOA+P&fA}}g3kc(Sj@cZzQ6fsxqLs@fl zi2o3$QZ7+Nf`|!!FI2qunlI*WEoaPO>2)Mp?j+88vbb(O=7w>^Gm)4l z0Ko9D-(oqG--~*jHS%&_PcAykre0^W_03B>L96EeUyxscnJeH6mRF{{NQBR8wP!I< zA*FTg=-0kNVzlprku5CV{($8Vu@$^lTZ;GH=9mQR087A)$u1gL9RsYS_2mp?l|Ie! zhN0z_n;o8Cn<0RaSOtfQpsoQDNKE0>Pk4 zknXR9)B6@*3uf=*pvpN|`tUe(RI4y#=zG1~XB8f!#d-M^mbm-Etb|Urw4@WQFFT~tYK;^JQ_xt0 zi1qFApb_m1*#T9Q1H5!H1RUIuR?+C<4r+h3tL$*thuAHP_?%UAN`J5{+M|dM5qiK{ zNG^%FBUs(1#X)Ikwp~C0ch;)kn$cenvU~XZ`eZPn=bfagWu)}cOMvqy^SOm<@D^8bQq(l7*PiTd z;va-7N;TJ$FDT`BY6nJEk(CA`hr3TUA66( zt=HBKnG7&l>`#jftixHXeu@}A^<=auvU-*+$^BZ_`PAun+IvXpcto##RRqJ@^9bo- znpWCq5nA({R7?GE!K<$`Iv;&zbiwuE@%QuQL0X;m z;=?DKV_LIhr?reiGrNV6u#{OHK>&<@YHl*F@UWVFuTg$ri@`LNblTr;$cEjxjFEU!2@oP`m7yEAuZa;x;VtI& z`mx*h?!%m5w*bGCVyHse3})Y4U(3?vT1A)(dwTidEbHgdW()u4?71X!Ozm*Zoy(TT z<6M;Hr_R1*estp>T7p4?Axr^(BHI`ZTSs92ZxQ~4b9``62e;%FG|Ha{*pjgiK( z|3}NOZ0_ifd?T6rQIO;Z&snbd%+RB-`P|bwzae2Ik%DtI<(%J`emLY<-swnvFsatq z8#scRN5pwY2&-`r$Yninf|kk<^w~|rv%hBpWdTmKsZzhvAdKs)h><6taA;d#d7Scp zty~0pP)Ms-s=+YwphXHR%nA4!zyQGtgEzp7JS5%C;!naTh_ zB-1_hK85I&$}R1$lKYg8R;`oF%2+do`;Azbx}^HpDkXWgZAQ;RiBw{FJK zJkRdEdpjIsdAb|$T5PSYuoA6Ay5ufwONkv%{E`ZhEa*{xjnU`*6xB<8djXcNuy5t- zHbsLZ2`MPa9qZlAXl=6q(MGNShjzC-mIT6z@;Jq9{Of@LZD?>&^mBy3#x>|UVRIM0 z7P&)O{nHcweCpMX0>9_5cf&S1_(4pIOSh#3Xesq6JZ7B>Jgjvk>w9$<>-xo1SF@}9 z+|Lx|hk*vfr`?-IT4ODy?;53(>`0ECp;OPcOsLAv0WMvY*X`bRsHaK@Y=3i5W~rr| z9xVQNc^@5iK7cFh2kHAlp_F7Fbbk1kNaUpm=B%HCuD7d;$J+Gs#9aSw9OF4~7I*Dt zRj16#hv+kAwRPr}sA&_kOMVPyb#!6ZyLUel%Ly zzPC3Ja&(+#d$hJKcogIEZeEe-?m;=ad#JECdMtPp^o;56xq?a8PK z3nSVjuKsRj8@#}iL&XA*Z}In&4~|FZUT|<6RaQ#qS+fU$ofSnX)awPc0F#cM_kuBA zrR=MP?K*&w;~wjCxj*|ihdzg;{z9jMi#8tp0Zr9N#n;8V@31VY44srw^~o zgydNvTn&OcBrdcc%LH?ke$k41P%iY8bk$m`+;XigC4biIi>9aLBE9a5_Oa$q4npRI z6m6<}YfaFe)mpB>`zU6Z#1oM0TD0|~r==I(p!pv2J>5~67rF3~`c+7O3!Kn)cvjY2 z$Z8BNIreN@^Ij{?q}Nz=*V*LuUsY`<6(!DnH%aIRZBg8iM8b>?OL?eZ6w#iZMeZ~P zMFA1F0tSH)m45t8#mWY92Px*A>=5MLB)|)# z!cR+Db;Et~RIw%A(mM2;G`qT+#;vO4UhBZ3No0rHRAifu8?0TAqz4l_2DnZrd0d@* z!Q4dx=zelmn_y6T$|r4&q7zd8gZ$$?e?}+|{8Yn_sE*gPmVB*;B~xc)Jjd2_eK#D{ z$Uol$@4I!HmHabGn@3l7)KQdrWS&4}{9^Oyc>NoV_gN*(X`4=<_{>_SwlU5=oeTx& z&Ub`cAo|%XfhTvkZQA${jdfL+5bUcF-K(Fk?4~$`X0Z<%0^2b_0+M-Wtg%T}%Ri-# zpZ9V?mid)O@-j%WGrg7@5|<^MB6^sN^pi)6E;0|3n-u5MftDde&IhR$Pf>*;k@_Z2 z%1V(zL2s72)#~iU-CgoD6?TckPN4+yD@@3cGsU}wMU3x=M(bu5n#Awc{MMQl(iW$4T$7VLV z$9C&K>t@)T!FcF!Fhi6`5NM_~4qF4xhsCczrSM{a8?%O;P&064&K-BM`px{bgMmON zdh+VH_tZF1`W(O#UUyq>O4G{|Y*cm9yoaxSb&F0Lj|a4R)j zMDeyJGNv;UA3y-i^mo;)5Hg?x-F@&h-YlrFdMk z^8#u-^f&zH;%Z_jHCBtuK_a!-;7~L#^?PBDhO?uI2qC6izJF{VFQ*BHN@? zPp*8|2HHOK(2G1yOe`k3tOX!tG>ytx5KDmEk;Fl)~lWyOV1*e~8;z|Zd=G7(NM zr+*LhOgF$tJXgeBrVBsMIPqXlrs?~f71IT}Gq@HrdI0T!r*pOZ>>i49g60HT9>&6KrY@LMM~dd zdLK$6_%!U-C-?QK*|?iZWju<{RDn{?H3i#P=aPygo-S zULst@RY^CLx%Jl2fvPZ)yuBzgX_zCeJ(ISo+dPf5Gtgq$R2lSzwc>x#-9b)?KNv^H zB6jj;kFg+aa1hWT`Va>sSnI~>S)k{+cMoyf_T8bqvCg5mLGT~M=aosXsmR`kpdwB6 z_^M>Z#S#W;&<0sLa4HMYwA1==Pl$Qwa5Kwgt$XgK@u6AB(FV0@uTt^$W(U!|vsmA= zrx?%*()9;x=ecX&>>bO$_Rv_|y(Q14M4dm1x3>knmP{QVam^WEpeJ8Tv-~=m%>dx< z%b7%$li38A zw=#M=H})h}S7Gl{G#XAbZbq&HpL=HGQV1IN15B7eF_Yn55s@dnU_@D zWqToUQ)YvR>n}>v^djOMz+|$fVo;c#)cpS21SFn86qkoEeO)F(cx&6R0IS!7$AZoAR=8N(z1=N(Xk;7qr?CG z`JVsp!Or$z=j`n4-u-@EueyZLEO|^$#IKZqCI}?%5(v(PlAsISWHQ*c0Ud@%F3^ok zi)>K5gh!6c#)b9b+48@I4Lp6ktf9jp20f|tDzrpE=}-sxZR;B(-vf&I|$7^~+^bS2?4;Oi9`kLpV( zZ~|SX{MRfiGcG)5z+U;?mi28xfQX(qoO1&rejmzei)2Jg&Rb6r;9umzYdo0y;xuI< zp%g35A1Z;s&OS1KMT>cGa;?Z!Q$l1o3b55UeWF}P#_W5)OErJclJ*iXo0~EBWlR!2 zFyI0tFbm+(W`X?PGjbo5CmJ_6zr8n~x3Z_#bm3%Ebe#u^Px`|)uO(vIRn=RRIg?n8 z34Y&DfcIfs?ADBCi(p~csrl-bQG>P0psK!zeq6%s?3mGSC3>UVa0}O2@h)6Nz&~T+N zcZt?K>~#<+hbtLc&VZIJaEf-vXAf3<^a`irWFE4_sbPk1w~{M;9f~-A3V4sL)@913 zQ^cc4!?T&-M5r~9lYFg=f6b587RUf30_M8n0H`ZI03R88TOp#FEOha4XlA3;rJXH{ zbb&waeQ>Fr{Ey_lf=8l_E(P`mpVx2EqAhBGG#^kfvoQ$}JKn_#0xkAiMeE`Tf1mvW za5oul@-y!m<#<2c6Y(0{Fo@_z0o%3xQIdCv-BAk`12kZ*2A~20Fhf?onr+gdu#JYV zNWF?#PBM;YvjS=Ua>sw}Ln#lfUAzCYc2HXWyioo1cA&xTmo@s{G)w3UL zLfmp?9L4au)1uWS*sedDLwfEGP_Eu-EgR!|Hci|J&n8owHWC+$5V`@xVd7HqXmNC< z>#V5J#_HT4y;1c?O_d!Gv%|?7JfrpElX@kt{<0BD2pI@)7|(?RIKlr5TwKpKB5SsW zx!Gc?K>X*PDJ4;F|2#hgMXmOzv7bI@6F#tz%zb(>{!hr51&vimm+`<0xFw}tevhXg z%!$ft?m~6=7xzV&BD5Hy2|$b|n!uO~)DS@Fda3lsrQu}bD`75Qx-A<@ni4ROCM7;& zmFQjgmgS_j8BJ=*e$E^(0<%8-xl8j=TvKBlARADvN=Sr!@InJkjw>2tT;eYVH#Yu|pAW^HY((F0;z=`YS|)=-yD5x|8m z8>bwmLz;YpjvEF;kJ!;=;?sI&Fbcrni8nN(Tm}kr#PFZO=$_FbhFhqAan0v#5SA5A zn<=;U)R)x{BO2JkBQ12#2p=5Z%=H9$Mn~ldu#5z7*#2utZxipbxSZw9uUx-u`7y{R z$b$d|5X&az3E~+dhbf`Z2O(%FI{oQF)3d+Ck5VjvE!Uj`jhZ*io7J z28*N#>*_>Qro5+Q%KV!`IpLlXx5N<7UQ|aG-U^@1@jJ^?d#nF&DY6g1NWtOMEJ7c; zin?9D9mI-Ef4>OUNVqk75qxVr4aJz8@v34w+rm~o3Z8WiikZS+9oN=7*aj5#pB8~b zy~&6A6t=qlheBO%cTffmUS3?zhIx8$RYo)Cw?B~yXsGeCaa4PX&& zLM&@B#a2M$%eTDUhvB#L|LVHjp0iYrtz|i%$Yw52TWixHHqH54*2` zEJjV&<7OwH_T5?TWs*|$@}ZI#b~HNNQj*>l<$2Vc=#}@ueEF}AV;dh;%VX++eZh;K zTIR*r5K8escFUw>u{KxslTR=SInx3hoGk8Bl7#5-jHzgNZt=IX+s=FHveCs$SNEo5 zua<0*f1j3}*PjkSzEDp9wjKF4hp=}$=icz!_(KU*G`(7~BDFV-DfqFk0Wbx=L*aBa zS^cHewuVJ8{(*?$7n>gp6Fm5BV*s+?%+YZ*1f*;R3iM%Ro)bhm!H5F+2_Cm8$Covz zF_@U2stE)^bQ+SuY1uPz8=cS4Vd^-K?10Hq5Gb*|5PJvlrdHOD<6^30`{b&7Hm@C# zw`M3T{Tw5yvc=kdb@l`#W9|tp7QpKG{&0Kxr zm0C2hi1NQepoC=r^;Xh-6d+Rr9I&gZkLt(Mj?i{w3%&Dor(Yd^QNBLC*RqOk7I6Mh zb|tu#Tdq=QJKp`BcvIF~L95AEH=qGxS4|TkV+vO*16nW;djR%_i406M-mhvm@qcz#?kzAwWjpu9LEw2zy#63yKx? z_X1d;1&Fb*?63i}&aY8d^4FpbHpak|%vLm?>j1Y)ssQP?RLhwU$b$5z#^ z+)0MSx5Lu}ex%uL1{QT~>ZDBfm&1>Ep$*;U+j;sOL{;GC>TSA4d<4D3Ci z$j_vW4T7c&FJ6c+0iF#}Kp&F93O2qFum!=ZWf`kgD3h|ci>xEqo`kdE-1ZITMG;#? zr-6Wp`$y82VA@UuoNOp1b1Qk{G zfM{h)Y~`yBx&5v64nS3hhEFYl0JUPt?0F0}A z)BtU}sDDbP@vE=d_W3q7uCmboe!K(F2RAIErbE(s6LtNa25W5LcI$bqQNs4?6_?EX?>|it(8?5AAJJV-5?sF;>DC$z7!h}#j$dtcX?$%N`gkY&NJ*muu#B=~Vi#r? z(PU`s;^C6c`E(UXD@YN66{MSgoF(e5B}hp_XzscgPB=ft7r5agiR@dd{%kBlZLuYL zCA*nlLc-hJ*n9$HuXHyiKlon^({G5c1qkl7bUs6~_K*QE*3?AF zluZGEvR8R9V;Ts0*o#B5f7(871nQM22W~F>E+?6Sh_@c5C9JW3O|sx8l%XE#wZ373 z#{}dFb7m_CtCcY0iskb_Lrfr)R-GF_=`YD#x)w_Zw{)Q@dT*sw`q~SiIqtQ|BQQE@ zz~C{+XKc@fmfS%q4{{-Z)5JZqX;9ZSt6{(aCEj30J-D(7BpB*Ux;zlAkE=&po0SLEY=Fr>ugQWlS0`Lla z@wNPU;ukW*)m~NcqL02n+D}?$t!cKBPRA*9I?P42l4p8~OcO;^KUZVbI z6Hocu55KeK-C}TZea@*aNmn83U=0KkI1P3jBHxpdWS9Rea>CY2+xxl=#y|TO5Rf!b(-eWD%|s zjA)qTh1;QxE?g+jBoUJW-_;7D2IkBX`l?aF-qVQuzqwi;{?1HcOENCMG6Ozc@nB)j z0*@1o-Q-Fi0uE5jqxJybtcJKt)xJJLXMYo@ub7z5-kF!hENqFK?SwoY)JissbOQY& zxoiKgo)Bxod_KSscz&?2e7=(1S$mTG^>`w(tn@|Q?dkI(tH5xu$=3Vz%ngyA@ADK^ zE-tyl2d0c!AKtvll;Q>|7t9>9Jsxe|(hz?FNb}RGb$_!|+hKHnxL*7>@$wVke|PY) z_o)B$Y5_jt98D8yY=$n(Ex$w&3se9)>fU~VQO45!hZL_g#IEkW!!ALoa!t;{)%lj4 zpZ80{91|FhP36vSa0{h(TUG)2Ms0EJB69c_x9lAo&`$Y4Px>S+ByCzTo7D#C!B5=V zrv$puI<;I6Hh>q#p#S{efP0C4Xa(D=Ae`r_H5z-*B@bxq@;NWuN*u=_ zmI^W_-QJ+_2r>KS1zLM1m64qIaG|w{?jH%I7QPObWLAHgJ~JMTxBKGbL;fGUrK(`& zBn817W_@&Y+L%tD>i(Y0NV%iM`rf#r88PtCTKk(+dBII^l9P}H_y+o@YV4+<59(J{ z77RRgJI<+`;MaUWo?2(?Jl_2j6XX9eggya_>{w86-Nmd`gGYk7eN>=}4oj5G%Bc$u z9lW#NI}7(?SQ5aIAvO3c_LAH3cL zcYOmkrCFDH>L?zJ0ReYbD=NS*Fiv*LS`E~$B@|Eq>Y>KgO{+QKg|UXmzuz7t+PtYBo&#}_qUY2S!!W2FKnb38qGjepa z_^^$s#747JfT%m;kboe1l^*>l8XSLR=<ZhTmjkwi_tGNdJGf1a1wVdlBp%E-FSBr3`aoIZBk+h@K1EOjIErK=;bm^ zGbY@1QQ!iZ9ln`Av(rEaLP?RF9bMGQdqKtlK77Kf~P@W;6Y0tr&Io#10;xuyJ1ABkWk0xK|drv z3Nk~q8fn57M8fHriU@(ct{w#>`Qe&3K5oFXUCm*9_Ce-@Pst8v#kulYg%o zR2g5rX*Kh`RQEwvXQAEI{z7_#JMVta-cOuuhZero@8%@kR(P)?9*Uw)2W4(tlAX;E zGzocOSbT#5FT&t;wRU(uY#XHxDmN0)JPSXLnA1H2(Qn2`xBwMVus}Adq0J?UnzVhx zMi@Dlr%EGDCRF9tG``dYv9$tpir-KpYrNfOs{?0V8!_fVVAxO#suTg0YGWvh#u32J zt^$Gc;S9ty-`)rXp%wJgn&V`iu1RbD5Yea)sCYScciX1E=T{Iq>4Ml*l00r1>J_{6 zMsv99m-^|aOP}sv{KTkW==)1kGI$ix@u;vY(HlhUgTmbljHn5VE&uv}UrTtxxP)!X z-#^!d0)&!7vD(H47Q!HeMDGcGpZ5lhAQE*nOf|f@iE)vkfqMY%UdRB!deRDR%FMYc zVGstQ>eCsR?&g;l2+RlKo76xRLy|UvJ2xS$)E_qevYmx(hfN5cbbzqo_8ymuVYi*sou1=9RBhJXA(<_gTWux zNIn&W>sy)~|3g|WutJpWb&JHx*4T&ZjJLmLr(1{78F`fW{fOVem;Fvy3W!90q*THh zFxa}G?JXhsKzbjo!P{#lZ=-UV+$M{NU@xJg(MyK4u|q7Ui8@aB&L>Ae6LajE;9zGe zoC&L!>dOKOP@yM4;L(d^EX%;i-~e$=pIz*4_>G=nt2s%s}d{@3&X0`rF0qv z1P3)42kTbCz8xgfh#=uhElU}}>Otg{t|?9yf5Bto$%|_fjv9WxyexxHjyk;KiDeIh zlfpA6B82~*n=ue0V+9B@MPQE-@!hcokY7WUOq-;ZirPPIv@GKQRo*b)O*8{2ZG*J5 z<@|cYlP7G@iorG%x^07X34NWv=`1cs5W^Q|HBv5+P99|4{3C!HR)pABh@Q55*20%S zPGk5ig273P-5q?w8pwq%G2kh8q0@;^OXKZohpa_QuxJiHk)vMLkz8^S*lN4O`&dx8 z^Yt;?*F+0;_2jc>hTmTMzo0B*VOk=~BGceh?~%Kxs=uPark!jrBHYQJoAn0#+BL(l zN;!mc-2(iPBd^koF9rhthA3zTD9J^$#&HZKMCAL)i4fp?`$m4X$WbjDpffJ z-*$;DI;pV3*R@a_c?Qf^NK4lrps4ZsVFPoeooRMuoh)|6pBkwC-D?_9$=x{;Fg@Nf zC>Lmb)S>c^ z_76=<^Ck@VFKt)vZcq}*|E$35f}w35sTYL5SPlo-LnMO)PsvaJK@FY~JVaZv2J_hz z3aUtUu{3JLQW5uPg9eRx%J;A8S6_TK2veml-|V5P%y$VGDSiBvgU zK5z)KV+llU{lZwhgJubdtL?1N@dW0<9gptt93uT4|K$V<{#l23I*PN?VoVy}*v=*u zWk!I_H4zFU;5z2QQWx6J8a=SJO6>mE5NNPgblSYzcx9~7UVSo!f^B`Wq6B$Og z$6J_vb|S50=zH3%nL?MY%iL$vS=3zS>Alv{LM|5g9k+kp5ilZI9C{SV=zZMawqc3i*54;V zpQ9?eVUgN#r`}U(6*U7X6#`8qIsnQvfngP+Irzt|ft&g-m=X{8qtR>PVvD2>spp%< z`9zS>9O>UC@5$>l-=IUY4txaN^-Tqd^>l@#@65tljkX>8I59lM2f{P$#xY1+^E_}| zQlOp^{m*P#nbrGRHg7{MrZpbE;|{%ss7MK8p&}}FMHJ8pPe%UX2FyGH3o=uLMMg>z z+Awrj%KwAQ2y1D-`VbvXAy?)~4C)7q<~@!UKWaBdT;>dsaj23R&C#f!Uzu;-3Ir||9@Y?S79(X3bmSHtN)V4+Jn!*&|F>NtfiKl>@($Jd5wgUCsA zQkoi3*LOLdaH_|vGp8(KCgky43einY2~~=Lypk*|OS|vbn$s1cg7(gjo1LlUA5|O6 z+v{c>TuqgeJ6cE_O>$Bi0rL#N8pZXGs#*x*9<3pW$mmUd0xRZcvmv^kroOGPxuJJh!tT@>Y1jKo?T$g zkU887PS!aG1epe#dsC_(R0yM+%<+X}4acrOF`pnB_OxgQ(UOeA93I8{t8~Nzj`KPD zC}LlZefJT1_>Qj(J1x4&>41?gQnVoUE? zF$*1+o#5lb+FpaQa4pvco?R&|){pCYoA6l(Pl-qZCxl0RkZ$ninZ)(T4b|->Rii|$ z&!TD~YppGaDWZ3Hcvngq)bv^ZE4t<|Pj(*{v-#^&DS3+Vge4=0>F)&Ql=-N7zpv08 zhk)-aWe+mtB*r)OSSDTxgMXpA>g>zew&I=e7R^s;f3j^o`*=3w{1Oso6YpE(5w*Ce zaG|NmgG~n3SrrPEza)I9ra&3~v=4DUP9=q!zva35CX&$S2w3-@-&1MKdb(Cv9BFDz zqy*rQjw$J8Ee|RW8x-4wzss|Pr^98J?AFjp(hk!NSwuX^+3NlapS@?Fv)b9msq&cp zeRc4+TRC-D%NwTiv$1qiX(h={R(Of5u2i5m;Q9N6%eR{a=J>D|lt+?QAum|VBxq=M zKo?Xt?j_xfOY&2lLfXmVz-9J1mQ4c%j&|iR+OfGEb^89TdF}T32QZW#3% zy?4^Z8hPbP1}I$Gqj`T!U1@I3F0z}LyZOv@z7+!WbrWu(hqnbfPk)~?dAQe&i>>3U02zs zJL15jTfiMi@uo!%(%&6P;@0<)6U*H}UMGi$+lcF1rfZy1HD*l_$gz*WJc$(>>f-wL zB3jKM&`sDZB<-m+of7uZmAiCGLo0_NFEqr#*}t9w&N>r>a4|?NW?xD0kDHBpzs2*! ztX?+4P`<)Gz_!Wpy6-pU0@O{ZCG!_NTgie z!;aebBV=&aYLh`Lb7l@Q5yCjIxKy@wk%tgk0f>ZUU%{6~*(H{iBwu}LMn+Nsg!f?K zfxtWl$hZ>ra|A{gA;a22Yd&K5QU*?;>Ao3qzi_-4VfVT;pg8gAOX0z*9t^%qSr$0Z zh2UF$%$2HE%2x+m#-(M3&7;vzETowqjXA!w(mX_Z{KWj?-slN(FtSr`)fjyx3k{r4 z%76zhnq=nR zaw6c@tCkWQuy6c)GXq`cjIs2ZfuWUb>OaknLi#!bqOaX)9)StLTCsaw zjt}J^gkaz-qepY(S<~Tcol3o-y!Utk1v(0e7_DD0 zS(}S<&Z9*>Jvjdg)K^O`CAHnHR;0x#eTo=KO1A%nAZW`ipJ@}1&ehcnWecl<0JYHW zUG0=#Z3CNuX^q4SWwFX)de^6YZ(Joi_-Ksa)N7arR5&jE?NZR38MJ6h?>fmiFhoOL z;6P@f9)FD>4L?;4hc`iBC-3G|8uQAcFdtSQfd^Ip_4r}}KMY6i%e|t+(G5@)dH^l% zt0OWcW2zng{N)w>;k(G(#YOd7xn)ihs`0LMmftmr;XI8RzfkEmh>-c5Njoxf{}7(g zPi5q%&Nc>+Y)6~c)@Op_X&x$#ZS+heMsblD?-5-yS0*@zZhkD0yF3n>SaEIGk;;te zwopwEeB{cod8K}2;+P|{I%Tohi}CuQJT>vT=ex6O zeZYY1d+$4UXl91WU>RyepWp>g%1HC)Nrxir^onK(WW*@+R)RdTAA15N`KDvYBKS>b z+7}R!Yy+BC3&?=Od4UzRV>A1~y9rVb3;Eb|nX8rm;OgvXp6cl*Ig$GWvDq5shCmVF zf#<;hBV)i!6v}1TSTH_^Bvi+BH{o7xQ~gc=eFi zYA$T=4srE%6Onv^IN73~1}CpKbzOb87Q=AQ^-DZLWJBe?z>Hbq*2J$HkE;x=;m}uHkJM=8{D2c;R!KEtLVGmQJL|G4WQ*-(#m;q4|Sh zizrFH1sRa$@w@IikMSS-Hu*oP)ut2d!VUrpTu1HnSCQ{AY?{OTt6z7;hW`%#3PgD< zP3gs`ZR#IYe`_IfYd`opY%FL0TWi=L{OLmXv};80jd0RDUM-oIGji#y4;vWB*duw_B0CY2r+aaevsFVeaht`TJs@_O8DDqtH{DV-UD` zeR<@bSY20IQS9>7yX)t{trbp2@S$a)5UXF4lBm%+aWDk zkn>yQYD&ZFoUu0Z5X?#2WPQuOH^qJ?qMOtH&%jZYD+oc#q_X-A!1J z6gI1NAuxpskxOAsqbgN&kkb; z%&TeM*;Lbn$2O@G|0p-S@!I?DoYUNM+oRwx>e4LuR2nvwkd>(&H&A-*4>tPf^+#3wH98m+8e?ItB0S zTzf1YQuSJ=QH15A*-}*U&97Nk`Tv&jeKU1@bgKCHR)c-xC)cB4DE#J8vFVkEz@2d=`sv%%fZXRHe>t;C{>b(}`1JGb293xjbb!?3Z}wVbKLzr*Xq(P~<%O=mf>*sO zW2;-x$p}|$Yo&*6!Wqgi|MN@c=V_teS&|4nh0Y?$x5tl`u_yHb{56pQ->(JSns@Cz zf?ov0lLenDZrxF!)y&rBIJ$x(!p!Wn)^0AP z363tNp|0Ba3F?0xqgTH@FZWnju$_V?VRv4K{NRcPyF#py6U{C-D)bj^-d)~Ki&sU# zYHpm^8ytl&A8Rp03>7yP-mnD=>I==u7Gn&ZLs zn&Wm4rQ=IU?(<<2#k`r{xby8&x7Gswmlw~tF8_AkI$uc|6~w4K+1X^`K3}6&XssDc z)}D3l6fsvGqg;+>daN(`YU%~`_0S?N70-td+sOco??oNAe%1YH8_|XrdHV{dR0<=d zFT8a|d?d)R1Bs!tvBU!nm9Hu~BB%G_4gy9K?JAvZl?umhHeo2H2#@-VgQ{p+*vSx3 z2dLQeb8v|VUH|Bq>ZYn?AW)dj;{8_OM?X~_%@53HKW|PdjGJc@@0<+UT21wBznqL- zlW^^tUA%`ovcDjLFf#`F2JD`gCj6a+abf8OfzxCibHyFiOo6f=R)`{~ zeAP}97|XsI8X@l;`cH9IRxRoM6fCh)QYYM2^_j;#u*3IfJ_gc(*@_NEehjTWb&h9l z>RRdxKgGMJcY4jmYlZxtSyv>9cgLl{Y$p0Jf#JxqYYF+*u&FBPx|o$BPadtlz{R2s z z0Cw6m(%A&jd(hmsQAu1p)j^hv{A`HVd8f!!_|+{j#k=x_unw0;{{HSJH%*F<2w?y= zPWg9Qd=PSm%~T9%92{9Ogw+X1&j?~E$WZ(Q4KE&AY)y}YFnq@B8|J8}?#L|axdZ=Z z%&;#Lv|V*x?+h(6BgW(BxOh7TK9w@No)-t}Njj~Fd{|dg^s$DjQ<_P_yYRC0bnWfsx>q+sZ|>O?qvf}N<2XhoB5%$-?mTd5xyJHJWf6Y}>JfO@DrH#e zQD5)&T8JG$B~vzw&8`r7Q*R+R81v)igX_0hk^PS915`*!Q&==f3_kNH&L&W3LLz&5 zWuXFqKK|H<$5)&5u8kZK_ir8MQR52?t1QG?bjeA#W|-k8VdqchLkz>N)4=!%Teplp zl?n1e-_SdQLxu<`#1&j?k&U{f&Wp&1Z_VVNy$nC=yITX~*cV1!Y)Z!1W2QHx+FKvh zB}VUlNnb71eJW7Q|C#wx;rH3poqCy+VAm9Q)L(9{Vbw3=q8;W*a3iLnP0G!ho^KYE z-^Rs;XVEwMXA?cGt8)dd8T>uVd#WbWovOvgXXC{J#VHP)lzE^(YL{ZmGvY)qoIQA; zHG7XwbH?nJYYwke)`(C^QAoI7*B3FY^5S*%Qp7|sK0oxU*-#pU+nwi?t8xS;w^KS|#5)_9}M#->j`4%1bl3}HYuA{>K6!?i6 z+@z(-mEV*dT?dCr_-y7FdZ?J0U==0E@z$ZT)D8`dgvDHlZE~=Z{R1+(!I~e8DQ*|&ol|OBtz+_ zIW|TUuN)RI+|%w5MLC7;yg2Fy&m3|=>-bcL%+zFJ{G+dK8l_R<4idFq{%Lxk&P4PVo0)HPq0gZt`tzb;yrP2d8E^_xksqy_rO1ae zzVfg+HNHDtIV~w{qA2<*?-fqD3-MHb>lQLjJ*n&eyZ}jV^o+om;VL%0;t?ai^;hEPCwF5cODK{1bW{gEXgH4X z6Rc!TMI4HaI^o3q^+h_^IG)>NSBl`$Y>E$0@U+`5V3~9ce8_bK)Z^a7Esl5sIqt#% zfnmK^2f=|(ixvPb9Tx2$vsr7!@ebaT{ot}RbCi7ynY3JVO2k~50UU0Fn#avQQ#Mb$ z!~MHr(x4$bmvk(VFGphPs>OG2)eL5IS8eU^=Dikb7n3gvmWw1W6^T^>16WS6 zS)WXu`1(1siY?AHJe!+Xjy?wKaIhc0qh#5Fk{tXB1(G;!R2}b7o+Z^BUAyPNSAzvS z@(_{ky$N}#BtED6(BRhNpRC+MyuS-C-Z@H5X~%Y+QC9_TgSfW^e$D{9S+T8Gq^4D( zSI**nw=b{YUpmm1F*80ph|)RVn->*UQ%p=?VVbX+(9vL1i4|W;*cn-H{CbDCOJU>z zPbn~iZQSQ+8acVsG)RZ(u9A86^XYs&1n!5$;s9&TNXODi=-5L-y=;0u|6a2}g+nlT zw=cOLe@m-!R9;${@uk$}ZOi%d$yj*}lw7=$U(r{`%ijf8G#V>KShhAg`(zuxg@>tc zUDh)NML2YLwfS_(&bs|h@flwd_Zgc{sI=Z~v#VY_s~nrRxBJ|#-C_gmOX!Vmn|_$G z?On(Qh!zKi9D4h0!BzY(TMKfP2HGwPfxS=d(b|&^?IJ!u=F^m|d^q{1_3n;r^ zfut3(qAe&QilYCH7`s+o{afcxJ4CTy(^7JH;&ZQlL4{jiK{0#hJR}+>Ozy9l+kbQ` z&q5sqvZb?KCqpS=CuxIz0Skl#3K}5rnAL_C$Rq`JNLp6AjaOb$Z9_7FbT8!6gWsbf zNx03b!-i(@uR6PTnFJIfv!G;4qn`jUM3O1~%DE_zO{pg=$ z&s<5EpEPuL-^ySm1cXsxM*nbQT^Z<*;*u6a&k%0Z{tM?M$4zei2N`TK z7zg>#LC`{Z5Keq>%G9qzW~f>YQu4SF1h<^yw22TLwxtln(GA+hM8*?^I);hDO|c9a z+496Q7RKXCA={mLu2wRGzbFw0rYe-^k#UfPFF%s@V&#vfekE=z$eatlY zIl^xA(-pN%-Aez{C$xhDG9u29y4o-YuOr|)T?wV}DY6io`IcGnpRBAn21xs$P`z!vS69NgA33}chN^)2a>8Y=4lE6^xWP2NG^ zjY`7@a>8pZV}Qy{I#I#>%OF4fN=__H!C=D)QshNS!&Dyy#ME?7rJ$iAth&DKUq0r=!gnKP?FWhxSw#c zrF~7ecj_sAW|jGl1ueuV`PmfV?{SwYK4^v)*=#fDD7zrK!dFmJcY38>9%OD(&zGFX z3PEDF3BW&*Zm?LQ+<#VvC*6C*_$X?}hMEK~V{zjac_0;e&02Qx+jH))G8xD95N$hk zrPKq}j^ltX+C1ap!419O+X1v53h}!`gMOa9M+^N!Cg3NUN&4%S#$^r3_tq7^OI!5R zNccj7D`-el5Qyu2ZvQBlNSne7>%{TB0a?-a4jyg$Ow@Q!n3Qdmu zH7uGslolfE{#M`&E|O&!7q>Wh><=u<&M6t7NRf{3D9UUpV|8_@wbA)fpO4;~kHJB;`gw zFU)Jrfz>*!zB9YOh!)q54a9bL_`^-8%WF#1gMZ3OXcib=xUV&7^4(&L<);X+o|M$KNOVr-@W{;aS`5 z%F(0@VNcc7F7*cQ=Dd|IleLUv(?#CAR|1_&@*T&||40Zsc)|Gz(5AtXDm9c5s4hCPm}V05w9=+MF@4jJr4EongrDlA%~v1T;}tE$Qt= zy59EQ%9B)GM^dsIzO-Z+?3ltm2&(v{Z3?N9uL{@3$Qp zp0VoFF~TZQTz*SW*wo{>W;7F5!l?bWXUV?eRS=_RG&}Q`ks85hkv0un_Z}_^=*{#6rFAhbR!v+P zd-!ruu4eS}XRTDFS4+Y1m)lQ=c=Js8J79O3TUun?1lKdVcEfMSsSM?p2(43Y(}yN0 zyhsk)lN(El^+H>mp;Tt*whU;G#@Xk^O&x6aDAmVrKq1Qwv3?pKdS1A?J2SwKhnVY2WKtmjo z#w~}LS`F3U@vYFvUa+C^V_qrr!_5~0EWKadml()DT(JRuc_?^>oLxA>CUI$$m~X}sn*(H?u5NtnI%#Cr zzY`2a2)A5Hc{^NzXeSBGVY|2YO{%J!+4H%_7dtGNjxXNaIF~8oYwLf}*~G_8)n$7e z5vo3G8n7_)P&_hw@uzxk;JNi%As_L{oyWk_bqmk)dw%nq@04#cH)l-6&lT4K?^K^P zAq2NdPp4vGLKA*Jn8N5V`|5A*>-)|Q%%2;tPzhGHA~HTPfIH@!S*VmEB)%^B%Iq}1 z2do?+T8Mon3JEts2p?H!zuc{-@#d3v5nA*a5tJ@8WT(6y`Qu>m`zDB40PxU_0268y zsHK14mjF=^=S7ZPvk^tBk5+AI0rM-FnjT!+hJqf+G6aQBrEM9VAy`ly!(UUhmI26c z_KzYW&kCHNS-QQJ&^sFC-y}rv8US~TworF6GrXSuV!r$p@}^qQpu(Rs;9(&;17xG) zJ9dr7%Z~#C&*e=eNHY2B`l|xLC9=7}`!|d~5qrufumY;ulQV>3lVxiafNokp}QII5qNi%HV9Y4iFe? z!gGh<$V|Y6ZAG2u|55EGm!K&z?Dz zUnhzQbY1ca65>*Xs;dLgU}#BP9gYq=I&!tc@N>ox;?J02*4HsZ=R1jcqwW;fn?~c2 z+%%~_ek>R#aTqbp-%kx9Ap;jZKEnEr>#X!% z9pT8Zb=td|PEsSfm7Ystz&_p3=O3tvihZa}-5~bDGY7vA2fqeKzYs@9#8zC5o{6!( zWmn7kG%*11BMvD7>KF2{9zuqH4QNN^-82~2E|T94|E)fkIg2+<0XXq4V96OuOs!@x zMqn)z!eR&)g8;()>AhGvTSQ~HrV!hAY)RZ@esdIXB_qklrRb3gJ+4>owS7$q3G%-u zZp>mxvRavBgsMtVu0nBV1(0lHp-YTI#XBuT zSlWv;&Y?+(qf@Iy>dVr>Hb<9^e}%pN;Y_ z$oOh}w-8tnrp8fy91bZ?#DF6Ct!jqDKQ<*Vys@*s{-o~S=c38Z#K5H+YBVHx63ZGl zi%D*0%)=xaHy7CBcNqH*4%GI&@q%S?Ih0`|VO(Hadpym1e2!+@ zFvzJ@48L}9)mFD|FeXZaw&8&3Ae|^g-$9WtaB=RS-$o9xG;ER;#I5DO>fVvP;wzUA zG3SW;slkg=Ei^O4>y~H|{ePf{89lCIcyY)kjLqv^)7IRmC}jMS{Ep~XNp;*KNIs~b z0oh|sTw+V{*LM8$X5$J7u)wUBzYEi0E(pLZfwt2doWjc%)Mz{M~bL(8JART z<@1E{7QXcFN+~bF2mg!ZX;WY9{4nX={8s)I4?rCp?nvY%3pt9-h$QC!?$Z}}eBDgm z*xvMg9+VBh5Z_)a4J#?~1h?M*?}LapLVYPvAk-9bUx*;nRo@TN8n0nXUvG0FK}%gN zd2q#tN6p<0!$FNban^JZVa>GF*+%s{hlDVR&+T)hkRV^u(rv6F_G{>Ly zskQO%DHWHVXEEpA>FC$^WGpOIVAbI2j{tiC$1$j`{z4@&PIy{F;)N{X#Cu}NFVM|?pvR6*q9i=S4 z!~d~nZSeh`X`-omF%EzURfKvV^L(w)MZHruXzSb`6cj$0rrt{Iu(dyQ+D#>snjB1f z-gH{^%uIW0ZaOV9?5xV&N96J5dItsLD9z5#Rx*wHN|Ca)$yP1u&DeFpiL>3~0x}IY z1%&t#^<>{`*F~e94aX@Vs44uHr+YzKG_cvLK67`cSqUmOo_USMshs^#X4AApXqod= zD``loB)`9_99A#h{8GjZ8CRgS5cvz7cS9mgq$2}>b)yA38qk+pEfK-KSgNo1$(XP< z;_vU9n@_$E#2Hvm`*za=;?M0Eyd&%Av|pBxX@@ll|2usw6uD<89eJM1r5!%{`rpA9 zuDO?!uU}3&cWHaS#f2Bqy{vAJ-S!j(s{jb&{SJXMdOyYGe9e%55b$FtKbXe%?HPS= zpR7L=c(RXNYKUJZ#}yO40@m3IALIwN3v2#fZ}VpciZSpQYPC%@%N-;p9XQ0RY0|tc zjeaDVZ}#=_6GG)!>hmeE#qyiC(Cb~b400^s@podc15y2({s*}+;DUx8CQ70QzDH^EKQxXi~-ID zQh=-9@R>pI(LE(C$?x+hF{WUpVm?{%iJiU$<>oA0yb6bHuw?J6y3FRxiTFBppP2_duu!5TQU95r$`IyAH0khz0(iUQrilpViHzu6C|MjOp+;i_EL*YOF&TPS8>7s4 z8$fB|8YPDzR{QsXGkV(4v3CDZl}xP$ds7MHH&QE^2%O(D4v5*M1t3TX1`s3O`2Y&iKu86IevN@V@1dC9N1yL~fnfRtb37pBSC}@M78gK77@vm)g z`+|OkWB41>eSsE%%v9xfQ`Y9seDq%xF}uC+BN#thoDEonrvZ51lz z4NNU625PdlcM{$J>l?P4BV^{0`Qd_LaYHgHvmP>lg`*dQnzxAs=D4OPVf<~tIR}_9 z?WiE*da91$0#U)LNuj3LsbhuRoIrnw__FdZFTOS&xL2kA_ZIe>oD|6=b2+P}hPgA& z={Q85yNVcKdAOBl{bu%Q(MRsJ@^@<24|-md8{IIWxNQyC3f@ctOIpVsJJ(FTnR#Xe zRp^XDt|~7ps``EGjT1B7?D2B%e)EZ0(C2U0t1e-rXEVaWl)bQy5e;!G%=Z%N3Q@*H za27MmVt@z26s0M&s0HQp=6}+?=^i0qFi<{<0s|41&W-MF5Cc@$7@#7efYKu*1XN_f2d;2}-_s4Ul=Wukuv*&%^*L_{D8w!R6x7qL^)n_n+_jv21VGv*tW$3H19?b$# zHpU7qH0vo0KU$#31E{+AS=juDPPRIJbG5f5JF=G^CcYkde>}zEW*Gh@|H{%E@ar6> z{L-ggk{e5VaY$KE3}S>R{O6L4m4SgQ4dQYia@o{J;6b^LD5@t}ifg_QZyyPg?A^;M zPX+GF=^d~Isn0YA2z9sr9a+6Lv{g{G1^6r)?eO)RqO-skcwOcLF*)es>x^n~q(ZSD zi=ZfOIG}?|q{v#}@LV+kn4%SG`a1Q*hxNOmh;^PAkbt?;hb-KY|EnsN(3;<&)s2X> z#HCN*yi|>L8VcOPaK_P?ubg@%M<@IjT>2~L{>@kRQt6N#A$OMrO@j06HF9851Sy2Y zK0zK*2bDc96ZzOh9#8kwGRGJvNI@5bWTj|$F-pmH;+?{)$=CnF7FvJF|f%9}_F zVc0u4({QU83DFb5lf5(2n#t2pV5g|+hzozf7!esQ1w1C+g&OCcPH4s$ogJYBwp0Di z#?RVrh;?O~6^JwJF%_WD>i8NxN|BcmC_MPktjmVLBun)vv{o7akRm07XD-JPOhEv1 zy8u`j2{kHHRTUDj+~+DE6? z(3ckdUvT!lwji{lm&s6ESQ8WZTv6^me~HO>7FGs%X*^5h`fKSV*H2;df?K(JA=f`- ztaPBL`b+xc&T_cJlJ4ScBZ0H|kHb`F$*u!1VsSelM-+5Z6sibWilbe4FQ4vk;gmN07L6gWaM5n=L_AKM1pLg9tpn^XgSJmSadpZf zh<;(?a4ZAC5G*<^Ot&&r9OGRb2aAE9{I$7Hkdv6lX2T3=)n~VI>4oHXeO+RC>(1=> z_BerGq<8A(l*?tQgQch98dCY+Gg!~8Q5gm5XQ!CFbyQ;-c`P2R7lI-~CG*{7(mg4a z#Mz{-%7a$LoMp1yNbZX0_h&H1d*4A5ShrdqJqqfH&js7lIk+&to-L`dy%1&Z{R0N? z{U+ABsEIh8ZzVV11STrSCxl*CPm~I zA1Yb0y<#SD{dB@sWj8O$<~k}}+Nt31oHvtY-;rMq|Dce|eV0jD1G`fk@>CwL7Ud5tO?GM}P)bFo#=j|j1)=uWD^=PG2b3&#lfrCcE83^r7-}21ICI508 z?;_@ueRYTEV8cn+3DPRdlBUZ(wsR+tQ+m97s^JzRa@BZfRl9;k?e{D{D3#T48C^AL zXE6O&a<}uV#^-SV$=DA2No^vuVvAO;Id^NO?e?#RpnB_M`04F!23!DuDMka`aQa{q6_dX(h9-vnfgA~qA72^Z2h z^H)xjAvJuIg>QKW{3QM=Nmmff>1pF@FS)5SUbPj%pF~ybTuMI$adB0u0g;hqZBW%z z#Z#&m?cMSOo>`OfV=z2;QB^&gRL1e?%Z13!BT`>_re+!cOW-t)#wc8u4 z^^RTnd-Y60oO)9*K9f7iGx#hv(?(z^Sg$Qp<3&^8pG2D(+ckfCPW5he>UTBLyB(n> z!O8SoQr`Nn=_gI0^`btfYiE`P#V0JPNO7Ok!=Ej-3wPW9fn$t4@(NZ>@80M2KOg4z zX@LRyYTs|957$*K+>g(MXU_SL<`;%UNMqG#a7`bH_K+OI7wX(!w!kb|_P=Vb!mj}$ z1ARMzpJVhhZHG=TjD#$_+zPSIW$pdNgYepJVC6Z9WydwUHbMwn1!f$S^^*~OVQ>liF7k=mfqrEK^aFOHWPSBhDOP+jR3eLp zlGD!c7cOnz6d6@=-ur^RF7ddqnOt<=Az>`@++W1T-#`w{T+7fT@MZ2<2>V7lKlhxp zMSO`Xvd85Ei?&|wWbxr_Od-G^Y#?mjRcAFBHP7w95)maQY()D8e&_%)ooiU{uFB`f zN^uQG+9G)C{F7*r+P=+uR7M&*{4l?E zmYr#HEg2fUVrJZ}n$>6GL&<-Vj2#7#s`L8ahIz3t>qE-h~Btug8xTx;z zocros$YmYj2U07KqRY(?V)IzDW?~ENW`G8m0tkP=0)y%)uQzGiw-;R?{M!t_jFF<7 zDrh0?8;A0N9G5hJLbK8(qQuxRW|CVV4kN4o=AH{(4psVpFTh^V91|_n9VJjs^#dxT z?D|2fII#MQq0$zkk#mL*%DXoq5ZqU&aat=l{)ZSt6NfXnsHb=44c`xUjF9?eaF-gg zpSZH#;;G*cLiAtipxf?ny3i4=|x z8hmf4e+RO91@JZ50RM&=G2$JIi3~ru+`Hj*;b*cICwuT*hMg;vl zV&hEc>3jN18rO5)Q}Y83R(&6v%s=1eLt=kToxW_cE&JtE_=$7D)-YZY z|D?^1VY1Y@_ysP)0Fn}}0qWXF3B}E6NNMils8Zgr8%=-UD3|T~v50~zgFtZ52h)!Z zg%EvDz2#0;g{I)Fz+!U!x^35Kb$QFF-40Ulxj?S0@9EPq_1FI8JnsCB8Q zD(obrd)k(0(N}Fbs`vPiY#htB zPBLYSl*fsHdBK*(0pEC;R?su(MfU7Ek zRPS~y;yrATI=YoLm3b)VN!}gbH}l2C+`8~MT0ix1SduT!TWlDbJdva$igs+h2)H+M zxX`sU%f>ZMZG**5oWWuj&S1G6XE6W0w;*t4(6Z5Q-(|d>TBUSh?-S<@{l)eT9N_ko z$Acf3@k)&h$C(9gO|8S4gCF9Ub-(O0NKK9>bt{JLtx+cQb-y+WXDuyscIbqyPhq`v z>*HE_z8$w>y{+!9F0_3_j<*dDWZa>>-q51o`Gst*k8)97870JlNk@BxBVzhUS=(=t zELk5E#+pN{-^6MA;uMs|4zGy|MT{lt)Q$Mt0K?2}qC5+q;8A_r<2BPvHu1aQ7L(oPXfP{wN8X(kGm9KMJFz85+sTupkcq=9yPYYF*XogIy`eC=S_`~ zD5Z!q%i1oV;fZsd$)S4}Zm7oW5&Knh*AFC$P=#Gug<8`MT$JmJ_MLz%Xe}4vb(R&; zj_6>)v?2(Ql4kO|WCzE@51ZhkKYeP46;Z z3|_b5RPU^vn%%kE6#6QuT%)`8fwQNIdY7t`@l84P@2XDLo&xIKYBMi8EP^i8f?lfDM;x4HhB2DZa#0t3yT+@OuURQ6tvy@7uvTblbm z!&W|ZP-|N2u~i#9lOl!&;Wfkms!yPKndvY!8K(7?m6sr^zQrva8HrF0F&zbhNw5-K zb2qmgukO?sfT70`UAdyU!xa(nCSM zN_6&>2pDg^RHJii+Vg6N9pm*8ci#!OPOaROEWgzc5c(VP96DuIf81{KH=~K4fUz~y z(CnmQh~$&MU%D{t*|7~r&DO91zUk!1O?p_DfAOMoQ2@YjsP)2iK4uet8V}j-=SQ6} z#RwFcrIND?K?}^AG+U@&26@6}UP2ZN6hO1eVK^vWkIhRy1Ve|epmXJVAM*`f0An&j zGXv$5BzD@K4wFjJR?YpQJF{rzTdqF@FawodV5PBGjGMn%`#RgRZiD#5$iIyJ?B^$MYi<97SbBVpF?YXl@%9^!Y_X@>Z`Ft7 zY8vQEEi%l#+>PAfDt%&hPYJEhC-AYq6YoA!8_6D^K<*lge-+RFQMwB8HWtoQr%l~+ zR?gJe+E5RL8$hf4Ru~mMrM?dj$|h3eYj5#Tw%9L0eBj0H(@x0_p789cUF+QwP^2XO-SiWa(k7 zi!nNc*+a^-?BO?Uv^2n+y*Biwa{1dmd0KqtyLk}UaqC5U|2jHi{=S8+fZm4$sc6b| z0b~t{2*o9~Q|zzo{!qrK2r%i9XV>H>w3Vpt`;aHFOVJN{T4w ziFV{KN@KxNe5w7PE<^i4r$<~eeIIfH@#GadzWK*jMW=#>Y^U{04{$|cfy>jl z7mJAJtS`8pyH-%2J2$Zo3-S72Xo`vaK0|MYs9=~^?SpmDoH@|eM0@F2T8J7DDv2SI zbcZIrr=f#4Xa3{P@FQz=LV2sRS7`Q=ijI_Kk!6tM>}o0~Ent!jQG}F`J>$b9>G%Gg z)WFXMYD=$50soHpK9F5Lr|4Tkc)@=tLG&I|9GbW+Mp7~$wnVA%jdL^X%{<|?6!@02 zjRv(gO-g!FDa)@U2hiRu1QcCg7=u#_;!+RPK@j|<*X{@yyiRr=tKnY}U>k|U2BJNp zfquPyEcGElDa*}eXwWaee45Zzn?-tYr4JS+0<~3)A&mit#KEuxX{@7~kVR;L zyBBgw*kDPXCI_0CuNjJ?lnyLe(ozwl40JWg`UVC5>pv+^V zbXs4cd`(vWrt9~x3-89t(s+}8l_soov|Ul=c@g3pjlHeB^)mEJ$@e%trg<)6Y4%D7 z79Os#N4_q8_&i*>7PU3i@!Y{vYsIONF!>|@`wce%wECV(b&|#tCSFM~`iuZz(|K8H z&Gp^py+AybNu4lz7qbBs%ZM5(pAXwE*=6*1d?WoL3}iX^`3&y9JyCT2T3$Ox+?wA? z(gN!V zqPsi@Wg&$$^RPkdw;m&<*f+D*_kIT!5Y2-su8fSAIS@YtWde!weop1(75y>fby=%# z&}&p@_Nxais$!i=U0;**2M*_dc?YaZ?o}yY-?#$#Cf^q4D6uv5UQ;7dXtB$Z2RdU0 z1dU=w($2KLd|3B-M>A<>9d-HO5sobq<07K5EZT(&;w9xYchpC$vaO8h#CC?6eF?^~ z39X8@pJG5HQV#2>J(2GcCerNm7rS~3wx;GR!~CcvmNe3A6^02$HbizdeDvH+P#Pc_UWZjU5qFx!`JBUcOLf;MM)n z3p)0#H)X%J#;H@C^=`Ol_ePf2J29BanWTUI%>D~eRV)U<eEpzp6v!rkJ=}F z)TdX~^VY^K&KxX15jcACoPBcm5zDg5@oF_L9B3Q0DOrz?pJxcE=fJ9eYrP___`AQf zrV{Y z9(e{~4&uYuK-3NAQ4q)?yKXno0gldjCkur88-X`zLZAbbG0z zLsvX^HkSC*6*SjqE2g^5C8D?`uQqs?-Iqv5l}I@HS_~qVdY5G(Pf&L<_yfNfc?qHo#_SJVa4?W&9j>3_DLYgG^ErU*#S8`r+X?%LOFJmdyLE`g5+xmh- zzB(~^OJC5I{n!3|rZ?7$_VHW!Wo{HRKVvXn*&^A?vC^J($-YqKDZ1%~W}Vr+G#OQ% z?ps%zQPg#Hnd;YaY%e-Kf!B(8kG+;jhIv;b8VtGrCEjD<+_(_N@!@VeU@TuQT!|A0 zU3Lr7v_36al7g7j*JO@G#LTPCA-gc!7QY|-Fit*NrBHvPo%`c*S`6>$Xj{!z7dCxn ze~b-%QSa_si{wM%^8o|;Zdo+67oN(paOQ828<-6Ph)zXM(Hx>g^o6xM+W_;YG>@aq z;9PxBc9Lu85OSA>44k7UWZ#exeZgB=bj{5i4TA4tl(t^r0usI7^tdWHCK>rJYb{?K zT2->y&TnMsuJ!=jaGF)LLyW2mbKmH%4&cWRdt^a{=vw;a#F%-Y73%Ilps7q`e&dEQ z&D@GRio63x->yJ}t)!0rI*(;c7UDj}K6_MV^z5_PPjvy0g0g6D;C{9A{Ct-l$*1?O zGyTPrv=irVzX^Fp@%)&5JMG1L?YF9GinsWhzlfG{_nLq9F?5em>07XSddtVyv{_P= zJMd9|oorc)q}C>I#Am4@NUjkYnHn@uvsg=Si0$9P>qeh4qUFf)p>s#N?*Cd6@JtVD z=;+{UPNm227J=LV_$lX&9&%wrILBGb(n`9nawFcQK+({r6D!7EN&1offjhT)w$PS^ zUzpP&SIv1fMj|+R^>i8f*nf5;IPEhpOA>CDyl=QAg4({t zdHB#|AD00LZYuf{headTzZJ2Bx{)tj*H$)`B4R7z^2lVJibzJi+Yn_$1aoRj3NU*p zZDb-QOn}0(tB_W~%KG@cpZ@#Aw_@LSw>99w|90r?j_Y+rIFYV{@1 z`jH+w`0<#1Y~F_uXf#%wa?n3ACqe8`!?SnoQUU`9GtO?)?Bn&xLx#sn3&6drjVy83 z%oKQ9b#LC`5re{K(gi9Q)PU6fp}U;+KYJDNRVsy{H!F{AF2rd0y0F~jto8o}DKI^g zEWy!=QK2-oJOA zyKkIp#FwT>y?Qi~Rz8}dv}!iwsBm`|ZE5t9m;YT~R)^CG$9dMP2{aDr#>_IB-1~NW5F^^l!=K?Z>ZLxIIn_m?`hjFk1yu06Cv2}_^%q6KAP z*6(JDSGZuloDGq{NlSIS`EyHGLMM@xG#-43kTvkr`rhm7pEuk-U2jajGcV|suQOfG zwZJv}au8EL7Y$%q!cWVQ*62X(j3A9z`0nsV_1P9-J+-g!`yi3}ey1Z*?Wgr&z1jDv zh)tDstOWU)pfp2KdVnx#{JycC#KP_U{J`j{9Y2l65^L#oY>ig#X-h+%ed?uZR9WxE zt`Z#iZNXXNI^D?eDe~KM1!eUYBOL4M@~3v(uTIg%8R|~H6~a|?Uz1TfmZJX~KB+aC zhwb`SMOYQ9hC{ZeGfkAe;sX!!zr0%!H^)ABo9Hou3=cdICGS}6iLu`?i9!v%!YOw`N5?#1JE)rSC%$JJgAH%?z>XyaYC3TW~g&%jzj7CN73rEy1 zQ}xF%&AfG1`imXC1rDti1+=M>QOtUUbP%cA?ksF)-Ar<4I%yePN(U51g-BYR)R45P>G1WRQJ@SPnr<3DTLz?&;_-Smem9e0DI=4V` z9bclPdwqBUOMT6m6~53aSKu1rY9}7Kdl?sJH(D85#(3VKn$*JUd2ikDd`|OZti0Wu zFRnKPRt_TMyrb&)>yFC#zXg}jYc#{M#3yHTdZK7|FGjAJaq;6UUm4`HR=8S)mmNN&7Hhnp>UU~lTppXzij8CzWj{!0ihDhv+j*! zsp9GaF9b4&WcFrlQMvB?hqt+l9KJ3X;oSM&K|oj`(7XCnYKEH)G!T%gh;Dd&mx~B7 zocC2#&dDh3+CiNJK@HqOO32%sdV3-7B7ho6wn)yA3q)3wv3TTFl+Bdrem&FzYbg8Y zZLhr$Ap(P_E=aBdBOkZi+JW1M6SnXmQSBWYml;)j5dU*@j__@8DxV$$@iBrkW3M*m zL%BQWZCe}YQ7RI-;-tMrE7Hj3>NQs>A>5{`(hB!lzEyt4BVh$u(2p_@UaDi7q>&Sx zbO>Mv5CeTS=q@>#5QC~iZ@^?>cCaDb0-T(5|18p^QSc^ucY}ihKl%d6r!+!|9@7ff zz5}RQGT;xh;YYefCW9amDKa_kE9S9f`=zWut?o+W`frr2ZbKuF<%;)rYXH5bm7mdV zEMZ?{>)WoIs$d~em*6xpCzI``+C(?9pD06%gw)ziF?^600T6zmw3no&?^T`vJqED%b zp$ohu9&jVtseN7a`Yp}>(kF4Ah_IJlA_KKfwa58y$W0OYiDE+{?xQCmtNBdRA#(Jg zLriZP&*1y?ey-cogU8)=;W9&K*@|v~M|k7dB^S97x0{V8wuYm5q4Erb&LGYA`|k)V z;h(~~pMvBn5umW!(EI1PLP|6AnY*VH7s5iF{A&u^2U4%tFk%}&X%2ZC`IWF=MGh!F zRQNUr@IdCuOIHdZ?6TU8Pl_ij&Y=qCzfP&9iI!mAG6DMsj(xP^BKqGQhkIGv4*|%K z%zwcK+kXLzcg-AHOPCW4%O_uPV#$-b3MM6fOJXm?VLid+YCXHJ0&6?$MTb$-f5Uoa zgBa+MZ)TfdKw&sVANrr-d zIldRvDvp$k1LmG;RVsxI&yYVap0RrN=IoQxYIaZiAKiUu_^>$Vt?Bt^V(w4-t zX`j{@lxv9Ti~gHvdU{ChteeSo7^q}ypWYq%_&qTlqyA{H;VI1Q=|s%fp3+HzoATc4 zF8#k6n^i)gepDH34Hqf=yzHLHF9`GS}~}1_m~f0(Bls(@`ommwtQI=x>*m`%iile+Mloqw@LX9v z<=ZAU-3=bWSgUb9Jo|u)VYHNH`8Y-Y8UG3ms;DcB>yXjz|<;UeT{5K9t!K_o9pGXG$tgY9WuL31XPUrj%; zKn$ANh|O1v!^G!TSd3}5S$+E3Q^6U}&|6w<+J=qd3jKi%^*mz{N?T~hMM(;cS{frI zp#gHMr{bmuTJ){SrVitO^ZAzn(T*4)^G4tUj&Y#Ve4DMiURXW2Rbb4X{IuMulBM@~ z^3EHz#;YB6I%;$pU7M8#1`lw1Y77V%r`{t*J@jW>-o6C3(?G-hEf5?}h037LKP^x9 zQuaivgSaPAGbkiIj1D~{faWyGeGow(tuI_u7L9!XtHv^JqYJ)5nQD4N81?ECq(bxe z|BR8wxZhCDq0`QU20S3yKfq{az3GwxdSw6~`nXMQ5AZkG3C7=-Sf(5J(d1Wpd_UF0 z+DQ$aSvMIF%s8Tj7+M8b&@^_R+AlN5H0X2T%fiiz{=@P!LWI%!8b$ktVS~n5;X`zw ze>vfJZC$S1KQ$vr0pfCYoAe;znZGp8i(QBuu&&}knX{E|!*|%ktApD+k`CM6l^hB| zaYnJcy&!xx$Mf2M@aH5UX%{W>-wb($K>yPU3Z2;(?P~9QfIbz}DK#p)@#!JGI32^% z)wkahGu!BhF8KWiR@V>@p3n*HTK?E9-#;5>5QalBoOrRAb^yFrOYL{~pIg=zRdK^o)G(w71y?Z}-n6 z`!N%UZ4G-Z%%N#>^`1|~Eq7tV61f!v#DhGBF77p~-Aonp9Q!xx56-$CNqLv-5|$SO zTppAkG`P{j(qo6{k%4F`3(%!i+YehlJMWxhq+JdVp^B`GtEPr&WX?=*chtKa^7S+? zCa%5PW?3HyV)dI0i>qHn8ipT&i#l!?z6h?QS%#yzaq5oaDy=GfbvY7T`Z=pD!)dEc z6B#}&;A$G|r8`{oX!M;dW57Gkw?-(}ky>&`cXn@!uh7V9Ur;S;kV}}K4R}%VrCK%S$25r78B~yK$>TexMqO6gF5*JgY?Ooj zsGJVrDA!gq<3(#OVfg6wK{S*=IPWYEUZ)AwI3e>4R3e zq*2p*M>jV}E*~d|d*0R%Ue17FMuBI$P{VZowSD{chS1xMV;^InxW|mJaQ(CB8#isl zC_m|7``mk(4W;Gjes$mBV$z#Lz8$7Mk!sE8awNgi?PAMFg}AxzIJ7eff<`T z_w_$>wz|!qc{l?HNu7G!_g>p%<#LLzjl`HX!K+2ZEo&bxmIf|qjV8qQNlAR5bY_3l zZy9ZRFD#7-^ZP}NQ<;#;-`t$ZuV5t~G%Idw`|G+SPo&MzNe_c#|HP8n$HYWbR z7l6iPSsZn6h2=~IItW-T8W6AU<2Em^mNbsZ=;rQz=;2Pyq;#=hCZM^&`a03x-YSDO!B$kZ>R*r5*_z8&*+Ctou*4Vz|v{m8|A+;wWUd`8zSC>4_0s!T+%s@`u-_ zE~)Er&yxzZ3`5mK&_g=eLsoH3p&Vwku~6Zy{ZL|cb_=$WogLYl6zsEe!TMh zc+}a#JE+Sa_LXLA{~f_eTg3uJAiJV>Sz=>-NCICxr9*g0ytu+NBNdtZAyQ4jENH@{ zM19Y2NYkTMpor*z;1Hk3cGYwKOD(BmVPhG^qao+VIq>p1J=Wcue&Hto<_oMWam{a( z1rEZ3M{;GGUj~MF@gckTB>N6bFB^{CAlt>&Z-3_8`DMqrvuAgBVKTT% zdNQ<%7hJ-Vq0PdR;h)7Pcf2%Ojz-y5?8Mt5DgviHDiYV#63I*y$@&fv_A8^${ueS9sas!k_Y zG`VIL)O3|mMv!dI|T#TvwQEU5&F} zQU&qa3ws{>*50S%A&1ve&Df*ftM^u+d}EAy;UOP`y>pl00_Yo7xlhZd!AZdU>!KLh zeNk5pWz+tCNiTOFH(#CCK3R;U%<3AHNRm}+LD=h|=c^l+aG~{rg8Lnhg>HQ_W-Di? z-&M-i9XR_BM5>x_wDgnS&3#9gTe`FW;vBL$F6D!^q8$#QJB+lxOei#eC3 zr5Ed80pFd)`17a1*zVfAbzL4F$_av2zK4u=;@bVt@wP5ZH{s`2F;UccUM#iPW$DzO zf^xAzsOUK9a!W)X1(&O`CePpx0S6<<)oM(AA3I(0^7)qgtv*>ly}L$N?~PokFbTDiMK&uNZV z9-5$9UUN=f$HLzU6ft^B`GzkUp@; z@we_5e*d7#os9fJEU;wz#3_0Q6cfpf4tdCO9PSO5-%_=CVEJ6@ z&L84m)ki_jCm(I8-j%I0jDG-|U>{t(y5L?}QqI!2`0-2G;0r6YK<2V9I``tn4TS@l z6}^{uLci!xI#$rqjg0zBTZ_Y_ZMh*cc9|hzqn3)hGNE!?yLOe6lZlK+ff5@%XF@eH zS=|&urJ)1dQ#TKp^F2gN{78J)^GvM{EB0wLnCzSv^s6n@fz65{>gcu5s|KAw((!IH$x!( zyckO0t)nu;XJ6#&Yo%#>o#$!<3!K4yzyUiZG18npoA%|^C%~g#xba`5p-z~`j{Zv= zrBD!8%)iCQ)#QSOv=y$!}6Sut`Xdy-LT&w&+%gXd6+9>x&ve>2y4T$yAw<-ftdI>bPUq^HTw2~nGhGgN9Tb)zYo-4Z*Oz~yVy25Pn=Rh`4(pT zj2_d%Iex%?(N=Owc(`fIcys6KooA`*ox%M?T`g*Xt-)_G*m%W+oz-F zZqx4D?Fu3M9hux-c&uND&7{pLt%ZYfqGw)ZrcrexLY*(-%s0a+tZDO&epItcVL-VI zh96(D-Vs3zelV$ufMk(;woTSyiDZGDEi5|=#glih)-ODu=M@hn&(v?b>(*F}6H`#R zbX!w^T)i>f9&(k-X<}5^SEonDJ8Yk!WoM3gY@;hA{3wH3zgZI*K3x}4@8tzf)zLJa zp{*HIO>=#amvRejR4ROa09-Gi9fyU0YJ+884@3C5d+uoR z`fED!#d;aCZ7uPA{pyi@RUr<1p4bWC=JDW0=+N(}I6NZks*VF~bFM)Y)Uag=P8fb% zO~gDEb_Nm@m*qhQz9=!A8!JW)owuIv zKy(ETBL=J}N5)CznCS!vN#7D_{Py{;} z?6_Dmc5xncL+E4#DnEYUeQcq1?+OErrKHE--#r6i$30g3U6`9-@LUCFz}4=l#j;+cr!ML%N=g8LEB~81%jMnFh>Spsm-O%L?xCW8F3VX!0 z$*0JlhJCy9A_p@9_VZ!88&v+2PA(#a3&J|ADS7qjF%)^4 zSqYz%q%jF1-IT4aIl4G(zWpnc?woeS2MP^+Vadp?p5^hh`-{MVXujqTWh~@-0$}!Q~yG(wF$n z{*xUK6d)iJ^h@9bdp_&uo<*05M5+Z1>ywim{$RVS^9;k^SM)}slBZ5|sA$Qj_ux)E zC8})Jgqz}alLIr!JbW*DD%Y2}u$wLteY+m)a~ssx$U8s0ZuQwG=p|}anzc8yQpYo9 zt*Xk}=;47H+L~yM|D3Yk?44UG4@&;e$p&^ZaNu_S1sxCMAJLB|3L6DhY#EVyd8Y6R)EQvb!3D=Rrcy3OSRWI$XqRpGW`sRIM-Y9@l!}UofB>f$q}2z@ zA5jd-q=1v_<<_nmQoAqFz{k_%QSmK_8``c^~ z3EqG1Q*Rbp$B5?kf60-rL8wDpt&w-o!O7`^(wgl(zOiV3~Nc#q%_7e_L~pc&VGgIKZkR$hWknRa50hHuNWdu zc2q2sFPjv6Hyk?cnzbkEj`p}nQ_MW^7MO-P{_R(bp*yTMD4%6y2w;3$_MyCWuRs>P z$fuQ>#UQt1P6w2WFJMBvX`(q);HPVO0A*?H8x{#7JbJQy+5E)-)>cdaYnG5VO6VFg z1-Xk$CN{X!7vYlciE@o6Ka?D_T`MF4f_zdl3{e$2X`r|ntcNBT9ytj2ENF+CLD zpvkd{$6MSvbkF+owSPLnrw|9d6kQIFqO`C?9sDt#F2ZF%P?4)&((fH z;L|RA$Jr|J1xsQbaUr)3dL}fF-bHT}Tc1a25T(yGu?ZzoqUaHy6Hs{fp-~_y9d$EN z`i*jT4IL!Tc0@<0)4`ZG5J4(vft<7-gP3rykn6sd@b|80yP2j|>aZz@FlYYVJ8L(; z2OoyivCvj$P1ncA`}N5>_;0UOcvR3J>P?SNy6iK4X(c#FggPPGj$E~GZ3@yvN3Ab& z*3W`#zL#3R4vysMP3o(CTLbTVqgmoZTO<{aeLrGZ#LhukbN%K3XnJ2dj2&H9UI}jy z4r=Mo&~Z$iDp!NmhgmQMRaJ2YRq&9??;z{pcUV{K2Qov>1Gq)%-LWrUUlt%73F$gH z8V{v_E8^Z@@@THQ$Q2(qy}65@JDTJJUTr`8EE{xz=ix+=%-lsDcBWiDs0cJDlT@dC zT4Xy8$uyl7TW_2=74F1Vr~L6T&c{xq)r&K(-V6NwaT-3tDY3W0`U?=J#zzXl}NhLymI zokot?4W&_Xc({)EcsZSR2X$BJj|q(hBd$IYrnHq0YRSZ|1}8+LpC{;xsMhJOxjNWh z3pmx|@leP=#FkPZsw@NEz&L)ymf@Lumh1&jnKLM!Ye;s=ZQxk|V_sbwLVoL*#7S)L zB_&6qOMl~TO)8oEVBd$IyN+(@)xh-@k?n=a9qJ z`dVz80N-XYOU-#PY59-ene?WjOIx`C)A#Q18dHfYk@*4E#HOqaR|As#h1JJ$Bcdn) zw8!-SY61_mU2B8q+a94%cKT2+gJ1U+?c1mrDi{8|8bmt2%8f0ataecX5BqGqR?VFP zSQmSj7?2%ZTOp6Q0{9tdxBAUY34io5=cN9*3#wQ1lK{Z1T&l-H5$qm;yuQh096%*I z%cznsf)zc|$gE&8t}*dFUPU`2=I0HOWCxS&U_mcq;}6Tru?k}hE@qMv%k-MsjK1*^ zAGpG-L<5VPdJ;|~Qj`+Gx~Wc)Z6Zu5zlaS|^4uXxa6MTu8tO%3`!_8)J`GT-zpwV> z|07kH#$uRga=+@gm`qlEEBROE_?N>yfhb?$z1r{{0g8t#w~F?dtw(;46%BHU!2W2y z`2a-OGw5N#pOltw7E3BVxnaF76Y6#C0nOY>>vpJ69eY+^p6L@!0tGfQ6$z(;a)~}` zlTMR_k-7d2p#lMO6xVN+I6t|s#Grd&`F!@AdU7%v?|#PU*}hm+yK_l%a^PMfj9XV{ z`2K4;3RnN)`7bvf1x3gQ3glF2R+inxVV@cs!ZT;J3|akS@8}+#`@16<$^iYlQ=w9{`)MT%4)K2k}=Aq;muKle?Q1e(3Ic=N?BzVXN2MZ`>mmvpGV z)pm-ywo|CBRqiV(R4hHd(>$m}8Mbmw0}Rvxa+CEF9>iw_Sb`l?aubWEh~_6rD1;<_ z*a7ia19K96#dOHuWqSqlBGkfdrUqeE^ z;*PQzFn_YZL33XObg}b$nTX~DrBMnPF+3J%&a5M3Bu8G2^Kkz^n!Y=n>i_-U-XklU zBB^9$?~^SnZ>cM=2N@^(_w4h#zJHv{ zIk=3Mm*;)okNYtSdV?t17+JGz2378&fIe;AS3ZB=pOcl@r+^Vez~E4zi5( z`fsja;0@BRRcIFU#VG3w4}l>)TsCk}105!Y7nzmbezWQw4Fvi%ApuIT0h zkCmCGkQ`KCF)+7c8QYtJZGF%ndcSPk5kgEEg8kwpEbu4=7OcB@sc7<9fqqm3afb;f zHjlZ8&6qWkJgbeCx=7;^m6#Dyml)I>TPB5T5+(5Yi%j~z>i`gwih%eZVZTb{*Bf#-F)G~7kWV>G3k%D2AF68jhKZD z%v^-1m{rV(l?KI(0FT#E1Mf#Ja>9c(a1+R~tA9CmF`_M7%=BdM3LVZwOH~KkbdvJn z8AXezfEWcHG#)-vMsu*^U*y(v8kfGX|0d)pi;K+7Z}T_?J@yyu>eqL_Z0Px5ooM%O zHODIS)J@mi~#AW>2du$sJ&}zS0iV^*IRl~WxTvz*`RYvv7I?19{kKc5@oo~8|kIjMPNYS`7_L7!C=ENWb zDm^Llwgk!skyXkB`xLB`8e#4A{J2&j3{ouqub)F;U=XNIKk&F7)g?vz8;Uu%86dVQ zwUbI^fS2qKOpjFYLoOsSf_R1Fn(oQFG41l1(nk*oTBwIW9A&)4HWIA>4E>~Lb8IYi zfjn9_60S4ZcN_D&CUKtk+mJnDND0^zfjOKg-+p-6kK6uvv*HPa^tR+P-mJmcBB>E@o!3zem&HX;aJ^Uft542kv!2l*Q?dTYv8^Gc$x$APXUyjb2u40L(d$OxtFBLOD*?O|S_1+KLzb1Hn=mJf% zV-E~5j-`R8lX!_nvvw7`T8{y;yfazgbq2D27Lp76rN(qFZs_{7f!~vhe5*8QM;K{? zME?fEmm%)ad0Oy4p?##sLewGjnuhbwvMU=W&XL8@rYFBmw#^jteIx0tNz5}Dp9^r! z66w3A#KakvqBJ{PZ@|N@|5`Bh&P;vxMoG`=AzTm-Z)iIOO6p7l4^a=OF*kJWAqK)_ zi8pQHLGY94EI{s3mDl_V8?RKk&_7}%a3_`2=#j<_J|QuM3HtPq)?ZBfvFVq-t_C2^ zRNr{Vu-y?d_7Gof3s#3bYYr+!lWh2f>MS~(x{u45FsU>->462I5b#15is;yS#FuXw zNrF0S-9Pw0EDkS@N#hyf6q=AQmj0Dzq=%4}I#$M(TdP~aGg!AX;mLJGgO36p z6QW7i&z(ZkH0Otjz3KylK+ONbCJaHNss;%t?x)!4<6STuKY>rU7G}#dyeJuvKWsoc z@@7s3a@dL74J7%6I%aTzfxR;L{B49BB$M#lq5{JP>>#LC0Dn-&F9;!0NPh~cGOwM` zk3L7hre%!eK>W4HVpbwev&V*qDm5~WbGxcSXkltc=jDajH$cd1X>2?43{$~(_v-;$A!9BjlX>IpwBjyN`BAump@ zBtD~bPm&i+_s{+^x9v9tRAdi6w8#>(4=@pGkal?tZ;;jtWo5j_9R6{0?ZfrS{RlB) zO*8qPS$I_?g<+}b8E{$M?t`T)@wS)uWL^B!OAu$XGU5&>B5)Pji@FG}=?`pzK~{33 zD-hzH2Ou^CKf}V<3cvIubU*8;%z}x$N?jrZrk)305da`ZO}#s+;nQ5rYU9ZjTa)k% zjIyHBHrj@BZX38ms3>-^m-6FZU?G9X8v(hXCVFVDNp=bwv^V@1qTL@o6RU|jz{3sp zgMq8XSO#9%xwc)!C@g*LbiugHM>h}pBPz)8%@BW1yH8G|J%SSlA;s$9-%sP>NPcOJ zVJ{nh8fMm0#JgAtEH zJKhSh`P>_E;xmg1wzA+4198u5kc_hgivz+7*=gaPDgJfRt)5Eg>rO;|4>mVwwd}2W zw=&A*4oiR7qf5n*QCF>mhXVE^ca#(47lQmQrrx#m=2*`(u538>#9Bt|=Lgg=rNN@f z=xLM>Z#hykCDYc*eW5bwvX*Y*>XC<^#{P>&)6LWzyF>Va&@qy9F6z0cU~&`>_i5L; zQ3NY@6_Tv_6Zv+{TBGUK^b3S%Ic}m{fe?K$hiRdQ(O%_;YSaxSl%#;od@ftjrfmfD zwIl`I!M#0H*eNq*bMB!&el z$$FNS2e|K^x{iuFk3EAW7e7(Da&GFqsjd=rl#~8? zXEfoHz}@?$Sd};}xsLGH2&vSnPxP?Nn(B#)Pn;T;7aD@RMg5(};zTpm=LamaH?w5= z{{Bd{)=d@N9PP6Hds#3eiw=<|yGoZD??QOjn{1z%S3X%gL(Rh|6% zgf+%%EVU$~3Ozwp8Jh9xYnaW>?z#DgTTtB!y|vgQ@2H>XgpeEpwQ__MaW~hte23_p z^=VI{LMQ|s;T~<6u@GctJioi$r4L;G&TAZw$E zU+X8sdtwzwafSsW3z{LZ3k>9p8)s5ya$>`@Rt+>v#$h&%c>6j6Ywr$!XIcA|8eHj& zv--fz%XK)ux0b-vS_-$HwsClwoBk2&!t#gJOLd27PnPE*4D1o;)c!ReC%`K7d!Oy@ zau1id062I0vS&2bbY+!Jx*RcPcs7Uw@h~%f;fgBWr5UCPPH0;sGcKL%EkgcGJ=BON z-HSgcw{#bb!Do}TvDJ$WcbT;Va>pghV}Kyt2Q3$Kd|$xN7W^tzY`d~0LfCPVL;LPa zdPm!vGu_4C1AEv_{tgE#GzDp=4R9L0_g^w`tPqDzmTKOdOyn-n3BnbzLtS`sf)Vqd z8ktR|BtUoI)w-vJv+r~^rD$hLkH7k*g$e>)l<-?>e*6^sF01akX;6h3O}GI)yk*Oo zCj5xzk_f)DKTzT(ih=z3AoA2u-{ZhKu2?{J+&>e!X7mYZ69Y6BDByLSNSgHUT9q*3 zqu&k+1We&vV_!*HoU#aL-FjHRs2$q;R2Xh4j=I%x_yeE56?C1Yf1%mKofl1#)=h@;zk*45+KS=X*#UictOf&!_~Nwd;^WoXg3o~ z>kv0)S=iSMG*E%IjAZd4P2)U0viPue$7C$MIM*svnQ}p6{jx?2F!}vv+5im7V*Nnw znxbC`Bx%Vc?Tg1!nQQ?pE?B@8w}%en;r_*XuAp&KgjH9)~E3dZ>7t=zL=tMUbv z&8Bx98#)ipWR}b4Is2mJLh+_mCAV!nhUHAiHnXKLAl{2AZ^I|Dt$GCtJ-2sD$=PS~ zE1y4WOkmwSl{0{hcyDN1!8=aJpJXmjyDxsH_V1;=*oOM0%dwSRpoUd?^zKArKx zGrO2+Tu;J}8d^Cy-x*RTIqnkm`&53TZ)J~5k~8<&a1}P>+Q|CKm#fi2W^p`~?9GzJ z%Zf8rooDE`e|Fz}sfNmL3d@lOn{FUVbmAC_2a&H^XuwtQ2&~Jdaq%sXHG^yY(R*<| zyiFHB$v~#{DU?kMBrpsF8#_F6RwpiHjor4Lc;@ei<-=xojxFk?H2z$G$>|nDO(7(m z!G-GAEveBRF%q|^MfMR#2o>O@7$Rp3EHX3rRPjHY2uS}O1o4})Tg|Q&5 zK^hB9BoEW$7Xq#c5w-_6bI!N~6iRN}c4`YMd$>EC)f?!iJb*a7C8r2s_WZZMtlwF` zp`kItZLX=23*g`GMlezfcG|gd^fYx}=R2Y|I2-oy_NwU#y;ouGApm*SKxi_Ve@vs4 zr22TBWzFHdfFcp_)+s6O2mt7@2#qd(-_`RpRm)b1;R` z5mXqrkpoZN{q;{&XOnZ~7Si(`Eo zv6pnHd906MJISU&){Vrrc<@et&$418Q;Em0L{dRL5OD)y9g+djR6xI98jvwlJ|)&o za+UnTSRr0ka!k_EE85qe9LP};wV6!rP6OQI%lad?daDI%Z%#_- zRg^BrKJ?V^latn!ld32s$2|-as`b1(@;aoW_A~wNyS2-(*R|5V-f~s1Ki|VYzx4xI zDF73cBh8)u;pyEy(bZRfH%LXlrk+vbvQIZBd$tndu5@os0_sh51+8Pz1_?Y#?wGDq z^ox1;?5iQ&X80zKr?%_LPKEp}{kk`xo)({VnA(akT+zvd{<_(61{AfCiSGRbvfe}+(yQioL=1Z8d zV$u;b+%KN=+8PF6G8JX4@zp>$-Zdqn(m4ua>3t^iiBQ$d6rNo@$b5y9&BS@6g~ zreeT<%Pq6=#hSigjQBa5UM znC$A73FcA9F1*H^a}~H&eb`(0JEtPMN%ghy=!!j+&ZL0-2oqB)CD}=^6$}o?@&?F0 znY_y%A$1`?w9)Q2U;opbQ#nZ)_t%Z=uo>%mb#y?5v(C6?P~5-9KS`AJhJQ)5 z=TX#Oy#k=iz+qTbFQXw`<+X~EgA%#`=rYv)p7{aOb*BHN>fi*9Se;_%=ncW$696MGJp^vvv`OF5uVXqy~VTIz|o)u2QfLT$`1X`%>#c!#KGDt z7((z>fR-_L^L(kiQ;V8g)&^XiGlI@R2~D+-6H1UAE(;%F&gXP0fl? z`vj_+J{pq2tEvdTE{QEa{99 zK~jSm8OwNfh@>ei(5`^uRL~Sg_p0y3d!Lm2k80mfO>&UM`n_`^ILdY}7{TStGp}Qo z3o9v654p7^*Zlp9!0zQLUp|zHYzofyewqAU`z}CifO)X%ft~SX!nseS3Y$$-DUnx= z>C2hKiD>2dNpf@~Cy-{?q>zVM$m08B@B26zn$zs`JQPc(Xu;UX%|Vsr29PgwCF znPTv}1rc69)>f~A8t5&F^NrIW^u?5Y?&ps1z>4j32c?;SkaY6JO=ndi60jSNIcSfh z4b=Kk9&<81x(^oVbB>%M=ckJ*?WvNCP3)XbC($lE%PV}NT9B{pngB4xwF&5Lh^ zFPnz{2XRo=Igx7fRA1C$qTD}WIGP1)kD zwrK-cs6HAzP<Y&LI*34hy)0{|6l%rsO6p}HCRTu$w92A(ZoJ<#ZRmp zojzMvd@pqGK1WHqN#(XVKReZSX7n&fw=#mG^{a4u^h3#ZBc1Mz8OjBTAK4v`BZ@b# z-%ad;F^=^GD!74mM8&H(T8a~>yX*nlyLVN8cI}4;<8<|o--8%`#ueeuL+nLq)_6GIyQpnb#q8MZIdlIV$itGpuS|cd;sVCqDInY zmIjkDb?54cTPw}Dub{gMJ%|F`&17~jIF+wr?x5T(SUY54hy_EwiH2XVbVWHi4rwB^ zyMV4xT!}$C>af=gR=*CB^0km%RSY3JPH;7T&FNZuQ(eyqJ6%_GU*10fX(zXu>g4V; zarx&toA7Rr=t^Nn{=F>0Z1;hm9OJ3FyWp9d;kw$LLfTqEnS2uAyjDe*jz@m&p)D2?A9!5>&i&9E0d1zo01CoyEz%2b$U5}G5b~>TIduM zYzy(qH2nMK8pG0u8E0DfuS<1tTLTsE;)4YUOE#@{{V~0}4Um9Z!DgY_+z;OvhyWKZ zrh(TWk5i>8r$Gk_i2mRLKe>A#b5~1p+}{h!moC~dPU65vyU>ZU2jp0u8y*9%CSz%szrxReK+tksa5FBCmsoFEb7{$8VE1v zt8H^T^+t;~bF(8yZi`*D8#v>m%~ISr^Zub(L#w!Fi_*179{vLt+^#G+nV#w98`OSifHkr+0}iqYvl4<{MG-a%iWZsYUV?M?drRQ6iyZqsf~FU$mu- zspD!NSN|$C4kA+deR7ADbtTP^_r*AQ;{%o#5PH2k>gpys@C|H3-xiF3`7to|$;(`5?v>Re)w# zRQnVLL|3J;_%RS|$`?2hYlP-kd0SGB{uHLbbL7svrj&W`Lq$g>XI;=8eB#vkVwD%C zFayW1EiQO-7=E^ijqxFW+_vzUhJDABg}I6GJG5#(^m^qrbo|FZd=OgExyW>syP}al zd)MG;z~H%rC22SS%TasAM_^l-TzBK1#=C~Nt}1T@14UcbrF+p0Qxc^4k)3W}N$i3W z7#V`(H81kx01WFP9CBUc!h-IO=hqK%&{0>1^oKq^y_Kc4X|jcJVOq6J-z$gQ5=*1B zwJ-sjH@&=$TQVLuq%R7LtX}Lnukns9d*anKv60_p9S<_;vwa6|+=W@IsSgjj!%(8@ z!=V-L#!^ewqJG!Mjm&=RQb6cE(nEcvey#vqRw64ggTXs3LQ?;eUWUq!k>oDt-)dg+$*Ahb3)RZ zg0prP{v*@4S-iLbR;q1mmC?Bbj+iNkPJj8i&qU5-*J#G16?s#fr485Rii#&;mOZLBBt z&*9}mga;u|PWXwC7k7BooAv`ASNoL-5aLsJ4huZmri|;xlJxl?U?rvPx#Fy6LXY0X z_6o&>9CEW0?bQb5r>jlZvowh1ideqF?2~7PhV+wkM6I{kv@YpE8WckVajPjq=$o=w zt=zPYX8{bl+taw9g;+g^C-J%FF9F-x$vMp_ zZNbiL=zQqW4UY0Cp-xNLd$)sBpU5!FR$|@hY!}jJ`oVg&e9h=@T@KIT{b9|h=Q=6O z)Na60P6)~4E3&;hi9DXsN1E*${c$yK97H{v&O0KXIAeQ!at;gxzifIKdHrq_nzxaj zU@r>YwVBPm^3?!fyaqoOLUTE9PgDnqp z5p_d!hNErz*ml&P!f~jL$C%_-X=9CJrW4mcN6X8(7P&`BC7hx?{t^V6a?h2C<>nt4 zi%3znL zVKBxH(ViZcJDLfd;vVlsRx}S13e@^vv^6k+2&tw#f43pjWs#$nkD{Qs2hC*i;;+`OHa*%OGEZf7 zWS+}vjlK^RX$4dnntIy4A?mp*(3?cfbNCq)oTJ}{RVeGqUe=iZ*O!cuF1_t-G&ykY zgc-v7HKFt4-tmnr<1mHs#VRClYn^ML#Y--%!K5)IoM2X$A+|fGJsiG60#Ri=rCSV; z=n2|`d9IN!-qHEISJX>`6gDSlMNvMvZj1+qA|tsU6H$ghhdjYJuEMWjkXw57m&(oh z&7~_7yA$4rM;~9@{_pzZ$1O@9wQ;jP>xRJ|I!W6Q*=t94`41YeudY8R7-sF#%1;ei zz1p#LE=FM&z4clf>B?P0kiljS?Z(lDyBJ(rX6e_$=!hIR9yH;yHV)~WKZ=)l8J|DX_IVdqqEXk)57p7v476PXje$!3WaZbcwnV64pKj zc(pE4;hCbO3p^Tl((_2O<+@s@FYH^0cZ zKNDOq{ewLGmp({3;}apPi4k>BF;Vr^B1t+qnjN51`%pQ-L9$V=LZboz2C4Iojd@&L z_|Khdj*pzaL*qfhV%Q3>(+jiK4UR3+ES_bMR!$6 z|2RqP$4!VLh(!&=7`X#q<+Wg4tzZUn{O^U4OO;Kv98N|r|MO#gb;?$>LT)kgVA|^VyFfvo-K1vR8FDT&^Ex9Nl z#pU-g52$KY3egaoS=0oFoZ|pfMqyIT2R_=a+VHBXNG>MGa8=xYYiX!DQRc`@>U~n)0TIDxRYdhfU{3s*Q>! zz+3jx+OqDpzNEubeyf(DDIcC|{yg%?@jVg8e@6PDf5~Y+q$Q8}!+qWr z8^K471J0_-8rz;`U2)jBsv^T@RkzPU8*$0lb_?_2?6Jih&M$A^0u`?HGf+5D9R~?U z7V4~-w8qodWIFNzT-WJyzfoqTVxd&%gEy|H>git3^ju&$=1OSKuoJ3}>uB>_wdZS! zL;C!Vn9CY7B}q>z&R!?;awRIvo$8_+7`Xelf2{X9Y%QjYKJp6CdoL-uB*AN5MLnd_ z-xq*jl`|B5r@*ipWC#aEE*g z$hY&Djka&d!?*Oe?IPct&CjMi+LyxpgYMt)VT&#IUu);>y^%=$wa1JJ^16G_Zy-#> zpqUP>j?0?l2~@15E{Vh=cy|9BSL6Ahul!@EsN{TFTnsF6NqO}|j|M03kwDH8z?Qth z{B9W+PEb}}ebnt3a;xi1b-|@XF*A;F$GH(ovWJr=hm%|=OTXuoBD$jpG!T4+nO`>i z?KlE*QL~&r1=0LnaRRgC{-Iw3%l)XAeoWR}aV2d2~NR>9`lW zHfE+S>KaQ=dP=)s==vlt<#gDx6=TohzQBWkMBcUoUUH5OCp@^|+hTcS7E%0Efp<)} zi0^%MAybgbbCol;2^7{gOfo5c$zn6dT~8WfJA9h-{#u2P02g_G+M1$QxBuz*2i^GA zykDdy>Qt`9`v!mUJ?Oa;0`#c)ek;_FQW!zJd7*gyeK|BxF*$X2?{ZuHulu%JP7ff{ zDkf$=13IfIGORs2*cDKcR&kZf{9W3Mm|zf^!mB`vv3O zBhG%^(yi%}-#F9)diZ}DYkuxkz_$4psR!b&9zg2)5be9?GK7g?jn4TEOOc-v^R(I< zPS>ta(Dlg_p4^Frg`K>5Li&Exe`(~ts%~bo!q{S>-P$h{jB@~>1KAAQxpoIl{I%y| z@I(vQ`+zeQwY=)eMvXQ82Qz=K59xsG7d7Xgyh-lH-QVa60`m|7J8}9Eq<1_4a?Zdwk-zKVS z8m?VnPqY(B!=8g!!=Jfp;29&X8?$aJITwdCD68f-CxP!vSgPRy*VZ!_d3jL3{QWvq zdfa=xp&)i%ON~&Ht%xn^Vj&-MjYa6k)2!)nXPgm|FnMnokZZr?Tubowi-2*X{BxC7 z^&O~~Ei|c$HVT~$jW!b|)Oq$j}wj_U4L;Q_N}XF;cz z7&+14XWCo*9Zj9b@7V_Y;fmuZiu)UiiFc-`jOv))oFUIyQ2wE}S$>Au1czOhvuEl5@Cp#_ zRa=_H7)!4R>}!TFkxZ2wVs$57Y6&$=;g(u|F6O^dn1&L_VKCu8j9~cMIS7PmOJX`ws> zoJV}Q@%c8twafB(XP+X&$lGA3Q< zKa)A_JWVrrzo}p{@W(N0ff>u1+nNi~hTS-q=$?7=hB4_Oy!lnxx`AyHINDNT{HH+X z!;omWLY!H^d*7HcilxR~04JN+qt~x%(1pX+`7g*H9_FUEXY^0-wYvMRWhbg(R~~Nv z4phh{J6wNum;Rp%2009Alge6$~?mPSCP_CiPTl-f>jfX+BLZQ7h`pnUlUAbr0 z+ei*#IabLyP=5eTcBs(6CPA8s(T?m%a5>0u?i%->O-ejTH=fkJaZ6imz`N;SVf*2u zcgTOL=cv**fU$O>bP9|HyaY~8IIx7tuj>h~+q;SUCEi6FOMWD{AA4VVa@1z~0t-OS zHS;AmZQ>riJOf-(Jn1A)6&)1(1u7fglt0kVis-TB(`Wqsb3|h%=C%^4P#V&oh}?5n zOY>qCP;b@xp`ye-6r6SWaL*6$2ZWYfv)Nkg*R_U~Fj3MA>*r|UB0a7;WisML#Uj%R z)0Uu7jm^hd$nz4Henh4YW2! zR-p9Mm;=%=wW0aTjUVqlJ!?K~C*b)H5ajFG{jOQ-@TI~Upuz7lyDJ-1(@`>mrWto# zEcn+2Og6dJObz&k&K$ktK40J#-Pm8VjV5)N$5KN;JHqC3i;1rPjfW~ znYFc8x@OGq#GZD$BmmnZjNRH?Kg7H1X4FkP4(LU*QA@sM)A@dt?V|bu(b_i|TnV9U zGYYT@lj2wDh$ptLV$qqRJ=9&Rxc~-iv>a4ydIBiNr0b#c$x{$F4US)sXoL`=NhMxq zO5)2}0H+Ae(Lg{U6OeE*EHaSGLGu8n9n%?~h4S(l>&Oaa2^sp0c?s{=r48ZT9 z#Dt|^xDfHk+^zqcX)Cm{HeAS2l`YCd$PpCd^5uBsP3Edw2zML9v1c_n&XDgP)kkjC zbksgiirs&5dW16>Xos$XZ3x(;vtgmb?cjvFgyq8+1SF7X(@9L4fE5&iDQ<`PUle5TeP7n}+6yB?gPso;-bOA7p8;E%6u?eaX?tX;sYo|n zQx;SAOTr;HYyDDA_S<=;WLZ^>d99;c&(|%1zz*nsrGNl+8MfIXg9UUA;~is2oxz=# zOa#_}QksAAQ?bE^t-Otdp ztj6I#0?R_R}Kk3*DYu>zt|-?i@zy3*BF5Q(%H!Ev6J$6#04p0QaTi9wmi#T z*ETf4W`@+c2qR~cK zWO@s-D7cjrM=GvqvB%&~p*Ie7uWF-}Kch3Q7zgMW#NzW<;Ta~v`DW+4iQ0o1?g2Uz zE}VfOi6iC+=t#!0In7NTN#DZE{;2I_Q5hbMCsGPi=Ieiw)p5)WWJ!|?t`dn$!>q&? zZDDkn0U-q4P6-2Cs|u)$MK^U{3~QIIgaU~ViXe=UlO6$HvGY^ZIt%0SD|rn({j7vi z8f1WP!(INy1{Z(-H?s6_)Pe~^j1F33uB~*jj9*F zc)O_j8Zdt^y$N7_ZHP)Iy$dzC{-iJVp5LEuFWn33ghZQ6bTLwXfr1{78(*sZ7;dz@ z>PY(UKl>+CpKEC!6uKgYJiAX}9qhhWwtS=$&EfJ3)UIrIL~-IpJ|S=wmE9<7HP^I{cD>vi511gi33djR&tu*6m*#|cI! z=+h~@S>r$yU@iW+WqtQG1``2p5`Q(SE*oW5m&R`JA&R3W!Hh9W~ z87M(Xr69sd9H8kkn3cx90aS>rk_HX#P~wCWtu)1;7J$0*!cuF5K_ zC6rSBz#L$%a@gM2`>S>Ro(H;GV8kk$Y_3+V(i5+@G_Lc(Wal=>23>~$MqEayCqvD~mf{vPZ32?GmAZnHSKnv0y@k7+_;iq!PM=(FV% zJa|r0qsX6k5dQC6hB6bqZ#0U~F4HP^=wWFhy!gFE$riLo<4>otE@Tf@dlBA{JWFG0 zzYz6z!Gvx2Cu%kf=rDfDJXtB;L2Og^-cz%{ZD)ScOus+Waj?D?!KX>Vv?){1rT5?9 z<<8UU+4i7ZNDsTmS}+0VUOcur3l#`9W<7gN$Ww)?>CUUjT%AN@nGl-^n{yC9Q3wJ1 z=z-l_-NT1|Uk&cId%CEy6eT@*5H=L_8?O|Rqby_;s{byjyIH5WqSxY}e+QTwJM8n1 zBvZd@KDy-b=~+wZbJIrK*`un9ehS&V(vt-v*TuT_^M!s1bZu~`^z2!svVQ|4}>J5LuM79achG!hEw^-flQxFOoMT>`cGT&8?{pWaIvEFY2}?<9CCf z7SZc~Z)NK*HVp*QUDK}kqbUP#$M4HF5xHzP`5N4 zT3nh}-nd)-GfI&<5Y%;!(vQFOzhAo4J&}nEnzx+%yWOj&tGF}Mof*FIAu~L%^R2`W z$AQj&7&g>#h;jUyj2zD035Xch{&O2;Jh*gCNd2|V{ZfkYFOh3W&w)Qd2`j-GjIW|< z1D>zz+7#|NO>u~dE=@6v|2Ji<;l4k|Gy-VU${pyu2BAryb*Ld4RVah*Snv%XUU<@@ z@z4wUBbeQe3TlpNy|2gk5OCf!$kZY32?3d0JV_f1I}t9<&g^?4^(;r9X{^N2v^DRMQvRhIfpG483o#x9@v32&;v7X|5r#47XYQC zr1VcxZy88YS=*A55a_X=tm$ru2ku-Dh22-#XPqM+cCT~L>Mc=U8R*awU(5o8x-Ya0 zgv^|yX=VuV!JOdu)t`I;E{<7NH2+piyISZXJ(4p4BKZ4KmgyZwlUS}OmAyLPqHmYwQxoML!ctD0F+U}2`TN_=GT zQd?zF^?SC1nKhsI;!;L@;;kF;+Sf&}&nS2K_kga>i~)3{raDymn1(RMhFDEcnj9VjF&Bv&@CG}cpaR`FL+>vM za|(uVZhXoluoP>Rh{2C7f@~et{yr3J@9oA!6A(091)@giQ@m+iFArtOMr2c=)4*~K z*0QC0WC5lkMd%s4X&WHf`IR!TKmNnUUz_E@NFLPHsO>8kAv*oNfEZO8hPa3h`5Ol% zl7Vl4Uyh1qfI_D~Pu!o0MYhvZ+Thr1c1W&VWqY1#2fD+?3!n)bu{h{OsQt(CwYS2O z7XGg+yW4nyZ9}@3?B(Kat!Q~_R>}ORaK4JJV*6{XM2)w?x@fb>%*AddL)fz&3heg! zd1F#wi))9L?;HEx9Ma@6uaNx{L`m=GCer23h@0WRZr%iq^-9Tc^e*K87q z?A!gl95Gq6OwIJh9_H9!GaWTE0Pn)!M` zz(73Xk!(?RvO;%#37`~hGb}Ua_t=$>k^aC78n&iTq{U;{q%mn!H&ExI{Npb$an$1e zpvUCG=v$t`@nrv6LKh2y8Cxu|K%v_ne=lA?uiSAo%tKu7Yf4Z!g{ zbShTzilJ`qMJx;&Zqq5w)0j{;PUbz>dP})lxG9mYK4lbDP@RAYNDGsF(&$9;H_qkE zSy}%fh}A(95I`y`YLoT1$qQ+-#^RV@y8ZD)GGA2+g=veQ8lG7?g~GUr(!)O4$fnN+ zUy;oZ%Ha*Gqtiy{t(^0?i`!hSKDs<`8rRH+3;}7l4cWyK1C(Y-q!=S7$bLJM4}00D zQ*gmgELOBzrCHJEmdE5yC?dFsIcU_X&a|WWVQ#VMx|BK*b$WlBb9>N0?je11mp^tz z9XARgy$R9l&;x=dJP$>TL^0mx$tjoY-V4WEG7e!R4@lwq_3NC-(wa^^X-~}gC7BS| zUM3vp!Yxs>$3&?er7Fvxa&>q(ToUJ>(`c)aMp%qecyla)C4AP(gOAA z7U?`+bS@p$WxOr)i@&?#qq~?K-g>65n(y`_A38-z$xhp??v10)g4^}c47TgS-K`Xf zZii~qjlV6dx*=y`dq#{2uR|$}9siBWq@<>Z5ue zJ^tRm#gRKAUQKfZtnH2p&ST|_Pde4=E<;Y*K4$+#3k+AfYePsEsKaGrp=H@*O9hX` z82y-})7&$N*BmoQOQy}(cSfNnKd%P$nS$}t#wxl&l9#~DfU(qch&f(1`OAoL`w}N( zrFfW{Lekp^o7GZwp~bDgvk6@koHs|#csQ`kR;_IE1Wsf1-%5@(?AfE>TT*K+FnR(jN!t&r z_!S$5KaXRApA1{JYns&-({1x=A__8v=Eo*Ww+#Ot%bT>|kA4q)q4THz`~uUksoU2` z5nud8xVELDYgWhC4+UhhQ2%umM0$v=KlT7~=_MzKlk*tgX?8f6XgC2PPc__R42+$) zR=LLBV$YiX5PJH8l5Ea+s6_n9=$XTN@jBV0o3{?xWiVUL70D3<-!m9JH_nsPo0qO0 z{z`onN{%qzGK}2lfo?u?!*mz_YD!R~=p_`VOLkJ((`N)d4=T=8i1*StZJ4^Nymoll zzWnjw$gOI@h8@}KW8#p)R@P@zTsLYE1^FLD-|gsKI9oVOWjBY4HW%Lgs@2kLmmikJ zND?8q08CD|HU7!#-uE{`CGHN6Ly!hht#&9bT34_ z$GBDpy7=1gAuVp`vV%^)mMhvE^U+%2?UML{W*ZMh{GDc7G7lw$9_eN#EEKngu@P`B z8L@`ZX(2Lusa@1D%SwmBA3kVVwLSq1^dca|z~aKPVzyjL-_1zCP>X(VRmA%JYkwfr zGvoT*TMAN!Wk#mV&kS3`Pz!!e2Uirkj{PLdlI~(C&fW)PL`vY&={v}qj=*Nx`XO|@T zp`DR#rttTS5dv7rvc}{IFM~fT%v}=Obs}XmegnapcgPQox9x6x&ai~6r%8WRrl8q~ zI`igq+hv+RT*$80aCTzj+B3?%&k=0k0K)5$gS;TJ`KcFl%d78@nTni1egfDWE7-6u z?jUV6haUpQ{tGXmr_z(aSFJc6u7RDtx)qaV43~W)n-OYz+!RdaTCG6)(}%CTyGRbD z$C<*_T8^s3Rwy*vc*{Dw@o47u79Ez`5d<~NR?}lpxHAUM7o^@OEnh z>!x+o0;h=nohUe_`9sW+!-dsXYp})y{Q3RzGiJE)#{RGXiUr7a3Mt^j6M$iS^RodL zL=bL34iSj!Q;F&suTVJ(l|$qgGY9vZ1~eoU zNGX^*9Q0?@P9#iT1J1FCg00^Qk3@g2_X1(stY0&Bn4hrLCDn-b7B>zn=}VHF11C*4_B!BHLRL}UaR@N+=)X-! z{qj^WtF52Ki9G+69p(7%GV*;D1XnS?haum|8eYlmvUWAPE-f&_X2$Pj1ks*;Us$>7 z&f{5@Py;8;;b|D%J`3I~>qfz33h6vHV}?$&$4`_Xl|_rwnwxBr$P&fMDQUE$mGtc) z!}Al(t(oBPKwt@>+~H4h-zn(>*C;W;K6nkgO9m|9%JG@2G&mHQAy|d+-u*`9?&g%? zf^G@8tElxB6DQfm7(utMgdfTljs>C=rtqWpYAr7G`we8J?F$IjrNh>fyVBooQ`Ekr z396vTu`cbBLkzV+8J|uCv=SAQovfJs4;xB0iDrRUu6)Wb4@;kk7b5BRu^`I9ea4NO z5R7_0ynfpwvLzbf12N!v#<@N3mltt9_FwB!INrBov07eLpp5pItd3Kbj)xDKb6ed* z1oAenCvAB=%l+Wrn}a5$*MDO z7p2e|giLH8O?x#jt@Xyjq1=!ra{uYAJBd_7ZKyuTtEtpgr-egDNg@ySqK45Z)ruZbGYD zEW<3oXSpD|V7UJAiQ)R(#Q7-yF-hxBKzT%Wn7tp`v78F>2$OBDL`!eo@g>+i5~uf{ z@Q#AeGr=lWm`w{?DG%{qTg#D=f^E_La%PM7*)ESf&}xePxNn{J^Ni;g%6Dtf#MQ|m zf7|6aVp{u8aq4{WYwje;VLio9X%o^HMF|F%sLBHB7S_S^G~SYHMh_rhrh6KxncEYy_lHnEQLylQ04*x;z4W!Z=>tJPVaSeSaqGbAcB#ce1;F8oTcN zsDs8&ttT-j?H4_lTPjQPf4-vbFh>=Ks&T1Y4KtkgS4(U*iZe?|QTHQHNkAWVz_z9cPZ!_^idh!o#(X zXKRp~h1(RiY9Cj3D9l(U%^$L&1z)skYZCV)cM#>HwAVYH$VU}y*J=-*Q8*lKm@yn< zm^!@TesE~3#ArFOh%;)C!x|!61PgzdeZpvcjduea&!E-DGCDGOlCa_Y*lK zgERFOP)-v1*13Z5*Ez)(`VY;)=wT;8W=9V?o+G+YE*V;r93y+5=l62@{t=9}rEqhN z$Ipn~cSo=80JI0qofMi?O5+-9D0V11LfsPXvVY{eVv*s~QjxH12LC6PszUH!PzDQ2 zMHkI+mG9}%H)W76DGYRgT|J|F|1Z=6<2uHzH7TW7KWR0;^ORuZ{ec9Lv#))LwVAu^ zClRXeMHF_(e*1Z%Rm1cvZNV@^U?C_Ac=DKMHVIv{GU0R3)Zt9^!K(?Gq3;jW#UvAx zvRZFy6Q6+d1b0-c#>g=fN9h0Ed>6W(9hb-3-5(1nak+WW3t`tRl~&Gw393bkRxR2uNG6tJ8?Y8 z^BbO!I@WzWAU0{@4k0)`*p*y+^!#4J^m*PYiG5nP43ywrq?xQ!@$K3Ao$w|2&S#%% zc(;Yv?=ZEQ)bqR$IozNAh?VV@`i>h8v_+5N=%c~xQsKhz-CUzlH;-1^xS?3h-1rFJ z8x3J49!=@m`(+6#Qi!c#&m=&1tpt2&zjjiKsW8%`$VG>x5r^``3E&|8Z1)Um%t8y; zS;fi-RWxNpz(HS&1HTWa*h%zaz$!@=$mK4|34^g~+eOb+jY_A2;bNl?|wO6SH= zx8XbE?iijuQz5cv>%tzKB_carf!8ZShPQxWHn!KkaWJUzD7!YETEk=AK|w65Oo*Su zR>3mS(*QTVH|!`e6Mrw&9e*!#;f=ZJx_7XC_ldBriq`ZM~~WjueC-Mc$R^tljNzb2O!j>7ieW;yJ~o-!veA{0bLO} zb#_#`R(%vq$-rUElfN7<`lYuspvq5bNNRno?b|| zDpqGU)(lc~S15!B6TCxbp>yI;W8k1+UZWFMGv?g1$^3&5vXf9t;4$@nDw1O~h}D;8 z`{n~p_2)exvub=6+@jb)*v==BaF;l|LJDn1FMGDIP4I9DPl>hP7UvAXVCUWV$IP6R zzOb3fc%`r7SmOtSrCsyKgt;xHX9|3r&TiFrh731+{uY`HE4tqkGHkR{ksswEmodB% zBfR<9nL6hDq@a7)-#oi}si>>Bdwwo4!8ZIAOgde}b?$1Aj(gQWoLRZq-NRM=NsmpS zHK%Wg{75qOM272`rZjl@g@ZVr-R~G(N(W|S_OOOCf&z6DW{@v^c=rE!8Qi@DMb^^| z(oAu|A`av;hp{6OpZ6TPYEVpktTT91667UW32)r>EjnYai+9ywT@q=o z3)Ht! zlH2Tjwd~2@$j5?CXwL20DhvV`hFK_q>Tt}0r^(YO`*_mYH~!O7R7R}{%3fpzQwpUo zHluR9an#-Pewg=;m)J{Xf7>Ze3Rj(pDh}TtR5^Sev~a`D=KKR~?h2Hfm4g$1_TqD{ zr0Q1}90?VkU!A+PP%D%eIvzy)qe;Pu5e5_*oBd<^bq+I0j6(t$Z0D{_d zqLzQf-D~JeJ6!$Ls&&3)z(=?L&JGu{gmMoGff|(+B8Ta!08ktEO(tH3OHSjZEU2DP zAFlL-kh?+!PT+dOm$rxfonFj9q$A$a^ijS~WmQiK8TaJHV|>yigkDO2>144~2uQ*C z9G*9@$rY49k6<#nm4)0%`Q~V!DH~knhPV)}#-~URR-{bdGTRm@#Wf`YTrh$R<*Lym zLJA_u&D@VcmEBDMLfh35DIOQolx)Qa<&9oRKN~X-|7AA3Q{f)Cy;CsFUMzczDFdz6 zf66(Favc9wr!X8m^Dq6Mmx^KLta^c_b&eOIK8`Y`XOrz4!J3kf&{=kKQu-VLS3;Pb z-)QqBqlmg*s}wnUKf>Gd*r;lj{V!F)`aq*9r&4RfF2GF-cb0cT_l1L3xSnNJ1JUdD zv8>)jr7+kKHVV~}Kf0LPAWOGc9mrxYXw(d}zJhZ16XeFCFyWVb=2w7wsJx07tEcuh zX32}~J%}(9ZvHPT0)&!48=L8_Fr%{Uq$X?6-q=y<+j~={)c58PJ7AFn z!19Ru<{__7omE+*#X5qq_Ldw@kys9&3Mrs8>qG}$k_r3S2i;p{B&A^bHH}Mw_!FHy zU7ly`p49Imqit{z>aL%@UBT8f(#IeS7nQE+^>$Hr8)(OaUa6*#V_7+WbZ2`Df}6rq z0~XH1NRgsjWKg39tx~GgQ%C1Iq+m~afDV_rqCyhDu-oiH1)KA^5S(I}W^SiSrq31U zIx{5S7JH54q7zLP$K|m(I9)PYVztUa1iWrG$7%{2A=Nx&&#`Q@J?a2}}Z+y5NY>CB!a$*sSm&tuhBm(1}EIj@e}<@?`PrnAtjuQ$z8;THNh8U+6o+K z&)(8jNc|uSfV75>+q`JFeyigA%=;hQu<`)?yor6Y(dpNxn>q*lP+DZ4e5Egr#x7SX zuTGEy^qtrUGeN$M%WY#YkH+dt+Kjq+7q5ya~Jh%l}^9-4bCeXHZ~ux9IWs$oF^0o0M6}H``u^!yBbOmz!OG{=r^~GwOInV<5xi zY`D>nll9l4XH5NHvQv)KQL5o@pp^E=plY7vkgrwtrxwX}k=K%;*gbs%X@64mAN>#z zpB2l!mlZkW1eOp>f1YSPg2qwr&zvPJ9!m(2nOomhw##J=j5UjrSS2v==Zp;oww1@D zfT{5?_=8;o*umNOsQr8olUTlpJw{ltDhJt5N8gkw%(16O+*U=pIM5>>-lLkXimrCw zVFb@B5^a$$Nqre*LpV{3AI+`Gk43Iul(9c&Ef1)PE%J9)cbR;Rj*DdY1;4NXYO48M zQ#xsD-5g!hb=MxvgA0I312Md8x+(qp(ULZpLxvltFLc*NlqF1M87xoOAubVF!A=r@ zbgcii#3{JS&<#%&C$HqH(@;D|;IEMxV9-6PpL^DIVinjrAm37VrsPL{ikOj_^4+@@ z(@rAaN_6w!&m0i*DzT_xiK8Qs8E}pFAAAi!J%g9AL+@$;=oDCMJ%s`XN|t|Kj+ghD zR~jaH$P90n0JLFV^Q#?$o#9K0{;zYcwA3AU4}8V+>JOcE!{<-meQh|CKeYp|ca-VV zqVE=0HwvkcLcYt(gXp{oZ6TB8%geqrzJr}Qs{3Sm$MuuXa}^I)9d7$`SFz&djng%6 zh@yIW;m2-X*?FM53?X(|fi7~qLh9Q!Y(r!V(w4w`Y1+GjPw?^Ng z%069WhA`k$q;n$=@F@oW{=jO!n%8S|sHgDHaA56hpJ%$lmabgEggoKSud^Z#q7RLMbyyAlkRbRC-0_&tLo55n))HAv zR+x*{o9VZ#j=3jm+TD5l`1|)_QIU~tI&@r-U^W!*^Vp32zUBp`?0$@aqfvB>5OR!? zvd|A9Cr_Ris4lHgav~Xpshds^oKraDEGoQRb<{c@#;^w2ZYO`aFPLZ9|NNlx)H>b^ z_!qiEJEZLE7$X?^%U9;4BK%ho*!i@9sb%%4U z2!5xSrM34fu>^og_4xJ2>?h_2H+=HO1@g?CP4Mu^!UidNdY&=C`!4q*z*45RQG1lh zUKlF?Z+*6S!!~J0W&~q5z45pViXFyq!ei!)E+IelFC#FYy974sXLHsV0S8p>IU%xx zepwX_7DZ^0mA)40uxB>7a^iHhr1Lplg0vmD1^tZ8oFS{~@^E7Q?+F^lBl}7mDE;h+ ztg(wX)OAVouw$qsfv*Hu#ZpRMJerkz{ih;m;PeT*M4XfP_KDO}kUO@)z=tqx^xmho zDb?+lb-zxW3x#~a@Ovib^F+5(wIqBM&Ch9c#}t;SE*Y&3h4RYp9^b2)1DNO}O{C7M zzBcaKzt=2}N0<6O0KAzGaU8sMf~B4!1Mkq|7~z_6jcuSkQTs>4ezwT5 zr!Qhp`mx`kWhd1b%}%n@MOMesF0Pd7_(oB1oZ34|_i{VE8v=doY4NxUT=&u=cb%mZ6ezNP9kgpxH2HU*ah?48++OtOY2aCJ_Tkb zlPKD=tfHc5${~y4ZS6Vwpz=Exu;Nj_k24S8dEc&8I@QdtLvL0)H0Hb$h#F}S%LOg& zkXD6AW6Ev@UJEaMxM-h0rPyk`nMtF`Pac68#POkGv+%Y?==20Sw1>^{+#;o*s~*0q z?5d7^=&catIc(wV8eS>LuMKdoPy_V@MIa#-6qoS_lbwH?nc3GV z(JY=6KIJ7(MA@6GNPWPH5hTP4*2Es6TP^tCKl;`2L1}FFox7vAKDKk1xF;$dGJE7u z;?|1i`jS9@#MTC$Zi5U{j%{6$X$hM(Z&~}HupT*Q-E@^CQYB_Kwpf-KUh6Az`C?$_ zr>V><=j+aA_<#a!a@I%bN761a&i&VYS17XiM5}5;vWP2@QvDibR?nPirw$h=^Q%}@M-d&LUB-fVU zn~e5&Nh;a^gwz4e>oZFGJSHyYje)2U;FBoP=SjmXombVY=?LC?-=~agyii}eqNR&g zbc;7|U`+f|wSV_H*$|}<0eD6F&U=1)b99)Q$Z_#!R^4^A$@(=>&XH1Y1}w4)b?4ktXb%;dMI#4PN!_d@ zwDgzPKS%(&n)@A6O6oWF9xOOA@0ogj#GC~`b-{l$G%~s8yUhjv*cmu!50r*5q=EY%Q()oT ze^xgSOrfx}QC21ju9CSR<3N@>dwdU0Toy2M0_*k^g0&#m9?E8=RnpzYBCaB`Wmv}v z9w)&AIyTtLM=-KDr^zc5^We`YoEPgA0QG6%M35?dP46DiAG{o?mv3q{EU z{Fr3@&YN^0b;z(l(2V$9VU~)GFJ7QCR~9b>?X^sfa>=49Rh$9o32d;O z4XwPp7E!jA3*0{hEv!T;l56-Y`DRwi*uAvld&t0O(*+lEL%myD=~(B2rIl`p;ZgsR zbbB0Ibm(iE)5zOYXkTIGVlN~3Xi|9a>pYJC6YmGLyM)L?uA2lJnqk;?9on~xq+2*M z-_N&U`cyjW;*~yuy@Z2w^mbVcysP40T2C*8oHps`A76W)=bvuHW6NSTP`#?B z^Fmp&f7_dN0k)MhnwnFhki47`JWZ{5UULSxfT!%DNo;DL);T@ zM%!2Y8>61?+%@~PMrz$SQhnIQ{4QrnZVVcU`dL(q+IA{7YD=^w>Xd0`>pgg~!L8x? zrDxKjoTmc+I$e0=zjZ$zx=!tX8i|~KK@nQK?a=gjj$dSRESdKFgN;UR0sRv|M?Ro18gsocH% z1d|S0ZU`>tOL^h!WD`-iS);|HzD;nf12_vrwVn&wG~&Sn&)=>C#2pwXSClI|`&<~q zhBK$>Nt)tp-#NouP1X9Pf) zNq;c=qO^sV@nK^Y0{k?aW8cBboKz;{v~TUbAl@oMFHJ-ze2v%0E>& zNjoLR*)>9nLpRU6jjovKpR&_^M$x&(4&S^X9Hp&BU2L{Ad76HKf6O3>e^4WHvMku? zfJzW*#KM&e`J6U^E3#;Fa}c)dehY{g>TLJ2u)OIMk_DbU|&_b##l;W}# zyax3~*Ys_VRxL?l@zc$m&Uqnam`BEN#GJA9LWlagM|$>1;E$VQ>5(C`zZfOqqp-n= z{^gtF?uVs5G*2YWkAH`D`h=N&abfx^Uhj=M(&l!v*{2{-Arov(LkFu#F;=Eb{<|lu zg?*P>r3a_6Uf$8lZ-|jKHaK~b?237BjPSUMpS+sS@s|xs@k{!T%mjqDbK0k&;^zj; zlOA+wJu>+y&#<62yJZGd`BNY~xLm!5(ktKA6yFzPd3}*6zP0z-y0|vn?A#z)gyFs` zD=?5dwmI*5RJd@BmYY>tS5_ls0t zXa_s=4;Gn=;EbP-=N7sI7Ozc6uG;S-3NnXJboXd|^WdHEAxK?P=L~t=`Lvn(C61M@ zzbE=$>h2S52uT(36XsU(?YZ&tPI5`XxINk-Wi}ZXqP6sff_8VMS=*l=ORDTg{*McQ zB1YCx9nT3MXn_&fY|V&qjBxhGF8?sinPdGcS)KC)pCV1(_K~1$(FI%fZkA1NE2$P)ds@BqF}TIO$kLM;EsXX#92D1PZ~nsCsKP+M0}5jUX&iE}{%DhG z{uJhJbxoxt)Gxg{KJ7z=oJxX^{)k(~?VPcJ#qcm9DP{igC9x}QqSCJq%kA)tAPD{0 z`$Xku&nHOJK__?Us{@_+J5Pq!60iKqyzALiEL51vJG<+N%M)opl&ac8OjpM3{2}gJ zZLQk&;+jVNMYC&>jz(eM-(C-VrgXgqXqXK)U`6D|T`mE@m z2f8~YK`^4KF{sMr59HxlQPR^>HB5i!QQX0EAzQKWs>dF!$q;Q1+n)K&@40q2NjTGD|@frdC+TW zoK|0aP$3I#);qC#v{D$}7b|i0xt9uVN&`&A$Mkx&aJS;{Qg7x9&(1b|LxlMiktvS> zKt4~Z(_!0VqF+&X@-BW@3?SD{ykf9mX`JpacBMgIG!oWe zdjLJtUrvS07WY`3sFYtdoSkg}#hCR#}^T)`@seQb#6}5@l2t2ik zJ#{um7O=MLFj#wU*uVzxYDAec1-T-Yf--r2)qX z1YGH<)49Oi=$kvl9Cg6HY0j;iv0fCDv9^NC@^zL4-rvC-OcJJq)niZg%AgG00q1%T z60&xiXHli`&s|xre}S$J`CVWPO?4i>Vq#c0{Jm5_W3)2YNvpZAP+PV%m3`z7Mj*Os z9JlG0z$tC)M$UxU@Y1;JI)}VP39dnvn`V0-ygRR>KJA21N!@){=T6-2(<7%2Wa*ex zN~&j%Uh6S_m1Wbnv=UV}*ndKBstl+bG2iW6bcV1JUVS%DdahCtGFBo=_L7rQbvn_C zuAh`V4OU-#6*Yabx7sNq)cIQIadkcY&bifG)h7jN-Fn?!v+1n!>jxrt&@|P%8kUAS zTW4C*s%Ca~jYaCtjweb*&CNdgkdvh<3u31phQqwKd3<~_S||0>9e65_Q6^BKS>Xa- zysk}tg5AR4GD`uQIvr+<^jh_2xW&?>X>eC=r@!9qt5dng-;9JX(^yc;3`X!Djil+9 zF0dgBJ9rAh9jc5KUb|VD5|fmL+BDHxn;J7fb+54aO}PlW}ALgx{FP zok3`}uf5+6%o13Mn{E4SA>U)MlQ#{2Mq3NB8?K1pRHDw1D{6R(bXk}#v9*0EB3}ct zdM03YgLr9zb7XcSBYfy^3ASkK+jnbcVXiemSJzlR1cQ;jCC+r`^3pTL42@Z)@wpQ% z%T@fg4?oz0&I)YE;|$Ao7}z&J&++QE3VbSc?CY)O09_3Ncme)+iJ7H{f5%v2oZ+v4 z+bqj{JPS9`C@5E$aemUFs|`#lX=g?`+_1vit{i<>EOE!C?&+G5>3!NC*Z8)+F&ZwVF11{mC9r z0y}bauEO1;SnaIf2~S8kSCQ8wx{?|9|&+;5Zo>L*eGU8}RVDzg2%Qm*!!=LEHA z{@lzs8E*i&9U(5gFBWUmEfv{M>n@$ z#D15lab8wBx_ zi6#eBWky*DS?YG2@Lw7yMs^&QHmy&YuPG!JrCRQ!HX=Udcjwpg+gytNha1&j|W z=7n%!sn9%LXnW}A*&(S>(`SBmoZBrrLhQK;hy)yDIF!eU3(h*###iQZCO(8^awHzk z7CZ&Ee`Z)9c?8hqEj?rcxoeRfurCA?>31-!{1n0^Tz{k>+#QlYqHZ^N5gmC!3R7<~ zr7*LUg)R@RRO7hznW{L>d-_*A>_6vvc%)#gpXspe?L(;P;xpyH==g)KRYo9VV=$alsX1DO`5lF@&PFL(9xO{?h zp^)qT+kSYSxdg9g8eeyDOdm)bO8);mD4o`rb3&_=FZ|30F(N8?frJmT+!>{pzn>xy zT9#VPWxYT*6Mc5C2GL3w9)B(y%ZlR-Wun^1@!Vb!+zDd_nB6kDAH#>}vCvvE%yeX8 zh?ylnjq4tSvhkXB1F?RuZQVyfSX2*#_Y(&e$K)OjE?O8&dPoFr3;8JGr13Y73O#Ks zH>J-SPCz$BPATx+!%@}`@A1SjLwa_!YYwaZ`tSj^6t}hwQ{P)E0fHy;A>7VTpg=i= zg;SA5AP8@XXf~XTE}&#is(t=HrcT3oq!3OA#9wx1r|!4p^V6yyS5~3bcv_|IC!4EU zb0#OnxFp|&s26c~+I^lnAN4DIOvCRjWhKhG(h=}#Oab{y8uoWx=3e)W)1n8DZ}Nde zgocS0Fh5=f3xWL)N-21~2c>H*{ihm63&N=x77skE#ErVAJk8y`c@7PO+)|=a_?bF- zuNGN_kX|#htC%D;tybkQtYBxOq|uSPYB;-)5Ct}zs#uN%zrFNk1nab$$q@8*9_oIk2a_d4Kv47ff=(%*krx`E)ddTe?>$9{xv<(eq<-rP%| z$g_pHIsiw(vM6*%1Q6ep1-J*kr7ng>lL3Fdgw<~i>hfm%DMe!bJyZso6X~AHQ=hB^ z1gNtrFOgPvjSlS(@s4>dj4T?uho9moFisjZKhgQYd2qfUp6Oug#yG_3J!;%MJeNocT@Ki*;gO<&#Mw_*Qgg{U|#i2iAp z`jw*eLCX2AvZWULeqNH#GuIOKVk%bf-@|vsc^|RS+f()jzthvdIPCE-PQ&YWWT<+i z`KRVX*Z1mQour6t`w=1jGo;C?o9yD`89BbU{_+eV*sKJcT!ewb;aWZ+E(DznYWA&3N}` zFdQZ@-AyB9R^1qWLR*g7|FN#M8$JzTNKGCzN;bGL+{LNokIeUD=SaV;K#4UH4fVDK zMroz**pq6V-sq48t5)yAJNxHeDzL>>GJ~`&1vg6XCjY(=zI^VkBm!`m_^>bVi7C!A zoc9nO-P*Xq4;rS}%=d-j=iJfg91BLi;7;kqFMb-#$a2A?%X!^$(fmTPB}mU~~1Ek8Umwp`NVwcPjOFHib_HTn7u&Hro?vMVllvEEAx zT$eZM8fHD1T=CT-hp$9PTN}1-?2ig8ON|C2)b##U6DT7T8a=slImbOd`#)_5vTl*> z?2%mwu^;7Q(sc%M+`1&5xQUOh+kWwb8H{b5F&Gm_{@s?J=Z8&4$^THr@@!+@`xlpM zaI2O&8lEz|SdpV1Ea|NW?#oY~pKXvV3f9C;iCY4b3vx6dEZ^IlznsQ}eC@Y)If7vz z0^|AJ{sglQfzAu57ERN(?hTHOPm;%5I&=pS>NV)`GSMS5SkNq=oT@tRF0CohqmbF5k zZuOo#w4d;KgX7t`*30s9uMk2el6-SxDe6D6(9`5EstizJR=;Ip#@^00{cB1U%Nx`g z*cg_5S6W+rx)`+W5OVBw`OT9%mtUV$nWY%0cks82RWxIdNW?a1NqDfaJ7@*wDVjUR zN4>`-=6pdANW;kDh<(#>^D6f{JHJm?m)(M2R-*cuUNdocd&l%TGFfgeYfyNwnZNURiyr*alm0`I1ZsLHE@ zSsedTZyB!I54hSC+P75c7vPgwW>NJ@xQ)jW>d%-la4VLUfvnE=jPnc58N|S!`z`Mn z6px-(X;18VIaTfec$o1A5)wltWxf-mjwZcnQ`@1$knjzP2NrN$xxyqBwi;(hR}0xd z4?tjnfj9)05(LhH=t4pI5_KN5gz)3?ooL*y7-s<3;CWZykqlAn&LIBuHub5AR6x)$ zss8L8RoRNJrhI)jcTD}a=fa0DL9^1=lhaML>S~=m53iwyq{GefCYQY51XK#}`KA5V zoX`-F<}bcEXUxHsVftC>*DD?9#PhOH9;!g8C-ihp$$y?J^)D2;{sD*Do}_3ym@-v5 zPQMk+C%(UI*W2V|+QURwkp=?v^CtkjgUz2-m|+FBTrFNHn>umD5iQK=3^Dz(^O1z) zc=GncvCTvwOFN9afnH8TGf`f9JUJZsOtLD+$dnN2q4fRC+^v(lhF%^}`LE58CoILC zPQ30f^TQKR&IZe%HAdeOD$eEiB~}Up&b0G4kFH63$ZDvY&x1Jkua1EkX_B$MCTDe&JjJ&)C`whRRJE*`xyUY`){duUq7#d5Zau!w-j}m=KKgS0pIJ+#mfIgWDNo@mU>N zEW!?;*4^ZJd^o<`v*CyLkR1ox!;Q`9OB)JTad_yN9mssW;FalQx78z#;W&k|Pc_JI zAR$~e=1rwS#}jNAGu--ai9+srsub6sh%Sh9(;^Suw~ki|RWjdIDDTB~b{K|Z}O^CW$5k?MgBE2wQDMU700uiWo zGPqarZhqJKuj)!QuH27tRK_e0Mv0z+bBDHWbuUMn(!XE9W^z`epS}6zD{UxmPBR$$w_QaN|@1bW*J$t^X&^iLgl(wjAv@s`KJ+ zhgCso{&H(kLgWOn6N-$(L+HqtfNLu?`3Dym3W+S&&D>jEdiTE7*IG#M4Kc;O*MLTt z+VVQ#9{$~vKjx-6?`zIyggIXeP#EM&RluB2WslYM1~-Lxs@r_l?2tn{)NttsTABk@ zoqz9Y+sZM?s`{Nd`dLCzks+tVkQ&F%Ug05O_(%uDs+WanigyOLR&>GO0Kyr3Vg!=_ zFuJT%R68Y&vpNvZeKlJ^;|S9=2mz3##Ky2hQg`%#250|W+Qd~MGPJjO)Xj@xMi?9p z{<#_;ys%VD(pv54e<*)_%uUEr0d9-1Ihy9ocNAY}?c3GSjqRMZsdpY}4TN@U2JY(C zqyQDKkucy@!kPikjM1}y^{jC8E z5Nbb67w^)(CA%}&WBah#r_o3vq(wIzhaih_0rN{IbX^~&`|R@#$shkvI=w|^Ugb@! zMx@yEW^!)LBYzv2xpGkm7l9qx2=W;y5sd|fP^N#8>lJ+lizALHiPoQW;~Ohs{4s0&wMz($CJ4d=AVx0 z&JuszRoK_x2&Lppa{l|^JCq3TiL7b3sk!~_Zh4DuI3b6D?K%__DCsrHynjyluE7&6 znEc7Nt+K^DC(!}ixuLJ=Zzf_MnaB|;BIH4w8C}n{O1m%Y(z}SA0(?4~;{p?It{3co z>Qj}3hLF9I*4`b>lNjHQVIu-He{IJ=X=z;6Mh|10Hz63bAhXwzyx8sxJ~)+>DyO(f zvSoahUdc8_AYo%lc7a7s-mFoOIh#T7{%v_RP=>JduSA)}k7&Z~?;?vY)hcYquU*l? zN$#`N+98{A&Rq3G+ci~=M7#N*N1~CoRsm0X?1%{!X~xJFeE(pNi{eGJBe`(n! zS>7Rean`j8JR=db*$bL1J#pKY&uxY?q6>*}F*f%ro0NM`s|w7-ZQST)Sj)L8$(V%jJWI<&;Ny zM#S_2MX6(%pQM%ZTHS+%!z3q?#Q|^4{gy3RG!#nBd8~3hR~o2VtsgRX~g8~&BL)+Y0SgBBIO zctD^A{{fdJexBnQ`Z<$brdb;qkzc1P_KLpLEwL1U5Z|2Fm}Xrzs#K}hmv^#G-uhUK-|2JpNF~+ck_18^|NRCGH*_iqYIP zbEGI+VWxLO2L6{O#k8WaOEagsuktLea>40i^r&Boqdts$-vj6RN4gs3ae+-Q*n%s) zCn>SBgfI>wh5Y$q1l8zvl$8Sss1KW5_Q{&37oP)sW00#p-SQ_&J+L76-Ome3;gieeF*uC+ zFb)5%U1TiWmnOLxDv)d;V`V%nyu;8eI)<;GM!4F8xuYpd!iKqTW zkWCq2zRWt$1Ef!J3?8^Lv~faSGg#5LlDNQPZut6VxA6cmv{`#(9BGB0yPamV0t>K> zRtCsfjw3oEW&)@QApM}*>OTj_jAmV(HokS#n|jEhLD^7KdfLWik?1ENMMJh^4Pk`EpTUw8=T?+8Gc?LXmhR0)CoyHoVdptPfT z$Gw4@0ZDwp+xPc`g`hZ67_gCd=J~T~EJMasM|iY0Wqe)&6%Z8)V6H^-lp$k$8@O zZobyD=`}!G0&>!W`1iBHeDL9>mn;}=*@3`>CEQwrP~x*HJYom{Ler7 z?v;Ia_B|e~Io!A_@N!jm{-x<^x3@hOWzlf+7tx_lO9sq51AKITq;-*4!PE^vqLt<3 zHx4(Up!Gi#zF@DFe*(FieeSIyR$^dLj`hU$qHdUYUzh8BqY`;_>3ZPjn0StatK7)7 zL1A^2P3rF@|6gx!>QtGibPqa@L}9fKt%2>Q|A}X0% zBO2}1K(~n6mC3}(@AkC~jVfvB7!$%eLJK7{-2DMH%ZLWU58wj zHr6dD>i%?SBEi2YlJJ@Yqjs*Ic!e)3ph zK#Ftn%H9^0Z`g#)DY!+XAmz9nBeafYTCB?0S zA5;8#L5nQRRR(+^u3~SgD4r=`i$8o5uMcdlhHu`gRbh9||5E;Y3HAoq34|83vSL(* zH?k|sTY*vg9G`l_vIWUMo} z)6uj{GoU5AX}>*BjaeFpF(WE{y_99FNDtL1yb>elnL#o9fi(NR4}_*Oyd}W0&k8iB zF_rObYmQfwRcs3LieOB(;rjE(kyIekUu{9Cj|qgY7_;(T{|lj zox;Dhjl&cC0h*=eH8(zja}YZml2ldbRcHFFsCo}P$OGWaY}S1XuPK0l~@@ zVEMNWpR~VbO6&2{m83-%P^2c+=pfI5cdN05>8)6x^koRr9?ZyoaMM5 zQ&FIhdd(V%E+llxgcU<0>5HeZlxX1e)8!+0a6_C}!gJS)2H#ja5Tys0RC z2Al2Hz;6zF=4ULh480I-?Ys$fGOW7=Y#!!wTYeOgoOw3Ry#R49-Bq|*pBe5f2pm~n zT2UL_bQfW(9VrS)iWCQVT&ii(pZ~`Ni1z5&tA0KJ!#**5!6XfSJhvh)6X<1eZ7*dCD4EZ+uIdGhOjSX~m`b-Y17_IYo@IVT2WN)! zMF5|5hZ^*=H8=3OP~eHxw_Yp|!YlB>GF3xO+Sy6JCBopc1f^D^<9{&xa0pqI#7hYD zD_DcUoKJu$8to6t2aug5kkn@MffL;Z_lN2V39_1UUY>4KA0w*iYL<~*NlDIbbZD&F z-DRr>sE;TA4G}im6w3nqh}BmhG$Q+s`KV|DlNR?gaI`so(f zbl)PO@{~T`Tu(m)%2n1du2@xbc`jm|@w0b%AulQ_f~EySuM5RoY?Lr?`7IwXe-n&A zCB8aCH+n&#+WEBn#mdx_ETo5N55T)50Pnqg*%hJT@K&j(-+Vah$oYQb;oWRuh4zS! z?Z18c(h6m__2l=#hLbB^Ao~U%Bu5{KtggCguvEwEj;W^&Zr=v8>8tnne>8o2Jd^+X z|C~?BDTkb;=;V;|*_=BeZ%N7=QX!ec#+*%vLUdG)iyU$;hqcWq=MvkT<}{4hkd3y` zgx~%7Js#gb@=w^kd$-qhUC--z;Ed__{Rx-1f;t@iJ6DM6)O%jpXjWqi_Sj%1xXItRz%tg^@Rqg-1J{P~%BU&o(`0}C zW=i~95KA1gjZvqJg8|Bbb|ET(XwSlWX&D(7{kddIO-IN9mbQ)0q3Dq(tJwF$FH2_u zrTL$$qGU3d1dvtMKFZRtSx{9hH>_V~$J-sO)fS~R{Np|!`yYs1BihzKm+E9|Ns1R4 zRbhKL+a`(-%w2$B(U9gDs#gwO5!hhim_O@6ALDxU^8hQklG~<4o{}I@^`iOaO+fD* zcOS?>!RcD+aU9`FnN76gtTttDj6xNc-9ZM6j!qVA(ySb+^S)mAv z*pQUHSSqir~H(~FPYW4;%~b8B@z<=0CNlpOeDl> zq=p2n!TwDI;vB?)p#M4hmMVEUmT9?I=(l9|z+rQuz#3evc?N0zdpj%2U(VuXBDDa4 zf{9?Cw@!2aei4aMFDEA@7#&M<8gYVu;sTJ|`DKAqp{MPRJ{I>m8m0D(>%Gy@v7T`# z3-B1a@DdqN?%r!B7at;dd-dhOok?5icU^R4F<=e@ocGjvpzx&CWr0s}@h@f875mvQ zWG19~8>*Ba8{(aPrZ7fQ#ZC)l5@G-Lh%)VoQS$f=rQVmZkGJq1rMuJZ0&&YeoY@K^ zOS2W5%d=<9-UJofMto8=@BM}c`~UzH>RT)k@OY9AFW>z8ixmYpCmzD@iXXlzJcCl- zoa$CIUYz}SK%=Disk2MdqKY-;m+AKZWBIUpOkdj6&BvZjN)wT#w0-yArN8GsxM0Vk zzH8N*bBi7Pa}aLuZEA9&bebBo_J-{*Z%U+!5R}Axia^ef{+1g5c%@L9bb#P1-$e7N zZINOncE{$pExzqjJuZCW+SiK2IDE;TQk~^NWq$$fs~v<6Ir{Oj9nG2+)ud`#1?HdT z9|y6=J+ed9QIw zmK5SE)6S6n6j_|M5bNZJiLRZd0tz}#*r&q++%Q?7Yv;&&vmBE<)abKj^+?7?fOzsw z6F}$!%jFN$vu>77U4fL&M0*R)zce|uY5wh4*`*8rdf?S(pm$n?N@@}J*|Y!Nt=9Ro zVdHzwQeEl`Gd*F#E5{A+0<@AaKyR|{njN5Cl-sFg-yq#}c&rp;&hr-M0^y7~9_L)W zzjEgxt`7#dZUh_zmqeFw0O*41tZ_T}6A1`i0R)DegzAOZ;mo<{y3IHj(Sy{on+-Hh z#h8PW7Msatale*5(c?5NKu6}@SjmwTars5H~CY9b?k6^}h=7n@U9=H!^N*@U~M=r&|$TuE-oOxQyIeaRQ@o+K;B5Z1RcPUOf zQlH*cR8F2e*AOSNZQw6pW=X(G^WEBB1g~4jKeR+9Z}5d(Tn_E$kY6=Qf5;i*Z}1!Y zJBRcxqqVNoX!?2f%R+URN!RoRu>J{~p>!6yw5nR-Yl|ZHEv=HzWzIe^_trt2wyf>J zk|&zev^yef{UjO%FcR9pJPXizDS*mG1&4Ag*l@GNM8G@Ki2xpen9~F^+P*7Loo0)- z6BI#hd*Meik?=6{B>K4rH2`knEo-$$aBLERIFQEIX_yF!c)xC1zKj)Vz)jC<-7cy@ z(rsV3vh`-#)An>EOR$B=XLDMiO3aU(VLTF#;^o;_@s#1G{6ju01&BHT+QVV)&B1n| zn;I(b%WTCRMbdfJn1VFL&^j?PE|}gEPShclPUHT*n@yrWEUtjQyK)j3NSpwpgs=JP zJGn|HUsdz6EgGNDIcO`0h|z+IRH`kjMd#hN4gm0GJ_OXm(thsMKcHMgJg?BNz{Qc> zo>>7QKt?^$AmqH1PkY-Z{u$Z3EmaEC{NAW->xWO*8hpLdg-Zgx(*HD{?Td<}>yU_! zOnv>&f$g8!oHEZIsK2cjy{Sq0H?&~fDrS^n$SFQ}>XpPG-q!;oHdj4?33z)>-n-ns zspEzh=zgGw%9}S^V;JQ+?{nvnM=Z7edrqp~YWFNF;lFb3>EzuxDZI5rI7m zPzMZ9Fg`5cw@Ge(Leofo$&LCP(N<+? zJ7#kKb9Jx)EY*erQS<#<6F8%}7iVJtg}(&A01+gT1LzS9p4Aw`=qlH2pW^k89Ofjy zIGp|n-Q@*iNi2Co7$7Z78?OIVudc1OSH|3x$%y`&?{(%`u#=>$SvOPLrKH;N46o z7lpfHCljHWR}CBDphyef%)9=$f}P*T9llg3E)6F(ZZR$##9zva2R!x;RUSzY9Ig?1 zp407RhXO(0(u>Uc;<>T$bsi>k_;9Vl>T{PU{V`YbE2NtM8kU{8sA0YP(AChwGIpdQ@NGx0 zS{(18eaouz#IvQl8@B&BjX5oR5j*&FJpnR%k@Ii!F#px;lcCpDVxT9J{USYE%QgaWXJQ4t?}wiRMsKA-Tvq>RN^!={F|5Qw$Is_l;WfC| zXW}kUTLz@Vq21?-RZIM3tl9n*j-18ji;`48+XtvEN^gkg;QuRp8TE5>?1*(J`aOFC z`zF2cU#yZ#qI~D*KQzCYWkIK9`GEh?D?W(0G<+tF@!kJr1HfmaBcT8smqlqbR#Lf} zVUIOa5;GmdpgrlDxx(Qs1O9Iu8mGYMj+fjtW7nvZrDYLE3PZ$+0#H#X^*g6FKgJ8h zg#$eHj!6YBj(t1=8;J@z-mMg@*sB!$>hI)Zu{e0!L)2k$P{^XlRj_xwkVtLo6P{{l zmxHZ87lb+_x7il0&~8}Q-M@kvK94}nAT7Fiv3^QyWKZ~`ztt(Q*S-6jPeKndvq`|% zskNG#?eQI+v6~xe86y&xfxB+9aC=sh`9LnNUPh%{$QBPGBu;ZGF<;)F0w0D+{5t|z zs437sr_%Qls`jb8sM|U82Sw{)bimAZk$)%0D4r8934rVo@^9-F3UV~H0TPz~6RO)Y z{`2Z@*W*n2=h3H%_Bteyrg!idSNQ(BJ=4Z7hH`*+tiS^H5>rtU*j_2|y|PpyI$21EKKiH4wgYlW7fD_b}%ug=819o=1}E6gpl+)+vppNJ1- z)qM97(dl37!*gD>lbQFD9B(Slrb~{?H9ReyswVk54)IDp^PfjXT#ZtlNSiY7AB@Yt zx^d%S)y&hZh}#XHA~PNohIGH7-2hf>-AAAKlQfupkbwuY8l7fWvI5oLGD4;@_G{0s zv3-DgdS`lj>Dpd`{C_@0tG+lk_=>go3()hsT=pYB;Mw-Ff#Jg+ zE0*AI-whj6tA>p$z7Hd+!+qyx}S)SBFXv52WHKN4wcLE&Ett>4nBY1`nD>S4W}Q=$)sD>j(EM|wtsifCtk``nX?rhYDm>~5 zX2uBM%L2WS=m$(YZnOGt-P?I)tsbRcqb*w8zMZ@wscd!X)Ay>o()XiNb$(Po&FSP1 za60YvsP?K|n2~^F@5P#&`c!Xsh6Dk^1&WH(5ac**pJS}Lhm*!`254J9AS|EB|8fmt zKtrlG3hc4%A~t_~G0&khU_>g7d#yZGa|0$!h@KXP2bVhJ(MFtdL(QiZ*)gEDpc5%| z0$of#5Mi(U2Epvp)9Ee!v5#Y!wO!w3AN0{tCiYc*bmYge;~mMDb^Q=-JbPL$#*tcK z)6|uHwpz?z8pLhp0C@5WBSOd&DAeoj{hsmgcBBG#ttB9~q zSIU@m+9QEw>j9{Cm-M2Ec3ywFWcfPd&p|%+U838R3%9;CE3(wmYL?LJpxWH(s z)$g}>(}^4f-Rc2)LmI(T-IF}m{^+3s9feDYU3FRVwko$gW?nTHZ;sRqTG;3-3S_LV z$MXIP3og@gcvv>W!506i7SrT9(dtkgLDh_D2@x=EKP3vh5dC)NJ+-G<2TIZ?dLFUM&`+Z2jWCK;9$LDj!6^xAN zir|<`6kag41c8z5ina*Zwa-#sdFzx7I1d4@#~pUdwu|K|>~s!7FCENcDL=cx7xv{W zlFQBNm)}{gNmr{J#U9gpDy(!jndCk+ZJ>Nxa<-28gD!AGl|AqkpH?E)jXXxJ*qZEEdjY@v^* z4U7rrgx^311we~{2XmPXPo;9NMj{m-ui!~v2Sp3kCl{iHTj%SN3?CMmw&1%rTX_{Z z2$)#KApms3@(_XOkjF#t;CDcLOoC!|yw_QDm!#Rw0ZiaWx*$UMU3bMNtvW>Cl1Z~z z`&ZYHw?UmDGsYxv!9we`-W1xJiRWP5d`N+_T+S>n@vrAbfu$;k33`x+-#wOA(heE> z)cAsYBxqWJvWS-B4uqCWx$Qc+4y0t z`JtS1MVb^J zHw^8k@#snSMbEg%2dSD_o_)xCxuLFXJ>$v28Z8{rv#jpKXb;8WDXo`3Pa0DvFjp@h z@_Z2fz`tG~Y96o6vziRV)~pW5T<-6s!0#TdPz^fGWo+Z|MF-AvO0}#qKfrqMx_X>M zO@tD7sZ)7vkDu7@LNa~w_#jY^g-5+F)~CAzh^?fC4T)e9r_k;zK;!|ti$dJLAf5=b zW@x^td&jZ@g$cE?2oH)A(us=+>F1pVF<}A?9B*nL>7L@p@1#=28azgum!bfIg+wWx{W*z7s@UQEe0OD0LjT zYcFf3`Alzd@w7zQ@V+}gYSciwVV1X7|5|qBGzV7U%}n)_zMdgI00fy?)f)?*z+lzE zmciv{`HI+cC-oQ~d(J!tnYV^`J$~8NGz|O=y?UZq18Xd4yFT8SyAYu6`czeKh(}wi zn_^(i{7?SDxvwgTPmF+bB-f|osot;$(JQm9ws&&0#P!a2qoK5)zp85r;&@w-=Jt=m zmS~lL{IsvpGI>fK>I-2hWSz8d8kw4Y>&$x2eM$FlPImtI4cMQ8K`R{NP|JKuUZvLiB!G%M93z zYoijA*jg@TJ*|A!aDPEQ#-lJaVf;RJ5^R{oqLDEBk>|+Ki5SLFP4k~WS>i>OoXEM@ zop$9my)jbGc=O{Ldb13$g1;Lf@#RX8x$DCUm?h*9D>jLy*B=}>9~F-inANwMG?3w(oAlNrhtt}Fjh6>RSd=bE@b?}pb@ZsvLDmJ|mf6|Eyp zOBuECaKlQ?BIETr2wi|g(j}ZSL)0gs&qsFs>9o-u<9QpRGS*-N7eYzoY4!7aqa#Pi zDs1u3J!&Q@>=WT}LIYbvOX5q2G#W(%et6<{w}*9mV%z4v(7+D9L+e{me%iAc#;R5edTCyWb~8~G#oQ!*SvfhKAumUFL8 zo1hChYfP<78AJ2E3BhOr)#VNdKD{Dxv;_Y?=kQ@uzyEuj75o-;c(Qud@Ju+(be;3{|3ANuTc&bzCV3bkYAUXLJhX-G5CTY`C$- z$1_$qPkk;!E6-9CHNcX=)WZqx9JSAxK%IO<`{>A_ZBRKUe+Nhg#hT`t*ZMyBVus`v-Kuqu_)Rb=Ohw9wB9Jn9c@j9lb;!tC8}N*_;L6ro&m zyVeD#m%7*ZxK9brojJOwaj&!^Ec&=5-m}knL~4sH1l!%7y1mP&2%#{X=lfh!XlGQK zpR_-&7;)dc9>ec^PkY4vaHUs2PS;QW1UtgFZ1k%81z&8mMiqI~de@Y6TG!m|23DdH z*BkiJ0Zr6Dk1!QRYF^!zj5~Et()$wSk{qNv91SZ4kprul>!nmHPPjx44wAo_Pxx0a zf58g-*9#qlW`x9UYcE8O5PE z;ftIi+hzqFm)+}vsMIq4btWDoX1pyjIG&}Ov>e=rWI|mY!=#OH;-wpX& zyLrC|4Lpm|m;;`o)CO;d@z0}1Xb&pX@?}GTBtz3h+4E7jz+jtmZs#8SOsn%?FbuC- zwrMu_>KkncRwSF3aW?W%7_bHY9++26FiEt3M~%xy0;Yf#A$Bt>bJU4Jh5hyB#9t0&yJL8*rR=#Moe~Z&wwza~ zo8*7GyQJR|QMGKNmI=kaZFchH*I*{LEvh;}WKL|tc!(K4d1<{h&@xhAsk3N>YmyWv zx|c7q2p+VO4=_(pZnrTSX#A5?>2LYdlyjwl!T)SmWa)GkGg6k?ANqO!v{Q>x_Zi_K zfnigp#Uo#hMb{%NsP}QP zF4$f>1}jbQ?1s_vM=i9Hn}!uYZMb9V*ehYJxMTfTnH$Zy3pf2QJkwF=H7XhP;=Iw6 zkr!zVOT2JYr~OX1Mec1XXOYlSt4yq<(LDLTOvsRqslaglNj=h^UvKVtrJ#H3FbZ!a z3W8?-4Xt@T)OCHG)>GB0eVWu67j)0!ZOZq!lQ*PNUS9he6f|%4-r70>xQYL{98nMe z5>u~~R(w7pKzXJ5>GN!5ST+=;!~dgJnet(HT{Kf=XoeI|GM*B2gu zy-RhOsC_USD|Kz-za_63Ek_pbr&M}-60{2zuV84abVRu|OHraE=&h#V$g+XS4)ORS zxCdENncd*FM3?j6Sd#YVPaws^)wL0GK}^q(65MfM;^a6d!ErIi>1|ySHib5QjihWY zUQ!RXeA!H|&WT+;Cl*Tfpjd=%n9Kg+roI1ig!KnxA{>#Q>LdqAW(kAfLQjK?+UJhT z6}e~5^_KF|xPP7cu?cb5{gr!ysElnGm9)hxT_?;&W1*!EkKlnH9Fl2>O%*U2h2y17 zk!69?1(&M78SV_Rh7WpH6xMN=;G-Pja+_*bJDdT=9^6YvqRp`gY5-i^h#863WPNto z0y}Fvf7&*i5BOoB97PVIz7h2!hw1xhK;nDboU;Vi`8$0d?ptxiX20Z0uxarV+o@|n zS}@gao{t-4sI^pb`_?Z|p*C5eWYpSQN($)w1xBP(o+tFyPLR<^&w0+@G91LEBZ1O6}6;UR7=dZC@AIuOmI zNfvyt=q4#ZB-d_>wik4*(Z~1FB`ODF>B*Kw@-ZJSoSW!)CCt-Cb21#Xa&W?W59 zTbTMTyTcLH($H6Un-;$r$_JtTv54|oPo_%uNnt0g7>}t`^5(x9K1F)5E=6z$8s)X| zn5qsrF{gy+VwN5q*k?vYB~I2E5MDny;3`Up^4fBEh>8WE3()?aMmS%gx-T1%PZ9gG z@wtn9#mDL9Z~&m29$hG)BIKjr3lvGqQX(D}#}?P8rGo%K=>FBWb>~?jq|QjBHgQR{pNPN67i=@e-f})0X zj}S0^b=|ijg$a_^N%iLL%bY+Ecu>P?stH%os9C-1$26*G)@JKKK!8(st4r$Zjfl#2@fuNPFcsFbC8&#sCC4Y`hvQ+(dD`57UF_Nr=RQ_Sri0kKfJDUhF^s8$?VKQGhaTz&@hFHe=t1md5@D z>U~`aV@?0aTx-(v)EOBFHY+JLhz7*Qy;%hg<)A)H#$4vwnQ}2V*Q`ol$cC$4R?okt zbH#mhba-|E<^}lol;j@Bo2V=IaTixUW^Fr#s_2=vV{ceEoZ8`g{r^@r>jTIFa zt8iJWY(YrvK>x&3PJSR%wXRO!huzunZ+qXZ15xhBd^6G?Q(JRMBNpmlEf~UTVb7%pjw z)jSI(>C_+o-OBrlAZ*~5GU*teP7F zkekbzDki{WDGM#Z{VK@^ksY+#6~WZ?@=ta3N`=o4RKV^n%`J5#V+|u9Q=MEK^mZd* zdV|UHDxyz^@Run+?+}a{wMTcu+Cx-9@lG-{1EE4u$UfvEl0IpT-az5F{)bF>(7J4k z$(xE;5Y0sytMCDzwCSmSa2X*yD0$lOE8^H&D7w>+QI=0In>Q5ci<6rFQ_8iz#mVxV z7w`J3&qJdqutYeppdGnXYFvjL*!jV&uhHevJk+=4ueGmQjvnj!*!Mcr$snb(pi)FI zeV7>q;qQNNBlP;olgjM(Rg&^Gx4yQ27u|lvXIHz2E8}>mC8&JC5;^4lW{WX(B}(5< zY~J}@KhvMOvU<=wCK`~DsOo67nW=B~@eU_Ucx=eO^%)OAfLQov z>~Ao5dU812+G$%-7yEj zVIn|5+TkYDFD}j0Euve*N}SK+SY-8!mv3IMj+8)|ssNvGj7*V4$vNb({~ftPP&}=O z1G@uMtAi$o9;Rz^qEq_81H;xI&e*#NvjU84le_$Q2uDo50t&`exakRka}^08ouV{3 zfc9{xfdej4!ZeXGQ@@JlVDU!j0p9k)1-A{@<&RU2HH|TIgHJ z;Qlupn~=EguLFvaDUd+j-kjxJYr+?T$WT<;xtZ=w&l`uX3`%<qZcyWFZf8za`o_KZkiBH?gb2T$*8-HROl4n-3Ms((NAmLcQo!j08x6uU8$(0KJ zA=76|SJh#h{;z?OlTf$UG-)Ee&`Onm!G7@}Yz|?CWR4}=qMj+KG7naE>w@_fsjK>( zmgIbs-|6Yzl6@E1IeT?t!0vALy%YZDg^c}x+B77F(Th2bDUCj@pykkgU1+)@mUzK} z`*8F0Ej}QB+cN3R!I`EbKTxUq^kfoI2hLS%V@NQ#!$(tCLW=^-PEfoWfbq(aeLp1f z6LK%W-5#s4MXlIB9_bK6N<;Eq(@6x=c*%HDo$uzhBgaUZbVvzfoBJP-8mTvxWb(f~ zB`WgsaeeO9msyns53PHzOMI`mTNX=<;u5s2jaB`vmdE|Sc{Alo6VW06d0B}tt07*I z3zZ*Bg_4Ga;d8e?+Dzv>rm)HZ*aIK0WrzE)NlPTiYDVKA}KTPxfv z&`r-rtOo^hm0}=r&0Te)iqzrJAw8<@Z8w}YKJcyk0PE6B0pXu*_N=aSAEpY5UYkC3 zz9LvNiz)soLUU*MN?22=?ay@NvYpYaSBh$|ozd8hnv#~GnVX|tnepu>RKu6z>g#2G z6umj|YedDUBDgLKC{02IhQ|bFJg+x47D28zN&CbG7c~sc|E!DtQdFqFF{_VvRRQO& zMBgcUM3ek`@ig9s6R&NiWqU#x#xsN#yykS%D_!I4gsw3D&!x}=24DpNFM8r8IeDWD z6ceE_M+8K5oGhE~U`yg`hVBs8#Ro)CeAj)HGOL7o5#a8?0n_+wXUZ zUj-}To3(%VCBgRdK(wTYwb`;KngH%)o6C!xvql%Q&3`{sfQW&B!Sc$w8D~*78zD?u z)-;)yJ9eRZ#?LF`ECQEA*CUcMf%+f#Aw&jc*!w9-F*~UaF~Zn>P0SRq5QTQfByHtr<1XnnOSH zT+CJ~m%vJVaNq*qO~oT;OX);VP2Af zZ8t|A`Sfo1dnAlu_B7r}mD~$F&15s(+qpU8*py$PQaNNSQr_28bMa}2RUd$Qs3Ykq zzks@C*hN0SwHLh|0F>PK`K0o9n&)Q85C1G~M;}8=jLh9m32ZwmBi-_ccdj&1Isqbc z1LtLmLO))R(pQ#zRb?#ORO>-8Pg0c8{pHwQ%iN1Xkn4Ns zAz)4jeZAKISKeB@U4Og?3_Rey&7fb`dIvg#mWXw`|R`cJjRaJG}grAp1viZ%g;2<$XwXk{~Po z^)HC^Z#YAC9>3;-jjPhsy?w;{YA15t1WtZZPxYC?t0}XkU6FG_$_kRuZaaO z@;Y?~)>jAXC>Gq2Z0OoQ6qBT@#BIg#Cnjj71GDO)v-7BhcVBUVXP;8>%|4|<;Gg2{ zE{2lFFJ)vlS*( zgbukCz0PZv*?_O_ZiFlk1#N22)OEd#lAN=RjuF4VP;@3ryu9Izub`4+ffO&hUjUCL zf{R~WdfVeC@N!pXUKPaVHtVu3PVvtW%a6AZ#NU6d@i@BOjpKKUSd{qCk*_ZY2o_3j zwlUg-z~Y^659z5?Vb%JbE~e}TQ}H!4>Y#8tTDsM8{n1VZ&@xgXI)~FdjOw$Nt0}pE zFHoX!KSX90?jt!i8Cz#SD)Mu*kTWLyyPG>kyG&c&WoA;q_^~hHet~V9E~{pGcV-^*b?5 zCXrOqafVRH%j&b+{61c%6ScNHlSAWw??h%KkfYZeVZnv{T=?v^j8=s zT$bu4o+lLLCBQ(Rv*o@B%-+%u7JRv{<&tWkJK>C3UOXmn?(_*^V7bz~+3pEUrnw8H z^Mm~%2bR&1l8{7XE1;ZMoHAO!<4^&_!T)zdx*X!^jCPFJU|t zCSPIVe0KET$zgb*sPRm^xId60?2|Cu0!xs(6faw(zGR)K^Fq={-3;gkAt1QNl;*b*~2AS zn(zM_!^by(Zn0!{PrlV8`{3Pe+B@vCx^LCAckNFP)=3x45JIIHh8OfKlj-@T0fnnp z-FNf3S0ywm-#ru?r#FpMm*=@$m`eW)0M3mQ@g-uZFC9hgv6YePwjuVzZ#jq#3R2jN zBu(VsQ1g+rbz7as>y#9l3kN$?VFa#c3uFW~4eMXe-Hz6Hk(x?R@RF%Yl^oQ`ZSV|1 zT|pM<4Um}w(~%xzsNoOCnF3PHJwsT#HwP=}!Hy&Ibh&XY3>Q4Sce&tK#D_ExBsee4 zx!Z&RpzTdVSHeCtayyvZ4aidx2WU{O{CxYVMl`=y!Svj|zwHy&zk*(a;zNQ|wp)$~ z1hiLR_zP$EM z=(si0?4%&FD7$vqglF=WS2}m0pujNt#<4qB>{JYLr7JgYRq*EzZV*MuIt0I)wDQ6_ zfLt2R0ra!+{=pKFq-G!QHYGk`WI{`{sPrv|oHaR{$071l!J~J$AlJW0pb!s`7HPkW zc&@X~qpA=twju9HERAj*f+U!s4ko>SuBdcv{#qGMhbXtCJ#y-zA)3flG7Mn7k0MOL zA@85mDPt4I0QBLDl5Pw~4^#o;+&^syeDt-PxbFEh5P%*#aL}Onv{^gG z=S)`AIdWl(iSVDBIdN^I5^J~|xFh+9Z%MtN#Qq6OZXX~U8=0UEm4L{ti*TZ5e6h`m z&^+q!dT8yQ>LZ#{WgSE52-w@+zWN!@npTTuGQqU*-tl)DKn&D2po-tx?*dF^S-&Ri zel}??eCDOGPXY#&K(A7Fj%;}M!=cG>+Uyl|z1-)d|1CETFL1<6o@Lww2lmT`BYW0lj)h&Kh-PgFg%eaH--A+u?n9@q@AI4JT zoDdlQN25#X@I*-$(BUzI?2Xr)jw7RbyO!4tC-HJh130UI2UKzyv<}9)_%uck>O-nRuM1~Z4_mO~7iF>8o{zgi$n-OxiW}p`K>Gg0M z%gtp63N3^QK^UdXOb`v2;KD%gE_lBbRt}6Vx`cE}*YxXxd6{y=@OwK7ELNX!LPFDi zd0+a3WOH%Q#CU;ag5g(IDPYw@Ugv-(4B025`HdJLAR1#o0rfY=JILw}4MfI70}KO; zMnC`s7FpDK@n{Q>co6~Gl9}!QUSNG@3Ao_~hqjByES_ttSmzvU^<0WOzvceF6-8{q zgm7T-3*Wsj3f}EWqD4>I>7v(4m757TK`*x{Mc<;Jn@&EO zU2RO0sE%%IWYE&=-hUDX7bqLRg$e$vaDTe>t@!Q|V*X;E^v+2N17Fn7oT6@(mNf3# z^`3cHYw;{tKkZW+9W+;EiBu5Y+j25rpW0a{w71Wr;_`O<5E(W8^P@2r$C@$fgPe|8k$mTupC zlUWJH+e$G6i0Yri0zFs0+a3*9*HR5RA^q3y?`c^rtMR+SvK4W_zSVB;r|7>@)c^%q zyFr4{t+evHS$hQiU5C2&!LM%9eh4>Z&)ZUaG~kY(|0|HAHPZ4IoeWhee;3B>w7Y*a z@9y9+eg^}>to1>eXScq!6SG)+t`q<|(FGW5RGs9}-;4+_7=92xZ@cqTAMWUFQ~#Nm zCJprsrO2|WYQ!)p!&45vp_ z5H)X29X<;z4sg>Jq)pFa0GVofKG}j%$O~F8Ahc@MiI%7f%Ra`;nM-#9wMXaKb(L=% zgZLfd>H4Oxut#u=zgHG)|2YV9b7kMfU}*2I!rmF4AJLCFVw`!LsxIyobhdJ<$2JMv79Ur&c*rAE1fVVumkUje5(Xa4++!qq9u2j)?2YyhV4L^+16M{U8R zKU(=;aht#OE<@w0UD3cqI46_yp~?}hbH}I?zfaK80jxvvEN7myFDzBzEx_XgQkdvv zlmEFq)mUCTmQT}s4UiTZhvU0J@fSH*VRv_d)n?YY4U!KR4Fc=3)>?lj4Ql(05PKb; z(EwtL2b7Th@O_AP;%ZAgBi{v^>lY$6*D9i)JL#GqO&`9D@K{&0g>h>G476)9s6Ede z!cr%U}WZ2$uYm%*Y!COhX(n%!LYU>Z+LAU;i^0yCAB?C@!9BhSG zb6jBQd|Hb+942HQ^E!6Y36Vro;$%78Z4OGW!$T2B=s0HH?ndsc9q_r1UhI%gPv`*H zm65_Dy=vGwdjuHnvOE{Y2mJRq?lF)cwZG3x`@BLH7%U|VrMDjiQw^}%#C?^$zn~xR z@1d*<|HlQeX7Py-a-S1VNcf`Awx0+~dW2pBlcZKonn!I0;eD!8fU0ixpq_!`MUfCx z+E)zkDs}`yYFgj(MgX)AvZCQ&Yvo2V2f=UV=g3-lL|xJr8?cp`j+}&49f9u|r;Rw- zAIP_t2hDZk={%@@%N7h9N zb459T8ukcoY71x(rmrDn7hJ5c3Y9|2bZVNPlx-GHPPt-;zWvX|Vo*YfI~)YO_m;2W z)Sv^qpUoP*&nn|OvWtEHUA?uQyMN`&FYjjqrw(<(Gw+U?g=C1)OZRFB_8kL#$BLVP zohfIIz=^ih8S01$wfXqIXR#j9^%h;-D%1g3pR(H3FsFc!_xGn#COy8Uu1KD=dr}kO zE!j+`$_AEKKi%oed9-F#;G$i41L!2(|Iqu_9vR(|?s-0~{7go>P&qy%8e|$+n#VCiRdAchM)Z;Lwu68cNWr%blC6iTN#0cY!VDC7~xb0fUOAb@wk0?dsfZ zPZAF0XfE5M^LSx6SHQX~;?wQAv$Mt5`pnjU4n06H|Him6|C#K!l@?}~%kF zvNj-CbPL!(Hv)hFcJ;>Gt_M>o6V)$94 zrG;3hQtG+c+^xL_eEYB_f=J~r?@%&W#Qh7SHOtX7q`O;zrGT#Cmm@b36ijKr@VtFs zOu_nbnfvl)pSrpv@nm$@w(A3b^{nNv;EpYXVsXll;6c&sas=*x#Mz}yf(c1%kGjIk z<~IXMbX{mgQXTLOOBSNfa@9-_gorPxnvn!y3G+K#c^tG0)LO;gE|Nmw)j_b@-Lf zO&3W04+@JHFTcHwX(2?5*IY>-Zsb*LPNc_|%bJKaZ`3IR(2`&YFv3*#B$Xx2-L=Kyy$k(UV*BF1g!PBzCKVW!1Kha{J8d*?M2RT#(mK=oE6P~1Y3$qGe zIyY^3lRwG{IlLB`kZygT+iB0qK`8b&$Cb7~zQXD&{r&AsU9}c4Ae!KtSnrzt^4ztC z)n37WeHp#G&hvxaewM8%&im)(4)Qc1ji#l0vObYe4_e-hNV9$ege-nv4-miwj@!e8em@I-3c6 zu?n3_IHEq2eI;}*Oy^-iF&&WJUWM@xP8nIIekdBfxMt2}&HOM2`$Fh1a0s`wiAqp8 zf_F_D;RfSnUcA9f>Qc)w{KaL9i=lb7CFGhQyqdNMsk!kp#2ysUZQY?)lsqV5{6!~B zz+FvK6|pGzyAS4Kc6ky9EniwIncd zPCehnVk+hHr3oxdu1zdDMjBXE77*3$Uhs1q`0&I+RskjP_J3>V1f*B?n2~bK&z0yn zQQ+X})GZH=l0-B08NU^R2FLb>H3yARIeU* zpoC_4gxmyk{1j9K0w@T;=KM)hktF7krX+AZ$qYo|r)Y@AUc<)|28`3#hpln=YR;ke$i(ZY805L; zY`irRb3GBB0KoihSD7fP-^k7Ncf+0}60fiv%`ySIL<3W3@21Lw^|ydzpnIB!$l+VC z63XD?p_?%Sy~eWcWYv+4_9{P=n@ckd^%bmbK(H|-hw=00H`BDQ><*ih9AHFgHc@y3 z0y-InWEJ_c2ir>_e{qkSW2K`koDH zxIYu7_XDXUHR9%%^$*b!1BPuJz+R7ptq>C}0ao=C&_36a&LJN2<1BH<$1F(ZcbxBw zj6cI$x$)mtflb&`7OF9`hY~K#`MT|y2L95#=P%2@7F_~v7H*x~)WyvqPtUD1s_^Ff zVh_kWMT&C=_z9wDP}a_>BnYYT^S#D^ z+GH>=scfi-3E1_wkMPs_Zc*5FZN`rT0nS14lW84+Qp?8Ug<7G@qB)kIiTl7D0Z+zI zBop&KQ1Ag6eL6I|zafPnTGHsIT+cYlu?;A;;%R&WIKDef7=(UH?m_!jCmShjW_DL= z{=W`8K&M+I9vgAv!Xjs!eys6^fa?d9L%`7gFqb2^ou&kc4y?{BFmj_Mpe_vGSGp6` z%ibj2DjfoMXaf50cQ)z#Siv{kkG;RxZGDTP#?pkLP7dpY5elS08Y-`;!Gml^D2WQ2 z0T?jQ+pKyP#F-^2C7#AaSq_^962l;Ae`25T|}~!U$O$1A<=|h$6(dgc7D>&Wq%03Glhn1 zfh4G=!+DDtFip^X=j5(&_Ks+#SdFT6wX$^cKxiPIC$4`hx19LZp>QH z!Iood)nj?h$cB58KsZ6xDWSEnkIh~xyQ&)T5y&6r!e`+Ra4biP9CvoQ_N2v6 ziBT&mU{7)->pr8Kr!@4F?9Nr-Da=Dd+!Kc!ILv<9rKUHu*MTTC&wSZwBhXuWor!>hPv>`1X%grt8hVf|e$Ew3f{`8zMVYkt?~fyy)4ZP6dUik)$N zV@e*lS38I-x;LWYO;HwW70Lu0lX>2!4rnD6Bf60-%uNq?($zyR1a_%H{Xh+*Yi4Ls zVZv3C1{dk;!4Ka3P+{$r2?{g8VH*CUF89aUAMHE3&EddNUH-CUx$%qS_w9hwP!Pv` zp|$#|HWX;ay87lIHd^||)tzqSzXm7|&hJe@@Ugo7we1HmkJrB787*IgAXdZ(o@Y6K zcsJ}6@^OJ6Zi69mzs>fMyAShiGWavPCYBnOBYPRJ_&m@HRujJKdEpD1*rT(vCk(0X z?{?87F#*~3O2QEdFLEK>`L@m{OqsE%e(#{pCbVNu(V@o8cdW0$@ zKu1V8Pvd>*Qg_VGaFWzCMTShDK32O+5Hr?bkn+iE^Gb=&IEPstOY-3`?N&FU={r*U zEF3hSkjrAU4Qch$|70&+#Pe*24D#tg8_12o@&HsLQS`SAC=Sm|m@+1-6I$Dkc>k~$ zk{hYKlR`r4PWu~DSO3)YAMt%^&sSR?7HFQrbo^Lp<>RgrEC!ZP(Ne%b@r#CHH7?75 z!;7}Zoqw&jMBV@jpryf=Qo1na?UOlF?LM0=@JV=et$DenHC41NbAO`>n4yf6MeY#9=vRiSS#3>@`3ZBM=qV@t-Nr2D8 z`%K0Oy-P))N6fPTL+xT8RA|#m|C+RRfo?e$YTL6ZatQJdLgxjxfzaqkH~U9A%6|@; z(tz&meo%gMzk=cy&zqBaV)bpxE9fI%q|Qb4OMbp#+s{CQ*8dq6MRBMP`;(^}QYA)3 z)9&H=xlsLjz<3Ydmq0JxMQy$Ir}He{dlFcukDu>O7cgGm^E*Cg$pRQN@s*Sd(xI%- zv^xtCVdn&4@V5v)-Eq17BPihTtkcy?aP`g0oq>$2O*iuzldD%0(N4G5-Ju4r8j1gy z4TCvJdmHb=R6CuA@okPj>dek8Z4^agDM0cluo)R05qXe4+(*%8X{tZEyD^?kD4 zf;xe1WKCE*b$f>g*>C#q&c5P9Rby%^v3{`ag0XEH8S4IZy7&qpeUc{ko~R|~!+%k0 zNnSX!enEwstA9eUZG7wmL1eDOG92n^6nqp^8Vx2oo?Y1w!Yo&h`s7drI#RN-&Sh4;a69~}0ak6>&<^uqil z3Us8le_{AUaA5#u`m72;u3P_j63IEJW*qrVmBa>s00dSV>yjvT)UZt?3cmU_;eVS` zt~y`rtd>D&EM`y{2_)wG{%Aa8i;7y* zR!e#1M-OZD*%Be&oNmp6%BSQ+>O>tcAcEp?`!x>jded|(wKM z7iwXtE(m9No4E8<@k!{%leun}y3E`LySpRPQ>OP!z{lZE634qp@Uhl4!Rpg_-9!Dh z_bmtRJ*lLm`KmQJnF{=+$MlaPA2(5wMNCM6N zQ{oQ~&HNL$&V4yGeNWs+CuZKaqJmOgwO#*!|6uW)ygy-{br6YtwRGR)z$T+2hK5THcabcjx7CQ?p@pNOXOMS8b}R$plTUHWlW?e-vLHC=d0#yYVmbBVk0ld zluSRpkGFmBcvsZat4IZAG`*@hj_1Jzd=dlc3^0)0k!wBB@ksmsGy*|LnO}O`Y{N2ZnJDs7y1=u`}WWf zUtoXBbz=~nD^K#SV#msfMZ-ww=MRjV9dP%~(X zU10q!P}u*n9-aMPOSqpOn>Bme^IiF4{qdX0MeXWkL2f74b5}m#VNUhj0JyoX(y8ap zyt^0DR}tLg=XQd50C0VnOtf5)+))4B`<)t1I?UJ3J{N=zaq$3<8&yDwbedRf*RCGy zu2(dL=ho!tx(?a&PhK7@@rYn^QN*7B!l2OLsf$BwwjktUYG5f-H8;?U)98DaNR10= zt%Am0KH9mOtQ zYmR?U6&%25PE-ML(os`DZ9$A3C(3?L+TR6cmE!}e(@=sKs1btg7YBL+G??mX9dL%W z<3^!g)Lk5#ZDIW>Nz&3NH9 zWOxImuVl(OrToE$o1#3dI8mglat`CyAx5hm8n_LpV!ENp37p?HeikiHrT}n3<>L?V zJIkP2zDbi~rhA02zyq?sNgVkqDt#i7{8|Zv3MkpI(abtnhf;4%AI0n*Oqfq^68E37 zuj+0{H|HkBuCOj;1BwR9|KkB(`7Ee(+8~sA?qOmT->77922c)p75apzND<S0)^rCCl5^}m`F3mniE=PBG<;?fC^7*rj!HcV zlhSju>9-3j!Wk$7mn5c4_<-b<9G@FD9|nAQhIh8njm&GQx}!{(n_n8y{I_y5qVm!w zk6qi$SdgPk>ebwxa&@hR7+52Imt>tj=u4*^08X7M{sN;b2BEp2r4}bC9c&GtOs_uc zX6dtjydDf2IlEWWA$7-j`3kf47nEw^lyv3ff&^j8guJu<(RNSgTTEL))zbzh?Skx& z5p92^wf|w+%&8V68y4MmLoz??*z?h}3FzR=|7Hbzl}zmMh-7*M z-ec+6;&^}NG7K8T3^1#*=0i_-=I;BPIQw3@xM4YGmw&{?KIf^qr?}AiTz16!Y=;d- z!S_X}TQ2vDwPL?7W+vpm7Ao${`2AX_O5|SQs3|IiX|>YaJ40)_HpX8xsN_I#P#r&O zHLqx+Ry9-HQ=$C>bCi5}lyfBQd;BvDU24~f^f^&;ooK#WwqE9Z>Jul~Pe zx@@?De5>#V$PqoFROcp9{ zEFuln_!I<^I91t2$-T_wH+KcMil8`o9CV)-pZXUL9U<)b^b3c*lq5-nA9pQ_s+z;O1o0#PxH>_}>)(c#=BHDz` zPy56<#gbf~BF5?~V*z?6Pw4_Idubff@QbRx?dsH6Lxg>;Bf<=VSg?Y{E&#eg`XRjE zpfu}ox+-(V)xbH%x#0xRr>XJjhXgjeh<*16BJq7hNE& zx=M>&uk)prxvBu{$nV~9__K_O44TP}nn16WyOP;kw}MJBD*DDVyNI2F+%|pRz#~SH z)$!%iDhX6)-@myI>s<-Le+f1~#s6bXG*4`|iJbJYK;dod2n;f34Bp z8_NBNTF1QOlEgHfXxqCkeB9p#`z+a(`K(&p`b(sx#g`PPTbuJEGKVdHRHw?d;@{Vq zW!y%c@Eeo-yh~{Pd9zJqV_CJYZx_bH@u6Yq@~)cX7viGP&*^Y})qX}pkN9H;(xiO! z-o1ZU#J40xgx1X1Q~^n+Y~1#<)tMZ@H@QoCsoT1q9-%|h?-&p;9sBaN)>uIZnBL7eP zCi7n}o>dW?pz(|DKuC%U&gopq0G1 z1pjVbTX_fNBi4HT4Q=3Jt~b|H`r(%8y&}Ov_w(kGzQ$vZTg^)WE=1hxvk40@I1`Q) z&CA`)s|Mm0-qj8z_)J60a-oGivfN4hR!dvv2yoS@9E8!Y%(bpOVwmUL5 zAtE}We?Ans#XGF&7+W`2J#MHN7lKyza#$noP$AAkL~Gw1;1MyfuW>&$r@@+x%cpGt_)i1rJ z5ggD0!{CXN;0AXicsI{))Rf^(@}=Y*_D}{$F;w{G7asbQiT#f9+pbgaxBWdZWK$|U zXNh$-I#HGPQjx;-zd4D_y$=ikg9{MWQpCs3&r?2XmR|gVU$^SasalYW-M=>W>WV_;?d6TzfLNV#=s)9$fL(yL0fZ{VAmPO+*HIk6t0Ft=bFM6m z5kNKda%irZ!dU+VoK=w|CRj{hyE8}J{*Y1Fv+u~31unM4|ipMuTVb{)d$Ie zKrecvUfc=Xpge!eg(+)1=De0K^Y2=f3ofybLT|u}1&a^%+MEqs>2c|^+|m@0SNyQg zNKlYq#fmQy3x*!)6_jxLOF+GSo+UD>r0N!qtgo+dy?7uO``b}&{J?&onR)DGj*+?d zC&M=p^#HYD3Z-`m<$0%H&W9e^8=3zu9yil>6KlUxmm1M17xh%lpeVDp{{L8j)oQML zekT0Q{VX93sM()0@*=~cpg zEkBr$2wD;?Pq6hWiB$6y%5Xk4M0`O^?x~tlT2lIZUDP17hxa?1E8lGYJEf5GK|;30 zc*=vnb;I`!9`h9GUo893!8srV$zpN^`gjsf)hh=(Hbi$*(dk;E^33~!U($^``=$le za{-_L!#{6kf#Xwbh)VUshBWg&7x7JPjK02Dr^q1tW|?Q!*50-Lzc20j|IWYc|63%; zO0)d?6v*kZZycJxcCfg))LQfRRgZW?*pRry#5oQqpAmg!vnA-)UF#KiZvc<6wI^4 zfxRhg5T_3S>nbQWV{s-y{@zJZYy$Is{mqd2)Wi_Mgjs9x82RY4!drhP3jq^cs3gRX zt{64NG33LA1wh!L(3yKDMh3VTPR+l8Kt0;p=3%*Y=Rt@1hkDp=p|OTa;FUWbnFmVm zHw=#9M6E|~MZseN-IQ*_S%48liDB~m(==UXZELi=Ie9wa?xYt5C_(SG#UIbUjFcBP z776+*nwVQw(Myi(ZimW0mRIH5$N>zOiD4f3J_oM$b^2!i1%GX92i^Ux?*fsvVnmd& zPi@#g7){CiNx!e9-fAD47E#SqaA+ZMeAg0uT#d=vszYS|&00Nuh}%4Q+?VI9{wPIM5 z69Uq`Jf6=)ZCvDiC%!BB^^|_YK-%n^f11x5&N&IKb;sU|$oa9lR_0$i|LXFyeN<-zmw1LaxyFSwA@M3%XHKJ7Jbg8BdQ0xiWE%d?Acgq$2&lz0$MxR z_$QBIrJ-d3;P;5JniO5YqEi=O;~(J_6OXQ+)D>Z9fnHliMR01p%wmI5cbhy4d_u4( zN_I^>`F$o+_TWDzf710GqChe9r2DUI9C42b%4t&otYJwQ>i& z^d)7k|FBao&+#^0INdNTCap-37weD<1*3+|Rsy_gCA1!h7Lr}$2+Skak0pkJE&;ey zQ!MTEJDUqI({_X*lBb_y;}ivdvjob~`3&?sl-MBpWOv@hCy^$a_sK170%aZV+7*D? z^*9R5gW%4|ty^8b^X5M`OjRYTw5i-Ds|&EU21mKYcdV6Y{&YMahimZ|28&S`Ct(A)S=z=d z3rB4t-?xxtO+wyRovF?eQc8p~0i_>|nE+bG1DqM~$jjSjUier6ny66x*m|9XF1L#J z`Z9G#a+h2;djli?Tl5IHBgNL5LL_&;xBv}J| z^wNIIV^LbD2n8*wvs8sdSs#e1o@~pq%cad~qX1BxQ8-6o!{zR*pA!HaTNH>&klqOv z3hy^SFVc%5a;+ET2Gk7ehcHn<3&N^^h>=Q9QMMe>b2^}HIW}~2lav#|_d@H_q%a0= zXziv9mDx{yLN}eQej0Dz8qfMvL5Z0hJ4ygZ*ukAvV8Tpc10^`F1wO;L$%Ndda=nR2 zV`{B^ApB^RNmt#NuLB`wTmZ2Cr=uj^_vr@bH;-OM?MbodZ%QpQ);1`&^P8Jf;cC(s zqkwd?Q(8Ju|Ml15lFWo`b0rGzsO$|OO7JMBo={)Ev2pqa?3-NUo5h<0^fPylq{De4 z&Afojk?D{VL%$lo@SUdglXcqSC2i)~+)Du4lx`^aAj^OoCU16jiIsXjV!gnU1=hYT zb+wb8$k~4`szob`o*?e{rR=Km6+%}QGUTh*~j;g%a zEK-#;ryG+IRxe{|Wk3^vG})r(Ao7_rL+Ux1-M>mb>Ovi}!;(#+MCVkWRB$H8ri~Yq zpGdziT{$ajE2YY#<+_+Ini-HfI`s3iJM{DNyBh|TXBF-hb8PVxjpgUkKzW{3Gw=L= zUn4$R6gxW(asNU_=Yxl;OL7l@abMLzD92X8;*<(hT{heep^s_RMlttt_E8K&uyYdq z&@|r{(=G!#YnvpFtM%ik2h_>E@C%H&4(5A_@XyG5z)&_0mnA%77%*OqwN4rV-PxAc z!H4d!6SFEW4FAsU2_5cbOA-C$qV#oZo(&ba{eL^uFjSuqtFQSfc3P(;aavb1ZRisb z^Pg>f#x z6>;vFhB(`hLtJyzBIl!^X5wr0y;2~eLp6Y1(lW2>0T9_?TzGSq=zIP4QutaCr`;I) z{+L2Yz15dyhprkEazk224f-3`y?w_Hy=iSlX~N}!)aBrN1$-U3mt|^#PPpYO8;wBA z(BRc=Juj@z8sZ*K49I3Z-m8Rd3Sj>g3r-av`;HJF!=~7Q*Z|*6;v8T1HbxRMse>{m z*N3q}{9cbWtxPpJ|C+kU7;t|Q<@B{k**z#QQd?YO!u3fmVtP_`8XpIAXnu(Tc4zfM z#z1OLaBIoA0B=D82)pSM&v|5}09i2}|0Q~{O|q>1helvdTbYOIsT-{l^{?k0!G{V&^>RW*VKI0p(mPYmvGfFHUrSB`50 zbmtAQPkTjC*-Rbl!rU))__ZL}Bo7R4mht_+1Q{Iya=Kwcz(Ja%HF9a8*^>$Bh6+W3pnN%nZ-}EKb&ujjQ5Gb?PJ@_?f_rW9z;XE2a%xzwD zeCTkX#XP7&mz|A?S`fc7>Zo3=`-%zq8^5-E{IHhk8@(j_mKW02)ri3=z0U(|$A%l&mwQv| z*Ry1c82Y1ER;q6wx15TbPfb6d?KDE}B;*ZiKO8lcd}p?3Zlo#VJfQdFM~%K!6n+5s zhk%PmbX*n*T5Cb+U6bCAa+m`(5zn2<;B{=f+tfgK9<5BzXG2$bqasA zNp6ig$HZ+;H>6L6b)O8~xW*)wsQuKm&-!)wJZ0nHaIlFwb?q98odxvj&CkeiEP@Io zd&OSbOXF*suEuJT?G{h1eU<9$YRcBsw+&i*AIBfG7P>rnGqxt!P=qQoAUm)p6#$nR z@S4smk{?__7)&gNPq*lan5~#&?O-}d+g9K~3+zVq>xc7o6_*k#cAuEvvl+=N8`udA zE-G!E^d>{Zn*Tm;GS5bw9rXF-H45R7X-mr2c8%Zu-c;qw(AuFcQ2%a+=7&87!OW3Z zDD@pO1CZP4BcLZLS2Red9v@XbBq1j-PQlF$bZj?Qg@Box8Lvr!U z0m1nGyh2{&L|R6J?Ur5{yU*O_L@Ep|D9DE5WV9(%mnF=0`47&<1e-Zm!*@XsL@>nuK|hM2HAXZg}T9gIOboL-+An*V9XZ9^4dt48C+&7pIJLz`4LC5`aYgLKjYC zMW~+|>%PDpGdABM%g5Bi(asa3#f}u-_WFV|A02u%V}ITau7&MK#0-vTBzMd4OPU{V&T#fP|@) zaS+8@GT#`mCj;pD;%(k^Lxx2ehk21-RTrj4kmfB)InZwM;uUaivY~eH(`1J2a!P~N zq2@^EHN6BRm_#+0ldC~XI4gI8Y<+Xu!)snrKOIwEZQF0OV1GA-?`GKG^rN6Eg`%jq zRGAS6X9?OJnUSyfMqqBNk;XTs%1GmQy3Hct4ja?OV*+dRkK z?Yec&B)Bw*E7Q-j~kwvRa@l?!?88ge9<2(-q??1P>Q z56$}zgLs7+KkAd8>N-n2v32>3dO_U`6!$H%o&Qy?^S8`$^zW1Jm#|6LZo7}%A&P@f z%jU8+k%fvRU4n6>C#yDRkV8%-d7~5>c@@t2V#ktR5Eu<)YFpsM$ohh`LW1rGDEZ;O zD;Lrd4gVMoT$4hoP2Kv&YiQ&%8EsDbTB{*;1q8c*CfY>fF?JbLl?Fp@DNL##f|?ESGR22 zPzoeVaP34s~2a2)$nC=k`win+28(Eu!ze_J-7#aHaXa>wKVM|GB>8 zbiHz|FE+K?eX!kcqqp51d%gRbli-%&ozp}I{-pP^o*!%GWOg0TbrUNd{B%N#S33aX zHgW_tZ-~Sn)yezgc3F9Uc{&1f{UKH9dVj|h1T2K zC#WNN72`wmExMrD-4n)|7XxhOAi#oC>t(~aZRw_f7+24-K&S*von?DLy+U!~A4O!Q zZ2!bQ?)+oDeOrdk^(<#sPhjDdy2u;^Eydo;^3hx(ktK`zl+*mI70GV#d;nJcRc!67 zOtFB>kEGd$#XMypKWbC@f-@i*vV>Pu!yM1&kN%5@LIwh3Ci7kZBM(N{v}K2C@|=5u zZ!NpZkd|`Vf*)NVXFqlI1PA7$FP>2{?hVoMcHMcL?T^D0isjEgrJXrz+TC+e+svZS z7WaUzt=$cT{I1Foy5Rw#U4Cy-hwA(C>vz)ysMpmFLhduPMm;!60-T(~sthrz{Y zBDg;Ul+0kwhw7_>)i+06O9%RE z=rBaKx<-jswGX*+93`5B288^?}!aL|ft@}IdUPhS35 z>pNHh9>QgqBf&BnZjMkG+Ch|ki~}!ETHrQr$!N=x7{1BSwl8d<1_wa?$3~O@P1ZXu zjC@HkTyZk>I?8QRX*FKk&X{k|!E$qCIWOM~qu{+Qug%kH%ju!rzeXr{UJ4 zQ5<;&d^zm8k0oTX!JBwrr>{++Ys{R1N&(;v&S>yMoh0PP6q^a!RN@*!fZEUQThz}l za8zc18y(cD#+0=pqOD5wzp;jHkznSXa{G$O?3k@7T_+9T`?Y~PzzPSgv$0fe#wbpf zK&e9O_Ve&UxuJ!+2B>@U2&{Cd1`|w5WhF%D*LVt@)m2*Qa&K${2muNzW2!Zoj-RP& zUTl47OtA2l@1+a%`yv&7ELnMp$TUnZsI3zPbg$S)6TdtJZinES_H&OOV*&(ymBLRe z9L)dS_WRBX7i)iGY1y!ya{aJ|5w032K;%ZelrXwoXn1#!d&Iv0#ZcWbf!zul7O{VXBudf{1@4vs&hY;uyctJC% zjl}=qJ%MyPn9@rkospc? z+dm(lXuRBL>nJVSM7tMhSH3c|cOq=#A>oig`gd9&zqlpne!eAg+&r?Zcu$+icVso! z2J`vez)^9xVdz5cc2oglk3gRuxpWY2{%~9*{T@oJctY2_LFK%)^bc^X_CM|i%5a&6 z5KW7LtEo0+KTW6;G_fjAzLGzH1loLR`gE-6P_x^#&CZsOQzJ(OoX>yyr(IU>j!CEb zCF%NmXRq)mf{sw_R3Pi|m)2qYH2eNZy}K5&lG2_cm zsAROS$d5)KD#y2h!K=Miu-zA2;a@hsn~(XhL}DlSnx&l|4hu|uOBpz{nP46MHGF42~ihj zeyl?7;pGPks-sNPA(2xF%J#!}Tjm?%;g)KuZll;V21e^#TBNRoBt;^%O;a?**4_Mb zn~d!2*F4tnnv0^c`FR*ptDUzx=z*u?0TQKQ}G<=lSR*Y!6WRr>un5LdPeiJJGQh1Tx-dxaOsN z*XrHoZnU!4=FL#0&biv=m{~ecosD~gzt}m_r8TY9)~+!)9~!5bwvuWR?tV#Ne=fb; zXlGT<5cd*dd-mCA5<`G$KWfvS*Vz=yO$RpYH2&V1=EWlW0lYcldVys*7AE)2;tj$X zc+@%E$Y54r_m&}Xf=L#|E5DaPy4~3+;+}ecU~w0bnYd2pcrGVdQ904O1;uw5ZnbHA zIA7$Mb43qmXAo}@&t&$k0bSRa@mKi_D8HU0Z=9+lvLu$ibgRXMGic9k=A{7jm1>!t z5DodhY*^#`ko@B1yZmvA1yjHPaR#4Ey<1y)xo2*zrv zfTlIcs6huW@PgK~26=SRo*YpTr#{FAY}%uX-R}xp75KW#OIxq-nR!jP-YQ7B&{6^G zL1bu){5iZ^mrgyXyt*lR(?Z??@q+67(A&Ya#o26_b+X?U)duuN^41+62AYF^sVnUpG z7K6(kEirQ^8G+vCraSzm<8Lla)g-S@HE(7vF8c`33=3bH^9fZB&{0OXm&SaCHs@qY+A+I{bN9(v%%!;&YUB#QA@}fCDi=L35(UbaA&6NFaGQIdkB}ohU90jV zK+E1Er^it+T(^2vRH7rRwgp`&C?&CC=gf%=Vr;*fWutv_r);P(j|E*e)@kW{>&Vk< zugt6c=k1%svq=Rw?;Ov$_Wk#BmF0goD$Bpj8rf@G z0L^k(x#c~&_koqLuS?7MT}RMR@z6;M+79)-iI3pf+3$^Am;u55>D|Kp`|7}Ve0Woc z7Iw%66qUXjSE9RjPc%ZOSK2vtt!G3SoYBXP;9-a8<0;DhZP)bzebs1UzY}hBx2X== zuys0ALvtOY3#@opgoHgVvV=3|xpf8=dGwqMS$Q3`Gllr^LE*-E%A^4!i#lFY z@?lTF9EU(lxV~{o3S5hH315s1E9;iTn)5ll;s_ly!--9-*WLpQ?q9{&d~&V!(y(y{ z=9mudkcVE!96R^4eU}gv`(b;*47kjz|Um+Ac1s*B;xm&L1J<#pA668z~LAs*J3cF+CmmDNhU=j8H=)TnL(9?6)`FSn)MD?kgiZlRnu08pf3*Kq4}`t^LPz*Lu|J+ zQN`v2{WwG>z$zL$Y3sFp+XVa4m|=lkNdo?6DcM*ajg@BGr>T+R(c1US5zZ4fWo|<@ z4r>o$(=^HMo~fSa`?Ck)nod*c<5qcg%dY9vZ>HF599qJU_Tc}=0t`ZaH*%#@6`@~@ znYmoqE+U0--<^}aJ=JpLRv+in44Z2t&&_u{mON+DT`rhE|B@!&_I!Oyj3&{R{tMh|`UoV@KzpZlnN`uUiYUv0c4y(;6*!;|Fm1L?Fn^RwkfeRt2@YBUFQE1Wmu z25YEm8{nN%9=5=7qrpR!7>CAjrFWe|)5*aO#Vh2i7+{g__b+itL^xnmSP7`UJo!Nd zk12;|-1)ITRnt~4M#pw)!A5&m#wUznI=0xAptW27-N?ReyIm0fD|Kq~;{MrEr`m1b zZ8-s;9+&j$VM|B>KAfhOilY;Zl^@9@n5q3Dg3+O>$5l4QhL<+AIwrGk>1l0>I+|NBvDv`=Er2LWjh)IyH*#DbxFrHNDa6+Az|1M2Y&;);FDe~kyw1Gqjy_AROI8%Gs`@JJfFsw= zJ@MseUm*m1d@FL3=P1$Zss`yjE1@Y`Z(srKMON)2SSu1dFR|{6cd~1jkm8{78E&IS zZvZ=o8Yj|i6xix2Es*-rgMu`%mo!HZr3%IP94bhW&&JD-pi2(Yb5!|)m2c6aU(lvF zkxJ1vhOq0viZi8v+{#(!P68hIhUbKT6fR`8dYRpm-08R$21$VC3TzwhCIOexHn)yo z0<>jy;LA^L<=2aCm@yNvfQmMU(PaWMvL^DEu$N{3pNCat6Oo~mAm z(@UW*YPrqAPas1nS36E+cG=G#kG_I72-6;&huM}-SiG@S`g;PY8)xG}i-#}-8Xk#; z*02$*K5*zPg(aU0kRDbRq(M^k-kT$*LxT&nQ5C4HTP*_&=M8eaahW1&-|9fM`qnKw zn*AEso#Xo36#b`r&GvBw2Z8(z?8K7FwekYzGUJA6X4xUk$LntortDtQ?u+E_4wtd{ z^w4jVgnn42LkkZLHYz{qr43yn$#g6VtPT|s8*WB}b2YvxGE!xSO+dP}rwNfDN-DBh z%!@Y-YFl7e(wq(bmks5U`-TBVnuA(7hcz*kI z5|WrnOysUhNvwhyJ{&l2URqGSI}@JCK~RI80fe8X>ZL{|75dW8hJ!;T3X*nayv9vzU4Lh;hl}WD1Er4*pEY({hL8cx zvY?Y}>xlXIckM^BT=dTZFzbTRy2w7r&sMW*(O@=h+k|fAcK1M)KYc;d^p?ZCjqPan zutQ>fI?X$^8Ld2Z;S1Qg&798~ry>f}DZMv8h5a?w0+4uW-Z_cl0Lj9t59dx6QGfjJdu=9~!Kx&dEt&l%P6QfxPiv92L zLTLDW=6WUxt2VkA|3)qL{pp6e(^p$rYn#^G)$o0H(eKF(+sS{R4(npge)BtEO~ChqFKdk#CoDDA8g{~T%w{Py^u>%=9dzjUW`C^IJ* z_U5H3LzwD7x)=bq18kr7CT>0Ju75a-QIVU^A_@Vc5QGxiAQC`LcKtKe?#0$EIEV-f zWSi)_@UiAlH8@MM1Djm*)68Dt2XGh7o$yOCHnwCv@6sOdMIt&yIir!*$n;`SdaEzIbrg`-c^q=)hDkHH z_Z^;Mh3)sbIRUm?gkT2k7JGY0w%7AV)i~+TGENt#xe5Mpy^h3c0^NZqZu*sMNSR&R zV$$}d&DtiQK>ONcl{5P8I%0l2^C`rMHxP#I$-fB2r`)0$OK`#VE(Qv{eb{nZXg;$% zNUhML@SN|<*2gGb90qwN|G@*AIO46(69L_M@^HWGzArIhYJ<=rt6egzMfM~`V%S+C zy!@5+TBE~cR(ZVi6Tb91Z;dyWg|GEGpA6Yz3R)Mep`lLs^dc%;vWEKX96wa={6gyk zbx%{kA8iJj-Xu)wHrW>s&8wjW4ESeEsReM$jJR~07wZfMP?FXs1Znx$@1wMi$GAHv zPbI}}APaH)1Tod-JjLSsQ%m~CJHJ!M&ZATA4UMLR~cQQkQ z9IY8@>lIL^>UjVyPFksssnZm>uUne7{EH2FuE-C7wD*1x1Iq(l-TLiAYr!Nhva8hc zgvs2bRepcpt|djb@u!E}K&tny%{32+dqA|8F9I>2CqTWwau}ZLHoShZQ_GB*T2;j4 zxyq*b-pB&+(GO3q70X@xR0@+BRPX|q?9J}GisOgANEd=9iq$zdLdGGMS&M+?igd;@ zzo3RGnZNN|ez$GqAMJ)s(p_-=e>I(TSd)*}#(yG>bcrYk64FX{qjWcnMmje@Vj=<} zARwKiyE{fnNePS`4N@E3UGMY#d4&Tg}{XRd8C6#Py3qZtC7ejYw@`7fX;}u!Glc}sVjPMk*54kw{mQQ${O|v8M zecXa12?K+;Cs4X5vvC2tDR`AZcD!ja224F}3o{&ugs$SPGc52pQ3LYrE=+jZhh#uY zR=zA4SIPD#F^+0wLsl@stE7vTAYF`mJ-kt__>fpl^KaJjKOmxg0__(XxlK{ck8a6M zlof9Xgz9JB3+;SN))c7y=?EM8$NahO$Iw3o-Df;`R-YAu%vAo~ZuW4zt+TShveiGb zGw`~G65IATS?V`d33+kLw<;D%ea5&4QJ|mt$gn|1e@lGv(}UmUPn_NyGFF)@Lddq+ zMW9{UXt+3v3`!XU40e_$KF=TW0Xip?bEG)GF^xPeKnQUK0ZEgd$7t1p0RtvnF~>Yl z)Q5W{Id|^F{tLX??Xww# zXE+t^LYVM!FQ3oIrrUzar&BE|z<`i(At6gT)l8FiRJvjy1*V^4JlptWx?OA+vuHTv z6)4+oPU%5>4WqqJYL0{1)>Y*-O$W^-k^!;bbbncv6mUY^hDH|&X zNNP-RBl1Fc4n$QtMaqDk#0GVZmA+h%Csxb#$AiS7>qEJ&B<u=(P=o(s!b@Z zWdYqwE{}E1W5x?=ziP4mC>NU3E7u+Ij#%NaP0C z4OSkx&5{jU%=Jknm8+?zCzs)oN1yNlHE6f-WlMSf#p8X`VB%(Yej?&gs&}A!NSC3} z%M*M>%!)Yo^JV*^ummp#T_&PV1SFi8|4xq$IRVW|SfYWj*Au8U3Fh$3>Ytq;Rt*;J z^}$|BEWh>*EaoL!jQdUn|0DCN&qqaCu6G_&7!T+ZjEAE&jEB`V@h?2ulxVPQc2;Va zTSg{uq;-+A+8xDKJKXurzPdw^>s(C(Mg%~W((d?ati{5k)EY)$tMBwiwhF?E|<7r$fiS@?=CTBD;++# zY0)lYubus|v-b~z8za%7F3A+=CCUF}f*9#XSJwJNZ`|T;7_!;t2mYm70|D@a;J}6S zDdXfT^?oa&aIY4nHH zTdV0_pPEuCW~kKLmB2yxXVT%HHYGLksCzy+d&g6-kgCdp@U6~u0cUVTh-J7!@)3b~ zgNlS`aZhX{yuAeK)6{QGszMx#Pnm|JUO`s!egEe>+SiiFZP442fKD?;R1O^=taJ``(usQFr%lwAG-kcQUW)zlW>$ylhLLgbT~H?7UG*Mdr8^rW3C`h4WtJsTGaa=hmkS?og^qcz+!#=LvBr4oD7Fd z6?;9FKg9wU5-V6V zT}q$;JcWBJq|tUSrUnOe_^P*}n8v^&E#wK(W9u00zY~db-E;pJO0K(Y7Gh=hUb%l* zbGuY#J^yJ1vUU9Zc+BXrCFEyxt`p?tl6AancFf9_2|7U*)w)PNiPk}9Wi%G+3Kd)+ zqKt62q)kv6=ZcquG=_!C?Y;0{J7*a}#5&n34hR0@SG89szn zGBY8R3IPhY-o@;bZc99{rv9`zlMIxd{Eci28^qi!FR&lM--%GDZ8I#wjfI7zawm6Z zsOROvD$f%{^cu*S{xWN4MCJp+1lE_^t&RmCv={uRyC-kq*dyCmCi9J*)BN4i34%J3 zH+)58Cd3K+oB79j4|rh{s(TY5Y@#`VmaDNnw*!QrVtT>4TuLnX*8mj&S!WM+)3oO@fFSC1>^^(@FtzkK+V z3^)-9aUr*uyswb4OFJBh!|ePXV?a<8x)?hLLFE2p^?0Fl#S07eul8WglpZ0Q%x zDqX7QsstV2G9k*oCtKEruyaoZ<3V&X<1JW&T-nAeHbj>Ess9rKC^I3Vp%Qqhio(GAdC?aZwv%_c<(=@GeKb8i}$!vVNnB@++KE= zC$}XRfZsrCf&tI0i*zD@v?Tg}?%@Yr0sJ^OicqoeGoKIH>1&Gsk1#Q(=m!Rno>;I4-8XR*9z;2+D(??$qeY$)b>`1N z0Vu&MSJxZ24Es4cp&f@T@M}A&z*HHgV`x@<6&EwSM>O13`Rq3aY}o5&r5aF2FK1XM zwpXy&Cc){OowO$uUb~LQVhOwF5B_RoP>F8;x~#;&!k1Oocw{@fwqQ(gjoJm&uL=@- za;OVn%Ns|oYLTItwt*B1!g5#tU!EaaqXvZUGj~N`V>0)eWALhS52G*~P+HV)0Wyfk zBS@VL<1Z%DBv|bZcke4wraRs=pK{!!>am5 zPWW%6{u6`EQoHP|w~kVUi8GZ*1P=ZXiB30zRdZaKC!}C)m~m)gmI>Abp#y0Ys5Zhu_K7LZ&5gIa;Lz!rZ8zh)K@tJ{4jcxWNE<1 zJX!ph?bLw*V;!|UG0kL}49gjRXyHZ>hIiQgAn;;9;N*;B0~v~#fA;>~_Yd3PD$JW; z{4+uOl_OHLIavCQ??aV0!&rfIUyM{iza>b8PHa5CN*NZKBv& z4u?1e9kkk2c5bDgIs&{~{JW~7?h8{a=P^Cmj7^}hCR(5#?(1k-6e)@y1{YM`W09c> zKJNjVGpY{~a8#yrHQ+;b6y{HUge;0XA~vY{cYS6PAi+cRsQ)s^#g?@uo^>R~f>^KK z;AOuPWxq%E+H)d+QOYS@|F%OeYzoHs=%leKjAB|50K#Tye3WcvJg3y;XDU0|v476- zgDqR9!YiK9iX6C*B+EVf%odWeK{tVNI_#;K>? zH}l6-EK@!WVpPO(2n^o>Y+yGb8s&*!zt;V7Bz4n>LODbVxC>AEf z=`U*rgm2=lJOe&Ugr=}o2&2J!Wz&MbX`aml%1(bkhKo z&loUyU#nl3ersQU0l|!Xh5<1x4_AaGzbVupS^CJk#FQ<4$PjDhXu*P@^j!wwuk->+ z4-m?I%|aAYMcssSP)vXIic3MjJZtbTX(Y2K^QZ|XqgUqG?)-I!Z{4gQki|p+6>f*i zXxW_YTAR8?2J+Log&Ng`ft{aR>sG)*#?G9>%HpC3Y7h(pT5x_v@|Xi78<3HT>FP z4B`e>-x1viDr84G&C3{+E>-}NZD!;~OW@67XZO9k?bB#|!Bu%Z0(Bb70}xWjxX82I7$Xo;dE>@Uv33B z`*_Pcda{NCBGIT`-)g5+`63;r(FzT%%}SPWlXFZs3ED5z|NMy85n@9I%H)kQd*7DN zGW&02)bMA@LQv2l27S#>N#%qN@_3Mq#`sotKz~20G zruBQB{fV%YhM(H;!=i`;O_wiP-tx((hoC(Pwz6K*t}tK&_tRE}g@oM9ohzSMjNwqDPn&0) zYel9HatI&{<8}~$8oS}-O}E3mq4Luo=KrymG!lo-!G&->|XG3f!d^4rIzG*n73;d%xR#x)me7<%FkW%jj$K?{y35v*gH0>|+ znE(a>WK&|DCsL7tZr%ac>%lh;9b{;342p1Ei4XbQ0iCg^!@4#$AG<{PB9OApZqf2Z z{B2rzW3&?G97`3LelPTzRg9^A74|$n?vN^FS0#E;I+c zX8Zv%$y+IiU&+r&!v?&=l=5jg|7pWkt@atYr#_Py?aK&H!wtw>W0iT#drN8+%yz$| zG>)I5YJ~iW#CTChLk%Kr8SjFrtv?-O&41|R4ITp(@WXL5SULY~%g;-h_wfyueP(gM z${KGPpVo!@aTVMEY2L~i+~>wrEq8dgQ^izp0zK1h8UcPh1@P2D|3GzoZ&9UOsUOmp z6+VFwEI9jMFbIbN9q}_c7Z!)sPBMWpjp`{?;zQ0KK2(m#!-2Pb)^3&6;?=Od&;#TA zezNo<4>jueHWqxfbR=?j;cN8Il?9O{ED*)2zH@Td`|55Uk1t3a{96GuvRc@x+amSZ#y8n?Ksy;s6fm#?~qHC8FK?I{7I^ z#)m|)Y4|PcREu;n8#phsU3HE(x%Ko$qAH|CF>Rs45Rdl0FARm|5&y+s)oVSb_pgRW zU#^XHXAWq9Nfi#vA)6=AL!k3Przn*i7q(vi&WxD;&eY(Q+0+OrF|rstZiRo>PRU2- zi;4k7=$DO&nSUy4-|ewWMYo%#(f2qdemph?4B#s9=wQ=~tl$53-n}f549^o_^{BsK z0`^idlt&AP$9omImj+F26?wpqpP^LOMKavPBai-oaot3T=LJypA#ZY-U&dbGn!3v~ z)}DVOLD##fho8<6{94PH*wPYrpbO=IY00MPNcbZudj|j!dRl!#Jm+JP(2MZ)_uo1U zJ6tjm)G;A|8~iNA-E!1c1P@FJ$|Po8oB#FNR+zN6;U8vx6w_-jCerOZCA0h}76uo7 znvy&=McRTP@A#iJPLkc?gsJP>lI6^!4wvGzbKEk~!{sj2cn|=Q83dr_)2@8V_JhA^H7TtjTLqj+rC z4#|oDR@LC0W4Q-ON`{%CIB!hBXc(Yd#{spl`*KLI{LPiHF~}O-ye&UA#kBI_5ayk; z|L64%tUhY_XG9H)?k`1pCxn9EE9HJCEpf9*jE*R?;YoCAkC!5CWluwnD8o3;&M$k- zo&vaPHtm1mk0glB9tSv=%pA_XlzLVHOvs1C)=Xd(?!vG~Ll_B=9cS)N?=RVYxXEx_ z07xRn%@%gV8_@`oajjyVkRRTq4wrL+mz1ar*^C!h86zC@ihSrF5YKWO{LpuD0isZH<2p@ z2OVHjZ{E93sbHV^Q?Vv*!{w71LAq^a7)vAM+iG&IhB9P8Dg1!c#o{qEDO8E2Q_M|2 zjC6tcjot@}fyxZSq|LVy4*+IPKKV)??$0`2peZzgPJfGNFIxbHEykg~Odr=CNHi-J zIbH@<0lw9=Tr65Udr~PJ0`%wPs>o8H#Z#BT)JF0?B+E~NG96OwFV$Lf;P(e`#mf>O zja{M+U%Cig)+bex$@Bj}$LbiMP#YlgH~$$Ts!=#8c~h#rUU`t`k8D*b0m>aHO@f6+ zy~(N})dIRc_JDajnIgPn085m5dq`cBc`}?|4iF5~QCql>8__PH+XO&2if%t)ESY>K zcwgD!=CyyHY9SlYet7MYyXyc>6;DR>C}j`7I-@b2)Isq=T{EKi6rD1jFaw3HVqy9K z*V*4B2aO59JDNsm07qMKHm`1cz7EV{U820#3Gu!t-TtD>HTZfEZqlqoitfn zK)uY3zjp7uq%99%f;?Lo_fK@tE)f8822-aG2ZVTqsMhjKfah*&EcbM455Ci%mn?$Z z1Uu(yFm!H4hr=FZ`x2-<-$=M8iZRb(F@!_d7Li<24%W~=i^f8N$ftN-E4NMr-rP<5 zbpw;fWZP7iQam)l z6-VBaK(A@|=0br{~Lc^d!P?*P%0J z(*lU!I%DpS?+T`_hHIKHU_}!SZ(xo~4sY5&0UZDX?8J<36U|zF@FhkH8~y7F*Cvim z{On$gh`PUa-5d2@pFYD15VNH-S4-(R9p}4B=HR=^GWc}dg2oD9am5>B0@_r2^|&V; z$nUo)teD?w=T~`s5%s0P_VWa>%mT&mHx1T`RUMhD)_lr)%d$;|3+tU{PBe#6j1pTmtoH;ME1<*YE3gAnGsC}MqcRz%%N9leU_pB0wM=K-9S zsevF-kvr(2-4sf$b28+IMQ zygB^vcfHBssYC!By@XWQinv%L>*(K|ZE$t=2Q;DDoFiF=YE1kBU_ML9VDRBqhrmw7U?roK`n`CZ*QwvrlVlf$yPWXWA zn18lkrncOcuj2JzCbjF2=Giep>lbm4`nrgL0HUw01)r6KMQN&C+?|9(-AiF$7bCbdtH9;OnnCShYdDKSmZmusF)Ei?uP$S{?u1q zFzcf{SeOy0+Cmscm6FVzTi?F+SpGtqJkP_RjKbGzIL#LcKYeSuA0Z0?RBDL1jPs=) zblr4C0Ht*LoawChb&e3W60`<899k2A1W2RaE=&@o;L>;0$OK^xI%Tp!uv`l3zj=4E zWRz)kjOLChi6T%(as!VFW=tf2#BCW_KiEXu{g`S|_%F2(_o$2n14`7`$P&=o(ehF` zeR$s6W5Nk|a+xR%iYv_@cj1g1I%LpVlF<0jw`rWx$2JVgED>6gTG8`^ezR3gx%Ym= zq99-|D!oE77(-%R2(jB1C5fZ}HXk9$b%o6*9-RyFK(&y zj_Au0DorMfkK)t#$6Aw|72Cp*kz0N9NJ-W#<{<9z!*L`-_yO4hT6Y^Tv1#|$kt6&! zz0cvUqT~K{WbKpW;!(?xc3OdTBHf>Yc>(pLn|Vy*yIPW!Dre&_baG>67@YEnwtE_y z1$85Bl=FzEzBVG_Z_0cbfwb~V4A~A9(CX+KL;t$eQg2-yNbnK2>?FelEx%Bu(w*}L zU1fmEEu_H*b!8cII9&Xg=|9~_y)K&^UG9bgn7pk}T!VMoTNU+g+$0WQhEa!gKowyc zQA$x!7u*aI9#6n2b(AXYahmtl^N-d-e)+*V3U<$Cq0Oz7h;+-KUCUto%Vw({4xSe% z^7F1Mg%OxAPbPW(=??Q{-sR$2O-Ko+z_vwG&g^votzT0xj>7 zK{i2)*(4v%nhcX442ZMMDyeiw31sanQKD~R=?t?Y9es$C54_+OLYOzJ7%zfz2+kXT z!emy$-iR;ORoQcw0@$f$j;#dg|Itr@zWC=mMa;th_{`(v=;guF)|)Tz^5Ep6Sv~67 zd#R59)J})9hIlk@D9~=`72DxW_MeKJ?Qa0Dx;+QPAvu-mD#p59*8v-d(R91p2Mj1z zPzQ!U;wa$I;sOq}QUD*2W9&$Zf^JpL)Tq(kpzPrgIQO^%0nDHUtfbzGj{Mw&=~qk! zv+;Wu%WVU1A~BfU%rUJph^yMY-oi3H1^Oa{q=H-v$DiUu$aa~=ueopPxyKb=z*xu6 zB_IrwLMj08i#RndjCC`Jl@+h&%OdL*4?WyWaJM#oB&n}a8nKq%v0C${#<|VB{4wbQaF^6*(v`lX&%DYiIfae2I zV}33GmYjQPd`U%y)_J?SC?gXY4aLV2Wtu9GPcCAg1eQ}!1HF{PV3!x1tlEK&)QNVo?deEioy|Xk%0k^kR37Cvq#q-w zJ*wUD{J~4JvCNI*ovDD-+&j8D$DwnD0>W*-J+UNt>(8P!gJWHc>1LjP+X>9#UM^S~ z6#(%cyZ2oj1^mJ`j7-N>k(h75EdGA-q(Bx#$)}}{nUlMKhtMt$XPcKJMV-(9*PvYT z;g`xCDnX-w|A>Fq@)`q1hMv6gG7kdy`ToM=jyxUH>;=XDx|Z3-gYnLw+JM{-a61ch z^Z&7T^vkI3uuHX7xm%W_u68B_Yl}Ux5|G0Ne#G))t*?j>2kMv=Lg36_04j}^cdQPT zj5=t-YL`ao744_AT}@*p9ZNz`^{U_juyWxkP|h|Le5XKWa>%^9+Yn&}fM#`o{NWOu zs9>u1JA6fg-hD_#qX;}&#aF>hW7|HQK3kiItDIeN)T4Se6T89dTI5Pyw9N;^EU_ zrZF+@<9wisRDvKWNtnj0;Z=-#q?A20J7rSP<}uwG?)i^2gp!` zZ>hsinewBV-gu=j0nOg=?k*vjq)Mk}<2Ik;zn#68RR*8_eTgJTNuG%NbH2(reg-Vy zTQjCc-OK!TKvyZK4V5ws7Ncay%hmtg<1qbaE$SzBXF5i^}_QJ&UYZXYDyt$0gu0Peb>jktJ6!05hi6*0=i9eXn2+!;zdqwad^8zsk zgiK?@9tFvm@D8By3bu>f+G?rdr%v2w^x`g^@B8EXq}2yD`1*bi;4-5FXFMSFT$I%n*5-;uav=%|Tl0NKabp9e=+Dd%2QuHVHo zP@0{Ed8qVMeY`xiVvzb;0JY3X8`D#ZnMtatgucwT%3hC*h~gZQ6<(?sU=eV?8su0d2;rCv6sL-w1%&@s;>zAltrK9sP** zP1{)mvuNmMqHMN-G0@yDN}{EKcP44-kdJv|KY-ERyiTMn3izRbM=Z|+G)wokM6`q- z@F1QRj7?Jj3T>hMis1_hKpHne^!cIzIkr_L6===S^yTh@1AVMnqJUvK?e!MO3@0|X zVakA3;irLnmh>-_*0|}E>c8b!iT>z659S3nMFb${v++tIx5Cw>7;(VadpR=g+B$ zWN)6V9#&OP{L|AH4G_ZAHyT8+bI`CHL^wV8g(d=v1j|zn3CF$MBf|8bYw_Q$QV>Z;-G`IA{W_QboF`a2m0exTG>SR8;rs50a@kgLJcz!)8qN+;yMBhR7m)%GJJE zhhJNoTj5RS@oKK9X*DWc8qwY(;5>h#=wN0sIC4rXuY4*_pgbwAa$evO zT@dn@Q^n!gAAS{wGu8%=v`}T^b$%7rv_d0nyYIIAd(*iilA&%;}hMcxrYBbsCs(C35Bg9E{}3tA}A4;D5Rit|hgT_?~P- zx`KYIk$hr0tjyTLj)QtO)l*1JZ|9RGGo5$&Y!49?XEoH9z}a9%++P5i3FWX&YNwDI z$&AVT^hhSq^Kd-$@^(*;*q_BaRsyza32eU_)R@^f94b1PuEEUpK2d{(s|J9!{EowW6{vXe=zukLd+T_;xn1#ik$Z0BNrJx_ zZw=c}Ae7sh#GV_O_|MVv2l2DiPW7Yyo!#QGp+nYAA!t;mlA#T~iXm?{@ zRyyAee-W}uy7#_%c3W{|bTNL)w@bul4ob>_tBR-IIWBM;zN zirYkToxS8}jT+)tSyqQq-s$a^16&ugu?wnV0qG85u6+BiJt7@&ex!f97fQXDC+zCj zRh_KaZyj~^$C_VOD%?-CnLohearS4K1@!VgiB{Mi>QZzL=b~kn=Kx&W58MyC6b269 z_Cmdy_#oBdaD}gHxoM#fAjnh~Bu48&>#7S%Ki|9brwDJS@eS33M8!U)HiAPO#KM3Z z#cHQt4z1WJjb-LxW@Tr5E_U>j-WR+;&#$^r-9GwLSQ?L-)u6HDWGbs#wJu+IK{Nqz$`&4gz@{809?O-YM z61#bW9aXb(>-orrplfZy$qwBf=bMst%@JK^lTw=F=Tc=U`@TUJ0nC$`RY$1EO;v(F zU|UuH$^?h8q<8ysR-gPEe>n7lpL}loAtg6fVn0U3yHCJ!CvkpGjh{M#an3hSjX!%6 zyHfYV!5sI)`^k=@>bI8j)HC0{^yA-Ms(1P;iA-k3>%Q9;!CNY`n5X9OLT7o1Og1L$ zvbI-Rtz`wWO=j}g#JCK8lDf2F_rG&u+Y@SJsgaWSH6TfuIrPBHkP2nvh;Gja42L!y zJzFsI{I<_2`PV!7rKSIHOdWD4rtaRhe>UjEde7q8V>Bm%e9ztXxtO-^w^wDNUC{=i zHS5!?b9lKI6kziMs&1dW|I%r>T|j;!!@vPI>y2PhHXM|vDTCrRX$6q;h>T~PpB@=wEBSBbft$!%=J}TdFPa+D0oxV z{D_vNno~k$oBng~` ztSzHjzI`|K&Sgk`a$ViSHqrwgnT-e5!leV6-Q#MkS^R1D=~*4YHJP z&M7g~Ig6Uc*-a$2GQR5~p5vP@kX02~sFAai49kMCbP-d0yLQT8$F73lt*a#w zDzW?JAGRUODrXFnNYB}sT+_yew=phUL(~+gx(cTwM=i+(ebe8KCe?Y(U-#d#*@&q` zU=}Di8#ugQ02y~*BqY|f+ip6W`(pW5v_-rsFSiZj*qu8r{XnH}YggoGJU5p{M5Tos z;hwpy;UJXbEc6KJ6N;+IFZ4*77w?+bLmGWw#~yZUAM{*st+~5k(?>{-;ENR+Y4!7S z9Hdw=!zRn~ozfD$N2+TpY4i{JIm^&gy53{8?4#mk2Mk+=dY3QD4w9-WMnxV>y~a5C z&@gL(_S0R9=;@1*sz~^QuRgN#_YU?<;TMabX=1ohFf~EBB_hIi=G|NSm!=jYa>U=# z1&C8;!h+GR8(o7CjicLx&17*)7YY8f(DTyD&Q}RTO5de*Re4D^K__>5h;6?0FLWZP>lt>~v*EJwjL(Mny^Y7g8z(eZ*Q&|Di?*2Z zuBP^ZmjSfwG*2&UNO^G%-jqE`)}miF$2bqJLN}f*e>^}yH%Nos7~GCrHVAp8PQsS4 zwcbJKL*?9d+d{i@!urzRJ`b2Y+?|wAdiWg^D|Pfi^W-Kl#3ydCgP!qiyOjL$)6=IL z7Xg8UW*=Q+WSg2tcYR-7%d~{uWwx48oGr^)9!gN0cSKv|9@0hJ9^~d9ax32+`fAPi z5Hn0Zin8By#zZ{OXV*UZ7oV(q>7K9nQ#VHrNm>bD9-L&2-Ck4bUQ}f}asi-6fsRCV zL|Ra5G4y{s*oV2UM`qG(om=dVIQnhHG^R2Fc9he>ECRu0#WZk&FGQ8O-ssA&mB=Sh z=#A(f)Kk;p!*#ET%j9PhW4U|~;s(*PFAZ&DWB$c76bL9sDfZz`r@yFLDbAtH>TQd^ z*%(dMc4wqxuG=&YoOQWu$6R4k+JgPc-$zTtotpB=kzds#H@oZ>9s3R5CLh#Ci$iMI zEaSamqIrA|w!P>G|0$q&=u6-rqqy%&&L-i;*n;9>^6CujJrIhWI%gsCA_G?H1pw_D z=+ETguiO|r?$vr5Izwk0g-9oFtmVbN{ItJKZ=N_|;TE`mPW>YA=jplIDr70fJ$H-n zCHEugMdBTa7=GYagWAp*xBM@}JS-ZJMF;tLNz`unX{gy z3LOuYH(h1jTRXU|R%r)@JbLUC-ZgE|uaCtq|IT85zzvK$dUNNoNPHYtBlVlU_wIk4 zKIi^dFpiaeHw7p$efyp0m(z*eD|8?7c$}bWUFeN@KRM~;QS1-@s|MgmJoPyqMjfsl z1Gf)#WuM1VDQ6+|I>QL{O5E>FL4}@EPosp_zI%V}B3>XBa{fql zH2cr@ZZXz3;AmD{65>omFDV*kF3JlWqGA0p+^f{loU8Z1k97dcV_#(kdw-^yml=Fk zf6s>?`YSD_s46F>n7%Ix8A<)dQidX43h_o`*UKTj&<))|O7=KdjrZgTVeZ+BRtx_T ztOZF{Xa9bY`ONq3_Q5c>ikRPx)|m4br1lFRvfGuP^<3b;$J}r2&0ZCIig<`Zhh6M{ zv0q`l$%fWZ&kOkjHw#&A5Sev|tbYr6W0jBWtshQ(mC-oSzB!iQ{Zz+1_I_CfqGM-u z*39$wDu=f{HW#8pmOt!Ia(Xt~teJDjACAr4?Dpqhd8UI(H+|dNZhkI08K^&Gm`S<$ z=THgGI~z#yR5ef+7fSxm#4#sSRid7YIF@=R2P>bnkva{6o~Pdr{ovj)g&Q@AxvwH$ zCuQy$RJe9NmN-wChIKafz%1t6Ye0KEi!3`PSYhiYZ}mJb>eoIl84kaaHGbBi?@nnl z%wuggqOeyQ`Mcx0`%8P={(pbK!t)TK{`9eRc@<&Sa*>y;z+K&8-wY4=Rc9w*l&KSD z_recF`TCEHwd)v+VmzMQ5VP*S%HfP*39Z+;e!1=iLih$Zxg<;el<%SAKlWq(^%Baz zaXn&R!?q?7dLDU|Bh2)y|BVMzP&|L!*ZgrN^%Hx>xPCGZ7f#ZWbtT1hrZ>QU4`P5n z!CFaUqiQDir&qv6-Ar!lTvvU@Mzofd?-v-RC^XQX8kAu|GcYsQk{F(`U^LJUi)vdi z%D7vY8^~g;Z5v1*lBMg+3ch2DA2SlU`rrQuD3s)7bib9nq*xxD9+Vrem+Is5eVaM> z@mTdqkxd~4T4Tu@OA$t=1oN6-+M8$ zqsoN!PW6h7i!r27Wm=n9OGW-Sbp+GJ-pCxk9IEMq7rOqAnwus6kPQT0#U{ma?L~Cw z2crDVyW`CW+@R=33BS-@eJduKH50kY5T`dnfWLg3nbxc2>)E-)(-@9(91&pmX}ki<0W zartp&^!|IJ$Fj%&q)Y`x_1`|j4tk=XDOGA6R zIXSISsly)_wKY?TC@@X<8I-9&NZ{2-6olcKKI1J zPw&`evm|uYFxgx(bM5;yc{i@HUn6HT6VKWk_|@VaqZH#y*|;X;jq`;jEnjGaZSOU_ zYmddBG>lLfFE6s^q|6;J`=K z&ptfmA2|8(PlNtyJBHwJ_XdUK=VkVKS6o9sv`8w&3}BfOjer$|zM^k#pCt#JohVct zoGI|Yl15Y8ro`3@l2f){(6{sN=h00@PMY~?oy94Le@v=Q=CoWP0{sK`8WuXXO$qc} zy*L6s>lmQLVH3v?cBYiiJGii-=n@y04u+TdbqRO}`sVxnR10nTg2aq0lzp#A$Lgzk zI5j%qxwBF7bEe4WjKgP*)O{rHm)0oGRl^AREd3llOr4MZI6L|K>>Si452d#C+l-T~ z8luk-9-x_Jido*gY3qeO8Pk} zx~mSQ_&#?Qm7giUxOfgsS9sPFXi; zNp}vvok3|eMLWjo&Zp4K*|meAL}qjD&9}dTKU%ItjvScp`$JHs z>s}JtR3pusoRTprqgGNQGY81q>-DX=p-d^Z*2wF-nM@Rq@RvGZ1=Rf_?VL!I&kKJk zC=LFNe@y$WH+wf*@{4M}bUALT^kY5*ce2IXZtnL5ZcORA-_+P2-DdAwrz)$QwArn5 znJHBjN1{}0-`N%5|B)|j>nS$u`eE2rZ1_DhY}ikNQ~%vdZtJ(Y-I~QeyDVs)29e#+ zsWdWY5%rTpC7R@OFPSczoCjj@3Ja;6!dnn3Q@6Zl&CAc4GqIOw+{Nry z;R5bdgr>`%teBT%8{Rb z_iY#lzF01wHooxWm5}q!s}HQEpz?zyID-83ryB0nG5cSxXgps$#_sQ4jSl_&ieP6x z8cQoLMuPl*1}L1%zm~YG(bwbNe~Ax@E!MhTEtxN9(fyT?aIReT>BSkH^6m{=as;cb zPfEITt#?V>+mil%q-Eq9QS%)N$0mP!AljyZu1lL&( zs|A|SFz3|7W8SSVRhs@rR$p!w-|0;a{kQ*Lp`j{$90r)Qa~D75TA;PKDr_jn&JaT<@QlSdm@y z_Nou!%~G>k@XhJOR~I>ZMJEvAy!YF8&wr7>@1BxT`pU~eEJL95=_tswlpF`#RRCX| z_&ad&VuUbx>${29eh*>HRttgIXa214&4qw8;%8MKc>-vvG6~Y?Wwf`1 zPbtVx@#mICq@>9#CLn4p)=Ei@GN(Mvi$glHY67)a9^H`^yIzh&;r=8B;48n4Sj|(# z8OmRpgdPoF^SP_CxC*yOrfqYIU)bmg6y(@D$n&vV84-?W;4`O(6tm$LGG9$HhP=?j ztor^>ujeRV&V4#x)}8zNsv@?f9huB*ip}#z`GJ9vnn8II^1;_EhWt^i-z*#jBG<#e zG92_9O$tZ8m-=J%<>w#FpMOT4Z@z!A`CgmVf{EQic>2$6hay2Y?L0mr3C^<;@A&YvcI_*YY=tiFUrkgwC{rPtgnow+< ze17H?#7aozH(umQICp2y)Gq=e2);Vxgb0GpK(DHOBVF)ig-GJeLq}O=Kfhs}Z*RRd zwZD9?o^i%o3Ca*2+}be}-WHQ~xtEc^898>%*pLXD8TB9M=C=?yRKPiuD_WHcE74i) zg5Y6revyLTKY`o^qwzuzv=kmJZ*zIxcD+bI(8s+e(SP?m+RE^!wXSKe5nHGd8)15W zH@AcPkSaE}$kV2{ppSz)KRb1{et+~Nam*FDN*{VdB7m9ayQgbkOn}>G=wflL?i*s| zi|K`hxxOHK%$VY?gB7yw!=NQCto1eJt*mO}*YoMb*DUFlw-h`1Hc!MT8Mv0C$ToBd ss7C0hs8v#0Z^BhNjL!y;%5slbBX5cF=vDuS{}1?3Qc#z#l(qQwf6NSdZ2$lO literal 0 HcmV?d00001 From d2e47d28ec38084d149182b65b02c3bf1dd13499 Mon Sep 17 00:00:00 2001 From: cukminseo Date: Fri, 13 Sep 2024 12:56:48 +0900 Subject: [PATCH 04/27] [Refactor] Refactor code --- .gitignore | 14 ++++ .gitkeep | 0 checkpoint/.gitkeep | 0 config/config.yaml | 22 +++++++ data/.gitkeep | 0 inference.py | 46 +++++++++++++ lightning_logs/.gitkeep | 0 model/model.py | 74 +++++++++++++++++++++ output/.gitkeep | 0 tb_logs/.gitkeep | 0 train.py | 52 +++++++++++++++ utils/.gitkeep | 0 utils/data_pipeline.py | 139 ++++++++++++++++++++++++++++++++++++++++ utils/utils.py | 23 +++++++ 14 files changed, 370 insertions(+) create mode 100644 .gitignore create mode 100644 .gitkeep create mode 100644 checkpoint/.gitkeep create mode 100644 config/config.yaml create mode 100644 data/.gitkeep create mode 100644 inference.py create mode 100644 lightning_logs/.gitkeep create mode 100644 model/model.py create mode 100644 output/.gitkeep create mode 100644 tb_logs/.gitkeep create mode 100644 train.py create mode 100644 utils/.gitkeep create mode 100644 utils/data_pipeline.py create mode 100644 utils/utils.py diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..38c3e69 --- /dev/null +++ b/.gitignore @@ -0,0 +1,14 @@ +checkpoint/* +!checkpoint/.gitkeep +data/* +!data/.gitkeep +experiments/* +!experiments/.gitkeep +output/* +!output/.gitkeep +tb_logs/* +!tb_logs/.gitkeep +lightning_logs/* +!lightning_logs/.gitkeep +# 모든 __pycache__ 폴더 무시 +**/__pycache__/ diff --git a/.gitkeep b/.gitkeep new file mode 100644 index 0000000..e69de29 diff --git a/checkpoint/.gitkeep b/checkpoint/.gitkeep new file mode 100644 index 0000000..e69de29 diff --git a/config/config.yaml b/config/config.yaml new file mode 100644 index 0000000..a4c2b03 --- /dev/null +++ b/config/config.yaml @@ -0,0 +1,22 @@ +user_name: minseo # 실험자 이름 +model: + model_name: team-lucid/deberta-v3-base-korean # 모델명 +patience: 5 +train: + batch_size: 8 + learning_rate: 1e-5 + max_epoch: 10 + LossF: torch.nn.MSELoss + optim: torch.optim.AdamW + ## LossF와 optim은 torch.nn과 torch.optim을 꼭 적어야 합니다 + shuffle: True +data: + train_path: ./data/raw/train.csv + dev_path: ./data/raw/dev.csv + test_path: ./data/raw/dev.csv + predict_path: ./data/raw/test.csv + checkpoint_path: ./checkpoint/ + output_path: ./output/ + submission_path: ./data/sample_submission.csv + val_path: ./data/dev.csv +seed: 42 \ No newline at end of file diff --git a/data/.gitkeep b/data/.gitkeep new file mode 100644 index 0000000..e69de29 diff --git a/inference.py b/inference.py new file mode 100644 index 0000000..cc93f98 --- /dev/null +++ b/inference.py @@ -0,0 +1,46 @@ +import argparse +import yaml +import pandas as pd +import os +from tqdm.auto import tqdm + +import torch +#import transformers +#import pandas as pd + +import pytorch_lightning as pl +#import wandb +############################## +from utils import data_pipeline + + + +if __name__ == '__main__': + + # baseline_config 설정 불러오기 + with open('./config/config.yaml', encoding='utf-8') as f: + CFG = yaml.load(f, Loader=yaml.FullLoader) + + # 저장된 폴더 이름 + exp_name = "09-13_11_minseo" + + + # dataloader / model 설정 + dataloader = data_pipeline.Dataloader(CFG) + + model = torch.load(f'./experiments/{exp_name}/model.pt') + + # trainer 인스턴스 생성 + trainer = pl.Trainer(accelerator="gpu", devices=1, max_epochs=CFG['train']['max_epoch'], log_every_n_steps=1) + + # Inference part + predictions = trainer.predict(model=model, datamodule=dataloader) + ## datamodule에서 predict_dataloader 호출 + + # 예측된 결과를 형식에 맞게 반올림하여 준비합니다. + predictions = list(round(float(i), 1) for i in torch.cat(predictions)) + + # output 형식을 불러와서 예측된 결과로 바꿔주고, output.csv로 출력합니다. + output = pd.read_csv('./data/raw/sample_submission.csv') + output['target'] = predictions + output.to_csv(f'./output/output_({exp_name}).csv', index=False) \ No newline at end of file diff --git a/lightning_logs/.gitkeep b/lightning_logs/.gitkeep new file mode 100644 index 0000000..e69de29 diff --git a/model/model.py b/model/model.py new file mode 100644 index 0000000..abdffb0 --- /dev/null +++ b/model/model.py @@ -0,0 +1,74 @@ +import torch +import transformers +import torchmetrics +import pytorch_lightning as pl + + +class Model(pl.LightningModule): + def __init__(self, CFG): + super().__init__() + self.save_hyperparameters() + + # 문자열로 표현된 loss와 optimizer를 함수로 변환 + self.model_name = CFG['model']['model_name'] + self.lr = float(CFG['train']['learning_rate']) + self.loss_func = eval(CFG['train']['LossF'])() + # self.optim은 configure_optimizers에서 사용 + self.optim = eval(CFG['train']['optim']) + + + ## CFG의 model_name으로 설정된 모델 불러오기 + self.plm = transformers.AutoModelForSequenceClassification.from_pretrained( + pretrained_model_name_or_path=self.model_name, num_labels=1) + + + def forward(self, x): + x = self.plm(x)['logits'] + + return x + + def training_step(self, batch, batch_idx): + x, y = batch + logits = self(x) + loss = self.loss_func(logits, y.float()) + # 기존코드 + # self.log("train_loss", loss) + + # 에포크 단위로 로그 기록 + self.log("train_loss", loss, on_step=True, on_epoch=True) + self.log("train_pearson", torchmetrics.functional.pearson_corrcoef(logits.squeeze(), y.squeeze()), on_step=True, on_epoch=True) + return loss + + def validation_step(self, batch, batch_idx): + x, y = batch + logits = self(x) + loss = self.loss_func(logits, y.float()) + # 기존코드 + # self.log("val_loss", loss) + # self.log("val_pearson", torchmetrics.functional.pearson_corrcoef(logits.squeeze(), y.squeeze())) + + # 에포크 단위로 로그 기록 + self.log("val_loss", loss, on_step=False, on_epoch=True) + self.log("val_pearson", torchmetrics.functional.pearson_corrcoef(logits.squeeze(), y.squeeze()), on_step=True, on_epoch=True) + + return loss + + def test_step(self, batch, batch_idx): + x, y = batch + logits = self(x) + + # 기존코드 + # self.log("test_pearson", torchmetrics.functional.pearson_corrcoef(logits.squeeze(), y.squeeze())) + + # 에포크 단위로 로그 기록 + self.log("test_pearson", torchmetrics.functional.pearson_corrcoef(logits.squeeze(), y.squeeze()), on_step=True, on_epoch=True) + + def predict_step(self, batch, batch_idx): + x = batch + logits = self(x) + + return logits.squeeze() + + def configure_optimizers(self): + optimizer = self.optim(self.parameters(), lr=self.lr) + return optimizer \ No newline at end of file diff --git a/output/.gitkeep b/output/.gitkeep new file mode 100644 index 0000000..e69de29 diff --git a/tb_logs/.gitkeep b/tb_logs/.gitkeep new file mode 100644 index 0000000..e69de29 diff --git a/train.py b/train.py new file mode 100644 index 0000000..27513a1 --- /dev/null +++ b/train.py @@ -0,0 +1,52 @@ +import argparse +import yaml +import os + +import torch +# import transformers +# import pandas as pd + +import pytorch_lightning as pl +from pytorch_lightning.loggers import TensorBoardLogger +# import wandb +############################## +from utils import data_pipeline, utils +from model.model import Model + +############################## + + +if __name__ == "__main__": + + # baseline_config 설정 불러오기 + with open('./config/config.yaml', encoding='utf-8') as f: + CFG = yaml.load(f, Loader=yaml.FullLoader) + + # experiments 폴더 내부에 실험 폴더 생성 + # 폴더 이름 : 실험 날짜 - 실험 시간 - user + experiment_path = utils.create_experiment_folder(CFG) + + # dataloader / model 설정 + dataloader = data_pipeline.Dataloader(CFG) + model = Model(CFG) + + # 텐서보드 테스트 + logger = TensorBoardLogger("tb_logs", name="test1") + + # trainer 인스턴스 생성 + trainer = pl.Trainer(accelerator="gpu", devices=1, max_epochs=CFG['train']['max_epoch'], log_every_n_steps=1, logger=logger) + + # Train part + trainer.fit(model=model, datamodule=dataloader) + ## datamodule에서 train_dataloader와 val_dataloader를 호출 + + ## Dataloader 내부에 val_dataloader 부분을 수정해서 + ## valid set을 바꿀 수 있음 + + trainer.test(model=model, datamodule=dataloader) + ## datamodule에서 test_dataloader 호출 + ## predict_path로 설정된 test.csv가 사용된다 + + # 학습된 모델 저장 (experiment_folder 안에 model.pt로 저장) + torch.save(model, os.path.join(experiment_path, 'model.pt')) + print(f"모델이 저장되었습니다: {experiment_path}") \ No newline at end of file diff --git a/utils/.gitkeep b/utils/.gitkeep new file mode 100644 index 0000000..e69de29 diff --git a/utils/data_pipeline.py b/utils/data_pipeline.py new file mode 100644 index 0000000..7208ac8 --- /dev/null +++ b/utils/data_pipeline.py @@ -0,0 +1,139 @@ +from tqdm import tqdm + +import torch +import transformers +import pandas as pd +import pytorch_lightning as pl +from torch.utils.data import Dataset, DataLoader + + +class Dataset(torch.utils.data.Dataset): + def __init__(self, inputs, targets=[]): + self.inputs = inputs + self.targets = targets + + # 학습 및 추론 과정에서 데이터를 1개씩 꺼내오는 곳 + def __getitem__(self, idx): + # 정답이 있다면 else문을, 없다면 if문을 수행합니다 + if len(self.targets) == 0: + return torch.tensor(self.inputs[idx]) + else: + return torch.tensor(self.inputs[idx]), torch.tensor(self.targets[idx]) + + # 입력하는 개수만큼 데이터를 사용합니다 + def __len__(self): + return len(self.inputs) + + +# 나중에 Custom 가능 +class Dataloader(pl.LightningDataModule): + ## instance 생성할 때 CFG(baseline_config 세팅) 입력 + def __init__(self, CFG): + super().__init__() + ## config + self.user_name = CFG['user_name'] + self.seed = CFG['seed'] + + self.model_name = CFG['model']['model_name'] + self.batch_size = CFG['train']['batch_size'] + self.shuffle = CFG['train']['shuffle'] + + self.sampler = None + + self.train_path = CFG['data']['train_path'] + self.dev_path = CFG['data']['dev_path'] + self.test_path = CFG['data']['test_path'] + self.predict_path = CFG['data']['predict_path'] + + self.train_dataset = None + self.val_dataset = None + self.test_dataset = None + self.predict_dataset = None + + self.tokenizer = transformers.AutoTokenizer.from_pretrained(self.model_name, max_length=160) + self.target_columns = ['label'] + self.delete_columns = ['id'] + self.text_columns = ['sentence_1', 'sentence_2'] + + ## tokenizing과 preprocessing은 나중에 Custom 가능 + + ### 기존 코드 + ''' + def tokenizing(self, dataframe): + data = [] + for idx, item in tqdm(dataframe.iterrows(), desc='tokenizing', total=len(dataframe)): + # 두 입력 문장을 [SEP] 토큰으로 이어붙여서 전처리합니다. + text = '[SEP]'.join([item[text_column] for text_column in self.text_columns]) + outputs = self.tokenizer(text, add_special_tokens=True, padding='max_length', truncation=True) + data.append(outputs['input_ids']) + return data + ''' + + ### truncate & padding 추가 + def tokenizing(self, dataframe): + data = [] + for idx, item in tqdm(dataframe.iterrows(), desc='tokenizing', total=len(dataframe)): + # 두 입력 문장을 [SEP] 토큰으로 이어붙여서 전처리합니다. + text = '[SEP]'.join([item[text_column] for text_column in self.text_columns]) + # padding=True와 truncation=True 옵션 추가 + outputs = self.tokenizer( + text, + add_special_tokens=True, + padding='max_length', # max_length로 패딩을 고정 + truncation=True, # 텍스트를 최대 길이로 자름 + max_length=160 # max_length 설정 + ) + data.append(outputs['input_ids']) + return data + + def preprocessing(self, data): + # 안쓰는 컬럼을 삭제합니다. + data = data.drop(columns=self.delete_columns) + + # 타겟 데이터가 없으면 빈 배열을 리턴합니다. + try: + targets = data[self.target_columns].values.tolist() + except: + targets = [] + # 텍스트 데이터를 전처리합니다. + inputs = self.tokenizing(data) + + return inputs, targets + + def setup(self, stage='fit'): + if stage == 'fit': + # 학습 데이터와 검증 데이터셋을 호출합니다 + train_data = pd.read_csv(self.train_path) + val_data = pd.read_csv(self.dev_path) + + # 학습데이터 준비 + train_inputs, train_targets = self.preprocessing(train_data) + + # 검증데이터 준비 + val_inputs, val_targets = self.preprocessing(val_data) + + # train 데이터만 shuffle을 적용해줍니다, 필요하다면 val, test 데이터에도 shuffle을 적용할 수 있습니다 + self.train_dataset = Dataset(train_inputs, train_targets) + self.val_dataset = Dataset(val_inputs, val_targets) + else: + # 평가데이터 준비 + test_data = pd.read_csv(self.test_path) + test_inputs, test_targets = self.preprocessing(test_data) + self.test_dataset = Dataset(test_inputs, test_targets) + + predict_data = pd.read_csv(self.predict_path) + predict_inputs, predict_targets = self.preprocessing(predict_data) + self.predict_dataset = Dataset(predict_inputs, []) + + def train_dataloader(self): + return torch.utils.data.DataLoader(self.train_dataset, batch_size=self.batch_size, + shuffle=False) # self.shuffle) + + def val_dataloader(self): + return torch.utils.data.DataLoader(self.val_dataset, batch_size=self.batch_size) + + def test_dataloader(self): + return torch.utils.data.DataLoader(self.test_dataset, batch_size=self.batch_size) + + def predict_dataloader(self): + return torch.utils.data.DataLoader(self.predict_dataset, batch_size=self.batch_size) \ No newline at end of file diff --git a/utils/utils.py b/utils/utils.py new file mode 100644 index 0000000..3c2846d --- /dev/null +++ b/utils/utils.py @@ -0,0 +1,23 @@ +import os +from datetime import datetime + + +# 실험마다 새로운 폴더에 보관하기 위한 기능 +## experiments 폴더 내부에 하위 폴더를 생성하고 path를 전달합니다 +def create_experiment_folder(CFG, base_path="./experiments"): + # 현재 시간 기록 + current_time = datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + + # 날짜와 시간만 표시 + date_and_hour = current_time[5:13] + + # admin 값을 가져와서 폴더 이름에 추가 + user_name = CFG['user_name'] + + experiment_folder_name = f"{date_and_hour}_{user_name}" + + # experiments 경로에 해당 폴더 생성 + experiment_path = os.path.join(base_path, experiment_folder_name) + os.makedirs(experiment_path, exist_ok=True) + + return experiment_path \ No newline at end of file From a7c49219933bccfae2faf137367b4ce1f5322a92 Mon Sep 17 00:00:00 2001 From: cukminseo Date: Fri, 13 Sep 2024 13:05:32 +0900 Subject: [PATCH 05/27] =?UTF-8?q?[FEAT]=20=ED=8F=B4=EB=8D=94=20=EC=83=9D?= =?UTF-8?q?=EC=84=B1=EB=B0=A9=EB=B2=95=20=EB=B3=80=EA=B2=BD?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .gitkeep | 0 config/config.yaml | 34 +++++++++++++++++----------------- utils/utils.py | 14 +++++--------- 3 files changed, 22 insertions(+), 26 deletions(-) delete mode 100644 .gitkeep diff --git a/.gitkeep b/.gitkeep deleted file mode 100644 index e69de29..0000000 diff --git a/config/config.yaml b/config/config.yaml index a4c2b03..76ffeda 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -1,22 +1,22 @@ user_name: minseo # 실험자 이름 model: - model_name: team-lucid/deberta-v3-base-korean # 모델명 + model_name: team-lucid/deberta-v3-base-korean # 모델명 patience: 5 train: - batch_size: 8 - learning_rate: 1e-5 - max_epoch: 10 - LossF: torch.nn.MSELoss - optim: torch.optim.AdamW - ## LossF와 optim은 torch.nn과 torch.optim을 꼭 적어야 합니다 - shuffle: True + batch_size: 32 + learning_rate: 5e-6 + max_epoch: 10 + LossF: torch.nn.MSELoss + optim: torch.optim.AdamW + ## LossF와 optim은 torch.nn과 torch.optim을 꼭 적어야 합니다 + shuffle: True data: - train_path: ./data/raw/train.csv - dev_path: ./data/raw/dev.csv - test_path: ./data/raw/dev.csv - predict_path: ./data/raw/test.csv - checkpoint_path: ./checkpoint/ - output_path: ./output/ - submission_path: ./data/sample_submission.csv - val_path: ./data/dev.csv -seed: 42 \ No newline at end of file + train_path: ./data/raw/train.csv + dev_path: ./data/raw/dev.csv + test_path: ./data/raw/dev.csv + predict_path: ./data/raw/test.csv + checkpoint_path: ./checkpoint/ + output_path: ./output/ + submission_path: ./data/sample_submission.csv + val_path: ./data/dev.csv +seed: 42 diff --git a/utils/utils.py b/utils/utils.py index 3c2846d..85aa111 100644 --- a/utils/utils.py +++ b/utils/utils.py @@ -2,22 +2,18 @@ from datetime import datetime -# 실험마다 새로운 폴더에 보관하기 위한 기능 -## experiments 폴더 내부에 하위 폴더를 생성하고 path를 전달합니다 def create_experiment_folder(CFG, base_path="./experiments"): # 현재 시간 기록 - current_time = datetime.now().strftime('%Y-%m-%d_%H-%M-%S') - - # 날짜와 시간만 표시 - date_and_hour = current_time[5:13] + current_time = datetime.now().strftime("%m%d_%H%M") # admin 값을 가져와서 폴더 이름에 추가 - user_name = CFG['user_name'] + user_name = CFG["user_name"] - experiment_folder_name = f"{date_and_hour}_{user_name}" + # 월일_시간분_user_name 형식으로 폴더 이름 생성 + experiment_folder_name = f"{current_time}_{user_name}" # experiments 경로에 해당 폴더 생성 experiment_path = os.path.join(base_path, experiment_folder_name) os.makedirs(experiment_path, exist_ok=True) - return experiment_path \ No newline at end of file + return experiment_path From 8b89ccde027515bea8793936cc781d42749d603f Mon Sep 17 00:00:00 2001 From: cukminseo Date: Fri, 13 Sep 2024 16:15:20 +0900 Subject: [PATCH 06/27] [style]readme --- README.md | 19 +++++++++++++++++++ 1 file changed, 19 insertions(+) diff --git a/README.md b/README.md index d30f068..62a50ea 100644 --- a/README.md +++ b/README.md @@ -11,6 +11,25 @@ ## **Introduction** +## **데이터구조(임시)** + +├─.github +├─.idea +├─checkpoint(모델 파라미터 저장예정-현재는 아무것도 안생김) +├─config(파라미터 입력) +├─data +│ └─raw(데이터 저장) +├─experiments(모델저장) +├─lightning_logs +├─model +│ └─model(transformer 라이브러리에서 모델 불러오는 부분) +├─output +├─tb_logs +│ └─test1 +└─utils + +만약 텐서보드 키려면, 터미널에 tensorboard --logdir=tb_logs + ## **Contributors** From ef6948e10fabf686c5c3b4b2d849d34c57157b30 Mon Sep 17 00:00:00 2001 From: cukminseo Date: Sun, 15 Sep 2024 10:53:32 +0900 Subject: [PATCH 07/27] =?UTF-8?q?[FEAT]=20=ED=85=90=EC=84=9C=EB=B3=B4?= =?UTF-8?q?=EB=93=9C=20=EC=8B=9C=EA=B0=81=ED=99=94=20=EC=B6=94=EA=B0=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- config/config.yaml | 8 +++--- inference.py | 37 +++++++++++++----------- lightning_logs/.gitkeep | 0 model/model.py | 62 +++++++++++++++++++++++++++++++---------- train.py | 16 ++++++++--- 5 files changed, 84 insertions(+), 39 deletions(-) delete mode 100644 lightning_logs/.gitkeep diff --git a/config/config.yaml b/config/config.yaml index 76ffeda..75c5f31 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -3,15 +3,15 @@ model: model_name: team-lucid/deberta-v3-base-korean # 모델명 patience: 5 train: - batch_size: 32 - learning_rate: 5e-6 - max_epoch: 10 + batch_size: 16 + learning_rate: 1e-5 + max_epoch: 15 LossF: torch.nn.MSELoss optim: torch.optim.AdamW ## LossF와 optim은 torch.nn과 torch.optim을 꼭 적어야 합니다 shuffle: True data: - train_path: ./data/raw/train.csv + train_path: ./data/raw/train_01.csv dev_path: ./data/raw/dev.csv test_path: ./data/raw/dev.csv predict_path: ./data/raw/test.csv diff --git a/inference.py b/inference.py index cc93f98..53fb952 100644 --- a/inference.py +++ b/inference.py @@ -5,35 +5,38 @@ from tqdm.auto import tqdm import torch -#import transformers -#import pandas as pd + +# import transformers +# import pandas as pd import pytorch_lightning as pl -#import wandb + +# import wandb ############################## from utils import data_pipeline - -if __name__ == '__main__': +if __name__ == "__main__": # baseline_config 설정 불러오기 - with open('./config/config.yaml', encoding='utf-8') as f: + with open("./config/config.yaml", encoding="utf-8") as f: CFG = yaml.load(f, Loader=yaml.FullLoader) # 저장된 폴더 이름 - exp_name = "09-13_11_minseo" - + exp_name = "0913_2020_minseo" # dataloader / model 설정 dataloader = data_pipeline.Dataloader(CFG) - - model = torch.load(f'./experiments/{exp_name}/model.pt') - + model = torch.load(f"./experiments/{exp_name}/model.pt") # trainer 인스턴스 생성 - trainer = pl.Trainer(accelerator="gpu", devices=1, max_epochs=CFG['train']['max_epoch'], log_every_n_steps=1) - - # Inference part + trainer = pl.Trainer( + accelerator="gpu", + devices=1, + max_epochs=CFG["train"]["max_epoch"], + log_every_n_steps=1, + ) + + # Inference part predictions = trainer.predict(model=model, datamodule=dataloader) ## datamodule에서 predict_dataloader 호출 @@ -41,6 +44,6 @@ predictions = list(round(float(i), 1) for i in torch.cat(predictions)) # output 형식을 불러와서 예측된 결과로 바꿔주고, output.csv로 출력합니다. - output = pd.read_csv('./data/raw/sample_submission.csv') - output['target'] = predictions - output.to_csv(f'./output/output_({exp_name}).csv', index=False) \ No newline at end of file + output = pd.read_csv("./data/raw/sample_submission.csv") + output["target"] = predictions + output.to_csv(f"./output/output_({exp_name}).csv", index=False) diff --git a/lightning_logs/.gitkeep b/lightning_logs/.gitkeep deleted file mode 100644 index e69de29..0000000 diff --git a/model/model.py b/model/model.py index abdffb0..e476e33 100644 --- a/model/model.py +++ b/model/model.py @@ -10,20 +10,19 @@ def __init__(self, CFG): self.save_hyperparameters() # 문자열로 표현된 loss와 optimizer를 함수로 변환 - self.model_name = CFG['model']['model_name'] - self.lr = float(CFG['train']['learning_rate']) - self.loss_func = eval(CFG['train']['LossF'])() + self.model_name = CFG["model"]["model_name"] + self.lr = float(CFG["train"]["learning_rate"]) + self.loss_func = eval(CFG["train"]["LossF"])() # self.optim은 configure_optimizers에서 사용 - self.optim = eval(CFG['train']['optim']) - + self.optim = eval(CFG["train"]["optim"]) ## CFG의 model_name으로 설정된 모델 불러오기 self.plm = transformers.AutoModelForSequenceClassification.from_pretrained( - pretrained_model_name_or_path=self.model_name, num_labels=1) - + pretrained_model_name_or_path=self.model_name, num_labels=1 + ) def forward(self, x): - x = self.plm(x)['logits'] + x = self.plm(x)["logits"] return x @@ -31,25 +30,50 @@ def training_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = self.loss_func(logits, y.float()) + + # 피어슨 계수 계산 + pearson = torchmetrics.functional.pearson_corrcoef( + logits.squeeze(), y.squeeze() + ) + # 기존코드 # self.log("train_loss", loss) # 에포크 단위로 로그 기록 - self.log("train_loss", loss, on_step=True, on_epoch=True) - self.log("train_pearson", torchmetrics.functional.pearson_corrcoef(logits.squeeze(), y.squeeze()), on_step=True, on_epoch=True) + self.log("loss/train", loss, on_step=True, on_epoch=True) + self.log("pearson/train", pearson, on_step=True, on_epoch=True) + + # 가로축을 에포크 기반으로 설정 + self.logger.experiment.add_scalar("loss/train_epoch", loss, self.current_epoch) + self.logger.experiment.add_scalar( + "pearson/train_epoch", pearson, self.current_epoch + ) + return loss def validation_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = self.loss_func(logits, y.float()) + + # 피어슨 계수 계산 + pearson = torchmetrics.functional.pearson_corrcoef( + logits.squeeze(), y.squeeze() + ) + # 기존코드 # self.log("val_loss", loss) # self.log("val_pearson", torchmetrics.functional.pearson_corrcoef(logits.squeeze(), y.squeeze())) # 에포크 단위로 로그 기록 - self.log("val_loss", loss, on_step=False, on_epoch=True) - self.log("val_pearson", torchmetrics.functional.pearson_corrcoef(logits.squeeze(), y.squeeze()), on_step=True, on_epoch=True) + self.log("loss/val", loss, on_step=False, on_epoch=True) + self.log("pearson/val", pearson, on_step=True, on_epoch=True) + + # 가로축을 에포크 기반으로 설정 + self.logger.experiment.add_scalar("loss/val_epoch", loss, self.current_epoch) + self.logger.experiment.add_scalar( + "pearson/val_epoch", pearson, self.current_epoch + ) return loss @@ -57,11 +81,21 @@ def test_step(self, batch, batch_idx): x, y = batch logits = self(x) + # 피어슨 계수 계산 + pearson = torchmetrics.functional.pearson_corrcoef( + logits.squeeze(), y.squeeze() + ) + # 기존코드 # self.log("test_pearson", torchmetrics.functional.pearson_corrcoef(logits.squeeze(), y.squeeze())) # 에포크 단위로 로그 기록 - self.log("test_pearson", torchmetrics.functional.pearson_corrcoef(logits.squeeze(), y.squeeze()), on_step=True, on_epoch=True) + self.log("pearson/test", pearson, on_step=True, on_epoch=True) + + # 가로축을 에포크 기반으로 설정 + self.logger.experiment.add_scalar( + "pearson/test_epoch", pearson, self.current_epoch + ) def predict_step(self, batch, batch_idx): x = batch @@ -71,4 +105,4 @@ def predict_step(self, batch, batch_idx): def configure_optimizers(self): optimizer = self.optim(self.parameters(), lr=self.lr) - return optimizer \ No newline at end of file + return optimizer diff --git a/train.py b/train.py index 27513a1..a2a482d 100644 --- a/train.py +++ b/train.py @@ -3,11 +3,13 @@ import os import torch + # import transformers # import pandas as pd import pytorch_lightning as pl from pytorch_lightning.loggers import TensorBoardLogger + # import wandb ############################## from utils import data_pipeline, utils @@ -19,7 +21,7 @@ if __name__ == "__main__": # baseline_config 설정 불러오기 - with open('./config/config.yaml', encoding='utf-8') as f: + with open("./config/config.yaml", encoding="utf-8") as f: CFG = yaml.load(f, Loader=yaml.FullLoader) # experiments 폴더 내부에 실험 폴더 생성 @@ -34,7 +36,13 @@ logger = TensorBoardLogger("tb_logs", name="test1") # trainer 인스턴스 생성 - trainer = pl.Trainer(accelerator="gpu", devices=1, max_epochs=CFG['train']['max_epoch'], log_every_n_steps=1, logger=logger) + trainer = pl.Trainer( + accelerator="gpu", + devices=1, + max_epochs=CFG["train"]["max_epoch"], + log_every_n_steps=1, + logger=logger, + ) # Train part trainer.fit(model=model, datamodule=dataloader) @@ -48,5 +56,5 @@ ## predict_path로 설정된 test.csv가 사용된다 # 학습된 모델 저장 (experiment_folder 안에 model.pt로 저장) - torch.save(model, os.path.join(experiment_path, 'model.pt')) - print(f"모델이 저장되었습니다: {experiment_path}") \ No newline at end of file + torch.save(model, os.path.join(experiment_path, "model.pt")) + print(f"모델이 저장되었습니다: {experiment_path}") From af73886482b1a1d4872e41d137039e6e6f30a0b8 Mon Sep 17 00:00:00 2001 From: hsmin9809 Date: Mon, 16 Sep 2024 03:11:58 +0900 Subject: [PATCH 08/27] =?UTF-8?q?[Feat]=20Early=5FStop=20=EA=B8=B0?= =?UTF-8?q?=EB=8A=A5=20=EC=B6=94=EA=B0=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- config/config.yaml | 43 ++++++++++++++++++++++++------------------- train.py | 12 ++++++++++++ 2 files changed, 36 insertions(+), 19 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 76ffeda..cf18d94 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -1,22 +1,27 @@ -user_name: minseo # 실험자 이름 +user_name: seongmin # 실험자 이름 model: - model_name: team-lucid/deberta-v3-base-korean # 모델명 -patience: 5 + model_name: klue/roberta-small +early_stopping: + min_delta: 0.0 + mode: max + monitor: val_pearson + patience: 5 + verbose: False train: - batch_size: 32 - learning_rate: 5e-6 - max_epoch: 10 - LossF: torch.nn.MSELoss - optim: torch.optim.AdamW - ## LossF와 optim은 torch.nn과 torch.optim을 꼭 적어야 합니다 - shuffle: True + batch_size: 10 + learning_rate: 1e-5 + max_epoch: 8 + LossF: torch.nn.MSELoss + optim: torch.optim.AdamW + ## LossF와 optim은 torch.nn과 torch.optim을 꼭 적어야 합니다 + shuffle: True data: - train_path: ./data/raw/train.csv - dev_path: ./data/raw/dev.csv - test_path: ./data/raw/dev.csv - predict_path: ./data/raw/test.csv - checkpoint_path: ./checkpoint/ - output_path: ./output/ - submission_path: ./data/sample_submission.csv - val_path: ./data/dev.csv -seed: 42 + train_path: ./data/train.csv + dev_path: ./data/train.csv + test_path: ./data/train.csv + predict_path: ./data/train.csv + checkpoint_path: ./checkpoint/ + output_path: ./output/ + submission_path: ./data/sample_submission.csv + val_path: ./data_dev.csv +seed: 42 \ No newline at end of file diff --git a/train.py b/train.py index 27513a1..6b7a297 100644 --- a/train.py +++ b/train.py @@ -7,7 +7,9 @@ # import pandas as pd import pytorch_lightning as pl +from pytorch_lightning.callbacks.early_stopping import EarlyStopping from pytorch_lightning.loggers import TensorBoardLogger + # import wandb ############################## from utils import data_pipeline, utils @@ -33,6 +35,16 @@ # 텐서보드 테스트 logger = TensorBoardLogger("tb_logs", name="test1") + # early_stopping 설정 + early_stop = CFG['early_stopping'] + early_stop_callback = EarlyStopping( + monitor=early_stop['monitor'], + min_delta=early_stop['min_delta'], + patience=early_stop['patience'], + verbose=early_stop['verbose'], + mode=early_stop['mode'] + ) + # trainer 인스턴스 생성 trainer = pl.Trainer(accelerator="gpu", devices=1, max_epochs=CFG['train']['max_epoch'], log_every_n_steps=1, logger=logger) From 72df9b87c03b62b7adf0053dd7f96626b6589ad6 Mon Sep 17 00:00:00 2001 From: cukminseo Date: Mon, 16 Sep 2024 11:30:10 +0900 Subject: [PATCH 09/27] =?UTF-8?q?[style]=20=ED=98=84=EC=9E=AC=EA=B9=8C?= =?UTF-8?q?=EC=A7=80=20=EC=82=AC=ED=95=AD=20=EC=A0=80=EC=9E=A5?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .gitignore | 1 + config/config.yaml | 4 ++-- inference.py | 2 +- 3 files changed, 4 insertions(+), 3 deletions(-) diff --git a/.gitignore b/.gitignore index 38c3e69..67935d7 100644 --- a/.gitignore +++ b/.gitignore @@ -12,3 +12,4 @@ lightning_logs/* !lightning_logs/.gitkeep # 모든 __pycache__ 폴더 무시 **/__pycache__/ +.idea/* diff --git a/config/config.yaml b/config/config.yaml index 75c5f31..ca07d02 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -3,9 +3,9 @@ model: model_name: team-lucid/deberta-v3-base-korean # 모델명 patience: 5 train: - batch_size: 16 + batch_size: 8 learning_rate: 1e-5 - max_epoch: 15 + max_epoch: 10 LossF: torch.nn.MSELoss optim: torch.optim.AdamW ## LossF와 optim은 torch.nn과 torch.optim을 꼭 적어야 합니다 diff --git a/inference.py b/inference.py index 53fb952..9e4bbc2 100644 --- a/inference.py +++ b/inference.py @@ -23,7 +23,7 @@ CFG = yaml.load(f, Loader=yaml.FullLoader) # 저장된 폴더 이름 - exp_name = "0913_2020_minseo" + exp_name = "0915_1101_minseo" # dataloader / model 설정 dataloader = data_pipeline.Dataloader(CFG) From 160a1d420dc65f5872381ab88525770ef1a1c849 Mon Sep 17 00:00:00 2001 From: cukminseo Date: Mon, 23 Sep 2024 15:19:36 +0900 Subject: [PATCH 10/27] =?UTF-8?q?[FEAT]=EB=AA=A8=EB=8D=B8=20=EC=A0=80?= =?UTF-8?q?=EC=9E=A5=20=ED=8F=B4=EB=8D=94=EB=AA=85=20=EB=B3=80=EA=B2=BD?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- utils/utils.py | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/utils/utils.py b/utils/utils.py index 85aa111..a247fc9 100644 --- a/utils/utils.py +++ b/utils/utils.py @@ -8,9 +8,14 @@ def create_experiment_folder(CFG, base_path="./experiments"): # admin 값을 가져와서 폴더 이름에 추가 user_name = CFG["user_name"] + model_name = CFG["model"]["model_name"] + lr = CFG["train"]["learning_rate"] + batch_size = CFG["train"]["batch_size"] # 월일_시간분_user_name 형식으로 폴더 이름 생성 - experiment_folder_name = f"{current_time}_{user_name}" + experiment_folder_name = ( + f"{current_time}_{model_name}_lr{lr}_batch{batch_size}({user_name})" + ) # experiments 경로에 해당 폴더 생성 experiment_path = os.path.join(base_path, experiment_folder_name) From e4513e5155ffa8fdb5a55392485e92801d177a51 Mon Sep 17 00:00:00 2001 From: cukminseo Date: Mon, 23 Sep 2024 15:24:08 +0900 Subject: [PATCH 11/27] =?UTF-8?q?[FEAT]=20=EC=B6=94=EB=A1=A0=EC=8B=9C=20?= =?UTF-8?q?=EA=B0=80=EC=9E=A5=20=EC=B5=9C=EA=B7=BC=20=20=ED=8F=B4=EB=8D=94?= =?UTF-8?q?=EB=A5=BC=20=EC=9E=90=EB=8F=99=EC=9C=BC=EB=A1=9C=20=EB=B6=88?= =?UTF-8?q?=EB=9F=AC=EC=98=A4=EA=B8=B0?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- inference.py | 23 +++++++++++++++++++++-- 1 file changed, 21 insertions(+), 2 deletions(-) diff --git a/inference.py b/inference.py index 9e4bbc2..b131507 100644 --- a/inference.py +++ b/inference.py @@ -16,14 +16,33 @@ from utils import data_pipeline +def get_latest_experiment_folder(base_path="./experiments"): + # base_path 내의 폴더 리스트 가져오기 + experiment_folders = [ + f for f in os.listdir(base_path) if os.path.isdir(os.path.join(base_path, f)) + ] + + # 폴더가 없을 경우 None 반환 + if not experiment_folders: + return None + + # 폴더 생성 시간 기준으로 정렬 (가장 최근 폴더가 마지막에 위치) + experiment_folders.sort( + key=lambda x: os.path.getmtime(os.path.join(base_path, x)), reverse=True + ) + + # 가장 최근에 생성된 폴더 반환 + return experiment_folders[0] + + if __name__ == "__main__": # baseline_config 설정 불러오기 with open("./config/config.yaml", encoding="utf-8") as f: CFG = yaml.load(f, Loader=yaml.FullLoader) - # 저장된 폴더 이름 - exp_name = "0915_1101_minseo" + # 저장된 폴더 이름 가장 최근걸로 불러오기 + exp_name = get_latest_experiment_folder() # dataloader / model 설정 dataloader = data_pipeline.Dataloader(CFG) From ed99ec84d90ee18ca47a7efdbf758b7e168aa82b Mon Sep 17 00:00:00 2001 From: cukminseo Date: Mon, 23 Sep 2024 15:30:07 +0900 Subject: [PATCH 12/27] =?UTF-8?q?[Refactor]=20=EB=8B=A8=EC=9D=BC=EC=B1=85?= =?UTF-8?q?=EC=9E=84=EC=9B=90=EC=B9=99=EC=97=90=20=EC=9D=98=ED=95=9C=20?= =?UTF-8?q?=ED=95=A8=EC=88=98=EB=B6=84=EB=A6=AC?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- utils/utils.py | 14 +++++++++++--- 1 file changed, 11 insertions(+), 3 deletions(-) diff --git a/utils/utils.py b/utils/utils.py index a247fc9..49f87ab 100644 --- a/utils/utils.py +++ b/utils/utils.py @@ -2,21 +2,29 @@ from datetime import datetime -def create_experiment_folder(CFG, base_path="./experiments"): +def get_experiment_folder_name(CFG): # 현재 시간 기록 current_time = datetime.now().strftime("%m%d_%H%M") - # admin 값을 가져와서 폴더 이름에 추가 + # CFG 값을 가져와서 폴더 이름에 추가 user_name = CFG["user_name"] model_name = CFG["model"]["model_name"] lr = CFG["train"]["learning_rate"] batch_size = CFG["train"]["batch_size"] - # 월일_시간분_user_name 형식으로 폴더 이름 생성 + # 폴더 이름 생성 experiment_folder_name = ( f"{current_time}_{model_name}_lr{lr}_batch{batch_size}({user_name})" ) + return experiment_folder_name + + +def create_experiment_folder(CFG, base_path="./experiments"): + + # 월일_시간분_user_name 형식으로 폴더 이름 생성 + experiment_folder_name = get_experiment_folder_name(CFG) + # experiments 경로에 해당 폴더 생성 experiment_path = os.path.join(base_path, experiment_folder_name) os.makedirs(experiment_path, exist_ok=True) From 6bee9196a7d7f967fd207c03788dc17bfa866c96 Mon Sep 17 00:00:00 2001 From: cukminseo Date: Mon, 23 Sep 2024 15:31:33 +0900 Subject: [PATCH 13/27] =?UTF-8?q?[STYLE]tb=5Flog=EC=97=90=20=EC=A0=80?= =?UTF-8?q?=EC=9E=A5=EB=90=98=EB=8A=94=20=ED=8F=B4=EB=8D=94=EB=AA=85=20?= =?UTF-8?q?=EC=88=98=EC=A0=95?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- train.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/train.py b/train.py index a2a482d..d6e2c58 100644 --- a/train.py +++ b/train.py @@ -33,7 +33,7 @@ model = Model(CFG) # 텐서보드 테스트 - logger = TensorBoardLogger("tb_logs", name="test1") + logger = TensorBoardLogger("tb_logs", name=f"{utils.get_experiment_folder_name()}") # trainer 인스턴스 생성 trainer = pl.Trainer( From 9b9718a931464b119c1cfc9b275851b454b796bb Mon Sep 17 00:00:00 2001 From: cukminseo Date: Mon, 23 Sep 2024 15:33:56 +0900 Subject: [PATCH 14/27] =?UTF-8?q?[FIX]tb=5Flog=20=ED=8C=8C=EC=9D=BC=20?= =?UTF-8?q?=EC=83=9D=EC=84=B1=20=EB=A1=9C=EC=A7=81=20=EC=98=A4=EB=A5=98=20?= =?UTF-8?q?=EC=88=98=EC=A0=95?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- train.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/train.py b/train.py index d6e2c58..d76c0d3 100644 --- a/train.py +++ b/train.py @@ -33,7 +33,9 @@ model = Model(CFG) # 텐서보드 테스트 - logger = TensorBoardLogger("tb_logs", name=f"{utils.get_experiment_folder_name()}") + logger = TensorBoardLogger( + "tb_logs", name=f"{utils.get_experiment_folder_name(CFG)}" + ) # trainer 인스턴스 생성 trainer = pl.Trainer( From f686275d91a71eb0c4c30d1d064aa1ee9ff90cd7 Mon Sep 17 00:00:00 2001 From: cukminseo Date: Mon, 23 Sep 2024 15:42:28 +0900 Subject: [PATCH 15/27] =?UTF-8?q?[FIX]=ED=8F=B4=EB=8D=94=EB=AA=85=20?= =?UTF-8?q?=EC=83=9D=EC=84=B1=EC=8B=9C=20=EB=AA=A8=EB=8D=B8=EC=9D=B4?= =?UTF-8?q?=EB=A6=84=20=EC=86=8D"/"=EB=A1=9C=20=EC=9D=B8=ED=95=9C=20?= =?UTF-8?q?=EC=83=9D=EC=84=B1=20=EC=98=A4=EB=A5=98=20=EC=88=98=EC=A0=95?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- utils/utils.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/utils/utils.py b/utils/utils.py index 49f87ab..7056ae6 100644 --- a/utils/utils.py +++ b/utils/utils.py @@ -8,7 +8,8 @@ def get_experiment_folder_name(CFG): # CFG 값을 가져와서 폴더 이름에 추가 user_name = CFG["user_name"] - model_name = CFG["model"]["model_name"] + # /로 인한 내부 다른 폴더 생성문제 해결 + model_name = CFG["model"]["model_name"].replace("/", "_") lr = CFG["train"]["learning_rate"] batch_size = CFG["train"]["batch_size"] From 24ef14ee02d98e146f6a80e96ee1aa17ee8112ba Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=EC=9D=B4=EC=98=88=EC=84=9C?= <49704047+yeseoLee@users.noreply.github.com> Date: Mon, 30 Sep 2024 10:48:11 +0900 Subject: [PATCH 16/27] =?UTF-8?q?[feat]=20hanspell=20=EB=A7=9E=EC=B6=A4?= =?UTF-8?q?=EB=B2=95=20=EA=B5=90=EC=A0=95?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- utils/preprocess/hanspell/__init__.py | 1 + utils/preprocess/hanspell/constants.py | 10 ++ utils/preprocess/hanspell/passportKey.py | 50 +++++++++ utils/preprocess/hanspell/response.py | 26 +++++ utils/preprocess/hanspell/spell_checker.py | 117 +++++++++++++++++++++ 5 files changed, 204 insertions(+) create mode 100644 utils/preprocess/hanspell/__init__.py create mode 100644 utils/preprocess/hanspell/constants.py create mode 100644 utils/preprocess/hanspell/passportKey.py create mode 100644 utils/preprocess/hanspell/response.py create mode 100644 utils/preprocess/hanspell/spell_checker.py diff --git a/utils/preprocess/hanspell/__init__.py b/utils/preprocess/hanspell/__init__.py new file mode 100644 index 0000000..f901408 --- /dev/null +++ b/utils/preprocess/hanspell/__init__.py @@ -0,0 +1 @@ +__version__ = "1.1" diff --git a/utils/preprocess/hanspell/constants.py b/utils/preprocess/hanspell/constants.py new file mode 100644 index 0000000..7d0505c --- /dev/null +++ b/utils/preprocess/hanspell/constants.py @@ -0,0 +1,10 @@ +base_url = 'https://m.search.naver.com/p/csearch/ocontent/util/SpellerProxy' + + +class CheckResult: + PASSED = 0 + WRONG_SPELLING = 1 + WRONG_SPACING = 2 + AMBIGUOUS = 3 + STATISTICAL_CORRECTION = 4 + diff --git a/utils/preprocess/hanspell/passportKey.py b/utils/preprocess/hanspell/passportKey.py new file mode 100644 index 0000000..1faf010 --- /dev/null +++ b/utils/preprocess/hanspell/passportKey.py @@ -0,0 +1,50 @@ +import re +import requests + + +def get_passport_key(): + """네이버에서 '네이버 맞춤법 검사기' 페이지에서 passportKey를 획득 + + - 네이버에서 '네이버 맞춤법 검사기'를 띄운 후 + html에서 passportKey를 검색하면 값을 찾을 수 있다. + + - 찾은 값을 spell_checker.py 48 line에 적용한다. + """ + + url = "https://search.naver.com/search.naver?where=nexearch&sm=top_hty&fbm=0&ie=utf8&query=네이버+맞춤법+검사기" + res = requests.get(url) + + html_text = res.text + + match = re.search(r'passportKey=([^&"}]+)', html_text) + if match: + passport_key = match.group(1) + return passport_key + else: + return False + + +def fix_spell_checker_py_code(file_path, passportKey): + """획득한 passportkey를 spell_checker.py파일에 적용""" + + pattern = r'"passportKey": ".*"' + + with open(file_path, "r", encoding="utf-8") as input_file: + content = input_file.read() + modified_content = re.sub(pattern, f'"passportKey": "{passportKey}"', content) + + with open(file_path, "w", encoding="utf-8") as output_file: + output_file.write(modified_content) + + return + + +# before run +def init(): + spell_checker_file_path = "./hanspell/spell_checker.py" + + passport_key = get_passport_key() + if passport_key: + fix_spell_checker_py_code(spell_checker_file_path, passport_key) + else: + print("passportKey를 찾을 수 없습니다.") diff --git a/utils/preprocess/hanspell/response.py b/utils/preprocess/hanspell/response.py new file mode 100644 index 0000000..3c1f910 --- /dev/null +++ b/utils/preprocess/hanspell/response.py @@ -0,0 +1,26 @@ +# -*- coding: utf-8 -*- +from collections import namedtuple + +# 조사와 어미도 단어로 처리함. 마땅한 영단어가 생각이 안 나서.. +_checked = namedtuple('Checked', + ['result', 'original', 'checked', 'errors', 'words', 'time']) + + +class Checked(_checked): + def __new__(cls, result=False, original='', checked='', errors=0, words=[], time=0.0): + return super(Checked, cls).__new__( + cls, result, original, checked, errors, words, time) + + def as_dict(self): + d = { + 'result': self.result, + 'original': self.original, + 'checked': self.checked, + 'errors': self.errors, + 'words': self.words, + 'time': self.time, + } + return d + + def only_checked(self): + return self.checked diff --git a/utils/preprocess/hanspell/spell_checker.py b/utils/preprocess/hanspell/spell_checker.py new file mode 100644 index 0000000..18b53c2 --- /dev/null +++ b/utils/preprocess/hanspell/spell_checker.py @@ -0,0 +1,117 @@ +# -*- coding: utf-8 -*- +""" +Python용 한글 맞춤법 검사 모듈 +""" + +import requests +import json +import time +import sys +from collections import OrderedDict +import xml.etree.ElementTree as ET + +from . import __version__ +from .response import Checked +from .constants import base_url +from .constants import CheckResult + +_agent = requests.Session() +PY3 = sys.version_info[0] == 3 + + +def _remove_tags(text): + text = "{}".format(text).replace("
", "") + if not PY3: + text = text.encode("utf-8") + + result = "".join(ET.fromstring(text).itertext()) + + return result + + +def check(text): + """ + 매개변수로 입력받은 한글 문장의 맞춤법을 체크합니다. + """ + if isinstance(text, list): + result = [] + for item in text: + checked = check(item) + result.append(checked) + return result + + # 최대 500자까지 가능. + if len(text) > 500: + return Checked(result=False) + + payload = { + "passportKey": "b7584e2dbf34edd27f75b6430787c04eb65feb52", + "color_blindness": "0", + "q": text, + } + + headers = { + "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.133 Safari/537.36", + "referer": "https://search.naver.com/", + } + + start_time = time.time() + r = _agent.get(base_url, params=payload, headers=headers) + passed_time = time.time() - start_time + + data = json.loads(r.text) + html = data["message"]["result"]["html"] + result = { + "result": True, + "original": text, + "checked": _remove_tags(html), + "errors": data["message"]["result"]["errata_count"], + "time": passed_time, + "words": OrderedDict(), + } + + # 띄어쓰기로 구분하기 위해 태그는 일단 보기 쉽게 바꿔둠. + # ElementTree의 iter()를 써서 더 좋게 할 수 있는 방법이 있지만 + # 이 짧은 코드에 굳이 그렇게 할 필요성이 없으므로 일단 문자열을 치환하는 방법으로 작성. + html = ( + html.replace("", "") + .replace("", "") + .replace("", "") + .replace("", "") + .replace("", "") + ) + items = html.split(" ") + words = [] + tmp = "" + for word in items: + if tmp == "" and word[:1] == "<": + pos = word.find(">") + 1 + tmp = word[:pos] + elif tmp != "": + word = "{}{}".format(tmp, word) + + if word[-5:] == "": + word = word.replace("", "") + tmp = "" + + words.append(word) + + for word in words: + check_result = CheckResult.PASSED + if word[:5] == "": + check_result = CheckResult.WRONG_SPELLING + word = word.replace("", "") + elif word[:7] == "": + check_result = CheckResult.WRONG_SPACING + word = word.replace("", "") + elif word[:8] == "": + check_result = CheckResult.AMBIGUOUS + word = word.replace("", "") + elif word[:6] == "": + check_result = CheckResult.STATISTICAL_CORRECTION + word = word.replace("", "") + result["words"][word] = check_result + + result = Checked(**result) + + return result From b05e6f0e2bfccaa02322649f19f91109af64fe5d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=EC=9D=B4=EC=98=88=EC=84=9C?= <49704047+yeseoLee@users.noreply.github.com> Date: Mon, 30 Sep 2024 10:48:52 +0900 Subject: [PATCH 17/27] =?UTF-8?q?[feat]=20eda=20=EC=A6=9D=EA=B0=95?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- utils/preprocess/eda/eda.py | 188 ++++++++++++++++++++++++++++++++++++ 1 file changed, 188 insertions(+) create mode 100644 utils/preprocess/eda/eda.py diff --git a/utils/preprocess/eda/eda.py b/utils/preprocess/eda/eda.py new file mode 100644 index 0000000..6701a02 --- /dev/null +++ b/utils/preprocess/eda/eda.py @@ -0,0 +1,188 @@ +# 데이터 증강 +import random +import pickle +import re + +wordnet = {} +with open("./wordnet.pickle", "rb") as f: + wordnet = pickle.load(f) + + +# 한글만 남기고 나머지는 삭제 +def get_only_hangul(line): + parseText = re.compile("/ ^[ㄱ-ㅎㅏ-ㅣ가-힣]*$/").sub("", line) + + return parseText + + +######################################################################## +# Synonym replacement +# Replace n words in the sentence with synonyms from wordnet +######################################################################## +def synonym_replacement(words, n): + new_words = words.copy() + random_word_list = list(set([word for word in words])) + random.shuffle(random_word_list) + num_replaced = 0 + for random_word in random_word_list: + synonyms = get_synonyms(random_word) + if len(synonyms) >= 1: + synonym = random.choice(list(synonyms)) + new_words = [synonym if word == random_word else word for word in new_words] + num_replaced += 1 + if num_replaced >= n: + break + + if len(new_words) != 0: + sentence = " ".join(new_words) + new_words = sentence.split(" ") + + else: + new_words = "" + + return new_words + + +def get_synonyms(word): + synomyms = [] + + try: + for syn in wordnet[word]: + for s in syn: + synomyms.append(s) + except: + pass + + return synomyms + + +######################################################################## +# Random deletion +# Randomly delete words from the sentence with probability p +######################################################################## +def random_deletion(words, p): + if len(words) == 1: + return words + + new_words = [] + for word in words: + r = random.uniform(0, 1) + if r > p: + new_words.append(word) + + if len(new_words) == 0: + rand_int = random.randint(0, len(words) - 1) + return [words[rand_int]] + + return new_words + + +######################################################################## +# Random swap +# Randomly swap two words in the sentence n times +######################################################################## +def random_swap(words, n): + new_words = words.copy() + for _ in range(n): + new_words = swap_word(new_words) + + return new_words + + +def swap_word(new_words): + random_idx_1 = random.randint(0, len(new_words) - 1) + random_idx_2 = random_idx_1 + counter = 0 + + while random_idx_2 == random_idx_1: + random_idx_2 = random.randint(0, len(new_words) - 1) + counter += 1 + if counter > 3: + return new_words + + new_words[random_idx_1], new_words[random_idx_2] = ( + new_words[random_idx_2], + new_words[random_idx_1], + ) + return new_words + + +######################################################################## +# Random insertion +# Randomly insert n words into the sentence +######################################################################## +def random_insertion(words, n): + new_words = words.copy() + for _ in range(n): + add_word(new_words) + + return new_words + + +def add_word(new_words): + synonyms = [] + counter = 0 + while len(synonyms) < 1: + if len(new_words) >= 1: + random_word = new_words[random.randint(0, len(new_words) - 1)] + synonyms = get_synonyms(random_word) + counter += 1 + else: + random_word = "" + + if counter >= 10: + return + + random_synonym = synonyms[0] + random_idx = random.randint(0, len(new_words) - 1) + new_words.insert(random_idx, random_synonym) + + +# RD 제거 버전 +def EDA(sentence, alpha_sr=0.1, alpha_ri=0.1, alpha_rs=0.1, num_aug=9): + sentence = get_only_hangul(sentence) + words = sentence.split(" ") + words = [word for word in words if word != ""] + num_words = len(words) + + augmented_sentences = [] + num_new_per_technique = int(num_aug / 3) + 1 # 3가지 증강 기법에 맞춰서 수정 + + n_sr = max(1, int(alpha_sr * num_words)) + n_ri = max(1, int(alpha_ri * num_words)) + n_rs = max(1, int(alpha_rs * num_words)) + + # sr: Synonym replacement + for _ in range(num_new_per_technique): + a_words = synonym_replacement(words, n_sr) + augmented_sentences.append(" ".join(a_words)) + + # ri: Random insertion + for _ in range(num_new_per_technique): + a_words = random_insertion(words, n_ri) + augmented_sentences.append(" ".join(a_words)) + + # rs: Random swap + for _ in range(num_new_per_technique): + a_words = random_swap(words, n_rs) + augmented_sentences.append(" ".join(a_words)) + + # Hangul cleanup and shuffle + augmented_sentences = [ + get_only_hangul(sentence) for sentence in augmented_sentences + ] + random.shuffle(augmented_sentences) + + # Limit the number of augmentations to num_aug + if num_aug >= 1: + augmented_sentences = augmented_sentences[:num_aug] + else: + keep_prob = num_aug / len(augmented_sentences) + augmented_sentences = [ + s for s in augmented_sentences if random.uniform(0, 1) < keep_prob + ] + + # Original sentence 포함 + augmented_sentences.append(sentence) + + return augmented_sentences From 4b86b9039ea1754a3a5db326088ea3d22194388a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=EC=9D=B4=EC=98=88=EC=84=9C?= <49704047+yeseoLee@users.noreply.github.com> Date: Mon, 30 Sep 2024 10:49:24 +0900 Subject: [PATCH 18/27] =?UTF-8?q?[feat]=20K-TACC=20=EB=8D=B0=EC=9D=B4?= =?UTF-8?q?=ED=84=B0=20=EC=A6=9D=EA=B0=95?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- utils/preprocess/K-TACC/BERT_augmentation.py | 71 +++ .../preprocess/K-TACC/adverb_augmentation.py | 56 +++ utils/preprocess/K-TACC/aeda.py | 15 + utils/preprocess/K-TACC/augmentation.ipynb | 421 ++++++++++++++++++ utils/preprocess/K-TACC/augmentation.py | 173 +++++++ utils/preprocess/K-TACC/install.sh | 7 + utils/preprocess/K-TACC/koreda.py | 183 ++++++++ utils/preprocess/K-TACC/requirements.txt | 20 + .../preprocess/K-TACC/sts/adverb_config.yaml | 27 ++ utils/preprocess/K-TACC/sts/aeda_config.yaml | 27 ++ utils/preprocess/K-TACC/sts/base_config.yaml | 27 ++ utils/preprocess/K-TACC/sts/dataloader.py | 94 ++++ utils/preprocess/K-TACC/sts/model.py | 72 +++ .../K-TACC/sts/random_deletion_config.yaml | 27 ++ .../K-TACC/sts/random_insertion_config.yaml | 27 ++ .../sts/random_masking_insertion1_config.yaml | 27 ++ .../random_masking_replacement1_config.yaml | 27 ++ .../K-TACC/sts/random_swap_config.yaml | 27 ++ .../random_synonym_replacement_config.yaml | 27 ++ utils/preprocess/K-TACC/sts/train.py | 54 +++ utils/preprocess/K-TACC/sts/train.sh | 20 + utils/preprocess/K-TACC/wordnet.pickle | Bin 0 -> 236584 bytes 22 files changed, 1429 insertions(+) create mode 100644 utils/preprocess/K-TACC/BERT_augmentation.py create mode 100644 utils/preprocess/K-TACC/adverb_augmentation.py create mode 100644 utils/preprocess/K-TACC/aeda.py create mode 100644 utils/preprocess/K-TACC/augmentation.ipynb create mode 100644 utils/preprocess/K-TACC/augmentation.py create mode 100644 utils/preprocess/K-TACC/install.sh create mode 100644 utils/preprocess/K-TACC/koreda.py create mode 100644 utils/preprocess/K-TACC/requirements.txt create mode 100644 utils/preprocess/K-TACC/sts/adverb_config.yaml create mode 100644 utils/preprocess/K-TACC/sts/aeda_config.yaml create mode 100644 utils/preprocess/K-TACC/sts/base_config.yaml create mode 100644 utils/preprocess/K-TACC/sts/dataloader.py create mode 100644 utils/preprocess/K-TACC/sts/model.py create mode 100644 utils/preprocess/K-TACC/sts/random_deletion_config.yaml create mode 100644 utils/preprocess/K-TACC/sts/random_insertion_config.yaml create mode 100644 utils/preprocess/K-TACC/sts/random_masking_insertion1_config.yaml create mode 100644 utils/preprocess/K-TACC/sts/random_masking_replacement1_config.yaml create mode 100644 utils/preprocess/K-TACC/sts/random_swap_config.yaml create mode 100644 utils/preprocess/K-TACC/sts/random_synonym_replacement_config.yaml create mode 100644 utils/preprocess/K-TACC/sts/train.py create mode 100644 utils/preprocess/K-TACC/sts/train.sh create mode 100644 utils/preprocess/K-TACC/wordnet.pickle diff --git a/utils/preprocess/K-TACC/BERT_augmentation.py b/utils/preprocess/K-TACC/BERT_augmentation.py new file mode 100644 index 0000000..cd56f0f --- /dev/null +++ b/utils/preprocess/K-TACC/BERT_augmentation.py @@ -0,0 +1,71 @@ +import transformers +import re +import random +import numpy as np + + +class BERT_Augmentation(): + def __init__(self): + self.model_name = 'monologg/koelectra-base-v3-generator' + self.model = transformers.AutoModelForMaskedLM.from_pretrained(self.model_name) + self.tokenizer = transformers.AutoTokenizer.from_pretrained(self.model_name) + self.unmasker = transformers.pipeline("fill-mask", model=self.model, tokenizer=self.tokenizer) + random.seed(42) + def random_masking_replacement(self, sentence, ratio=0.15): + """Masking random eojeol of the sentence, and recover them using PLM. + + Args: + sentence (str): Source sentence + ratio (int): Ratio of masking + + Returns: + str: Recovered sentence + """ + + span = int(round(len(sentence.split()) * ratio)) + + # 품질 유지를 위해, 문장의 어절 수가 4 이하라면 원문장을 그대로 리턴합니다. + if len(sentence.split()) <= 4: + return sentence + + mask = self.tokenizer.mask_token + unmasker = self.unmasker + + unmask_sentence = sentence + # 처음과 끝 부분을 [MASK]로 치환 후 추론할 때의 품질이 좋지 않음. + random_idx = random.randint(1, len(unmask_sentence.split()) - span) + + unmask_sentence = unmask_sentence.split() + # del unmask_sentence[random_idx:random_idx+span] + cache = [] + for _ in range(span): + # 처음과 끝 부분을 [MASK]로 치환 후 추론할 때의 품질이 좋지 않음. + while cache and random_idx in cache: + random_idx = random.randint(1, len(unmask_sentence) - 2) + cache.append(random_idx) + unmask_sentence[random_idx] = mask + unmask_sentence = unmasker(" ".join(unmask_sentence))[0]['sequence'] + unmask_sentence = unmask_sentence.split() + unmask_sentence = " ".join(unmask_sentence) + unmask_sentence = unmask_sentence.replace(" ", " ") + + return unmask_sentence.strip() + + def random_masking_insertion(self, sentence, ratio=0.15): + + span = int(round(len(sentence.split()) * ratio)) + mask = self.tokenizer.mask_token + unmasker = self.unmasker + + # Recover + unmask_sentence = sentence + + for _ in range(span): + unmask_sentence = unmask_sentence.split() + random_idx = random.randint(0, len(unmask_sentence)-1) + unmask_sentence.insert(random_idx, mask) + unmask_sentence = unmasker(" ".join(unmask_sentence))[0]['sequence'] + + unmask_sentence = unmask_sentence.replace(" ", " ") + + return unmask_sentence.strip() \ No newline at end of file diff --git a/utils/preprocess/K-TACC/adverb_augmentation.py b/utils/preprocess/K-TACC/adverb_augmentation.py new file mode 100644 index 0000000..fa25e62 --- /dev/null +++ b/utils/preprocess/K-TACC/adverb_augmentation.py @@ -0,0 +1,56 @@ +import re +from bs4 import BeautifulSoup +from selenium import webdriver +import random +import requests +from kiwipiepy import Kiwi +import time +from quickspacer import Spacer +class AdverbAugmentation(): + def __init__(self): + self.kiwi = Kiwi() + self.spacing = Spacer().space + def _adverb_detector(self, sentence): + + # POS info + pos_list = [(x[0], x[1]) for x in self.kiwi.tokenize(sentence)] # (token, pos) + + adverb_list = [] + for pos in pos_list: + if pos[1] == "MAG" and len(pos[0]) > 1: # 1음절 부사는 제외함. + adverb_list.append(pos[0]) + return adverb_list + + def _get_gloss(self, word): + res = requests.get("https://dic.daum.net/search.do?q=" + word, timeout=5) + time.sleep(random.uniform(0.5,2.5)) + soup = BeautifulSoup(res.content, "html.parser") + try: + # 첫 번째 뜻풀이. + meaning = soup.find('span', class_='txt_search') + except AttributeError: + return word + if not meaning: + return word + + # parsing 결과에서 한글만 추출 + meaning = re.findall('[가-힣]+', str(meaning)) + meaning = ' '.join(meaning) + + # 띄어쓰기 오류 교정 (위 에 -> 위에) + # meaning = spell_checker.check(meaning).as_dict()['checked'].strip() + meaning = self.spacing([meaning.replace(" ", "")]) + return meaning[0].strip() + + def adverb_gloss_replacement(self, sentence): + adverb_list = self._adverb_detector(sentence) + if adverb_list: + # 부사들 중에서 1개만 랜덤으로 선택합니다. + adverb = random.choice(adverb_list) + try: + gloss = self._get_gloss(adverb) + sentence = sentence.replace(adverb, gloss) + except: + print('except: ', sentence) + pass + return sentence \ No newline at end of file diff --git a/utils/preprocess/K-TACC/aeda.py b/utils/preprocess/K-TACC/aeda.py new file mode 100644 index 0000000..38cc5e1 --- /dev/null +++ b/utils/preprocess/K-TACC/aeda.py @@ -0,0 +1,15 @@ +import random + +def aeda(sentence): + punc_list = list(".,;:?!") + + sentence = sentence.split() + random_ratio = random.uniform(0.1, 0.3) # 범위는 ADEA 논문을 따름. + n_ri = max(1, int(len(sentence) * random_ratio)) + + for _ in range(n_ri): + random_punc = random.choice(punc_list) + random_idx = random.randint(0, len(sentence)-1) + sentence.insert(random_idx, random_punc) + + return ' '.join(sentence).strip() diff --git a/utils/preprocess/K-TACC/augmentation.ipynb b/utils/preprocess/K-TACC/augmentation.ipynb new file mode 100644 index 0000000..18a6165 --- /dev/null +++ b/utils/preprocess/K-TACC/augmentation.ipynb @@ -0,0 +1,421 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "3f6d8273-0de9-48e7-ab4f-c2e5638bb669", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "from BERT_augmentation import BERT_Augmentation\n", + "from adverb_augmentation import AdverbAugmentation\n", + "import transformers" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "98f6be27-3445-4bdd-ba5a-e29f06498477", + "metadata": {}, + "outputs": [], + "source": [ + "BERT_aug = BERT_Augmentation()\n", + "random_masking_replacement = BERT_aug.random_masking_replacement\n", + "random_masking_insertion = BERT_aug.random_masking_insertion" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "59d6ed1d-4141-4fc3-82f1-3a57cb2bb5e8", + "metadata": {}, + "outputs": [], + "source": [ + "adverb_aug = AdverbAugmentation()\n", + "adverb_gloss_replacement = adverb_aug.adverb_gloss_replacement" + ] + }, + { + "cell_type": "markdown", + "id": "7237afb4-e905-42ab-9e35-4e99242b4ba8", + "metadata": {}, + "source": [ + "## BERT augmentation" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "8c81422c-9f0c-4965-ad4c-571af4304fbd", + "metadata": {}, + "outputs": [], + "source": [ + "sentence = \"아버지가 오늘 아침에 부엌에 있었다가 갑자기 일어나시더니 슬그머니 안방으로 들어가셨다.\"\n", + "ratio = 0.15" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "960cc219-aa14-44f9-a1fb-494c3c3617d4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "random_masking_replacement: 아버지가 오늘은 부엌에 있었다가 갑자기 일어나 슬그머니 안방으로 들어가셨다.\n", + "random_insertion_replacement: 그런데 아버지가 오늘 아침에 부엌에 있었다가 갑자기 벌떡 일어나시더니 슬그머니 안방으로 들어가셨다.\n" + ] + } + ], + "source": [ + "print('random_masking_replacement:', random_masking_replacement(sentence, ratio))\n", + "print('random_insertion_replacement:', random_masking_insertion(sentence, ratio))" + ] + }, + { + "cell_type": "markdown", + "id": "c079b51c-400b-4773-a84b-cfc1219146a9", + "metadata": {}, + "source": [ + "## Adverb augmentation" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "802c3abd-ed68-4a3d-a1c9-a4401da7fbb5", + "metadata": {}, + "outputs": [], + "source": [ + "sentence = \"아버지가 부엌에 있었다가 갑자기 일어나시더니 슬그머니 안방으로 들어가셨다.\"" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "bd28e530-228c-4598-b2aa-23d6dc74beb3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'아버지가 부엌에 있었다가 생각할 겨를도 없이 빨리 일어나시더니 슬그머니 안방으로 들어가셨다.'" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "adverb_gloss_replacement(sentence)" + ] + }, + { + "cell_type": "markdown", + "id": "04527424-83ab-453c-816d-81b015ae3f94", + "metadata": {}, + "source": [ + "## 기존 EDA 방법 (KorEDA)\n", + "- random_delete\n", + "- random_swap\n", + "- synonym_replacement\n", + "- random_insert" + ] + }, + { + "cell_type": "code", + "execution_count": 183, + "id": "dbfa8c99-c85f-44b2-8433-e0b0a88a4f30", + "metadata": {}, + "outputs": [], + "source": [ + "from koreda import synonym_replacement, random_deletion, random_swap, random_insertion" + ] + }, + { + "cell_type": "code", + "execution_count": 864, + "id": "d12240c6-73e9-4f98-89f3-e30224468d7c", + "metadata": {}, + "outputs": [], + "source": [ + "sentence = \"이순신은 조선 중기의 매우 뛰어난 전략가이자 용맹한 무신이다.\"" + ] + }, + { + "cell_type": "code", + "execution_count": 865, + "id": "793ff40c-cb1f-45a4-8bac-caaaa49cf77f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "synonym_replacement: 이순신은 조선 중기의 매우 뛰어난 전략가이자 용맹한 무신이다.\n", + "random_deletion: 이순신은 조선 중기의 매우 전략가이자 용맹한 무신이다.\n", + "random_swap: 이순신은 조선 무신이다. 매우 뛰어난 전략가이자 용맹한 중기의\n", + "random_insertion: 이순신은 조선 중기의 매우 뛰어난 전략가이자 용맹한 무신이다.\n" + ] + } + ], + "source": [ + "print('synonym_replacement: ', \" \".join(synonym_replacement(sentence.split(), 1)))\n", + "print('random_deletion: ', \" \".join(random_deletion(sentence.split(), 0.15)))\n", + "print('random_swap: ', \" \".join(random_swap(sentence.split(), 1)))\n", + "print('random_insertion: ', \" \".join(random_insertion(sentence.split(), 1)))" + ] + }, + { + "cell_type": "markdown", + "id": "1a6c97ad-d568-43e6-a092-869b7b00dc79", + "metadata": {}, + "source": [ + "## AEDA" + ] + }, + { + "cell_type": "code", + "execution_count": 867, + "id": "aabe5ef2-4e37-481b-ab85-3a3856d638b3", + "metadata": {}, + "outputs": [], + "source": [ + "from aeda import aeda" + ] + }, + { + "cell_type": "code", + "execution_count": 868, + "id": "e0a80bbf-6105-4b0a-bc5d-ec903e33bc1d", + "metadata": {}, + "outputs": [], + "source": [ + "sentence = \"이순신은 조선 중기의 매우 뛰어난 전략가이자 용맹한 무신이다.\"" + ] + }, + { + "cell_type": "code", + "execution_count": 877, + "id": "83a05672-0e90-4de2-8f51-dbf4ed17c8be", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "aeda: ! 이순신은 . 조선 중기의 매우 뛰어난 전략가이자 용맹한 무신이다.\n" + ] + } + ], + "source": [ + "print('aeda: ', aeda(sentence))" + ] + }, + { + "cell_type": "markdown", + "id": "2251fec3-5f03-4fa9-b2b9-c6c22e2c94f1", + "metadata": {}, + "source": [ + "## dataset의 크기" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "id": "86df2c23-88cf-4fd5-a26f-83b7541124cb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "11668\n" + ] + } + ], + "source": [ + "# dataset\n", + "orig_train = pd.read_json('sts/datasets/klue-sts-v1.1_train.json')\n", + "print(len(orig_train))" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "id": "a4cad170-2918-46d7-af3c-82c19a093fe6", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "22945\n" + ] + } + ], + "source": [ + "random_masking_replacement_train = pd.read_json('sts/datasets/klue-sts-v1.1_train_random_masking_replacement_augset_span_0.15.json')\n", + "print(len(random_masking_replacement_train))" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "id": "d07977a9-e48d-46ba-9009-bf9f67af5f6d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23116\n" + ] + } + ], + "source": [ + "random_masking_insertion_train = pd.read_json('sts/datasets/klue-sts-v1.1_train_random_masking_insertion_augset_span_0.15.json')\n", + "print(len(random_masking_insertion_train))" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "id": "513e42a0-7457-4617-be76-0fd10cf1148e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20459\n" + ] + } + ], + "source": [ + "adverb_train = pd.read_json('sts/datasets/klue-sts-v1.1_train_adverb_augset.json')\n", + "print(len(adverb_train))" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "id": "2306e333-7fd0-4e59-a218-c1b75a650d13", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "18115\n" + ] + } + ], + "source": [ + "sr_train = pd.read_json('sts/datasets/klue-sts-v1.1_train_sr_augset.json')\n", + "print(len(sr_train))" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "id": "1401c028-96d1-434f-ad79-f9f1e74a1947", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23327\n" + ] + } + ], + "source": [ + "rs_train = pd.read_json('sts/datasets/klue-sts-v1.1_train_rs_augset.json')\n", + "print(len(rs_train))" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "id": "c6e481fb-80ba-424c-b4fa-d3f944e495ab", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "22122\n" + ] + } + ], + "source": [ + "rd_train = pd.read_json('sts/datasets/klue-sts-v1.1_train_rd_augset.json')\n", + "print(len(rd_train))" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "id": "6fca6408-8e87-422e-8235-d5c964d71edc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "18464\n" + ] + } + ], + "source": [ + "ri_train = pd.read_json('sts/datasets/klue-sts-v1.1_train_ri_augset.json')\n", + "print(len(ri_train))" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "id": "89260947-7350-46b9-96fa-e55e160efedb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23329\n" + ] + } + ], + "source": [ + "aeda_train = pd.read_json('sts/datasets/klue-sts-v1.1_train_aeda_augset.json')\n", + "print(len(aeda_train))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "ame", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/utils/preprocess/K-TACC/augmentation.py b/utils/preprocess/K-TACC/augmentation.py new file mode 100644 index 0000000..718a51e --- /dev/null +++ b/utils/preprocess/K-TACC/augmentation.py @@ -0,0 +1,173 @@ +# Making Augset +import pandas as pd +from BERT_augmentation import BERT_Augmentation +from adverb_augmentation import AdverbAugmentation +from aeda import aeda +from tqdm import tqdm +from multiprocessing import Pool +import joblib +from functools import partial +import numpy as np + +tqdm.pandas() + +BERT_aug = BERT_Augmentation() +random_masking_replacement = BERT_aug.random_masking_replacement +random_masking_insertion = BERT_aug.random_masking_insertion +adverb_aug = AdverbAugmentation() +adverb_gloss_replacement = adverb_aug.adverb_gloss_replacement + +orig_train = pd.read_json("sts/datasets/klue-sts-v1.1_train.json") + + +def apply_random_masking_replacement(x, ratio=0.15): + return random_masking_replacement(x, ratio=ratio) + + +# dataset + +random_masking_replacement_train = orig_train.copy() +pool = joblib.Parallel(n_jobs=8, prefer="threads") +mapper = joblib.delayed(apply_random_masking_replacement) +tasks = [ + mapper(row) for i, row in random_masking_replacement_train["sentence_1"].items() +] +random_masking_replacement_train["sentence_1"] = pool(tqdm(tasks)) + +tasks = [ + mapper(row) for i, row in random_masking_replacement_train["sentence_2"].items() +] +random_masking_replacement_train["sentence_2"] = pool(tqdm(tasks)) + +random_masking_replacement_augset = pd.concat( + [orig_train, random_masking_replacement_train] +) +random_masking_replacement_augset.drop_duplicates( + ["sentence_1", "sentence_2"], inplace=True +) +print(len(random_masking_replacement_augset)) + +random_masking_replacement_augset.reset_index().to_json( + "sts/datasets/klue-sts-v1.1_train_random_masking_replacement_augset_span_0.15_nospan.json" +) + + +# random insertion +def apply_random_masking_insertion(x, ratio=0.15): + return random_masking_insertion(x, ratio=ratio) + + +ratio = 0.15 +random_masking_insertion_train = orig_train.copy() +pool = joblib.Parallel(n_jobs=8, prefer="threads") +mapper = joblib.delayed(apply_random_masking_insertion) +tasks = [mapper(row) for i, row in random_masking_insertion_train["sentence_1"].items()] +random_masking_insertion_train["sentence_1"] = pool(tqdm(tasks)) + +tasks = [mapper(row) for i, row in random_masking_insertion_train["sentence_2"].items()] +random_masking_insertion_train["sentence_2"] = pool(tqdm(tasks)) + +random_masking_insertion_augset = pd.concat( + [orig_train, random_masking_insertion_train] +) +random_masking_insertion_augset.drop_duplicates( + ["sentence_1", "sentence_2"], inplace=True +) +print(len(random_masking_insertion_augset)) +random_masking_insertion_augset.reset_index().to_json( + "sts/datasets/klue-sts-v1.1_train_random_masking_insertion_augset_span_0.15_nospan.json" +) + + +# # adverb +adverb_train = orig_train.copy() + + +def apply_adverb_gloss_replacement(df, ratio): + df["sentence_1"] = df["sentence_1"].progress_apply( + lambda x: adverb_gloss_replacement(x) + ) + df["sentence_2"] = df["sentence_2"].progress_apply( + lambda x: adverb_gloss_replacement(x) + ) + return df + + +adverb_train["sentence_1"] = adverb_train["sentence_1"].progress_apply( + lambda x: adverb_gloss_replacement(x) +) +adverb_train["sentence_2"] = adverb_train["sentence_2"].progress_apply( + lambda x: adverb_gloss_replacement(x) +) +adverb_augset = pd.concat([orig_train, adverb_train]) +adverb_augset.drop_duplicates(["sentence_1", "sentence_2"], inplace=True) +print(len(adverb_augset)) +adverb_augset.reset_index().to_json( + "sts/datasets/klue-sts-v1.1_train_adverb_augset.json" +) + + +# # koreda +from koreda import synonym_replacement, random_deletion, random_swap, random_insertion +from aeda import aeda + +# synonym_replacement +sr_train = orig_train.copy() +sr_train["sentence_1"] = sr_train["sentence_1"].apply( + lambda x: " ".join(synonym_replacement(x.split(), 1)) +) +sr_train["sentence_2"] = sr_train["sentence_2"].apply( + lambda x: " ".join(synonym_replacement(x.split(), 1)) +) +sr_augset = pd.concat([orig_train, sr_train]) +sr_augset.drop_duplicates(["sentence_1", "sentence_2"], inplace=True) +print(len(sr_augset)) +sr_augset.reset_index().to_json("sts/datasets/klue-sts-v1.1_train_sr_augset.json") + +# random_deletion +rd_train = orig_train.copy() +rd_train["sentence_1"] = rd_train["sentence_1"].apply( + lambda x: " ".join(random_deletion(x.split(), 0.15)) +) +rd_train["sentence_2"] = rd_train["sentence_2"].apply( + lambda x: " ".join(random_deletion(x.split(), 0.15)) +) +rd_augset = pd.concat([orig_train, rd_train]) +rd_augset.drop_duplicates(["sentence_1", "sentence_2"], inplace=True) +print(len(rd_augset)) +rd_augset.reset_index().to_json("sts/datasets/klue-sts-v1.1_train_rd_augset.json") + +# random_swap +rs_train = orig_train.copy() +rs_train["sentence_1"] = rs_train["sentence_1"].apply( + lambda x: " ".join(random_swap(x.split(), 1)) +) +rs_train["sentence_2"] = rs_train["sentence_2"].apply( + lambda x: " ".join(random_swap(x.split(), 1)) +) +rs_augset = pd.concat([orig_train, rs_train]) +rs_augset.drop_duplicates(["sentence_1", "sentence_2"], inplace=True) +print(len(rs_augset)) +rs_augset.reset_index().to_json("sts/datasets/klue-sts-v1.1_train_rs_augset.json") + +# random_insertion +ri_train = orig_train.copy() +ri_train["sentence_1"] = ri_train["sentence_1"].apply( + lambda x: " ".join(random_insertion(x.split(), 1)) +) +ri_train["sentence_2"] = ri_train["sentence_2"].apply( + lambda x: " ".join(random_insertion(x.split(), 1)) +) +ri_augset = pd.concat([orig_train, ri_train]) +ri_augset.drop_duplicates(["sentence_1", "sentence_2"], inplace=True) +print(len(ri_augset)) +ri_augset.reset_index().to_json("sts/datasets/klue-sts-v1.1_train_ri_augset.json") + +# aeda +aeda_train = orig_train.copy() +aeda_train["sentence_1"] = aeda_train["sentence_1"].apply(lambda x: aeda(x)) +aeda_train["sentence_2"] = aeda_train["sentence_2"].apply(lambda x: aeda(x)) +aeda_augset = pd.concat([orig_train, aeda_train]) +aeda_augset.drop_duplicates(["sentence_1", "sentence_2"], inplace=True) +print(len(aeda_augset)) +aeda_augset.reset_index().to_json("sts/datasets/klue-sts-v1.1_train_aeda_augset.json") diff --git a/utils/preprocess/K-TACC/install.sh b/utils/preprocess/K-TACC/install.sh new file mode 100644 index 0000000..545178f --- /dev/null +++ b/utils/preprocess/K-TACC/install.sh @@ -0,0 +1,7 @@ +# py-hanspell +git clone https://github.com/ssut/py-hanspell.git +cd py-hanspell +python setup.py install +cd .. + +pip install -r requirements.txt \ No newline at end of file diff --git a/utils/preprocess/K-TACC/koreda.py b/utils/preprocess/K-TACC/koreda.py new file mode 100644 index 0000000..51123b9 --- /dev/null +++ b/utils/preprocess/K-TACC/koreda.py @@ -0,0 +1,183 @@ +''' +This code was forked from +https://github.com/catSirup/KorEDA/blob/master/eda.py +''' + + +import random +import pickle +import re + +wordnet = {} +with open("wordnet.pickle", "rb") as f: + wordnet = pickle.load(f) + + +# 한글만 남기고 나머지는 삭제 +def get_only_hangul(line): + parseText= re.compile('/ ^[ㄱ-ㅎㅏ-ㅣ가-힣]*$/').sub('',line) + + return parseText + +######################################################################## +# Synonym replacement +# Replace n words in the sentence with synonyms from wordnet +######################################################################## +def synonym_replacement(words, n): + new_words = words.copy() + random_word_list = list(set([word for word in words])) + random.shuffle(random_word_list) + num_replaced = 0 + for random_word in random_word_list: + synonyms = get_synonyms(random_word) + if len(synonyms) >= 1: + synonym = random.choice(list(synonyms)) + new_words = [synonym if word == random_word else word for word in new_words] + num_replaced += 1 + if num_replaced >= n: + break + + if len(new_words) != 0: + sentence = ' '.join(new_words) + new_words = sentence.split(" ") + + else: + new_words = "" + + return new_words + + +def get_synonyms(word): + synomyms = [] + + try: + for syn in wordnet[word]: + for s in syn: + synomyms.append(s) + except: + pass + + return synomyms + +######################################################################## +# Random deletion +# Randomly delete words from the sentence with probability p +######################################################################## +def random_deletion(words, p): + if len(words) == 1: + return words + + new_words = [] + for word in words: + r = random.uniform(0, 1) + if r > p: + new_words.append(word) + + if len(new_words) == 0: + rand_int = random.randint(0, len(words)-1) + return [words[rand_int]] + + return new_words + +######################################################################## +# Random swap +# Randomly swap two words in the sentence n times +######################################################################## +def random_swap(words, n): + new_words = words.copy() + for _ in range(n): + new_words = swap_word(new_words) + + return new_words + +def swap_word(new_words): + random_idx_1 = random.randint(0, len(new_words)-1) + random_idx_2 = random_idx_1 + counter = 0 + + while random_idx_2 == random_idx_1: + random_idx_2 = random.randint(0, len(new_words)-1) + counter += 1 + if counter > 3: + return new_words + + new_words[random_idx_1], new_words[random_idx_2] = new_words[random_idx_2], new_words[random_idx_1] + return new_words + +######################################################################## +# Random insertion +# Randomly insert n words into the sentence +######################################################################## +def random_insertion(words, n): + new_words = words.copy() + for _ in range(n): + add_word(new_words) + + return new_words + + +def add_word(new_words): + synonyms = [] + counter = 0 + while len(synonyms) < 1: + if len(new_words) >= 1: + random_word = new_words[random.randint(0, len(new_words)-1)] + synonyms = get_synonyms(random_word) + counter += 1 + else: + random_word = "" + + if counter >= 10: + return + + random_synonym = synonyms[0] + random_idx = random.randint(0, len(new_words)-1) + new_words.insert(random_idx, random_synonym) + + + +def EDA(sentence, alpha_sr=0.1, alpha_ri=0.1, alpha_rs=0.1, p_rd=0.1, num_aug=9): + # sentence = get_only_hangul(sentence) + words = sentence.split(' ') + words = [word for word in words if word is not ""] + num_words = len(words) + + augmented_sentences = [] + num_new_per_technique = int(num_aug/4) + 1 + + n_sr = max(1, int(alpha_sr*num_words)) + n_ri = max(1, int(alpha_ri*num_words)) + n_rs = max(1, int(alpha_rs*num_words)) + + # sr + for _ in range(num_new_per_technique): + a_words = synonym_replacement(words, n_sr) + augmented_sentences.append(' '.join(a_words)) + + # ri + for _ in range(num_new_per_technique): + a_words = random_insertion(words, n_ri) + augmented_sentences.append(' '.join(a_words)) + + # rs + for _ in range(num_new_per_technique): + a_words = random_swap(words, n_rs) + augmented_sentences.append(" ".join(a_words)) + + # rd + for _ in range(num_new_per_technique): + a_words = random_deletion(words, p_rd) + augmented_sentences.append(" ".join(a_words)) + + augmented_sentences = [get_only_hangul(sentence) for sentence in augmented_sentences] + random.shuffle(augmented_sentences) + + if num_aug >= 1: + augmented_sentences = augmented_sentences[:num_aug] + else: + keep_prob = num_aug / len(augmented_sentences) + augmented_sentences = [s for s in augmented_sentences if random.uniform(0, 1) < keep_prob] + + augmented_sentences.append(sentence) + + return augmented_sentences \ No newline at end of file diff --git a/utils/preprocess/K-TACC/requirements.txt b/utils/preprocess/K-TACC/requirements.txt new file mode 100644 index 0000000..312bb7c --- /dev/null +++ b/utils/preprocess/K-TACC/requirements.txt @@ -0,0 +1,20 @@ +# for augmentation +torch +transformers +kiwipiepy +requests +selenium +bs4 +joblib + +# for fine-tuning +pyYAML +pytorch-lightning==1.9.1 +tqdm +torchmetrics +pandas +omegaconf +quickspacer + +# dev +wandb \ No newline at end of file diff --git a/utils/preprocess/K-TACC/sts/adverb_config.yaml b/utils/preprocess/K-TACC/sts/adverb_config.yaml new file mode 100644 index 0000000..400eb89 --- /dev/null +++ b/utils/preprocess/K-TACC/sts/adverb_config.yaml @@ -0,0 +1,27 @@ +path: + train_path: datasets/klue-sts-v1.1_train_adverb_augset.json + dev_path: datasets/klue-sts-v1.1_dev.json + test_path: datasets/klue-sts-v1.1_dev.json + +data: + shuffle: True + augmentation: True + max_length : 128 + +model: + model_name: 'monologg/koelectra-base-v3-discriminator' + saved_name: 'adverb_model' + +train: + seed: 42 + batch_size: 32 + max_epoch: 4 + learning_rate: 5e-5 + logging_step: 100 + drop_out: 0.1 + warmup_ratio: 0.1 + weight_decay: 0.01 + +runner: + options: + num_workers: 8 \ No newline at end of file diff --git a/utils/preprocess/K-TACC/sts/aeda_config.yaml b/utils/preprocess/K-TACC/sts/aeda_config.yaml new file mode 100644 index 0000000..6b20175 --- /dev/null +++ b/utils/preprocess/K-TACC/sts/aeda_config.yaml @@ -0,0 +1,27 @@ +path: + train_path: datasets/klue-sts-v1.1_train_aeda_augset.json + dev_path: datasets/klue-sts-v1.1_dev.json + test_path: datasets/klue-sts-v1.1_dev.json + +data: + shuffle: True + augmentation: True + max_length : 128 + +model: + model_name: 'monologg/koelectra-base-v3-discriminator' + saved_name: 'aeda_model' + +train: + seed: 42 + batch_size: 32 + max_epoch: 4 + learning_rate: 5e-5 + logging_step: 100 + drop_out: 0.1 + warmup_ratio: 0.1 + weight_decay: 0.01 + +runner: + options: + num_workers: 8 \ No newline at end of file diff --git a/utils/preprocess/K-TACC/sts/base_config.yaml b/utils/preprocess/K-TACC/sts/base_config.yaml new file mode 100644 index 0000000..0412474 --- /dev/null +++ b/utils/preprocess/K-TACC/sts/base_config.yaml @@ -0,0 +1,27 @@ +path: + train_path: datasets/klue-sts-v1.1_train.json + dev_path: datasets/klue-sts-v1.1_dev.json + test_path: datasets/klue-sts-v1.1_dev.json + +data: + shuffle: True + augmentation: False + max_length : 128 + +model: + model_name: 'monologg/koelectra-base-v3-discriminator' + saved_name: 'base_model' + +train: + seed: 42 + batch_size: 32 + max_epoch: 4 + learning_rate: 5e-5 + logging_step: 100 + drop_out: 0.1 + warmup_ratio: 0.1 + weight_decay: 0.01 + +runner: + options: + num_workers: 8 \ No newline at end of file diff --git a/utils/preprocess/K-TACC/sts/dataloader.py b/utils/preprocess/K-TACC/sts/dataloader.py new file mode 100644 index 0000000..a892b07 --- /dev/null +++ b/utils/preprocess/K-TACC/sts/dataloader.py @@ -0,0 +1,94 @@ +import re +import pandas as pd +from tqdm.auto import tqdm +import transformers +import torch +import pytorch_lightning as pl +from ast import literal_eval + +class Dataset(torch.utils.data.Dataset): + def __init__(self, inputs, targets=[]): + self.inputs = inputs + self.targets = targets + + def __getitem__(self, idx): + if len(self.targets) == 0: + return torch.tensor(self.inputs[idx]) + else: + return torch.tensor(self.inputs[idx]), torch.tensor(self.targets[idx]).unsqueeze(0) + + def __len__(self): + return len(self.inputs) + +class Dataloader(pl.LightningDataModule): + def __init__(self, cfg, idx=None): + super().__init__() + self.model_name = cfg.model.model_name + self.batch_size = cfg.train.batch_size + self.shuffle = cfg.data.shuffle + self.max_length = cfg.data.max_length + + self.train_path = cfg.path.train_path + self.dev_path = cfg.path.dev_path + self.test_path = cfg.path.test_path + + self.train_dataset = None + self.dev_dataset = None + self.test_dataset = None + + self.tokenizer = transformers.AutoTokenizer.from_pretrained(self.model_name, max_length=self.max_length) + self.target_columns = ['labels'] + self.delete_columns = ['guid'] + self.text_columns = ['sentence1', 'sentence2'] + + def tokenizing(self, dataframe): + data = [] + for idx, item in tqdm(dataframe.iterrows(), desc='tokenizing', total=len(dataframe)): + text = self.tokenizer.sep_token.join([item[text_column] for text_column in self.text_columns]) + outputs = self.tokenizer(text, + add_special_tokens=True, + max_length=self.max_length, + padding='max_length', truncation=True) + data.append(outputs['input_ids']) + return data + + def preprocessing(self, data): + data = data.drop(columns=self.delete_columns) + + targets = [x[0]['label'] for x in data[self.target_columns].values.tolist()] + inputs = self.tokenizing(data) + return inputs, targets + + def setup(self, stage='fit'): + if stage == 'fit': + train_data = pd.read_json(self.train_path) + dev_data = pd.read_json(self.dev_path) + + train_inputs, train_targets = self.preprocessing(train_data) + dev_inputs, dev_targets = self.preprocessing(dev_data) + + self.train_dataset = Dataset(train_inputs, train_targets) + self.dev_dataset = Dataset(dev_inputs, dev_targets) + + else: + test_data = pd.read_json(self.test_path) + test_inputs, test_targets = self.preprocessing(test_data) + self.test_dataset = Dataset(test_inputs, test_targets) + + def train_dataloader(self): + return torch.utils.data.DataLoader(self.train_dataset, + batch_size=self.batch_size, + shuffle=self.shuffle) + + def val_dataloader(self): + return torch.utils.data.DataLoader(self.dev_dataset, + batch_size=self.batch_size, + shuffle=False) + + def test_dataloader(self): + return torch.utils.data.DataLoader(self.test_dataset, + batch_size=self.batch_size, + shuffle=False) + + + \ No newline at end of file diff --git a/utils/preprocess/K-TACC/sts/model.py b/utils/preprocess/K-TACC/sts/model.py new file mode 100644 index 0000000..a345a6c --- /dev/null +++ b/utils/preprocess/K-TACC/sts/model.py @@ -0,0 +1,72 @@ +import os +import sys + +import transformers +from transformers import get_cosine_schedule_with_warmup +import torch +import torchmetrics +import pytorch_lightning as pl +from torch.optim.lr_scheduler import CosineAnnealingLR, ExponentialLR, OneCycleLR +import numpy as np +import wandb +from pytorch_lightning.loggers import WandbLogger + +class Model(pl.LightningModule): + def __init__(self, cfg): + super().__init__() + self.save_hyperparameters() + self.model_name = cfg.model.model_name + self.lr = cfg.train.learning_rate + self.drop_out = cfg.train.drop_out + self.warmup_ratio = cfg.train.warmup_ratio + self.weight_decay = cfg.train.weight_decay + self.plm = transformers.AutoModelForSequenceClassification.from_pretrained( + pretrained_model_name_or_path=self.model_name, + num_labels=1, + hidden_dropout_prob=self.drop_out, + attention_probs_dropout_prob=self.drop_out + ) + self.epoch = cfg.train.max_epoch + self.batch_size = cfg.train.batch_size + + self.loss_func = torch.nn.L1Loss() + self.optimizer = torch.optim.AdamW(params=self.parameters(), lr=self.lr) + + def forward(self, x): + x = self.plm(x)['logits'] + + return x + + def training_step(self, batch, batch_idx): + x, y = batch + logits = self(x) + loss = self.loss_func(logits, y.float()) + self.log("train_loss", loss, on_step=True, on_epoch=True, prog_bar=True, logger=True) + return loss + + def validation_step(self, batch, batch_idx): + x, y = batch + logits = self(x) + loss = self.loss_func(logits, y.float()) + self.log("val_loss", loss, prog_bar=True, logger=True) + pearson_corr = torchmetrics.functional.pearson_corrcoef(logits.squeeze(), y.squeeze()) + self.log("val_pearson", pearson_corr, prog_bar=True, logger=True) + + return {'val_loss':loss, 'val_pearson_corr':pearson_corr} + + def test_step(self, batch, batch_idx): + x, y = batch + logits = self(x) + test_pearson_corr = torchmetrics.functional.pearson_corrcoef(logits.squeeze(), y.squeeze()) + self.log("test_pearson", test_pearson_corr) + return test_pearson_corr + + def configure_optimizers(self): + optimizer = torch.optim.AdamW(params=self.parameters(), lr=self.lr, weight_decay=self.weight_decay) + # scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10, T_mult=2, eta_min=self.lr*0.01, last_epoch=-1) + scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=self.warmup_ratio*self.trainer.estimated_stepping_batches, + num_training_steps=self.trainer.estimated_stepping_batches) + # scheduler = ExponentialLR(optimizer, gamma=0.5) + scheduler = {'scheduler':scheduler, 'interval':'step', 'frequency':1} + + return [optimizer], [scheduler] \ No newline at end of file diff --git a/utils/preprocess/K-TACC/sts/random_deletion_config.yaml b/utils/preprocess/K-TACC/sts/random_deletion_config.yaml new file mode 100644 index 0000000..75cfe1e --- /dev/null +++ b/utils/preprocess/K-TACC/sts/random_deletion_config.yaml @@ -0,0 +1,27 @@ +path: + train_path: datasets/klue-sts-v1.1_train_rd_augset.json + dev_path: datasets/klue-sts-v1.1_dev.json + test_path: datasets/klue-sts-v1.1_dev.json + +data: + shuffle: True + augmentation: True + max_length : 128 + +model: + model_name: 'monologg/koelectra-base-v3-discriminator' + saved_name: 'eda_random_deletion_model' + +train: + seed: 42 + batch_size: 32 + max_epoch: 4 + learning_rate: 5e-5 + logging_step: 100 + drop_out: 0.1 + warmup_ratio: 0.1 + weight_decay: 0.01 + +runner: + options: + num_workers: 8 \ No newline at end of file diff --git a/utils/preprocess/K-TACC/sts/random_insertion_config.yaml b/utils/preprocess/K-TACC/sts/random_insertion_config.yaml new file mode 100644 index 0000000..d070398 --- /dev/null +++ b/utils/preprocess/K-TACC/sts/random_insertion_config.yaml @@ -0,0 +1,27 @@ +path: + train_path: datasets/klue-sts-v1.1_train_ri_augset.json + dev_path: datasets/klue-sts-v1.1_dev.json + test_path: datasets/klue-sts-v1.1_dev.json + +data: + shuffle: True + augmentation: True + max_length : 128 + +model: + model_name: 'monologg/koelectra-base-v3-discriminator' + saved_name: 'eda_random_insertion_model' + +train: + seed: 42 + batch_size: 32 + max_epoch: 4 + learning_rate: 5e-5 + logging_step: 100 + drop_out: 0.1 + warmup_ratio: 0.1 + weight_decay: 0.01 + +runner: + options: + num_workers: 8 \ No newline at end of file diff --git a/utils/preprocess/K-TACC/sts/random_masking_insertion1_config.yaml b/utils/preprocess/K-TACC/sts/random_masking_insertion1_config.yaml new file mode 100644 index 0000000..166b2d8 --- /dev/null +++ b/utils/preprocess/K-TACC/sts/random_masking_insertion1_config.yaml @@ -0,0 +1,27 @@ +path: + train_path: datasets/klue-sts-v1.1_train_random_masking_insertion_augset_0.15.json + dev_path: datasets/klue-sts-v1.1_dev.json + test_path: datasets/klue-sts-v1.1_dev.json + +data: + shuffle: True + augmentation: True + max_length : 128 + +model: + model_name: 'monologg/koelectra-base-v3-discriminator' + saved_name: 'random_masking_insertion_1_model' + +train: + seed: 42 + batch_size: 32 + max_epoch: 4 + learning_rate: 5e-5 + logging_step: 100 + drop_out: 0.1 + warmup_ratio: 0.1 + weight_decay: 0.01 + +runner: + options: + num_workers: 8 \ No newline at end of file diff --git a/utils/preprocess/K-TACC/sts/random_masking_replacement1_config.yaml b/utils/preprocess/K-TACC/sts/random_masking_replacement1_config.yaml new file mode 100644 index 0000000..769a660 --- /dev/null +++ b/utils/preprocess/K-TACC/sts/random_masking_replacement1_config.yaml @@ -0,0 +1,27 @@ +path: + train_path: datasets/klue-sts-v1.1_train_random_masking_replacement_augset_0.15.json + dev_path: datasets/klue-sts-v1.1_dev.json + test_path: datasets/klue-sts-v1.1_dev.json + +data: + shuffle: True + augmentation: True + max_length : 128 + +model: + model_name: 'monologg/koelectra-base-v3-discriminator' + saved_name: 'random_masking_replacement_1_model' + +train: + seed: 42 + batch_size: 32 + max_epoch: 4 + learning_rate: 5e-5 + logging_step: 100 + drop_out: 0.1 + warmup_ratio: 0.1 + weight_decay: 0.01 + +runner: + options: + num_workers: 8 \ No newline at end of file diff --git a/utils/preprocess/K-TACC/sts/random_swap_config.yaml b/utils/preprocess/K-TACC/sts/random_swap_config.yaml new file mode 100644 index 0000000..82a530a --- /dev/null +++ b/utils/preprocess/K-TACC/sts/random_swap_config.yaml @@ -0,0 +1,27 @@ +path: + train_path: datasets/klue-sts-v1.1_train_rs_augset.json + dev_path: datasets/klue-sts-v1.1_dev.json + test_path: datasets/klue-sts-v1.1_dev.json + +data: + shuffle: True + augmentation: True + max_length : 128 + +model: + model_name: 'monologg/koelectra-base-v3-discriminator' + saved_name: 'eda_random_swap_model' + +train: + seed: 42 + batch_size: 32 + max_epoch: 4 + learning_rate: 5e-5 + logging_step: 100 + drop_out: 0.1 + warmup_ratio: 0.1 + weight_decay: 0.01 + +runner: + options: + num_workers: 8 \ No newline at end of file diff --git a/utils/preprocess/K-TACC/sts/random_synonym_replacement_config.yaml b/utils/preprocess/K-TACC/sts/random_synonym_replacement_config.yaml new file mode 100644 index 0000000..f68e262 --- /dev/null +++ b/utils/preprocess/K-TACC/sts/random_synonym_replacement_config.yaml @@ -0,0 +1,27 @@ +path: + train_path: datasets/klue-sts-v1.1_train_sr_augset.json + dev_path: datasets/klue-sts-v1.1_dev.json + test_path: datasets/klue-sts-v1.1_dev.json + +data: + shuffle: True + augmentation: True + max_length : 128 + +model: + model_name: 'monologg/koelectra-base-v3-discriminator' + saved_name: 'eda_random_synonym_replacement_model' + +train: + seed: 42 + batch_size: 32 + max_epoch: 4 + learning_rate: 5e-5 + logging_step: 100 + drop_out: 0.1 + warmup_ratio: 0.1 + weight_decay: 0.01 + +runner: + options: + num_workers: 8 \ No newline at end of file diff --git a/utils/preprocess/K-TACC/sts/train.py b/utils/preprocess/K-TACC/sts/train.py new file mode 100644 index 0000000..9a6fcd7 --- /dev/null +++ b/utils/preprocess/K-TACC/sts/train.py @@ -0,0 +1,54 @@ +import argparse +from tqdm.auto import tqdm +from omegaconf import OmegaConf + +# pl modules +import pytorch_lightning as pl +from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor +from pytorch_lightning.utilities.seed import seed_everything + +# Dataloader & Model +from dataloader import Dataloader +from model import Model +import wandb +from pytorch_lightning.loggers import WandbLogger + +def main(cfg): + # Load dataloader & model + dataloader = Dataloader(cfg) + model = Model(cfg) + lr_monitor = LearningRateMonitor(logging_interval='step') + + wandb_logger = WandbLogger(project='korean_linguistic_augmentation', + name=f'{cfg.model.saved_name}_{cfg.train.learning_rate}', + log_model="all") + # checkpoint config + checkpoint_callback = ModelCheckpoint(dirpath='saved/', + monitor='val_pearson', + mode='max', + filename=f'{cfg.model.saved_name}', + save_top_k=0) + + # Train & Test + trainer = pl.Trainer(accelerator="gpu", max_epochs=cfg.train.max_epoch, + log_every_n_steps=cfg.train.logging_step, + val_check_interval=1.0, + callbacks=[checkpoint_callback, lr_monitor], + logger=wandb_logger) + + trainer.fit(model=model, datamodule=dataloader) + trainer.test(model=model, datamodule=dataloader) + wandb.finish() + +if __name__ == '__main__': + # receive arguments + parser = argparse.ArgumentParser() + parser.add_argument('--config', type=str, default='') + args, _ = parser.parse_known_args() + cfg = OmegaConf.load(f'./{args.config}.yaml') + + # seed + seed_everything(cfg.train.seed) + + # main + main(cfg) \ No newline at end of file diff --git a/utils/preprocess/K-TACC/sts/train.sh b/utils/preprocess/K-TACC/sts/train.sh new file mode 100644 index 0000000..c24257a --- /dev/null +++ b/utils/preprocess/K-TACC/sts/train.sh @@ -0,0 +1,20 @@ +# base +python train.py --config base_config + +# Random Masking Replacement +python train.py --config random_masking_replacement1_config + +# Random Masking Insertion +python train.py --config random_masking_insertion1_config + +# Adverb Augmentation +python train.py --config adverb_config + +# AEDA +python train.py --config aeda_config + +# EDA +python train.py --config random_deletion_config +python train.py --config random_insertion_config +python train.py --config random_swap_config +python train.py --config random_synonym_replacement_config \ No newline at end of file diff --git a/utils/preprocess/K-TACC/wordnet.pickle b/utils/preprocess/K-TACC/wordnet.pickle new file mode 100644 index 0000000000000000000000000000000000000000..52755119f72b5266c9881e38410120f2ac5ae2c8 GIT binary patch literal 236584 zcmZUcd3;_)_5X|P`!2X6f?O6^1jPkWHW6e~K-R15h5?ahToJ*vO-tGa+R~;?+oYtB zk`_}))3i;Y1q2aLWD!wO0Z~xM^F-YD<@f%aGjsF!{r&Nr*ZG{!nYnXk=FXk%&eOW_ zb+rk_*;`JSFk!4~WUOb&SZ7ylqq6q8mW?hvdt)^=>!;X+GB{jQOQTX!mJI~OfGd1P+d zB}F!WR(;-*M$d3<*RuBdmRZf@7@y|Jvl zspX9+OwUN|&1LN^Ma!E#OwY*ZU|a3287Oscb1-S3zPO{dN5w4ds=fVELnK*#dzQ6# z6fJwYgQs^d2TKMU?OnCKJt3nbgN?}(m5_IqwS8LN>9^fjJgYH(P|*}+ZQqt6*LzNW4AE+^;B7C5kpY)tK_9hA~JuzqyqaP8o-c1Y23 zumvD7;d3XLM+w_F=zhW9p5K zww1Myl(nN;KH^z7Ix^f?yi^%_bXhy5AvdF>PKwrVvAuYJ;@8eKnJJKf4{bmidK?2$(Q?AjUb zcE>W6_?hO`=a5yzRp{>C+Vuv;<}Jmo_Kh5YK&ykr0}4Iy z(zAEcvvf~i{m#DnjP}O*R&Jm%rK>intW7RjCYkf->RF8$y|p%vb1GG_w>Bl^ReM+c zmT9%AW$lKdWoo)kr%dghFzVSfGxKc7Jl)OhD{C_@_2-!9Z*d#%3O#QfW$nh6j?`53 zS=rrG)@HWcl$!E8mNyo5%5hd%o82-iIg;zVK5i~+bBdOmJ;gi-nC5zdy4xD_r_?$< zLszY?&C5QjUh~~&{uBl1^1G_vF{RPfURzMs7Pc%%7omk+&{bPh*1C(9MIOQGS#{d% zo(vlESJW0~Am>{=HXgtF;;ve6SzFT5n_^qjJ=WD$yS1#{)^clVulw4lyYvxWo2!7%Q83BXSV4Ica*hn7A<#J5@eb&P#bVCX&78v z;b6u(fjhHXV{m!xu9VWXtwMukZDq?~y4v9K`qBlpp|ZBBXc@9FxHM>Hhf|oL!8%XF z>aw<`Xj$zJJ?mv!>wwoBV8p@V*#hef@I(pRo#JtHPgz^va!}Bt*_l**1pwpzlRySVYsoTv-Ut)d$4GEz`~3zYQtLlwpF+K&1*+j zj_A$N-(GvjqfuVb3Vx@oJ>2r06ivsn#%=3skCe4XiX_xT25f+HV|?$(kD}%89-SxtpDDWTwmRL`f0ea=xBM%$W3+|q+EhUQDQo|2`A^De61#Fr zoUqY^31!>}8KkBVgWPT(A>!+d-WXW~>HbcJrb&U`1XC)`%C@Nm*$f$^rWjYX^3GF` z&5hndwA6gTx!e{n-MFRETZxwHX{9>Wm$b&MjoSuU1nK$q#cc~tP5k_6^&6MhX*N3B z;&v8fdt{KBZhiXd`kbD)gK;||iy+;jTf0o$P8p9ayis`P3eOy%MT)zCJ;Uq$ee{mw zt{BSrdSnr#H%GQx#-pnT8jGjI-NC6i7j!A`8!(jdjmRK1-LyNu$+$O*lbX0yy*vi- zEyleSSp@0cB&_S=&8w__Ta&4NTZc@0VDd}Tsc1}J7vGMdjC&%BAl=hV4V`*pd`E>D zR;+4^dx29eV^~Gty)l&Woya0c_rTq~jJo1J+r|jMzoUSyu zjLu;^07Dtyg)D+}zY-kTdEmJ7V&2W2@gQ?P7#XCdLbqll9%9_PkwuX15m~Df53O*2 zTcfix9+t7UI`KUjd&3jo3r?w|Q$RT$j-ib2Ll!~0M^2}ucU^pcg&FkV`+*9>Pg)*7 z*n}Hvm&GG8)<^*V4`tlwoh^K1g%?i|{&0ocyOd)eX~ytJfpf{PrqafvF_iHbWD%r$ zdC&`nJGOGJ54Os1oH>6K8Kho#_V((?Et*yDXr-wdUE8Y4b-X!!Oiog(YFwYx9ZxXs zL}U@9`_)ztjCGB~k2m4bk!kUyCfryu7*B4-i)O`BnsIM;Jhd6G>5iv?)2*%^pm!BN zfuW3_LW1c)mH8<}BTu;b_g`rz_{t!S4ECcl?YwUw{l! zt7@*4UufJ#$RbG3*{zFQ+=O*kmo#DJ$fe*^t@~%wON^IcDC1|5MUZZh(ck0!9a}PH z#39;midTcmSVI;; zy64vd3U5J-8FSf2-|YB>jMcST)Ed8-F;5Gf>G&nE7arH4qoTt5GPW{)1z7~?-oWy( z&tD<>tCgvZ2GU+{*I-JSMFaz4N=` z^~QYzSp@0+@~wilVoLqI!PYp@oF^fJ)KnYR%w;efCmYu$PHL+ELku5B;uPbiB8wp1 z#x3=U9q|T0^%RXw?Tzi`ISm=4=K7|df1GaI3~^E`PPf=$+>PR-=Bp2Km+>a!W+ICq z-3pM`hqzhbl$A7j!_(qybH3S}rKd{GM9J(pC*!fULA@I1X3YJI?*w~fnnoEMjPo#* zaXvCgO(|Zpygsudb{V%ooYcfI4Yqi8Txi@PaZ|QgaqE=hPi|%BzuEyFknVWsl!3j1B$1Fj;|ZLP;p#tq0KNY9Ze z@VyoG3*QH>@=p%;V<_XdkU?s?rI97-zC2*ugW{y77Gp-==wNH3t1o`r=!Zm0^`N{X z6zzA6dsv**6zx5IG&b=O;~qs8LAuq2=14Z_w)ZW7x|0 zePj`&dz&wzJT8+>ym$50mk!4#!0EqH4|3xxeAkX-o?*Xc;;%A>Y^?2wFJ%lrHn}IhT;cg`nBuR&p3f=3Z!nbc z6=aa=HGwLk3ihgTqsSsi_Z#!Rb3J2x>q~lLBVz(GqZY?1ym&x0?za`TS%dgm#=2Hd zSNvVZs%c#N_ZiojCAxhe{sEjHt2SE1_(u$7{1Y-rO$lewfj;e@jr$9-2+}>_E8E2V zwZd(^O!39PRhaoc_`hdt1I>x?9~tAUKH@(!u2Y%u{}(tV%p?3ahBE#KSp?}R*DUaV zD`!nS&KQmpUMJ^`kVTMg&f?az#@A&$*4bO1u`X_$F;fJ%#7&wp{H9G zIfgQBfh>ab>SDa+w#+zPY^#jZ#kT$*+#0uO#$0^cCajBZ2Ts|-`;Zsy_87{z1F{Ix zJzM-;xudYH+YNQbod78$lfFD7J7Xy0F32KC_mFUm9(S!UBTXLT*Mn2wl~d}ASI6Bj zlyP@t5u~T-*0%Tt0c(NUdo?b4W5z5njCC%HZ_2m<&jiSuGuD6@{FaRI*M;7iF5ihGO5l{kx8z}@=Dw{lZtk~Oe!RJe{gC@hm|4Cs!YAz$#ifw(fdsS56LDfSTemko4^egcZlmyOesZGWQSoZ<9m=n zYI=DMF{`&BzSp?JkwuVhnM4W3_X${gKe&ACrjhvmj8mq4AY+D5Dvb|jjI*-l2yjZs z)Q)slAHr6~BauO>zktWn{$Zm(B3f!nCq3<u^8+`_n;Wg5u z8(Nm=GqVZII<%_Br!b`yu^vx~&caZ}vynxR?ok-01e|03wn*F6PG^-MGM{Uq&O-*N zo*`=ciSc~nN@NkF=L}J}PlHp=cC^wTkDoE;3(Q%%*EZ%ed0AbUv4$+*i@+)Ez3q+8 z4e??OWxNDg1nCx-3QcW_mySErT++5)X3n2AXX&0SaqY3Ca;^`}*Qn}pa}LNLH5K@} zE+yj%!&ge+Hl3c@3#)vF} zbibXEc2@V|7n-p8n_tXWPY(D?;G8#fHB%zr&&>&mW(*MU>1dIZ;FDC0MfL2Ak(*3NiAw;DGQSp?~xMOyc3 zkCQSU9n>a>I5}hH2rV@{tiiMa@9`#Z$RN&jdsp5KS`!JMoDY6LCt2@E@_Hk$L5ciw&GGvgNvUv&X_*3F?gxJQshkZuw2j5H<< z$49{_k!&==@LhBMo;gc5X9ymh_*jKm%wv}G`x&Rm9?uwmUHA#GN8ae1tH__kz_1z_ zq>iVOvF8trds>{-#4Vnsy8T1roA2(yJ`4ezT#Nt^h3D{sCwvfXwP1J&gkbwOHDyLJ6TqJL-f??p>Z z$?ok`!}SN_{)jAsbZ^8uTH~JtRIeF#>jnDfjMXm&|0QGcM)UZ8%@`p5ZxyEh0sr@m z_2{(q#eZZ>KU(}hn=w6we^r>>XYl_9dq2C*7MwNORulh&t&IOg2C05yWN4#jcAP+K z%m5l0qeJJBGRs#$Qv0A8EqkkII#Ei9v}VkM@QI95>3kBLO2dombPQ!Y0~w@N2~lKc8uux2QoSbX z?J(2U3C}WGO@EM@f-+=hqWB!+&J`!sIc?eMSQgJS?tEksq}%=RTJY$K+}8BI7Pb7D0NxoVZIW%oa89rQr1ZGL1Cf zR>dyE#xgWANKLod)z_H6KDHQlxj3omS+!Y6H8H{HD@038LD|noGkB$OpFuKl z#$5$YRT1ajrSbFTd^Ivi&G%^k$m z-u$Ke#0p#g7u!$IxA!eF1WmzE#;HiwohxTGgWd54b4D-^IvCqg$~X-fq^5kO9cE}S-MAUZB1rdJRvSG# zc4VxnKk$titHI>`aZ?l4EzAUa631qDv)4Ax!cfN9$RKt6!VJ%DHf|2G2-5w+3vKdx zF4!Z|zB@9b)12p-vvhN2+JeqZoL@P!>qk==UFN(18KkDG&L2=j3yoVOPHJih)-d;^ z4Vbap=pNBh(^J4!1_oi=;9{e15iQkYCR!#7Vy|&a#7Rw8^|HLxxZA`@bxw^vQ%!xw zEfpsY=s#J#}?lX54aQ5u|%AGUd-$^o}O1D}A%VzI-<7dmf6VI*W~@EvREL$|{1~#qV@e#tz_K$kNKIKn!!Xzt zhmBh;PHM{O8LT|%OOCk4=(VDyrl4GhNwpE<)`^qq94)!tW_KHR50X(a((+^U-Vv4F zdT>e~+X<))8_fA$bC&Lz$94yH=G|A}>FXLp-SK{~KmKg6;^i-&Z(%Fr1IQpX70jS@ z%^x)G+v23AM0R$msyt-ecaTMpo(j#DXCKaZ)Z=*soE`<+CKeyXP{!{fiy++st3-J5 zf3I>L>tXEP79TU`@0+u9zY?k~Z0%yLYl;>hF2vTF52Q+Bu8rmvr1^4n&HLbEx~ zVqj>DEP`}zYMG#!-q#rFia(P{Ep7b{zMPp8e=f{#f|e+rL-DfXIUXIhYd(*yj4vRI zAl>2{TeO}}GnAxXWYg%{-t_i-5mOaQa{DE=GX4r#1nC}2b&;2{X*`yfF{M~oaPP3u z&9AYQ@i)jIHDxXz6!B2KV%)39B1rcVWLW}kG-KXf!ga96?Hj3eBMoefoRLM4ZYiwK zW66u@sn+;g3u4_8wp;TN(M&$m8ji17sNY#A>2}q0mET(sd#iae{$S33G-v6}&VQ<$ zQ|LdN^Iwobs#g~4x7tYluSWk3Sp?}`%xp#WHMhT4CPsUU+3eC4{~?pz!1O*Qd)O5y z>p!ukXPvFQZNu?j7|Qr>WRRLF>6||Dfm#>;WAuMTOHIvDb=?V@DD+0iAT@7s=#H;5 zVq+0fQ@DldO{hdRF?v(cQgbWNtJ$Eu!A}8hzwHGRT(BQhqRM% zJByQ=ZgfpIU1a6=E=KQ)EP`}@5GJ=J`t_L7<7_ilaX0hd9T}viOWoc>Ll)m)+#8Wa zknU-|y{FN+B)+K$tK8n)gf%>QOB1FAjc;wj4c=*Q%Xq9~Lt}75+#}=qkiLG6ZwIG( zV@qstPYf(RBUyZwvwd4Tw}W08O;6lQCVLiagH7DK!oHC7&I+%YtMu-ZF(U}!0-UbL z4U)ipF_dvXWD%q{N4|gMOdV0^1I+nd$RO2oQSYbQd*Xq{9VAX_mBZ}wi3b~Zh&ZXK zFsH9ey`Xm+eW+-u9@IBF#lwty53&f-Eqy67-&cot-+{(Rv9Gr5BehiyuPQp;elaY*^v$Ks>m&H>uW(N?acq+K6L#p(rVJPD#kU^^F zoX;A@Pa1c+IH{>@J34rw#WRdM6Ilf5b_a9-G>iYKjQtfF&#EwOE<>BMD@QXWo3X!R<9Qi#Va=tS56*SPA}BGG@zcm6NcSSPS8M!C<(y)_z??5MXX)8lcXd${ z=H(wR2B)_q8y9_k@e*uhycAgk>0WlM(lC>E*|@)bk)-DCv*zDo{?h$51>JAGm&==j zq;<|Y6Sp?~xWehe++>IIY)wnKt6FA)&>lPShVkqM*WD%rS zfqB?wH(?F%Zw7l{Ldq})LmB5HgVc2E%*xXIbs9HMoYc%|M^c<`T$ebhiL-q@ae;9Q zkwuX1S!SD$;-U)M{-@XtPIu#m9t>q%j4Xom=D@d9*e}$Zv2TEiODa6GjnP27HDlJ; z>NBUr+ra5!w$&>3VPJU~$?|e`ZrH}Hc>B0Bk1M0#esf-C&eAPqR4sAKD`zr?f{J&T z^Eb^|y5EN1;y~q`igblJ--!%T{VhuYrJcTa89gXkYNA<0?PV6DE3Pzp2w4Q__6YJ; z)r<)As%&cXWz#Sw&xbMpfMYd=GOj@uLAu}C0zRzS5Z4M@le4Imb!zQB7{QeDahUTL z;yMgvyc<~r>3+8}7;tsRd(2r8Xkm!WJEUp7`EM|P=^nqmu|?l&LDX!Fb+JOfAl_&G z_nW_TkDu*x-NW%)8OxV>!v~tMz8rcmW2S%<*SEo*cs|!}OkW)z!oadKl0kNMt`E_y z+z=nGoZ0!MKEfmB{3tR=_5Qtf34Ygz?;(pI-IB<7S%Dq{r-qX$?Oq%9f8YEcM+T{B zHixA~eZXK-Oi!4{lk$+78jJx((%tbX<9>iFf^;u)zP4GwNgCbpX-uhrJ8!J>qW_`! zKV$yVQ|d?wi_euao-+K{oPUB0Qax!}yre++^k`CFeAYaEDi5itMo#KtSXH0I7~ANd zBiYW4^y0No<5j%RVM^7<=YF3z{}+%!s^2N|E^_{baW5i^Al-{zoh7z%{|{y>H`pWQ zFbH*yUcykumytz~?tQW~eeu@<_Fn4X^UA*Xn+kJ^1d|A_fKw9LUC&I+s~E~SiVRXy z5<8h8SP<*RHN;6x1;sW~GJeds-y(}3-7h+YX{NULnlNL?3A)eUWs)AEzT*2m*i$e% z#JLe|@edfv_(vq`&y_P{)}Dd*Cv(nG{n(V*i;jKr>?h61IohCZ+W%`FD0n^U(hR`**_isW)rjxM)yr|HWL! z37e7vsh$GLK=o=PtYv(iIH`$aTuJISHf|GS5u{t{#^$po(H1uarw5EGuEyMDsx7;K(}kz^ zX$ZfoIltbVr8hh8X3lA{!w>(^SCG3~kT+Nm>3KRNd2~#PZ?u4VGE%|6$%4Guf=Ks5 zC&f&$^5DEhCVP;4@!_o*6P!I8@oiO*s-EnDDc5ZCc{>I^j7A2jUKEsr_8Yy!xV^+l zO*Ml4_T;5;Z{yyHN1DX<824Ue5u|$}nV%yOhYPE~`Rs+8Z7kNQSMhyVQ(iMEJhVK% z9|J4V$RIUcdewT>z7HCAggB}GZeyA>e#nR;MM(8P+=w384;%LpaZ*!y+q=|(KgzhH z#YuH;bk(x4xozQd0mK|XePc`~9(NYs#?c)E0 z(Vs*XLAt;5svY;IXH$JmIy^0&fhi?;>JlaRObliG6tW1?EsC+uk@}o&-TYaVKiysV zpKboWt|=Wl3y8<|d`w;|8}=of?!UAkpGF3$DdU-CxTi0E z#<&Z_NlopR4ZRffLZdGdE!Bha!HrURv2mA(lbTYwc&UovQsXWYCpCo|oLiqgJAT%< z7I9MjlHQTmB`-HRh?bgy`iu1nz^~?DiKms8LnfKN4usqKX3HaqNV1$ zY)`M`n$c0TRHvCnN&6eWVDuM7OU*YrS1*Du8TVx*!(?Qxxa!4x<$o|6vcair)+|pQ z=4-GqOhyK&DQ@otU2ELe#YuIJceI8f*BN)cIH@TU7p{Z5948{JD{TZO$}HwEl9oZQtOk*OHUcmpy>O@-!Nuy*67 ziIbXck#i3QhU0YOW{8uTb6)$#bQ>K;-zZvYx=UsYy}7-~=$S~qd`9}SP<@U$tI5Q$ zNfFM*lpakTMK>khjG>HkkgP$=U#~oUhP1Rd&NXMX_iUMto#r_Y8KkD$VDB*FfceIC zA=#IW^p^zdP745jJ(U|@N-i|dMaUpE#lm7DAN_V4*MsD{XQZda&j45qP6=n%>DqPi z7IW@J2B|5cUhZ-@E-~&_WD%r$L>#Zj9OZ2pGYdy$iG3Mc%^8kM!TCZ<8%$H&j-ibG z$RbGhd+VPTmsOrAs^#W+hj~i3%cf|*Iqp2URqv|-b6#Q2(#@G+hFX?8&Dk1p``lS2 zcbEAOB7@X4K3g;;t~6pugw!vMaqQ3EnIj=(osUA^%9pAXI8QZvfkSseRJtEGZWM*?cI7Q^=By2F}dyzqE zN)gjQOqt(j-2KQRNcV_3>6fjK-^y6?*mQ0l0H=uAM@DDiK@4U5HnIrPt*{jGp>a=! z`gnfFJRdes>3$kXCriC71kI(3p>E|PBCHdr_V$CkT(imi-4 zLl!~0w>`{!cTQ2g`gt}fC%w^qE}J-BAw}|hWuguCmivWlVwy4q`~{}eT33<1h^>sj zM6zl7{}1x3Du`NlkNG7F^0Eby?(c-^hJKw*7OYI-5?alrJ|%Jn}O z{YNB2X{1MIM^%abQ)Oc0=^_5yWMarKufND-m7Z;Lj8y&#PT6mtNz3PN*vj~KWD%tM zg;p{-X_ez2RS?aXck2w^_)iP+FJzGFN!K>n={DK-Z=?T%!?i}Li~ z1k&hUOv%r;{j?iZCJmM>-q%$o78d-TH^wwxhCFGTU?}6JNOpV6pWg(A=6ZfN%b0Fm zefrY4xp01-w*aK9u~Sk;2N%RGv6XQvWRRNMwjMPOTN}5HIH`%Fq2T?xt#R9llj`}S z0na=u+U!{FN27N_7D2ja%w&!{uusf(#*``&GjY5Vb}|25kwI!| z%IEcJmh1J#?IuoYO644znP$L8>PwMfrB)_7o>ICDn2zzQee^#7RwD zTerT{-`lu%ij$f+ju_>Ln0<^Z#7RvBv5HD;eaC%`-Ve$0G}3drt1r>}WAdEV=@B%Z z2bll6kU^?nN{uq(-UE$02w4Q_mYamrbnn4Un4xbxBx6?C#J?L{T}XyQF_iHzWD%rW zWUM4B@Oy-Ft$lArGMa@v9Gq%#bsO))#yT}JNcBt@WQ+kT|bd!@AK7oNl$&ifA z<snf7W>{AD}`8KkCS zcmH#ZJ5QX{RL_T6wWxN!aiut^DV(SC)5d)USp?~R4>LF`cqCqs@#qkXx`Xk;jQPG@ zX}qYylp^@z3j2=YOEMwK}*xQXJVR-9`1B;zI{iy+OX0NcWqK_q$#X-6G?<#Yy!9>Vfr7E_#e!jAY##X;%~Nb?TOEA~&!q0lk>K zvTLrKnbRd0IJyiOr1}-u2hAog`QK)AAF>G2{eGsbPxR7k(lVcixVZt*>ydaDIMt6TWrNttxDpwp`rYe;F29!{qgRQRnlfkly80w*vWJacjpT4M zq$P;0+YI%TcWWvWPx(SC>$R9X4Ls7R5{_Ui<2q!Jnl7TvuU1FzHu@gXQpagO;&;8# z8$?S@bQgOuEcCrb--j%MbWb89Y^U$Xl=4Ie7FdvPS&#=Th;$1w{=LA1O{Ns$+u6j% z!DM;}Q)*P18)7W?9SmiB7#XB`I>%qqj~M-^XsL;|^B$Cy-!=MsNEXVGmL~0*=xrDM z7^d_jvO}rI_UL}!f;^54QvFC&>H+T}N&7F7_=Gtk&N%b7yz-`S}R-b=7Z%!}BNoo~==JS4G z+>7F*rn*J<%ZE+BH2POawx=U==8dlERkB~oCU)tjq0-Bk#;cpRVZX-4_H-m)b}NW2 zK?)}ARgnNvWewB`dEtP&)K9e z;5k4Q(_flQ=~{oql-lft9s1tzZy1;%KnAHP>305=qWFi=|3nr+x}}4j4(q?7|CLP| z-Y&dRrhiu^dKqr|Pd4${Ge>X9>%W-NJy#(oY_6nigybMKq+M$~$m_Cc{PG)TlSZ~| zxgz3CDpPg&O|yyp2dP9h!{nD|_W~c6DdgtZI9d(K(P~wY;c1E9vI@eQ3ID&LAX{0G ztu2UjPcii12GQI6PY^HcZ7s-l7DRd##ADpP3Zjhi?AyVD?1&6fQ_W)=Jv+*FGHz!i z3--vf$ybi{8fLd?+y(46sduo)zpMGb-u$KipYq%-o5rucdp3=i#2YYqB~owXc4ibX zl<`f-AT>SQRbju`=(mWL>NhYpd3IwlUyU30He?Z``wjH6&1)d;0Zt7+y)X{Se!DsE zi40QxIy~9+CH8Q?!|1(`MUZYc2c7Ev-q}>A&*7!^JbKG?WJ zkVTO0GXv}Rc3ePh+t^LKMMfBjG_W2jtID6?YH|+)r}Ag4?DJ3W!B)oiB3Z$ge;P`s zvGUd`qcEl&w{)k8KkDd6e{vfgl(sPXIf=4u)e7ydlCR4iZk(g3a z^zqMcv0Ye!tLUOEmKzQ#50;qUuiO>RqL-}N*O^j&J^f17+B;-2C05gtqk}o_q9fUU9{A6JHyjh zI#imjGx~bbQk|~1X}gD(-oIgVt7xf-u97^_=t;;TNcUz$f3;>S?2|EhTGgC#xLTX} zPeBH$DKQHg<^>h@R4o+FS6Wn&xAB?wl-LbU zg}`X4za#cwV6QwfNKKWWV~zP-{}$tVkwuX1dCOKN_BSr6Fn{XCa>A`(k67Q(67g*q z%GietQd7h|9eMDE&GdP*tpf=q^1P&ru3@1#^|-8rRMbarPbRJqt}U+nqsC%*;jJ6arcOm z>YS=9r~j=tZUd52&yn7Iv&o%p#rIa2Z-Xh6`@pHvO)X5BZE}WUKZfUBfe{kj~o4jXsLdu zI-{IydD6J2#7Rv-IhNA5`TW4>r$tLm1;;n9`bRJ}2N?Yfk`vpIcHeO9PSc@9Kf>gB z&L*w;(A@ZA^ZyAlNKMi4oyLH@Z=N;!r$|0bM|yMvHj6>hN&MBgNec@q{Fg9! ziSVXRwwJM$@z=;8HPu>X%I0^(-x&7_vIx?xa`F7@FvVAe)w(I-Q9!z1|JRi|21fYE zAT?E4Uzi&+?zc!b03a>av;z2A6K1|5{w`x? zn_Q?|@n7JSTs}RRJGU`~K|MAOL`MdxDZ@vsp#N*!ge`P==@z{Xk@fMxMi8l%GLuXa zUWcKK8zX~MuQ%iVn;5;RXsL;=rsp;@dUMfIQ%dNg@D2MG#%+l#f^^RamW*zh7`JM| zdIfC_PRZi<0#+%u!BEC+kwL0omyT?jZQai3?U6;0?wLqG*H2&F0h4E%`o3=4(Sqz` zL8Rv(X+>b?@gVl!b*dJ-Sdd+jL8{*!)k51eUvJ!Q$RbGhimjn(cicT=%}vbXOt*}g z3DO@}yb+x4R+ASS;+rs(@y$pMcFWFqs%?Ku#-kqjTQeqd{v0{JEn`iV6Zsw)(4i?PH%iyg?rfr(;E-W*#G7<9wcm?B0kbR z7~nDMcrUyU!N6vEB!4p|Pd&Dph2^unLo?R)CVUUeSYesTeoqr-rZv77?2)Gk4#&XX zj3N1(vH#=zesi`4bn?WMUmr0451PMpZ*}=pf-UJj18{__3ZxL;+I$F88mDrQYDX&{ z%BnIRiMfm)Mh2;=Xsm}S`Xfdkg)D+}kF=UIKN?eNMtHz{9{m^#a;ycBZb4Y&Nc3^p zG&*u)>M4CRn-~Wquj4T_6+m137=|*QfGmP^FItY_V4>#33U{p&{&Y0fbJ zGtFPRS7X&JzGZL5)R(iG@sigW03@x&0I#K5=g zNQUgq&Rpy>O;{JZAmeng3o}j^yQmp+v5Udu7bC(;Fz_uqGDuAiw-!`-<7LKu7Reux zA*)=0YXN&iT$zi-%gs3;gH$gO&5Qdw$rVOlDOzf($TW7|#(d7`t3*rnWbi4C?(y@+ zU5zY)bbq+{%!b0LW!z|I#&*O5h#Zk1(> z%Hs4_nuD;=q99+jAlD#+)bU&+NnbPWT5(cS)wJUe74+*yUng3s2Te8qdgHz!PHGCu zmXf9V8`jur^hD88)1(z=Tum}!GLqGOq~#Dt4(jvAHn0~IdC5ooaf&%lHD~GO+-P5> zH^B|U*2=aoi|v3^S0?c{7R%x^3}u{-EQ0jPbB1{;90S1EVQx1fgVc0~9G*iIHyJlm zoYZs+5VMS!EkddX(m(mKW&UR4=7^K(+qUcN?Y#KXJmp;T=#+=l6nfYWX_;r-d}I-% z`~5PRP0U?jzePszGAuCXg~%W^MMS#?x5&6|aZ(dExkp@&af`)CP1Sq$EKbE%q2FS3 zuV|^MVAt|rMK;a4#OPZ^OHHAttgkP&>D}9m?nAO@kM!1zuAPToiph_=)ycoNn{&T8 zOZVGlHyS%VmI+(&&RrLmXOeCAnnk+}O>F${7&1upgfV7KPwfh$?-VW7 zbA$`=*AnqA;|7sMknZW|<|C(Bab?Eo(nG>IU8^$5%a|pQIGizer@*T#Y=7k**9hAi zxNRkUTicC~DK$;pzWC|arqRS%_WUHrCj4~diNK{b8S-=U!2 zG5TTAQd5eUrX#hF826|+sfpv|Ps8+GGaDCF9;(n4beLe+#7JO-1?C;blaIn3>rfbspQy8}6BZJhG zy?nyuTb_Sz^mE7}NVj}oX^JmV6#98gsW-xoYd=x^1q<>EWRRM2T^mHZ!Ko&u|N6Zm?yl=;Z^)$-yx0z%FB>WmUU4_$A`L~X_F zQk~OMC}YaajN2Sp1nD-EuobjnpVg0B$m*jVwyN?6WZ-mZ?VxRqTVde%bR^%gk2_nI zZqtO-)NY$G-?S^T?K0+6D&g(HsfzNK%|7+I1GX~mh~x-$`SY8=qn}<8J5?rTUOmLl zm^_J0HtN)@T`-h!S7eZy9!Q=z-+1zRqjy6x=tideSLa#}i;}m0L!>9l2JI)D+K2laO3+4^D}p!ncW|l3c&B_01W&&88S#sZ-%PC4mA28(Na@Z z@rSzn0nfq49U@L@3QFhMXAa+O^r51qrl39Rb=!v-_Z}pN!y&z~=vlA7MtU!Jyr#8V zsUB|r??VQueku0Pq!ons8~p*%Qq!e)_UZP2(6}RzoUe}bMwkZnLju-F^{|PjJ01y6 zMd5}IV_*dw8KiowOuA@rag=dKi<6o-4wPXaa*T1uB3b)J`bBPAU%z8{JPw@xpMWHM z)I5(jPw8HGYSI{1SD2l6B<}=pN*=3PWdDg6I8PnP(sy>&0sPEYo|JKY&TVSxPRp)bgM~?s?YFA3!?lRTf|X&6XWUTe+Dv0O@+XI zNtUk8H11R4q*jl4Y8K8iS{DdXQ%xGuAFZk$pJVj7NdDLx=_%>tuf1$n$a&eMw@0UK z{W%{~szWs7KF%z$F}6lBw$4HHpB+p+aFNecK`^9EqZe3^3oVFrzi<`fMcFhS%f*;3 zJ$ol|h5wFY`$l8_Ty0lp28e0gOCT9=BZJg*o6N~CvDWM|qd$ve%#F0GX&#Mo$pGovLLp( zWjf2 zsZP`NO6LnsHTnk8Qd1S-xHIoE>+GBjf?+U`mC>|Gu!r zYc7T|b|Q-)-D}d!DLQ0zUd8}*Fy}X8774nVac6s60QSh!f8#8~P{u{bAT<@*6lOR( zVz+TUNWPm#db3Ow&y#yF_`F5?D~4BU}kHadrJIIaYHMAR7d2#3sh6*5Tmh%{8? z^Uq=9R*RFGDk8lmUXN>xTPsd#I$mt;94&wNl*x#Btdob-6q+3p9AI^~arcOmnz$J~ z+OW9ZxDDc@I>%d=1jl=gyAR3kd8FSO9C>y>I6eMMTQBI;8}nP{{{S*bO>qr&kFFk$ z4;uGvB%jYCy(X>Xi<;s1P{yOf{DB-F(1TO9F?PZ5ForTdg5;mfvNLUtxJS(yF+pt; zrvmUyeHU29?;+VQkF*EVdYc1dlltOgm{QtVTB5=c&G#+H;}%4^r_aZ1PgEFRh8a(0 ztYHUXpUPNESya9sRG8T=O8w~yvp^63!wM50kM}dpn9Bd7Cak*q;|hCr{G`HMkMPfC z%q^0n_)~DoKYyBjhM|lAac2@ht=U&fcoSK8@!5&!MaZ>vNhBE#F8KkD#qd!pE z5MMOzm*S-Q{G^ibDu*@SCFiRBdzeXsB3F7 z@l{MIef+mD6LF*FUq=S1sn+qW6>sK-abx17rnE2S#m!LNxYv+HknSbUal?FQ`a5BM zP2UgyKD(rR`a{N)0QnyOSYe%5JUjjg?CGSVrx~t4V<_WakU^?v$@urle>M7VqNS!B zW3QM0@9f`={)cF(DaU9z2Kje0H2C1H4orS}<)ms_2HIl(O(uyoqn{B}9!b9Dvg4>$&cE}(#&7BY48@D%N z2PFRqj`UdgY>YzMF=P5!s$4r|tWR6vcg|Qmco(o=H972xfxk3E2C1nS=MVF>j#{SO zjNVlN18C%#8#_^2O52l zXsKzss<)Gawls`mn)hJyI7A*&Qv}rwz1!$RMN9QUA!cpJILx^Bh?AO9ewPmaQOxf( z`f$-wQ&~?MW|<q@{L29~NzNPbJ$D@rtMzmC?)!^yag|2w4(Z`9FnnK^*>wEg+ zM~yySwA7RzWJZ_mw*8pVCy16>-IrD=PBiZ0;-sdSZOTX&KFR2lk(}6$wCYNlQ$;)l zQ+oFM+jIodspfy0`Ahf5Wx5^b_lb;YB;@_|g z?bGN}dGl#(W&8{>NcFU_nNRn2fpHfiiy+;rix0>y0(++Mza(h$U`_SBYg*jho&eA>m)-BVY z5q+)+>&dt(W6DYR^BJ?Ep=HIZE4*%*in3PW#r%=;K#UcJ2Y&(VDc6y7r0$Ct%J?ND zo75|3zpF22tp9+(_bcF(f8+yK`znSqUV|)x^yWPJTE=WzSKw>GsUUe+eWLg4*vfbv zvIx?>lF#lQ>#}mbz6!!ZCU>i{|Aqx=MFy$qv0Ap_HTbC8{H;a zs?$0;*Eg_FF?yCgL~n;VV33CX^6q<0zYcokiECMM52jhvQPM$EDxvynln$5@}UGSN31JqO8IbV!R4 zng|r*+-w?;uoF|N)Pu{kFJ&HvGR{Y`E-rsxMW7SY8oS1wN0#VMB^Q|ULS&HYd7~58 zS$JAxTsN`^(!IjZA8rgTi#^~}E#{4+*XLsMzs3Bed$r)b?6s!13NpS0X^927)q+U( z46L>z-BtzBc43dE&w?yP2C3=c=T*WJ)n(m!)wT*i&4e)iriAtE$6s zx%uB={?gr_e<$W4`DVu28VerCn8B#7wE|o{RdTo!LmBTv7D2ifU3IO&%3ptfjQ>jW zA3_GHsU|R#@%vn5^ss2Dsp`!e;h|PdSZ(wg(Na@3c+%DyHzH1|cPLrDj_ZuLTZGgU zh(kpg6W?RpdT~+{$Jm?4V1se@B8wp1^T`iQzYm;h0?&m%ulJk(w~#? z)J8JYmcNDrEJ3EFy~iwwtr)E7)-dV&=Kr|)OSkKdb#Z1MY%9-_9UHdoY{0cHiP0z^UxoN8DRij5mOHD~*f0!SJS2wyLT51Z- zmml7rA2a&5qNS$LtS|cq4zC&gJJC{8U1hr!&(iOW`vbBF()}iSTI(~W#XnYfG5hOQ z$3IoLhtK_I#Xo~RM_{$#;V&4<_*Z0*nx5tx?~H#l;_pZfphNmq{0R4dRM=zvCpg90 z-&enb<#7!B6B@Dz(k*bElg()=|5G{BR5f@@{@0u*Y)ulRrh8=xjyJ(ZSQ&gH8GIvi zDl})eafOG5_5XpJG-2_Zf>UK`U!d*Ln_(#9=Exv5U8v2rX>DQLmPmG>Bke*uTY?kp zw*sfzRu+nMwB$RIUc)swt~aXX5W>KqkF z3vD|Yx3f5@iDTTvICvN1c17}6Xh=^09Mc)Eudv6n8`x7%?~L|6?vA01Z$JjA9x*+0 zZSjAjac@EvLAqyyhkJ9z+P{MDTQXL>gKhDx8N&;|4V?0y6-@4E4-Aa9k&L#pGi!+I zgYH>j`#37Tqrwa4ir)+DjjsOp)koBOV`IS^$%1$GPfzDQ!qx~^J;$QSl=^o2Hk`J)6Rz)cNmh>=8$%g6z6*~X5=T|_kvTRInS0h;&2S?K1T+r>7w)P zABf*?+y{_FknXAXa32Jx)X$uy*82!^{tz-q^>&Iq6Y0Hoq|qN1E!D5X=jR&5eZ;t< zkVTN5-cGEt+LoxJn@l8G-Hv0jiAhWTWml$SF{L|OG+Apg$6?@%Ib@LP3DRC3kK%Zv zKPFmgx^eAb7>*|xcOtR~((T5rxgL%m&zL4khZ3JuVLE@bS|?|mjv_uKV~SC6p9-!r zPJd>08V1(Dk*tAdXSS6nvQIWS^L0U6Jl&knKnAHP)ijUvs?Rj;Q%KHsM|yEl?r>*~ zW9xyRow4c({5cux)U&B8@?&Wd;*hBBUy3{w5V{z*?Pjr+7Xsi|z43?Smq z7v+tU$ICGA zf8t11wzIRkKpg1VGVZ*1iYn{n<{Zpfx?P#>mIl#RG+|x&N^r^w`;YecISggI3Rwi{ zsdjYfJcrL$m9_VVBVhkVTO09bTJ<6}_;@#N4M$i!gbnH@a7ow%CoKj6KL8HC@5Zu$KQ~qi+!{ zHRU1SP4Ees|K(S&c`T8KRF8m1%o^>kc&pL3iI$oc9BB3Wj97}~FVm2gd%TF%BHj*8 zA2M+`E4?f?_gj!<$RIT}GhOy)_REdCL!8v~$Z(z=5BoQb8$cF8x?hTal3hG2uE>~o zl<=KkuSny6S$r3^G7chx)O3rtOibS`uQYlH$^WJyJ^G$uy?Iv&+hPz$z_F2pEFG>) zj@D^Imhl4;iF-k=KVh`HO<|*xYX(-;#&aR1Wi}=q&RGjC&BtH{nRn z41F%lH{sxPo9ts^tpAWXf5)7qyEFfn$l&bZCaiCM9|5N)d~H5W?@?_0GdVIyO$lKq z2I0SF++)ZhNcXr|9Aa?yeQ@eNPHtzgs!V&_{GUJusVOdhI-fM|DP$3(TU=v3OVtMc zKv*TLEw$_UXHpJ_uUyy~+20p`n6dhq?A?4OW4(6af7FDvI{0I-=TmA1euANl&mx1= zR2^8b@k0fFYV^-UOHE1VTXN$5xpB`S*@=$yY~au-xaYy?I(&?d;RSR41u{tWh)A)x z7mfQRlEF37wm*(_%#FViP?r}krT!&w%G}NsDTOa%V-Gr#J?QeczIZ#&gLUhEV?ivA z8~Zd$dd2)-HGk=z;q4sp)fY#bupY5GIMsGqb=ukn2L6B?$sdqc&VCoa%{V3YHE^nu zZETodAAg5|t>{R$qW>S~KUA2NS5orF3VS*JDdUu7e+H*2YpW`%W`DuP2pd@h>FLqU zUk3bbJcv!GE6Cq1$UiKIbgyl;JR$m@7R0`MA^ra{=YJ!ER4>9hr|#1o_>Xb_MY0JU z>7~Xw544dJm{M}g(L78jZIm(nJMEx)T@%&^S{n=NqB=TZ6F|;IIw|dOQw*$cBZJhG z3Xgenza z-QKtzkgRhfy=L)}W*7dB88fv;V;y(Om^@HFZ|98ZW7L;+$6df)zM5njnybX@ijAdi zWD%r$@}U>o9Mo=2CbC^2c5gBBQF0p8~qk! z5u|$!f#z!h=(lDQZ6BX3%Jeo&o^%b}_^1!t9@rR=BZE}Wwsh-z8ut!yQau6cYI)GT zjNThr1nHiDD&}`)6A4Hm_GvPuG!@x|OG^2^*`#~*o7u0)lmhObO(ZCJ9e~Mmko(hL z3cU+M84pAjLAsT@HlV>Bl<}DDVvGl8Oma1zKBU67K{39&!h~mP@X(Cem#X*<1Lq29 z{}%Ed44l@6uiqoVo~*Hj%QR*4VGQg`M+T|+wW6`3>cde+AC2T+%aLA{ZGbEK7)&XP z@0g-l>|@RUIP;foSqwpO#*bFcioClk9&gScLk6k2M(4dyCm4OAXsM|#4smAgVEnjo zCn1X<-J7kBR&ghTJyGm;*1?LWnDeRTEZxg}xJS?TX&KWIW*iYek+C*;aUjAcGge&q zpPn((fHV>DjEo77OFT2<^w4~&!p!e51$kD+seREjeri94dsrbjmmHJRurD#ZEO1Wu8Zn9|eDte-#epT@?DIFfVUbCB_e|AK59e?%|Lrtya6 zqGppnj~8bXUmd1r`w~p4qLDFV)TJ28co~v~a{233&!%eCn$M0qbASMS-xhPe92umh zT1gLbvK}LET2G+=ttdVDD?L}C4WBhW3nUn&5C1c(xnojs? zh3!1ncnvt!VUOTz7|M7pvIx@cwpjDfo8jx`Y$FW&p9-b^I`h9C8KmZhyiNY!Fs@ac z)b!kOSG3FoooMtVBm;P)KlAL6TG%OiayC(MQrE5xQ_70LW%?v%3I>MpNQUw9x5kQs zy}>*!sq{a+R<@h-G;@~j*Ms(RX{T2~bR3HZnPEXXEQoXqGG?a{Dv38{6Z_^;EH`D7 zpHV2UnV3?lhj=A*##tE3I2*}eUj9}UAZ`}08QuQQ`cOxlQ{ka*;kg+Ti*RSgd^(}s zE%Sse3v`5AMQW4kKvrs>_ywCiXn!j{!sQ7N# z>D#l3FTIngAJe5@D*lh-GOT4>jto+BWwji*!?yRjg9KsxoPdwGCT_E0g^fnd;SQOzE>M z@^lS|VLUQO^?T!JJSAboxOL*B`h&=vN=nV$M&Bb^Y6{9aD?!&Aw?Uj#=QMg}XnU`5 z_aWJyj70{|AskYHDp+iuaexgGPT_wA7Rg8`s5$jQb9f|2s!| zv$U4I!rk#-k_SH5Tdk0FCpzcBqF?cw{r zagQU5Al<7)XNUfk=ZOmQ`13FAPl8jmV8=0g^q<1Ozq%p$SGUU9cdb30u}>n#A7;!u zLh}{RG+~CW@kd~f+!i_3#~))T<4=$*kZ0#c=Ugp-Jex6Jk+aJt{xsu;r~GGNe`zy$ zopRyl*vj}EGDxkmUz;1AH|_;w5u|&L+L?6m7vS{0JiCWqG|yj}r*!j7b2-1tnC6mw zeeor5$}i1>cE*=6Fmy*UbkEL=Q?xDlH{+NE`|kKkg*m4U{#9_Q1+*J8*p`l=jCEv? z>i0uKD6V1Lm^i8FUOPJ2z7T(F+-pd-r6aw>`FA?F-(@`3!H&HR@%P|#(Z2sj)_Fkd zRa9>uRGLcfMLPB-}tk5(skBNCFAi zyMVob*xN0jB1LK6?|JqaQ=Q|qRUP7j9u{Atn&wh8S+ z^_|8cH&2&Ue>r@4UwuXsguXIO*xanuHHD?8Zr(VLuvgX=C|ObU?v5(yw#3%0TOo^J zrmEI%EUM2m_bhRO+3CxLo^4`lWTyy6o{bo6)99IE+oESBwmBlCZikJ9;z$;XH~x7C zJGB1v%jV3b9qqppvIu4**?fXT+S%MLNLuR1$WuMb^<;NNk4K#s-_6duBa2`ZlS4jj zNr|zC={=DQlq2K5ZkatYe?i?#x}P6gO-3#LIgLpTg$Zl}O&h&2;lk_$U38zu#E5rJ z0^GMTvB)Z~^;}Fja=?Ol7M;;$$=y83ET@C zoezNY{m~;OXyK@Lt%HGe;z-tsx6ULf4dnw`-CKUt16$pzed|H3?)^XN!RYx$h2g~* zy7eVU4rptg<6 zv-9D07Pd1xGU`=)Wvj>ewMR6%rmK(~M>aYwY}GoBLeKQ_);#rS4BdJRlF8|fvl_t@ zd+M=`&QA84$bMX-YYqi-VP4hfRDIb=sveJ?>BWhcwBS#`(5)vTJ4HBRPB-Y3h4rMd zI-|<39;;IVoh;oI)5TZTQ>3WG;HuiukEt$<>z>*K(Z_*HoYv^0S7^~|eGPiXXO?%m zKOIB2o`IxkF6X9%J9DF_ceto$+4Hr?A{Y;k;(K`M+IqIRbC3*{Bje$*uxUBvqIj=&73vGn~7tuu`{-M|~|{3c`(%-RoSoVuoIjGKOo zXu+1wp1Zf2ew%2)e8vLZYwqph1oQs%SU1#nn0qI(Q-mEw&UO*^u2%28N%`yD zjSi`={(Hviv)9)5qGx^!hxcKit&J>#QTA#$`~xOFi0l;MHdUFn@}Wl8ng)CedOp}N zd>BKwegs(r<929XY0k?>&7Ch!Fq7d@Y6#Qn$IN|PoM47qwpM35eZpKtc8YK$13SSp zIp~v(&gWG61?c$&YU|n;Vq=sXSp@UiZpzkAoBIrsQF3Hld!8m}*3UM2G-B)L(DT~2 zETvmnPyX}RI8zN-1moINFf>;CMROM+J4HB-GWIuinC~yOlJU#xmmo3)dzL9vk8`N; z4ka8hqLKU9lB+v+IgCtg~M4>xyIGYT4&XZY1vl09a-@%UnN_?a-0_Q(6e> zgP4t;kCa`Q;}o4a_P-ig1an-|ebn?(X}^uR_LwIR!6xwr^&ZYQcMY;rgqy^pq^twz zaZ7q57SE^)?0l`Ah3z~-JC$62ot;%5-~&!&Nx5yI{TCsNV3sre3x{v^IK=g)7mF6m zc&*+rI={CrF}D=iDZ<&_Tc+M+x-4(lXkx_G`~2S6m_}x^B+#31EyI+_#X5+KJwk93 zHkNlIi(te_JytPa>t@q~q6PEG#7QH|&8-k8m_aoRLOmLl(jKA1zwx>(STiR@1kM7R>*-YL#}DTW@ZI zIKfPDj=GPHLT)#G2a;Aa(y6MM8L<)2S1?8MN&}u>we#2PEF5+0J7(6e+s(t8lh(=e z8}|GrvIu63<}Xkq_*>?_Elw~Kjbp2>S*9Vj@0k8BvQvbkM#+)4F;DS(m@-D381#KR z|G>_|@oI1?9^4P5>r1a%=A@})5|XRl*?7@5k=I@5ks}!B)oW z5MR+hHvJRPg86>1Q0=9zTse>1L2(;rif+FADn(|r+efim~qrYT`l@v)4vfdm@#0F)d_>5?=$^d(SmUcqcf)t z&!0h=K00|}{hd92FAu?t<1N}GQn&C2(|;5#nAc}39ja^4e=_}N(Sk{{b=hLSa(^-X zSJ8rbaYjvJz1`nT|6R0ThUSA12Zs%r9u_Uwgr1wBM@)~37L2?%bjRTEoEz)?<{m)O zyhcVL!ukS@i}crjV9MgbtB7U$r-S?pSp+jO?7K4Pyz-#we znP|aGoXHD@R<0bL(pxt-y#X`W@V>HSv9o)fdlcOziZZhq3M5n5fHV`L<7E(qG4s zZTn(si$SuGKB>>e)~(M&7QyV?poo6HiTy+f1~EM4ruqUCFGMmk9U1Ayez@!^z~+7X z%j6LTx{6r2(2?#eFtNA32qp5J=D!|*)~yF3i(n>}X2&@#4>EnQXu&MM*ph{+1mz>| z#*6Lo5_t&b7ih)62!Hibb1xGo7@Rgvq&wjdb1xSsnB0VgY84)8?iJz$GZQi&p6|+G z<_;Gpn2E)oz0$-H$W9TC1fWkE?nv~^d)Kl}>@wMovj5S@A{ckBzBV?pgg(afv7!Z& z*0c-1kjI&R6|z%=BeSzFN^CEB{20^73ZLV8!dO!*_CFC*MvJ*Z;dT zTBk({C!0G(oM3Pxaf_##J58KmrrFHpx|i3OJ6)V$-V1ppJ|btBK2x+{()5h?IQySv z`n943gQghGTJYJX&q30*Mn+0dyl8Wt{(3H^xW~~s3o^)g4)Qu=5zH%2;GiA{dA;d3 zh!%`Y$9=?J7P{yg?eQjg2<8O_825)e7SV!1)7IjvtK@jA>9>g%+(<87tBZF{ zzg@IoUc6^vjuyVd^gEHXwUKeZ?7S9(iSHU?%EJ5IGWm66*pr^Q_n=3T4Bb9%XuZpT z_hMrMHe?aZIQ6kr%Yfqae$yX7GEE)nKXvQTCE^D$#TAFIW<$$WI-Bl84pNXsFs?YX zj(K{$Lu51amoXu-@&^zIVDkD5DQoM3PS756c79~UQ>;Rfb%`}Gs%syM;qXaKNL z%O}lUAWks3`4_8)F{aIZ7L8rjkVP=BJ$WYC zp?==n7sLrBNBy6I_lxE(LelO=`hS_@LGdm6OPDfMTiZAX8ILT2nK|Z9*Rei4rwOJf ziWW?oYQ?(sY9#cSo+Mf@X>VVo(34GHELt#V^}x>3r?2*!zC^TOhW6%33Vo^RDacL{ zj#O+fJ{42kjr!h}PScw(%|R|h7QwutH__4+FE>41wBSaXMdEx`W|+Q0v|zrcbX%}4 z^-{k|SK4DHlC#Z`5hcplsQ>phCO#ze5$Z3mlF1Dmda;>kJgae`w=G@z8g!7R!p%-FmGFWqP?ji@d-a&*N#OdR*aq$>aRwtBzTSw9jnt7$V{d|xs(fpd|8H^-SHHaJof4aUy}s;FH#?MY zJgztpb5Od+T?r8f%PyD67hzNmYn)NPVyt64v6Yx|j()QZmF{H~=5Ae$EQ0w2e8#5e zTTHJJEtr{5`;a!bvDO~zN_Z0BEnBwpCVWH!aSNwa}Sa*&rf|+*S&rd;qVETthc4tRM zX7yHpqVJT+AHHZ<-G!bFtK}@38DHKF-$jx7b*3jx2(i*?24B75KgBKZq90 z^k86_lbil%?oZ+bGpKh#)4%=M^k0ySsv{$xdY?7Xf5ntZ&%*5M7SzAl|L@2mn3wa0 zobn$sJuF%<=_w1@JVNw{=~2;wN%N&=0XOvhrXLV37_>?icI@Uu_7Btl6fKxEFVJdN z-~MI#LD7QQ?BS{X+r&d61oK}hR%qPuuMeAkM6_V$7(U%}C_ifMKjH-2pzeRZjFtp@yJdQj{jo& zg*X;sTbcZ7aB>rq={fTCnhkY3tZ^Y;xRI;fm9;&#ZruUdDZ+6fc24PEsQ=lqF^%@K z+onxBHKvg%H|D(coiSw$+mO3p>(*V7MKBY~1B1HoZl-rfc8ak7SHmVzwb-LEjjU*D z8+&5PKcRLW^VRpl)~(M$GGV?ALjSJz2Dz#3-I`X-%PRdoGC5_K;52JJ)4oUOec!ir zymks1K@ogzYvTQi=D_n>6GI^J9G>5r)^U!T8x8wm%6KyAR2}X8^##~i(~c~H*?i`m z+}}h;gkYo+!wZ=kUu60KWTyy6vCcdscGNqt)%(Y5n&Cm{*{Ku`2V-EWJhBL8u@=rR zG51n&g8BNa8(?Hd-2^W)eTZnmjMmL-*<4w-^K#RNA{muOMy8p|hhVx=^A(MWjlda& zREWbcW#s6bXMFu|3@l|w7Qsl7p*xn=BTO7ALNGrvOJ{O2MD~3gWsjqgY~YTJM2X8D zgB~Y+jP}i@zN>dF&h|Xkp^ifq!MHAqlX>a$Rd|&>j+cjE=2&K%MZQ15^ogPcGdcAa zJ@q7WuNEhmL08SlEe%dKeG0Nugd@EeGhFNv^wh>QI**l6Hl5a(7^lNDGHY^uO=B8a zbxC@ijwxSg`sZi#t7qs8Y~6Y$vIu6)Y{DQl&-6IU9Q=!F>E2 zWF9A8ooo6$(Skvb^sUw^H<~xEGyQteg82kFaeeXBkp;_@8{S}#HzL_p4jC_hdwmVW z=4~xznx{|LezSwT1z7}}htrpHY~E`6ZOBd$_A5Rz_T-MPtg0hxPDY&8@%F}~#U^oD z$2&0PSHa`|S#rJ;bGN<=$yResD4)II)9c^enixTt>OqkAv?i9l#`od9nDVx6n@+7q zPwRcy80AM6!A#0FXMDi)2a$~RBO~K5*(h?!hcLxk#k12k|Hb|vMi#-ioEDEpsrnJq zA4M{+9vPSOna_GG=eH&w3oX;fT9Z$amg(cIi5bXo-A`c3c+k~P7N{7y^^?dVn71`c z=Z)$T7nr_Kv|!S`R72dH|CH%Zix$jpu=Ww{t)DUXStR?=A^q~}EvL`@bFI#_7dkXQ zj~)r`3%ddE1#Ij?hb)4bIakb76)JW=y2u`1LUxL<6KUfG#$n2*NQ~%^rP46oK_(!J zU=|JRPu(}WPBhnp>=fZhb91_%Nthz(G*^d6PqzQX$Re0&L+5tX@p?^PB3dwLHB_(h zn8~H4r-&BJq#InWLVc>aX~<3y9-DNRp=UHAEibq8bYv0CXn5}mJ;52KuRwN+u&*_| zWbN>>_4UeDU)oElU1v&n>(tv-D0m;Hd@??WQ;nXhu(3uSSp@SRsql^G{2iv)o1QIN zFzH(tk!-`)Eva)%UoBcNXxb)xNHx`AuIYKA1v50Y>d27uO<#j#Rsb@hOCQg2FYOy> zO?2H}F-;d-fGHDvj?QLN z&Z%{=bd4Oa?M+?MkP67q`qGA!=M7^>jji8^9tq2AWoqCfm#(VIuyyNA$Re2c?t`ZE zEWT{|X3>I~avWDTjq%KJbFzIHT8FQF4qN?KZS-U61S(;mFkyY=b?= zT=#Z6-+?TG*~Vc^bvu6pSp@SI=g$=PO>^H8 zCzv(8Icw{;O?(H*Ht)#x-oGow&2`2|xx)9*o1E3BX7~3obn6e0MKJ%4%rI+x{h_%# z#RfF=Dbwq(%>7!NUe|7iM8q6PD2*m*VjO#f{9FQNs< zhE{3tSJQt(vaLHZ^D;YkamYD(yeFd^K)9UM=}z1s2N^~d!TduSu+fJ(VtQ1xV9-1i z&1vV++;92;(SlihX0-SpCjKcxFp_|YCyL3x%snVhFrUbVi5g}8x4DPJ31)Pdw719| z#1ET(M6_T_Q$i>@kDC4ul5u@xl%H+r|6+Hs7fWEcNFnG%JCfn(+gyT)6w?1YVYzonuA}ODSsr_Q}om2<+)3J5yGkg`{h%n26 zB5QBfnAC!~*w1TonfO0V-}h6T$`0?k_bpoAi&rr@NTw|@WhqQC89qJ zK~G;*kY|~GwrIhYrc@QZwdrk;wD*xwU@+V_ernxTx+kJBVK~l+*sd{cJoIdPOc^I8 zsth=uJ7DY99g&?P90|vs{E-SfH735|bR#JqJImw(btYrntLiT3?NxKt>aN(jbvI+j}?%tSm)?dV9k1?kFqdhT2meDtniqc*fXzC-2U?xx-vAs?2BU&(X4GoeQRNB|{ zb43d#%|7Xoyw5ZJd}OBxN0jNej82*T#+qUz`UPW5IXmHnn3|_fc63{4e{9{_K^DRM z-}b^UGJOD&_C3=7%gl|THSQle5K|-q+h`6im|G9B|H1Ybj&800nHb<8syomCt}n6w zOOZt||9BjT0Q?L}U?+D{c&O zlId5A7R*0nG%a48lTDu@S}ySk- zl6~~Dn}*i()YqGPgE+zbHyxqo31@FK{U*_Z&23IqdyW3oH=BNoXu%AvHTKRmZ#Dfk z(Sk{PrH!&k*Yw+w9N&hFThUp0es|u1DQ;zS>IO!@lJAVpU1oJ`*>5S;DpEmayaf0!zwA5jc=>*H_ zXH9=jv|t9E#mXc$vorSvae^6ikOMURjryYLi;&C~Kssfqb|n2JOi?q}!liL`9*-=7 zZI(&r38p8C7K~_kD}cGR$J``wg2~Zq#pV-}&0Q=`Fu6--Xck4Uxl53pBHVtNsc>D2 zp7kC+)flGOc`C99M*KLvHHUtunZ8W4U`F2uMJoGVZhE?C!A!-$srnGlFn5JG!AwOO zW=t!fpZQADGeryL9Z-~0Wb~Q4N}OO`mcDV?m$S_EixUhk--p@e=7E4S?Y_X*Bi|(6DJr! zwX;L?kKJVY%c2GI$}`y)oG!2adb8<4B&Vz)qwr||csZtc7l&4i%PX#Mkd??Hn12Wz z%e_~bUM*TM=n(^To zyL0xjv%+BghD=eWuGXc$Iaa5A_$~B|T6-Aqx3O{j8nOuHV_h+o;pF;VbKgUDimEb+~^~dfaV~AIU?o zeKwS&`imc%{)uS8e6nrg|J3x)LJ|n<|#N|NevCG(pC(LZto|L$^ML>=fZ}zGIyB9(i24`z=wPK*^NlLr8FbpZ0MdG-g}1W%|r_(O?OK4-)wGr3nWwZ zkBRV=y9b5YEoiJrYS9lh~ z&i3C0Sp+jOt^cm3cM~m`|F(4I@SM3SMt3*8hiJhpq}GgsW(Zb)xTih#l80axbbV|e z)-2k3jy?94hhRQwR_IW4?qhCWWTyx_3k?s>R8Q-3rE7dXbW&Xf@$+Q$!(nrznTs{b z@O(^7#&pR2Fm&q+kVPb*2iyY(t2N8}K zP@!TV3;Mv;L?1)+BOElwlsWHUOnG5y(lHD8#n@OLk1T>&Ca&vMee$K|UWV)x;YgfF zhC>=XzdZf>hf2z#d=0X`mi=g9H=MT;STajWD$&%qf(ST zS4WsWQnX-Zrgm+`QKpX;Etu&}u@k*-$Cy4A*(t&ipOxC*K>vLlro08peTIOsy~;t3 zM;5`1kN1QWeS+x|kt~)+#$%yf7@<#UOiVq<8q2FOHR;skpOdk5>nX@0n13>7DSK?{ zPfj&`8nRP_{U5+=V6K)rK^CS?&NjYSV)g7f*CUnA2=7k z!SowN3&yKVI0n^Nl&6Zpo9yvsc?jkO7OYiFxc*yAzg4tg&>MH?dYkF4Xu%9k$2yah zsC2*G^gBcgCapy$(PB6KF46C7X$@#c7s0ztzX#bV!ts>61GJ*{UQGGi`3%IAq4zn+ z`;kR3-#uDF9Ki7ba~~8Z*hHrJHh#!-L3WC;UrmNm^qu@Ldi<3ZTnxC#`H1~LiY$Ve zGT!)Hu{+=N$B>;O?8s9s$r9<~V@+j#-xtH=s)>1rnt&Rx6feX5IAHJ%=GDJ5wG9d&zb%_lKt(Fk&D?Z zFJAR8G$!gKL#tdN`y!@zji`PwpRitppY(SFPkrtqX*MuRefvp>X{>SWL}0IDKa{FfT8btIfibXjx2(i z=HB#OcRj=O6-Wl+kr9u%t9iXdU)h-Wv}6bE%rT~{7x#@ZWwCG-rc4sLEF&tjuyt!c zvIs^?P0iogCgvbJMc9$h^q4tpO0ckA-I`ceK7Xo0%*7O!-{>|E8{6I?i(tN))Xwm~ z#@v87!F=}29f+*8!1T4E1%uX58RO2R!gZz>B0EJm5~=N2UeuZ>bRxv{jcI7b_%toX zlu@Q?9Iw?9Y;1amEQ0xPC|jd=y212~q6Ih7(N(_8^i84#gQmYR)9A~lZx$_>8Jc2~ z=?;VDmWvb2Ml-VoR+v~RLNHT;^Le9RdX?$b$W9TCl%VDi^eve3eeBbTSaps4*CLBx z#9?Ulp!)pQnY&e-U`BssbFJGhF`l-;^zBH_heJ9haQVr*15@TdCZ^Bl zots|2;vio|7Qy^O#(1>&rLTU?^w&iTHuQRi{1~*T-!T16(SjMDHQM?_dE{HBzb#rY zX!T&y{l?9H$Mkna3kJ;wxEyq(THE(be;>(7amYy5RjSeH;y=KYchlN_=pc6@i(o!p z>et-qUFPlmrO%JW%S<3GOF^lwB9Ce5^- zJ7%hb@jlbP6)o6gVdIqT4>90mj z-!ED)gT^GE2h9Bg*(t(N(Wkg0RsJd6ONUYZg_4hR@&X#Hit>Zly7k}4BAB;Nhd=%g znR{5AU~&UjiF?G{qv8Y`E}Hu0{wwZ3=CU=+XpQdWG1HGDJ4HCMczgKr6ODvH@Yn>~ z3_a7R-PUt+`)^@?;fQd%?a-EO5Y1o87Qcf$6Ir%G4&Mx6e?d~9ZIEb)=Y^+-C*#=RE!(z|j+{;0p z;~>Hg0-dW#_8uD~d%gB?kbNCQxD67$t0gbvHNm*+Xi^BqLkLA0JN=>6It9D_&> z)4jaFL0;$}!VzS}03M?EcM$iU#q_w2{a=JEg89tJ#C&ECFn6Fh!ANP1UQ$dm;q)NW z2a6WWpc7^@eqLW}?j_;`lT-1|3Vm}g6DJrPJuk!8vqIn8%f$)i!{sEQ=wUe2^ed1w z?~!qLZEyBrt%>$3EUvVhKMuOdDITelvGEP@dyM&q>!+EM0?Ml$0b z8GqUaJqA-2sDsnAY1Xm!KMq+0Guil-##!mFGJU*g!R8hh(!ACaI>GdbNZR*E|C{!W zp64dvNn=cOQYyr&F=e%dt{Cq^XJg7#*J*SvHO_I6a~(uDiiK!W zp109IRw&UHf1Ukbk1T>&1>Z2UzQM#BMF{5OTiB!iyf>M9vpB(wHv9QTd+{x%--_%M z;dr{x@mjtOQ%0L%hOl)Vy#q6PEmEMsu>vibpY9~37TUl$66;Y+8h3P>l-hwM@0 zAsAZ^v4`*fIDOboACZ$_#*QaI>^^Gld?csIAtP%}ojG(zuNrS3!<0$I1}tn&u!!mM z4)O_P5zHH6{x|yqazoYhCy|W6BO~!?4AXVZ2BsHa$}6_E3mxQB$RgMzkxqzI2L80^ z&xjUmasqoW%&VU@_c>&z2uF6Cw^kATJbJ!F#Euh+zhLJtB8y-?MMepu8g-HBFCm#H zk95pw*XJ08d-TXdF#nSR_xe>@^*71% zWYL0o>r5n?x=i(pi%s{67EGEZVzh29F@33M!K7Iv%bqGsD4Ak@UBa2|>1TPg(IdOyO z8$}D|<6OfLKCUe-Gkp`XQ-mD{a(+hf%dJTvJYDzZ#>5QfyvQJ?eBJoS^8PKy(5)+w z96u+2*HM^8xL|o*Io4T6)2y=dYC8+tnTm;u`&;bn%DYc;P~KT%|Fy^>74@4>AQ8i*7SzPQ!5 zRb&y&hrk@^m^}71(_a@Yn9*t*7vC`bP0@lGn$J_b>)$f{Z6rs(Bi-}HK6&aZh+Q(i zBdb%1KrvSR-Hj$HBknl;9;S>qy8~S7kM{SmF(Dtxk#ubk=vWi_!!`)#C6DwtN$zxz zyO2dNOFkwA4Qi2vQs{1b{0Pa}bjV0%Z>g<}{o}@@aoOm!{Yhh@$&f9spEf4CSlRts z*ZtWT6MKxy^m9yEUyE71zretD_sAlcY1v-&SEhfB>=fbX#cVe7))nuO)oJM+)n&T3 zF;Plpo8~vIslBcH8q6wjFYF`K9>z5jx(TmOnIf{`TZeuxP+e>44e(Sn&`ZB&L# z4TjMt^Y-Kitzu*ACEPrjrrs8*3>?RCmPen%<$wGQ)Y&z8q>x%VUr!3TT^i|%lUp& zY;-OlId&cyX{NTO`-Ps~2H99=e};o>hAe{dROqG5w#eqDw?Hzj0O>38tsPqBe7j|9 zn!PlepIbF1m7si-NvLOHil?C7gviU!!p4Sx$Re2ei+v?xkIt=4ZzEbTt12sI>T=tf z+fJNd*8lo?c~R>2=5`P#7?;(Y)aV-6(ezHpP7(I)Y%IigZcS{}8T&)-(wd~ZsM{4& zzD-)I;)K`@8;8>)i(vlml!aPeORvu!ruRg$?LIOdOk0)Qt1+pb9&MKAG$wseW3$G+ z8qp|( z`XEdZ4>qF9G&$HoUhE*k5v1LN;3XS_ushWPN9?5z@-k!*%;&;7|458OOuro2DZ;+u zFl%jM8TX-$$vcKkQ?dC9Oc5_^`Cc7{ty>RAc8c)-xymaW)5fbDfhkvE4~*wU$yVo) zn7j2TWTyzng{EpLgHrV9#uSHr$#e{+OeP+o8tVP^SZv*T9I^<;J=0&yLl*ri)5jw@ z-yRu%;;r;WpMWVdKx;eEK~6#z!F-gxvvY0wt4*IQS}^I^JT})2PceO}Xu)`2N9SEK zv~oi|&D?8{oNbSEsSn39sHZo&Y6L9vJOe$x>KKOB&8uf(=+?84MX-sM=BlV^`C8Lw zixy0J6-y?Z4(FIY7uhMonGRF4&^oU%X#_6zcz7MAtX8b((;oM)$Iz{BKyt>t{8ghJ z<^*CET)xrHo-4+^yvd$#Mi#-W9`!BIH#_?D-(ruqBI%?+MoLUwqNzY{lkVDwcKjLO zD_FaY3n|4R2lefZPU}?sJDMQM&1_qY%R9%ou)|P&7kb{#{3W9^d+NI}bnAPNMKBB2 z-r4G#ey_Rri4%;()Q-k6HvN9n9}q3r++UAsqf7&)+wX(+_>epV^J!=kKewKW=?{w* z%G5t{_3;U7ru%P2LKOa-R2D7GXWzua+>c<@9ZpoyYcrYWztACB|cwQLU7<_y#Q-&4oG$8LNqq@M;5_|u(n>{bGvF@{j}-Nh!%{0 zhr^?O*4*dB3Ff^r10tq1jrB=vIbwcZ}2`e{D(iYzn?cakef*Auk*rTyG$@FB=f|*a4W6lDui_P^S zJ4HCMt)`&Q99p}!ULup;lA)DLv`_4%jm~FI!KXC379rw4wYfz2%QOvBW?R;b4Kkwu zL$_XzEP@f+k$E~^MfKt7re}y24BBn~OPJbHuP}WjvQvcp+(-HbhuJyh8jtSJ#2SC7 z1F)DH(dQsnA&X$iEbg$`~J+3Z8$sEk5k6g;plQ&^wlYe9p%xm{?^2j{h!_B4#MGH1G zOZJ(NJhv`4y+X8LOS2!e=#{2di53i+f=xvy^lH<$h!)IOnK{Nwr`0v))*?GaIMx?Y z{;osG5^43^k$F>fpik->#yt0Z9uXgATm-XHg>%oJ(mFWuc>#~^DFig z4o^qtS=sgZ9lv=j+CIuYOCqK0L$h@6X&H z=DK`)jLYzKQ|otHonn`7;&)q}DDfBHYjtKia|ZGE(KBHt>mWeQe*FQqZv7#$2xh|2 zlf_r-PIGr5J4HCM$&_*RZj`*x{F(V3_>rA|j4XojB=sjZELDx*C#HXj>=fa6bEeGG z_$&0!FvS&_7NK&SqVwkt@(W}UjHszaM`Poc=6)qkFgcD_q8R?QxqHM3HXlTd@hELs zB6P1kej^XTj4NO7!5J!-?lb*c(Sn(0XU}9KZhc>VXZrV|1>?V&H_4R7`Ui7=6epPR z;#39V^(S+G7AF|-ayO2~&Qt{d#U6i^hhT(OC5VUdH*&z7WxiSxhEvmlBU^bcZS z?f|j~Ml6|V%^W+`a33=LFp>@cWMpva5=uX8*^LMKBZ4o9fpm%snYiFq5C*`N`8V`Jb}KCOhFFn2~3qJlhxy&aRt6 z(8Nd5#78>v+WS0i{ppw@^6F3EX+FdLo7rF3Nj^HB0gJVD^G4Uy5q!63^~ecZqGw95 zs{zNwY=wa({>UPjcgFFui!Z6qGWTp`rwB)}#6Tab7Pm%^3+X1uudmzKd0S)=%*@^1 z#dfB*7cH0>m@gLZ#SZ3nM6yx<8QF^AV@|Yz-bp4`Fb3yI-x)prnh{XtyInA_Z6C4- zX8JO$&x{>LymvFbJCbetkdZl7u$-5^x`lNQOi>gMt-h)5Y3IG{EF7gjh2C?dI2LqR zUAnC9-I9D7_Gy%1PTk!XCDWLGWAf5-F|cbtvIs`}M*7yP>x=T}`KI?nc8YNOFK{nF z&wIUMnofUyp`G`)vv4@`x)O_yo%K%Y46zw>VlSyLvi||dBADq;bLq0V^+0n6i4)9u zOyhg&!6sget8puR*VzvnBK&@o+KD&5T@$d{qymu+xEJp`>=Uydw- z`S;8hzGhWD)Z8nOObbB9XJGQ`dKgOPEk4)O_YSw`EA1&9f5sHHBkbwF<}{}x?RJ#i zgyTUE&Y;73c*>%Bv`mgRCXQ!4rqRhm`j=xHeYB6miF)dBjh^9OHAdImz2h5Q;aBz6 z6UOQTshgD5rZ>}VF>xnk6vg69nUomnd1AEYEcEzL4s#*{JwDV6 zUW=_;&qfx(_&dG}^&AuDiV%!j(E1K??0M#1hwKz#KPwThm*Niwg9lR=@E`RJnDR~G z9;r#Z5kt4W30Va5{uxDHv5F>OeY5Geh!)Hjor(Y_g!4e&YWi)W1tVH;s*ZNeyn3rY6yN3SFy;q!IhGVWNCC2;Ayi$9Sw+(PZ}u=Fig|G67q+PDFN!aNIUK^f0zd z2I`T?7oy2FWkCC#Qoo#pHEx~?WSxxGtrsIZMK~VJx+MzV+v-ew!uJyNeBl-^(tFDJ zY?or|)+xv$nD6(BC3UKaX-KxgLq^F>4cIxz0ox>7=8wN z`_heGwzgh@pIZ@K+8O}1-FHSHyc8{Xj zG27f6Bt!VfNSdfNU)|`#D;BEZG#5Q%7!LC=Fv}jv;qw2-`5HUBTw!h;eb?hx)dBl2 zu)lC57hCKO^w4QquiY4=wO!{R3z0=IOP*N^sYGdB$s*I&ixy0puk6hADk&G6ULsmB zbFXGW^wy>3ZV)FJocf=r=iX>;8Io=Fk@4Ij=iY>#ul>#IwExqW?R+z`2*!n&MKU^N zunwAAj%3F>WM%;GhPOhx63C+>Hm$^z!(VH)MeRr|dRT>-4fK&kFbheJ5F=$5_taZV zuMsU6v_5|HC$e$&TGQ)93uYQ|o;VMY7vNUYw}}?ai_=-k{K9LN)%B(~h!)Ibq7_G` zyWQL!;si5!`=&B=tA54YSH%fts&K{z#oyP=eI3~;!jb9bELElP8|d-=(I8;^2id-9 z|8F6SU~{cyy4JVNeFw>2ct~GMXL-PV7d;=i6vYePj{L2=~loo4NV}b3a6~ z6FxE`1xFR+&Q_-rWng^0tI^f}O%}LYx?glI^rMD^k@Jty^R-z%Nkz<0Fm&rrk+hBf z$C-w)on2R?ArMdK=l1^vvIs`3bq3$S^!iJ4ze0A3aAYv`A5O2oM$e**8hiA8-(&xK z?JsP9wZW-a{YJX}I&^*G?vqKS>ktD2be}{q{oBTIc;&d^87{ehhbaqO3e4Z5b?YCH zogy4**|$N3=^yRsJDfdJ-2wc~pX~o<`wNFZ18H!7X>}GXqW={={%LeJ$IGL2>)(+@ zuz8{bM5_*&8x|)R#r9}_PaQEaDnc*;2{)KyvOKGNM8ik&o6tTAgETI6L^C ztsZ&zUyZJDrhyst!A942gz*1H&-_S-Ddp2c7#JW&(mrmT<6@6A`p_*4M;6bkk4je_ z(*ddfX-LX&RXzUOkgBLWhLW#P+q?NVwr+g_Sp@Sf=L@T;CX4Emrk@fmmY>F&`nbva`FqNS`&D_(Gogy6hYBjSZFR9OHbq160-K^2IK8b4Z=8ewd z6~9HRGa^B+z?SHlY|NmWvZQW>fyObi2xfuDlu?dsq_}vN>1T@;%zJIyty`PkMzmnQ zP8`HOb!Oex+;-vwBPf+dPB>M8x4r2dL<=UZjeRH<#?>87?<86*`kl?~B2F;# z9OqS#0K1yoO`Kp}c5o@5DRma?Zh8+S=iMPAOU9YJdrEiphh7O@MUL2`_h2ts^@@>8 z>CTtwIhe9KIAO5vjn=LEAUj1kbNQeuT>CaUdvFg=TUejFQTJ}M&y%iaz)I!Ox7;~eT$$Re0&x?U3thS$!l z$D2L@*(t(~1jDfkdLnv0<#nq@FYB)-+4Os~Z)YqGP1CoJh zWTXTmNN{hI?rH(Gv^O=R-chP$Z*Fut807qxR=;&XL&R@I&or9j2^Md|(5+o$rwIF> z$g|3RZ*O$V#P~+4s$DR2>xYp= zFw>oW72eg4nER+W!Q>b(>zP;2H}^4dg4u*#x2k^J#3zuQA{-Bd*{ghsYNKb9`jgU~ zt*F@0kfJEMpf%Bx5T*-d@;$+Ss<}iCsC>HB8R3HeOdFojgE>oO`Yfh=7@jp;KZl`P zKaXT_yZqhZ!~UhSXVx#Y&a?s5F8rdMFG3c2Hr`ma%orUepAfmX-q&wfVb>Pco(lZc09VKri>Pj;(bn6w!BA98k zLYt!1E6vRmCzu>bKw|fqyGop3a70%n#4L0D;smpNxtMdI-OoJR^c*A&XJjNj{b969 zuWohn>cu^EZllu%(f58Hdd8nEuBm>_$Iz|UAd6tev6qc4X4V073y_^6961rhLm%lXJNq?ec${h={;TbO3$h4iiY}idZjHIM;smqk80f3(Ox%j>6yeBlY>Rvw zN=7I8U)I}m1F{I_O|h%^oT>G8b9W#+Mc6r6ErNJ`zJe(q8!N%IH=X^zW`E(hHF6FG z?$=wLiX7`ozJZ>#0ZvoobUIc5eiK`_ehb+t!cm~HJdV*nI)%UOASz*$`{-Z)j{U!D zf8p?_fSlru)V|mHlU5pT`o8^tfGmRfA}|S>MiJeqKQw)(Xu(JdRfuVp+-2@=ae{3! zsbcdZb3Ya*m>eh1G0)^D=6)(pF#pnL^QwmWGt)m8Eto+W+GAwn7v_E`PB1t%r0Es> zmAPLdnS73nJ7*iH>!#|m_h5=Aqt-6xXWVQ5-yn-%UQ1Q#o_e3T--;7#ay=`#FQFT< z{?7F8k)0wO4^=6~pfP&pCdv|$;*WOzlbwa_JWRJBnf1@DGadQr690>x|B5Vv5h;2* z=e4L$$#wpF87s$Ei_j*Xq-k*qpz{pnJoMYfrA zmtod*Pn$O;m1)tm-2ziyl_$q>$+&Haty{N37QuY5%n{=pANIh1rs-#i7R-!F29L3; zXPe$yv|v6*jfxG{ZOm;ePB5PpqqhtiY-etJae^6+J;~_j*umV6;siH_>*=jKncErJ zDZ)|4GEs0BDK4fMex-u9YfG*iS9g=5)X~^;^knUhDc>SG+zGG;hHl*xSp+ji%qirH zwwJl*AUWI(=|7^d)|YT^^hi_H3YjCx)7;1Y`yz{Aej?_suFo~`JQ0HJt!cdV`R4W$ zC)gy(RJAK#VD5$D1mh_%DKHOb+uw9Yv|v6YS|99ILg*KnK0vf!L}zsJ@_L|&gG31C zUwZmrJ=olfk&G52eb1WMM*I3D8}(jH^`))O8F}b0lkO@n${~%S&&kVCG6#CquPV5Q zVq>2;WD(3*aNZ_er-zw49LbDrWIS*B0bhv{7t-`@qDBA85q3TjSp*{)G(IxNGkuOS zeKeA_<49j?bi%@V3`%xxP%%2zZpYb8IBw*&)%8_&^B4@@I%=%P+w%lu5sZjyW+~<6 ziRMlcCzv-CwToAqJ6W9I#vA6FcZ#`F#R#GuGg8Wpx_n=bAnb z*(t*D*O&H=PFr7Jhn_DO^(HdS>+SpoI}1DNS_c;$2yc{0QD=`Xef;0lxC~Fz?Zya?|z{eC3PU!?C= zE5vyDKY+fm^1z4tgLeLqorTkRoa#)ab*7tGy+a?i^GEC~9M04k=|%o%>&&!d9(g_A z&L2Y-!H6Z%&uYxaO@BhPU}gu+{+wH@xlf7{%%D8Ki#(xXuiqthzSPdb@ngslE;BQ@T#NKUNfY3&)TOxM+;70`_|J zyo0_Cnpw6OL$@wLc8YLwWpy+xZJm`i*Q~EM*!e~~3&&IA9PDNGbR?Gd)SK+~Wn>Y| z$I>&8I(@y_+@LtYD1|g9pM4|gaHm1I+#W0BAsC^Dma`R7Z(V6_l{mpjCdQUjgQoaf zZTc3`fLUDzP);zO!B3)uj?Cr1)?&2f7Z3ded!QNLsV@7iBDG63mG$@0C{Su+Eu z!hhe+KR_12%%+|Z%GBQaL(_MP7R(3Ft~g|-yUg8<>=fb1J2Pg~A4zcusmab8>W|U$ zj+kOap8g3228@wKFy9;2j1BhHpPBo)IKlkK_?-R1+%J)xA{@!)ImGo>=vn=WNyQXZ zzqbE9$Re0GNBeLUqe|oIy{3PI>=faMGpk5@m(}~wGtQbDvZ(&n&cCy>aHJ}ep?Vh9 z-?us$fd<+iTAdyZcF6c+tJ4F4{wMUTCNL;Mw-`eRf5z6We?b<(j4S=C?1#u}|5ww0 z6D^p@LZ<~$`@6Xzaf12H>178t6C)x7GZ4#Nc?P5A?iVK*|3^PPD_8XSf57xVkgTaj z#_iID%uxaV9IG=q?O)QPyqaGhL}|0Hy#I}%TOUFe!T2NI!>mF*Z2A$=f|(cS0KBEA zK5FhiNRCcJX6eMNX_WR)lmw62^KoPmjH^)b759X>C&dXy1kBCQSkP0ZH`x_hFcWG1 z0`;eEij^tTNTy69BZp{fllArK=n;ou+BNjXJj2eL*;zQ8)#h1LHy`V)j;}53yd|;- z=52@bR_2~5PB62A_b}6U@L8sxEm|;XjvpQ9<)yA$o8AV=acIaWF4#3>ri!w?mCioBapsPK_dF=hkz|D&6xgjZWf7 z-?i0w3;1yChMrY_J{8y9rccH0*t&HOWD(4V(YIbBD|?#TOPpZdHyz)-KHl{?ruP;t znBO7xuxH-S(th3gKK9sG9)j5jW|`A-O*~J8U|d;?R$_kY^G)w3TCm9>i?nXx1?FCe z>=fa6PuL$EZvRGC&m|wTPNNUqV*W+wSq#v-L0L&*e*m^_JrG$0^S@XhLry)&+`-6B z5sv?gStTz<&o_co!YJuqV&|9ISvZ_yZPv@iI&)rfJ;cs0M;5{M4pmqkYVH-{1cT#w zsEgt-bBBu)432Y1HB0Z6=8h02*xU(YolEMG=8h647~HVVz#gnen>$9FU~)0F`dD+v zAv;Cbd6ln5Gjm!df42F|D?@oc_VHLVnY9_}fO>mQz}BrNB8y-=aj%mYrxPDfGW}}N zf_YyXCJqnYR8KZ{ia5atsucoEPUP!*s_D~23ua-=hwU{cP8T7VxsUhe3=?OH5X^kd z##4;jFni=I)2~G`@QaKG8M9Q*Mvtei3K3I;&av~kb{39enNQMrtwLw+>!j$N)&x`f zw_cB)C&RPL!W?EvupQZ|kx86J4%4k~L>9q(GZs%Bp5#%OH<^C3Xu+g=7HL%p^RC}w z`mLe`GYibxpqJxq=DOkp^D*DTPW3(Y?dINr>=a=?W>t51n<q;qvvbf_AX7pM!OhU1S3JRbnP)WNt|GE>_kOle6qQVk+g@A@j-*=MadV6 zzIK)ZTw>2l?I|3YDyn%?HagRtLwDa)J5NIv!F)bmmsc+{cR8|CgngmW$;^qFTc@LE zy6`Zs@2NBFd&cc!DS>LzfraI8*?iszQ zE|BgzBLS~P$@{;BvYf-pFm&reWD(5!U{8pt)9WI0*NYR(;*x>hMg5v1yV&#+(Si|_ zZ`H`f19hpn8^j4F7YiD0G`CEgU|yEVMr;epWp6V5Wzm8eBkkWmuHI~JP@G_-tj1K9 zn^=Kl+cIQ)uA+HD5x7z&rvb_;DJqk*valLG(u8lVItp*W(5-8bMKJzF^`f;V)`<|z zm@{(EH-f&STTS04S}}r1_TVZ;KWTdgDT(@0k8BvQva3E!(9>-@}wy zh{I4=uM>*2B*+bn7pWMKDvauU|8zerfJk;sk@ERMh9; z*XHg)c8YNPX?&3GMbAH(aL3T#mGw7vzR%9W@%dXZTRXZ?`u$EJdCYdN03D@o(lUE)ln1oixA8_OIzgu6aPTcqD49} zSh$kyoPWyXI#IM%{)HZi$&4SpC=X&_X)v+~<`ZLAN~#GDnR{5AU~ogLyo>20<{lL% zn5n{KF(!ol$J~F#2}WeqPxP3H$B}F(j&w0G%1iWw6i0KQk7Bnz+35Pzv#Y>U=$QxD zC1Tc1b(7r`?M;zIFkk<6df3xUKV7t7#7;93+4%k$<~9>2m@#KT5?w2so7+O1V1}b8 z<<;BL+*aZQlVb}Zc3FLUJ2qb$etHjDOYE*R-5=Ft?*P!At}?S2&A;8rV*zcNQ&}5oUS|bexRoiCHtOuAoP@G`CnDq1>Wa3~E zf=NtXR9|f3CCE+@j{DM{RGxG5Qkj(F$tCyIbdno)huhzIaMoabr9F>87QsjcO#|c8$)i5f^iiS( z^X(=1jy7=&vQvb8MzYMR~w!eaq`fjn0C`;dNKnS4-FZXo2I&Eg8Euozm)8lGj=Hi=J7Cd3?S7 z^)w7jV@5K#D`%x7$6`_sRgrjl>raN#fZ`eUKhyrg5i>o?zIs;c%$h$<;d`x}&qfx( zOkL`ou}bJ1)8~p7%sklcRdb%{*NGO)JUB3Qp?Eh9|5zN<-v0mn(yv9rk z7OSFfm{i|o?%m=9lcT;rIK95d+(8`td12Q>t zU}E0)2hsES(h)=r;6oU?wIDgQOU`<}!`E+6-|Up-^~3h}+cSA8!z!xDe8fRMiY$T| zRYnB(7@cqKW8wsxVxt*3{J7~)AeqUGbktNAA-O7g&UoO<^GSPNU{B$EPM%PFVWX1+ z^&$8adOSBWArDQpgHL1Y*3Te|U_^usJhXz4Z_8&*e@?Vu+=C**GS<(V`+_*Z40^d% zap)GmX!;`2g84M2csTG&=EjK=%*zrfrq_)(H$j|WHqX^Tt-V#`G0`49$W9TC)Cq19 zdOSE4g6jtAWIJDsEQ0wI<}c7g?KO7^l2f;lktwcYA8#Lzaw(=Peb`t0GWO_RQl~h` zR0k1u5cTnq4=7}&wLykg^pfmEqF&}8mm`Z{d$ao7PB%9L*(t)lm0>D^a95zmt&GN2 zB3IgZrk#buIkpw)lkPm({_j)LEE0e+$VVZxf2Bl4Vs?&vq!i z3d4(+s2(-P{#PT5U_M7SjpEkknwy906yeByY;H?6WPYo&VD^%G8|^G?XXSR*axQE2bv)I%^(OSp98`ZMYDb~^Wo+GgGqMQA8!@z!#-;1G zgQk~@7R;1f=A~6D%&inB*aT&e$@|f*GQC=~U~~I@Lu=;NTg3q7?9=FLuu!+}teYn<}+kj-tEMz?4Xbaxn>alUr9gWW11(i2n zL2uthRa?J`pn^_a^)CD0jVyxk^_26EO#B$h(OSqzHAa@;ej;7hA!CisU^nR*^`~Q8)Up4wR_8Pk zg8aPIX)`k&>lcjZ1j=Yo{{q_^vs*|_DmY5Z18Jr-Fgp_=5XszS0&uN(*5!B zDgc>&Ba`1oDx~+JWJ1L^=(iZU^>@f37t9Ge9$gFSAN`{} z{v;2<%(hG;W|ab6*MBzs7i6ahN8z?)?dZ&@TAcn@Oc5oXg+4cbv;W_bMKGSl2vh%t zObm+<%$#!t$FKL*5p$#B1e1#@+x_Mq5GR=NLJ9k0Og;M3vq;HBkOz?!V#$ z^95j0BroA(<{n4VK1N2K?s0kd1bY4nT|s25C++-{orNPt41LhyyUFfyRxZ)Nb8g*?L}GlG`*K-!HhI#wNrLK$K2lH1S6=9NR5HeeN68w zS}=l=RrT3drVm1Pig2uerM=pE9E>$`H7&K#i8Jbp9pohr zBJ7kF@lt!bl%uBjGP@mOH{s0dA;eo_{ly*_u7|6&SkpFl46) z+j;1g@k6&vuZK(b14emeLvnB|d_AJonKibO|;~Eyq*0qB6XuMIl=xXB8y;t)TS=0Cz*J)2*G%0qZ5~F zdhf~RP7x=V96QsKaHpC(4ap(c$VkK(zkE%j>-D9B^K|J-Cn;x0QRFrbXr75F?oM+m zX}_F>ff>+9#(d=;HCOM8bhdPV*4hP`=U{3ws*a{oJ^Ng2-FhCf2sUwN3rSAOGWU9M zf|(fX)b<7wZ$x&AaKv-taIZ{pA6M2lqeP^2ng%cJTQGF%TaiUDK91`1V(?EJBMjEJ z*`q5D!F)kzT2eZ`-P}9G31)oz8BHBu-)Zh$NEZ7dogA9J$`|$Bjm||>ZoNmkGe63E zH!9=m`%to|XL!1AlK%Dm*t+!t$RZg3s^KhB>4WAzBu=m`X!uv{`%z4P7|9SXG7<*j zBPf|ysfaKO`=j&HxgT(n@sLEDZpH{cWIsyM++vB*`QGLoQoShM~QpU^TKoefxiSpw_b`Yg84Lb zAO+22b5oI>A{>vLId0QXGHX$ho3Ad`dYPRsx3h5EPE1Lg-ulx%9iG5a$mw;4{jadU zu>D77d)nre_V>0J7qbIB^VZgD^5#qj=|dL5CS$28$ttsYmFZcc1@oKJZgJCZdN#6C zg#Z5uuXAK|QPa+xy;>$00nDnH+bAP_^Xoj6{J^siV?G)yfRRNo{+s3ya~{+gIAD5# zXu(Wn4p?Wx%eCgN6DJr!N3Ncf$J{M6y$H$1(#R%VDNgJ4=$Xf_?ost_v7MLLS=i1x ziUn?|oufGGsW;g3Mr0Ap#PURBRil=fzDcxTMoI@rELF|o%cgG@EtuIcw%`~vw;aiy zS;$CHcF_oW1*R;#*~W90C!4NxkX6Vc7?&HpjDgMmy4u_=;soPG8d`r7(|@!l0n-WA z*kdh{ou!eHlVVxJI`qu%G1>f9JKtt!;dJ(5oAn!=?{J3OVCUPBMKDw0;(;83xWn{U zLetPE1KBCU@su?GZhieGdL|DeUNqF`gZ!5Lziofv zDDN5U`i`CTv1FO&=(tt&yY~DZvIxe%My0BL-`o$x2_{Fm%Rl_k+@0bCGdIMH!2Tum zF4K1-nfi=uQdrI0AE9T2XRXp!CDa;!Z2zCwUpR|qcD3eny|Dh&K@{y#vMqC2*CWXS_p~H?qf&6)iyo2HntM7W zXoUU-TeseaEQ0xvnS`UW3J2?NP5(}`U?$sAZ-@SSbAJ#gm_gSuyVJXv|IzfHkewnt zHn05|Ju_ziI!zD#i=F?9EP`<@<`_`J)7$$u(|;E&7z|x zDo!xt9$OaQZ|(sk8)YFQaxSrUwlT)$#&eGDc3eR#!8)%_l~=M%^x z82`>VwZ?;=H1`yeHNeQY%^WMaq=&4)TNn_ze8{7SMGI!?QVP)qeV)1JixW(a zu8lcM>we~5AWpF5IPs>w(A@sw1oK7JV2d~3=$L*HvQvcP(U9`2D>?u@bMBNS+9UKp zJ0E0c;YjXC-h&%m$L!$yV(Cim5$YQ+LCJ(r193@xDTZ!+8L|jQj5SA><#30Xd$~Bl zOr!~OIfuWWQOmEv@SbUk8nC7s7I9f>LP z9UR&#=MXHQz=C$?m?r%!5i-hB91H#$dlXgS--O<-N=6qHD8Ex)5YJQYK?o`x)f zk)RqVzk&TO*VfmVJ{`%n(a4BZY(jPhdR%L01?{S}^-MdTWoO|?;dOqfua&M_z_*^= zkd&Hgt)J8Av68r+i=J6x%JQML(k*SzK=) z8lY%#X>lpMIK`!uQYcUgEmE|+6qmsVC=QWL*cc>`O*Y9UY#<5=Y?K5N+}&M@Lv|PU zBH!;m=ggDs|GTdDI@h`9J|oXO^UgCqQiJn*C=N63aB)(d<6c4?&vArtM~ai`Pp*>h zAH;teeUxaaQQz^M?ZF(#T#a(q&EjZTNR6_HMgN=B3H_JR$B35dakF<$+_Atv%(5iK>oK?85fry7w&NR8C$ zA}5;wKF#RUMN5q+d3TNUf{i;U{c_1=Ljfi-5#t5!5?rL#T7jUdC7-ZaFBy+?_i=^}F z8TlH3KPJNrs;#dz%OS`l)k9&PRy9$RaYMyPjTjj6V{T%Yam`4kgppqBuo9TX8^eXI zE@Vgd2mv1~8PGn-?ouC#Q|Zid-W8~xMI^T$MJ>P_^CF$NSsp6SzzO1ccTj#Z6V2XLU8JVQ| zV^a%sj31>lmTob+O|;Z_FU_~AJvP<2Y2u{DAG%jx4p7j1>2#xKAZtmwKLsbL&gM7; zI|X|tuH`9ovIEVrj=9(7S?2Lp^C;c3!_R)0ZC>mVsv)X5W`CR6OE-J|S88eAZuZJQ z?{R2N5-VconwNRVBsJ5kg;gN_W87Qfq&i3T>!8E8jeAF&)OZ6l`>49# zHSRreQa#qrJ{;nr(?>LX_`X?uAPcDx^3)mHBmJRqA0cZ=y8T}vD7jihIv=Na4_u#q zeOqof`wp|0US68GPBYd&gEkdCCQUzlZ1$fZlhlZN)>yrYPmTLboK!D6`c91=u6pNl zqrVU>H69GwMsqa0@TFONB@3x>QWaNIl51>DriAhcUz^c4$Xb%_HBvQG_iYy^rXJ+u zJDj|NY@g2PzFpY!J#O{K%i&+ zv(XE!4lUJlrk#z8%xNx+E1hL=Qk_$5*G-IHEuC+QiG$FqNAgY zTU?w}=eWaF{+2LqNn|Za_dKeSx)e_SpP1h^H7{+(%b2lrD+0W*_69o4W@-NkIvKqG zWzBdwWRe>1mG*=`b_}c9k)0f6d`-Z^kYQpJ{#$=CZVz!% z!yg?I)(!1x+@F!PB;A|GlZ1dtElg7mir)+)Ch(7Gun-RF>YTZORJGyS|I*f zfV!9a0V2=YAV9+Q$AOEBk+me&$ABap+ql65Zm=7}IU=dP1 zVfv&^=#l?n+#$$XlI{s()7PN|XqoI`0#>GVdiBJ7c)<#Vv>XABgnNVZNF10QMsi7U zF(y8>wvMWdJGrNWmtHsHqs>^l#S|g`%Z#mQ+lO0cC&jAD<{M5xiOHRsWmg}g?aCX5O;~<;QDHy<9L(Uau zjU6j|&h3J=UH3e2d?mTxlv`;C^L*U6ju=TVS@u@Vu-lr}HuMFR7aLFIlQlJ8XkIQt zCaIAz1jiFyY}_SC4ueKk8F8tA6`6*qO3P&x=8Qf9ydDJ&!;psqw#INeU?+X;@geqRVUWZe}qZ@XaDK`5t$RyRnQjc%cfPB4iH;9uO z@px{IHEx_ZsnLev7B;4IN&a}FCy18nUbzxjt%QljO%f+HzMri<)N{e>jYi)jT57~P zYd~kOmORh zg83GSpIb09kHYi7A(PYyj%A*3_Z#UPZE!8fj0ZOR&j}*T9iOEi={M!tHgle*>AMMs9lt;Z5WIBTi~?%tDOiDkbCI zMsk%B(&Ev9!0g?9r(jx_!tWML<)AGx?-k7c2tDBYV1K{}-~$}$`9owaN%z3r^G5|o z;PWf&fwhC2*)_(&s{Nn zgoV~9{Oyy~`(Lmr|h|0h#tkqt`;TTZdKeEeLE>nvSNl(YS2=4HU%XzRS1JBUH` zyezVoq-P;k7k6$^&c3tp)U)^zR4T`?(NrQp~Sv1-A3 z5~gWa14kL=Q#Oay?`%lMjiuH|Zd)q$?LBYN?$FhROMzLV0x)Y9OWpZFhOAYvH9q?0 zwF`#lVe&c!Q`CjmtuS{0^O0GvU~cMACAvP?Q>xXLRG$2uHo%RmmXJy6f)5@&LFf&Q z-bl36s8#3#G!4i#<2Dv2)xBygmouI5x{1-7ik2E)IVN^mQ{K$D&BaM|ube5S7B*hD zFnUYTQr#;{_S8Dx%DCT&lN!MeYfwG6wQ<`Z*_Dj+GBRt3{y^J;y(nvk8j);g#@i#4 zR1XNQvuQ@&!MGj8NsaVXbm?<`tsq@lHk77*-W-0zXhEF(P)qXz3^v1^5~Wy1Fl z6=w2!)Zn}u*k6#=n>S5Ti~Wzd)${I1W|u4b{$s`csbEgO7TyC~{aw}e-V+DzBSz9~ zF2+2(GGs4d`+L#^+#3+}4NXlNLi^yr>@t$2*0QuJae_9!=Y1Wm@vl#{Em2)bLvM{f;sESkY3WaM8x3>v^1U z$0KV=x@VkmiuD9J*^8n)VSXYw-fAm};HqLIR~1*r9@rU`G4t(O%W$R{pJm3@F)^f(6Pv*o0eYlMJS z$2kQvq@#a*7PcbA5YM?4No~Rk)bqg6yN5j=MAsUbqeFHK{U64ReL2sk`AX$Wsv;?X>>4Oee;#AfD(WGoNFMW|o zYNU>y`Ov<(pK<+>bgYq{I(7uX4FE^ca)*Ite3cnXH)BP@C-Q1D)}NAv4jt^6rmPM! z`@zU0HC_{AXtp3CUt{#OqNO@*{Z*EtPt8M&ZW1lklTG!j;xN>>VdA7l$Ue=1*Jh)K zBUyrtw1kG&5e56KNFE9H9P1cAh&ElvNETq@#>6x-NsZuJo2by0ve8CghpZ*(UeK%7 zZEJB_(4rlKQ)DHREfYAJ3x|5X0hy$F415mS$J;k~tkL5{OZ8{h+&oA7k2h|DIH{4i zs%D*N^d!+zBip>gaieiJiIeJH89nG2GgZ$u+2|>vr3Q`HHU@9$Xd8WtXsJ<-_$<@z zXftjqlEv6aFGsCS+HpG#T&gH@m~O^1kV&csq>7v7=uG2gA!|vxmoYdh#qz@H61CDn~YZ8NJao`MUWRe<*hU4jz3c>^5f$Q|Cq zfgQ@oBsJcG2lke6ZzJhgBfBQ-oq{7_?-m>hd#_;eJmmXbuoChC*uQFe%nw1_QH*5z zxmd=K+EoN`WDJm|e;~3lFy?5Y7#~Mk;T3)QBz!WUOe_XK2FunXw!0unY z92yTzt@%^j>iIJy`;?14pB948p9@W=sPZNVf~VSQIH{T%(-zwd%I$M|1x{FfRVwS(ga9Jsp}nWUEg z%K&jd8TYd|sfC-}KCUG%w5I$mjI1T;p6C{~)=kd807v=uT3D&PL|0l}W z1{J2+Pp9^`753_T!>$;9BXImDTNx%|yjD7rWb$^EeH6*<&3*@Dk{StTGM@+D(YT$EOgkg1GBayZ z-nqiqa>Cy(T`@)f_uzPt>72JcCGUzuJ^uk&OVT|sk7&2bSnFLGP5Gl4?{3D@&6qYF z&Gh`Ig6Vg6^cj@*0Q;+AbFk`XQobi{^rewWs()1(6b*VWqxTjq)gM~LkZ;mH#{C6J zXBufycMfY*&AD%dsd;H3{I%fro>Ro{S1_b1tNp>A2|8MhQJ=rzz`kW9`<9Dw1b#q; zdoj7%kPj?40zU{`{^G6qU=ZDCB;Dv@$&1jEr9*_RX1L|fd}tR^&vzKO`djJE9gagi zAAw9#Ju@g|RKXZ_HqXiRE?A$iqq|~`Gy7MC=}!^%G2qCY zY0XN=u{hN8amZSd?j?ldQ>YA%FBqV5d_q^u|NBH?du0B+Cv_#+<$Q8i%$Ub1#kga_ zwfR&5TgW)HFV(U-4(#iJ@1ElKy6>%m+i{Qu?3rNt`JdYQ1bB&zgXj#I?a)T&9E zD{!di?#Lw7Ge&>i#+KZ}xSryqI@dvmoNrh!;~J10_l307wNGOCLrd;m;eO*fMl|I< z6=pOVd}YC^6en?NHP{oSX)@}UzBsUn8JVO;#H^X83hr;*03@53ksh(nj}I)E=_c*P zxT;_VEadlUaJ)^Xm>BIIghM?KMzV^#GNw$yU1P>pXt_xHTC*HtmeTzt)6#F9lbZ_W z&LEAj3@x~07WbbF$-^p)J>TeNa3q7JS_Cj02PUJDNou@=-mE&DlSdlYg5(Hmq(#hV zpSV%r$hgU@?U|EDoAGtXBsDT_#1Iv*R^!HqlNucB?da=XZ`=(?mU1Jlh-#`}Yy}wp zA17di+ouD@7p#4Id{ibB9Mb_43ub+y#%L#1So=mt4ckv?a#s7!Q?`!)eN4} z6*E$Lb5~5oc}u}8FVy3vs(q%^a%N$`{+4~Ca>@`TW z;{65Nhqoy|P_THydJybs2C1ri2#0!p7@4F-qCD_NjC)j^R9`f!0}c6KR%d}eW=4<8 zNNTK3XENsrBc4REXdCIt_QeiQ3EQ8P13;e!_&2z-54)B@_53W71FmIeMc3y5pX-X5 z_j|rzj&IlS$O{Dn^g>>&u+Ia&RB+4#zFct31HMvW{Bw-WtHPE{<^^9XKry`zhHKW>_0T_BXLqAQFB^5nQEDDT)Q}_&b2qvBpaDKjO#?wQAT*t11T8gTdwhkE`TnWRPvMzPvrWd6dqFOjt*-2)!Q{9)hx zm9Rd7+Uw_Ge_fo^Blgh0!6`cFmD#tr)$@1AB(-X#b`Bq?fWJ5TzerYRBmG@aX>-%X z4+V3ii)?=^m@lgm{FAVk+P?Ycikvf1%i|YXD*|Ibg92Mv*j^mRD*gfxJs-}J^^|nO zjeCrdNopjtf#aqup^F;5m}sf-UOntz8n-x-?lRJMtFW1ylW2ANSl_&aT=k+j>qV(q z5*#@-oZXRJjL|nQg#4cuVD0wqNPTW>un>OD;c*kk{gYYT@$}b!QAPfXjZK-P4h9M@@fU! zE!W)VRB*hC-+;YTvN~5Ua&;W)c@1Qe8l{r083ewjachZ_>fHRcLAp<3ZR6GvCv^db zzjcjU56LlKNPB?rw>~&(3nn5k-oT81YsS(&>*2;;t@LeJoHzlneY81kBqu9Qw6tn~ zcp!hh8{<&Vn;>gRy0;(kOf^k(o65=lwjTXvT}?dv&5KFo*%rbjzAXV!d}#~KQVGsm z;YJ@CNgrCq3ZGMAv?+G$f@wS}{%wS0=^y#KwyQJ#iPR@Uu<1C!OrBsB{3Fnjs?8uwRmQl0Ch1&P1?jN2bsOVT|OU#9W5 zf*CPUe*L{*HSO?w061QkSI`IIP|pV;lhk-!96v$79{Yoh{)cF(k&dC`XdUH4j5`!r zOVTYJ9k)&tcbKr%x{TZ$E})X6Y0~j+T1$OIvF{wpsYcxYR4_wc1d;z)aCpH|@!T3?h; zudpu+J)^=DA^uHg7EGU5H%Ola_LQ?$Mq6Rd#-X0iK_;nD#(IrXLbGw_ijx{^{%4KL z=NWN6vX-RV6R^uodG~Ly#}Ez|nDK?kBsF4awo-7BaTg=$S0g+_)>mNp+4f3US?y>w#o88tJL!cCwKJa?gTw6b!b#gjFm% zIS#X-BH8c)*}KBCT7>(6qXKPXdcjtjUWr>hHzJeN_`9%MX4n+;ZV;*k+medB)^3K`MJ~@vu?s_D5 zA|pL2syy=fh6?weBRm!y4?TUbMy$r+P|xF$NooYlISQ1C3C2wnCpBIKCp1%sljKQ8 z-zZwD(`vnOYCiN$Mo$(k)kAhVPciOhWGzYeZwh;>Ih>GVU2l<-eeL@URI1yG$^6-U z30+Q8i%Dm1Uf$$9tzhwF*mQ8b5N<@r!wekic_y-!q`7UHF zN%yy^&8ma)-NN=kVUFh>fd4ZWWn%Vg!Gk)2OrJJz==W>i!Dr3zpk@8o~_%&pb8c(HNh z!bR0@8uuS@Qk_%X*3_8aGVX08lhH^^0J9TX#r=-3UOMx``Q1WlN`axj_rU(#YTWXF zcpnEk)yO0@Qm6gpbMuGBeS~Bp8fmdmX{iv*FPM)64e8uouok;;gnCE8Y~58nodr{_ zDS!E6aJ&Fd*(W&E^QXupH4?&t59Z51GwyS7Ql0A@JXZ?>zcB7gBz0T%};haC>ufXxt?y#&GFK5QmJw^T}T7H2sTbIU7%qy7jie@a` zjoH9MidHI^Vk^9|u(D7i;j2_6onFXQ!BMstzq^)hGY<9qYh;q@&%>m6XVbv^8{<|- z){=C4<(goaHA(Au*N~I)QK$EjZEIGTfA^TFc`a}}vOBDeLp`s9Oj4tP*f=$>Ys7jY zq(&iTO#}Clt#8~0NcJ`(EyhUTZwpp^LW~=NP);_&f$hymwl^1JEq!9tdE*MR z3>n)^7T`wVO&4JMQ)~vV0#^W=<516AAZtmwzZ8#n%gR`r&lo`8%8Y+!#?t*Um>3=1 zH*Z~V$BahI^EMS8-M3@d0MLxdvL^h>l_;Ac~>+3gBeS=LMCFj0+elk6i}&9d!9OX_kx+K zmhqno2FQMog4>yi;G3{#!3<2x{?7}rPR7W430pWV5{3zrfRf zfUwf1_V9s)q=}+$&OzYFQzjj$91q5U$!27d8ZU=w+@`tt5aSL-(jP`zEIO)&Ts^Gd z$hE`45%Bbxis=X(>iI}ylIj76@js0_N}SY)R3~^0%5~$8M%I#akM!Evn)~<{*dx(c zD7DEkW_&C%N%er(IlyAue4KH|i<27dr>h(D2}YcVr1OjP82IS35apzTwc{Rqvar=< zv|UaSu&++rHC&LZ=FF+ZUURtMRIs*YYjJk*uj={qie!@;jL90 z6el&_jSkEmlrJ*wVkF&Pq~#n{p}0#5*47j7r3Gt@gd?sm6SiW>L8X@$QpS9ouBb?w zE8PoemF&daqhM`4A>^K5&k5FuXvIJ;9O}6N$$WA#hSL_3-UTa}EGg+zFq5kqV7L+_BG!ln;Zb2rgkwMd@sCr>n$ta^oBiZ4M^aA2u zuM@V~Q0p#QW!_p$m_-sE1CBgk2NGwFT#o}wu#wCy7h^2dof&J!7T~C6-mU@|XZGXG zUb@A{h9-7iiJnlLIvD@pKZw)B%86sPrdlAAaPm~J-dQ#`;=mbUNX`f=_8O16Wv=MS z#c4sPQ!1w_)SGdtLe+b^1&4ZWL)MaXPb+`IVT}rPs@dD)(FkWr8E(_e%XDOt8n3_GEUwSi1jZr*j&lqJ z?Nvg)G2?HMNou@sPE%wV>UYL{FHWkL-Ogt2Qa0iT5mMui*2Mldc7sjMKN|fLlHJTm zZ+Y^UA3RR0u*N){=C8NKP7F9uS@Vp$wSt zZ)nUbnDL6pBsBtJo{|$GS2Av8aZ-b88KdfP72{SFC)K%jwr9buX56pENsYJHFq<(O z1^XMLR~Iccyt2-I;GDdMachc`8eSPpae6JI*A^|+y;3hJ*maCsSDe)NpZcku(CZn! zzG$i8m5~*=4UGG(IH~Sc|8GABd_$u*5-l~VSp3zD*jR*A50j>z!ra8TO~px#r=+`0 zCBB()n~Reg{us<(IO{sGhe&CaDo5bC^wI^7h8kZ7rKydr;h4%u&Q zw9~xX^1){G4;e{~e+JvE`VG=)bB7pxsA#G2RP#9Rc5Xh*xWmOsbxwzalGY=PI}%w- z(ydZbH9NYwgS!8pa?*`HWOZ9T4Mee5?afS$~k&_I$S!&#coGmGq|ECUOy3i~xl7-ZWzOkiq zc(bCv*yu|{OAVS!ZTj00N|zda8M2n7dx_@gDJGjQ2S@SOSExB(VaDCfSh|19s<3(# zCo4&V)sX2aCsk2&JP;gD$%d@KgYs2od^Ivj^&GQH zdl;dcm7|BX%q$i3yec-MUUSc6yofBC=Fj-BbYjN_=uWmCk=R5?rdTv4{sh(7u zOB;}f8aE7COVTZP%8DMbxeHb+Yq+p-PlpVR5U{v!WN{s9^tL(mG2+@du>Z7>FhdcGdXTrkobGvaQi z&!JS@fNOZ6Z^#1Yu{hN8I3yQC$%`dnEO#ulI1v zq=Gf21-?<(b7gkEsUlgi4mla@iDCWg{JHb;6ddaLW@M7;Z(9eXdgQkl-G-#!i?p>) zI49qaLp?u$Oj0A%8GSVu_n>hPAvp#N>3PU%&2dZ*4ayJW6k!dwR6Jt#k0O)QsO5;5 zjASI~F{2+BEj6NI0+*H7PMlQdAm}ya=Z$+ooYbggSc~H+e$nWcko1a?9yeR#IhMLIdRc^Ju^(3b z3OG{ve=J{xspr>_Nou6hyZWyi_l7vBkvR-V_L-XBH10p*q*k0NoVSd7Tbxwqw6Tp1 z67LxIt~jaA;Yl^(d&a#lPHJ%8k^I2855-9huK!ro_#YWJA6ZM%?a7s!q@^7kHJx4e z(J^mG?lAjKWRmJ(bqt+5f98z*v2mXuxkC!+xyYml*AjgytUqW6oxsm3vZ+z~TR#U! z$)j7z=l2U7xIhY-q{g3yVe7Aq_*#TikG``%YX}?jH^zM{PHH^n)LvSb@ttwsBe^{a z=}8+#H+N9}udx2%8J29DhE2!4$NM}Hxc)OZ}8mUZx}8@Glysm|%(KmuOVxV4bAB;9k4 z34OS=3s$ZX&N>zLhgi45{>s*?F!uOg9~_CK(}=?cIB@D0vX-Qm98->LSYeNBqpldg zHE_FrWlwB)KaRUDV94Yk?^4)OYj%6fktYutc-d#Win>5Skp9+pL zu}8s-kBZ;3VCok=#-A(fDcP&So|3)6krMhlhN}M7*5(m!xLMEx6E35(G z+^>9;admN0BgZ@;M;rGqB&({C-rnmyfc*mP{h3delT}-^^q8nPw&2K<;|h*+9S@GT zf-|jZVl~lI{s(q=LWQ zX~OnJCHGFRNUv7TD5SFP%!;IOhR?IQVAV5cSC~W**g4=B@}eHkpn5(RSxeGAPHO)1 z1T3c->|&bp3)W^6g86sB09EK0fTMNH_lCw5xqBgQ^?VVsmZZl6HfxLE#a%JsT_S9M z!j{|frG<=dn9)zqV>7Jo%xEZ!RR3YJLqbSXTq!c?8&F4&NhjU{V>$ zHsxX*F^?)ZVjf*^1a=)b9)o#y&c|!Tp`OPeYe~B20URx}>nmf0&Wf=c%y_IBOE=@r zQRCFDA6FSOhNdDs-i#-hv2?3D=1--~I!epOCsy_yV|9*mo@Dknn!R){zRc|3Bw*hV zE-h{zn;IQA{_B8M2V-7M)C#a_}Q9c7}Imn#C+6M|>f@p43%0c74pPIC+Z6DV-28 z+wA9x%P>0>oXdRtdxjSt;!#&eNLs{iBE_#SV!T+B224$)Hm>A5#T3j*#m?k*%N zs*(P7wS2oV-(9eF9baQ4Tl0ej z+hK9c9TyC#qi`Mu$NM8@JUoI!JwJ-9CFvGecz&!h#!^RmJZ{EMn6dQuAGPKu3ux!8 zkEbfYK=jiB{+VjkLcnLbViNQ$I9?BnC7DTj4u^Vv9$8D$z5BrtX4P4$FH~MshfH&u(cT2d+w#xf zf6VwTWRe;IH4WDdB5xb_jyS2#(U#ES#dnQ+Pn^_9+yw3$?4I8@?gL~kN%sV_jM3tr z55bWD|D=6n#`BR$YKg@9AMM6rwRgHXIFhKRpH((E3`|t_iTO8P>jI1T;7I*~q zePwJ**?Q#vn(+_FBsKEYcgOu`+)qd*l966DYI7XTsj>K;(mM3Cu3Jn9OyR9p zaKyJhI9@CFwi3n$IM7)}CaF>Ws6*j4G;SkgElKydd)kB6!0|37nDNGDyoni0x3{Pz ztD7#c^xch{ndRnYDcythU6ET<*mpW^Sz%Vgk)KGD(f}Pvcg* zL3tbFwiPGU8<~2r?TpwS$wF(Sr@%e!P+^TX56U|h3{VPoD!84g&7K4D&IPL}#i0(n z6s&*zjK2Bz;CQ3cTeU%MR~*=fjO1LeV$76)xZMh7p-AVDA^DF5tEwMAD(?=C!2Dd3 zKjBc%dmxike?(2E?P{Ve8WN+cp&fKRWX*w{M_7`ClGAb%Z4#AdZ&u%%)>xk{UhI(UXHd#^_^3 zOO3BykI6h!KF+w~k(`N*wA6&Z6TszRxh$D8z0CL|WRhC`%cI1dY}_fxT9WQX-oJ*Y zR@gtMso`o?l@u*KD4h|6O4}Sm*+ID-ABhfu1pvo^dgT zW2b7qxZpUI=#mOE*-G2!Qn2?u=X3G*WuSV#9GRrXD;wF^(K04qVO)1)ElIcM(Kskv zk1klT_5@c+ltV8ZSagkK(e?i^?rp|a-?JIO1MFk=SDL+aFCX5VYb-cy`xe~UG+e_? z{R&nGWmxar9~|F4#*2o|)L_B@+_;PxSxeIW<#6f1(3$zFf+?uNS9ihfy$9t%!b)!Y zByN|PsJ`{!VnR)+;(ZM`N(Lt_Fk5&n4s@51beCmpk6R_DNlsQiJPAV!jwB2#SR-bf zq}p6z?5UiGSJ<1?BNkvw&q#2jXMnZkT5w<%8p$klF;@GYJ$j=HR?Sbl@4Bv-^4bda zz%)ld>|=0X3L422w2ZAIhBXQd~Ah1vEziT=7bzyNX?~yClm}2o(PVS zp(=t&xYhHG$RssB7I!x0n~az<XeTO}*Q1WZv1ho5e{DuDMaK?-t|QkW4xwJ@s(> z>8EzV9Ybg5X1T@>YIpU@lGD(f-tQ(*2GVX41Qk~NtJu1d~ zjJp@fX6dQ$$AmDdVUF+q(;8; z*JVlD%f`KeiT3#OkazaJD#=UR=$)9<|CZzc|MZq|VgKxZ zQgD0EN%H$?!K_c~Xq%KjE11enpY_iRR%4Xe!!HV^nV>CxUlvSDPWE3_m1S^L zr21n$Hzn{Vx#~Z!!MdLXywtGZZf;&^{esnuAC(sd$KREk9T{%^1rGJx4OvUl-E;r3 z;ufill~t6%Ma_6IWRmJdhFVcAiC-GGxHzd%oH&YsBCv#UONx_P{LRx4>{7-pElz51 z)5mBT!!pMG3du3p$m%b-EFkjKKU&L~YNrW@CDnzxZfg~M@GgIvMXwG z-mtLG5Ih+9UcNGcPT0m_LU6nPKl>wZ3y}-Unc-vyH zLt3{h_VcTY-nOsoukWqI>`?6WN8hp7t48I&KBOVh(r)6tjoSxVOVT|#*V|IIzkoeC9sbSR*Np#a#?sxGb0qoX z?N=}#OX2;6yQxCrzP|pV-lT=R_EDu1pslf>Vjkyd8=|Js*ZlQlpc~fiNk zjr%8(L$8sMnnrO)30ph2-`I}1+)vVw>o}Eu#%x`fL*0BdZgi26NooX7LFYD*V~jf% zSxeF_cnGzbk1JSP6&a>JzF^HWGKPOb!M3iqF`rm4yzEZ`dp59EQa3xFj6*%2f~22Z zjAOmhsS7a23(d$$SkD$qj#xWzS}}=LN~a6|f2)$tC{~n74al6?1#5%ESp~;T?AaCe zrB~+^tezXiIv31IW5VYatc3uCcV5Aewo|#nJ}L0;f;&g`)t2fDg#W+gTNlc;n;w_t zS{D_dxyXwJx?}`Sm&nP!uSCft;iX+MlR1}Fm~EzXB`z;GJ^@#NqkJ-T&$NDb9O}6T zlJmQYG3$jiC)Kmy&fWvavfK;oopsf~4WN4NjjScz7e2pSv0r7ZZIo;Y=x@dY%vid|q=Rqf<$=P=Qys#{$&RBq42vt8 z<=RboI({@;DU)x_?m**?~ z2RomKf&H4q*?rx=VC?nW&0=g!FEx{x|A zWxTM}LY#fXg`6yHoFFH?kNI;av-Gy3p+y_cCRQHV)6agVNy6QfcFMwyh14(>M-<;w zVIAf?J5Mf{znz8)rxYA@?#%^jjEV4W0Y^pX7r0U{x8YXLQ<1eKy*#p>Vp_qhkXC%t z3+D1pWyy?!BmSA-$ZM8KQ6^^LP|vp_Ye~8X?k$+v1;>o)oPsr>N(1mVa0KQKx8qRH zbCIE(+KE3yfLj#Sqs6X8fQTOE1xO5YR(iF-d&53)TZaQej=#F*ZM1VV|FV4D2c6 z@2A{-90v~bLMEwRl4&fe@AIT_Pl=NnrTnVdYD+$C+%rh}(?~C<^utH@7X9r1apFZk zhf`#V#shlf=W$@)GLo~rWN$UEzt|TmV@Al;$#}_(Uq&XWo)&RjmGp{nuOhj$8R-G} zjX8~MeP;# z%e^`ZrU|20+X;?G=lYt-^rdmA=TDHV%Pz+4tW)3~%1?#6sm=g=1}K@v;eTWE=QuF+ zj7(A^V;G>OQ~ITGUx}0IoIZ%GhyL2QZ^TLUrmF({)`;(rOgAIrp}AzOHGf|){~X!= z7woCg1O@BSf53s8qmZ>E-8^Hgj_OYZ)5_34@8^O6YCA2oK|H5+O)M;+Qpev;2Q+ijlD^hES5HlWn>{W8oF3aHu_gaFN@?VW~67Q(Rn%WiRah+4@zrW<0`}R z^5$a&WRhByNO3C~w-U0Jq+4jT(v(FjgQIB7VGG>cyowpGicC`D(d^s<(W@E#Ytd38 zo?#rnG(7*txYfl;b+77XaMcX-8b+@vT58aC9;xWHj9y!`R1Y~)xsGw`ijx|#>bRo0 zc|GIS7bi8cvS}W*jDp?3=-(pgKqEaXo92nz5F8Kh4jY+q4Vk1ySoZf*R2v(;36fK= zksg-+J2wUUceH&vr-oYGo0cZ7yNZ@t(UCKMFnTv+ElIBmIG=_;g8i*TSi76? zpO8svgvBu=%$gC^9!BqptR?9lmeKjo;26%dJF1ujk(a&9%ihQ&)pLd~sJMNM`-?cK z5t~lcAEMf9U!(sjT56$bbT-QOen#&vTB_5U7}6PH!}H&a{<~C_)$+@a#6`nx1aR94~p zFta#Z7Eu=wn4ojZ&-52)8pEcf2^MUATGq1mjLbvOXJW6{NZrt(@&PJf9>d z`!<+UJ{cUJ19vzDhk8C0nWRRt*y}lBfcz(;PZKRQqV{>&(~UbroYe5jB#(BA4$o&A zeHOBoq4PYg>l`*Nsa6qYOU!W#`Q$jl63#H4V}&3LCNTaQ_Ol(=QWsdZ)B1h0kOdw z%Ra_kDNd?$YL;{RRHJcy#YwIFX@I7mas9cNAbJK^IuL8&SgG~i2 zmcH7I2O*Qx5(&%x2j#)WU4!KCYor%O?EoB!g$yvShF^*C_)7cxopjM9`2Wpu1@MyLuSK&m({PF>r*FX^<8-s1VfNBJV*29b{LBi|@dwWm zR?hoD)|~_A=36Th#tIlwnO$MNAmBORh|j~g4F}HmLMEx6cAiq<&oyqIIH_KdaMlu> z=sS$Q6In~ry~O&qp1TU>BdmGEyM?Wg(2Ho(0YdqnV!~fc!QBfkNo&)IPWRzZ&-Wvf z)QG-mioQzF4;cNRXsMC%Q5@dbkRLMcVR2G}qkPk4c*M9z#Yv5~)qAe`9*-IKxHzf7 z`I+BO826+&sSzeQMY(&*xTnQQ^`vU}Y{(GJt3PA(vq3SX< zr3(WbUcjNAUqmLUkqy0v=wOpM4f!RbUq;rFbRWMfv;ufVuKKiTiwec{Rj|jv!4XuV z`86Es`E_J1Nslt83O2t{8MjXur|sWwn(=>-Now@*Mh?ku8Syrf9y2l?lF{>V`JIAU zn550z?}FnYdroBvBfp0OJ!WJrNq5g25lIq0D410i!XJX8!e4Be z`7=TPVDyiorG{6Y1nwu}eikRyz1k@KC_TwSzg31Vj7(C)E5oLE{e^Me#7T9IVLfq+ z7`Lc6sSzyy4-QL%Ud-rUik2FA%P}?nJc}E>glMV7_h5$Z<$Fn^ml7@2Bkts47vAX7 z#w~;7>}#Zd`5=A;@KV;<%pAkyysTL+XO_~vpfmr=e8TdTv7($aC9hz{E1I!%GuAf< zZl%gt$;V-3GhW4vrF&b5;gVGaRQwnp(eTM?6{bPQ={>(L#ym{^4Zsu3{oM+7bsV@T z3dvQ=vQ$WshBXW3v!RgI0*B`@oKVYcQ8;ksHL{kZn`hFXF_m=-Rvu!zUcmsRWPNZ1 zHhLUq73B?ZU=21hN%a@N3DJ5v8ydHfIH~b!X^*lLx1lZ9jNVwZ)bQ%@Y+~G|;-m)G z$~gqR^Jd0vj%1=4>F<@Plr01-CzvY+Z&|Qj26(H20eaZqfukI_hplm_=WUR+B;8+- z8*f_~GpDW4wlm}Hkx6PKkul9NZFvXdb`&QyDno`AcQRsU5mLhw`?wgd-^IA!i<4TO znPbNWYgE*;$V?*)ayqj@n zo(0q6();^!!L-%ncdvr^OzRV~cfoiTzYo|WW86=Z@qfXgp7%v2sZjt}l))E}3qk&B z^nRkH`a==0)*bI}+~1J3B;C_V>8DNpcW`tbx%!hF$L#>KKMugH8{Vi;!xub6DKve{;XH#!YAX75GOS_lEYr*BaQo~IH}IH_Z+Tyj-!mL zBWp>zKNo3X*8J!S(@3MB{|g*1&kc^jp`MRLGMoH=jE}2~RX!V9^6_ST0y0VURH%7L zkvY-0lf+34?pA9foow7GNM@0dovLdy z#sacIBjjfm%n-f;JF7A#va<^bBja-_to!B%_AbE>4kSv+&c9&%>df z&qpSy@tRn$gz>+Py8u~B()~dvSVArY`zbH&{5h$w`pxd>-M#&~$@wDlbultYjSmtn z-#HWY1eX|nsc5MYA!{f|%w@)1j;tl=7NPo?e1fhhn5L*&M%{(~H>Z0P6TB$>Jqre? z0o$v1>Fmv}S|vF*;1v162bbja#-X13AlafU`|@V46tLzHtDQLorLkZZ#OV&OzQRh6 zV};cZCl8!vw{ErVk3&5VKym_@?Ctx;eZg=8%~$~}NZnOte>E~mjl5z(JgxXa#tjxH zHL|&l@yk}leT~uAB5O&yC!H~aVFU6I@PfY$`QBv4L(N#a8`H!f6NfD@=KOYyo6UH* z8B6zv;Qt3VqQdm2!6U&@5wWX@7e~rkaAVaqGD(exYT*9whCJH1>%>W|IL$=28aD>X zE@h<0i$B7=9vo*5G0w_>;h z7K5@?XrdWULMEv(a@#hQ@nY4mB>qOTxJedLtEhDQz+~g5AZtmwC!V1yK0!ANTQS4% z7C^*1Vu&`=x8cB?F)~SwENNjY&b&O$xar7RlJ23pzZn(w)$ub6W)XmnnVnT|2j!2u ztZx;z@;kPHUVvKlvx`alG}}BsM_38f0ZO-3B;|zNJGX=5Ra38x9<0N+=iAspDmU7>d`z`eC_>z=Nd7kw`{{%lQC)OfiM2YSKC zT9WR8Y1C{=exP7g_cTWyEEpjEp$hw%bPo&LD`HUT5kS16{+tOlFh7bzJwJx5CF%Ye z;8+9lc!en>Tr~8Au(DaJc{JTPH$PcS+$ld*aEIUJ^mM^Im2%>l5(MYhv`^qhp&9wv zE++WO&lMaEx#z*2{tpL~`9S(gN!2-_|kr+WfJwii`|D5wJfOH$b&bRQdn3a2qGzb#mc=BZ-7 z1ADyT@I4Oo{9hz@Ez8)FKH6@;qjddH*|Q=IvZ{00sWDaSLq-Cp9>F zgZyz8#)4sr3DI;r(Fw?q(K?$U>^;fR1F~ThcNyFKYB+$Xb$a301ec-%QQW z{1T@q_RN;jC0X3;moR(jUQDJn&A+uJFDY!b8$Oo;M3yjkOIvGc9O`))WRmKSp*|s1 z=dX-g7RjtK(({^g0tXJs%T-thxXj7Rcfo3UuOMtSOLLFBVj=bM!gwXHr-GSH{m)m% zp`KSkCaLAG*`U@PHOZ<*uZFB8>HgkkwP6R->3uR>Uf@A&R76r%p!!3oERW5pPb9%++aw~{5}6Ro)qF-mhTV&&r+s3s(1?CiUNht*SGuzs%n&6M|q{%mLs?4^vfq9uCBT zyOWVD)-J|0SKFDjI=Eo_=yuQl5Vrq1yE+a5L`Xh`cqk66(MBezo<;548_VTkhZ}bU zvX-RVQ@8i(EAGgG=g(kBy(Rw>>;XqIj>4gy>qvUk#aP=KN&eB5u^O>AG~|Do@iAsB z-C`0)xjeQD)-s9XDome{z>WvUBjJHHjVIv1(O$?THA(~(BNfI;#+@uqYCJCEP+Yfh zigBkRYe~94t~Ho)0>|Sq`%g#kG&4TkjHR0~pLu=y&nQ?|M1apMm^FWD37jQtZ$#bc zisTLgQg{wH9!D!IN9BwICwn0|*{c|1smXC!^+F2;JKD+^}v zglroNj>qcT1#4)hAJ_vA5B+hV?~F`RtNc=)3^eX4aZ;l!^`0y4YU2iplN$b*L!dwp zHtrg6QiJ1VQ#o8~+z=$2m64XMlo@eN;CPwSnOYr{hnn#)GnVdEC9_6a!^BSI%HEDl zZOOyUegrZ}jRdniNquJHT96#=g|vt@=trw=6xbICPPpjA9UVx*5+vCaDn+#yyAUna0gRa-J8` z1M*A3ZUsj`TAVmH&o<*Z$Rsranlq)NZF0WNxZ9CzRYqDs5Smh)TVc*2#CBf6+Lgk8 z?2dwEPmOvfIP%mz+=W9u-;GRCJ!0)FVS&Ou#@#DUYH)tq#eK%zkEC~u^rvH00oSrW zP%x!V_(8BoO3PbEVLXIGJwJ@BCF$mw*=1dT^hm+s`B8ABn4?j-i1slY>iKbGElGFJ zx3-9TqF}Y}sgj>8xYJYiRKXGW)8I&%dw2$idVUs}q{e$7tN6D+XWaARq&mmBJ=*Q_ zf^jb*Ye~AlBQ71~9lQjNCvb2Oj097eDe9< zzG2*(NV>#G4`_OK4R`&gU=2}V`xZD-L8ZbF_1ieq^E=2SH3DX(1zYOhHSRrRElIb4 zV#b_$e_fey2m^2Vn+h`_PJ`v!1=#i}eFu(2(|}>L=6f9I2qWnT%h0=tD~pp_{Mi88D#ooUPHJ#Nx!}5QUd^~)i<250*R;?~{*7^~Be^IU=|#!? ztpWCj>TI5)3U5s_UJIF|dO+&Fun=KwY$q0 zpkT&5G&u6xg2ht-Y}geuG_n!6B+|x8YB<#M#>iTd?oXs^NSpE|6{h6ldDDU;F`I!G z1V(B$$AOEIkx6Pi6|G1-Z)x0C$Xb%_rBUmXXXM`%906}#a6IKU1;;FaBt)G5hv9-ovgq*sJ|GuuQ;g@CL4j_{%YKQ;-osK zZXy5s{f+yZIH}=}%g!cToBwXy0pg?vH;dinv-5$*9fYLEi}Yfq9^&kLaD|yn$Mzou z(>@eF1RO7f187LZp*Ya#MJA~c5lg;%OwNZJcLb77FVZ4nctQakS>c{6GMb(LDXf}U zxph<_Bi1_D2RAgt({qMwj>e5W$;c$NdU~yBImWnSk<20^{RtV9BvHqK;|ZAJ;+?J5D$E&ac7B>>YR!TpP93bJ4c+<@Hc~l1!m`L+_~bUI@i&6u9AM9ap#MZ>YO%| zQkVYQxC_KdEu(uhLMO`Wg+^b5tnZsT#b*j4wqdss6xf*k5ME z2Aza8LH6Dv2 zb2#1RD&wveC)GLaH)XZiAmav$lN$bfq2D#eT`Nv%ybo?<@@0!djBY~Kl5|UN1UnS$ z{}rtkWe|?2hM9dcGD(f7rr8q6;l_;+Cp8)u4ElLgBaLoB(wRkCR9ttbU`K)DucYl( zGxBINz7CnB#^a8f+ey={)wnU@qz1=Pz4*J{xEsVt4UPp9v_r=lHx9|7XQV&t)%I^3 z5B3Dma#ul}V8#=XNoq9GSkKb4nRc2Mq)sx68)YHYAGfo|4Bc5rY&RJ_S+vy14c4$T zcEuq$Q;fb@wA7%R$FdBW6+ihFquWGFjePc9@KcSOhO8y&UdA{ehEbg9;PM>9DR+5> z8P7Ch>1G_m*|W^p+p!I}&7VFd-)i==kx6Pi6-QV5L(eh#HqlZeU7XTN`M%w_x#FZc zr^!NsooCz~$Xb$a6|{&u1@u`YQ-tpVM@i^6Q+=Deaj55ekV$I9NGWNXm+v+1K5|nrQ3~APMI1PA3(4(G|Ht^{g8Ba_@K?a`28QyVADmys zfxDWJNoqWT8^3Pc8%WNiMtZ8<-<#k_1!ut!@_)?uEo72f@^G+T*W1RugRCX#9uWNj ziomvJ9Zx!_aTzK!AJ{8A169_9~B&{pyw~Z*6C{({@;FM2Tt)2 zbiS$bJ8`JzkC91g#LaseF(ZFs+^6ECI;Ywcf1ermxj3oLG0>s9;tS)x6el(O5g(o2 zuZ;UzoK*iq>Uxx6H>m6TjnUtVmRh_{YHypGzccQ8aZ;UASA~<{{%hP1$Xb$a*#xI{ z^^aY!n!`U8%tu*A@%&t2PN8G>{X(?`{&i^3!r;iW0o`e5^aZy_ z!Mr1N%ohd6%cfJxZotKG;6Q352U1tY3>`C$vv|RsefYpP=OqeOhqm|Jykx;Fb5U4J z6^y;`(go|u@V|_(4RX`+{Z%1JmW-DLN6HwFz(4uWC)8pzH!?T(@t^rOjw>)yG@8SDII#K|$u8k+%zn{jM&hOOJ*!RRR<|kH_BM! zOL*QG>`zMRy9o~ExG9n;-E2%jmhom8GYBEPdB)=DmTl1k>;JiB53FC#R$zY^bqXG~ z#({Ov$RO1VK|{SfZ)@Ck$WoA=-XcY0`<|F^b^xb{_Mcf^6oTx2OoFFaEccJ4M# zYYTQU<6V(KYA#Z(onwc`-Hh8^oK)x1==C1P?TKVPG%`ITje74@V6G8j*UH`*>tIVd zTKj-K#*C`c$KDr*a@-FYqB}EECuQIAijSM6dYLKzVzsZ$AiEgFpbzd zddGutD91yP+|-nfI|sLRj_DN-%~<6Q+rtVxt3vp2Vb$r>mYk;FRmn`Qob1>mHi^%s z)-l&3arLLRR8kqmqi|q87fJ6{UhL0coSHkw$jN@vI5DktY!BSoJS`pv_VA|jm^txy z9O&R8OF_DO9;l66CuXc;59tb=lrf73gii*0V9jhUm=jOIp&U;|mV$H(jF8y$5X;@h zx}kJhJk5+xM+T{$F{7*X9WGu*Xmzx##flJ^z>S+r5#lpV_{4Y(0g2I##foKbTfv~#O>9>7AFj^ z$s|8Eo7K&j+P7oI%y?bKnz_RM`i%KTg>L|-cLM2f*c)*u$D5F)AUzdX7PSm+(=If& zrQTe4u`Xs~yv4lSiVRXcGb`#f`_Rj{-r}St&i*W8V;|%CB1=JfN<3QqY;PT+imE>j+=`40Qa#`Sw8A-7%eaB!q$W=5N~k{u88=v*RF7;OdugV`D&vNT zlbSeX9}&9ExS_~Wke;${W<7KqmND%Z;o;yES$k6!L*r16BakeHE{xOvu(~kjhpO1u znDIz6mY$Mj=roOok1C9{U5wYMHRC!nmY$-;$~U;t8GDkA$ruvvvA)1GaIqf?_VUfp z5)R{VD91aHL8_+}8B43S!MO2ARzoAxgHxv83HE@P8sW>i%Zw)=gH%u0mKJdnjhlpI zQWu#jJkImGzq(_@gg9AFR^iR6miZL0hs{UGBA2N+FsX|y1?gt2!VGs$#_b#{N~9Yz z2I%vi1}@&1yN2VvIF#dk$WoAQk+}<6wWIWbgzITy%^KQa#{g{FHG|Bf01pY1Nxnq&@@i*WpGHottHr&mn_U z4~2WJr!`;R!Oo@N}L&Eyx-#~D9^3vD<2MU?Ri&(me9P?LMh2<= zdVS`qjJ#vqyU0?Io@(Y%!@8=uh`CDJwcf+k-(_aK`b_Vemk-Q~^pvi%+v0};D#)}? z)MorBV|+1k7C-KRbqDP$$neC$Hp(a zdG3g|rGj4-LCmaIL2S<$&sx0E0rr>UKg3X2Cl2M|( zIck{p2z{He=2i&nyPlZi*uKx0by`}-^aD6OoM}CMRzKoUjz1wwL3%1B?B|60xxiXl z(kuP~PUFj691Zv@hzp#MoTw#BJ0{Tjz|>0mef%z0t7Q`Y1DqbNo;zn}|A_i{JYzjxds-2{$s}TY($Zgnv0a}7n~PYrhJj5Al;wZ#4?LGA2>Y~q;ZD% z&3FMbmY&LwxTd&Z#+^0eWxJ5Db!ltH$AvS=M1#mh3e0K_uG&}>?1`&I{!MW)9LjNV zWRRLaWP0`WaS7v=6erbRXI2fLKwQeWrIB21j7+b?WEp2~E(7-0VSP92AD1=b<;+-m zGH$5UwEOY}o^3Wd4GHNpNqRlW42f8)TWVI-S|3uBt% z6yLQAJi1!3Sf{{@3F3F%jOoDZB$4%mE&CwX&m@)#Y=ex|g(0vF3(PWHa4BQ#H6XB& zumTggaV7zJ@+O&7$eRMvJ9XY!r99dU2PT1$r64^OIWA6YtBqS^%&%8Vcec#9v#ys- z1cOsxUAGO_%-PmB&}T*lsa|qO02&6{8n+#iJ~J|7g1eFLMNvkaPq`w zD*(qL?1%&1W@M0>OCE)vL3#?j4`)C%#Jw|i&--M|pGLDg`+_~WQ*8Fbp&a)|2C4oQTqVS? z%>l+8C{AkP=*o#Z$hd=%r64_JQ9O6JDY3caRt`q&tdWSjAc)FCxCPE zRCcf;>O>sM@gyYk!P&U8#V#v3x!aguZ%bu7#f(oiW9cbl=(IB|Q7$kIZ){KNiD`wN z4)!OrjGl)0891=57+DI^Q(&wUg*&U;xM{8iyw5h{bC5x*=VIEobgpsdiIdtr0mPCT zhJ?>I`T`_7i;*dL(>&pYJu(0Dkg=vW$eN2XX3$XM=NE%LqZt#Ss9u5ty=5f5<-(ZR za8C5OEMr<=vb{WGU$1&a#ySEPK7u`kv^07`yb=eF&O!#M>80(*)fBHb?iz7Yz39@d zV;?4 zRPD=y9%A%uqNOHUXXP-k$1M9$qlbx>S`TpWoz3;}4jedw8d(a`Q^v9J;Oqij(U8QuFd|~_Z9j7}d zC5=#i1NuMFy#!!<@TKv+yN$e7C4PnjCuSizF-ykQHiq~@K>rtd^fLUi zz(XzMuQH}rAif=(LZkG)pHU#Gj4(MVwUUDl1g!{%YKB zNczOc^pM$8)T#SD;|^?Twf+J2hfc200Y`u0KyMgHZ#Wwhsv`7vfjQ@ua`q26c~<{} zhW|Vp%k#X*Ak~wFg&xG}U&hUcWC9s!8Ks%?`30;m#?1^2GcHiz!DHod!2+|_68nX~ z9%at0;i(JbP>zcrOF?=X1889$irWKtHk*Ovx(H=~Ngp1eP!^MuJ=L7z;sxdiMW%+9 z$e5h~!b^hvsa%r-|W&cW;^@V}4Q9Vai~$-^Evl;fUA=9Oh{l_~dx z(*oKnV~_UU851q>`w0JU`1|%SQOx(txbwj(dD$QA&*wl^X44PAp&SoHa+gzKto!O3 z<3WY7dL<85#e>cG5M+?*g(+qDp~fAC$)uvSH%2Trk2O~xS8`8aTa6Os;c zxA9ypuDq}Z)5a*qgpuE zJYHd36era=id^lKc%^YyAxlAe%AcVFRRvs~u{vn{k*>*@>1!3`YYW`BUK>!Z1LuNa zb@BB$l;aJ^AT_OARwaF-5jTmD>M}}>m^QV;%Inx)lH4P zjq4*$YB$HwL0{u4kX&kvOa+7AKgVuP5?}A20;g~WXUs`X@>^BlCR$<>;*gBBv%ju3-qr()9}4#5Ox43M9LjMxGDuAk z7QJLa8r|Y4&%HpB~4W@i=6Vn&M||h{kw_aScd%zeo$n{f!5w_^Al+-?`I_ z?=oZQ>8bn^=}t^2@Sw)7>gqTV>@PRk`WusQD96djAT`B80XH#eY}{0FQayE3KzAE= zk2tCR&%djJ?VqY48;zbOTB>_xt!Yh7yw|w<#7RwFsowqlnv9-~r2mUd?{0K#?t%4v z%>Wl^L2D$o;J}5&NM?%*<34p-tvD-V%}!Cv&+dU$nY3oiHe!|DHn67^KX`^V@5h0& zqmk?g&c?c!l~&@MjA=hp8sglHX|Sp2K3L!xoXXr1AIg|TMB*RLnE6|U_ejP7@sEPj z8tBgEd#HNUz3L{eq zVzQpf{8_Lkar*f^XU5N)vGioj*f>f0p8}^}%nKR&@94#hsn})zlCU)&8hX=$R;s^@ zlc#z^Z+>g>6&%^xpss6z>afIK5uD&(#YoosrE!BOG z9q#nEMt>(-s^_0=0Mh)@_eTF9TB-*=m{ZRiREz&;^iQItdJ=IpMxQD1XXAcBa#$A9 zUc004`YTTU$@FRIn8k*(miU`_`Q5xox0Lfo{gE*hXJ`HR_@}Tnq&X+@uYx3#A^!#! zfp^ZWR$TwVjm^TF5Lc-wt{h>aVm&Xe%o!t@Ge)LDkvd58WlR%7w)2BM>;bwZL}4$0 zTRAR>3{w5ft)V*n%q3UP`o7&ri)K*kX>Qjb28y)YQW1Xqy?AHDWmtQj@D#%iho^q6JO#J;;1$#l~;26$(Sj~)A zH)H9Z{VZyn6W8cAo?f9Llr_!x-)1b`j5&!)*9@*@#x?}S82;L3xehW&^|&`vhUdg} zjav^{3er<3=?Uu>IEA_aIK@|8dCv0K5QlOsAxlBJm2l-Z2Ng3^yph?bB048-Y{r`) zgVdD3-Nu_5y_smKd57MJxVaHqh>+?T%2MDacC%H-Esfqvv{X<0#BFWdHsYkZSL<$b z1XA4A=sU@6S0u zzMZzXt6A=5meP|YU8mg(fYlxV|H9@@)iyC|xjk`XP8b=arsp$Bs(;Yl#_c0cs&kAZ zlRoV(ran`C7~Q*mWLvP zR1bwgFSx^uJ6xPp&xE=Pj=SxgJ2f6*^pT>adi?5!XlW`9k)w=08p+COq~#HuRzV+= zF*Bx}edfet!T$Fm;Nw7aa*?GV-F&hyOn;OUGGI0%C#r7d%Ptot37-Z|8A^@9r-6*8<5rGmAcIs-7ygnA{86UPH2N%L zDM(K*-pp~r_r!DQzJ#$6~*s^^<# zkmkf-+(qJ~I>+(za2FeQ39=NVd)o51o)9kud*P_&yaal>W_&p^NX=jNuy}_SqBSRc3j$SxQfd!MY;a^4Ao`WR@JRHRJ1$L8?EGP_8%P1`$#{ zp;%kiP}RvgzZ;FdNwn1T!n)Su?#6htakq$*>WRSxY}A6c8rMsl)SQSdnsMlDTpw{# z(<7OU=&YQ^;ft}a(G{Ylx>sg|Xa@B&uD>{`&e7`SnCJnupiwgD zxGS>;nekv`kedF@e8&1}s0*vBVwG78k%d%`WmC1Po<8(*jUFmms>g(-=+u+Lj2kXa zs&h3n70cU=8-ZkjG}3a7-R)|jR)bR((+1G%)|l}~WRRKy(&8MdkWt3fij(ROA>-&W z))_ZioK)v3#%gMCjB)kiqO5vO%W&6!(<|zZ)mDfIh`!2nr7U+;-vbE^5f#LHoV?vbdzYQ{!}(fz)d%zF)M|f~LTz zulIn_b3{wcZ`s&!S5=&A+=EDV1tU`pF~!a?eyG6OKiLu=&R9o&l9`Wy{lCEik4Hhw z=psu&dMdTa@^NAP7j$Fv6Pe^7My(8aGGq0BiPBRUccf@M4fa|s{e_;vp&Xw@mV$Jz z)$Eq>=Q8#`((^qrMf*P)`%mbFj63?=!2v+=#f<$A_Y&A^WsVl)1AG~Wa(o5J6~Z#s zAFQ2Ar4#+%Zu_Zx6I>u{_OBs>)Rg$z@ZH3s6 zao~h2WRRL7E6Y!f_zcPMR>+=_{T%E+a8`tHa~1jfh1q{;_R>>9p<&93_OFDkpm4@S zyMQ$iI0E&)R{8C~DaA@_p*S6+69?8kBU$$>dm9^}GdF5Z{JOxS=BV%ejj#e2`7OXh z(gkrf@jD#K@q1*D>L2YGrdg}w561l{PO5*K?9dui8-FtHXK_+JgPWNcWNWZ-zlxLU zb%?#HMuUDc`ghS%lUIi5+Sz{dhjD+3ljd8n>7@skx$3C8pe6+~_4lOZB?(pSioG6+||Lts!7@b1YH6YffBK*h+m(6(bOx zwT&9kUJvw{>wV$MujwswX7l!u++? zH*N!DDM(MRGkK!?Z3yO`jY>ha4yH4kwK~_L*Ev=&5*9F z(YuP4nvy}|H{5r!n{m5~lbSdxHU+zfaeIoBnu2A%yklIwns0j0;b(NaCCsZ<_h+`;0cCa+YR3~Z@59%A&N zqNRGsZ8JHgTZ1r%8GX2DsVQVylbw_5;t|Fji7W-_mfqS{bCiH(Hp7|JdPf&{QXM-h z;xXA+)!wn0#Ha9ane3cAJRV;Fo_7MEXBnVV98biJ#mvYc)idIO39LPeCmVN)IH@^R zhUjL8Q;jQ&lj{EX{NPSA?sRcdougk%)Xy;POk^oYPjwX0K1;yfnH`PP*k@qZ4E(uZufy00fx~$?l;ioxQjnek>uW@PEW={@Z)&zOUr`j4=8d0a)j7AJof`a%e*Fn||y!&tmD}xRKLQz~dObH}Dt{!^_|-<&h?eSg*~mF@q!FW#r64^eQlojQEii{YX<0Ma zJ1R^cjRuwD7-W#@B_UbX8#h**)D)Ypv2`6ph>|eQ=sS?5AU!=aaSa($<7f-O_yRMc z4Zc&@-o1FayRr#`4tm)M!uGqNCo&P>DVwr>5)RDiB1=KKJ=`BQrNHT7Q-%NcVRy?( zfoqxIJsIe*nZ|5PV02M+j@~pmsUGr}-J9(@Nc#ISNk}RKO&NQcnGW`t+wCE-83#53 zBZE{g>@0+3EoqB!GsQ`DuA)`T$7dNg8(9j{(;Fv$t>E+!+8dpt`o%Ugz8@K+dO@-U zG@>6cdX8wR{v3AP@)686?m;A-U}So83OL+D;PjkM*0!;R{$VqI#Ehk<3}fiyQ30#F zCvyU5Wqd4SZOLh?kB?{UpWYK0cUDi)lb$TFZvX8SpAxn_966<(wPdudpYCBIFV7U1 zxPhN7aC))lGVbDd5VrC?-xFj1A8`IKhQ}8`<@h3!ZNb@+WyY$*UNXzYReYE)qV8br zCjb4Hai%wn3{w4jshNq9;`3jlUllF2J5Lh*n$fR|mg;%Jt1#33hH-C-lUjIXr?9@J zw~T&Uv{d)1KXz4o$GCTq>6o+#B3>l<)PlgZgb0fY$mV$JPn?9;91$umO zUu8`DNndO`I6cBY$qpP?-;68;>BYC*m4Sl&8jxSvs-bUiD93M+r64_(*z}C=%vg1V zb|rjomOq%K^#4d<&i;b&OtDv{X-V=D_G&tY_T%NRGln+6%C*k!xi{Z-7&ZjP)n%X&aiC5;90lPZQlV zRgu}q=#527%``{7jn@G{n;5;RXsL;&{i)qI_}KfCYt4R z{Hqn+t&HAUwA5}|C3;%i#^`O4TyKO-xmEby4kxc8n8Ko{Zg2KGAcIsd7>v@>R^HLL zoy19Xj*W;E$DNJa10YVIF&yT5SFY}Xe@*HD>I_|z@u_owhnJI(A*H+$(RhbgkN>qVa-Ck3I(jmrGYjQOI(p9L;{Gg>!sHV)-@ z4wA*pGENE86wejNA#pIxc|9>9pAYtg;tGTmxeIVB#|x1`YIk{IEH4;$kvOT&X_ak7 zyx6!)kWBF+b0TO1&ZS^aG0y8H#V#}B%aK8<=LYAG(J{KhxF}Al*9f-vPA&8+jlK%W zdS+yLPU?DGExfos7yh7J1dz(gHQ7q($%g9#v~n=G9tT!6Bf0n}8#DeW z?#2SQ*z*6IGS(2~SkA@DnDs;LGp58_z-jP|{gu1u@^E(_3j-bGQExH zgDeH<_IeD}sMXfDz(d)n-4-h{hSXJb{e+eGGVY&A8kNEWGVYjFBhQt>Dwi~QXl1J# zHZYrza55Q`vA4ViXD@n>nhJTT!pYMv#c>D@<#-#i6r`v4r}z%d*yB4aV~^tS0;lKS zF03eaKW_w1UXnPvoj6wGP>wZ7mOjhg%09#RBL!6UJ@TV6?&1(F=8tPLrc|g%)@9FX zJ&qQzg2b`N^b9FZ<6GkxT+_q-1?q9&5@BR1Nbi|hQtN$RIU+Cu$oq(GESy=*gm``mfQx2+>oF zo+?_Z)8mHItkh9IcN=|=XsJ$9q?_!>qDG^qA=wd(OfNbq-=KT1oa|kwWbVsAXB{;G za(QXgp4aI(lw&h8NX=D>^>t<#*Mcks>7F9>suX8}JuPeM^zWW!#x*2!X)Ttfb zS{UOMx7cRJ_nWcwl-JyD+1Ap*j#y^>9+0bYz=N0r_NtOopVA}e;#Q6iB7;=V0ega; z`jF8Nii8TETqTSQQgiO>v^2F){$unD zqNVzaao$FShU%ERi7%SPOR|uf1K@x;3*cp=UlA=ey_j}+5cq$MdsUoNPgG`VI8~13 z(rZS)j%1H8(n_A{t43=OzJZfxQ{nced3npcNKYk`rqtU4_LWhY@q2tHlWKXsn@NUQ z)Q);jSXBZ|02(ar`hNBzlMev?aOb zL8^amG({-~9maKvlj?D0#Gs-{N5}W8?x+|RyUgfoWGP6u1msOMD)J53pO${L-NmmnN;n}Kl-PPy*B?D>_wJ#R>PF|3l4O(kwL1bQ6D=A z@;Bpt7bn#@{`J%&e;D^ClEbKx={utPP6zxi;T)sCGpQIs{*y`lFXq`i`%D9x^JXk# zIuHK>d%`eD$bkj(;ZTnABZE}`gnIsL7BGtiWg*owDvb;*WZc3?)eS$nBKEYbt3 z@GP1!D*-fsv>4c~|tXVFH3{q3c*1#nTc!>A&ECuQI(pV_YYl6LOSydeWZN_Vv zvGi2u6xH zqgvvYX1NtINKK*e{b*nC*2ZlkPO3kFiD+8u+Zwl>IH}IjLg6^R?Ty<3SqjqA(<^Jc zZtoR$EHK;5YnW^ztg0lYNOLu+O6G!Ess4>CygB25mmD}#H^_BDDx(NYVV`cd@$ zMjs$rYDy5QPjLqtcMy{G(@0B@u2Hn@YvRFR|7@vRaX7?`4>e=ysRUEqu;cNt!kAvU zj1M>CBalI=X9N4hx#8IH}H6PHAs#jmH~z z0+RElktuRieKfpJ%($z@PP07;oZpOn=Jc;|D92Nfr64_(3r=HzJGBSy>d$%888f7+ zz)u7FFPNsxm|@EP({W?rG%`p{5oO4WyTRg_#+`*^)ilymaT;_y8|*os`f}%(@wvz# z)dQN*z@b0!JmbzsGXIQBksdcpZGa2F#T#~w9uhA!<6y?p&6xXW6r+nW_849)tbRno zx=-tpY{J_qqL*ge(Oj*r_+{YqJP-479Ln(uWRU8W4ku02P~lmcN3*z67E(Pk8D*w* za+PscBbk9lrZi$on5AXc2wSVjI_O#iM2cUVt@O7ZG9g~qjcXO+^*u56H-J-wHIT%X zp&N1F{AncTPs=!Uq{J!wo6X)HOV5?%fbvxzZ!urDB7@ZQ63+E9t~at2q^Iv2PkjKM z%UlS+nzz1YS%C~v^M5BlyPwhhMN9RbI~%(P7*UC2jWseofk~2q0{SN^2U(jt2<&e= zXrl6SFb-TQj0{r!iEY|btf8?XM&Bk{suw%%(qO~LP~(P)lbT<-PM4<)H|}7C z9Iu6BgR$%_uFM@W3O~LuRsgh+?lj}OkU^@K^_EJtmnRrE5y?eONDGL6LPyiII4NTm z@2V6|2B%oG&t^qluQ&yVa-51R1?kCijrCXWHe)NYTv<7ZDtwAoLfvCt8j(S&=Mm=& z54HE2X7s(tQjl&*r@vI9@59Ms(9%oW2b#=&IxB>Qf3u^KgDbTrK~pg-90z9g1w1=X&a~slYZ>x3^8yYdBnKK}AD;uKG!pwfh;z1(oU>I}a%%zH3&PgwpbCF6liHw1lwK+@dxpR-XY7x8 zrNFH0Y37(Mu$PSVzOUj?j;|qu)bzeIc(pq9b>rSZvacAKUXBxI8B2c?oB~Sy(fF1b zzir0S%~=cvDR<0Xy;vFdnGdBy@F(IJZFHupE1{BsgLwQf$y?Ut~iYMDCy3F`%WRU6sF>$~|7{Cp zO4)b9mUeem#qSFek2KtW0DG>CsnE93A93I$YGja_>-q-&`~7V6FQTP-By^=*OZ?Ti z-^5AvAKL8`;_pWMAwsGbnHE+%O^kmU_ZO1mwvZNceOgq5e}hwzr-c{)G0Ssj8%R83+#zEwpBa!=EH$*vU!$n#=MhGc3q&r45E4i%SXE-zPm~ zX>bZv#ggP+28VK778#^^s5Inw|K*HZ9$5;~Q$VSOwt}z~XAD>DL8?Ky64+}Qe!VM$ z%5fEBkeVK$u|X=URgGIsoK)wS$)ymjZrmD3I>pHJcvh>D;cI5xnHu8%7S3PSS^&>C z{^>krZ5+yR9b}N|FPU1y>l(M7IH}InPSI%0`o?V_PO7h4AXzswq9j6UA~c}9kr5js zOF?>(5t{%!PHE<5Q?uO6ET!Aq`7F)m854QU@@yfjwS`@6-K5=(7N2I0JKDQ2Kc+F zmadJv;J}T-NNyCCrIkR=Wu|QGRv7brGL#p0H{(6bSh{DkeY<-W##Cm?$-T^YZ!?yj zQjL0$$nMh9q&mmD z@I4%B+;QThdVwT$k2m535mM72Ds!tEcc2+eeo+KYG^3MbB-M*R8<+FY{Wb0sB;8+R zN^x2y>_0iRz&bFC?r(u>dus&yG;n%#IvOmtkEi26-xnFA`h)oGbA0ld#+@Zjs#pBe zhQzatI7ft3fA1zWo#MI1ohMFe;wXZh6&xIG+y&yKdYW)d$c07(5mJ*U2AR5UYmFBf zcd z1@>}6o-$Z7O@n*g3m9DKl*k(+TS$6Js=sy~>1?Zmoxt8u-=Np+6Hv`O&Z#`O^=)d%cZ z2h>M*N>ZgL@V;hLAtR}&^WQOTV0&|wTl6!F{<4so-@Bq?L}MIaT%|av&h_Dhz^XXV zxIxHLke*8FIGe>E4EDsufyAvc;~{1&y{GYQ-NxL(MAvnw84ojK={ehU;OX#g)vk0BalIAiXxpPT^&h8 zvmb5t(o^PE(1R^3S*D{U4E1I?78#_br*`R}h}t;LxI4s2^%${Mik4G@apRGtAl+V@ z7JkRziSfW}173zl?DF>Wf7 zJ}WY%wC!(+cMGf6#xPO`{|@e7xd$h2XfRCE2r9>E$RITZ%t{1V-fP@_NG?%ATEObJ z()nrvd*NV+iJ!rAGj29x>1NE`58`HYWBcp028QAQ_lviP9__ z%5gT5HPrH=7r{#xw+}Mv&}#NJ5;28^arULOnV0*`i}cj*)3O+&A22UgfwWd~Abgx- z_H)f%da^H8xj$(3_E>gLk8kO0of#i8FApPwR8KKBurhY}h;fgKlbSfzKj}+<%(%zJ zNp*iCI7NF{e8RXVkxT_6i-N)5MaJ(Ee!5Y!<1vl)99J_q(RO&e*R z$ARuElJ09Z=1Q_u_et!hDaMbrVfd(nEii| zL8`x^X47lqtH!;CECuN)tki#bJ!4I#vK;-5Zd^ev5Z}z0lA`M3t&9m+_-$cJ5?bf) z0MaW{)o2*&T^!2sJtW6P%hHOBKFQe{n|ohQDiZvac#rr2IQds+h-D=o;=uebvJ|AJ zm^U-jJ2QTqF=bNtlLFV&YKQHo!uAItnx6qYW`nd$G=7dlIevj;=2w;$jr2$QQrLX* z@A)bN{d?L0o~O*huywEl2bNPKgVdDloOPw|w9B}!#Yy!n=`%&u@HfVND^99&{Fg}b z?~MB%$#K!h6qUZ*pajVM6b_0uv!BdNdP*DiPgpVgS`tGx3D;= zsqet`Dr!E~RL4b(UR1QyL{oXNb6O`JEN1lL$WoA=Qk3h>8CqQeoL*ebHO}N+(u|iv z2B{uJmQApIYH8z^5hv9-wkAz%jmsLh9I_Oor-yK+AcHu|7g+lwYT^n#F@MGt!9G93 zfbfh~eM2kZ#?47c)>O;hno@McCbqD6Q^%gH((Q}36|v_@tD3LX%$IbJg>Cj)J!Aei zTFbfyI6bw!xi>enY7To%+*o3b3{w3K8A{^cv6gXbBTGSg`ggEMgp(J!!*3lqsc35C ziI-Y8W9D!4Wv&N4_v(`Q(gqe@0;~0LEyoRzY%|V2;1t0P<-;?JbIV#|$&5ELW9eQE zOpO~0q-Wd8f=$5glboXl+Z2a#+zeR?(o=;+)yKh$^yfC0llf2myDbXL4$TK<$1OAN z=)(a0^te?|%v)?NY!$a2M^3cFZRBK?4WHY#054@j>(o@=4hOawBiUx0E%nYj2v|%= z9~y`|X6$Q>cgmQuD*K%?);KPB7qDk413nx*N9=aRtsHkl2C4pKaX=|ay1Q|EAer$+ zrng{IC(~_jaBYr+`i(ZrZ#mNOX#R)2DB;eXBPX*LaL7e z*v&tR=mAC_C|YWw`3GnQ5BeaZ4@PpA64KHs(eV(lr!egX&eA;8j1Mzo>1Iq7#ei)* zT-bhD4FB-q5cUz-gbg+_IkLd%(?1HF(v@AnEZCBtqj4+8W00jF-GYSH05VB?ta(vh zCbxK;*&lEA(zCq>cS3fu`%CQ!CuXPaP*1|ibA%B(9&<7dObjFG8Oz>E58I|_4xics z>qlG$=TvIy9L=I@95^}}Sqjoqs&JPCN54UzQP_8K+Y*)gnPz_$GD!6dWav8CpKbIx zNY-2rAHN`-8*VJ;VT4TK0=xanv^>2_C6Zhs^Yut56deO*~ z2~&r#;7&Ek^*DJ1RkK=!b%S}i5gDZVXV}I{`NnvYaW{*T>M`jvT3_OWbK)&V-zr+F zd*u#vN^~#ddW)0lUP)qY7Z?`%7~NO2)SSw?^j5i2VRSzvS1lpadlbI=fS`YH?DXV*r;0V>QN&6erbRhCz0wr1=Ak zGP+i@RQJlsA#ioZjTR@>>rJ}c)WOUl(>@(z7WJ}_ntapQ>YU6iOU8{8C)Gn9Y5wjo zu0fns_czDRl^k!}oybylOO-igS&75Xoj`WJ*AtF5D|V1ojUuZ5V#oj2|&$>8VZ0C@hCCPv@-W zmiTDlg^gHhJ3nS#9yc%2Q+{(`6?HgY%M;!9ENvsMPn!KxW-mR(hqel7@^r>ppa*^i z?6o*I9}wEJIF#da$RO1}&6>HKQmn9_H~K%KrKWVCwaLA+@de{v6ercWRBgRv+{@ym zdfKWdJ3PK(+<%d!AU(yG9tqs5;FO2VQfVt7f2G&V{&i%K>Yq7fqG5`i&;2ovw!i=RS z<7Q4boD#n@< zjq#fTw~g1H~$3KukYDxo5caoBS8uynt zsfp7_42vB8HtrvBQvDrf=>S6|-#l9>*m;pbswXY|N^<&N#?6Q1RwkrHR)-<+lbOE< z*09O~1!hG3?x}G>u;(_%rZB;`5Dw+IFfvF@52Ej)z!ouXQE^iJ-B`fPdoO0(;^L(G zyD?tKe`N{dmP9f^j7*uE7Jn}V&Y3w!GjdCt@iNFD)f0kY=+xR+*68I#OU(%}OefPW zZ`=w;c^(}4Ci zWrZs`*EM=Q(Ng_^e3ASa);DegaZ(eRo^?9#g4L&>b^OSm)7l0 z#_f#c{Apw^C-S!o*t43LkYBr+@ovZ5>USeb_ z2}Y}k?Tu6VEp#?djr*AKzGf^vMXG78a(KUtbOsaGEKaI(-0i{VeTZ>~B1=JfdMF%Oc36QK8UY^;_LNDnIs%7sJQB&C<-(X76^P+c zW^8>YngrCaw&x)pZC;KsFVa(r=*O-t5%JjU)WvO{oVZK!ABR(VDr1mpe;toQIi7$F zQvG$PDO#%HiN>8IPO7&8X>zpHYK)&|&&g(SiY%n29Mh-+?@Rvw z4*Eitf^-WajT)-mbd`Bg7}S-zZ0u^YzsBsPr|hV*>BwsfV|tkClwN1X*CT^e{}`zd zxGJ5zy20ohksS7gOwq3$qbh?D-<#y5NBfx0&EQ<_>JlE0IB} zmt5@`w?Wu}Mh_A#)!)8OTVzz^1{+<4ECuQ5?GsI{Hv}ioEcVH(UZf{4 zT5w}E{xCWD4_4_jyukM3j<;v5^ZwvRWDHP6TPzy`_h7mvIxsNp*jm9n2WiMB^rjlj=EJ zj0#OQdJ3`>q^Eos$#jXP>f=${& zFLrN%86x6$e_zI4H#C7g>G@=Mr|CGbcNrO^rg*C+PmSyuMz zOyaG|ewKNeZC<2X^z@$mA6pB1YSu1BFUYJmv%lZ$rJFr}8x`LNy6s0b`Tu2(+0R7= zsh%`!vEtbe8ut*g6r`u5Nrmj;jQ#)nNXBGe+t zqNFE`ep0klFJyMnhFjC)p`RDT5u89&|UjC&qg3er<@q{8{1 zjES#m`WJ+)eT&Bz0bYjs4^c=j;ZTk*BZJiR6t)&Bp_3lqGPiEkB{?bUdBJL8UO4gsi*?_|u1R`KtG z{rM~$r-Abx4(0ehGD!90qI!Y*z_<^^Np-Haw`!-4jQd!e)RaSAm8xo$L!TJ^sc5P0 zm0E{x-Dk#qj^sKgWXgp!68;6)<3~r1`K2$-_$xD(o<9MW|GpX6laipl1m0sguSfO7uUFF3GG8CeR_Q~cQE0QXyg*$~ah@9*GL zLGYDnHk)_&1GjSg6UlaE*;~@+H^u;ZYy8W+sMV=SGFx$|%>3JY{euirJ;hjRg_n7@ zR*3T=gVe;Sx?o)LU&hTRPO5*V8vg31zSaCjFCbc~2g_W|=%%=!aSI_!L3&D(=23BB z0sC#HG5kfqDT(w@LR}Pxa$F1D7pBoFSmMpM3IZbh?9$2M) z>5SE*-Ib#av5_b)m6IVBS4bf853O`ovb=I>Dw!()p*EFMl zBk6D>EmeFVX)UlPFM$%`+Ge~CGD!7^wv6TCzPPS&>mj+^37L{N?Kxi`?8!szK|XC@ z#v3AoR1b(|H`P$dxQ&pdAUzjTwaTG4#>szu#rWzb=4Df4ked1gT@3tL16y_7W@fQD zlHJP46ub0YZBgL#Eo~{BhVeZFHPN>!tkM^@HQ0wD+Uj|h&p~X1GwZjJ92+Jt`pCNJ z?c`)7nB)2R*KH5>?-YkLt+oSh<+vjJZ}&6(`j@g8cfJ)L;h)zx%_? z;&5asNKbh&YJw*GslASnljQ|{=;^KTNU-OHo&ThN)ls;W~XT-he*d=o3Us%}K}@DtnuaI|*3|(k*IQ_(?H2Ib+gV9j;Rf z%wcS-#5@(8KCq6|!7JlXj;A4mRF8*x)s|hS8-0dosU8nYxOk>k{)NJtbTkg1yx2EtA<@!p@${%=mIMmY$-d3CN~+ zMS)qS#`5ymji-sfGGlU|Z#7;8_G*o6phCVH2Nr=NOF?=HJRJsmZN{F3*AGyt z1+Hqr48@JpwUL~zo$WcG>G7OoX&A1bP zrjcMDl5A^@qs+1v8KkCA^sZC`b;gZGmV)#h=ljDWq)IA#JWV|~VIqrs2OSd|>F zJ1%1d41WhW6(T>pxB&-F2}80fJR9qDO~$0|%-9b`y$kFmkne$=+7oc#lrUtF>Ip$H z;yapT++-vNYa`Rw&e5D|I1Y9UaOG3S(4=2M%En}KA$8fj1SA^nyf zShh34{u)hF^cu5pU}ZQmNcDi}k}qgX>G?Wh zF@4^z;Kn7&NV?#%w{98#w`Lnud^J0DR|v1+e}}qb_gDNh#zbE$@I+*j)^VG6MB34lEi+2C2TMiO$daMtp$eE@fm&x6~2( z5S&8kps&n0!$)TPu^CHG#_8_vPcmlbylg)$FpU)OXBpG66#hKpj;RwEuZ~}2%pXPk zmtcQ|S{up#3WsuRM+T|>A+UXdqk%e%>l7!|zul(k9W1n@FGT`&nZ?(#keYncoa1Tn z8{@teC)JyotZ*jg{0+V{`g_q*-77z9O4AR<{fJ~%8<{d8m8_q@Uf$^f6eaa%^YRNa zNcBb(cS*A-n)ctXM*k*SYI+*=pAMk<-MBxHr64_(+hQd2Pn`U_pqs}{B6OJlGB1Cd z7wPtO6$^wkTKSLpvhS9hX={n|Y@>vp7a62_1dZ#cW}@5Z`9w=iG)+w{wjH+lhN zDM+_CCYn+d7yMr*CI3P=`G=4eA1#bSIWB@M1?m2pdHK?!g+1FZyK3s=VrIX%*-KBE zK(~jL?Mn#%f8DMnarH;0?dwb7P>xF@gH$hE>36w|am$L6nm8YuUe37X#YuI4X|du8 z#;u6t5-VhS4axztGo<@Ua1C*^uI zqgO|kf^>U`HZpPsN=0Q{Lryl;!D;Yo0=#?_b435ftsK`v2C4bwtbet(aqEbanjWor zGl?j+XsI4?ZscJsn_S<}=n|4?aAc}Wpy4(GdqkTX zyawFZ>^Cuc>B(MqYPZHs&0e`o(^J>8FuBOI|7PZ8b7YX}@5YEBV=r46x1~6#o^fM_ zF{T^0GHz>RDM(L6n1#jE(>!e(oV;dAi}|-T`|XfHs)t3}mF<4p8@Gcvsfkl{O5W{g z+)m=8rdo^HA$Ad`MNe^Ov)DxzQa$8KOTb-?+YMO?(k(&U-|oWt10}57+M|bw@SYiW zrlmo9f&G)j&EWGP5bg&g8=0jte4 zF4h>25VoShcr54lq=SKuEUft3;Oi)`zdij%n%zg^!1{7zkeXB8hHZ~E?l@#ANVmta zI!E=*@flOdgik1Nn%+MVoF1exUykrS35Rk#8CeR_Q`~6|(@Z@jW7+auoSJcJJ;idy zYN*4XmN5a#|LNfLu=eI&GB^W=ay%2sZC5f*Wu%ucusf@;*ELYo)@PgjIc6_Cm9eJE z4pvT|n{j7advIQX)5O5}1!f?G%)X$&giQ)x2=-RgQ1)jsq2Ce%ZcKzDgH%uTx*A$B z@nYjH5hv9-+U|_#Tx#59NG8IODG{x&7B2^TWs)ifdN@~@eMAPS9#&01{Y|bk?kaIo zz23rW8j!f!=xanv&9&YzRXbGI*BX5tlJ(@s^wlta#9tcvdO2C?O!x+{C&J{hI?-}) zWxNqLjv7M-sUCq*I>=Ft_nVErMYPm{=8PE8w;J6GSqjo~1gKY30(#@*MFIz6)W_`m zn!WUt#mTs$Fy;f-%y~aE?r+A@%~(xLX50q|+ph-0N`QY)ENEm3W*`pbI0zY}7OARf zM(WhTMpucJ>KVct(K{Mq+->5dI+xOKsBy!@N$pOIL=QLmcF|JZYr3IlgmKl#Qjnfn z39JFI<@jW0tdXlStIJ&D$c*XGXd}_69$5dI+Kj!MT$eGar|?E+>|NtAU@w`)bXz@c z9N>)%Qd5knZ}ra_XWSj)q$W;rgKIEuyf~?z5O$j&P0x6z(RYcKn!M`t3NmhjaTCQ! zb&iFIe58|%n~bDGj!b1YeehEXoMr~6W~>^VJiR+(MIU?**vopK2LDAj;>H4UWRU97 zW`#H(8$-+Y8hsy>4C)vz-*lS6?CeVh1hCd+K@qNcgpL2@|JkN(GMU?L3%1s zX#vTcjG0Z>FLbW3RmpTr(){~_*@Pyv=G-3w`-jDm&3wNP<4}%|AWK1d%AwSUdbHb^ zdXn=)9y8;|%~*OeP9x?|6j-*?;*(%6oyAZ8Dcs8OX=IR^&tv8w-Vte5L~|O?n9;K` zlA4mgJ^eJEGwykDQau17Kyy_a*;+aum=OPCMlZ-nss})oMD_NfaW9FJ>Um2IMBVnX zaj%Gz>N!zA3Qoh@|26tmWGP5bFV9^OoVoZK*fW+TxoNe{>t_Fk*-KAD2u#DiDPS%4 zs$QC=eXA!X9&cyt=Lx=(v3Drn?SXk#e6I&q%D)fxJWj2X4{#{Q50OD?&qAxF*hfZx zELv)!eV~C-^@-7+B3WmSw5W?Fs-N}1`bmE-tPh%RqDKK3Ue}^mu=_&WP zxsYJLFEHj*hChHk%0q38{YM-)j0{-{((M(QU-Xq)KNt3DnbV&5#q57Id+F(6sXg&q zVcf~}^el1w-HiV*W9j|{H!wb+Hq@WliPG&(f8pdA%;bsIo#RlB{~&`@PZ#z@@pAKQ zD{fw7keWF5nu+_Dar23j>i%p(CeCl%0!TXI$ds+cWX*y&d5NFZ%Nx}TnU{sli}X~; z(>jSo%-)(Vv;`PaTGWgeLk6in_(*wM+=wMaNX;+9X#`DiN#m9hC)G1~j4rjeW#>jO zBYJ70?JHwIiLYW=H!UJ+o!dE&bhO2%y@PHK04Q6Fq<+$Q3rda4!!@|zmH znP{n=oei{BY`fp)MsI=S4r!#l8$*`LuPwp;Zp=(kJ#S^kTbr@;ln@+HM$2g%VH?5i zJvMHe$@ba3+MAo=c3?lk0d{*(IqrZAQvFTYXk6Pn?r7Xj$WoA=9#Pv{$0hHaaeEUp zRKw#g8SAtgqPJ@|u9f|6V2{7H{|}G5LbB`}nI6m_9hKGI z8EgCP=$5!o56l@iao>!&3{D3e?fBMq&CA6*Z~=L44$B^)CXp)`X2j(G6v{! zxr2ojn2Zm}po5E%56wWq9tQ9)f_=JNl5#i>9AJhl1?l!elznkWnz8*vSi``6QrwO* z`=gOTYDyg9q-o}3j5}7GR4;$bed6yp?Ri zv&mv&yuj!SMN4&hEZaXU(}K|#iI(cA#rb7~e6ewth?DA1t+d3s)VRyUNp*h%Z0-N$ z#$6#!sy~vIag*7WH!((|uSBxE9GU)&I(EHI^i??dM?{y3Xk2af*C2z`^r#NH3#>%E z*0}4$N%d&dGUGZtUT@qD;-q@?Ybu%YjW-&1lQ^j!CNqjml-+FHE#jmmj%}oh%dN)s z5+~Ke9MvMOw{d;MNi8^vbnI(fg*d61<4B46*w48B;-q?VvC)^MZxs!3fYFtrr6yXd z@f)lp4m5g@XsI4D^DomY;$Y*d#7Rw@{_C{zh8TAnk}I%~R=Tx?8Ez=pvtWQ34>RN8 z$RITZ)G@2KUi)_AMu?N@T-zvJ?ObhK4U$Q0WU8DO9s_G8Undir*UPLuJtj5|}w-yO5pHMhiag)=;?9|RI(YWDq znuJqI1PxK!X?SrmZsj-y8KkB};9NlVD#fYB-7QY4Cr||g@5AFg#x;tQ>Ktc;aNgoH znLFLMW^qzISkj3Pb%t>*;-or9lcV>XIMcXU z;-osqitxVmakg=-;-vcXm>;{7Yod+2AIb6DNXs|Q>(`FR2f&`mb=6&C=EON>JlBk+ zr%dKRf|knopc(5g);_mye8?;xHcRO#*yhpV9x+R6RB}=o7i&Cf#*ZO`RR7@S_EpP{ zV*0qzPasP{dK%M)ZW+iFhx%?$;+i7LLUQ$>o-!{_BZE{=jkHeq8RMQsmV$JP8dY0o z&8YaCu>ICan&$j1#sf)crWy%q(7$g;clbua!>L;%$kqo5dTlkm}Xg$l(en-{cHM3vc?4_qK>!B(o=NbiW z($%AJO|WPBxay8%^KabBaV=z!>ZwDWt1a2ats_oq9&@-Yu4}}4NY;rX(+4u{HVqze z(%kwurRVS$=M*os=8;O&eIT}pU;>N~pB2KCoIm_Ah2ZnUA zUT9OZ*i05uQ(`M4rVZ#EcU#=t=q-@+ijnDif!IOLs zt;!tvKs>4k*;zj!9-T>99@CTL&V^$O%vsxfUB_i(ebUDRJX-t|#`TLQ;82byBDqsq zmKFz^X{_)(sR!0=4krs+@|xdH#sf|%OlTxva%zDoL`1F(&dJbEt4vSBf#c1Pr69dW zc%siRdv&9=G3dTIY8DgBnda*(WRU7#*Q`pdu1^+co5eY@km@Cw$^P`3=Nf&UXsJ#! zgEOg7CFgvjFAy!&bDbG$O2mc61#wcH;~r|bi;TM%Sqjoq>Ty*E+$CUt_2h7=8DEAB zQqxDOYo{(Z;tFIbNVibho98NK5u8Gy8L42eG~=txSbBOSm$t!O-EEwFUt`ACB7@Wv zcS2Tk>^kGFN0x&0BJOZEWQ-wa-^CljUL&)De0q!g--KH^-i!=VQ`l~Qi*dIiSrm@U zZzO-c!2U+913T`jioMOaj~PohW7^U>M5u4KF~3V{nhG=SXU5W#F=N%FRsW1TSwPE_ z(*UsN0E6ZeDqLt1FSYoe7jxxFySqjqA_tkf7S6#j6I-EQsHKA>t(9z~)jCqlsy>O0}ywsZ) zs}>kdVJW zi0N*SK@bu7e*2tLw;$hHZ=H2^?Q`qaty`~d4X3Kyp-Cn;S0>%IH|#CocxxUolK@=9 zkx8oO2LA@FMVxJ1Cz6?Hq*s|_VV8gexGsoBWp=|V_Xk_&;0Rvlnv^{ zf!2x2R*sutdr2bwwO#ldWRmKU(t_3p?m^=o5+^mdv0dVRYuv-)q(-({e@Io&BSt@p zWFa=vOANhbX5StI`?KMB$3VF3A2<8onZ0!Xt1ulqb&lxY+a<~$ymC~w|6uk{n7wqf zch^M~$|ucUe+LF)1}3*Dj;HLBKO&RV$UZi~rIGQpaeopg)j8JAsPcQpxM#&ljq6%x zsQd7oanB=bNxDBKA4k66F9>@>V`6@>kfcuJp9?uKmSdv<(Z2(|1Y*N*Bt2@G*`Lkt z_p-3X$q>aW6~M*n)dE&@U!VV0E{nUp29DB%SKdvd<>vEu!s_{TWRhAvmd*kChjA;A zwItn=5L>tOfx`);qiKL8M7$)%L;LNL0c4UI(K+{qac_!~>YNtCaNR$RdrO?u!Rz=W zy=~k(;-q>RV+ETA*Z3&EYxKWFOLcm{#>qv$XY~7`rAEvh92U@=|83j{$Xb%_dEC}4 z?mrdo7%KdsuoWf#hQlrBzXbXJny-`E^B)nw7UD>@5SP8ZGy6E?j|*no5LyU%rCkSk zeHm9Sm`X$VQw6hOjk*%6fc<6>!Kwt*^QVzXYW($ZUmiP6FLpJfR~IeSpPT;-xt7;3 zZcQYv-bhPlWanB1tE++S+F&m^DssF+{gmF|fGD(d*^?duRai2rhl63zIv(u=& zgPZfZC5X8DXHQem=SvW^0>fwuT92UkD@w{Q;jbs6~jIHS7Wx9cYRhRso=mUJQ zV0P+IG+!zhfNMqGuwVu%_*>_VgcX^LzYK_4+O5ArKs|4a#L2r@%DMHc0#*xoG@F3^ zN~SwC+O{bHbf%F>YP3X`P0gDbu{pAqq{APu5^y2z&Rd}4Oz2CWD{M%)}OTk*Mg8jF_ zk+bxvd9YmxV4fM7q(+`BFsJX`jN4tD)Zo0|w1;tfB5O&y|C77fJ7byN{dWoS^42%^ z*8Dv)-V2$eM&>e-(8YlZ_;ee+H?o$bTL$(|Z&Bv{pu#kf`7-PS_6LyP3s1B!0rk8e zGD(erF>3=c0H6hV;_Qj4j+@;7H;UYCiTiGvmX}Sb7xFW)0;ZA*_E)-;(BhWFfhI|K#3$6gXmH z7wD0T^U(y<^D)RIbuhUcM|P}n$02J;x+jU@mOHxg@fBwHg9VB|ZooRq?1X}~0R_2y zVuh(|aS=VKV2sthJsBLuNM~J-%XI=+QjJVfBVohYlx%1|#kf<&Np+6zi7JfKj5}SN zROfI*(5wHcac3ae2^{Ig!lr@qnP5+V{2WNYS!Vn*WRe;Yjq1>rfj>9yY$V%&BRyw4 z0jUA&fVy)E?wi{!d@i`W%qAUHaUKEnd_FQs^&8Q{RO9{v<1Q2@H4;JNZE8!t$ha&{ zs&nLmZgR14mmq6Nx)%^nz@^~G>Zx;-fXmGIa%7U~5$O{~Z{`Z)ej!e3B!Kn=*IjAc zRpO)uw}jo<=o%aMD{)dIPD(E&^lIa-LDDrwdg4^FyYrBODJ1&K3>7Y=c~~JS+WH#| zFE~nf6F9PV_-GBIjv%0(MP3z+u34PaNFghsSzs~RxH00SR$L!0aAS=d zhh%#)q!%LQnyLG)Em)f?x6jDe6%473OU752MQGSh07rt^^A11Mi3HU1^~faEZ_FoM zSu@GF7I9L8W2|gcS8g@#260j&!3&$U@91RX+K}{zk)B{a?7ZG74Oq5Q!JZ)foyh+i z38?3GWGzYei$`@p=V@kaU;5GW@^rJj37MpN5;SK1M$IFiGTiVWV(GUM51EZvRyfJ|x1ofV!!bGIdTf#c$7)(4nFKt0bzCaLkw zAF(XoYQ#JdQX}`4*l5Ch<8BitH8|EZ@V0I@t{YiP(mgdCveY>`FA%nZ%Sj%Vv% zMc{bv-R%QYyK)Z!^}HCFq(kgUU1-jVTPkdC0I&=YvEms>|Lsl! z>iI4tF4o0T_wOx0bfHt7prsDvJz$Tv|IP`0H{Fx(C4lZNGD(fMi7zy1 zxX-xzk#uj7o+XUiz&!x=h-f`4;MZpS8)TANA~Nnl;~o+xHQLT&X6n3R{Purq^uwa1 zmP^~UwCEAz9u+6mIr-Xh%g2m+99c`!tIYcyz#GwgWL+~dDygRYQ~~BbEnv-Gye+49<)-Yj1*OX;3~p3(V5GqdYjd;2DFe6v~p1(~E)k3s)3zhvBB z#Yy%51U~8cWg}ie){=C8itd?xH+AP%!O<3@lKq=mzGjxv&63YY-%UOF@4}X1+8VC| z;{AI({~&;s%g7`(62^Em`P*k)zc{I-fj&7881V*@eZ!D`J2ot3zmhk>k+ANT{7}$uj4%H){0hhnOZL|4V0_yp5Ncy2Nwu%hD<8{r_(Y5*W zX11Q0N%v&VTcU#@*B7?I)Vr55jf5j&{sKXzlr`)0=?w^|=Px2zZY+C6tg(PE4O)5% zH#EzQ%u>21sDqAYWvPt~$eyp5<;KV))!!(tSoy0)Y$8Ic=M=t4+B0@jBgkKS1OyC#pbe*8eNa3-hr{*VX=i-Y$*$=9zV?z9zJhn+}22rtwQ>npck+Wz_Uba zfpAf;ndP>~BsF5`Zc*Xc&baNxNsV_+8sK&??(5>D`eXOa?#VkEu@jQ1Tcqb)H=Ah# z{MP;U82OuK`7LCU8X2@`u|7*X8@G!%sgbKAyYjb<*cHjiR7jh(z?Vch=hek`2=)8O z8-~)hn_aRyGD(fUkQ1CX^O z-JaPkB8~$U+HjMDz>y-n!>Qa4CZL`VK{8t_WBpV5@pj@SWYG`J-u`ABje4jVABId) zBS*&0)K~LI#vP8ts~PDzLPzKbKzudXiD9;_AV1QKk3uG?9+4dWiRftKjzQLvbpJ2o zCk}UP!4w7IQ_S*Ivy^U$rTeGEoi=E^$e!$UGybU=OK&tjL)h|}EIYFT!+P^s z0I!hyCwJtZf$I6^$Rsr$kb!mH<=Mt1aZ;l^&*O|e^BXL2y0)0-2;nHZW&M6jvH|6_Ty7krq7!Tbkux zf;}yAn8PRJS7v-QGD-D_Y^~YEe2sBK#7PZqJl;6Hd8l#2#7T8dr4k>w;l?$IlN#LO z9#)#<5yp)~){^v+I1Lt$DwvML3dSOuE6n$tzQpJXd)|xzR~f6P8%sbvk3%M@abp_N z%qd)J+;vF&n2}!CAjShC7P5Cicb;ID6Ol=($HMfImgih=+$3>QgY)FI7}tu#i5cmy zm2F8#`VHVHL$)56Nx3}P?Awq@s>h|V?HP1Bjhl+Zj~Quk!S%Oyg+TE*zp=!OVTULn*^-M>(fLX;7HQ7z54R-cb-95J>QJvY^h=&x4lKU+;%3wZ>zJ8 zNYpF>>UlOYN%j98V+d@T);FsocN*O#T59B*5;7&vF>WrhmZbZ$@}H%9cB`=6lw~vX z8b~dpnO`vDnZmb$JyBFY%<$yf38?38WRg1gCg}k!Fm9nZsnOD4zbeLn+3ae`(7ebj zdSoFruD0D%@?ztbh?5#s4QosM_1$6gQe-Vjw@1)Iv}J%u;_#t#Q1hK;c^5KCjY2>~ zc&zmrw;ah%Tu9Ft#++F(baw;po4q{W1CDZ_MX1a3y#&w$MJB0Lj%zR2`;5C^oYc7K zc(&nb%?}v&YjINJMb6ZY>wRPJSvLAX(Ng_V{`b1{A>)3FtR?B5ULB>^njZ#x`c^C% z+Ba){e#DF)MJA~p5r+fyHBHEm8TYt2sgZWZLT;Rpe`nn9#YwGl9!~f9gV9fjmKv8f zb%=Y?xTnNPjayQFiT01iJuOaZJT?WCW9_)~Pewn3%-k$t|g7io1^Q?KXV8(5AuRnt$t32Q@1l03O$Rst=HjFLf&Hk@Ozl^LU z=@vKZOEnDq3fSY~|DbhRubT1SkV&fNK_uig4g_lKHp@AxgS zKU9C`P(9__X8aB^NsX6|`zGAG#{Em2)OcWdH4M$~8TY<8sh+WX0tP19nbiL_`U4~r zt4Obic)0%vSXJ6?1?$6#9M6%=fG7?edx7;w1Tde9Oj09t+9+pe{@A#cc7u~zaq?zZ znNa+bk+me<@7U3*-ThZ7m+uxP|vF&Ye~9Y%zwE5hNXG+M$C}w z8sNB?nFz*Q*Ce2x*Fx5kbiXrRN7Tq`7tHjp=8@JZIEKPLQ?U4{tlBMD^P;pZKL_@k zX*0~l^Ygj{)br<&wItndHf)}jfUH+A(|F2~^$R9nwIAvi3MLPfEgLjo*?+OZoT16R zz9ej)6Hc1nu#hA~#v4_bPc-<;1#5O6{1tG#*kKmi#sqL|6f#Nmm#57NCN0RD7`G{s zU96Fw|4W)y+|i!DR$)e;r_acnf&IUwLHj$bNNrA7J#T@mCFx#=EWzJ`IpEg3rCnkj z8_(vg%zkTRk{ZRF#kR9Y0cwd=-UcdIi^8HtlJfg%YpFr;3ybur$WPg z2Ld>b8OfPZ#aNri;Iy@417>I|?^G~NxqfwX!5*3NlQ#D^3E;peWRe&H1F82V5TNA_BP`mn6Y$!1i#5Xl|6Iqe12rV zui5X1Oj6?wYNMx~yuWb=AnE8LEiQ9z>&XX#;|ctc4>IF}kx8mYq!}F?jt?>Jhsauz z?h(N;q;zP(G<20!hk+wvrea9Nj|gDlE;322A|7b#%|{q_B(j#ITf`6={yGZm5h;KI zf3z7NW5&{pu_lL)ZN$@u+j|}!DP3xG&N#U zb&l{SQ*~|$ViQMJr)jL_ymD3lcxeT zTX7c~cL|coS7eomaF-U0_or+xD>xqSakp3kBI4C1)NxG$kaZ~*zudXmVFHY>p*9a@)v?J$4w!j*ahY%F;aSh+Yp#;?P zFk~%BxA-&~HKr{OH)BPhfZ6;PCgdiwAAw9#%io^em4@b##*ISOl61TG;HAw3`Mv3O z3=C&Z*6hb1lhkM^vgHQN6lVLz8a+<5RKFEzu#K{eyADbB80qE7C!EI@EL-||6Fz}E z^27$L%KLh7cHZXqe(PMh(b&n@U(c--t|7<3aJ>!oJzAxqNjBZts^)J{{f$Qgi{d(p;H2F85fO@_S zSxeH*7;eR)nfdn0m_D?er@GB}0WwMTEKohp2;V~E79rWV8tLD|=^eR8z#0}F$zpIk ze>?6vqw^91*tHtTgl%Qq)6BqbUTVhnOl*{eUo?NSWoCb;*-MY-YtoiocNNS|1}f&g z!m7SkEb7Y33lMX6WjU46oThwFAysJZtpKI&|B59y(6IY`1+%hOG2IW2cf$5ttyA&? z1l04dk*xNuj5%KDj%E2b6`srrf{FRT3Ns-*xhFqVFuU$6S-&lKU>b+UH|2-HUc^@{ zUc#SM<8O};R?m+j@kuWB8h^tzeDZFz!ilQoT+YXq}^NCAst|qyH#cYWzdSk5i^SZQP&4Nsa1=i5S`!{0E*f z`dQIZ~q4qdco)yMN17DcN}~v7}EQ*(SJd*F*VZbY#K4R z*paT62#V6ktoy>Y{8zJo8JVPdO8VK|m$+Ur?o}i^U?II&v*iNZ--PXZP{sXPWuon+ znB8r}-0Jm$l?g=gkAmfT3|;|_v@L6s_gNnS_1uq4QX_3_T@5#2+#BMgdN-O0)&4O( z{jHO9`!~(vpR$nZS8EGF^8YR4-WDe{GLb`Hx?8l5)jLMNi)7I+GX8Svf#iRIV^n%< z2OT}~on=`0J-g(6yF|LLoMAsA_Oo4jEx-J4yU_YAOIeiNnm@2h{$rO&x4W!ZO51%_ z{?Lq-zbeS|Yw?x;ui1ZO_R>97Ob4|s%l|WbTdl(%Yb?DIz91d>W4mOf-Sr^SBUNUB zTMU`LGF)*3ZwUSr!S%d~T`0ZrLYA}Bnpo8?w2IDS`m|lL8Zt?ZGR@zbdU$o?)(|H( zxJ7jLmgO~#TMJ2#8|gDyR?Ct=b%ob1p|r&qQP!sz53O|+YB|Ivc+=a}Zu<;DUV>;Z zX))4g31AKx$sDrm?c0DWE8MyTQ&{@P;Kf|9c_q;S2S;(#n0!-Sp8&j=k$5o|W34aY z^SMF6bT+6V@)rx%cs`pgeW~D>jM%VX+9w+C+^E9%2jQXj<%0V?699e^(-v&oY{DNHxz_%G$OVa(F_?>qvI8wHI!QpYf2RQNs zZv(cN+LHh}gm1qhaRT<+wg+pyV+Ki7uCaGRYkqV6+A8Xuk;-r?!t-HTtLO$NOA0t^I zjP#pa&v4d|d_uwc=FM1;Pb^r25)3??)PM(C*-+~fxGUESrgbRy(w`I@gBquRBP;Q& znjfS;Q28D=cqQ;y3vzMf|e8ZT^D89K|1e}+s_Jqu`& zD4&0B+}Yx!2FG4%)ZWRsbC9(p-QOPExUPI|!PqgS+F2;Ssrs!0zD=TA-Xj1iGWyZfmCaIA(?Tgiz`;~E5BWp>zrK*pi zQ7Xl2Don*kn`KCa;k%dTp^cchhJk&WfoY~Z98}LuNKT5XESEKl8&NQs#fLJFtT5YE zQ3yvB%og?P7&U|a`6FO70qjbRtR?B5^M3Kz3VY<^z=Ica_iG8L=j)JkxBoxm@fG&S zCKMbuo(PWDiia!Ssn-)w&y$czYLpL}f%FwyjB7g_7 z1rU?%k~UJ<@#xYoO9%~On?Dq3nZ8(T-PMVYo*ztQM+(Ng10Yt))G!NyG&Cv}ix zZ1pDNI*_#_-4p89%_vyQtw{LI;K+gD?V9Mlg@AgViL52*<>I~(t$9|#ngOHhHoIVr zpAuOo*dt?zSKWgy0_u4VvX-QKWbI8Xz07kPjTLaK8P7u|sgd{Iew}aJZQ`UlN3E+3 ztZp~18;M^u(rz-)I$xFYf`X|$mEwgJ#)kraQH5E{h7U&%IG&(&ipEeD6Hw1fknBV) zWBWGn^}a*EzD}$I;!`x8b5?uuQiWPKrhD9qJ8hSwWhIE7KCK}wLADReh@b4axTqT+jC+lTwL7gWo+7mTAM93tv`d~wCaE4BP3XQE zxKtbWj5w*0L`F+V;+<*ar6Z~DMdEZK5}Er~{U^o?OTuw62MOj6@M6rNdK z`3>XV6el&(hch1e@lWI45+`+#V@&>SXaqScIB9m(0t$arBbnvh!qJowkecug~2%Z#PFF<%Y1wawV-Ir^*k7t#M+$Lv3Y zOj5m=$oK5CMtlxQrx|Hg=)mY_EKX{ahEdvvL(@oKHF^`#QX_Tzg{V?DHSTN3T9WQ>(5u_cz|lLNi*seGO3&tI zzXdW$^|&aoifc>bwh|}RIlcsavzzkP#%&``Y9z5qTSn=hTr+xG(Ng2-x|ZpKv7K?- zi<26+9L|pZ-FXM&zAjE`yce9DSmw#4I~u(c5_fE*m33`Y#h?-NHwcQ?%)H|$4t6s8 zZy}S^NF|=qbL<${osHfF$%Hl1qN8Z5b$JWjWP+lgc5p@$^VVkn9kZA2YW6 zF{+45+7FD|N1W8ixUsgwBcsdv8oeK~mZaN0;%phM5hS*$o6D!5J?}3WF;`tZlx6fL&xRA zgl$M{+LXR7GyhRB(I6{s42Ks?hf?^6g0)R7_{f48eHT6o9L`I;fuljJ2S(zcElclt zkI2UgSm%0VM?X7(9S1J2N==-6JOOxTBa_tlzfYdfH-~MYo0M-Sn8k^*km@f}ji{51 zI9Y^Lzf^6mswGx8i=QBCNxCPC>4Q@Qlq|;B@bt>3RwVJB28c9zYwdIb*kl@+q{d&0 zjjXux4CBreCpBIPivU?(d6scM6DKv^X4T^RxzT5fmKvAhEy-pk$+&ZnbdHf;a28nQ za4y)>hhLUzi}TF*d}Na9_tAga|F;(yeW7TnexH7;O!7s>WpPr2W2})hTx{GW;-q@C zE0zwS4%MLQrAA+d+#MkD>b!O_*fTG$4WI%n!QVuG$ADBj-WUR8QS2&m_w$Rsr$gZoax zGoUFCGkUmasqvCnSF07t?YYV55u&9=RYEBlX~ZZb6VXUd7R_3gxi^D74Fm1W-3-a2 z&3KF%OZPux^@he)_Wd0Z z)zH@)JxR3GpvSh;Yf~y)jBXVz)nn#srONpR<0gxf8h2$U5xP)q#!W%il5{T#qzI3h zsRd&wd}D=ei^tp!j<2Sl6ho_I8e#ZrBa_s)m)G?-8P_3BYCHm4M>DF(Bg`=RW+XGv z$TIFYSSQ?~&`R0!%+J$7?Zd|uGsll-m z7Q^Waj9ZATCF%Z@RY_h%kQYjx5l@5MWA=;9Ub<(&WRfv1FR6^5{I@$^DzJgg$CwxCRDgurj;h7#Ffca=-k{YSvR2f$L{l>Tl#Yv6N5FVFy z>XeoaKV%lam4(!}di)5b^I_v2L2_C$(w}KO`!;sxM}_TkIDSNatbw%tZzCqnzXSVM zm0d;h??KE#BWp=|iB?xWVU||r*nfn8C(ZaNWRhB*ZiGBp{%G9O$Xb$a5i#8ObuZt3;|9b@^-Bj^%WoL{ zrf8{gSDo9$;Y-H7h2-!hq-6k4FYfIIJiz&h?||b!U`HtDcM0I|B_xM04I0}5)AtG< z;E-o(+xHtW{<{Azn7Ty0tq+7Px5~wi#0|}Hf7r=$h`E$jjzwJhO_^w;97Ot_f>hlG|E3en9Fm6-aZhc`@ADX88 z0w5CV)*BGOB4uQf>eZIV%(Kz7&tEc&4Ux4Z-IMG0-UuAE&9E8y%Vzl%vy|@tN`L5$ zEA03EY6I3&Z6aJ!xhWtj0*W-*@-+hLc{3zuGRacaRy_aal`*5?+Ny60Gv3mSrJHdd zUoi^ORt5LBPS;K@TUVH^NEv9~reMvAQBZ3ID{dxxwk=p^Y!csg!b-L--o5}L&pQ-L z>&1=BU$5}6Ha1qtI~L=<>u2Vj0RF&{&TkM<&)-BQsa}4xdj-Rx-!g7zWGzWA$RPEcThd=fvhFz z{#vPrn4#RW0V}5ORu~^OruM#9VP9RiSHXA-XrAEv!uD-rl6CJw>OpBa|DeJwg_=4p z@6&*Fvwgu)m~lsF@5%cSP|y1#Ye~B0j684d9IgJw0SfX)7W)rP$p;op-&v1+P{G7S zqa_~-i(&4i_ginw-;mnLJT#c7)MK zBAH7@`u_mpC;=sy(x=jPw6JOis`a?`m|~(+ytw4p3R6>Z$#DhC#f{qF_=5GZV1D(- z1xI`*6im&mn()Me`LZaFPO7kw_4tv1$1y6~-HsqZv=B@bGCWAg310 zXtC0FTER3H#GhVaDptITek$yfEw~2EiB`oKl@&f?cqg4%u=)(m^rH(VNt!eJ8Q9-! zJoe8CsOPhhY^+rodlFKGJqhPj*t6i=3VRluH;63@&abd%!37oeEV!@%EAbZ<9Iq&Y zOEIUnG$LP2Ks{fA#Lv4JM}A#eVNdL3752nlUSUt{6&1!Ol=t?CX54UOElKyk zGGnNG7jYVDQjpafoG>>65dYIoPO@&wBMGSIQOG1UBDO^#x!JhUNH(HIdWFEDd`uvZ z0Y@`|p7IErxEyQtkuAkn)q@w;X;|Z(h3CJWh{`-vSjb~Po zjkk=x9$8D$y)v)vK1o4V1Na?V8nEuz3XZbj1~(8;&y$f!YTRz&{CJu+qo*M0Xe0f0 znk%%_Os#^bu9sMycOyaZOqE$XVVsGK#NAt$SPB=;=aM{K*jg}E6gLqRiFBI|0_u4N zGD(g1(_|IE&Bon=WLqwz$Iaj-?{y~F)1om(x1VM9v&~+*+wY zehxB8jeF0urqW#FZWSlhGmq(r$h>(*&qvmhbpPC~P_F*yGe0w4FhPw;U6D%l} zR9vcF7Z$8xtd3=QQNhewX%@MsU`FC}{bFI|E)8o$%S#je8nN zj~nUtp%qFZ{{)V=La+M97TG^z_RpHVbZ`He*guVX3rS}i=^5zd?d^i2yuH(a<&W|jTqWT zoBMwRMgIB=`q=DO`Yv%v^|+#RtV}4=&*G#;CNYFb5m?2zRgtwM-E(_5l?Deof#W80 zMyO_1Gvn3GSi0vB$yr0dii`JJ)~vAS&064yN!uMx$ZHc&&+8zQ)JX35(Mr;1jQgxO zsWDJGb)32vTuoQ;b7rxwEToo)wQu3)jav^{OVUe*EB)((BN;m5pgVuTj5k0gsgW}{ z%u|_t(YP-mIq4Yb|4fJt1?*vI4}muVN32Zy5%6UKIOZ6cq(-b9at*h!abFcDwQzXG zw&YEW+Z4$D5%NCWf4$UQCOEcaInWV-o=?KDY zZQM4O^LHa{&YsT9llhl}ylJ3dzSO4`2dv5JmVJ|8> zHDHeC%-?9l)GXg@z0x=a5qlw79*wkA^z}6LFYL(Q2YcSq zA=JSq%tq~P_CGLt>1NOWmqMTSDL8ER6}GmTU8^YfD<-;xT-hJ&30<+UOD8ZMKtMeo zh^!^)o*o*r#D7pD=Hi3F@$P9mPM@U+4`G%`tz1}d!^+Vw6f+?mK)lI{_8G(+dJ z3f2_ST$Vu#`!}mC{~Qo^@kY+s1k`gvCaG~3Z!Mi;+_~bU#$(Q~L8bGIJ0HnzU`S5^ zoBH<*$rn`EI|vsRtkXwn7GDI8MBF?=)qW+Xjd4T7Nezw$Aly*nhKZ9Je-tJ#nC8Q&VYtyvNZhcIo-DuRh=S$X zi!bv?VQY6>r(T7|!bUZiD3#3x#|q%l;HX-vYsL^(&ts9bB;9Tqw-{G&JoU8&4~$@_ zYF@ssV7X9nzwrgf{U(6p4dV>O<4+`@p07tHsgX7Qe3Oi8L9+B2SrVd%TZL74yyi9kwsXRAH+onO$IJiX6SMn5g2# zWxgF8$)9e+2Ga;&1{#^9#;iYn#WxwzAwsG@mnI46ug);;W^q!3V~~)Z{w>DM6era= zwxZO>cb0Lp#Yv5#!XiSim^zK_Le`RWFDl*=n*;WQv#3D#nQO+kB9qk9F5U6}0gIr? A+5i9m literal 0 HcmV?d00001 From e04c89f2a35b7e4606abceada2bdfa32220fce35 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=EC=9D=B4=EC=98=88=EC=84=9C?= <49704047+yeseoLee@users.noreply.github.com> Date: Mon, 30 Sep 2024 10:49:46 +0900 Subject: [PATCH 19/27] =?UTF-8?q?[feat]=20=EB=8D=B0=EC=9D=B4=ED=84=B0=20?= =?UTF-8?q?=EC=A6=9D=EA=B0=95=20=EC=8B=A4=ED=97=98?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .gitignore | 1 + utils/preprocess/augmentation.py | 507 +++++++++++++++++++++++ utils/preprocess/data_balancing.ipynb | 350 ++++++++++++++++ utils/preprocess/data_preprocess.ipynb | 354 ++++++++++++++++ utils/preprocess/test.py | 36 ++ utils/preprocess/validation_tuning.ipynb | 232 +++++++++++ 6 files changed, 1480 insertions(+) create mode 100644 utils/preprocess/augmentation.py create mode 100644 utils/preprocess/data_balancing.ipynb create mode 100644 utils/preprocess/data_preprocess.ipynb create mode 100644 utils/preprocess/test.py create mode 100644 utils/preprocess/validation_tuning.ipynb diff --git a/.gitignore b/.gitignore index 67935d7..2aa2c14 100644 --- a/.gitignore +++ b/.gitignore @@ -13,3 +13,4 @@ lightning_logs/* # 모든 __pycache__ 폴더 무시 **/__pycache__/ .idea/* +.DS_Store diff --git a/utils/preprocess/augmentation.py b/utils/preprocess/augmentation.py new file mode 100644 index 0000000..fe15956 --- /dev/null +++ b/utils/preprocess/augmentation.py @@ -0,0 +1,507 @@ +""" +Main Reference : https://github.com/boostcampaitech5/level1_semantictextsimilarity-nlp-11/blob/main/augmentation.py +""" + +import os +import re +import pickle +import random +import numpy as np +import pandas as pd +from tqdm.auto import tqdm +from enum import Enum +from typing import Union + +from soynlp.normalizer import emoticon_normalize, repeat_normalize +from hanspell import passportKey, spell_checker +from konlpy.tag import Okt, Kkma + +import warnings + +warnings.filterwarnings("ignore") + +# passportKey 설정 +passportKey.init() + + +class Augmentaion: + def __init__(self, data_path, save_path, wordnet_path): + + self.data_path = data_path + self.save_path = save_path + self.wordnet_path = wordnet_path + self.df = pd.read_csv(data_path) + self.kkma = Kkma() + + # 폴더 경로 생성 + self.create_folder(self.save_path) + + # 폴더 경로 생성 메서드 + def create_folder(self, save_path: str) -> None: + """지정된 경로에 폴더를 생성하는 메서드 + + Args: + save_path (str): 주어진 경로에 directory가 없을 경우 생성. + """ + if not os.path.exists(save_path): + os.makedirs(save_path) + + def save_data(self, df: pd.DataFrame, save_path: str, file_name: str) -> None: + """데이터 저장 메서드 + + Args: + df (pd.DataFrame): 저장할 데이터 + save_path (str): 저장할 경로 + file_name (str): 저장할 파일 명 + """ + df.to_csv(os.path.join(save_path, file_name), index=False) + + def concat(self, df_list: list[pd.DataFrame]) -> pd.DataFrame: + """주어진 DataFrame을 결합하고 중복 처리, 인덱스 재정렬을 수행하는 메서드 + + Args: + df_list (list[pd.DataFrame]): DataFrame으로 이루어진 List + + Returns: + pd.DataFrame: 결합된 DataFrame + """ + df_concat = pd.concat(df_list) + df_concat.drop_duplicates(subset=["sentence_1", "sentence_2"], inplace=True) + df_concat.reset_index(drop=True, inplace=True) + return df_concat + + def train_augmentationV1( + self, file_name="train_augmentV1.csv", save=True + ) -> Union[pd.DataFrame, None]: + """AugmentationV1 버전 데이터 생성 + - 라벨 4이상 데이터 단순 증강. + + Args: + file_name (str, optional): 저장할 파일 이름. Defaults to 'train_augmentV1.csv'. + save (bool, optional): 반환 or 저장 여부 선택. . Defaults to True. + + Returns: + Union[pd.DataFrame, None]: save=False일 경우 증강 데이터 반환 + """ + df_original = self.df.copy() + df_augment = self.simple_augmentation(df=df_original, label=4) + + if save: + self.save_data(df_augment, self.save_path, file_name) + else: + return df_augment + + # train 데이터 전처리 및 증강 메서드 + def train_augmentationV2( + self, file_name="train_augmentV2.csv", save=True + ) -> Union[pd.DataFrame, None]: + """AugementV2 버전 데이터 생성 + - 원본 데이터 + 맞춤법 검사 데이터 + 동의어 교체 데이터 + - Swap sentence, Copied Sentence + - 각 과정마다 데이터 불균형을 해소하기 위해 비율을 다르게 하여 증강 + + Args: + file_name (str, optional): 저장할 파일 이름. Defaults to 'train_augmentV2.csv'. + save (bool, optional): 반환 or 저장 여부 선택. Defaults to True. + + Returns: + Union[pd.DataFrame, None]: save=False일 경우 증강 데이터 반환 + """ + df_original = self.df.copy() + df_spellcheck = self.train_preprocessing(save=False) + df_sr = self.synonym_replacement( + df=df_spellcheck, + wordnet_path=self.wordnet_path, + symmin=3.0, + symmax=4.5, + rng=0.5, + ratio=2, + ) + df_concat = self.concat([df_original, df_spellcheck, df_sr]) + df_swap = self.swap_sentence(df_concat) + df_concat_swap = self.concat([df_concat, df_swap]) + df_augment = self.copied_sentenceV2(df_concat_swap) + + if save: + self.save_data(df_augment, self.save_path, file_name) + else: + return df_augment + + def train_augmentationV3( + self, file_name="train_augmentV3.csv", save=True + ) -> Union[pd.DataFrame, None]: + """AugmentationV3 버전 데이터 생성 + - AugmentationV2 데이터 + nnp masking 데이터 + + Args: + file_name (str, optional): 저장할 파일 이름. Defaults to 'train_augmentV3.csv'. + save (bool, optional): 반환 or 저장 여부 선택. Defaults to True. + + Returns: + Union[pd.DataFrame, None]: save=False일 경우 증강 데이터 반환 + """ + df_orignal = self.df.copy() + if "train_augmentV2.csv" in os.listdir("../data"): + print("train_augmentV2.csv is already exist!! load....") + df_augmentV2 = pd.read_csv("../data/train_augmentV2.csv") + else: + df_augmentV2 = self.train_augmentationV2(save=False) + df_nnp_masking = self.nnp_masking(df_orignal) + df_augment = self.concat([df_augmentV2, df_nnp_masking]) + + if save: + self.save_data(df_augment, self.save_path, file_name) + else: + return df_augment + + def train_preprocessing(self, file_name="train.csv", save=True): + """TRAIN 데이터 전처리 + + Args: + file_name (str, optional): 저장할 파일 이름. Defaults to 'train.csv'. + save (bool, optional): 반환 or 저장 여부 선택. Defaults to True. + + Returns: + _type_: save=False일 경우 증강 데이터 반환 + """ + df_spellcheck = self.spelling_check(self.df) + if save: + self.save_data(df_spellcheck, self.save_path, file_name) + else: + return df_spellcheck + + def val_preprocessing(self, file_name="dev.csv"): + """DEV 데이터 전처리 + + Args: + file_name (str, optional): 저장할 파일 이름. Defaults to 'dev.csv'. + """ + df_spellcheck = self.spelling_check(self.df) + self.save_data(df_spellcheck, self.save_path, file_name) + + def test_preprocessing(self, file_name="test.csv"): + """TEST 데이터 전처리 + + Args: + file_name (str, optional): 저장할 파일 이름. Defaults to 'test.csv'. + """ + df_spellcheck = self.spelling_check(self.df) + self.save_data(df_spellcheck, self.save_path, file_name) + + def spelling_check(self, df: pd.DataFrame) -> pd.DataFrame: + """ + 데이터에 apply_hanspell 함수를 적용 + Args: + df (pd.DataFrame): 맞춤법을 교정할 데이터 + + Returns: + data (pd.DataFrame): 맞춤법을 교정한 데이터 + """ + df_change = df.copy() + tqdm.pandas() + df_change["sentence_1"] = df_change["sentence_1"].progress_map( + self.apply_hanspell + ) + df_change["sentence_2"] = df_change["sentence_2"].progress_map( + self.apply_hanspell + ) + return df_change + + def apply_hanspell(self, text: str) -> str: + """ + 중복 감정 표현 및 표현 제거, 특수 문자 제거 후 hanspell 맞춤법 검사 적용 + Args: + text (str): 교정할 문장 + + Returns: + spell_check_text (str): 교정한 문장 + """ + text = emoticon_normalize(text, num_repeats=2) + text = repeat_normalize(text, num_repeats=2) + text = text.lower() + text = re.sub("[^a-zr-ㅎ가-힣0-9 ]", "", text) + text = text.strip() + spell_check_text = spell_checker.check(text).checked + return spell_check_text + + def synonym_replacement( + self, + df: pd.DataFrame, + wordnet_path: str, + rng: float = 0.5, + symmin: float = 3.0, + symmax: float = 4.5, + ratio: int = 2, + ) -> pd.DataFrame: + """동의어 대체 및 조사 대체를 수행하는 메서드 + + Args: + df (pd.DataFrame): 데이터 증강을 진행할 DataFrame + wordnet_path (str): 동의어 사전 경로(wordnet은 KAIST에서 만든 Korean WordNet(KWN) 을 사용함.) + rng (float, optional): 데이터를 증강할 label 범위 (rng 이상). Defaults to 0.5. + symmin (float, optional): 동의어 대체 비율을 조절하는 라벨의 범위의 최소값. Defaults to 3.0. + symmax (float, optional): 동의어 대체 비율을 조절하는 라벨의 범위의 최대값. Defaults to 4.5. + ratio (int, optional): 동의어에 대해서 대체할 비율. Defaults to 2. + + Returns: + pd.DataFrame: 동의어가 대체된 DataFrame + """ + df_change = df[df["label"] >= rng].reset_index(drop=True).copy() + okt = Okt() + with open(wordnet_path, "rb") as f: + wordnet = pickle.load(f) + + n1, n2 = df_change["sentence_1"], df_change["sentence_2"] + sr_sentence = [] + + for i in tqdm(range(len(n1)), desc="Synonym Replacement"): + now_sent1 = n1[i] + now_sent2 = n2[i] + noun1 = okt.nouns(now_sent1) + noun2 = okt.nouns(now_sent2) + + # 공통된 명사를 추출. + same_nouns_set = set(noun1) & set(noun2) + for same_noun in same_nouns_set: + # 길이가 2 이상이고, wordnet에 있는지 확인. + if ( + len(same_nouns_set) > 1 + and same_noun in wordnet + and len(wordnet[same_noun]) >= 2 + ): + sym_list = wordnet[same_noun][1:] + # label 별 비율을 맞춰주기 위해 3.0 <= label < 4.5 인 데이터 절반만 변환 + if symmin <= df_change["label"][i] < symmax: + sym_list = sym_list[: len(sym_list) // ratio + 1] + + for sym in sym_list: + s1 = okt.pos(now_sent1) + s2 = okt.pos(now_sent2) + sr_sentence.append( + [ + df_change["id"][i], + df_change["source"][i], + self.make_sentence(s1, same_noun, sym), + self.make_sentence(s2, same_noun, sym), + df_change["label"][i], + df_change["binary-label"][i], + ] + ) + sr_sentence = pd.DataFrame( + sr_sentence, + columns=[ + "id", + "source", + "sentence_1", + "sentence_2", + "label", + "binary-label", + ], + ) + + return sr_sentence + + def make_sentence(self, sentence: list, compare: str, sym: str) -> str: + """ + sentence_1, sentence_2에 모두 등장하는 명사를 교체하고 조사를 교정 + Args : + sentence (list): 형태소 분석한 문장 + compare (str): 문장에서 바꿀 명사 + sym (str): 문장 삽입되는 동의어 + Returns : + replace_sentence (str): 동의어로 교체한 문장 + """ + replace_sentence = [] + check = set(["이", "가", "을", "를", "과", "와"]) + for j in range(len(sentence)): + # 문장에서 동의어를 추가한다. + if sentence[j][0] == compare: + replace_sentence.append(sym) + # 뒷말이 조사면 조사를 확인하고 바꾼다. + if ( + j + 1 < len(sentence) + and sentence[j + 1][1] == "Josa" + and sentence[j + 1][0] in check + ): + # 바뀐 명사 마지막 받침 확인 후 조사 변경 + sentence[j + 1] = ( + self.change_josa(replace_sentence[-1][0], sentence[j + 1][0]), + "Josa", + ) + else: + replace_sentence.append(sentence[j][0]) + + # hanspell로 띄어쓰기 교정. + replace_sentence = "".join(replace_sentence) + replace_sentence = spell_checker.check(replace_sentence).checked + return replace_sentence + + def check_end(self, noun: str) -> bool: + """ + 한글의 유니코드가 28로 나누어 떨어지면 받침이 없음을 판단 + Args : + noun (str): 받침 유무를 판단할 명사 + Returns : + False (bool) : 받침이 없음 + True (bool) : 받침이 있음 + """ + if (ord(noun[-1]) - ord("가")) % 28 == 0: + return False + else: + return True + + def change_josa(self, noun: str, josa: str) -> str: + """ + 명사의 끝음절 받침 여부에 따라서 조사 교체 + Args : + none (str): 끝음절의 받침 확인할 명사 + josa (str): 교정할 조사 + Returns : + josa (str): 교정한 조사 + """ + if josa == "이" or josa == "가": + return "이" if self.check_end(noun) else "가" + elif josa == "은" or josa == "는": + return "은" if self.check_end(noun) else "는" + elif josa == "을" or josa == "를": + return "을" if self.check_end(noun) else "를" + elif josa == "과" or josa == "와": + return "과" if self.check_end(noun) else "와" + else: + return josa + + def swap_sentence(self, df: pd.DataFrame) -> pd.DataFrame: + """Sentence1과 Sentence2를 Swap(0.5 <= label <3.5, 4.5<= label < 5 인 라벨에 대해서만 sentence swap) + + Args: + df (pd.DataFrame): 데이터를 증강할 DataFrame + + Returns: + pd.DataFrame: Sentence1과 Sentence2가 Swap된 DataFrame + """ + df_swapped = df.copy() + df_swapped["sentence_1"] = df["sentence_2"] + df_swapped["sentence_2"] = df["sentence_1"] + df_swapped = df_swapped[ + ((df_swapped["label"] >= 0.5) & (df_swapped["label"] < 3.5)) + | ((df_swapped["label"] >= 4.5) & (df_swapped["label"] < 5)) + ] + return df_swapped + + def copied_sentenceV2(self, df: pd.DataFrame) -> pd.DataFrame: + """(Setence1, Sentence2, label) --> (Sentence1 , Sentence2, 4.9)로 대체. + 많이 분포하는 라벨을 줄이고 적게 분포하는 라벨을 증강하기 위한 시도. + Args: + df (pd.DataFrame): 증강할 DataFrame + + Returns: + pd.DataFrame: 증강된 DataFrame + """ + df_change = df.reset_index(drop=True).copy() + sample_0005 = df_change[ + (df_change["label"] >= 0.0) & (df_change["label"] < 0.5) + ][-1779:] + sample_3035 = df_change[ + (df_change["label"] >= 3.0) & (df_change["label"] < 3.5) + ][-508:] + sample_0445 = df_change[ + (df_change["label"] >= 1.0) & (df_change["label"] < 1.5) + ][-414:] + + for index in [sample_3035.index, sample_0005.index, sample_0445.index]: + df_change.iloc[index, 3] = df_change.iloc[index, 2] + df_change.iloc[index, 4] = 4.9 + df_change.iloc[index, 5] = 1 + + df_change.drop_duplicates(subset=["sentence_1", "sentence_2"], inplace=True) + df_change.reset_index(drop=True, inplace=True) + return df_change + + def simple_augmentation(self, df: pd.DataFrame, label: float) -> pd.DataFrame: + """라벨 >= label인 데이터 단순 증강. AugmentationV1에서 사용됨. + + Args: + df (pd.DataFrame): 데이터를 증강할 DataFrame + label (float): 증강할 라벨의 범위(label 이상) + + Returns: + pd.DataFrame: 증강된 DataFrame + """ + df_change = df.copy() + df_top = df_change[df_change["label"] >= label] + df_augment = pd.concat([df_change, df_top]) + return df_augment + + def mask_nnp(self, sentence: str) -> str: + """고유명사, 외래어 masking + + Args: + sentence (str): masking될 문장 + + Returns: + str: masking된 문장 + """ + try: + words = self.kkma.pos(sentence) + for word, tag in words: + # 태그 'NNG': '일반 명사', 'NNP': '고유 명사','SL' : '외래어' + if tag in ["NNP", "SL"]: + sentence = sentence.replace(word, "") + except: + return sentence + return sentence + + def nnp_masking(self, df: pd.DataFrame) -> pd.DataFrame: + """고유명사, 외래어를 마스킹하여 증강하는 메서드 + + Args: + df (pd.DataFrame): masking할 DataFrame + + Returns: + pd.DataFrame: masking된 DataFrame + """ + df_change = df.copy() + df_change["sentence_1"] = df_change["sentence_1"].apply(self.mask_nnp) + df_change["sentence_2"] = df_change["sentence_2"].apply(self.mask_nnp) + return df_change + + +class Path(Enum): + TRAIN = "../data/raw/train.csv" + DEV = "../data/raw/dev.csv" + TEST = "../data/raw/test.csv" + WORDNET = "./wordnet.pickle" + SAVE = "../data/" + + +if __name__ == "__main__": + """ + Train 데이터 증강 : AugmentationV1, AugmentationV2, AugmentationV3 + Dev, Test 데이터 전처리 : 특수문자 처리, 중복 표현 제거, hanspell(맞춤법 검사) + """ + train_augment = Augmentaion( + data_path=Path.TRAIN.value, + save_path=Path.SAVE.value, + wordnet_path=Path.WORDNET.value, + ) + + dev_augment = Augmentaion( + data_path=Path.DEV.value, + save_path=Path.SAVE.value, + wordnet_path=Path.WORDNET.value, + ) + + test_augment = Augmentaion( + data_path=Path.TEST.value, + save_path=Path.SAVE.value, + wordnet_path=Path.WORDNET.value, + ) + + # TRAIN 데이터 증강(V1, V2, V3) + train_augment.train_augmentationV1(file_name="train_augmentV1.csv", save=True) + train_augment.train_augmentationV2(file_name="train_augmentV2.csv", save=True) + train_augment.train_augmentationV3(file_name="train_augmentV3.csv", save=True) + + # DEV, TEST 전처리(맞춤법 검사, 특수문자 처리) + dev_augment.val_preprocessing(file_name="dev_spellcheck.csv") + test_augment.val_preprocessing(file_name="test_spellcheck.csv") diff --git a/utils/preprocess/data_balancing.ipynb b/utils/preprocess/data_balancing.ipynb new file mode 100644 index 0000000..8058de0 --- /dev/null +++ b/utils/preprocess/data_balancing.ipynb @@ -0,0 +1,350 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import warnings\n", + "\n", + "# 모든 경고 메시지 무시\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "ys_bert_rmr_basic = pd.read_csv(\"../data/processed/ys_bert_rmr_basic.csv\", encoding=\"UTF-8\")\n", + "ys_adverb_basic = pd.read_csv(\"../data/processed/ys_adverb_basic.csv\", encoding=\"UTF-8\")" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_label_count(df,df_name):\n", + " grouped_data = df.groupby(\"label\")[\"id\"].count()\n", + " grouped_data.plot(kind=\"bar\", color=\"skyblue\")\n", + " plt.title(f\"{df_name} label Count\")\n", + " plt.xlabel(\"label\")\n", + " plt.ylabel(\"Count\")\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_multiple_label_counts(dfs,dfnames):\n", + " num_experiments = len(dfs)\n", + " num_cols = 2 # 한 줄에 두 개씩 배치\n", + " num_rows = (num_experiments + 1) // num_cols # 행의 수 계산\n", + "\n", + " # 전체 subplot 크기 설정\n", + " fig, axes = plt.subplots(\n", + " num_rows, num_cols, figsize=(12, 6 * num_rows)\n", + " ) # subplot의 크기 설정\n", + "\n", + " for idx, df in enumerate(dfs):\n", + " row = idx // num_cols\n", + " col = idx % num_cols\n", + "\n", + " # 데이터를 그룹화하여 label 별 count 계산\n", + " grouped_data = df.groupby(\"label\")[\"id\"].count()\n", + "\n", + " # subplot에 각각의 그래프 그리기\n", + " if num_rows > 1:\n", + " ax = axes[row, col] # 2차원 배열에서 해당 위치의 subplot 지정\n", + " else:\n", + " ax = axes[col] # 1차원 배열일 경우\n", + "\n", + " grouped_data.plot(kind=\"bar\", color=\"skyblue\", ax=ax)\n", + "\n", + " # subplot의 제목 및 축 설정\n", + " ax.set_title(f\"Label Count ({dfnames[idx]})\")\n", + " ax.set_xlabel(\"label\")\n", + " ax.set_ylabel(\"Count\")\n", + "\n", + " # 여백 자동 조정\n", + " plt.tight_layout()\n", + " # 그래프 출력\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHPCAYAAACyf8XcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPpUlEQVR4nO3deVhU9f4H8PewzLDOgMqabIEbKrleHc2lRNDQMukaaYKpmQaaS2qUuxWmlftSt5tYQqZdtXJBEUWvimkkCrjkglcLB9xg3ACF7+8PH87PkUVAZIDzfj3PeR7O+X4/53wPHJg3Z845oxBCCBARERHJmImxB0BERERkbAxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DERERjZr1iwoFApcvXrV2EOpszw9PdGvX78a3WZ0dDQUCgUuXLhg1HX17NkTrVq1euIxPMzT0xPDhg2r1nUS1XYMREQys2LFCkRHRxt7GFRP5OXlYeHChejUqRM0Gg0sLCzQtGlTRERE4M8//zT28AAABw8exKxZs5CTk2PsoVAtxkBEJDMMRNVj6NChuHv3Ljw8PIw9FKO5evUqnn/+eUycOBGOjo6YM2cOli9fjgEDBuCXX36p9jNXVXXw4EHMnj2bgYjKZWbsARBRzbhz5w6srKyqdZ1FRUUoKCiAhYVFta4XAO7fv4+ioiIolcpqX3d1MDU1hampqbGHYVTDhg3D0aNH8dNPPyE4ONigbe7cufjoo4+MNDKiyuMZIqJH7NmzBwqFAps2bSrRFhsbC4VCgaSkJACATqfDW2+9hcaNG0OlUsHFxQWvvPJKla4FuXr1KgYNGgS1Wo2GDRvivffeQ15eXol+a9euRfv27WFpaYkGDRogJCQEly5dMuhTfF1JcnIyunfvDisrK3z44Yfw9PREeno69u7dC4VCAYVCgZ49e1Z4jAqFAhEREYiJiUHLli2hUqkQFxcnXQOzf/9+jBs3Dg4ODrCzs8M777yDgoIC5OTkIDQ0FPb29rC3t8eUKVMghJDWe+HCBSgUCnz++edYtGgRvL29oVKpcOLEiUp9D3fu3Ik2bdrAwsICvr6+2Lhxo0H79evX8f7776N169awsbGBWq1G3759cezYsRLrWrp0KVq2bAkrKyvY29ujQ4cOiI2NldrLuu5n+/bt6NGjB2xtbaFWq9GxY0eDuor6+eefERQUBFdXV6hUKnh7e2Pu3LkoLCwstX9ycjK6dOkCS0tLeHl5YdWqVSX65OfnY+bMmfDx8YFKpYKbmxumTJmC/Pz8So/vt99+w9atWzFixIgSYQgAVCoVPv/8c4Nlu3fvRrdu3WBtbQ07Ozu88sorOHnypEGfYcOGwdPTs8T6iq+1e1jx8bh582a0atUKKpUKLVu2RFxcnEHd5MmTAQBeXl7ScV8d135R/cIzRESP6NmzJ9zc3BATE4NXX33VoC0mJgbe3t7QarUAgODgYKSnp2Ps2LHw9PREdnY24uPjcfHixVL/qJdn0KBB8PT0RFRUFA4dOoQlS5bgxo0b+O6776Q+n3zyCaZPn45BgwZh5MiRuHLlCpYuXYru3bvj6NGjsLOzk/peu3YNffv2RUhICN588004OTmhZ8+eGDt2LGxsbKT/3p2cnCo1zt27d2P9+vWIiIhAo0aN4OnpiZSUFADA2LFj4ezsjNmzZ+PQoUP4+uuvYWdnh4MHD8Ld3R2ffvoptm3bhgULFqBVq1YIDQ01WPfq1auRl5eHUaNGQaVSoUGDBhUe15kzZ/D6669j9OjRCAsLw+rVq/HPf/4TcXFx6N27NwDg/Pnz2Lx5M/75z3/Cy8sLWVlZ+Oqrr9CjRw+cOHECrq6uAIB//etfGDduHF577TUpmB4/fhy//fYbBg8eXOYYoqOjMXz4cLRs2RKRkZGws7PD0aNHERcXV25dWeuysbHBxIkTYWNjg927d2PGjBnQ6/VYsGCBQd8bN27gpZdewqBBg/DGG29g/fr1GDNmDJRKJYYPHw7gwdm8l19+Gfv378eoUaPQokULpKamYuHChfjzzz+xefPmSo3vl19+AfDgrcOK2LVrF/r27Ytnn30Ws2bNwt27d7F06VJ07doVf/zxR6V/X4rt378fGzduxLvvvgtbW1ssWbIEwcHBuHjxIho2bIiBAwfizz//xA8//ICFCxeiUaNGAAAHB4cqbY/qMUFEJURGRgqVSiVycnKkZdnZ2cLMzEzMnDlTCCHEjRs3BACxYMGCJ9rWzJkzBQDx8ssvGyx/9913BQBx7NgxIYQQFy5cEKampuKTTz4x6JeamirMzMwMlvfo0UMAEKtWrSqxvZYtW4oePXpUaawAhImJiUhPTzdYvnr1agFABAYGiqKiImm5VqsVCoVCjB49Wlp2//590bhxY4MxZGRkCABCrVaL7OzsSo/Lw8NDABD/+c9/pGW5ubnCxcVFtG3bVlqWl5cnCgsLDWozMjKESqUSc+bMkZa98soromXLluVus3ifMzIyhBBC5OTkCFtbW9GpUydx9+5dg74Pf08qsi4hhLhz506Jfu+8846wsrISeXl50rLin/UXX3whLcvPzxdt2rQRjo6OoqCgQAghxPfffy9MTEzEf//7X4N1rlq1SgAQBw4ckJZ5eHiIsLCwcsf86quvCgDixo0b5fYrVjyea9euScuOHTsmTExMRGhoqLQsLCxMeHh4lKgv/j15GAChVCrF2bNnDdYJQCxdulRatmDBghLfX6JH8S0zolKEhoYiPz8fP/30k7Tsxx9/xP379/Hmm28CACwtLaFUKpGYmIgbN2488TbDw8MN5seOHQsA2LZtGwBg48aNKCoqwqBBg3D16lVpcnZ2RpMmTbBnzx6DepVKhbfeeuuJx/WoHj16wNfXt9S2ESNGGLyt0alTJwghMGLECGmZqakpOnTogPPnz5eoDw4OrvJ/7q6urgZn9NRqNUJDQ3H06FHodDoAD74nJiYP/uwVFhbi2rVrsLGxQbNmzfDHH39ItXZ2dvjrr79w5MiRCm8/Pj4eN2/exAcffFDimqpH3+qpCEtLS+nrmzdv4urVq+jWrRvu3LmDU6dOGfQ1MzPDO++8I80rlUq88847yM7ORnJyMgBgw4YNaNGiBZo3b25w/Lz44osAUOL4eRy9Xg8AsLW1fWzfy5cvIyUlBcOGDTM46+fn54fevXtLx3hV+Pv7w9vb22CdarW61OOLqDwMRESlaN68OTp27IiYmBhpWUxMDDp37gwfHx8AD15cP/vsM2zfvh1OTk7o3r075s+fL734VlaTJk0M5r29vWFiYiJd63DmzBkIIdCkSRM4ODgYTCdPnkR2drZB/TPPPPNULkj28vIqs83d3d1gXqPRAADc3NxKLC8tRJa37sfx8fEpETyaNm0KANL3sKioCAsXLkSTJk2gUqnQqFEjODg44Pjx48jNzZXqpk6dChsbG/zjH/9AkyZNEB4ejgMHDpS7/XPnzgFAtd1ZlZ6ejldffRUajQZqtRoODg5SGH94rMCDMGhtbW2w7NF9P3PmDNLT00scO8X9Hj1+HketVgN4ENYe53//+x8AoFmzZiXaWrRogatXr+L27duV2n6xR485ALC3t6+Wf1JIXngNEVEZQkND8d577+Gvv/5Cfn4+Dh06hGXLlhn0GT9+PPr374/Nmzdjx44dmD59OqKiorB79260bdv2ibb/6It7UVERFAoFtm/fXurdTTY2NgbzD59hqE7lrbesu65KWy4euqi6IuuuDp9++immT5+O4cOHY+7cuWjQoAFMTEwwfvx4FBUVSf1atGiB06dPY8uWLYiLi8N//vMfrFixAjNmzMDs2bOf6hgBICcnBz169IBarcacOXPg7e0NCwsL/PHHH5g6darBWCuqqKgIrVu3xpdffllq+6Oh9XGaN28OAEhNTUW3bt0qPZ6ylHU2rayLycs65ko7vojKw0BEVIaQkBBMnDgRP/zwA+7evQtzc3O8/vrrJfp5e3tj0qRJmDRpEs6cOYM2bdrgiy++wNq1ayu1vTNnzhicITl79iyKioqki029vb0hhICXl5f0X31VVOXtm7rg7NmzEEIY7F/xgwGLv4c//fQTXnjhBfz73/82qM3JyZEuti1mbW2N119/Ha+//joKCgowcOBAfPLJJ4iMjCz1MQPFb9ukpaVJZxGrKjExEdeuXcPGjRvRvXt3aXlGRkap/TMzM3H79m2Ds0SP7ru3tzeOHTuGXr16Vcsx0L9/f0RFRWHt2rWPDUTFz2o6ffp0ibZTp06hUaNG0tjt7e1LfV5Q8VmmqqivxzxVL75lRlSGRo0aoW/fvli7di1iYmLQp08fgxfNO3fulLgt3tvbG7a2tlW6jXn58uUG80uXLgUA9O3bFwAwcOBAmJqaYvbs2SX++xVC4Nq1axXajrW1db18QF1mZqbBoxL0ej2+++47tGnTBs7OzgAenE149Hu3YcMG/P333wbLHv1eKpVK+Pr6QgiBe/fulbr9gIAA2NraIioqqsRxUdmzFcVnPR6uKygowIoVK0rtf//+fXz11VcGfb/66is4ODigffv2AB7cxfj333/jX//6V4n6u3fvVvotK61Wiz59+uCbb74p9Q61goICvP/++wAAFxcXtGnTBmvWrDE49tLS0rBz50689NJL0jJvb2/k5ubi+PHj0rLLly+X+hiMiioOW/XxuKfqwzNEROUIDQ3Fa6+9BuDBg+Ye9ueff6JXr14YNGgQfH19YWZmhk2bNiErKwshISGV3lZGRgZefvll9OnTB0lJSVi7di0GDx6M5557DsCDF4qPP/4YkZGRuHDhAgYMGABbW1tkZGRg06ZNGDVqlPQCVJ727dtj5cqV+Pjjj+Hj4wNHR0fpwtq6rGnTphgxYgSOHDkCJycnfPvtt8jKysLq1aulPv369cOcOXPw1ltvoUuXLkhNTUVMTAyeffZZg3UFBATA2dkZXbt2hZOTE06ePIlly5YhKCiozIuI1Wo1Fi5ciJEjR6Jjx44YPHgw7O3tcezYMdy5cwdr1qyp8L506dIF9vb2CAsLw7hx46BQKPD999+XGaxcXV3x2Wef4cKFC2jatCl+/PFHpKSk4Ouvv4a5uTmAB7fHr1+/HqNHj8aePXvQtWtXFBYW4tSpU1i/fj127NiBDh06VHiMAPDdd98hICAAAwcORP/+/dGrVy9YW1vjzJkzWLduHS5fviw9i2jBggXo27cvtFotRowYId12r9FoMGvWLGmdISEhmDp1Kl599VWMGzcOd+7cwcqVK9G0aVODC98rozgUfvTRRwgJCYG5uTn69+9f4rorkjmj3NtGVEfk5+cLe3t7odFoStxKffXqVREeHi6aN28urK2thUajEZ06dRLr16+v1DaKbyc+ceKEeO2114Stra2wt7cXERERJbYphBD/+c9/xPPPPy+sra2FtbW1aN68uQgPDxenT5+W+vTo0aPM28Z1Op0ICgoStra2AkClbsEHIMLDw0ssL75t/MiRI6Xu25UrVwyWh4WFCWtra2m++Lb7qj7CwMPDQwQFBYkdO3YIPz8/oVKpRPPmzcWGDRsM+uXl5YlJkyYJFxcXYWlpKbp27SqSkpJEjx49DL4PX331lejevbto2LChUKlUwtvbW0yePFnk5uaW2OdHb+X+5ZdfRJcuXYSlpaVQq9XiH//4h/jhhx/KHX9p6zpw4IDo3LmzsLS0FK6urmLKlClix44dAoDYs2eP1K/4Z/37778LrVYrLCwshIeHh1i2bFmJ7RQUFIjPPvtMtGzZUqhUKmFvby/at28vZs+ebbBvFbntvtidO3fE559/Ljp27ChsbGyEUqkUTZo0EWPHjjW4HV4IIXbt2iW6du0qfW/69+8vTpw4UWKdO3fuFK1atRJKpVI0a9ZMrF27tszb7ks7Hksb/9y5c8UzzzwjTExMeAs+lUohBK88IyrL/fv34erqiv79+5e47oSIiOoPXkNEVI7NmzfjypUrJZ6oTERE9QvPEBGV4rfffsPx48cxd+5cNGrUqErXLty6dQu3bt0qt4+Dg0Ot+IDQxz07ydLSUnqmUE26cuVKmbdbAw8udq7Mx3sQEZWFF1UTlWLlypVYu3Yt2rRpg+jo6Cqt4/PPP3/sM2syMjKq/BlO1cnFxaXc9rCwsCp/H55Ex44dy73dukePHkhMTKy5ARFRvcUzRERPyfnz5x/78QHPP/98qc+0qWm7du0qt93V1bXMj+t4mg4cOIC7d++W2W5vby/dQURE9CQYiIiIiEj2eFE1ERERyR6vIaqAoqIiZGZmwtbWlo+AJyIiqiOEELh58yZcXV1hYlL+OSAGogrIzMys9AcfEhERUe1w6dIlNG7cuNw+DEQVUPyo/kuXLkGtVht5NERERFQRer0ebm5uZX7kzsMYiCqg+G0ytVrNQERERFTHVORyF15UTURERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLLHQERERESyx0BEREREssdARERERLJXawLRvHnzoFAoMH78eGlZXl4ewsPD0bBhQ9jY2CA4OBhZWVkGdRcvXkRQUBCsrKzg6OiIyZMn4/79+wZ9EhMT0a5dO6hUKvj4+CA6OroG9oiIiIjqiloRiI4cOYKvvvoKfn5+BssnTJiAX3/9FRs2bMDevXuRmZmJgQMHSu2FhYUICgpCQUEBDh48iDVr1iA6OhozZsyQ+mRkZCAoKAgvvPACUlJSMH78eIwcORI7duyosf0jIiKi2k0hhBDGHMCtW7fQrl07rFixAh9//DHatGmDRYsWITc3Fw4ODoiNjcVrr70GADh16hRatGiBpKQkdO7cGdu3b0e/fv2QmZkJJycnAMCqVaswdepUXLlyBUqlElOnTsXWrVuRlpYmbTMkJAQ5OTmIi4ur0Bj1ej00Gg1yc3OhVqsBAPOOXi235oO2jary7SAiIqJqUtrrd1mMfoYoPDwcQUFB8Pf3N1ienJyMe/fuGSxv3rw53N3dkZSUBABISkpC69atpTAEAIGBgdDr9UhPT5f6PLruwMBAaR1EREREZsbc+Lp16/DHH3/gyJEjJdp0Oh2USiXs7OwMljs5OUGn00l9Hg5Dxe3FbeX10ev1uHv3LiwtLUtsOz8/H/n5+dK8Xq+v/M4RERFRnWG0M0SXLl3Ce++9h5iYGFhYWBhrGKWKioqCRqORJjc3N2MPiYiIiJ4iowWi5ORkZGdno127djAzM4OZmRn27t2LJUuWwMzMDE5OTigoKEBOTo5BXVZWFpydnQEAzs7OJe46K55/XB+1Wl3q2SEAiIyMRG5urjRdunSpOnaZiIiIaimjBaJevXohNTUVKSkp0tShQwcMGTJE+trc3BwJCQlSzenTp3Hx4kVotVoAgFarRWpqKrKzs6U+8fHxUKvV8PX1lfo8vI7iPsXrKI1KpYJarTaYiIiIqP4y2jVEtra2aNWqlcEya2trNGzYUFo+YsQITJw4EQ0aNIBarcbYsWOh1WrRuXNnAEBAQAB8fX0xdOhQzJ8/HzqdDtOmTUN4eDhUKhUAYPTo0Vi2bBmmTJmC4cOHY/fu3Vi/fj22bt1asztMREREtZZRL6p+nIULF8LExATBwcHIz89HYGAgVqxYIbWbmppiy5YtGDNmDLRaLaytrREWFoY5c+ZIfby8vLB161ZMmDABixcvRuPGjfHNN98gMDDQGLtEREREtZDRn0NUF/A5RERERHVPnXoOEREREZGxMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewxEBEREZHsMRARERGR7DEQERERkewZNRCtXLkSfn5+UKvVUKvV0Gq12L59u9Tes2dPKBQKg2n06NEG67h48SKCgoJgZWUFR0dHTJ48Gffv3zfok5iYiHbt2kGlUsHHxwfR0dE1sXtERERUR5gZc+ONGzfGvHnz0KRJEwghsGbNGrzyyis4evQoWrZsCQB4++23MWfOHKnGyspK+rqwsBBBQUFwdnbGwYMHcfnyZYSGhsLc3ByffvopACAjIwNBQUEYPXo0YmJikJCQgJEjR8LFxQWBgYE1u8NERERUKymEEMLYg3hYgwYNsGDBAowYMQI9e/ZEmzZtsGjRolL7bt++Hf369UNmZiacnJwAAKtWrcLUqVNx5coVKJVKTJ06FVu3bkVaWppUFxISgpycHMTFxVVoTHq9HhqNBrm5uVCr1QCAeUevllvzQdtGFVo3ERERPR2lvX6XpdZcQ1RYWIh169bh9u3b0Gq10vKYmBg0atQIrVq1QmRkJO7cuSO1JSUloXXr1lIYAoDAwEDo9Xqkp6dLffz9/Q22FRgYiKSkpDLHkp+fD71ebzARERFR/WXUt8wAIDU1FVqtFnl5ebCxscGmTZvg6+sLABg8eDA8PDzg6uqK48ePY+rUqTh9+jQ2btwIANDpdAZhCIA0r9Ppyu2j1+tx9+5dWFpalhhTVFQUZs+eXe37SkRERLWT0QNRs2bNkJKSgtzcXPz0008ICwvD3r174evri1GjRkn9WrduDRcXF/Tq1Qvnzp2Dt7f3UxtTZGQkJk6cKM3r9Xq4ubk9te0RERGRcRn9LTOlUgkfHx+0b98eUVFReO6557B48eJS+3bq1AkAcPbsWQCAs7MzsrKyDPoUzzs7O5fbR61Wl3p2CABUKpV051vxRERERPWX0QPRo4qKipCfn19qW0pKCgDAxcUFAKDVapGamors7GypT3x8PNRqtfS2m1arRUJCgsF64uPjDa5TIiIiInkz6ltmkZGR6Nu3L9zd3XHz5k3ExsYiMTERO3bswLlz5xAbG4uXXnoJDRs2xPHjxzFhwgR0794dfn5+AICAgAD4+vpi6NChmD9/PnQ6HaZNm4bw8HCoVCoAwOjRo7Fs2TJMmTIFw4cPx+7du7F+/Xps3brVmLtOREREtYhRA1F2djZCQ0Nx+fJlaDQa+Pn5YceOHejduzcuXbqEXbt2YdGiRbh9+zbc3NwQHByMadOmSfWmpqbYsmULxowZA61WC2tra4SFhRk8t8jLywtbt27FhAkTsHjxYjRu3BjffPMNn0FEREREklr3HKLaiM8hIiIiqnvq5HOIiIiIiIyFgYiIiIhkj4GIiIiIZI+BiIiIiGSPgYiIiIhkj4GIiIiIZI+BiIiIiGSPgYiIiIhkj4GIiIiIZI+BiIiIiGSPgYiIiIhkj4GIiIiIZI+BiIiIiGSPgYiIiIhkj4GIiIiIZI+BiIiIiGSPgYiIiIhkj4GIiIiIZI+BiIiIiGSPgYiIiIhkj4GIiIiIZI+BiIiIiGSPgYiIiIhkj4GIiIiIZI+BiIiIiGSPgYiIiIhkj4GIiIiIZI+BiIiIiGSPgYiIiIhkj4GIiIiIZI+BiIiIiGSPgYiIiIhkj4GIiIiIZM+ogWjlypXw8/ODWq2GWq2GVqvF9u3bpfa8vDyEh4ejYcOGsLGxQXBwMLKysgzWcfHiRQQFBcHKygqOjo6YPHky7t+/b9AnMTER7dq1g0qlgo+PD6Kjo2ti94iIiKiOMGogaty4MebNm4fk5GT8/vvvePHFF/HKK68gPT0dADBhwgT8+uuv2LBhA/bu3YvMzEwMHDhQqi8sLERQUBAKCgpw8OBBrFmzBtHR0ZgxY4bUJyMjA0FBQXjhhReQkpKC8ePHY+TIkdixY0eN7y8RERHVTgohhDD2IB7WoEEDLFiwAK+99hocHBwQGxuL1157DQBw6tQptGjRAklJSejcuTO2b9+Ofv36ITMzE05OTgCAVatWYerUqbhy5QqUSiWmTp2KrVu3Ii0tTdpGSEgIcnJyEBcXV6Ex6fV6aDQa5ObmQq1WAwDmHb1abs0HbRtVZfeJiIiompT2+l2WWnMNUWFhIdatW4fbt29Dq9UiOTkZ9+7dg7+/v9SnefPmcHd3R1JSEgAgKSkJrVu3lsIQAAQGBkKv10tnmZKSkgzWUdyneB2lyc/Ph16vN5iIiIio/jJ6IEpNTYWNjQ1UKhVGjx6NTZs2wdfXFzqdDkqlEnZ2dgb9nZycoNPpAAA6nc4gDBW3F7eV10ev1+Pu3buljikqKgoajUaa3NzcqmNXiYiIqJYyeiBq1qwZUlJS8Ntvv2HMmDEICwvDiRMnjDqmyMhI5ObmStOlS5eMOh4iIiJ6usyMPQClUgkfHx8AQPv27XHkyBEsXrwYr7/+OgoKCpCTk2NwligrKwvOzs4AAGdnZxw+fNhgfcV3oT3c59E707KysqBWq2FpaVnqmFQqFVQqVbXsHxEREdV+Rj9D9KiioiLk5+ejffv2MDc3R0JCgtR2+vRpXLx4EVqtFgCg1WqRmpqK7OxsqU98fDzUajV8fX2lPg+vo7hP8TqIiIiIjHqGKDIyEn379oW7uztu3ryJ2NhYJCYmYseOHdBoNBgxYgQmTpyIBg0aQK1WY+zYsdBqtejcuTMAICAgAL6+vhg6dCjmz58PnU6HadOmITw8XDrDM3r0aCxbtgxTpkzB8OHDsXv3bqxfvx5bt2415q4TERFRLWLUQJSdnY3Q0FBcvnwZGo0Gfn5+2LFjB3r37g0AWLhwIUxMTBAcHIz8/HwEBgZixYoVUr2pqSm2bNmCMWPGQKvVwtraGmFhYZgzZ47Ux8vLC1u3bsWECROwePFiNG7cGN988w0CAwNrfH+JiIiodqp1zyGqjfgcIiIiorqnTj6HiIiIiMhYGIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9owaiKKiotCxY0fY2trC0dERAwYMwOnTpw369OzZEwqFwmAaPXq0QZ+LFy8iKCgIVlZWcHR0xOTJk3H//n2DPomJiWjXrh1UKhV8fHwQHR39tHePiIiI6gijBqK9e/ciPDwchw4dQnx8PO7du4eAgADcvn3boN/bb7+Ny5cvS9P8+fOltsLCQgQFBaGgoAAHDx7EmjVrEB0djRkzZkh9MjIyEBQUhBdeeAEpKSkYP348Ro4ciR07dtTYvhIREVHtpRBCCGMPotiVK1fg6OiIvXv3onv37gAenCFq06YNFi1aVGrN9u3b0a9fP2RmZsLJyQkAsGrVKkydOhVXrlyBUqnE1KlTsXXrVqSlpUl1ISEhyMnJQVxc3GPHpdfrodFokJubC7VaDQCYd/RquTUftG1UkV0mIiKip6S01++y1KpriHJzcwEADRo0MFgeExODRo0aoVWrVoiMjMSdO3ektqSkJLRu3VoKQwAQGBgIvV6P9PR0qY+/v7/BOgMDA5GUlFTqOPLz86HX6w0mIiIiqr/MjD2AYkVFRRg/fjy6du2KVq1aScsHDx4MDw8PuLq64vjx45g6dSpOnz6NjRs3AgB0Op1BGAIgzet0unL76PV63L17F5aWlgZtUVFRmD17drXvIxEREdVOtSYQhYeHIy0tDfv37zdYPmrUKOnr1q1bw8XFBb169cK5c+fg7e39VMYSGRmJiRMnSvN6vR5ubm5PZVtERERkfLXiLbOIiAhs2bIFe/bsQePGjcvt26lTJwDA2bNnAQDOzs7Iysoy6FM87+zsXG4ftVpd4uwQAKhUKqjVaoOJiIiI6i+jBiIhBCIiIrBp0ybs3r0bXl5ej61JSUkBALi4uAAAtFotUlNTkZ2dLfWJj4+HWq2Gr6+v1CchIcFgPfHx8dBqtdW0J0RERFSXGTUQhYeHY+3atYiNjYWtrS10Oh10Oh3u3r0LADh37hzmzp2L5ORkXLhwAb/88gtCQ0PRvXt3+Pn5AQACAgLg6+uLoUOH4tixY9ixYwemTZuG8PBwqFQqAMDo0aNx/vx5TJkyBadOncKKFSuwfv16TJgwwWj7TkRERLWHUW+7VygUpS5fvXo1hg0bhkuXLuHNN99EWloabt++DTc3N7z66quYNm2awdtY//vf/zBmzBgkJibC2toaYWFhmDdvHszM/v8SqcTEREyYMAEnTpxA48aNMX36dAwbNqxC4+Rt90RERHVPZW67r1XPIaqtGIiIiIjqnjr7HCIiIiIiY2AgIiIiItljICIiIiLZYyAiIiIi2WMgIiIiItljICIiIiLZYyAiIiIi2WMgIiIiItljICIiIiLZq1IgevbZZ3Ht2rUSy3NycvDss88+8aCIiIiIalKVAtGFCxdQWFhYYnl+fj7+/vvvJx4UERERUU0ye3yX//fLL79IX+/YsQMajUaaLywsREJCAjw9PattcEREREQ1oVKBaMCAAQAefEp9WFiYQZu5uTk8PT3xxRdfVNvgiIiIiGpCpQJRUVERAMDLywtHjhxBo0b8RHciIiKq+yoViIplZGRU9ziIiIiIjKZKgQgAEhISkJCQgOzsbOnMUbFvv/32iQdGREREVFOqFIhmz56NOXPmoEOHDnBxcYFCoajucRERERHVmCoFolWrViE6OhpDhw6t7vEQERER1bgqPYeooKAAXbp0qe6xEBERERlFlQLRyJEjERsbW91jISIiIjKKKr1llpeXh6+//hq7du2Cn58fzM3NDdq//PLLahkcERERUU2oUiA6fvw42rRpAwBIS0szaOMF1kRERFTXVCkQ7dmzp7rHQURERGQ0VbqGiIiIiKg+qdIZohdeeKHct8Z2795d5QERERER1bQqBaLi64eK3bt3DykpKUhLSyvxoa9EREREtV2VAtHChQtLXT5r1izcunXriQZEREREVNOq9RqiN998k59jRkRERHVOtQaipKQkWFhYVOcqiYiIiJ66Kr1lNnDgQIN5IQQuX76M33//HdOnT6+WgRERERHVlCoFIo1GYzBvYmKCZs2aYc6cOQgICKiWgRERERHVlCoFotWrV1f3OIiIiIiMpkqBqFhycjJOnjwJAGjZsiXatm1bLYMiIiIiqklVuqg6OzsbL774Ijp27Ihx48Zh3LhxaN++PXr16oUrV65UeD1RUVHo2LEjbG1t4ejoiAEDBuD06dMGffLy8hAeHo6GDRvCxsYGwcHByMrKMuhz8eJFBAUFwcrKCo6Ojpg8eTLu379v0CcxMRHt2rWDSqWCj48PoqOjq7LrREREVA9VKRCNHTsWN2/eRHp6Oq5fv47r168jLS0Ner0e48aNq/B69u7di/DwcBw6dAjx8fG4d+8eAgICcPv2banPhAkT8Ouvv2LDhg3Yu3cvMjMzDS7qLiwsRFBQEAoKCnDw4EGsWbMG0dHRmDFjhtQnIyMDQUFBeOGFF5CSkoLx48dj5MiR2LFjR1V2n4iIiOoZhRBCVLZIo9Fg165d6Nixo8Hyw4cPIyAgADk5OVUazJUrV+Do6Ii9e/eie/fuyM3NhYODA2JjY/Haa68BAE6dOoUWLVogKSkJnTt3xvbt29GvXz9kZmbCyckJALBq1SpMnToVV65cgVKpxNSpU7F161akpaVJ2woJCUFOTg7i4uIeOy69Xg+NRoPc3Fyo1WoAwLyjV8ut+aBtoyp9D4iIiKh6lPb6XZYqnSEqKiqCubl5ieXm5uYoKiqqyioBALm5uQCABg0aAHhwjdK9e/fg7+8v9WnevDnc3d2RlJQE4MGzj1q3bi2FIQAIDAyEXq9Henq61OfhdRT3KV7Ho/Lz86HX6w0mIiIiqr+qFIhefPFFvPfee8jMzJSW/f3335gwYQJ69epVpYEUFRVh/Pjx6Nq1K1q1agUA0Ol0UCqVsLOzM+jr5OQEnU4n9Xk4DBW3F7eV10ev1+Pu3bslxhIVFQWNRiNNbm5uVdonIiIiqhuqFIiWLVsGvV4PT09PeHt7w9vbG15eXtDr9Vi6dGmVBhIeHo60tDSsW7euSvXVKTIyErm5udJ06dIlYw+JiIiInqIq3Xbv5uaGP/74A7t27cKpU6cAAC1atCjxtlRFRUREYMuWLdi3bx8aN24sLXd2dkZBQQFycnIMzhJlZWXB2dlZ6nP48GGD9RXfhfZwn0fvTMvKyoJarYalpWWJ8ahUKqhUqirtCxEREdU9lTpDtHv3bvj6+kKv10OhUKB3794YO3Ysxo4di44dO6Jly5b473//W+H1CSEQERGBTZs2Yffu3fDy8jJob9++PczNzZGQkCAtO336NC5evAitVgsA0Gq1SE1NRXZ2ttQnPj4earUavr6+Up+H11Hcp3gdREREJG+VCkSLFi3C22+/XeqV2hqNBu+88w6+/PLLCq8vPDwca9euRWxsLGxtbaHT6aDT6aTrejQaDUaMGIGJEydiz549SE5OxltvvQWtVovOnTsDAAICAuDr64uhQ4fi2LFj2LFjB6ZNm4bw8HDpLM/o0aNx/vx5TJkyBadOncKKFSuwfv16TJgwoTK7T0RERPVUpQLRsWPH0KdPnzLbAwICkJycXOH1rVy5Erm5uejZsydcXFyk6ccff5T6LFy4EP369UNwcDC6d+8OZ2dnbNy4UWo3NTXFli1bYGpqCq1WizfffBOhoaGYM2eO1MfLywtbt25FfHw8nnvuOXzxxRf45ptvEBgYWJndJyIionqqUs8hsrCwQFpaGnx8fEptP3v2LFq3bl3qnVt1GZ9DREREVPc8tecQPfPMMwYPN3zU8ePH4eLiUplVEhERERldpQLRSy+9hOnTpyMvL69E2927dzFz5kz069ev2gZHREREVBMqddv9tGnTsHHjRjRt2hQRERFo1qwZgAcfp7F8+XIUFhbio48+eioDJSIiInpaKhWInJyccPDgQYwZMwaRkZEovvxIoVAgMDAQy5cvL/FEaCIiIqLartIPZvTw8MC2bdtw48YNnD17FkIINGnSBPb29k9jfERERERPXZWeVA0A9vb2JT7tnoiIiKguqtJnmRERERHVJwxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7DEREREQkewxEREREJHsMRERERCR7Rg1E+/btQ//+/eHq6gqFQoHNmzcbtA8bNgwKhcJg6tOnj0Gf69evY8iQIVCr1bCzs8OIESNw69Ytgz7Hjx9Ht27dYGFhATc3N8yfP/9p7xoRERHVIUYNRLdv38Zzzz2H5cuXl9mnT58+uHz5sjT98MMPBu1DhgxBeno64uPjsWXLFuzbtw+jRo2S2vV6PQICAuDh4YHk5GQsWLAAs2bNwtdff/3U9ouIiIjqFjNjbrxv377o27dvuX1UKhWcnZ1LbTt58iTi4uJw5MgRdOjQAQCwdOlSvPTSS/j888/h6uqKmJgYFBQU4Ntvv4VSqUTLli2RkpKCL7/80iA4ERERkXzV+muIEhMT4ejoiGbNmmHMmDG4du2a1JaUlAQ7OzspDAGAv78/TExM8Ntvv0l9unfvDqVSKfUJDAzE6dOncePGjVK3mZ+fD71ebzARERFR/VWrA1GfPn3w3XffISEhAZ999hn27t2Lvn37orCwEACg0+ng6OhoUGNmZoYGDRpAp9NJfZycnAz6FM8X93lUVFQUNBqNNLm5uVX3rhEREVEtYtS3zB4nJCRE+rp169bw8/ODt7c3EhMT0atXr6e23cjISEycOFGa1+v1DEVERET1WK0+Q/SoZ599Fo0aNcLZs2cBAM7OzsjOzjboc//+fVy/fl267sjZ2RlZWVkGfYrny7o2SaVSQa1WG0xERERUf9WpQPTXX3/h2rVrcHFxAQBotVrk5OQgOTlZ6rN7924UFRWhU6dOUp99+/bh3r17Up/4+Hg0a9YM9vb2NbsDREREVCsZNRDdunULKSkpSElJAQBkZGQgJSUFFy9exK1btzB58mQcOnQIFy5cQEJCAl555RX4+PggMDAQANCiRQv06dMHb7/9Ng4fPowDBw4gIiICISEhcHV1BQAMHjwYSqUSI0aMQHp6On788UcsXrzY4C0xIiIikjejBqLff/8dbdu2Rdu2bQEAEydORNu2bTFjxgyYmpri+PHjePnll9G0aVOMGDEC7du3x3//+1+oVCppHTExMWjevDl69eqFl156Cc8//7zBM4Y0Gg127tyJjIwMtG/fHpMmTcKMGTN4yz0RERFJFEIIYexB1HZ6vR4ajQa5ubnS9UTzjl4tt+aDto1qYmhERERUhtJev8tSp64hIiIiInoaGIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9owaiPbt24f+/fvD1dUVCoUCmzdvNmgXQmDGjBlwcXGBpaUl/P39cebMGYM+169fx5AhQ6BWq2FnZ4cRI0bg1q1bBn2OHz+Obt26wcLCAm5ubpg/f/7T3jUiIiKqQ4waiG7fvo3nnnsOy5cvL7V9/vz5WLJkCVatWoXffvsN1tbWCAwMRF5entRnyJAhSE9PR3x8PLZs2YJ9+/Zh1KhRUrter0dAQAA8PDyQnJyMBQsWYNasWfj666+f+v4RERFR3aAQQghjDwIAFAoFNm3ahAEDBgB4cHbI1dUVkyZNwvvvvw8AyM3NhZOTE6KjoxESEoKTJ0/C19cXR44cQYcOHQAAcXFxeOmll/DXX3/B1dUVK1euxEcffQSdTgelUgkA+OCDD7B582acOnWqQmPT6/XQaDTIzc2FWq0GAMw7erXcmg/aNqrKt4GIiIiqSWmv32WptdcQZWRkQKfTwd/fX1qm0WjQqVMnJCUlAQCSkpJgZ2cnhSEA8Pf3h4mJCX777TepT/fu3aUwBACBgYE4ffo0bty4Ueq28/PzodfrDSYiIiKqv2ptINLpdAAAJycng+VOTk5Sm06ng6Ojo0G7mZkZGjRoYNCntHU8vI1HRUVFQaPRSJObm9uT7xARERHVWrU2EBlTZGQkcnNzpenSpUvGHhIRERE9RbU2EDk7OwMAsrKyDJZnZWVJbc7OzsjOzjZov3//Pq5fv27Qp7R1PLyNR6lUKqjVaoOJiIiI6q9aG4i8vLzg7OyMhIQEaZler8dvv/0GrVYLANBqtcjJyUFycrLUZ/fu3SgqKkKnTp2kPvv27cO9e/ekPvHx8WjWrBns7e1raG+IiIioNjNqILp16xZSUlKQkpIC4MGF1CkpKbh48SIUCgXGjx+Pjz/+GL/88gtSU1MRGhoKV1dX6U60Fi1aoE+fPnj77bdx+PBhHDhwABEREQgJCYGrqysAYPDgwVAqlRgxYgTS09Px448/YvHixZg4caKR9pqIiIhqGzNjbvz333/HCy+8IM0Xh5SwsDBER0djypQpuH37NkaNGoWcnBw8//zziIuLg4WFhVQTExODiIgI9OrVCyYmJggODsaSJUukdo1Gg507dyI8PBzt27dHo0aNMGPGDINnFREREVUUH7tSP9Wa5xDVZnwOERERFePf/7qjXjyHiIiIiKimMBARERGR7Bn1GiKqOp6yJSIiqj48Q0RERESyx0BEREREssdARERERLLHQERERESyx4uqiYhIVnhTCpWGZ4iIiIhI9hiIiIiISPYYiIiIiEj2GIiIiIhI9nhRNRERUQ3iRd21E88QERERkezxDBEREdUpPMNCTwPPEBEREZHsMRARERGR7DEQERERkewxEBEREZHs8aJqqhJe1EhERPUJzxARERGR7PEMERkFzzAREVFtwjNEREREJHs8Q2QkPENCRERUezAQUZ3EQElERNWJb5kRERGR7PEMEckSzzAREdHDeIaIiIiIZI+BiIiIiGSPgYiIiIhkj4GIiIiIZI+BiIiIiGSPgYiIiIhkr1YHolmzZkGhUBhMzZs3l9rz8vIQHh6Ohg0bwsbGBsHBwcjKyjJYx8WLFxEUFAQrKys4Ojpi8uTJuH//fk3vChFRtZl39Gq5ExFVXq1/DlHLli2xa9cuad7M7P+HPGHCBGzduhUbNmyARqNBREQEBg4ciAMHDgAACgsLERQUBGdnZxw8eBCXL19GaGgozM3N8emnn9b4vhAREVHtVOsDkZmZGZydnUssz83Nxb///W/ExsbixRdfBACsXr0aLVq0wKFDh9C5c2fs3LkTJ06cwK5du+Dk5IQ2bdpg7ty5mDp1KmbNmgWlUlnTu0NEZHRP+mBSPtiU6qNaH4jOnDkDV1dXWFhYQKvVIioqCu7u7khOTsa9e/fg7+8v9W3evDnc3d2RlJSEzp07IykpCa1bt4aTk5PUJzAwEGPGjEF6ejratm1b6jbz8/ORn58vzev1+qe3g0QkOwwURLVPrb6GqFOnToiOjkZcXBxWrlyJjIwMdOvWDTdv3oROp4NSqYSdnZ1BjZOTE3Q6HQBAp9MZhKHi9uK2skRFRUGj0UiTm5tb9e4YERER1Sq1+gxR3759pa/9/PzQqVMneHh4YP369bC0tHxq242MjMTEiROleb1ez1BERERUj9XqQPQoOzs7NG3aFGfPnkXv3r1RUFCAnJwcg7NEWVlZ0jVHzs7OOHz4sME6iu9CK+26pGIqlQoqlar6d4DqDb7lQURUv9SpQHTr1i2cO3cOQ4cORfv27WFubo6EhAQEBwcDAE6fPo2LFy9Cq9UCALRaLT755BNkZ2fD0dERABAfHw+1Wg1fX1+j7QeRsTHQEREZqtWB6P3330f//v3h4eGBzMxMzJw5E6ampnjjjTeg0WgwYsQITJw4EQ0aNIBarcbYsWOh1WrRuXNnAEBAQAB8fX0xdOhQzJ8/HzqdDtOmTUN4eDjPABE9AQYqIqpvanUg+uuvv/DGG2/g2rVrcHBwwPPPP49Dhw7BwcEBALBw4UKYmJggODgY+fn5CAwMxIoVK6R6U1NTbNmyBWPGjIFWq4W1tTXCwsIwZ84cY+0SEdUDDIRE9U+tDkTr1q0rt93CwgLLly/H8uXLy+zj4eGBbdu2VffQiIiIqB6p1bfdExEREdUEBiIiIiKSPQYiIiIikr1afQ0RERERGeJF/U8HzxARERGR7PEMERHVOH7aOhHVNjxDRERERLLHQERERESyx7fMiOogvmVERFS9eIaIiIiIZI+BiIiIiGSPgYiIiIhkj4GIiIiIZI+BiIiIiGSPgYiIiIhkj4GIiIiIZI+BiIiIiGSPgYiIiIhkj4GIiIiIZI+BiIiIiGSPgYiIiIhkj4GIiIiIZI+BiIiIiGSPgYiIiIhkz8zYAyAiIqK6Y97Rq+W2f9C2UZ3cPs8QERERkewxEBEREZHsMRARERGR7PEaIiIiIqoxxr4GqSw8Q0RERESyx0BEREREsse3zGSqtp6yJKL6j39/qDaS1Rmi5cuXw9PTExYWFujUqRMOHz5s7CERERFRLSCbM0Q//vgjJk6ciFWrVqFTp05YtGgRAgMDcfr0aTg6Ohp7eCQz/A/ZuPj9J6JHyeYM0Zdffom3334bb731Fnx9fbFq1SpYWVnh22+/NfbQiIiIyMhkcYaooKAAycnJiIyMlJaZmJjA398fSUlJRhwZERFRzeIZ0tLJIhBdvXoVhYWFcHJyMlju5OSEU6dOleifn5+P/Px8aT43NxcAoNfrpWV5t26Wu029XlluO+tZz3rWs571rH+69cWv20KIcmuKO9V7f//9twAgDh48aLB88uTJ4h//+EeJ/jNnzhQAOHHixIkTJ071YLp06dJjs4IszhA1atQIpqamyMrKMlielZUFZ2fnEv0jIyMxceJEab6oqAjXr19Hw4YNoVAoSvTX6/Vwc3PDpUuXoFarKz0+1rOe9axnPetZX/31QgjcvHkTrq6uj12XLAKRUqlE+/btkZCQgAEDBgB4EHISEhIQERFRor9KpYJKpTJYZmdn99jtqNXqKv1AWc961rOe9axn/dOp12g0FVqHLAIRAEycOBFhYWHo0KED/vGPf2DRokW4ffs23nrrLWMPjYiIiIxMNoHo9ddfx5UrVzBjxgzodDq0adMGcXFxJS60JiIiIvmRTSACgIiIiFLfIntSKpUKM2fOLPE2G+tZz3rWs571rK+99Q9TCFGRe9GIiIiI6i/ZPKmaiIiIqCwMRERERCR7DEREREQkewxEREREJHsMRERERCR7DET1REZGBu7fv2+07VfHtnnDI1UVj3+SMx7/1YOBqApOnDiBd999F23btoWLiwtcXFzQtm1bvPvuuzhx4sRj6y9fvoy1a9di27ZtKCgoMGi7ffs25syZU+kxNWvWDGfOnKl0XWZmJmbOnIkhQ4bg/fffx6lTp8rtHxcXh9TUVAAPPv5k7ty5eOaZZ6BSqdC4cWPMmzev3AM7Pz8f77//Prp3747PPvsMAPDxxx/DxsYGtra2GDx4sPTpxBWVn5+P/Pz8StU8DYmJibh7965Rtp2fn49z58490fchKysLOp3usf14/Neu4782kNMLMo//enz8P+EHycvOtm3bhFKpFJ07dxYzZ84UK1asECtWrBAzZ84UXbp0ESqVSsTFxZVZf/jwYWFnZyfUarWwtLQUPj4+Ii0tTWrX6XTCxMSkzPpXX3211MnExET4+/tL82WxtLQU2dnZQggh0tPThUajET4+PuKf//ynaN68ubCyshLHjh0rs75Zs2Zi3759QgghPv30U9GwYUPx5Zdfiu3bt4tFixYJJycnMW/evDLrJ0yYIFxdXcWkSZNEixYtxLvvvivc3d3F2rVrRWxsrPDx8RFjx44ts77Yzp07Rd++fYWdnZ0wMTERJiYmws7OTvTt21fEx8c/tj4lJUXMnTtXLF++XFy5csWgLTc3V7z11luPXcejzM3NxYkTJx7bLysry2D+6NGjIjQ0VHTp0kUEBweLPXv2lFu/evVqcfDgQSGEEHfv3hXDhw8XpqamwsTERJiZmYl33nlH5OXllVl/7do1ERwcLNzc3MTo0aPF/fv3xYgRI4RCoRAmJiZCq9WKzMzMUmt5/Bv/+E9PTxdjxowRbdq0Ec7OzsLZ2Vm0adNGjBkzRqSnp5dbK4QQmZmZ4vvvvxdbt24V+fn5Bm23bt0Ss2fPfuw6HlXRY/9Rf//9t5gxY4YYPHiwmDRpkjh58mS5/bdv3y6OHz8uhBCisLBQzJkzR7i6ugoTExPxzDPPiKioKFFUVFRmfV5enpg0aZLo1q2b9HOaO3eusLa2FtbW1uKNN94Qubm5Zdbz+K/7x395GIgqyc/PT0yfPr3M9pkzZ4rWrVuX2e7v7y/eeustUVhYKPR6vRgzZoxo2LCh+OOPP4QQj/+FUCgUokePHmLYsGEGk4mJiRgwYIA0X1598QvyK6+8Ivr37y/u3bsnhHjwByYkJET069evzHqVSiX+97//CSGEaNWqlVi/fr1B+5YtW4SPj0+Z9W5ublJgOXfunDAxMRGbN2+W2nfu3Ck8PDzKrBdCiOjoaGFmZiZCQkLE6tWrxbZt28S2bdvE6tWrxRtvvCHMzc3Fd999V2b9jh07hFKpFC1bthTu7u6iYcOGYvfu3VL7434Gbdu2LXVSKBSiRYsW0nxZTExMpJ/BgQMHhLm5uejRo4eYPHmy6N27tzAzMxN79+4ts97Ly0scOnRICCHE+++/Lzw9PcXGjRvFyZMnxebNm0XTpk3F5MmTy6wfPny4aNWqlVi6dKno0aOHeOWVV4Sfn5/Yv3+/OHjwoOjYsaMIDQ0ttZbHv3GPf74gG/cFmcd/3T7+H4eBqJIsLCzEqVOnymw/deqUsLCwKLPd3t5enD592mBZVFSUsLe3F4cPH37sL8QPP/wgGjduLL799luD5WZmZhVKxw//Qri5uUl/XIr98ccfwsXFpcx6FxcXkZSUJIQQwsnJSfpFLvbnn38KS0vLMustLS2lXyghHvxn+fAf5IyMDGFlZVXuPjRp0kQsW7aszPbly5eX+0up1WrFhx9+KIQQoqioSHz22WfCxsZGbN++XQjx+D9KZmZmok+fPmLWrFnSNHPmTGFiYiLeffddaVlZHv4Z9O7dWwwfPtyg/b333hMvvvhimfUP/1Fq2rSpNO5ie/fuFe7u7mXWu7i4iAMHDkj7qlAoxM6dO6X2/fv3i2eeeabUWh7/xj3++YJs3BdkHv91+/h/HAaiSmrevLn44osvymz/4osvRLNmzcpst7e3L/U/oAULFgg7OzuxcePGcn8hhHhw0HTt2lUMHDhQXL9+XQhR8V8IExMT6T80Dw+PEmM5f/58ub/Q7777rujXr5+4f/++GDVqlBg5cqTBKeqxY8cKrVZbZn2zZs3EunXrhBAP/ltVKpUGv9zr1q0TTZo0KXcfVCrVE/1RUqvV4uzZswbLYmJihLW1tfj1118f+0dp//79wtvbW8yYMUMUFhZKy6vyR+nhPzDF0tLSRKNGjcqs9/DwkM5oPfPMM+LIkSMG7SdOnBDW1tZl1ltZWYkLFy5I8+bm5iI1NVWaP3/+fJn1PP6Ne/zzBdm4L8g8/uv28f84DESVtH79emFmZib69+8vFi9eLNatWyfWrVsnFi9eLF5++WWhVCrFTz/9VGZ9t27dxMqVK0tt++yzz4RKpXrsL4QQD/6bmjFjhnBzcxNxcXHC3Ny8wn+Q7OzshL29vTA3Nxfff/+9QfvOnTuFp6dnmfU5OTmiQ4cOwsfHRwwdOlRYWFgIDw8P0bt3b+Hl5SU0Go30dk5pFi5cKCwsLIS/v7+wt7cXS5YsEc7OzmLKlCnigw8+EBqNRsyZM6fcfWjXrl25bwlNmTJFtGvXrsx2BwcH8fvvv5dY/sMPPwgrKyuxcuXKx/4McnJyREhIiOjUqZMUrirzonD27FmRm5srvLy8SvxRP3v2bLl/lD/88EOh1WrFjRs3xAcffCD69+8vbt68KYQQ4vbt22LQoEEiICCgzPrnnntOOsO2bds2YWtra/BHfuXKlaJVq1al1vL4N+7xzxdk474g8/iv28f/4zAQVcGBAwfE66+/Ltzd3YVSqRRKpVK4u7uL119/XbrYtSz/+te/xJtvvllm+7x588o9IB/13//+V3h5eQkTE5MK/UJER0cbTI+enZgzZ46YMGFCuesoKCgQK1euFC+99JJo3ry5aNq0qejRo4f48MMPxaVLlx47hpiYGBERESFiY2OFEELs2bNHdOvWTbRv317MmjXL4KxLafbs2SOsra1F69atxYQJE8S8efPEvHnzxIQJE4Sfn5+wsbEp9xqc3r17iwULFpTaFhsbK8zNzSv0R0kIIb799lvh7Owsvvrqq0r9USq+EFyhUIivv/7aoP3nn38u97R/fn6+ePnll4W9vb3o3bu3sLCwEFZWVqJJkybC2tpauLu7lzgL8LC1a9cKU1NT4ePjI1QqldiwYYNwdXUVgwYNEiEhIUKpVJb7liSPf+Md/3xBNv4/ZDz+6+7x/zj8tPt64NatWzh37hxatGgBpVJp7OHUiAsXLmDlypU4dOiQdKu4s7MztFotRo8eDU9PzzJrN23ahH379mHhwoWltsfGxuJf//oX9uzZU6GxnDlzBkOGDMHvv/+OtLQ0+Pr6ltt/7969BvMuLi5o2rSpNL948WIUFBRg8uTJ5a4nLi4Ov/76K86fP4+ioiK4uLiga9euGDx4MKytrcutPXDgAA4dOgStVosuXbrgxIkTmDdvHu7cuYP+/fsjLCzsMXtde8jt+D948CCWLFmCpKSkEsf+e++9B61WW2btN998g7179+L7778vtf2zzz7DqlWrkJGRUaGx7N+/H6Ghofjf//6H1NTUxx77a9asMZhv1qwZOnfuLM3PnTsXN27cwJdfflnmOu7du4d///vfpR77Y8aMQePGjcsdQ2xsLJKSktClSxe88cYbSExMxIwZM6Rjf/r06TAxqTtPpOHxX/Hj/3EYiIiqQVFREW7evAm1Wg2FQmHs4RDVGLm9IFP9VXdicB3x4YcfYvjw4aw3Ur2xmJiYQKPRyD4MGfvnL/d6Y7CxscFzzz3HMATj//zlXv+kGIiq2V9//YULFy6w3kj1ABAWFoYXX3yR9Uao//vvv5/o58f6J6s39guS3OuN/fOXe/2T/vzMqlxJpfruu+9Yb8R6AHB1dX2iawBYX/X6R68RYX3N1v/111/466+/WF/D9UIIKBSKKv/8WP9k9cWe9OfPa4iq4OrVq/j2229LXNTVpUsXDBs2DA4ODqx/ivVERLWJUqnEsWPH0KJFC9Ybob66MBBV0pEjRxAYGAgrKyv4+/vDyckJwIMPxkxISMCdO3ewY8cOdOjQgfVPob4iLl26hJkzZ+Lbb79l/VOov3v3LpKTk9GgQYMSdxXl5eVh/fr1CA0NLXP9rH+y+pMnT0p3CDZv3hynTp3C4sWLkZ+fjzfffPOxb3eyvur1EydOLHX54sWL8eabb6Jhw4YAUOZdcqx/svpH3b59G+vXr8fZs2fh4uKCN954Q1pHlVT5hn2Z6tSpkxg1alSpHyBYVFQkRo0aJTp37sz6p1RfESkpKRV+jhDrK1d/+vRp4eHhIT1LqXv37gYfBPu4Jx2z/snqt2/fLpRKpWjQoIGwsLAQ27dvFw4ODsLf31+8+OKLwtTUVCQkJLD+KdUrFArRpk0b0bNnT4NJoVCIjh07ip49e4oXXniB9U+pvkWLFuLatWtCCCEuXrwoPD09hUajER07dhQNGjQQjo6O4vz582XWPw4DUSVZWFiU+4nMJ0+eLPdJq6x/snohHjy4sLxp4cKF5b6osL7q9QMGDBBBQUHiypUr4syZMyIoKEh4eXlJH4fwuBd01j9ZvVarFR999JEQ4sGT1e3t7aXP5RNCiA8++ED07t2b9U+pPioqSnh5eZUITRV9Ujfrn6z+4Y9+GTJkiOjSpYvIyckRQghx8+ZN4e/vL954443HrqcsDESV5OnpKdasWVNm+5o1a8r9cEDWP1m9EP//pGeFQlHm9LgPqGR91eodHR3F8ePHpfmioiIxevRo4e7uLs6dO/fYF3TWP1m9Wq0WZ86cEUI8eFq0mZmZwUe/pKamCicnJ9Y/pXohHnzkR9OmTcWkSZNEQUGBEKLiL+isf7L6hwPRs88+a/Ch1EI8eIq4m5tbhcZRGgaiSlq2bJlQqVRi3Lhx4ueffxaHDh0Shw4dEj///LMYN26csLS0FMuXL2f9U6oXQghXV1eDT6h+1NGjR8t9UWF91ettbW3FiRMnSiwPDw8XjRs3Fvv27St326x/svpHP5jYxsZGnDt3Tpq/cOFCpT7YmPWVqy928+ZNERoaKvz8/ERqamqFP7qE9U9Wr1AopM/Cc3V1NfhQaiEq/vMrCwNRFaxbt0506tRJmJmZSf9Rm5mZiU6dOokff/yR9U+5vn///mL69OlltqekpAiFQsH6p1DfsWNH8d1335XaFh4eLuzs7Mp9QWf9k9X7+fmJ7du3S/Opqani3r170vy+ffuEl5cX659S/aN++OEH4eTkVOHPEmP9k9UrFArRunVr0bZtW2FjY1Pic8v27t0rnnnmmUqPoxgD0RMoKCgQmZmZIjMzUzr1x/qnX79v3z6DP2qPunXrlkhMTGT9U6j/9NNPRd++fcusHTNmTLlhjPVPVr9y5UqxZcuWMtsjIyPFiBEjWP+U6ktz6dIlsXnzZnHr1q1K1bG+8vWzZs0ymOLi4gza33//fRESElKlcQjBD3clIiIi4kd3EBERETEQERERkewxEBEREZHsMRARUb3Qs2dPjB8/vkJ9ExMToVAokJOT80Tb9PT0xKJFi55oHURUOzAQERERkewxEBEREZHsMRARUb3z/fffo0OHDrC1tYWzszMGDx6M7OzsEv0OHDgAPz8/WFhYoHPnzkhLSzNo379/P7p16wZLS0u4ublh3LhxuH37dk3tBhHVIAYiIqp37t27h7lz5+LYsWPYvHkzLly4gGHDhpXoN3nyZHzxxRc4cuQIHBwc0L9/f9y7dw8AcO7cOfTp0wfBwcE4fvw4fvzxR+zfvx8RERE1vDdEVBPMjD0AIqLqNnz4cOnrZ599FkuWLEHHjh1x69Yt2NjYSG0zZ85E7969AQBr1qxB48aNsWnTJgwaNAhRUVEYMmSIdKF2kyZNsGTJEvTo0QMrV66EhYVFje4TET1dPENERPVOcnIy+vfvD3d3d9ja2qJHjx4AgIsXLxr002q10tcNGjRAs2bNcPLkSQDAsWPHEB0dDRsbG2kKDAxEUVERMjIyam5niKhG8AwREdUrt2/fRmBgIAIDAxETEwMHBwdcvHgRgYGBKCgoqPB6bt26hXfeeQfjxo0r0ebu7l6dQyaiWoCBiIjqlVOnTuHatWuYN28e3NzcAAC///57qX0PHTokhZsbN27gzz//RIsWLQAA7dq1w4kTJ+Dj41MzAycio+JbZkRUr7i7u0OpVGLp0qU4f/48fvnlF8ydO7fUvnPmzEFCQgLS0tIwbNgwNGrUCAMGDAAATJ06FQcPHkRERARSUlJw5swZ/Pzzz7yomqieYiAionrFwcEB0dHR2LBhA3x9fTFv3jx8/vnnpfadN28e3nvvPbRv3x46nQ6//vorlEolAMDPzw979+7Fn3/+iW7duqFt27aYMWMGXF1da3J3iKiGKIQQwtiDICIiIjImniEiIiIi2WMgIiIiItljICIiIiLZYyAiIiIi2WMgIiIiItljICIiIiLZYyAiIiIi2WMgIiIiItljICIiIiLZYyAiIiIi2WMgIiIiItljICIiIiLZ+z9Nu8H9iOmg9AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_label_count(ys_bert_rmr_basic, \"ys_bert_rmr_basic\")" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHPCAYAAACyf8XcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHq0lEQVR4nO39eXxM9////98nkkwiJLEmUhFLbClKUaK1NoTiVaWvSkst1YWGFq2iC0r7srSl2irfvlq0RS19ldZOre8StbT2pXbaNKFIBiWWPH9/9Jf5GFkkESac2/VyOZeLOc/n45znmTmZuXvOmRmbMcYIAADAwjzcPQAAAAB3IxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABd7GpU6fKZrPpyJEjbtl/2bJl1aZNmzzZls1mU+/evfNkW9k1bNgw2Ww2t28rL+/HNDabTcOGDcvTbQJ3MgIRACBLDodDb7/9tu677z4VKlRIvr6+qlatmgYOHKj4+Hh3D0+StGjRIgIebgqBCAAy8eabb+rChQvuHoZbHTp0SDVr1tSIESMUERGh0aNH66OPPlLTpk31xRdfqEmTJu4eoqR/AtHbb7/t7mHgDubp7gEAuPv8/fffKliwoLuHcdM8PT3l6Wndp8krV66offv2SkxM1OrVq/XQQw+5tL/77rsaPXq0m0YH5C1miIAcWLVqlWw2m+bOnZuubcaMGbLZbIqLi5MkJSQkqHv37ipdurTsdrtKlSqlRx99NEfX8xw9elQvvviiKleuLF9fXxUrVkz//ve/M9zGrl271KxZM/n6+qp06dJ65513lJqa6tKnTZs2Kl++fIb7ioyMVJ06dVzWTZs2TbVr15avr6+KFi2qmJgYHT9+3KVPkyZNVK1aNW3ZskWNGjVSwYIF9frrr7v0WbZsmWrWrCkfHx9FRETou+++y/Z9cL3p06ercuXK8vHxUe3atbV27VqX9uzeZ5cvX9bbb7+tihUrysfHR8WKFdNDDz2k5cuXO/tkdt3PtGnT9MADD6hgwYIqUqSIGjVqpGXLluX4WKZMmaJmzZqpZMmSstvtioiI0MSJEzPtn537MSkpSX379lVoaKjsdrvCw8M1evTodOdCdvzvf//Ttm3b9MYbb6QLQ5Lk7++vd99912XdnDlznOdM8eLF1blzZ/3xxx8ufZo0aZLhzFK3bt1UtmxZ5+0jR47IZrPp/fff12effaYKFSrIbrerbt262rRpk0vdhAkTJP1zbVTaAuSEdf/rA+RCkyZNFBoaqunTp+uxxx5zaZs+fboqVKigyMhISVKHDh20a9cu9enTR2XLltWJEye0fPlyHTt2zOVJPyubNm3S+vXrFRMTo9KlS+vIkSOaOHGimjRpot27dztnYRISEtS0aVNduXJFgwYNkp+fnz777DP5+vq6bK9jx47q0qWLNm3apLp16zrXHz16VBs2bNB7773nXPfuu+/qrbfe0hNPPKFnn31WJ0+e1Mcff6xGjRrp119/VWBgoLPvqVOn1KpVK8XExKhz584KCgpytu3fv18dO3ZUz5491bVrV02ZMkX//ve/tWTJEjVv3jxb90OaNWvWaNasWXrppZdkt9v16aefqmXLltq4caOqVauWo/ts2LBhGjlypJ599lk98MADcjgc2rx5s3755Zcsx/X2229r2LBhatCggYYPHy5vb2/9/PPPWrlypVq0aJGj45k4caLuvfde/etf/5Knp6fmz5+vF198UampqYqNjXXpm5378e+//1bjxo31xx9/6IUXXlCZMmW0fv16DR48WH/++ac+/PDDHI3vhx9+kCQ9/fTT2eo/depUde/eXXXr1tXIkSOVmJio8ePHa926denOmZyYMWOGzp49qxdeeEE2m01jxoxR+/btdejQIXl5eemFF15QfHy8li9frq+//jpX+wBkAOTI4MGDjd1uN0lJSc51J06cMJ6enmbo0KHGGGPOnDljJJn33nvvpvb1999/p1sXFxdnJJmvvvrKua5v375Gkvn5559dxhQQEGAkmcOHDxtjjElOTjZ2u9288sorLtscM2aMsdls5ujRo8YYY44cOWIKFChg3n33XZd+O3bsMJ6eni7rGzdubCSZSZMmpRtrWFiYkWT+97//OdclJyebUqVKmVq1auXgnjBGkpFkNm/e7Fx39OhR4+PjYx577DHnuuzeZ/fdd59p3bp1lvscOnSoufZpcv/+/cbDw8M89thj5urVqy59U1NTc7StzMYaHR1typcv77Iuu/fjiBEjjJ+fn/ntt99c6gcNGmQKFChgjh075lwnyXm+ZqZWrVomICAgyz5pLl26ZEqWLGmqVatmLly44Fy/YMECI8kMGTLEua5x48amcePG6bbRtWtXExYW5rx9+PBhI8kUK1bMnD592rn++++/N5LM/PnznetiY2PT3b9ATvCWGZBDXbp0UUpKir799lvnulmzZunKlSvq3LmzJMnX11fe3t5avXq1zpw5k+t9XTvDc/nyZZ06dUrh4eEKDAzUL7/84mxbtGiR6tevrwceeMC5rkSJEurUqZPL9vz9/dWqVSvNnj1bxhiX8devX19lypSRJH333XdKTU3VE088ob/++su5BAcHq2LFilq1apXLdu12u7p3757hMYSEhLjMpvn7+6tLly769ddflZCQkKP7IzIyUrVr13beLlOmjB599FEtXbpUV69elZT9+ywwMFC7du3S/v37s73/efPmKTU1VUOGDJGHh+vTZ27eorl2rMnJyfrrr7/UuHFjHTp0SMnJyS59s3M/zpkzRw0bNlSRIkVcHreoqChdvXo13duLN+JwOFS4cOFs9d28ebNOnDihF198UT4+Ps71rVu3VpUqVbRw4cIc7ftaHTt2VJEiRZy3GzZsKOmfC76BvEIgAnKoSpUqqlu3rqZPn+5cN336dNWvX1/h4eGS/gkIo0eP1uLFixUUFKRGjRppzJgxOQ4AFy5c0JAhQ5zXgxQvXlwlSpRQUlKSywvm0aNHVbFixXT1lStXTreuY8eOOn78uPNap4MHD2rLli3q2LGjs8/+/ftljFHFihVVokQJl2XPnj06ceKEyzbvueceeXt7Z3gM4eHh6cJCpUqVJCnH34+U0TFWqlRJf//9t06ePCkp+/fZ8OHDlZSUpEqVKql69eoaMGCAtm/fnuX+Dx48KA8PD0VERORo3JlZt26doqKi5Ofnp8DAQJUoUcJ5/dX1gSg79+P+/fu1ZMmSdI9ZVFSUJKV73G7E399fZ8+ezVbfo0ePSsr4nKtSpYqzPTfSgnqatHB0M//ZAK7HNURALnTp0kUvv/yyfv/9d6WkpGjDhg365JNPXPr07dtXbdu21bx587R06VK99dZbGjlypFauXKlatWplaz99+vTRlClT1LdvX0VGRiogIEA2m00xMTG5ukhWktq2bauCBQtq9uzZatCggWbPni0PDw/9+9//dvZJTU2VzWbT4sWLVaBAgXTbKFSokMvt669Vcqfs3meNGjXSwYMH9f3332vZsmX6/PPPNW7cOE2aNEnPPvvsLR/nwYMH9fDDD6tKlSoaO3asQkND5e3trUWLFmncuHG5enxTU1PVvHlzvfbaaxm2pwWo7KpSpYp+/fVXHT9+XKGhoTkeT2ZsNpvLDGWatFm+62V0DkrKcBtAbhGIgFyIiYlR//799c033+jChQvy8vJymWFJU6FCBb3yyit65ZVXtH//ftWsWVMffPCBpk2blq39fPvtt+ratas++OAD57qLFy8qKSnJpV9YWFiGb/3s27cv3To/Pz+1adNGc+bM0dixYzVr1iw1bNhQISEhLuM2xqhcuXI5fhG93oEDB2SMcZnd+O233yQp2xeXp8noGH/77TcVLFhQJUqUkJT9+0ySihYtqu7du6t79+46d+6cGjVqpGHDhmUaiCpUqKDU1FTt3r1bNWvWzNHYrzd//nylpKTohx9+cJkBuf7tyDTZuR8rVKigc+fOOWeEblbbtm31zTffaNq0aRo8eHCWfcPCwiT9c841a9bMpW3fvn3OdumfGZ6M3u66mVkkPlWGm8VbZkAuFC9eXK1atdK0adM0ffp0tWzZUsWLF3e2//3337p48aJLTYUKFVS4cGGlpKRkez8FChRI97/gjz/+ON3/pB955BFt2LBBGzdudK47efKky9t61+rYsaPi4+P1+eefa9u2benCXPv27VWgQAG9/fbb6fZvjNGpU6eyfQzx8fEuX1PgcDj01VdfqWbNmgoODs72diQpLi7O5Tqg48eP6/vvv1eLFi2cswjZvc+uP4ZChQopPDw8y8enXbt28vDw0PDhw9PN4OR0tiJtvNfWJScna8qUKRn2z879+MQTTyguLk5Lly5NV5+UlKQrV67kaIyPP/64qlevrnfffdf5Fuu1zp49qzfeeEOSVKdOHZUsWVKTJk1yuQ8XL16sPXv2qHXr1s51FSpU0N69e51vc0rStm3btG7duhyN71p+fn6SlGHwBbKDGSIgl7p06aLHH39ckjRixAiXtt9++00PP/ywnnjiCUVERMjT01Nz585VYmKiYmJisr2PNm3a6Ouvv1ZAQIAiIiIUFxenH3/8UcWKFXPp99prr+nrr79Wy5Yt9fLLLzs/dh8WFpbhdTGPPPKIChcurFdffVUFChRQhw4dXNorVKigd955R4MHD9aRI0fUrl07FS5cWIcPH9bcuXP1/PPP69VXX83WMVSqVEk9evTQpk2bFBQUpMmTJysxMTHTF/6sVKtWTdHR0S4fu5fk8g3F2b3PIiIi1KRJE9WuXVtFixbV5s2b9e2332b5e2nh4eF64403NGLECDVs2FDt27eX3W7Xpk2bFBISopEjR2b7WFq0aCFvb2+1bdtWL7zwgs6dO6f//ve/KlmypP788890/bNzPw4YMEA//PCD2rRpo27duql27do6f/68duzYoW+//VZHjhxxCe434uXlpe+++05RUVFq1KiRnnjiCT344IPy8vLSrl27NGPGDBUpUkTvvvuuvLy8NHr0aHXv3l2NGzfWk08+6fzYfdmyZdWvXz/ndp955hmNHTtW0dHR6tGjh06cOKFJkybp3nvvlcPhyPb4rpV2sf1LL72k6OhoFShQIEd/awCfUQRyKSUlxRQpUsQEBAS4fMzYGGP++usvExsba6pUqWL8/PxMQECAqVevnpk9e3aO9nHmzBnTvXt3U7x4cVOoUCETHR1t9u7da8LCwkzXrl1d+m7fvt00btzY+Pj4mHvuuceMGDHCfPHFFy4fu79Wp06djCQTFRWV6f7/97//mYceesj4+fkZPz8/U6VKFRMbG2v27dvn7NO4cWNz7733ZlgfFhZmWrdubZYuXWpq1Khh7Ha7qVKlipkzZ06O7gdj/vmYeGxsrJk2bZqpWLGisdvtplatWmbVqlUu/bJ7n73zzjvmgQceMIGBgcbX19dUqVLFvPvuu+bSpUvOPhl9VN4YYyZPnmxq1apl7Ha7KVKkiGncuLFZvnx5luPPaFs//PCDqVGjhvHx8TFly5Y1o0ePNpMnT073mOXkfjx79qwZPHiwCQ8PN97e3qZ48eKmQYMG5v3333c5NmXjY/dpzpw5Y4YMGWKqV69uChYsaHx8fEy1atXM4MGDzZ9//unSd9asWc77pmjRoqZTp07m999/T7fNadOmmfLlyxtvb29Ts2ZNs3Tp0kw/dp/R11dcP/4rV66YPn36mBIlShibzcZH8JFjNmO4Kg3IjStXrigkJERt27bVF1984e7hAABuAtcQAbk0b948nTx5Ul26dHH3UAAAN4kZIiCHfv75Z23fvl0jRoxQ8eLFXS7yza5z587p3LlzWfYpUaJEph83vpvc6LuZfH19FRAQcJtGA8CquKgayKGJEydq2rRpqlmzpqZOnZqrbbz//vsuFwJn5PDhwzn+WPqdqFSpUlm2d+3aNdf3MwBkFzNEgBscOnTohj878NBDD7n8BMLd6scff8yyPSQkJM++GRoAMkMgAgAAlsdF1QAAwPK4higbUlNTFR8fr8KFC/P18AAA3CGMMTp79qxCQkLk4ZH1HBCBKBvi4+Pz9IcNAQDA7XP8+HGVLl06yz4EomwoXLiwpH/uUH9/fzePBgAAZIfD4VBoaKjzdTwrBKJsSHubzN/fn0AEAMAdJjuXu3BRNQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDxPdw/gTjXq17+ybB9Uq/htGgkAALhZzBABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLc2sgmjhxomrUqCF/f3/5+/srMjJSixcvdrZfvHhRsbGxKlasmAoVKqQOHTooMTHRZRvHjh1T69atVbBgQZUsWVIDBgzQlStXXPqsXr1a999/v+x2u8LDwzV16tTbcXgAAOAO4dZAVLp0aY0aNUpbtmzR5s2b1axZMz366KPatWuXJKlfv36aP3++5syZozVr1ig+Pl7t27d31l+9elWtW7fWpUuXtH79en355ZeaOnWqhgwZ4uxz+PBhtW7dWk2bNtXWrVvVt29fPfvss1q6dOltP14AAJA/2Ywxxt2DuFbRokX13nvv6fHHH1eJEiU0Y8YMPf7445KkvXv3qmrVqoqLi1P9+vW1ePFitWnTRvHx8QoKCpIkTZo0SQMHDtTJkyfl7e2tgQMHauHChdq5c6dzHzExMUpKStKSJUuyNSaHw6GAgAAlJyfL399fEl/MCABAfpfR63dm8s01RFevXtXMmTN1/vx5RUZGasuWLbp8+bKioqKcfapUqaIyZcooLi5OkhQXF6fq1as7w5AkRUdHy+FwOGeZ4uLiXLaR1idtGxlJSUmRw+FwWQAAwN3L7YFox44dKlSokOx2u3r27Km5c+cqIiJCCQkJ8vb2VmBgoEv/oKAgJSQkSJISEhJcwlBae1pbVn0cDocuXLiQ4ZhGjhypgIAA5xIaGpoXhwoAAPIptweiypUra+vWrfr555/Vq1cvde3aVbt373brmAYPHqzk5GTncvz4cbeOBwAA3Fpu/3FXb29vhYeHS5Jq166tTZs2afz48erYsaMuXbqkpKQkl1mixMREBQcHS5KCg4O1ceNGl+2lfQrt2j7XfzItMTFR/v7+8vX1zXBMdrtddrs9T44PAADkf26fIbpeamqqUlJSVLt2bXl5eWnFihXOtn379unYsWOKjIyUJEVGRmrHjh06ceKEs8/y5cvl7++viIgIZ59rt5HWJ20bAAAAbp0hGjx4sFq1aqUyZcro7NmzmjFjhlavXq2lS5cqICBAPXr0UP/+/VW0aFH5+/urT58+ioyMVP369SVJLVq0UEREhJ5++mmNGTNGCQkJevPNNxUbG+uc4enZs6c++eQTvfbaa3rmmWe0cuVKzZ49WwsXLnTnoQMAgHzErYHoxIkT6tKli/78808FBASoRo0aWrp0qZo3by5JGjdunDw8PNShQwelpKQoOjpan376qbO+QIECWrBggXr16qXIyEj5+fmpa9euGj58uLNPuXLltHDhQvXr10/jx49X6dKl9fnnnys6Ovq2Hy8AAMif8t33EOVHfA8RAAB3njvye4gAAADchUAEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsz62BaOTIkapbt64KFy6skiVLql27dtq3b59LnyZNmshms7ksPXv2dOlz7NgxtW7dWgULFlTJkiU1YMAAXblyxaXP6tWrdf/998tutys8PFxTp0691YcHAADuEG4NRGvWrFFsbKw2bNig5cuX6/Lly2rRooXOnz/v0u+5557Tn3/+6VzGjBnjbLt69apat26tS5cuaf369fryyy81depUDRkyxNnn8OHDat26tZo2baqtW7eqb9++evbZZ7V06dLbdqwAACD/shljjLsHkebkyZMqWbKk1qxZo0aNGkn6Z4aoZs2a+vDDDzOsWbx4sdq0aaP4+HgFBQVJkiZNmqSBAwfq5MmT8vb21sCBA7Vw4ULt3LnTWRcTE6OkpCQtWbLkhuNyOBwKCAhQcnKy/P39JUmjfv0ry5pBtYpn55ABAMAtktHrd2by1TVEycnJkqSiRYu6rJ8+fbqKFy+uatWqafDgwfr777+dbXFxcapevbozDElSdHS0HA6Hdu3a5ewTFRXlss3o6GjFxcVlOI6UlBQ5HA6XBQAA3L083T2ANKmpqerbt68efPBBVatWzbn+qaeeUlhYmEJCQrR9+3YNHDhQ+/bt03fffSdJSkhIcAlDkpy3ExISsuzjcDh04cIF+fr6urSNHDlSb7/9dp4fIwAAyJ/yTSCKjY3Vzp079dNPP7msf/75553/rl69ukqVKqWHH35YBw8eVIUKFW7JWAYPHqz+/fs7bzscDoWGht6SfQEAAPfLF2+Z9e7dWwsWLNCqVatUunTpLPvWq1dPknTgwAFJUnBwsBITE136pN0ODg7Oso+/v3+62SFJstvt8vf3d1kAAMDdy62ByBij3r17a+7cuVq5cqXKlSt3w5qtW7dKkkqVKiVJioyM1I4dO3TixAlnn+XLl8vf318RERHOPitWrHDZzvLlyxUZGZlHRwIAAO5kbg1EsbGxmjZtmmbMmKHChQsrISFBCQkJunDhgiTp4MGDGjFihLZs2aIjR47ohx9+UJcuXdSoUSPVqFFDktSiRQtFRETo6aef1rZt27R06VK9+eabio2Nld1ulyT17NlThw4d0muvvaa9e/fq008/1ezZs9WvXz+3HTsAAMg/3Pqxe5vNluH6KVOmqFu3bjp+/Lg6d+6snTt36vz58woNDdVjjz2mN9980+VtrKNHj6pXr15avXq1/Pz81LVrV40aNUqenv/vEqnVq1erX79+2r17t0qXLq233npL3bp1y9Y4+dg9AAB3npx87D5ffQ9RfkUgAgDgznPHfg8RAACAOxCIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5bk1EI0cOVJ169ZV4cKFVbJkSbVr10779u1z6XPx4kXFxsaqWLFiKlSokDp06KDExESXPseOHVPr1q1VsGBBlSxZUgMGDNCVK1dc+qxevVr333+/7Ha7wsPDNXXq1Ft9eAAA4A7h1kC0Zs0axcbGasOGDVq+fLkuX76sFi1a6Pz5884+/fr10/z58zVnzhytWbNG8fHxat++vbP96tWrat26tS5duqT169fryy+/1NSpUzVkyBBnn8OHD6t169Zq2rSptm7dqr59++rZZ5/V0qVLb+vxAgCA/MlmjDHuHkSakydPqmTJklqzZo0aNWqk5ORklShRQjNmzNDjjz8uSdq7d6+qVq2quLg41a9fX4sXL1abNm0UHx+voKAgSdKkSZM0cOBAnTx5Ut7e3ho4cKAWLlyonTt3OvcVExOjpKQkLVmy5IbjcjgcCggIUHJysvz9/SVJo379K8uaQbWK5/ZuAAAAeSCj1+/M5KtriJKTkyVJRYsWlSRt2bJFly9fVlRUlLNPlSpVVKZMGcXFxUmS4uLiVL16dWcYkqTo6Gg5HA7t2rXL2efabaT1SdvG9VJSUuRwOFwWAABw98o3gSg1NVV9+/bVgw8+qGrVqkmSEhIS5O3trcDAQJe+QUFBSkhIcPa5Ngyltae1ZdXH4XDowoUL6cYycuRIBQQEOJfQ0NA8OUYAAJA/5ZtAFBsbq507d2rmzJnuHooGDx6s5ORk53L8+HF3DwkAANxCnu4egCT17t1bCxYs0Nq1a1W6dGnn+uDgYF26dElJSUkus0SJiYkKDg529tm4caPL9tI+hXZtn+s/mZaYmCh/f3/5+vqmG4/dbpfdbs+TYwMAAPmfW2eIjDHq3bu35s6dq5UrV6pcuXIu7bVr15aXl5dWrFjhXLdv3z4dO3ZMkZGRkqTIyEjt2LFDJ06ccPZZvny5/P39FRER4exz7TbS+qRtAwAAWJtbZ4hiY2M1Y8YMff/99ypcuLDzmp+AgAD5+voqICBAPXr0UP/+/VW0aFH5+/urT58+ioyMVP369SVJLVq0UEREhJ5++mmNGTNGCQkJevPNNxUbG+uc5enZs6c++eQTvfbaa3rmmWe0cuVKzZ49WwsXLnTbsQMAgPzDrTNEEydOVHJyspo0aaJSpUo5l1mzZjn7jBs3Tm3atFGHDh3UqFEjBQcH67vvvnO2FyhQQAsWLFCBAgUUGRmpzp07q0uXLho+fLizT7ly5bRw4UItX75c9913nz744AN9/vnnio6Ovq3HCwAA8qd89T1E+RXfQwQAwJ3njv0eIgAAAHcgEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMvLVSAqX768Tp06lW59UlKSypcvf9ODAgAAuJ1yFYiOHDmiq1evplufkpKiP/7446YHBQAAcDt55qTzDz/84Pz30qVLFRAQ4Lx99epVrVixQmXLls2zwQEAANwOOQpE7dq1kyTZbDZ17drVpc3Ly0tly5bVBx98kGeDAwAAuB1yFIhSU1MlSeXKldOmTZtUvHjxWzIoAACA2ylHgSjN4cOH83ocAAAAbpOrQCRJK1as0IoVK3TixAnnzFGayZMn3/TAAAAAbpdcBaK3335bw4cPV506dVSqVCnZbLa8HhcAAMBtk6tANGnSJE2dOlVPP/10Xo8HAADgtsvV9xBdunRJDRo0yOuxAAAAuEWuAtGzzz6rGTNm5PVYAAAA3CJXb5ldvHhRn332mX788UfVqFFDXl5eLu1jx47Nk8EBAADcDrkKRNu3b1fNmjUlSTt37nRp4wJrAABwp8lVIFq1alVejwMAAMBtcnUNEQAAwN0kVzNETZs2zfKtsZUrV+Z6QAAAALdbrgJR2vVDaS5fvqytW7dq586d6X70FQAAIL/LVSAaN25chuuHDRumc+fO3dSAAAAAbrc8vYaoc+fO/I4ZAAC44+RpIIqLi5OPj09ebhIAAOCWy9VbZu3bt3e5bYzRn3/+qc2bN+utt97Kk4EBAADcLrkKRAEBAS63PTw8VLlyZQ0fPlwtWrTIk4EBAADcLrkKRFOmTMnrcQAAALhNrgJRmi1btmjPnj2SpHvvvVe1atXKk0EBAADcTrkKRCdOnFBMTIxWr16twMBASVJSUpKaNm2qmTNnqkSJEnk5RgAAgFsqV58y69Onj86ePatdu3bp9OnTOn36tHbu3CmHw6GXXnopr8cIAABwS+VqhmjJkiX68ccfVbVqVee6iIgITZgwgYuqAQDAHSdXM0Spqany8vJKt97Ly0upqak3PSgAAIDbKVeBqFmzZnr55ZcVHx/vXPfHH3+oX79+evjhh7O9nbVr16pt27YKCQmRzWbTvHnzXNq7desmm83msrRs2dKlz+nTp9WpUyf5+/srMDBQPXr0SPfzIdu3b1fDhg3l4+Oj0NBQjRkzJucHDQAA7lq5CkSffPKJHA6HypYtqwoVKqhChQoqV66cHA6HPv7442xv5/z587rvvvs0YcKETPu0bNlSf/75p3P55ptvXNo7deqkXbt2afny5VqwYIHWrl2r559/3tnucDjUokULhYWFacuWLXrvvfc0bNgwffbZZzk/cAAAcFfK1TVEoaGh+uWXX/Tjjz9q7969kqSqVasqKioqR9tp1aqVWrVqlWUfu92u4ODgDNv27NmjJUuWaNOmTapTp44k6eOPP9Yjjzyi999/XyEhIZo+fbouXbqkyZMny9vbW/fee6+2bt2qsWPHugQnAABgXTmaIVq5cqUiIiLkcDhks9nUvHlz9enTR3369FHdunV177336v/+7//ydICrV69WyZIlVblyZfXq1UunTp1ytsXFxSkwMNAZhiQpKipKHh4e+vnnn519GjVqJG9vb2ef6Oho7du3T2fOnMlwnykpKXI4HC4LAAC4e+UoEH344Yd67rnn5O/vn64tICBAL7zwgsaOHZtng2vZsqW++uorrVixQqNHj9aaNWvUqlUrXb16VZKUkJCgkiVLutR4enqqaNGiSkhIcPYJCgpy6ZN2O63P9UaOHKmAgADnEhoammfHBAAA8p8cBaJt27alu6j5Wi1atNCWLVtuelBpYmJi9K9//UvVq1dXu3bttGDBAm3atEmrV6/Os31kZPDgwUpOTnYux48fv6X7AwAA7pWjQJSYmJjhx+3TeHp66uTJkzc9qMyUL19exYsX14EDByRJwcHBOnHihEufK1eu6PTp087rjoKDg5WYmOjSJ+12Ztcm2e12+fv7uywAAODulaNAdM8992jnzp2Ztm/fvl2lSpW66UFl5vfff9epU6ec+4iMjFRSUpLLrNTKlSuVmpqqevXqOfusXbtWly9fdvZZvny5KleurCJFityysQIAgDtHjgLRI488orfeeksXL15M13bhwgUNHTpUbdq0yfb2zp07p61bt2rr1q2SpMOHD2vr1q06duyYzp07pwEDBmjDhg06cuSIVqxYoUcffVTh4eGKjo6W9M8n21q2bKnnnntOGzdu1Lp169S7d2/FxMQoJCREkvTUU0/J29tbPXr00K5duzRr1iyNHz9e/fv3z8mhAwCAu5jNGGOy2zkxMVH333+/ChQooN69e6ty5cqSpL1792rChAm6evWqfvnll3QXMWdm9erVatq0abr1Xbt21cSJE9WuXTv9+uuvSkpKUkhIiFq0aKERI0a4bP/06dPq3bu35s+fLw8PD3Xo0EEfffSRChUq5Oyzfft2xcbGatOmTSpevLj69OmjgQMHZvew5XA4FBAQoOTkZOfbZ6N+/SvLmkG1imd7+wAAIO9l9PqdmRwFIkk6evSoevXqpaVLlyqt1GazKTo6WhMmTFC5cuVyP/J8ikAEAMCdJyeBKMdfzBgWFqZFixbpzJkzOnDggIwxqlixItfjAACAO1auvqlakooUKaK6devm5VgAAADcIle/ZQYAAHA3IRABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLc2sgWrt2rdq2bauQkBDZbDbNmzfPpd0YoyFDhqhUqVLy9fVVVFSU9u/f79Ln9OnT6tSpk/z9/RUYGKgePXro3LlzLn22b9+uhg0bysfHR6GhoRozZsytPjQAAHAHcWsgOn/+vO677z5NmDAhw/YxY8boo48+0qRJk/Tzzz/Lz89P0dHRunjxorNPp06dtGvXLi1fvlwLFizQ2rVr9fzzzzvbHQ6HWrRoobCwMG3ZskXvvfeehg0bps8+++yWHx8AALgz2Iwxxt2DkCSbzaa5c+eqXbt2kv6ZHQoJCdErr7yiV199VZKUnJysoKAgTZ06VTExMdqzZ48iIiK0adMm1alTR5K0ZMkSPfLII/r9998VEhKiiRMn6o033lBCQoK8vb0lSYMGDdK8efO0d+/ebI3N4XAoICBAycnJ8vf3lySN+vWvLGsG1Sqem7sBAADkkYxevzOTb68hOnz4sBISEhQVFeVcFxAQoHr16ikuLk6SFBcXp8DAQGcYkqSoqCh5eHjo559/dvZp1KiRMwxJUnR0tPbt26czZ85kuO+UlBQ5HA6XBQAA3L3ybSBKSEiQJAUFBbmsDwoKcrYlJCSoZMmSLu2enp4qWrSoS5+MtnHtPq43cuRIBQQEOJfQ0NCbPyAAAJBv5dtA5E6DBw9WcnKyczl+/Li7hwQAAG6hfBuIgoODJUmJiYku6xMTE51twcHBOnHihEv7lStXdPr0aZc+GW3j2n1cz263y9/f32UBAAB3r3wbiMqVK6fg4GCtWLHCuc7hcOjnn39WZGSkJCkyMlJJSUnasmWLs8/KlSuVmpqqevXqOfusXbtWly9fdvZZvny5KleurCJFitymowEAAPmZWwPRuXPntHXrVm3dulXSPxdSb926VceOHZPNZlPfvn31zjvv6IcfftCOHTvUpUsXhYSEOD+JVrVqVbVs2VLPPfecNm7cqHXr1ql3796KiYlRSEiIJOmpp56St7e3evTooV27dmnWrFkaP368+vfv76ajBgAA+Y2nO3e+efNmNW3a1Hk7LaR07dpVU6dO1Wuvvabz58/r+eefV1JSkh566CEtWbJEPj4+zprp06erd+/eevjhh+Xh4aEOHTroo48+crYHBARo2bJlio2NVe3atVW8eHENGTLE5buKAACAteWb7yHKz/geIgAA7jx3xfcQAQAA3C4EIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHkEIgAAYHme7h4AAAB3klG//pVl+6BaxW/TSJCXmCECAACWRyACAACWx1tmdyimbAEAyDvMEAEAAMsjEAEAAMvjLTMAgKVwyQEywgwRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPL6YEQBwR+GLFXErMEMEAAAsjxkiAABuI2a48idmiAAAgOURiAAAgOURiAAAgOURiAAAgOXl60A0bNgw2Ww2l6VKlSrO9osXLyo2NlbFihVToUKF1KFDByUmJrps49ixY2rdurUKFiyokiVLasCAAbpy5crtPpS7zqhf/8pyAQDgTpLvP2V277336scff3Te9vT8f0Pu16+fFi5cqDlz5iggIEC9e/dW+/bttW7dOknS1atX1bp1awUHB2v9+vX6888/1aVLF3l5eek///nPbT8WAACQP+X7QOTp6ang4OB065OTk/XFF19oxowZatasmSRpypQpqlq1qjZs2KD69etr2bJl2r17t3788UcFBQWpZs2aGjFihAYOHKhhw4bJ29v7dh8O/v/42CkAID/J12+ZSdL+/fsVEhKi8uXLq1OnTjp27JgkacuWLbp8+bKioqKcfatUqaIyZcooLi5OkhQXF6fq1asrKCjI2Sc6OloOh0O7du3KdJ8pKSlyOBwuCwAAuHvl60BUr149TZ06VUuWLNHEiRN1+PBhNWzYUGfPnlVCQoK8vb0VGBjoUhMUFKSEhARJUkJCgksYSmtPa8vMyJEjFRAQ4FxCQ0Pz9sAAAEC+kq/fMmvVqpXz3zVq1FC9evUUFham2bNny9fX95btd/Dgwerfv7/ztsPhIBTlM7zlBgDIS/k6EF0vMDBQlSpV0oEDB9S8eXNdunRJSUlJLrNEiYmJzmuOgoODtXHjRpdtpH0KLaPrktLY7XbZ7fa8PwDkGwQqAMC18vVbZtc7d+6cDh48qFKlSql27dry8vLSihUrnO379u3TsWPHFBkZKUmKjIzUjh07dOLECWef5cuXy9/fXxEREbd9/AAAIH/K1zNEr776qtq2bauwsDDFx8dr6NChKlCggJ588kkFBASoR48e6t+/v4oWLSp/f3/16dNHkZGRql+/viSpRYsWioiI0NNPP60xY8YoISFBb775pmJjY90+A8QMBQAA+Ue+DkS///67nnzySZ06dUolSpTQQw89pA0bNqhEiRKSpHHjxsnDw0MdOnRQSkqKoqOj9emnnzrrCxQooAULFqhXr16KjIyUn5+funbtquHDh7vrkAAAQD6UrwPRzJkzs2z38fHRhAkTNGHChEz7hIWFadGiRXk9NAAAcBe5o64hAgAAuBXy9QwRACA9rkEE8h4zRAAAwPKYIQIA5AgzVLgbMUMEAAAsjxkiALjN3D3D4u79A/kRM0QAAMDyCEQAAMDyeMsMyAXecgCAuwszRAAAwPKYIQIsiBkuAHBFIAKAHCJQAncfAhGAHCMQALjbcA0RAACwPAIRAACwPAIRAACwPK4hAnDbcQ0SgPyGQATgjkOgApDXCEQAANxB+A/BrcE1RAAAwPIIRAAAwPJ4ywy4AzFlDgB5ixkiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeQQiAABgeZ7uHgAAALhzjPr1ryzbB9UqfptGkrcIRAAA4I5xqwIZb5kBAADLIxABAADL4y0zAABw2+TXa5CYIQIAAJbHDJFF5deEDuDux/MP8iNLzRBNmDBBZcuWlY+Pj+rVq6eNGze6e0gAACAfsEwgmjVrlvr376+hQ4fql19+0X333afo6GidOHHC3UMDAABuZpm3zMaOHavnnntO3bt3lyRNmjRJCxcu1OTJkzVo0CA3jw5Ww1sG7sX9D+B6lghEly5d0pYtWzR48GDnOg8PD0VFRSkuLs6NIwMA4PbiPwQZs0Qg+uuvv3T16lUFBQW5rA8KCtLevXvT9U9JSVFKSorzdnJysiTJ4XA41108dzbLfToc3lm2U0899dRTTz31t7Y+7XXbGJNlTVqnu94ff/xhJJn169e7rB8wYIB54IEH0vUfOnSokcTCwsLCwsJyFyzHjx+/YVawxAxR8eLFVaBAASUmJrqsT0xMVHBwcLr+gwcPVv/+/Z23U1NTdfr0aRUrVkw2my1df4fDodDQUB0/flz+/v45Hh/11FNPPfXUU5/39cYYnT17ViEhITfcliUCkbe3t2rXrq0VK1aoXbt2kv4JOStWrFDv3r3T9bfb7bLb7S7rAgMDb7gff3//XD2g1FNPPfXUU0/9rakPCAjI1jYsEYgkqX///uratavq1KmjBx54QB9++KHOnz/v/NQZAACwLssEoo4dO+rkyZMaMmSIEhISVLNmTS1ZsiTdhdYAAMB6LBOIJKl3794ZvkV2s+x2u4YOHZrubTbqqaeeeuqppz7/1l/LZkx2PosGAABw97LMT3cAAABkhkAEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0B0lzh8+LCuXLnitv3nxb75wCNyi/MfVsb5nzcIRLmwe/duvfjii6pVq5ZKlSqlUqVKqVatWnrxxRe1e/fuG9b/+eefmjZtmhYtWqRLly65tJ0/f17Dhw/P8ZgqV66s/fv357guPj5eQ4cOVadOnfTqq69q7969WfZfsmSJduzYIemfnz8ZMWKE7rnnHtntdpUuXVqjRo3K8sROSUnRq6++qkaNGmn06NGSpHfeeUeFChVS4cKF9dRTTzl/nTi7UlJSlJKSkqOaW2H16tW6cOGCW/adkpKigwcP3tT9kJiYqISEhBv24/zPX+d/fmClF2TO/7v4/L/JH5K3nEWLFhlvb29Tv359M3ToUPPpp5+aTz/91AwdOtQ0aNDA2O12s2TJkkzrN27caAIDA42/v7/x9fU14eHhZufOnc72hIQE4+HhkWn9Y489luHi4eFhoqKinLcz4+vra06cOGGMMWbXrl0mICDAhIeHm3//+9+mSpUqpmDBgmbbtm2Z1leuXNmsXbvWGGPMf/7zH1OsWDEzduxYs3jxYvPhhx+aoKAgM2rUqEzr+/XrZ0JCQswrr7xiqlatal588UVTpkwZM23aNDNjxgwTHh5u+vTpk2l9mmXLlplWrVqZwMBA4+HhYTw8PExgYKBp1aqVWb58+Q3rt27dakaMGGEmTJhgTp486dKWnJxsunfvfsNtXM/Ly8vs3r37hv0SExNdbv/666+mS5cupkGDBqZDhw5m1apVWdZPmTLFrF+/3hhjzIULF8wzzzxjChQoYDw8PIynp6d54YUXzMWLFzOtP3XqlOnQoYMJDQ01PXv2NFeuXDE9evQwNpvNeHh4mMjISBMfH59hLee/+8//Xbt2mV69epmaNWua4OBgExwcbGrWrGl69epldu3alWWtMcbEx8ebr7/+2ixcuNCkpKS4tJ07d868/fbbN9zG9bJ77l/vjz/+MEOGDDFPPfWUeeWVV8yePXuy7L948WKzfft2Y4wxV69eNcOHDzchISHGw8PD3HPPPWbkyJEmNTU10/qLFy+aV155xTRs2ND5OI0YMcL4+fkZPz8/8+STT5rk5ORM6zn/7/zzPysEohyqUaOGeeuttzJtHzp0qKlevXqm7VFRUaZ79+7m6tWrxuFwmF69eplixYqZX375xRhz4z8Im81mGjdubLp16+ayeHh4mHbt2jlvZ1Wf9oL86KOPmrZt25rLly8bY/55gomJiTFt2rTJtN5ut5ujR48aY4ypVq2amT17tkv7ggULTHh4eKb1oaGhzsBy8OBB4+HhYebNm+dsX7ZsmQkLC8u03hhjpk6dajw9PU1MTIyZMmWKWbRokVm0aJGZMmWKefLJJ42Xl5f56quvMq1funSp8fb2Nvfee68pU6aMKVasmFm5cqWz/UaPQa1atTJcbDabqVq1qvN2Zjw8PJyPwbp164yXl5dp3LixGTBggGnevLnx9PQ0a9asybS+XLlyZsOGDcYYY1599VVTtmxZ891335k9e/aYefPmmUqVKpkBAwZkWv/MM8+YatWqmY8//tg0btzYPProo6ZGjRrmp59+MuvXrzd169Y1Xbp0ybCW89+95z8vyO59Qeb8v7PP/xshEOWQj4+P2bt3b6bte/fuNT4+Ppm2FylSxOzbt89l3ciRI02RIkXMxo0bb/gH8c0335jSpUubyZMnu6z39PTMVjq+9g8iNDTU+eSS5pdffjGlSpXKtL5UqVImLi7OGGNMUFCQ8w85zW+//WZ8fX0zrff19XX+QRnzz/8sr31CPnz4sClYsGCWx1CxYkXzySefZNo+YcKELP8oIyMjzeuvv26MMSY1NdWMHj3aFCpUyCxevNgYc+MnJU9PT9OyZUszbNgw5zJ06FDj4eFhXnzxRee6zFz7GDRv3tw888wzLu0vv/yyadasWab11z4pVapUyTnuNGvWrDFlypTJtL5UqVJm3bp1zmO12Wxm2bJlzvaffvrJ3HPPPRnWcv679/znBdm9L8ic/3f2+X8jBKIcqlKlivnggw8ybf/ggw9M5cqVM20vUqRIhv8Deu+990xgYKD57rvvsvyDMOafk+bBBx807du3N6dPnzbGZP8PwsPDw/k/tLCwsHRjOXToUJZ/0C+++KJp06aNuXLlinn++efNs88+6zJF3adPHxMZGZlpfeXKlc3MmTONMf/8b9Xb29vlj3vmzJmmYsWKWR6D3W6/qSclf39/c+DAAZd106dPN35+fmb+/Pk3fFL66aefTIUKFcyQIUPM1atXnetz86R07RNMmp07d5rixYtnWh8WFuac0brnnnvMpk2bXNp3795t/Pz8Mq0vWLCgOXLkiPO2l5eX2bFjh/P2oUOHMq3n/Hfv+c8LsntfkDn/7+zz/0YIRDk0e/Zs4+npadq2bWvGjx9vZs6caWbOnGnGjx9v/vWvfxlvb2/z7bffZlrfsGFDM3HixAzbRo8ebex2+w3/IIz5539TQ4YMMaGhoWbJkiXGy8sr209IgYGBpkiRIsbLy8t8/fXXLu3Lli0zZcuWzbQ+KSnJ1KlTx4SHh5unn37a+Pj4mLCwMNO8eXNTrlw5ExAQ4Hw7JyPjxo0zPj4+JioqyhQpUsR89NFHJjg42Lz22mtm0KBBJiAgwAwfPjzLY7j//vuzfEvotddeM/fff3+m7SVKlDCbN29Ot/6bb74xBQsWNBMnTrzhY5CUlGRiYmJMvXr1nOEqJy8KBw4cMMnJyaZcuXLpntQPHDiQ5ZPy66+/biIjI82ZM2fMoEGDTNu2bc3Zs2eNMcacP3/ePPHEE6ZFixaZ1t93333OGbZFixaZwoULuzzJT5w40VSrVi3DWs5/957/vCC79wWZ8//OPv9vhECUC+vWrTMdO3Y0ZcqUMd7e3sbb29uUKVPGdOzY0Xmxa2b++9//ms6dO2faPmrUqCxPyOv93//9nylXrpzx8PDI1h/E1KlTXZbrZyeGDx9u+vXrl+U2Ll26ZCZOnGgeeeQRU6VKFVOpUiXTuHFj8/rrr5vjx4/fcAzTp083vXv3NjNmzDDGGLNq1SrTsGFDU7t2bTNs2DCXWZeMrFq1yvj5+Znq1aubfv36mVGjRplRo0aZfv36mRo1aphChQpleQ1O8+bNzXvvvZdh24wZM4yXl1e2npSMMWby5MkmODjY/H//3/+XoyeltAvBbTab+eyzz1zav//++yyn/VNSUsy//vUvU6RIEdO8eXPj4+NjChYsaCpWrGj8/PxMmTJl0s0CXGvatGmmQIECJjw83NjtdjNnzhwTEhJinnjiCRMTE2O8vb2zfEuS89995z8vyO7/Dxnn/517/t8Iv3Z/Fzh37pwOHjyoqlWrytvb293DuS2OHDmiiRMnasOGDc6PigcHBysyMlI9e/ZU2bJlM62dO3eu1q5dq3HjxmXYPmPGDP33v//VqlWrsjWW/fv3q1OnTtq8ebN27typiIiILPuvWbPG5XapUqVUqVIl5+3x48fr0qVLGjBgQJbbWbJkiebPn69Dhw4pNTVVpUqV0oMPPqinnnpKfn5+WdauW7dOGzZsUGRkpBo0aKDdu3dr1KhR+vvvv9W2bVt17dr1Bkedf1jt/F+/fr0++ugjxcXFpTv3X375ZUVGRmZa+/nnn2vNmjX6+uuvM2wfPXq0Jk2apMOHD2drLD/99JO6dOmio0ePaseOHTc897/88kuX25UrV1b9+vWdt0eMGKEzZ85o7NixmW7j8uXL+uKLLzI893v16qXSpUtnOYYZM2YoLi5ODRo00JNPPqnVq1dryJAhznP/rbfekofHnfONNJz/2T//b4RABOSB1NRUnT17Vv7+/rLZbO4eDnDbWO0FGXevOycG3yFef/11PfPMM9S7qd5dPDw8FBAQYPkw5O7H3+r17lCoUCHdd999hCG5//G3ev3NIhDlsd9//11Hjhyh3k31ktS1a1c1a9aMejfU//HHHzf1+FF/c/XufkGyer27H3+r19/s4+eZ60pk6KuvvqLejfWSFBISclPXAFCf+/rrrxGh/vbW//777/r999+pv831xhjZbLZcP37U31x9mpt9/LmGKBf++usvTZ48Od1FXQ0aNFC3bt1UokQJ6m9hPQDkJ97e3tq2bZuqVq1KvRvq8wqBKIc2bdqk6OhoFSxYUFFRUQoKCpL0zw9jrlixQn///beWLl2qOnXqUH8L6rPj+PHjGjp0qCZPnkz9Lai/cOGCtmzZoqJFi6b7VNHFixc1e/ZsdenSJdPtU39z9Xv27HF+QrBKlSrau3evxo8fr5SUFHXu3PmGb3dSn/v6/v37Z7h+/Pjx6ty5s4oVKyZJmX5Kjvqbq7/e+fPnNXv2bB04cEClSpXSk08+6dxGruT6A/sWVa9ePfP8889n+AOCqamp5vnnnzf169en/hbVZ8fWrVuz/T1C1Oesft++fSYsLMz5XUqNGjVy+SHYG33TMfU3V7948WLj7e1tihYtanx8fMzixYtNiRIlTFRUlGnWrJkpUKCAWbFiBfW3qN5ms5maNWuaJk2auCw2m83UrVvXNGnSxDRt2pT6W1RftWpVc+rUKWOMMceOHTNly5Y1AQEBpm7duqZo0aKmZMmS5tChQ5nW3wiBKId8fHyy/EXmPXv2ZPlNq9TfXL0x/3xxYVbLuHHjsnxRoT739e3atTOtW7c2J0+eNPv37zetW7c25cqVc/4cwo1e0Km/ufrIyEjzxhtvGGP++Wb1IkWKOH+XzxhjBg0aZJo3b079LaofOXKkKVeuXLrQlN1v6qb+5uqv/emXTp06mQYNGpikpCRjjDFnz541UVFR5sknn7zhdjJDIMqhsmXLmi+//DLT9i+//DLLHwek/ubqjfl/3/Rss9kyXW70A5XU566+ZMmSZvv27c7bqamppmfPnqZMmTLm4MGDN3xBp/7m6v39/c3+/fuNMf98W7Snp6fLT7/s2LHDBAUFUX+L6o355yc/KlWqZF555RVz6dIlY0z2X9Cpv7n6awNR+fLlXX6U2ph/vkU8NDQ0W+PICIEohz755BNjt9vNSy+9ZL7//nuzYcMGs2HDBvP999+bl156yfj6+poJEyZQf4vqjTEmJCTE5Reqr/frr79m+aJCfe7rCxcubHbv3p1ufWxsrCldurRZu3Ztlvum/ubqr/9h4kKFCpmDBw86bx85ciRHP2xMfc7q05w9e9Z06dLF1KhRw+zYsSPbP11C/c3V22w252/hhYSEuPwotTHZf/wyQyDKhZkzZ5p69eoZT09P5/+oPT09Tb169cysWbOov8X1bdu2NW+99Vam7Vu3bjU2m436W1Bft25d89VXX2XYFhsbawIDA7N8Qaf+5upr1KhhFi9e7Ly9Y8cOc/nyZefttWvXmnLlylF/i+qv980335igoKBs/5YY9TdXb7PZTPXq1U2tWrVMoUKF0v1u2Zo1a8w999yT43GkIRDdhEuXLpn4+HgTHx/vnPqj/tbXr1271uVJ7Xrnzp0zq1evpv4W1P/nP/8xrVq1yrS2V69eWYYx6m+ufuLEiWbBggWZtg8ePNj06NGD+ltUn5Hjx4+befPmmXPnzuWojvqc1w8bNsxlWbJkiUv7q6++amJiYnI1DmP4cVcAAAB+ugMAAIBABAAALI9ABAAALI9ABOCu0KRJE/Xt2zdbfVevXi2bzaakpKSb2mfZsmX14Ycf3tQ2AOQPBCIAAGB5BCIAAGB5BCIAd52vv/5aderUUeHChRUcHKynnnpKJ06cSNdv3bp1qlGjhnx8fFS/fn3t3LnTpf2nn35Sw4YN5evrq9DQUL300ks6f/787ToMALcRgQjAXefy5csaMWKEtm3bpnnz5unIkSPq1q1bun4DBgzQBx98oE2bNqlEiRJq27atLl++LEk6ePCgWrZsqQ4dOmj79u2aNWuWfvrpJ/Xu3fs2Hw2A28HT3QMAgLz2zDPPOP9dvnx5ffTRR6pbt67OnTunQoUKOduGDh2q5s2bS5K+/PJLlS5dWnPnztUTTzyhkSNHqlOnTs4LtStWrKiPPvpIjRs31sSJE+Xj43NbjwnArcUMEYC7zpYtW9S2bVuVKVNGhQsXVuPGjSVJx44dc+kXGRnp/HfRokVVuXJl7dmzR5K0bds2TZ06VYUKFXIu0dHRSk1N1eHDh2/fwQC4LZghAnBXOX/+vKKjoxUdHa3p06erRIkSOnbsmKKjo3Xp0qVsb+fcuXN64YUX9NJLL6VrK1OmTF4OGUA+QCACcFfZu3evTp06pVGjRik0NFSStHnz5gz7btiwwRluzpw5o99++01Vq1aVJN1///3avXu3wsPDb8/AAbgVb5kBuKuUKVNG3t7e+vjjj3Xo0CH98MMPGjFiRIZ9hw8frhUrVmjnzp3q1q2bihcvrnbt2kmSBg4cqPXr16t3797aunWr9u/fr++//56LqoG7FIEIwF2lRIkSmjp1qubMmaOIiAiNGjVK77//foZ9R40apZdfflm1a9dWQkKC5s+fL29vb0lSjRo1tGbNGv32229q2LChatWqpSFDhigkJOR2Hg6A28RmjDHuHgQAAIA7MUMEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAs7/8HeY9O1GV19tIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_label_count(ys_adverb_basic, \"ys_adverb_basic\")" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB710lEQVR4nOzdeXQV9f3/8VdCVgI3YcsmIQQoS9gFC1cFUZaIgUrFb4sioLIUDFRAAbHKZmsUi4iKUGsVWkFAq1hBlgACAgE0NQJBUBALCgkKkgsICSSf3x/8MnIlCVknyeX5OGfOceaz3Pfc3GHevu/cGS9jjBEAAAAAAABgI++KDgAAAAAAAADXHopSAAAAAAAAsB1FKQAAAAAAANiOohQAAAAAAABsR1EKAAAAAAAAtqMoBQAAAAAAANtRlAIAAAAAAIDtKEoBAAAAAADAdhSlAAAAAAAAYDuKUkAl9M0338jLy0t//etfy2zOjRs3ysvLSxs3biyzOauiI0eOKCAgQFu3brW2devWTa1atarAqKq28vi8FsX999+vhg0bFmvMhQsXFBUVpVdeeaV8ggIAVFrkV+Unv/yqtEpyni8rZflZyfuMvPPOO2UQWdF169ZN3bp1K9aYEydOKCgoSB9++GH5BAXkg6IUUEYWLFggLy8vffrppxUdSpk4ePCg/vCHP6hRo0YKCAiQw+HQTTfdpDlz5ujcuXMVHZ4k6ZVXXtGCBQuKNWbGjBnq1KmTbrrppvIJ6ip++uknTZs27ZpPXiuKr6+vxo8fr7/85S86f/58RYcDALgK8iv7VcX8CmWjTp06GjZsmJ588smKDgXXEJ+KDgBA5bNy5Ur93//9n/z9/TV48GC1atVK2dnZ2rJliyZMmKC0tDS9+uqrFR2mXnnlFdWtW1f3339/kfp///33WrhwoRYuXFi+gRXip59+0vTp0yWp2N9ewd3f//535ebmFnvcAw88oMcee0yLFy/Wgw8+WA6RAQBwJfIr2Gnt2rUlGjdy5Ei9+OKL2rBhg2677bYyjgq4EkUpAG4OHTqkAQMGKDo6Whs2bFBERITVlpCQoAMHDmjlypUVGGHJvfnmm/Lx8VHfvn1tf+3c3FxlZ2eX+bznz5+Xn5+fvL3L/sLXs2fPKigoqMznLSu+vr4lGhcSEqJevXppwYIFFKUAALYgv6oayitfqwh+fn4lGteiRQu1atVKCxYsoCgFW/DzPcBG2dnZmjJlijp06KDg4GAFBQWpS5cu+uijjwocM3v2bEVHRyswMFC33HKL9uzZc0Wfffv26e6771bt2rUVEBCgjh076j//+U+JYpw5c6bOnDmjf/zjH24JU54mTZro4YcfttYvXryop556So0bN5a/v78aNmyoxx9/XFlZWW7jvLy8NG3atCvma9iwods3cXmX6W/dulXjx49XvXr1FBQUpN/+9rf6/vvv3calpaVp06ZN8vLykpeX11WvPFq+fLk6deqkGjVq5NuekpKiG2+8UYGBgYqJidH8+fOv6JOVlaWpU6eqSZMm8vf3V1RUlCZOnJjv/o4ePVqLFi1Sy5Yt5e/vr/nz56tevXqSpOnTp1tx5/e+5CfvngRLlizRE088oeuuu07Vq1eXy+XS/fffrxo1aujw4cPq06ePatSooeuuu05z586VJO3evVu33XabgoKCFB0drcWLF7vNnfe+b9q0SQ899JBCQ0NVv379IsV1uat9Xnft2qX777/f+tlCeHi4HnzwQZ04ccKt3+nTpzV27Fg1bNhQ/v7+Cg0NVc+ePfXf//7X6pPfvSZyc3M1Z84ctW7dWgEBAapXr55uv/32K3720bNnT23ZskUnT54s9j4CACoX8qtpV8xXGfKrjz/+WP/3f/+nBg0aWDnTuHHj8v2Z4vLly9WqVSsFBASoVatWeu+999zaL1y4oNq1a+uBBx64YqzL5VJAQIAeffRRa1tp8rXVq1e79SnKZ6UocnJy9Pjjjys8PFxBQUH6zW9+oyNHjrj1Kep7lp6ergceeED169eXv7+/IiIidOedd+qbb76x+uR3T6nz589r2rRpatq0qQICAhQREaG77rpLBw8edOvXs2dPffDBBzLGlGhfgeLgSinARi6XS6+99pruueceDR8+XKdPn9Y//vEPxcXFaefOnWrXrp1b/3/+8586ffq0EhISdP78ec2ZM0e33Xabdu/erbCwMElSWlqabrrpJl133XV67LHHFBQUpGXLlqlfv37697//rd/+9rfFivGDDz5Qo0aNdOONNxap/7Bhw7Rw4ULdfffdeuSRR7Rjxw4lJibqiy++uCKhKI4xY8aoVq1amjp1qr755hu98MILGj16tJYuXSpJeuGFFzRmzBjVqFFDf/rTnyTJek/yc+HCBX3yyScaNWpUvu0//vij7rjjDv3ud7/TPffco2XLlmnUqFHy8/OzrqbJzc3Vb37zG23ZskUjRoxQixYttHv3bs2ePVtffvmlli9f7jbnhg0btGzZMo0ePVp169ZV27ZtNW/ePI0aNUq//e1vddddd0mS2rRpU6z35qmnnpKfn58effRRZWVlWd+E5eTkqHfv3uratatmzpypRYsWafTo0QoKCtKf/vQnDRw4UHfddZfmz5+vwYMHy+l0KiYmxm3uhx56SPXq1dOUKVN09uzZYsVVlM9rUlKSvv76az3wwAMKDw+3fqqQlpam7du3y8vLS9KlS8ffeecdjR49WrGxsTpx4oS2bNmiL774Qtdff32BMQwdOlQLFixQ7969NWzYMF28eFEff/yxtm/fro4dO1r9OnToIGOMtm3bpj59+hRrPwEAlQv5VdHZmV+9/fbb+umnnzRq1CjVqVNHO3fu1EsvvaRvv/1Wb7/9ttVv7dq16t+/v2JjY5WYmKgTJ05YBZc8vr6++u1vf6t3331Xf/vb39yuAlq+fLmysrI0YMAASaXP1y7/wqson5Wi+stf/iIvLy9NmjRJx48f1wsvvKAePXooNTVVgYGBxXrP+vfvr7S0NI0ZM0YNGzbU8ePHlZSUpMOHDxd4c/icnBz16dNH69ev14ABA/Twww/r9OnTSkpK0p49e9S4cWOrb4cOHTR79mylpaXxMCCUPwOgTLzxxhtGkvnkk08K7HPx4kWTlZXltu3HH380YWFh5sEHH7S2HTp0yEgygYGB5ttvv7W279ixw0gy48aNs7Z1797dtG7d2pw/f97alpuba2688Ubzq1/9ytr20UcfGUnmo48+KjC+zMxMI8nceeedRdllk5qaaiSZYcOGuW1/9NFHjSSzYcMGa5skM3Xq1CvmiI6ONkOGDLHW897HHj16mNzcXGv7uHHjTLVq1cypU6esbS1btjS33HJLkWI9cOCAkWReeumlK9puueUWI8nMmjXL2paVlWXatWtnQkNDTXZ2tjHGmH/961/G29vbfPzxx27j58+fbySZrVu3uu2vt7e3SUtLc+v7/fffF/heXE3e37BRo0bmp59+cmsbMmSIkWSefvppa9uPP/5oAgMDjZeXl1myZIm1fd++fVfEkPe+33zzzebixYvFiqs4n9dfxm2MMW+99ZaRZDZv3mxtCw4ONgkJCYW+7pAhQ0x0dLS1vmHDBiPJ/PGPf7yi7+WfJWOMOXr0qJFknn322avuHwCg4pBf/ayq5Vf5nfMTExONl5eX+d///mdta9eunYmIiHCLYe3atUaS23l+zZo1RpL54IMP3Oa84447TKNGjaz1ssjXivNZuZq8z8h1111nXC6XtX3ZsmVGkpkzZ461rSjv2Y8//mgkmeeee67Q173lllvc/o6vv/66kWSef/75K/r+Mk/atm2bkWSWLl1apH0ESoOf7wE2qlatmvXNTm5urk6ePKmLFy+qY8eObj9LytOvXz9dd9111vqvf/1rderUyXpM68mTJ7Vhwwb97ne/0+nTp/XDDz/ohx9+0IkTJxQXF6evvvpK3333XZHjc7lckqSaNWsWqX9eHOPHj3fb/sgjj0hSqe6NMGLECOuqGUnq0qWLcnJy9L///a9E8+X9PKxWrVr5tvv4+OgPf/iDte7n56c//OEPOn78uFJSUiRd+vaqRYsWat68ufVe//DDD9bv7X/5M4FbbrlFsbGxJYq3MEOGDLG+UfulYcOGWf8dEhKiZs2aKSgoSL/73e+s7c2aNVNISIi+/vrrK8YPHz5c1apVK1FcV/u8SnKL+/z58/rhhx/UuXNnSXI7BkJCQrRjxw4dPXq0yK//73//W15eXpo6deoVbZd/lqSfPwc//PBDkecHAFRO5FdFZ2d+dfk5/+zZs/rhhx904403yhijzz77TJJ07NgxpaamasiQIQoODrb69+zZ84oc6rbbblPdunWtq7qkS1e6JyUl6fe//721rSzztaLkNkU1ePBgt8/A3XffrYiIiALzpILes8DAQPn5+Wnjxo368ccfi/z6//73v1W3bl2NGTPmijbyJFQkilKAzRYuXKg2bdooICBAderUUb169bRy5UplZmZe0fdXv/rVFduaNm1q/V78wIEDMsboySefVL169dyWvP8xP378eJFjczgcki7dz6co/ve//8nb21tNmjRx2x4eHq6QkJASJziS1KBBA7f1vJNjcU6++TEF/DY+MjLyipt6N23aVJKs9/urr75SWlraFe91Xr9fvte//GlcWSlo3rx7KF0uODhY9evXvyLZCA4Ozve9LE3MV/u8SpcS/YcfflhhYWEKDAxUvXr1rNe8/BiYOXOm9uzZo6ioKP3617/WtGnT8i2iXe7gwYOKjIxU7dq1rxpr3ufgl+8LAKBqIr8qGjvzq8OHD+v+++9X7dq1VaNGDdWrV0+33HKLpJ/P+Xn7kt/fpFmzZm7rPj4+6t+/v95//33r3lDvvvuuLly44FaUKst8rSi5TVH9ci4vLy81adLEba6ivGf+/v569tlntWrVKoWFhVm3bUhPTy/09Q8ePKhmzZrJx+fqd/AhT4KduKcUYKM333xT999/v/r166cJEyYoNDRU1apVU2Ji4hU3GCyK3NxcSdKjjz6quLi4fPv8MqEpjMPhUGRkZLFv4FiaE1ZOTk6+2wu6WqegotLV1KlTR1Lpkq7c3Fy1bt1azz//fL7tUVFRbusFXc1UWgXNW9B7Vpz3srxizvO73/1O27Zt04QJE9SuXTvVqFFDubm5uv32263Pc16/Ll266L333tPatWv13HPP6dlnn9W7776r3r17lzqOvM9B3bp1Sz0XAKBikV9dqaLzq5ycHPXs2VMnT57UpEmT1Lx5cwUFBem7777T/fff73bOL44BAwbob3/7m1atWqV+/fpp2bJlat68udq2bWv1qSz5WnEV5z0bO3as+vbtq+XLl2vNmjV68sknlZiYqA0bNqh9+/aljoU8CXaiKAXY6J133lGjRo307rvvuiUa+f3cSLr0Tc8vffnll9YNDBs1aiTp0s0fe/ToUSYx9unTR6+++qqSk5PldDoL7RsdHa3c3Fx99dVXatGihbU9IyNDp06dUnR0tLWtVq1aOnXqlNv47OxsHTt2rMSxFidZa9CggQIDA3Xo0KF8248ePaqzZ8+6XS315ZdfSpL1fjdu3Fiff/65unfvXuJE0ZO/cbra5/XHH3/U+vXrNX36dE2ZMqXQcZIUERGhhx56SA899JCOHz+u66+/Xn/5y18KLEo1btxYa9as0cmTJ696tVTe5+Dyzy0AoGoivzrlNr4y5Fe7d+/Wl19+qYULF2rw4MHW9qSkJLd+efuS399k//79V2zr2rWrIiIitHTpUt18883asGGDdUP2PGWRr+W52melNHMZY3TgwAHrgTdFfc/yNG7cWI888ogeeeQRffXVV2rXrp1mzZqlN998s8D+O3bs0IULF+Tr61torORJsBM/3wNslPft1OXfRu3YsUPJycn59l++fLnbPQt27typHTt2WP9THhoaqm7duulvf/tbvsnH5Y/4LaqJEycqKChIw4YNU0ZGxhXtBw8e1Jw5cyRJd9xxh6RLT2q5XN43U/Hx8da2xo0ba/PmzW79Xn311QK/ySuKoKCgKxKxgvj6+qpjx4769NNP822/ePGi/va3v1nr2dnZ+tvf/qZ69eqpQ4cOki5dvfPdd9/p73//+xXjz507V6Sn1VWvXl2Sihx3VXK1z2t+n3/pys9PTk7OFT+3CA0NVWRk5BWPcr5c//79ZYzR9OnTr2j75WumpKTIy8vrqv9jAACo/MivKl9+ld/fxBhj7WOeiIgItWvXTgsXLnQ79yclJWnv3r1XvJ63t7fuvvtuffDBB/rXv/6lixcvuv10TyqbfC3P1T4rxZH3JL8877zzjo4dO1ZonpTfe/bTTz/p/PnzbtsaN26smjVrXjVP+uGHH/Tyyy9f0ZZfnhQcHKyWLVsWce+AkuNKKaCMvf7661q9evUV2x9++GH16dNH7777rn77298qPj5ehw4d0vz58xUbG6szZ85cMaZJkya6+eabNWrUKGVlZemFF15QnTp1NHHiRKvP3LlzdfPNN6t169YaPny4GjVqpIyMDCUnJ+vbb7/V559/Xqz4GzdurMWLF+v3v/+9WrRoocGDB6tVq1bKzs7Wtm3b9Pbbb+v++++XJLVt21ZDhgzRq6++qlOnTumWW27Rzp07tXDhQvXr10+33nqrNe+wYcM0cuRI9e/fXz179tTnn3+uNWvWlOqy4A4dOmjevHn685//rCZNmig0NNS6iWV+7rzzTv3pT3+Sy+Wy7u+QJzIyUs8++6y++eYbNW3aVEuXLlVqaqpeffVV69ukQYMGadmyZRo5cqQ++ugj3XTTTcrJydG+ffu0bNkyrVmzRh07diw05sDAQMXGxmrp0qVq2rSpateurVatWnnE43av9nl1OBzWfQ8uXLig6667TmvXrr3i29XTp0+rfv36uvvuu9W2bVvVqFFD69at0yeffKJZs2YV+Pq33nqrBg0apBdffFFfffWV9ZPAjz/+WLfeeqtGjx5t9U1KStJNN91k/ewAAFC5kV9VrfyqefPmaty4sR599FF99913cjgc+ve//53vbRQSExMVHx+vm2++WQ8++KBOnjypl156SS1btsz37/f73/9eL730kqZOnarWrVtfcTVPWeRreYryWSmq2rVr6+abb9YDDzygjIwMvfDCC2rSpImGDx9erPfsyy+/VPfu3fW73/1OsbGx8vHx0XvvvaeMjAwNGDCgwNcfPHiw/vnPf2r8+PHauXOnunTporNnz2rdunV66KGHdOedd1p9k5KS1LdvX4++wh+ViJ2P+gM8Wd6jdgtajhw5YnJzc83TTz9toqOjjb+/v2nfvr1ZsWLFFY+2z3sM7XPPPWdmzZploqKijL+/v+nSpYv5/PPPr3jtgwcPmsGDB5vw8HDj6+trrrvuOtOnTx/zzjvvWH2K8sjiy3355Zdm+PDhpmHDhsbPz8/UrFnT3HTTTeall15yezzyhQsXzPTp001MTIzx9fU1UVFRZvLkyW59jDEmJyfHTJo0ydStW9dUr17dxMXFmQMHDhT4yOJfPvo5v/jT09NNfHy8qVmzppF01ccXZ2RkGB8fH/Ovf/3Lbfstt9xiWrZsaT799FPjdDpNQECAiY6ONi+//PIVc2RnZ5tnn33WtGzZ0vj7+5tatWqZDh06mOnTp5vMzEyrnySTkJCQbxzbtm0zHTp0MH5+fgU+yjk/ee/B22+/fUXbkCFDTFBQ0BXb8/btl6Kjo018fLy1XpRHbhekOJ/Xb7/91vz2t781ISEhJjg42Pzf//2fOXr0qNv7kJWVZSZMmGDatm1ratasaYKCgkzbtm3NK6+8csU+X37cGHPpseDPPfecad68ufHz8zP16tUzvXv3NikpKVafU6dOGT8/P/Paa68Ve18BAPYiv6q6+dXevXtNjx49TI0aNUzdunXN8OHDzeeff24kmTfeeMOt77///W/TokUL4+/vb2JjY827776b73neGGNyc3NNVFSUkWT+/Oc/5xtTafO14n5WCpP3Hr/11ltm8uTJJjQ01AQGBpr4+Hjzv//9r9jv2Q8//GASEhJM8+bNTVBQkAkODjadOnUyy5Ytc5vrlltuueJv99NPP5k//elP1ucqPDzc3H333ebgwYNWny+++MJIMuvWrSvWfgIl5WVMCe9qBwBV0NChQ/Xll1/q448/ruhQUEFeeOEFzZw5UwcPHqw0NzcFAKAqI7/yHGPHjtXmzZutWx0A5Y2iFIBryuHDh9W0aVOtX79eN910U0WHA5tduHBBjRs31mOPPaaHHnqoosMBAMAjkF95hhMnTig6OlrLli2z7m0GlDeKUgBQwbKzs3Xy5MlC+wQHB9t+VU9OTs5Vb+Zao0YN1ahRw6aIAAAAKofKmr8BVQ03OgeACrZt2za3m5bm54033rBugGqXI0eOKCYmptA+U6dO1bRp0+wJCAAAoJKorPkbUNVwpRQAVLAff/xRKSkphfZp2bKlIiIibIrokvPnz2vLli2F9mnUqJEaNWpkU0QAAACVQ2XN34CqhqIUAAAAAAAAbOdd0QEAAAAAAADg2sM9pYogNzdXR48eVc2aNXksJgAA1xBjjE6fPq3IyEh5e/NdXnGRQwEAcG0qag5FUaoIjh49qqioqIoOAwAAVJAjR46ofv36FR1GlUMOBQDAte1qORRFqSKoWbOmpEtvpsPhqOBoAACAXVwul6KioqxcAMVDDgUAwLWpqDkURakiyLvc3OFwkFABAHAN4qdnJUMOBQDAte1qORQ3RwAAAAAAAIDtKEoBAAAAAADAdhSlAAAAAAAAYDuKUgAAAAAAALAdRSkAAAAAAADYjqIUAAAAAAAAbEdRCgAAAAAAALajKAUAAAAAAADbUZQCAAAAAACA7ShKAQAAAAAAwHYUpQAAAAAAAGA7ilIAAAAAAACwHUUpAAAAAAAA2I6iFAAAAAAAAGxHUQoAAAAAAAC2oygFAAAAAAAA21GUAgAAAAAAgO0oSgEAAAAAAMB2FKUAAAAAAABgO4pSAAAAAAAAsF2lKUo988wz8vLy0tixY61t58+fV0JCgurUqaMaNWqof//+ysjIcBt3+PBhxcfHq3r16goNDdWECRN08eJFtz4bN27U9ddfL39/fzVp0kQLFiywYY8AAAAAAABQEJ+KDkCSPvnkE/3tb39TmzZt3LaPGzdOK1eu1Ntvv63g4GCNHj1ad911l7Zu3SpJysnJUXx8vMLDw7Vt2zYdO3ZMgwcPlq+vr55++mlJ0qFDhxQfH6+RI0dq0aJFWr9+vYYNG6aIiAjFxcWVKu5nPvuh0PbH2tct1fwAAACehvwJAADkqfArpc6cOaOBAwfq73//u2rVqmVtz8zM1D/+8Q89//zzuu2229ShQwe98cYb2rZtm7Zv3y5JWrt2rfbu3as333xT7dq1U+/evfXUU09p7ty5ys7OliTNnz9fMTExmjVrllq0aKHRo0fr7rvv1uzZsytkfwEAAAAAAFAJilIJCQmKj49Xjx493LanpKTowoULbtubN2+uBg0aKDk5WZKUnJys1q1bKywszOoTFxcnl8ultLQ0q88v546Li7PmAAAAAAAAgP0q9Od7S5Ys0X//+1998sknV7Slp6fLz89PISEhbtvDwsKUnp5u9bm8IJXXntdWWB+Xy6Vz584pMDDwitfOyspSVlaWte5yuYq/cwAAAAAAAChQhV0pdeTIET388MNatGiRAgICKiqMfCUmJio4ONhaoqKiKjokAAAAAAAAj1JhRamUlBQdP35c119/vXx8fOTj46NNmzbpxRdflI+Pj8LCwpSdna1Tp065jcvIyFB4eLgkKTw8/Iqn8eWtX62Pw+HI9yopSZo8ebIyMzOt5ciRI2WxywAAAAAAAPj/Kqwo1b17d+3evVupqanW0rFjRw0cOND6b19fX61fv94as3//fh0+fFhOp1OS5HQ6tXv3bh0/ftzqk5SUJIfDodjYWKvP5XPk9cmbIz/+/v5yOBxuCwAAAAAAAMpOhd1TqmbNmmrVqpXbtqCgINWpU8faPnToUI0fP161a9eWw+HQmDFj5HQ61blzZ0lSr169FBsbq0GDBmnmzJlKT0/XE088oYSEBPn7+0uSRo4cqZdfflkTJ07Ugw8+qA0bNmjZsmVauXKlvTsMAAAAAAAAS4Xe6PxqZs+eLW9vb/Xv319ZWVmKi4vTK6+8YrVXq1ZNK1as0KhRo+R0OhUUFKQhQ4ZoxowZVp+YmBitXLlS48aN05w5c1S/fn299tpriouLq4hdAgAAAAAAgCQvY4yp6CAqO5fLpeDgYGVmZrr9lO+Zz34odNxj7euWd2gAAKAcFZQDoGjye//InwAA8HxFzaEq7J5SAAAAAAAAuHZRlAIAAKhC5s2bpzZt2lgPY3E6nVq1apXVfv78eSUkJKhOnTqqUaOG+vfvf8WTiA8fPqz4+HhVr15doaGhmjBhgi5evOjWZ+PGjbr++uvl7++vJk2aaMGCBXbsHgAAuIZQlAIAAKhC6tevr2eeeUYpKSn69NNPddttt+nOO+9UWlqaJGncuHH64IMP9Pbbb2vTpk06evSo7rrrLmt8Tk6O4uPjlZ2drW3btmnhwoVasGCBpkyZYvU5dOiQ4uPjdeuttyo1NVVjx47VsGHDtGbNGtv3FwAAeC7uKVUE3FMKAIBrU1W5p1Tt2rX13HPP6e6771a9evW0ePFi3X333ZKkffv2qUWLFkpOTlbnzp21atUq9enTR0ePHlVYWJgkaf78+Zo0aZK+//57+fn5adKkSVq5cqX27NljvcaAAQN06tQprV69ushxcU8pAACuTdxTCgAAwMPl5ORoyZIlOnv2rJxOp1JSUnThwgX16NHD6tO8eXM1aNBAycnJkqTk5GS1bt3aKkhJUlxcnFwul3W1VXJystsceX3y5gAAACgLPhUdAAAAAIpn9+7dcjqdOn/+vGrUqKH33ntPsbGxSk1NlZ+fn0JCQtz6h4WFKT09XZKUnp7uVpDKa89rK6yPy+XSuXPnFBgYmG9cWVlZysrKstZdLlep9hMAAHg2rpQCAACoYpo1a6bU1FTt2LFDo0aN0pAhQ7R3796KDkuJiYkKDg62lqioqIoOCQAAVGIUpQAAAKoYPz8/NWnSRB06dFBiYqLatm2rOXPmKDw8XNnZ2Tp16pRb/4yMDIWHh0uSwsPDr3gaX9761fo4HI4Cr5KSpMmTJyszM9Najhw5UtpdBQAAHoyiFAAAQBWXm5urrKwsdejQQb6+vlq/fr3Vtn//fh0+fFhOp1OS5HQ6tXv3bh0/ftzqk5SUJIfDodjYWKvP5XPk9cmboyD+/v5yOBxuCwAAQEG4pxQAAEAVMnnyZPXu3VsNGjTQ6dOntXjxYm3cuFFr1qxRcHCwhg4dqvHjx6t27dpyOBwaM2aMnE6nOnfuLEnq1auXYmNjNWjQIM2cOVPp6el64oknlJCQIH9/f0nSyJEj9fLLL2vixIl68MEHtWHDBi1btkwrV66syF0HAAAehqIUAABAFXL8+HENHjxYx44dU3BwsNq0aaM1a9aoZ8+ekqTZs2fL29tb/fv3V1ZWluLi4vTKK69Y46tVq6YVK1Zo1KhRcjqdCgoK0pAhQzRjxgyrT0xMjFauXKlx48Zpzpw5ql+/vl577TXFxcXZvr8AAMBzeRljTEUHUdm5XC4FBwcrMzPT7TL0Zz77odBxj7WvW96hAQCAclRQDoCiye/9I38CAMDzFTWH4p5SAAAAAAAAsB1FKQAAAAAAANiOohQAAAAAAABsR1EKAAAAAAAAtqMoBQAAAAAAANtRlAIAAAAAAIDtKEoBAAAAAADAdhSlAAAAAAAAYDuKUgAAAAAAALAdRSkAAAAAAADYjqIUAAAAAAAAbEdRCgAAAAAAALajKAUAAAAAAADbUZQCAAAAAACA7ShKAQAAAAAAwHYUpQAAAAAAAGA7ilIAAAAAAACwHUUpAAAAAAAA2I6iFAAAAAAAAGxHUQoAAAAAAAC2oygFAAAAAAAA21GUAgAAAAAAgO0oSgEAAAAAAMB2FKUAAAAAAABgO4pSAAAAAAAAsB1FKQAAAAAAANiOohQAAAAAAABsR1EKAAAAAAAAtqMoBQAAAAAAANtRlAIAAAAAAIDtKEoBAAAAAADAdhSlAAAAAAAAYDuKUgAAAAAAALAdRSkAAAAAAADYjqIUAAAAAAAAbEdRCgAAAAAAALar0KLUvHnz1KZNGzkcDjkcDjmdTq1atcpq79atm7y8vNyWkSNHus1x+PBhxcfHq3r16goNDdWECRN08eJFtz4bN27U9ddfL39/fzVp0kQLFiywY/cAAAAAAABQAJ+KfPH69evrmWee0a9+9SsZY7Rw4ULdeeed+uyzz9SyZUtJ0vDhwzVjxgxrTPXq1a3/zsnJUXx8vMLDw7Vt2zYdO3ZMgwcPlq+vr55++mlJ0qFDhxQfH6+RI0dq0aJFWr9+vYYNG6aIiAjFxcXZu8MAAAAAAACQVMFFqb59+7qt/+Uvf9G8efO0fft2qyhVvXp1hYeH5zt+7dq12rt3r9atW6ewsDC1a9dOTz31lCZNmqRp06bJz89P8+fPV0xMjGbNmiVJatGihbZs2aLZs2dTlAIAAAAAAKggleaeUjk5OVqyZInOnj0rp9NpbV+0aJHq1q2rVq1aafLkyfrpp5+stuTkZLVu3VphYWHWtri4OLlcLqWlpVl9evTo4fZacXFxSk5OLuc9AgAAAAAAQEEq9EopSdq9e7ecTqfOnz+vGjVq6L333lNsbKwk6d5771V0dLQiIyO1a9cuTZo0Sfv379e7774rSUpPT3crSEmy1tPT0wvt43K5dO7cOQUGBl4RU1ZWlrKysqx1l8tVdjsMAAAAAACAii9KNWvWTKmpqcrMzNQ777yjIUOGaNOmTYqNjdWIESOsfq1bt1ZERIS6d++ugwcPqnHjxuUWU2JioqZPn15u8wMAAAAAAFzrKvzne35+fmrSpIk6dOigxMREtW3bVnPmzMm3b6dOnSRJBw4ckCSFh4crIyPDrU/eet59qArq43A48r1KSpImT56szMxMazly5EjJdxAAAAAAAABXqPCi1C/l5ua6/XTucqmpqZKkiIgISZLT6dTu3bt1/Phxq09SUpIcDof1E0Cn06n169e7zZOUlOR236pf8vf3l8PhcFsAAAAAAABQdir053uTJ09W79691aBBA50+fVqLFy/Wxo0btWbNGh08eFCLFy/WHXfcoTp16mjXrl0aN26cunbtqjZt2kiSevXqpdjYWA0aNEgzZ85Uenq6nnjiCSUkJMjf31+SNHLkSL388suaOHGiHnzwQW3YsEHLli3TypUrK3LXAQAAAAAArmkVWpQ6fvy4Bg8erGPHjik4OFht2rTRmjVr1LNnTx05ckTr1q3TCy+8oLNnzyoqKkr9+/fXE088YY2vVq2aVqxYoVGjRsnpdCooKEhDhgzRjBkzrD4xMTFauXKlxo0bpzlz5qh+/fp67bXXFBcXVxG7DAAAAAAAAFVwUeof//hHgW1RUVHatGnTVeeIjo7Whx9+WGifbt266bPPPit2fAAAAAAAACgfle6eUgAAAAAAAPB8FKUAAAAAAABgO4pSAAAAAAAAsB1FKQAAAAAAANiOohQAAAAAAABsR1EKAAAAAAAAtqMoBQAAAAAAANtRlAIAAAAAAIDtKEoBAAAAAADAdhSlAAAAAAAAYDuKUgAAAAAAALAdRSkAAAAAAADYjqIUAAAAAAAAbEdRCgAAAAAAALajKAUAAAAAAADbUZQCAAAAAACA7ShKAQAAAAAAwHYUpQAAAAAAAGA7ilIAAABVSGJiom644QbVrFlToaGh6tevn/bv3+/Wp1u3bvLy8nJbRo4c6dbn8OHDio+PV/Xq1RUaGqoJEybo4sWLbn02btyo66+/Xv7+/mrSpIkWLFhQ3rsHAACuIRSlAAAAqpBNmzYpISFB27dvV1JSki5cuKBevXrp7Nmzbv2GDx+uY8eOWcvMmTOttpycHMXHxys7O1vbtm3TwoULtWDBAk2ZMsXqc+jQIcXHx+vWW29Vamqqxo4dq2HDhmnNmjW27SsAAPBsPhUdAAAAAIpu9erVbusLFixQaGioUlJS1LVrV2t79erVFR4enu8ca9eu1d69e7Vu3TqFhYWpXbt2euqppzRp0iRNmzZNfn5+mj9/vmJiYjRr1ixJUosWLbRlyxbNnj1bcXFx5beDAADgmsGVUgAAAFVYZmamJKl27dpu2xctWqS6deuqVatWmjx5sn766SerLTk5Wa1bt1ZYWJi1LS4uTi6XS2lpaVafHj16uM0ZFxen5OTk8toVAABwjeFKKQAAgCoqNzdXY8eO1U033aRWrVpZ2++9915FR0crMjJSu3bt0qRJk7R//369++67kqT09HS3gpQkaz09Pb3QPi6XS+fOnVNgYOAV8WRlZSkrK8tad7lcZbOjAADAI1GUAgAAqKISEhK0Z88ebdmyxW37iBEjrP9u3bq1IiIi1L17dx08eFCNGzcut3gSExM1ffr0cpsfAAB4Fn6+BwAAUAWNHj1aK1as0EcffaT69esX2rdTp06SpAMHDkiSwsPDlZGR4dYnbz3vPlQF9XE4HPleJSVJkydPVmZmprUcOXKk+DsGAACuGRSlAAAAqhBjjEaPHq333ntPGzZsUExMzFXHpKamSpIiIiIkSU6nU7t379bx48etPklJSXI4HIqNjbX6rF+/3m2epKQkOZ3OAl/H399fDofDbQEAACgIRSkAAIAqJCEhQW+++aYWL16smjVrKj09Xenp6Tp37pwk6eDBg3rqqaeUkpKib775Rv/5z380ePBgde3aVW3atJEk9erVS7GxsRo0aJA+//xzrVmzRk888YQSEhLk7+8vSRo5cqS+/vprTZw4Ufv27dMrr7yiZcuWady4cRW27wAAwLNQlAIAAKhC5s2bp8zMTHXr1k0RERHWsnTpUkmSn5+f1q1bp169eql58+Z65JFH1L9/f33wwQfWHNWqVdOKFStUrVo1OZ1O3XfffRo8eLBmzJhh9YmJidHKlSuVlJSktm3batasWXrttdcUFxdn+z4DAADPxI3OAQAAqhBjTKHtUVFR2rRp01XniY6O1ocfflhon27duumzzz4rVnwAAABFxZVSAAAAAAAAsB1FKQAAAAAAANiOohQAAAAAAABsR1EKAAAAAAAAtqMoBQAAAAAAANtRlAIAAAAAAIDtKEoBAAAAAADAdhSlAAAAAAAAYDuKUgAAAAAAALAdRSkAAAAAAADYjqIUAAAAAAAAbEdRCgAAAAAAALajKAUAAAAAAADbUZQCAAAAAACA7ShKAQAAAAAAwHYUpQAAAAAAAGA7ilIAAAAAAACwHUUpAAAAAAAA2I6iFAAAAAAAAGxXoUWpefPmqU2bNnI4HHI4HHI6nVq1apXVfv78eSUkJKhOnTqqUaOG+vfvr4yMDLc5Dh8+rPj4eFWvXl2hoaGaMGGCLl686NZn48aNuv766+Xv768mTZpowYIFduweAAAAAAAAClChRan69evrmWeeUUpKij799FPddtttuvPOO5WWliZJGjdunD744AO9/fbb2rRpk44ePaq77rrLGp+Tk6P4+HhlZ2dr27ZtWrhwoRYsWKApU6ZYfQ4dOqT4+HjdeuutSk1N1dixYzVs2DCtWbPG9v0FAAAAAADAJV7GGFPRQVyudu3aeu6553T33XerXr16Wrx4se6++25J0r59+9SiRQslJyerc+fOWrVqlfr06aOjR48qLCxMkjR//nxNmjRJ33//vfz8/DRp0iStXLlSe/bssV5jwIABOnXqlFavXl2kmFwul4KDg5WZmSmHw2Ftf+azHwod91j7usXdfQAAUIkUlAOgaPJ7/8ifAADwfEXNoSrNPaVycnK0ZMkSnT17Vk6nUykpKbpw4YJ69Ohh9WnevLkaNGig5ORkSVJycrJat25tFaQkKS4uTi6Xy7raKjk52W2OvD55c+QnKytLLpfLbQEAAAAAAEDZqfCi1O7du1WjRg35+/tr5MiReu+99xQbG6v09HT5+fkpJCTErX9YWJjS09MlSenp6W4Fqbz2vLbC+rhcLp07dy7fmBITExUcHGwtUVFRZbGrAAAAAAAA+P8qvCjVrFkzpaamaseOHRo1apSGDBmivXv3VmhMkydPVmZmprUcOXKkQuMBAAAAAADwND4VHYCfn5+aNGkiSerQoYM++eQTzZkzR7///e+VnZ2tU6dOuV0tlZGRofDwcElSeHi4du7c6TZf3tP5Lu/zyyf2ZWRkyOFwKDAwMN+Y/P395e/vXyb7BwAAAAAAgCtV+JVSv5Sbm6usrCx16NBBvr6+Wr9+vdW2f/9+HT58WE6nU5LkdDq1e/duHT9+3OqTlJQkh8Oh2NhYq8/lc+T1yZsDAAAAAAAA9qvQK6UmT56s3r17q0GDBjp9+rQWL16sjRs3as2aNQoODtbQoUM1fvx41a5dWw6HQ2PGjJHT6VTnzp0lSb169VJsbKwGDRqkmTNnKj09XU888YQSEhKsK51Gjhypl19+WRMnTtSDDz6oDRs2aNmyZVq5cmVF7joAAAAAAMA1rUKLUsePH9fgwYN17NgxBQcHq02bNlqzZo169uwpSZo9e7a8vb3Vv39/ZWVlKS4uTq+88oo1vlq1alqxYoVGjRolp9OpoKAgDRkyRDNmzLD6xMTEaOXKlRo3bpzmzJmj+vXr67XXXlNcXJzt+wsAAAAAAIBLvIwxpqKDqOxcLpeCg4OVmZkph8NhbX/msx8KHfdY+7rlHRoAAChHBeUAKJr83j/yJwAAPF9Rc6hKd08pAAAAAAAAeD6KUgAAAAAAALAdRSkAAAAAAADYjqIUAAAAAAAAbEdRCgAAAAAAALajKAUAAAAAAADbUZQCAAAAAACA7ShKAQAAAAAAwHYUpQAAAAAAAGA7ilIAAAAAAACwHUUpAAAAAAAA2I6iFAAAAAAAAGxHUQoAAAAAAAC2oygFAAAAAAAA21GUAgAAAAAAgO0oSgEAAAAAAMB2FKUAAAAAAABgO4pSAAAAAAAAsB1FKQAAAAAAANiOohQAAAAAAABsR1EKAAAAAAAAtqMoBQAAAAAAANtRlAIAAAAAAIDtKEoBAAAAAADAdhSlAAAAAAAAYDuKUgAAAAAAALAdRSkAAAAAAADYjqIUAAAAAAAAbEdRCgAAAAAAALajKAUAAAAAAADbUZQCAAAAAACA7ShKAQAAAAAAwHYUpQAAAAAAAGA7ilIAAAAAAACwHUUpAAAAAAAA2I6iFAAAAAAAAGxHUQoAAKAKSUxM1A033KCaNWsqNDRU/fr10/79+936nD9/XgkJCapTp45q1Kih/v37KyMjw63P4cOHFR8fr+rVqys0NFQTJkzQxYsX3fps3LhR119/vfz9/dWkSRMtWLCgvHcPAABcQyhKAQAAVCGbNm1SQkKCtm/frqSkJF24cEG9evXS2bNnrT7jxo3TBx98oLffflubNm3S0aNHddddd1ntOTk5io+PV3Z2trZt26aFCxdqwYIFmjJlitXn0KFDio+P16233qrU1FSNHTtWw4YN05o1a2zdXwAA4Lm8jDGmooOo7Fwul4KDg5WZmSmHw2Ftf+azHwod91j7uuUdGgAAKEcF5QCVyffff6/Q0FBt2rRJXbt2VWZmpurVq6fFixfr7rvvliTt27dPLVq0UHJysjp37qxVq1apT58+Onr0qMLCwiRJ8+fP16RJk/T999/Lz89PkyZN0sqVK7Vnzx7rtQYMGKBTp05p9erVRYotv/eP/AkAAM9X1ByKK6UAAACqsMzMTElS7dq1JUkpKSm6cOGCevToYfVp3ry5GjRooOTkZElScnKyWrdubRWkJCkuLk4ul0tpaWlWn8vnyOuTN0d+srKy5HK53BYAAICCUJQCAACoonJzczV27FjddNNNatWqlSQpPT1dfn5+CgkJcesbFham9PR0q8/lBam89ry2wvq4XC6dO3cu33gSExMVHBxsLVFRUaXeRwAA4LkoSgEAAFRRCQkJ2rNnj5YsWVLRoUiSJk+erMzMTGs5cuRIRYcEAAAqMZ+KDgAAAADFN3r0aK1YsUKbN29W/fr1re3h4eHKzs7WqVOn3K6WysjIUHh4uNVn586dbvPlPZ3v8j6/fGJfRkaGHA6HAgMD843J399f/v7+pd43AABwbeBKKQAAgCrEGKPRo0frvffe04YNGxQTE+PW3qFDB/n6+mr9+vXWtv379+vw4cNyOp2SJKfTqd27d+v48eNWn6SkJDkcDsXGxlp9Lp8jr0/eHAAAAKXFlVIAAABVSEJCghYvXqz3339fNWvWtO4BFRwcrMDAQAUHB2vo0KEaP368ateuLYfDoTFjxsjpdKpz586SpF69eik2NlaDBg3SzJkzlZ6erieeeEIJCQnWlU4jR47Uyy+/rIkTJ+rBBx/Uhg0btGzZMq1cubLC9h0AAHgWrpQCAACoQubNm6fMzEx169ZNERER1rJ06VKrz+zZs9WnTx/1799fXbt2VXh4uN59912rvVq1alqxYoWqVasmp9Op++67T4MHD9aMGTOsPjExMVq5cqWSkpLUtm1bzZo1S6+99pri4uJs3V8AAOC5uFIKAACgCjHGXLVPQECA5s6dq7lz5xbYJzo6Wh9++GGh83Tr1k2fffZZsWMEAAAoigq9UioxMVE33HCDatasqdDQUPXr10/79+9369OtWzd5eXm5LSNHjnTrc/jwYcXHx6t69eoKDQ3VhAkTdPHiRbc+Gzdu1PXXXy9/f381adJECxYsKO/dAwAAAAAAQAEqtCi1adMmJSQkaPv27UpKStKFCxfUq1cvnT171q3f8OHDdezYMWuZOXOm1ZaTk6P4+HhlZ2dr27ZtWrhwoRYsWKApU6ZYfQ4dOqT4+HjdeuutSk1N1dixYzVs2DCtWbPGtn0FAAAAAADAzyr053urV692W1+wYIFCQ0OVkpKirl27WturV69uPZ74l9auXau9e/dq3bp1CgsLU7t27fTUU09p0qRJmjZtmvz8/DR//nzFxMRo1qxZkqQWLVpoy5Ytmj17NvdFAAAAAAAAqACV6kbnmZmZkqTatWu7bV+0aJHq1q2rVq1aafLkyfrpp5+stuTkZLVu3VphYWHWtri4OLlcLqWlpVl9evTo4TZnXFyckpOTy2tXAAAAAAAAUIhKc6Pz3NxcjR07VjfddJNatWplbb/33nsVHR2tyMhI7dq1S5MmTdL+/futJ8ikp6e7FaQkWet5j0guqI/L5dK5c+cUGBjo1paVlaWsrCxr3eVyld2OAgAAAAAAoPIUpRISErRnzx5t2bLFbfuIESOs/27durUiIiLUvXt3HTx4UI0bNy6XWBITEzV9+vRymRsAAAAAAACV5Od7o0eP1ooVK/TRRx+pfv36hfbt1KmTJOnAgQOSpPDwcGVkZLj1yVvPuw9VQX0cDscVV0lJ0uTJk5WZmWktR44cKdmOAQAAAAAAIF8VWpQyxmj06NF67733tGHDBsXExFx1TGpqqiQpIiJCkuR0OrV7924dP37c6pOUlCSHw6HY2Firz/r1693mSUpKktPpzPc1/P395XA43BYAAAAAAACUnQotSiUkJOjNN9/U4sWLVbNmTaWnpys9PV3nzp2TJB08eFBPPfWUUlJS9M033+g///mPBg8erK5du6pNmzaSpF69eik2NlaDBg3S559/rjVr1uiJJ55QQkKC/P39JUkjR47U119/rYkTJ2rfvn165ZVXtGzZMo0bN67C9h0AAAAAAOBaVqFFqXnz5ikzM1PdunVTRESEtSxdulSS5Ofnp3Xr1qlXr15q3ry5HnnkEfXv318ffPCBNUe1atW0YsUKVatWTU6nU/fdd58GDx6sGTNmWH1iYmK0cuVKJSUlqW3btpo1a5Zee+01xcXF2b7PAAAAAAAAqOAbnRtjCm2PiorSpk2brjpPdHS0Pvzww0L7dOvWTZ999lmx4gMAAAAAAED5qBQ3OgcAAAAAAMC1haIUAAAAAAAAbEdRCgAAAAAAALajKAUAAAAAAADbUZQCAAAAAACA7ShKAQAAAAAAwHYUpQAAAAAAAGA7ilIAAAAAAACwHUUpAAAAAAAA2I6iFAAAAAAAAGxHUQoAAAAAAAC2oygFAAAAAAAA21GUAgAAAAAAgO0oSgEAAAAAAMB2FKUAAAAAAABgO4pSAAAAAAAAsB1FKQAAAAAAANiOohQAAAAAAABsR1EKAAAAAAAAtqMoBQAAAAAAANuVqCjVqFEjnThx4ortp06dUqNGjUodFAAAgKchfwIAAHBXoqLUN998o5ycnCu2Z2Vl6bvvvit1UAAAAJ6G/AkAAMCdT3E6/+c//7H+e82aNQoODrbWc3JytH79ejVs2LDMggMAAKjqyJ8AAADyV6yiVL9+/SRJXl5eGjJkiFubr6+vGjZsqFmzZpVZcAAAAFUd+RMAAED+ilWUys3NlSTFxMTok08+Ud26dcslKAAAAE9B/gQAAJC/YhWl8hw6dKis4wAAAPBo5E8AAADuSlSUkqT169dr/fr1On78uPUNYJ7XX3+91IEBAAB4GvInAACAn5WoKDV9+nTNmDFDHTt2VEREhLy8vMo6LgAAAI9C/gQAAOCuREWp+fPna8GCBRo0aFBZxwMAAOCRyJ8AAADceZdkUHZ2tm688cayjgUAAMBjkT8BAAC4K1FRatiwYVq8eHFZxwIAAOCxyJ8AAADclejne+fPn9err76qdevWqU2bNvL19XVrf/7558skOAAAAE9B/gQAAOCuREWpXbt2qV27dpKkPXv2uLVx004AAIArkT8BAAC4K1FR6qOPPirrOAAAADwa+RMAAIC7Et1TCgAAAAAAACiNEl0pdeuttxZ6mfmGDRtKHBAAAIAnIn8CAABwV6KiVN79EPJcuHBBqamp2rNnj4YMGVIWcQEAAHgU8icAAAB3JSpKzZ49O9/t06ZN05kzZ0oVEAAAgCcifwIAAHBXpveUuu+++/T666+X5ZQAAAAejfwJAABcq8q0KJWcnKyAgICynBIAAMCjkT8BAIBrVYl+vnfXXXe5rRtjdOzYMX366ad68sknyyQwAAAAT0L+BAAA4K5ERang4GC3dW9vbzVr1kwzZsxQr169yiQwAAAAT0L+BAAA4K5ERak33nijrOMAAADwaORPAAAA7kpUlMqTkpKiL774QpLUsmVLtW/fvkyCAgAA8FTkTwAAAJeUqCh1/PhxDRgwQBs3blRISIgk6dSpU7r11lu1ZMkS1atXryxjBAAAqPLInwAAANyV6Ol7Y8aM0enTp5WWlqaTJ0/q5MmT2rNnj1wul/74xz+WdYwAAABVHvkTAACAuxJdKbV69WqtW7dOLVq0sLbFxsZq7ty53KgTAAAgH+RPAAAA7kp0pVRubq58fX2v2O7r66vc3NxSBwUAAOBpyJ8AAADclagoddttt+nhhx/W0aNHrW3fffedxo0bp+7duxd5nsTERN1www2qWbOmQkND1a9fP+3fv9+tz/nz55WQkKA6deqoRo0a6t+/vzIyMtz6HD58WPHx8apevbpCQ0M1YcIEXbx40a3Pxo0bdf3118vf319NmjTRggULir/jAAAAJVRW+RMAAICnKFFR6uWXX5bL5VLDhg3VuHFjNW7cWDExMXK5XHrppZeKPM+mTZuUkJCg7du3KykpSRcuXFCvXr109uxZq8+4ceP0wQcf6O2339amTZt09OhR3XXXXVZ7Tk6O4uPjlZ2drW3btmnhwoVasGCBpkyZYvU5dOiQ4uPjdeuttyo1NVVjx47VsGHDtGbNmpLsPgAAQLGVVf4EAADgKbyMMaYkA40xWrdunfbt2ydJatGihXr06FGqYL7//nuFhoZq06ZN6tq1qzIzM1WvXj0tXrxYd999tyRp3759atGihZKTk9W5c2etWrVKffr00dGjRxUWFiZJmj9/viZNmqTvv/9efn5+mjRpklauXKk9e/ZYrzVgwACdOnVKq1evvmpcLpdLwcHByszMlMPhsLY/89kPhY57rH3dkrwNAACgkigoByip8sifKrP83j/yJwAAPF9Rc6hiXSm1YcMGxcbGyuVyycvLSz179tSYMWM0ZswY3XDDDWrZsqU+/vjjEgedmZkpSapdu7YkKSUlRRcuXHBL1po3b64GDRooOTlZkpScnKzWrVtbBSlJiouLk8vlUlpamtXnlwlfXFycNccvZWVlyeVyuS0AAAAlUd75EwAAQFVVrKLUCy+8oOHDh+db5QoODtYf/vAHPf/88yUKJDc3V2PHjtVNN92kVq1aSZLS09Pl5+enkJAQt75hYWFKT0+3+lxekMprz2srrI/L5dK5c+euiCUxMVHBwcHWEhUVVaJ9AgAAKM/8CQAAoCorVlHq888/1+23315ge69evZSSklKiQBISErRnzx4tWbKkROPL0uTJk5WZmWktR44cqeiQAABAFVWe+RMAAEBVVqyiVEZGRr6PMs7j4+Oj77//vthBjB49WitWrNBHH32k+vXrW9vDw8OVnZ2tU6dOXRFHeHi41eeXT+PLW79aH4fDocDAwCvi8ff3l8PhcFsAAABKojzyp82bN6tv376KjIyUl5eXli9f7tZ+//33y8vLy235ZWHs5MmTGjhwoBwOh0JCQjR06FCdOXPGrc+uXbvUpUsXBQQEKCoqSjNnzixWnAAAAIUpVlHquuuuc7tZ+C/t2rVLERERRZ7PGKPRo0frvffe04YNGxQTE+PW3qFDB/n6+mr9+vXWtv379+vw4cNyOp2SJKfTqd27d+v48eNWn6SkJDkcDsXGxlp9Lp8jr0/eHAAAAOWlrPMnSTp79qzatm2ruXPnFtjn9ttv17Fjx6zlrbfecmsfOHCg0tLSlJSUpBUrVmjz5s0aMWKE1e5yudSrVy9FR0crJSVFzz33nKZNm6ZXX321WLECAAAUxKc4ne+44w49+eSTuv322xUQEODWdu7cOU2dOlV9+vQp8nwJCQlavHix3n//fdWsWdO6B1RwcLACAwMVHBysoUOHavz48apdu7YcDofGjBkjp9Opzp07S7p0yXtsbKwGDRqkmTNnKj09XU888YQSEhLk7+8vSRo5cqRefvllTZw4UQ8++KA2bNigZcuWaeXKlcXZfQAAgGIr6/xJknr37q3evXsX2sff39+6avyXvvjiC61evVqffPKJOnbsKEl66aWXdMcdd+ivf/2rIiMjtWjRImVnZ+v111+Xn5+fWrZsqdTUVD3//PNuxSsAAICSKtaVUk888YROnjyppk2baubMmXr//ff1/vvv69lnn1WzZs108uRJ/elPfyryfPPmzVNmZqa6deumiIgIa1m6dKnVZ/bs2erTp4/69++vrl27Kjw8XO+++67VXq1aNa1YsULVqlWT0+nUfffdp8GDB2vGjBlWn5iYGK1cuVJJSUlq27atZs2apddee01xcXHF2X0AAIBiK+v8qag2btyo0NBQNWvWTKNGjdKJEyestuTkZIWEhFgFKUnq0aOHvL29tWPHDqtP165d5efnZ/WJi4vT/v379eOPP+b7mjzBGAAAFEexrpQKCwvTtm3bNGrUKE2ePFnGGEmSl5eX4uLiNHfu3CuecleYvPGFCQgI0Ny5cwu9PD06OloffvhhofN069ZNn332WZFjAwAAKAtlnT8Vxe2336677rpLMTExOnjwoB5//HH17t1bycnJqlatmtLT0xUaGuo2xsfHR7Vr13Z7evEvb61w+ROOa9WqdcXrJiYmavr06WW6LwAAwHMVqygl/VwA+vHHH3XgwAEZY/SrX/0q38QEAAAA9udPAwYMsP67devWatOmjRo3bqyNGzeqe/fu5fKa0qUnGI8fP95ad7lcioqKKrfXAwAAVVuxi1J5atWqpRtuuKEsYwEAAPBoFZU/NWrUSHXr1tWBAwfUvXt3hYeHuz0kRpIuXryokydPFusJx7/k7+9v3dMTAADgaop1TykAAABUPd9++61OnDhhPeXP6XTq1KlTSklJsfps2LBBubm56tSpk9Vn8+bNunDhgtUnKSlJzZo14wp5AABQJihKAQAAVDFnzpxRamqqUlNTJUmHDh1SamqqDh8+rDNnzmjChAnavn27vvnmG61fv1533nmnmjRpYj3kpUWLFrr99ts1fPhw7dy5U1u3btXo0aM1YMAARUZGSpLuvfde+fn5aejQoUpLS9PSpUs1Z84ct5/nAQAAlAZFKQAAgCrm008/Vfv27dW+fXtJ0vjx49W+fXtNmTJF1apV065du/Sb3/xGTZs21dChQ9WhQwd9/PHHbj+tW7RokZo3b67u3bvrjjvu0M0336xXX33Vag8ODtbatWt16NAhdejQQY888oimTJmiESNG2L6/AADAM5X4nlIAAACoGN26dSv0KcZr1qy56hy1a9fW4sWLC+3Tpk0bffzxx8WODwAAoCi4UgoAAAAAAAC2oygFAAAAAAAA21GUAgAAAAAAgO0oSgEAAAAAAMB2FKUAAAAAAABgO4pSAAAAAAAAsB1FKQAAAAAAANiOohQAAAAAAABsR1EKAAAAAAAAtqMoBQAAAAAAANtRlAIAAAAAAIDtKEoBAAAAAADAdhSlAAAAAAAAYDuKUgAAAAAAALAdRSkAAAAAAADYjqIUAAAAAAAAbEdRCgAAAAAAALajKAUAAAAAAADbUZQCAAAAAACA7ShKAQAAAAAAwHYUpQAAAAAAAGA7ilIAAAAAAACwHUUpAAAAAAAA2I6iFAAAAAAAAGxHUQoAAAAAAAC2oygFAAAAAAAA21GUAgAAAAAAgO0oSgEAAAAAAMB2FKUAAAAAAABgO4pSAAAAAAAAsB1FKQAAAAAAANiOohQAAAAAAABsR1EKAAAAAAAAtqMoBQAAAAAAANtRlAIAAAAAAIDtKEoBAAAAAADAdhSlAAAAAAAAYDuKUgAAAAAAALAdRSkAAAAAAADYjqIUAAAAAAAAbEdRCgAAAAAAALar0KLU5s2b1bdvX0VGRsrLy0vLly93a7///vvl5eXlttx+++1ufU6ePKmBAwfK4XAoJCREQ4cO1ZkzZ9z67Nq1S126dFFAQICioqI0c+bM8t41AAAAAAAAFKJCi1Jnz55V27ZtNXfu3AL73H777Tp27Ji1vPXWW27tAwcOVFpampKSkrRixQpt3rxZI0aMsNpdLpd69eql6OhopaSk6LnnntO0adP06quvltt+AQAAAAAAoHA+FfnivXv3Vu/evQvt4+/vr/Dw8HzbvvjiC61evVqffPKJOnbsKEl66aWXdMcdd+ivf/2rIiMjtWjRImVnZ+v111+Xn5+fWrZsqdTUVD3//PNuxSsAAAAAAADYp9LfU2rjxo0KDQ1Vs2bNNGrUKJ04ccJqS05OVkhIiFWQkqQePXrI29tbO3bssPp07dpVfn5+Vp+4uDjt379fP/74o307AgAAAAAAAEuFXil1NbfffrvuuusuxcTE6ODBg3r88cfVu3dvJScnq1q1akpPT1doaKjbGB8fH9WuXVvp6emSpPT0dMXExLj1CQsLs9pq1ap1xetmZWUpKyvLWne5XGW9awAAAAAAANe0Sl2UGjBggPXfrVu3Vps2bdS4cWNt3LhR3bt3L7fXTUxM1PTp08ttfgAAAAAAgGtdpf/53uUaNWqkunXr6sCBA5Kk8PBwHT9+3K3PxYsXdfLkSes+VOHh4crIyHDrk7de0L2qJk+erMzMTGs5cuRIWe8KAAAAAADANa1KFaW+/fZbnThxQhEREZIkp9OpU6dOKSUlxeqzYcMG5ebmqlOnTlafzZs368KFC1afpKQkNWvWLN+f7kmXbq7ucDjcFgAAAAAAAJSdCi1KnTlzRqmpqUpNTZUkHTp0SKmpqTp8+LDOnDmjCRMmaPv27frmm2+0fv163XnnnWrSpIni4uIkSS1atNDtt9+u4cOHa+fOndq6datGjx6tAQMGKDIyUpJ07733ys/PT0OHDlVaWpqWLl2qOXPmaPz48RW12wAAAAAAANe8Ci1Kffrpp2rfvr3at28vSRo/frzat2+vKVOmqFq1atq1a5d+85vfqGnTpho6dKg6dOigjz/+WP7+/tYcixYtUvPmzdW9e3fdcccduvnmm/Xqq69a7cHBwVq7dq0OHTqkDh066JFHHtGUKVM0YsQI2/cXAAAAAAAAl1Tojc67desmY0yB7WvWrLnqHLVr19bixYsL7dOmTRt9/PHHxY4PAAAAAAAA5aNK3VMKAAAAAAAAnoGiFAAAAAAAAGxHUQoAAAAAAAC2oygFAAAAAAAA21GUAgAAAAAAgO0oSgEAAAAAAMB2FKUAAAAAAABgO4pSAAAAAAAAsB1FKQAAAAAAANiOohQAAAAAAABsR1EKAAAAAAAAtqMoBQAAAAAAANtRlAIAAAAAAIDtKEoBAABUMZs3b1bfvn0VGRkpLy8vLV++3K3dGKMpU6YoIiJCgYGB6tGjh7766iu3PidPntTAgQPlcDgUEhKioUOH6syZM259du3apS5duiggIEBRUVGaOXNmee8aAAC4hlCUAgAAqGLOnj2rtm3bau7cufm2z5w5Uy+++KLmz5+vHTt2KCgoSHFxcTp//rzVZ+DAgUpLS1NSUpJWrFihzZs3a8SIEVa7y+VSr169FB0drZSUFD333HOaNm2aXn311XLfPwAAcG3wqegAAAAAUDy9e/dW7969820zxuiFF17QE088oTvvvFOS9M9//lNhYWFavny5BgwYoC+++EKrV6/WJ598oo4dO0qSXnrpJd1xxx3661//qsjISC1atEjZ2dl6/fXX5efnp5YtWyo1NVXPP/+8W/EKAACgpLhSCgAAwIMcOnRI6enp6tGjh7UtODhYnTp1UnJysiQpOTlZISEhVkFKknr06CFvb2/t2LHD6tO1a1f5+flZfeLi4rR//379+OOP+b52VlaWXC6X2wIAAFAQilIAAAAeJD09XZIUFhbmtj0sLMxqS09PV2hoqFu7j4+Pateu7dYnvzkuf41fSkxMVHBwsLVERUWVfocAAIDHoigFAACAMjF58mRlZmZay5EjRyo6JAAAUIlRlAIAAPAg4eHhkqSMjAy37RkZGVZbeHi4jh8/7tZ+8eJFnTx50q1PfnNc/hq/5O/vL4fD4bYAAAAUhKIUAACAB4mJiVF4eLjWr19vbXO5XNqxY4ecTqckyel06tSpU0pJSbH6bNiwQbm5uerUqZPVZ/Pmzbpw4YLVJykpSc2aNVOtWrVs2hsAAODJKEoBAABUMWfOnFFqaqpSU1MlXbq5eWpqqg4fPiwvLy+NHTtWf/7zn/Wf//xHu3fv1uDBgxUZGal+/fpJklq0aKHbb79dw4cP186dO7V161aNHj1aAwYMUGRkpCTp3nvvlZ+fn4YOHaq0tDQtXbpUc+bM0fjx4ytorwEAgKfxqegAAAAAUDyffvqpbr31Vms9r1A0ZMgQLViwQBMnTtTZs2c1YsQInTp1SjfffLNWr16tgIAAa8yiRYs0evRode/eXd7e3urfv79efPFFqz04OFhr165VQkKCOnTooLp162rKlCkaMWKEfTsKAAA8mpcxxlR0EJWdy+VScHCwMjMz3e6N8MxnPxQ67rH2dcs7NAAAUI4KygFQNPm9f+RPAAB4vqLmUPx8DwAAAAAAALajKAUAAAAAAADbUZQCAAAAAACA7ShKAQAAAAAAwHYUpQAAAAAAAGA7ilIAAAAAAACwHUUpAAAAAAAA2I6iFAAAAAAAAGxHUQoAAAAAAAC2oygFAAAAAAAA21GUAgAAAAAAgO0oSgEAAAAAAMB2FKUAAAAAAABgO4pSAAAAAAAAsB1FKQAAAAAAANiOohQAAAAAAABsR1EKAAAAAAAAtqMoBQAAAAAAANtRlAIAAAAAAIDtKEoBAAAAAADAdhSlAAAAAAAAYDuKUgAAAAAAALAdRSkAAAAAAADYjqIUAAAAAAAAbFehRanNmzerb9++ioyMlJeXl5YvX+7WbozRlClTFBERocDAQPXo0UNfffWVW5+TJ09q4MCBcjgcCgkJ0dChQ3XmzBm3Prt27VKXLl0UEBCgqKgozZw5s7x3DQAAAAAAAIWo0KLU2bNn1bZtW82dOzff9pkzZ+rFF1/U/PnztWPHDgUFBSkuLk7nz5+3+gwcOFBpaWlKSkrSihUrtHnzZo0YMcJqd7lc6tWrl6Kjo5WSkqLnnntO06ZN06uvvlru+wcAAAAAAID8+VTki/fu3Vu9e/fOt80YoxdeeEFPPPGE7rzzTknSP//5T4WFhWn58uUaMGCAvvjiC61evVqffPKJOnbsKEl66aWXdMcdd+ivf/2rIiMjtWjRImVnZ+v111+Xn5+fWrZsqdTUVD3//PNuxSsAAAAAAADYp9LeU+rQoUNKT09Xjx49rG3BwcHq1KmTkpOTJUnJyckKCQmxClKS1KNHD3l7e2vHjh1Wn65du8rPz8/qExcXp/379+vHH3/M97WzsrLkcrncFgAAAAAAAJSdSluUSk9PlySFhYW5bQ8LC7Pa0tPTFRoa6tbu4+Oj2rVru/XJb47LX+OXEhMTFRwcbC1RUVGl3yEAAAAAAABYKm1RqiJNnjxZmZmZ1nLkyJGKDgkAAAAAAMCjVNqiVHh4uCQpIyPDbXtGRobVFh4eruPHj7u1X7x4USdPnnTrk98cl7/GL/n7+8vhcLgtAAAAAAAAKDuVtigVExOj8PBwrV+/3trmcrm0Y8cOOZ1OSZLT6dSpU6eUkpJi9dmwYYNyc3PVqVMnq8/mzZt14cIFq09SUpKaNWumWrVq2bQ3AAAAAAAAuFyFFqXOnDmj1NRUpaamSrp0c/PU1FQdPnxYXl5eGjt2rP785z/rP//5j3bv3q3BgwcrMjJS/fr1kyS1aNFCt99+u4YPH66dO3dq69atGj16tAYMGKDIyEhJ0r333is/Pz8NHTpUaWlpWrp0qebMmaPx48dX0F4DAAAAAADApyJf/NNPP9Wtt95qrecVioYMGaIFCxZo4sSJOnv2rEaMGKFTp07p5ptv1urVqxUQEGCNWbRokUaPHq3u3bvL29tb/fv314svvmi1BwcHa+3atUpISFCHDh1Ut25dTZkyRSNGjLBvRwEAAAAAAODGyxhjKjqIys7lcik4OFiZmZlu95d65rMfCh33WPu65R0aAKCK4JxRNRWUA6Bo8nv/OBYAAPB8Rc2hKvRKKQAAAAAAgPzwRYbnq7Q3OgcAAAAAAIDnoigFAAAAAAAA21GUAgAAAAAAgO24p1QVx29sAQAAiof8CQCAyoErpQAAAAAAAGA7ilIAAAAAAACwHUUpAAAAAAAA2I57SgEAAAAAgDLHPfxwNVwpBQAAAAAAANtRlAIAAAAAAIDt+PkeAABXwaXnAAAAQNnjSikAAAAAAADYjqIUAAAAAAAAbEdRCgAAAAAAALajKAUAAAAAAADbUZQCAAAAAACA7ShKAQAAAAAAwHYUpQAAAAAAAGA7n4oOAAAAXN0zn/1QaPtj7evaFAkAALgWkHvADlwpBQAAAAAAANtRlAIAAAAAAIDt+PkeAMDjcfk5AAAAUPlQlAIAAAAAAB6JLycrN36+BwAAAAAAANtRlAIAAAAAAIDtKEoBAAAAAADAdhSlAAAAAAAAYDtudI5S48ZxAAAAAACguChKAQAAADbjSz0AAPj5HgAAgMeZNm2avLy83JbmzZtb7efPn1dCQoLq1KmjGjVqqH///srIyHCb4/Dhw4qPj1f16tUVGhqqCRMm6OLFi3bvCgAA8GBcKYUKd7VvCiW+LQQAoLhatmypdevWWes+Pj+nfePGjdPKlSv19ttvKzg4WKNHj9Zdd92lrVu3SpJycnIUHx+v8PBwbdu2TceOHdPgwYPl6+urp59+2vZ9Qf642goAUNVRlAIAAPBAPj4+Cg8Pv2J7Zmam/vGPf2jx4sW67bbbJElvvPGGWrRooe3bt6tz585au3at9u7dq3Xr1iksLEzt2rXTU089pUmTJmnatGny8/Oze3cAAIAH4ud7AAAAHuirr75SZGSkGjVqpIEDB+rw4cOSpJSUFF24cEE9evSw+jZv3lwNGjRQcnKyJCk5OVmtW7dWWFiY1ScuLk4ul0tpaWkFvmZWVpZcLpfbAgAAUBCulKpAXHJddngvAQD4WadOnbRgwQI1a9ZMx44d0/Tp09WlSxft2bNH6enp8vPzU0hIiNuYsLAwpaenS5LS09PdClJ57XltBUlMTNT06dPLdmcAAIDHoigFAADgYXr37m39d5s2bdSpUydFR0dr2bJlCgwMLLfXnTx5ssaPH2+tu1wuRUVFldvrAQCAqo2iFAAAgIcLCQlR06ZNdeDAAfXs2VPZ2dk6deqU29VSGRkZ1j2owsPDtXPnTrc58p7Ol999qvL4+/vL39+/7HcA5YKHzQAAKhpFKUAkZQAAz3bmzBkdPHhQgwYNUocOHeTr66v169erf//+kqT9+/fr8OHDcjqdkiSn06m//OUvOn78uEJDQyVJSUlJcjgcio2NrbD9AAAAnoWiFAAAgId59NFH1bdvX0VHR+vo0aOaOnWqqlWrpnvuuUfBwcEaOnSoxo8fr9q1a8vhcGjMmDFyOp3q3LmzJKlXr16KjY3VoEGDNHPmTKWnp+uJJ55QQkICV0LBDff1BACUBkUpAAAAD/Ptt9/qnnvu0YkTJ1SvXj3dfPPN2r59u+rVqydJmj17try9vdW/f39lZWUpLi5Or7zyijW+WrVqWrFihUaNGiWn06mgoCANGTJEM2bMqKhdAgAAHoiiFAAAgIdZsmRJoe0BAQGaO3eu5s6dW2Cf6Ohoffjhh2UdWpng6hwAADyDd0UHAAAAAAAAgGsPRSkAAAAAAADYjqIUAAAAAAAAbEdRCgAAAAAAALbjRucAAAAAAPx/PEwBsA9XSgEAAAAAAMB2XCkFAB7qat/ySXzTBwAAAKDiVOorpaZNmyYvLy+3pXnz5lb7+fPnlZCQoDp16qhGjRrq37+/MjIy3OY4fPiw4uPjVb16dYWGhmrChAm6ePGi3bsCAAAAAECRPPPZD4UugKeo9FdKtWzZUuvWrbPWfXx+DnncuHFauXKl3n77bQUHB2v06NG66667tHXrVklSTk6O4uPjFR4erm3btunYsWMaPHiwfH199fTTT9u+LwBwreFqLQAAAAAFqfRFKR8fH4WHh1+xPTMzU//4xz+0ePFi3XbbbZKkN954Qy1atND27dvVuXNnrV27Vnv37tW6desUFhamdu3a6amnntKkSZM0bdo0+fn52b07AFClcKNPAAAAAOWl0helvvrqK0VGRiogIEBOp1OJiYlq0KCBUlJSdOHCBfXo0cPq27x5czVo0EDJycnq3LmzkpOT1bp1a4WFhVl94uLiNGrUKKWlpal9+/b5vmZWVpaysrKsdZfLVX47CAAFoCAEAABQPJXhKu3KEANQVVTqe0p16tRJCxYs0OrVqzVv3jwdOnRIXbp00enTp5Weni4/Pz+FhIS4jQkLC1N6erokKT093a0gldee11aQxMREBQcHW0tUVFTZ7hgAAAAAAMA1rlJfKdW7d2/rv9u0aaNOnTopOjpay5YtU2BgYLm97uTJkzV+/Hhr3eVyUZgCAAAAAAAoQ5W6KPVLISEhatq0qQ4cOKCePXsqOztbp06dcrtaKiMjw7oHVXh4uHbu3Ok2R97T+fK7T1Uef39/+fv7l/0OwKPxUysAAIDi4WdOAHBtq9Q/3/ulM2fO6ODBg4qIiFCHDh3k6+ur9evXW+379+/X4cOH5XQ6JUlOp1O7d+/W8ePHrT5JSUlyOByKjY21PX4AAAAAAABcUqmvlHr00UfVt29fRUdH6+jRo5o6daqqVaume+65R8HBwRo6dKjGjx+v2rVry+FwaMyYMXI6nercubMkqVevXoqNjdWgQYM0c+ZMpaen64knnlBCQgJXQgEF4IovAAAAAIAdKnVR6ttvv9U999yjEydOqF69err55pu1fft21atXT5I0e/ZseXt7q3///srKylJcXJxeeeUVa3y1atW0YsUKjRo1Sk6nU0FBQRoyZIhmzJhRUbsEAAAAwMPwpR4AlEylLkotWbKk0PaAgADNnTtXc+fOLbBPdHS0Pvzww7IODUABSMoAAAAAAEVRqYtSAFBVceNWAACA4uMLTuDaQlEKAAAAACoYxRgA16Iq9fQ9AAAAAAAAeAaKUgAAAAAAALAdRSkAAAAAAADYjqIUAAAAAAAAbMeNzgEAuEZwE10A8Fz8Gw+gKuJKKQAAAAAAANiOK6UAAAAAAFxtBcB2FKUAVDqlTYhIqAAAAACUBf7fonzx8z0AAAAAAADYjqIUAAAAAAAAbEdRCgAAAAAAALbjnlKAB+H3zgAAAMVztfxJIocCgPLClVIAAAAAAACwHUUpAAAAAAAA2I6iFAAAAAAAAGxHUQoAAAAAAAC2oygFAAAAAAAA21GUAgAAAAAAgO0oSgEAAAAAAMB2FKUAAAAAAABgO4pSAAAAAAAAsB1FKQAAAAAAANiOohQAAAAAAABsR1EKAAAAAAAAtqMoBQAAAAAAANtRlAIAAAAAAIDtKEoBAAAAAADAdhSlAAAAAAAAYDuKUgAAAAAAALAdRSkAAAAAAADYjqIUAAAAAAAAbEdRCgAAAAAAALbzqegAAADAteOZz34otP2x9nVtigQAAAAVjaIUAAC4plAYAwAAqBwoSgEAAAAAAFRSV/tCTaq6X6pxTykAAAAAAADYjiulAAAAAAAAUKDyulqLK6UAAAAAAABgO66UAgAAVYYn31MBAADgWkNRCgAAAAAAwINV1qcP8/M9AAAAAAAA2I6iFAAAAAAAAGzHz/eucZX1Ej4AyMO/UwAqI/5tAgCg9ChKAQAAAADgQXgwCKoKfr4HAAAAAAAA211TV0rNnTtXzz33nNLT09W2bVu99NJL+vWvf13RYQGS+DajsuFnGQBwCfkTgKIifwJQXNdMUWrp0qUaP3685s+fr06dOumFF15QXFyc9u/fr9DQ0IoODwAAoNIhf0JVQCEEAKqua6Yo9fzzz2v48OF64IEHJEnz58/XypUr9frrr+uxxx6r4OgAAKj8uKLz2kP+BAAAytM1UZTKzs5WSkqKJk+ebG3z9vZWjx49lJycXIGRAQAAVE7kTwAAlA2u6CzYNVGU+uGHH5STk6OwsDC37WFhYdq3b98V/bOyspSVlWWtZ2ZmSpJcLpdbv/NnThf6ui6XX6HtpR1/rcRQFnMQQ9HGl8UcxFC08WUxBzEUbXxZzEEMRRtfFnNUthjyzv3GmKu+rqcpbv4kFS2HqgqfZWIouzmIoWjjy2IOYija+LKYgxiKNr4s5iCGoo0viznKOoYi51DmGvDdd98ZSWbbtm1u2ydMmGB+/etfX9F/6tSpRhILCwsLCwsLi5Fkjhw5YlfaUmkUN38yhhyKhYWFhYWFxX25Wg51TVwpVbduXVWrVk0ZGRlu2zMyMhQeHn5F/8mTJ2v8+PHWem5urk6ePKk6derIy8sr39dwuVyKiorSkSNH5HA4ih1jaccTg2fFUBZzEAMxVLYYymIOYiAGu2Mwxuj06dOKjIws0fxVWXHzJ6n4OdS18jkiBvvmIAZiqGwxlMUcxEAMlS2GosxR1BzqmihK+fn5qUOHDlq/fr369esn6VKStH79eo0ePfqK/v7+/vL393fbFhISUqTXcjgcJf6jlsV4YvCsGMpiDmIghsoWQ1nMQQzEYGcMwcHBpZq7qipu/iSVPIe6Fj5HxGDvHMRADJUthrKYgxiIobLFcLU5ipJDXRNFKUkaP368hgwZoo4dO+rXv/61XnjhBZ09e9Z6mgwAAADckT8BAIDydM0UpX7/+9/r+++/15QpU5Senq527dpp9erVV9y8EwAAAJeQPwEAgPJ0zRSlJGn06NEFXm5eWv7+/po6deoVl6zbNZ4YPCuGspiDGIihssVQFnMQAzFUthiuBZU5fyqLOYih8sRQFnMQAzFUthjKYg5iIIbKFkNZzSFJXsZcg884BgAAAAAAQIXyrugAAAAAAAAAcO2hKAUAAAAAAADbUZQCAAAAAACA7ShKAQAAAAAAwHYUpTzMoUOHdPHixQqNoSxen/vvoyx5ynEhcWygbHnKscFxgdLylGNB4nhA2fKUY4PjAmXJU44LqXIcGxSlSmjv3r166KGH1L59e0VERCgiIkLt27fXQw89pL179151/LFjx/Tmm2/qww8/VHZ2tlvb2bNnNWPGjBLF1axZM3311VfFHnf06FFNnTpVAwcO1KOPPqp9+/Zddczq1au1e/duSVJubq6eeuopXXfddfL391f9+vX1zDPPFPohz8rK0qOPPqquXbvq2WeflST9+c9/Vo0aNVSzZk3de++9crlcxd6XrKwsZWVlFXtcedi4caPOnTtXYa+flZWlgwcPlur9yMjIUHp6epH6lva4kMrn2CjpcSEV/9go7XEhld+xUVl4yom8qCfxynpcSJwzYL/KejxwniB/ulxZ5E+SvTkU5wnPP094Sv4kVf0cinNGGTMotg8//ND4+fmZzp07m6lTp5pXXnnFvPLKK2bq1KnmxhtvNP7+/mb16tUFjt+5c6cJCQkxDofDBAYGmiZNmpg9e/ZY7enp6cbb27vQGH7729/mu3h7e5sePXpY6wUJDAw0x48fN8YYk5aWZoKDg02TJk3M//3f/5nmzZub6tWrm88//7zQGJo1a2Y2b95sjDHm6aefNnXq1DHPP/+8WbVqlXnhhRdMWFiYeeaZZwocP27cOBMZGWkeeeQR06JFC/PQQw+ZBg0amDfffNMsXrzYNGnSxIwZM6bQGPKsXbvW9O7d24SEhBhvb2/j7e1tQkJCTO/evU1SUtJVx6emppqnnnrKzJ0713z//fdubZmZmeaBBx4oUhy/5Ovra/bu3XvVfhkZGW7rn332mRk8eLC58cYbTf/+/c1HH3101TneeOMNs23bNmOMMefOnTMPPvigqVatmvH29jY+Pj7mD3/4gzl//nyB40+cOGH69+9voqKizMiRI83FixfN0KFDjZeXl/H29jZOp9McPXq0wPGlPS6MKf2xUdrjwpjSHxulPS6MKbtjIy0tzYwaNcq0a9fOhIeHm/DwcNOuXTszatQok5aWdtXxR48eNf/617/MypUrTVZWllvbmTNnzPTp0686R36Kelz80nfffWemTJli7r33XvPII4+YL7744qpjVq1aZXbt2mWMMSYnJ8fMmDHDREZGGm9vb3PdddeZxMREk5ubW+D48+fPm0ceecR06dLF+rs99dRTJigoyAQFBZl77rnHZGZmFji+MhwXxnDOuFxpjwuUXGU4HjhPuCtt/mRM+eRQxTlPlDaHKm3+ZEzF51CcJy6pTOeJ8sihSpo/GVP8HKq0+ZMxnpFDcc5wV145FEWpEmjTpo158sknC2yfOnWqad26dYHtPXr0MA888IDJyckxLpfLjBo1ytSpU8f897//NcYU7cTh5eVlbrnlFnP//fe7Ld7e3qZfv37WemHj807id955p+nbt6+5cOGCMebSPzwDBgwwffr0KTQGf39/87///c8YY0yrVq3MsmXL3NpXrFhhmjRpUuD4qKgoK+E5ePCg8fb2NsuXL7fa165da6KjowuNwRhjFixYYHx8fMyAAQPMG2+8YT788EPz4YcfmjfeeMPcc889xtfX1/zzn/8scPyaNWuMn5+fadmypWnQoIGpU6eO2bBhg9VelL9H+/bt8128vLxMixYtrPWCeHt7W3+PrVu3Gl9fX3PLLbeYCRMmmJ49exofHx+zadOmQmOIiYkx27dvN8YY8+ijj5qGDRuad99913zxxRdm+fLlpmnTpmbChAkFjn/wwQdNq1atzEsvvWRuueUWc+edd5o2bdqYLVu2mG3btpkbbrjBDB48uMDxpT0ujCn9sVHa4yJvjtIcG6U9Lowpm2ODBPeSik5wK8NxYQznjDxlkeCi5CrD8cB54melzZ+MKX0OVdr8yZjS51ClzZ+MqfgcivPEJZXlPEEh5BJPyKE4Z/ysPHMoilIlEBAQYPbt21dg+759+0xAQECB7bVq1TL79+9325aYmGhq1apldu7cWaQTx1tvvWXq169vXn/9dbftPj4+RapSXn5wREVFWf/o5Pnvf/9rIiIiCp0jIiLCJCcnG2OMCQsLsw7uPF9++aUJDAwscHxgYKB1gBlzqfp/+T/Yhw4dMtWrV7/qvvzqV78yL7/8coHtc+fOLfRAdTqd5vHHHzfGGJObm2ueffZZU6NGDbNq1SpjTNFO5D4+Pub2228306ZNs5apU6cab29v89BDD1nbCnL536Nnz57mwQcfdGt/+OGHzW233VZoDJf/g9W0aVMr/jybNm0yDRo0KHB8RESE2bp1qzHm0j57eXmZtWvXWu1btmwx1113XYHjS3tcGFP6Y6O0x4UxpT82SntcGFM2xwYJ7iUVneBWhuPCGM4ZecoiwUXJVYbjgfPEz0qbPxlT+hyqtPmTMaXPoUqbPxlT8TkU54lLKst5gkLIJZ6QQ3HO+Fl55lAUpUqgefPmZtasWQW2z5o1yzRr1qzA9lq1auVbmX7uuedMSEiIeffdd6964jDm0ofnpptuMnfddZc5efKkMaboB4i3t7dVPY+Ojr4inq+//vqqB/lDDz1k+vTpYy5evGhGjBhhhg0b5nYZ55gxY4zT6SxwfLNmzcySJUuMMZe+UfDz83M74JcsWWJ+9atfXXVf/P39S/UPlsPhMAcOHHDbtmjRIhMUFGQ++OCDIp3It2zZYho3bmymTJlicnJyrO0lOZFf/g9Pnj179pi6desWOkd0dLT17eR1111nPvnkE7f2vXv3mqCgoALHV69e3XzzzTfWuq+vr9m9e7e1/vXXXxc6vrTHhTFlc2yU5rgwpvTHRmmPC2PK5tggwb2kohPcynJc5MV6rZ8zyiLBRclVluOB88Qlpc2fjCl9DlXa/MmY0udQpc2fjKn4HIrzxCWV5TxBIeQST8mhOGdcUp45FEWpEli2bJnx8fExffv2NXPmzDFLliwxS5YsMXPmzDG/+c1vjJ+fn3nnnXcKHN+lSxczb968fNueffZZ4+/vX6QThzGXKt1TpkwxUVFRZvXq1cbX17fI/7MXEhJiatWqZXx9fc2//vUvt/a1a9eahg0bFjrHqVOnTMeOHU2TJk3MoEGDTEBAgImOjjY9e/Y0MTExJjg42LocOj+zZ882AQEBpkePHqZWrVrmxRdfNOHh4WbixInmscceM8HBwWbGjBlX3Zfrr7++0MuqJ06caK6//voC2+vVq2c+/fTTK7a/9dZbpnr16mbevHlF+nucOnXKDBgwwHTq1MlK0IrzP98HDhwwmZmZJiYm5op/+A8cOHDV6vXjjz9unE6n+fHHH81jjz1m+vbta06fPm2MMebs2bPmd7/7nenVq1eB49u2bWt9Y/rhhx+amjVrup0I5s2bZ1q1alXg+NIeF8aU3bFR0uPCmNIfG6U9Lowpm2ODBPeSik5wK9NxYQznjLJIcFFylel44DxR+vzJmLLJoUqTPxlT+hyqtPmTMRWfQ3GeuKSynCcohFziSTkU54zyzaEoSpXQ1q1bze9//3vToEED4+fnZ/z8/EyDBg3M73//e+tmiQX5+9//bu67774C25955pmr/qP9Sx9//LGJiYkx3t7eRTpAFixY4Lb88lulGTNmmHHjxl11nuzsbDNv3jxzxx13mObNm5umTZuaW265xTz++OPmyJEjVx2/aNEiM3r0aLN48WJjjDEfffSR6dKli+nQoYOZNm2a27dmBfnoo49MUFCQad26tRk3bpx55plnzDPPPGPGjRtn2rRpY2rUqFHovQR69uxpnnvuuXzbFi9ebHx9fYt8IjfGmNdff92Eh4ebv/3tb8U6kefdYNTLy8u8+uqrbu3vv//+VS+RzcrKMr/5zW9MrVq1TM+ePU1AQICpXr26+dWvfmWCgoJMgwYNrvjW5nJvvvmmqVatmmnSpInx9/c3b7/9tomMjDS/+93vzIABA4yfn1+hl/kbU7rjwpiyPzaKe1wYUzbHRmmPC2NKf2yQ4F5SGRLcynZcGHPtnjPKIsFF6VS24+FaPk+UNn8ypmxzqJLkT8aUPocqbf5kTMXnUJwnflYZzhMUQi7xxBzqWj5nlGcO5WVMEZ/HiErvzJkzOnjwoFq0aCE/P7+KDsdW33zzjebNm6ft27dbj94NDw+X0+nUyJEj1bBhwwLHvvfee9q8ebNmz56db/vixYv197//XR999FGR4/nqq680cOBAffrpp9qzZ49iY2ML7b9p0ya39YiICDVt2tRanzNnjrKzszVhwoSrvvbq1av1wQcf6Ouvv1Zubq4iIiJ000036d5771VQUFChY7du3art27fL6XTqxhtv1N69e/XMM8/op59+Ut++fTVkyJCrvn5lcy0fF9u2bdOLL76o5OTkK46Lhx9+WE6ns8Cxr732mjZt2qR//etf+bY/++yzmj9/vg4dOlTkeLZs2aLBgwfrf//7n3bv3n3V42LhwoVu682aNVPnzp2t9aeeeko//vijnn/++ULnuXDhgv7xj3/ke1yMGjVK9evXL3T84sWLlZycrBtvvFH33HOPNm7cqClTpljHxZNPPilvb++r7H3lc60eG6U5LuCZrtVjQSpd/iSVfQ5V3PxJKrscqjT5k0QO5UlKe54o6xyquPmTVDY5VGnzJ8kzc6hr9biQyi+HoigFlJPc3FydPn1aDodDXl5eFR0OUClcyydyAMDVkT8BVyJ/gierWmXJKuLxxx/Xgw8+WGHjiaFy8Pb2VnBwMAnV/+cpnylPiKEi1ahRQ23btiWh+v8qy+fBEz7XVfm4wCWe8jnyhBgqEvnTlTzhM+UpMVQU8qcrecpnyhNiKC2KUuXg22+/1TfffFNh44nB3ZAhQ3TbbbdV2HhiuOS7774r9d+ztHMQw8884QToCTFUls+DJ3yuK8NxgdLxlNzDE2KQPCP38JQYKsO/j8RwiSfkHp4Sg6d8pjwhBql0f0+fUr0y8vXPf/6zQscTg7vIyMhS/Va5tOOJ4ZJf/ra9IuYghp99++23+vbbbyts/LUegzFGXl5epfpbVoY5PCWGPGXxmULJeUru4QkxSJ6Re3hKDJ6Qe3hKDFU59/CUGDwl9/CEGC5Xms8E95QqoR9++EGvv/76FTf5uvHGG3X//ferXr165TqeGACg6vLz89Pnn3+uFi1aVOk5PCUG2MdTcg9PiAEAqiJPyT08IYayQlGqBD755BPFxcWpevXq6tGjh8LCwiRJGRkZWr9+vX766SetWbNGHTt2LJfxxFA8R44c0dSpU/X6669XyPhrKYZz584pJSVFtWvXvuLJIOfPn9eyZcs0ePDgQl+ntHMQw8+++OIL60lAzZs31759+zRnzhxlZWXpvvvuu+pPCUo7nhik8ePH57t9zpw5uu+++1SnTh1JKvTpN5VhDk+J4ZfOnj2rZcuW6cCBA4qIiNA999xjzYOy5ym5hyfEUBRVJffwlBg8IffwlBiqeu7hKTF4Su7hCTHkp0xzKINi69SpkxkxYoTJzc29oi03N9eMGDHCdO7cudzGE0PxpKamGm9v7wobf63EsH//fhMdHW28vLyMt7e36dq1qzl69KjVnp6eftXXL+0cxPCzVatWGT8/P1O7dm0TEBBgVq1aZerVq2d69OhhbrvtNlOtWjWzfv36chtPDJd4eXmZdu3amW7durktXl5e5oYbbjDdunUzt956a6H7UBnm8JQYWrRoYU6cOGGMMebw4cOmYcOGJjg42Nxwww2mdu3aJjQ01Hz99deFzoGS85TcwxNiKIqqkHt4SgyekHt4SgyekHt4Sgyeknt4QgzGlG8ORVGqBAICAswXX3xRYPsXX3xhAgICym08Mbh7//33C11mz55d6AmotOOJ4ZJ+/fqZ+Ph48/3335uvvvrKxMfHm5iYGPO///3PGFO0RKC0cxDDz5xOp/nTn/5kjDHmrbfeMrVq1TKPP/641f7YY4+Znj17ltt4YrgkMTHRxMTEXJF0+fj4mLS0tEJjr0xzeEoMXl5eJiMjwxhjzMCBA82NN95oTp06ZYwx5vTp06ZHjx7mnnvuKdJcKD5PyT08IQZjPCP38JQYPCH38JQYPCH38JQYPCX38IQYjCnfHIqiVAk0bNjQLFy4sMD2hQsXmujo6HIbTwzu8r4N8fLyKnAp7ARU2vHEcEloaKjZtWuXtZ6bm2tGjhxpGjRoYA4ePFikRKC0cxDDzxwOh/nqq6+MMcbk5OQYHx8f89///tdq3717twkLCyu38cTws507d5qmTZuaRx55xGRnZxtjipcEVJY5PCGGyxOqRo0ambVr17q1b9261URFRRV1d1BMnpJ7eEIMxnhG7uEpMXhC7uEpMXhK7uEJMRjjGbmHp8RQnjkURakSePnll42/v7/54x//aN5//32zfft2s337dvP++++bP/7xjyYwMNDMnTu33MYTg7vIyEizfPnyAts/++yzQk9ApR1PDJfUrFnT7N2794rtCQkJpn79+mbz5s1X3YfSzkEMP3M4HObAgQPWeo0aNczBgwet9W+++abQb9FLO54Y3J0+fdoMHjzYtGnTxuzevdv4+voWK5GoLHNU9Ri8vLzM8ePHjTGX/s3bvXu3W3tR/54oGU/JPTwhBmM8I/fwlBg8IffwlBg8JffwhBjyVPXcw1NiKM8ciqJUCS1ZssR06tTJ+Pj4WN+A+Pj4mE6dOpmlS5eW+3hi+Fnfvn3Nk08+WWB7amqq8fLyKrfxxHDJDTfcYP75z3/m25aQkGBCQkKumgiUdg5i+FmbNm3MqlWrrPXdu3ebCxcuWOubN282MTEx5TaeGPL31ltvmbCwMOPt7V3sRKIyzVFVY/Dy8jKtW7c27du3NzVq1DDvvPOOW/umTZvMddddV+xYUHSeknt4QgyekHt4SgyekHt4Sgyeknt4Qgy/VFVzD0+JoTxzKIpSpZSdnW2OHj1qjh49al0GZ+d4Yrj0D9rl/+D90pkzZ8zGjRvLbTwxXPL000+b3r17F9g+atSoqyZ1pZ2DGH42b948s2LFigLbJ0+ebIYOHVpu44mhYEeOHDHLly83Z86cKda4yjZHVYxh2rRpbsvq1avd2h999FEzYMCAEsWC4qnquYcnxOAJuYenxOAJuYenxOApuYcnxJCfqph7eEoM5ZlDeRljTMme2wcAAAAAAACUjHdFBwAAAAAAAIBrD0UpAAAAAAAA2I6iFAAAAAAAAGxHUQoAAAAAAAC2oygF4JrQrVs3jR07tkh9N27cKC8vL506dapUr9mwYUO98MILpZoDAACgIpFDAShPFKUAAAAAAABgO4pSAAAAAAAAsB1FKQDXnH/961/q2LGjatasqfDwcN177706fvz4Ff22bt2qNm3aKCAgQJ07d9aePXvc2rds2aIuXbooMDBQUVFR+uMf/6izZ8/atRv/r537B6mqjeMA/n3h5eKgi3SXsDuIITUIJQ0O4RTXRRCElhZxcRGbxK1Ah+6Qiw2tNjSEg3+aGwQRQQNvhIpiiZOLtOiSoO8mvOTwDnqE934+cODA+XF4nu3Ll+ccAIBCyVDAdVNKAQ3n7OwsU1NTqdfrWVhYyMHBQYaGhv6YGx8fz/T0dNbX11Mul9Pf35+zs7Mkyf7+fvr6+jI4OJhv377l06dPWVlZyejoaMG7AQAohgwFXLe/b3sBAEUbHh6+vG9vb8/MzEyePHmSk5OTNDc3Xz57/fp1nj17liT58OFD2traMj8/n+fPn+fNmzd58eLF5Y8/79+/n5mZmfT29ub9+/dpamoqdE8AADdNhgKum5NSQMP5+vVr+vv7U6lU0tLSkt7e3iTJ4eHhv+Z6enou71tbW9PZ2Znt7e0kSb1ez+zsbJqbmy+varWa8/Pz/Pz5s7jNAAAURIYCrpuTUkBDOT09TbVaTbVazcePH1Mul3N4eJhqtZrfv3//5/ecnJxkZGQkY2NjfzyrVCrXuWQAgFsnQwE3QSkFNJSdnZ0cHx+nVqvl3r17SZKNjY0rZ9fW1i7D0a9fv7K7u5sHDx4kSR4/fpytra10dHQUs3AAgFskQwE3wed7QEOpVCoplUp59+5dfvz4kaWlpUxNTV05Ozk5mS9fvuT79+8ZGhrKnTt3MjAwkCSZmJjI6upqRkdHs7m5mb29vSwuLvpJJwDwvyRDATdBKQU0lHK5nNnZ2czNzeXhw4ep1Wp5+/btlbO1Wi0vX75Md3d3jo6O8vnz55RKpSRJV1dXlpeXs7u7m6dPn+bRo0d59epV7t69W+R2AAAKIUMBN+Gvi4uLi9teBAAAAACNxUkpAAAAAAqnlAIAAACgcEopAAAAAAqnlAIAAACgcEopAAAAAAqnlAIAAACgcEopAAAAAAqnlAIAAACgcEopAAAAAAqnlAIAAACgcEopAAAAAAqnlAIAAACgcP8A+Alv0KPWQn4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_multiple_label_counts([ys_bert_rmr_basic, ys_adverb_basic],[\"bert_rmr_basic\",\"adverb_basic\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "def special_value_interpolation(df):\n", + " # 0.5, 1.5, 2.5, 3.5, 4.5에 해당하는 값을 필터링\n", + " target_values = [0.5, 1.5, 2.5, 3.5, 4.5]\n", + " filtered_df = df[df[\"label\"].isin(target_values)]\n", + "\n", + "\n", + " # 각 값에 대해 절반은 +0.1, 절반은 -0.1\n", + " def adjust_labels(group):\n", + " n = len(group)\n", + " # 절반으로 나눔\n", + " half_n = n // 2\n", + " # 첫 절반은 -0.1, 나머지는 +0.1\n", + " group.iloc[:half_n] -= 0.1\n", + " group.iloc[half_n:] += 0.1\n", + " return group\n", + "\n", + "\n", + " # 필터링된 값들에 대한 보정\n", + " df.loc[df[\"label\"].isin(target_values), \"label\"] = filtered_df.groupby(\"label\")[\n", + " \"label\"\n", + " ].transform(adjust_labels)\n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [], + "source": [ + "def zero_five_balancing(df):\n", + " # 0.0 분리\n", + " zero_label_df = df[df[\"label\"] == 0.0]\n", + " non_zero_label_df = df[df[\"label\"] != 0.0]\n", + "\n", + " # 0.0 라벨 데이터를 n개와 나머지로 분리\n", + " fixed_zero_label_df = zero_label_df.iloc[:2000] # 0.0 데이터 개수\n", + " remaining_zero_label_df = zero_label_df.iloc[2000:2500] # 5.0 데이터 개수\n", + "\n", + " # 5.0 라벨 증강\n", + " remaining_zero_label_df[\"label\"] = 5.0\n", + "\n", + " # 5.0 라벨인 데이터에 sentence_2에 sentence_1 복사\n", + " remaining_zero_label_df[\"sentence_2\"] = remaining_zero_label_df[\"sentence_1\"]\n", + "\n", + " # 3000개 0.0 라벨 데이터 + 증강된 5.0 라벨 데이터 + 나머지 데이터 합침\n", + " reduced_df = pd.concat(\n", + " [fixed_zero_label_df, remaining_zero_label_df, non_zero_label_df]\n", + " )\n", + "\n", + " return reduced_df.reset_index(drop=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [], + "source": [ + "from eda import eda\n", + "\n", + "\n", + "def swap_or_eda(df, alpha_sr=0.1, alpha_ri=0.1, alpha_rs=0.1, num_aug=1):\n", + " \"\"\"\n", + " EDA 적용 함수 \\n\n", + " 주의: 한글 제외한 나머지 문자 제거됨 \\n\n", + " alpha_sr: 특정 단어를 유의어로 교체할 확률 \\n\n", + " alpha_ri: 임의의 단어를 삽입할 확률 \\n\n", + " alpha_rs: 문장 내 임의의 두 단어의 위치를 바꿀 확률 \\n\n", + " num_aug: 데이터 증강하는 개수 \\n\n", + " \"\"\"\n", + "\n", + " def _conditional_eda(row, column_name):\n", + " if row[\"label\"] in [4.6, 4.8]:\n", + " return eda.EDA(row[column_name], alpha_sr, alpha_ri, alpha_rs, num_aug+1)\n", + " if row[\"label\"] in [1.6, 2.2, 2.4, 4.4]:\n", + " return eda.EDA(row[column_name], alpha_sr, alpha_ri, alpha_rs, num_aug)\n", + " else:\n", + " return [row[column_name]]\n", + "\n", + " def _conditional_swap(df):\n", + " \"\"\"sentence_1과 sentence_2를 교환한 데이터 추가\"\"\"\n", + " df_swaped = df.rename(\n", + " columns={\"sentence_1\": \"sentence_2\", \"sentence_2\": \"sentence_1\"}\n", + " )\n", + " df_filtered = df_swaped[\n", + " ~df_swaped[\"label\"].isin([0.0, 1.6, 2.2, 2.4, 4.4, 4.6, 4.8])\n", + " ]\n", + "\n", + " return pd.concat([df, df_filtered])\n", + "\n", + " # sentence_1에 EDA 적용\n", + " df[\"sentence_1\"] = df.apply(lambda row: _conditional_eda(row, \"sentence_1\"), axis=1)\n", + " df = df.explode(\"sentence_1\").reset_index(drop=True)\n", + "\n", + " # sentence_2에 EDA 적용\n", + " df[\"sentence_2\"] = df.apply(lambda row: _conditional_eda(row, \"sentence_2\"), axis=1)\n", + " df = df.explode(\"sentence_2\").reset_index(drop=True)\n", + "\n", + " # sentence_1과 sentence_2를 교환\n", + " df = _conditional_swap(df)\n", + "\n", + " return df.reset_index(drop=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHPCAYAAACyf8XcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMZUlEQVR4nO3deVRV9f7/8dcB5DAoKA4MikgOqDmmpnRzKhTJLG+WmbNplmHmUJndcuymaVlWZrdfOZSYQ9fsZmrOQ4mlFjmlqTmlguYADokCn98fLvfXE5gHREH387HWXsu9P5/zPp+93XBe7OFshzHGCAAAwMY8CnoAAAAABY1ABAAAbI9ABAAAbI9ABAAAbI9ABAAAbI9ABAAAbI9ABAAAbI9ABAAAbI9ABAAAbI9ABBRiU6dOlcPh0N69ewvk/StUqKD7778/X2o5HA717ds3X2pJ0sqVK+VwOLRy5cp8q1lQmjVrpmbNml21X4UKFdS9e/dc17+0rT7//PPcD+4KCnrfBPIbgQgAcN0lJSWpc+fOCg8Pl9PpVFBQkGJiYjRlyhRlZmYW9PAkSa+99prmzZtX0MNAASEQAQCuq48++kj169fXihUr1KlTJ73//vsaOnSofH191bNnT73++usFPURJBCK78yroAQAofM6ePSs/P7+CHgZuAevWrdNTTz2l6OhoLViwQMWKFbPa+vfvrw0bNmjLli0FOELgIo4QwVZWrFghh8OhL774IlvbjBkz5HA4lJiYKElKTk5Wjx49VK5cOTmdToWGhurBBx/M1TUT+/bt09NPP62oqCj5+vqqZMmSeuSRR3KssXXrVt1zzz3y9fVVuXLl9OqrryorK8ulz/3336/bbrstx/eKjo5W/fr1XZZNnz5d9erVk6+vr4KCgtShQwcdOHDApU+zZs1Uo0YNbdy4UU2aNJGfn59eeukllz6LFy9WnTp15OPjo+rVq2vu3Llub4O/SkhIUFRUlHx8fFSvXj2tXr3apT032+yv1qxZo0ceeUTly5eX0+lUeHi4BgwYoD///NOlX/fu3VW0aFEdPHhQbdu2VdGiRVW6dGk999xz2U7fZGVlacKECapZs6Z8fHxUunRptWrVShs2bHDp5862lqQPP/xQFStWlK+vr+68806tWbPGzS2X3fHjx/Xcc8+pZs2aKlq0qAICAhQXF6eff/45x/6ZmZl66aWXFBISIn9/fz3wwAM5jvH7779Xq1atFBgYKD8/PzVt2lTfffddnsY4YsQIORwOJSQkuIShS+rXr+9yXdSZM2c0aNAg69RaVFSU3njjDRljrD579+6Vw+HQ1KlTs9VzOBwaPny4NT98+HA5HA7t2rVL3bt3V/HixRUYGKgePXro7NmzLq87c+aMpk2bJofDIYfDkafrtXDz4ggRbKVZs2YKDw9XQkKC/vnPf7q0JSQkqGLFioqOjpYktWvXTlu3btUzzzyjChUq6MiRI1qyZIn279+vChUquPV+69ev19q1a9WhQweVK1dOe/fu1aRJk9SsWTNt27bNOgqTnJys5s2bKyMjQy+++KL8/f314YcfytfX16Xeo48+qq5du2r9+vVq0KCBtXzfvn1at26dxo0bZy3797//rVdeeUXt27dXr169dPToUb377rtq0qSJfvrpJxUvXtzqe+zYMcXFxalDhw7q3LmzgoODrbadO3fq0Ucf1VNPPaVu3bppypQpeuSRR7Ro0SK1aNHCre1wyapVqzRr1iz169dPTqdT77//vlq1aqUffvhBNWrUyNU2y8mcOXN09uxZ9enTRyVLltQPP/ygd999V7///rvmzJnj0jczM1OxsbFq2LCh3njjDS1dulRvvvmmKlasqD59+lj9evbsqalTpyouLk69evVSRkaG1qxZo3Xr1lkB1N1t/fHHH+vJJ5/UXXfdpf79++u3337TAw88oKCgIIWHh+dqW0rSb7/9pnnz5umRRx5RZGSkUlJS9J///EdNmzbVtm3bFBYW5tL/3//+txwOhwYPHqwjR47o7bffVkxMjJKSkqx9bfny5YqLi1O9evU0bNgweXh4aMqUKbrnnnu0Zs0a3XnnnW6P7+zZs1q2bJmaNGmi8uXLX7W/MUYPPPCAVqxYoZ49e6pOnTr65ptv9Pzzz+vgwYN66623creBLtO+fXtFRkZq9OjR+vHHH/XRRx+pTJky1um6Tz/9VL169dKdd96p3r17S5IqVqyY5/fDTcgANjNkyBDjdDrNyZMnrWVHjhwxXl5eZtiwYcYYY06cOGEkmXHjxl3Te509ezbbssTERCPJfPLJJ9ay/v37G0nm+++/dxlTYGCgkWT27NljjDEmNTXVOJ1OM2jQIJeaY8eONQ6Hw+zbt88YY8zevXuNp6en+fe//+3Sb/PmzcbLy8tledOmTY0k88EHH2Qba0REhJFk/vvf/1rLUlNTTWhoqKlbt24utoQxkowks2HDBmvZvn37jI+Pj/nnP/9pLXN3m61YscJIMitWrPjb144ePdpl2xhjTLdu3YwkM3LkSJe+devWNfXq1bPmly9fbiSZfv36ZaublZVljHF/W58/f96UKVPG1KlTx6Snp1v9PvzwQyPJNG3aNNt7/FVERITp1q2bNX/u3DmTmZnp0mfPnj3G6XS6rNulbVW2bFmTlpZmLZ89e7aRZCZMmGCtU+XKlU1sbKy1fsZc3K6RkZGmRYsW1rIpU6a47Js5+fnnn40k8+yzz1513YwxZt68eUaSefXVV12WP/zww8bhcJhdu3ZZ6yjJTJkyJVsNSdbPsTHGDBs2zEgyjz/+uEu/f/7zn6ZkyZIuy/z9/V22L+yFU2awna5duyo9Pd3lFuRZs2YpIyNDnTt3liT5+vrK29tbK1eu1IkTJ/L8Xpcf4blw4YKOHTumSpUqqXjx4vrxxx+ttgULFqhRo0Yuf32XLl1anTp1cql36ZTI7NmzXU4hzJo1S40aNbL+Cp87d66ysrLUvn17/fHHH9YUEhKiypUra8WKFS51nU6nevTokeM6hIWFuRxNCwgIUNeuXfXTTz8pOTk5V9sjOjpa9erVs+bLly+vBx98UN988411qsrdbZaTy1975swZ/fHHH7rrrrtkjNFPP/2Urf9TTz3lMt+4cWP99ttv1vx///tfORwODRs2LNtrHQ6HJPe39YYNG3TkyBE99dRT8vb2tup0795dgYGBf7teV+J0OuXhcfHXeGZmpo4dO6aiRYsqKioqx23VtWtXl9NWDz/8sEJDQ7VgwQJJF+8E27lzpzp27Khjx45Z63LmzBnde++9Wr16dbbTuH8nLS1NknI8VZaTBQsWyNPTU/369XNZPmjQIBljtHDhQrff+69y+r8+duyYNUaAQATbqVq1qho0aKCEhARrWUJCgho1aqRKlSpJuvhB8/rrr2vhwoUKDg5WkyZNNHbs2FwHgD///FNDhw61rocoVaqUSpcurZMnTyo1NdXqt2/fPlWuXDnb66OiorIte/TRR3XgwAHrWqfdu3dr48aNevTRR60+O3fulDFGlStXVunSpV2mX375RUeOHHGpWbZsWZcP6ctVqlTJ+vC/pEqVKpKU6++gyWkdq1SporNnz+ro0aOS3N9mOdm/f7+6d++uoKAg67qgpk2bSlK21166HuhyJUqUcAnAu3fvVlhYmIKCgq74nu5u63379uW4DYoUKXLF68KuJisrS2+99ZYqV67ssq02bdqU47b663s7HA5VqlTJ+n/cuXOnJKlbt27Z1uWjjz5Senr6Vf8PLhcQECBJOnXqlFv99+3bp7CwsGwBqlq1alZ7Xv31lF2JEiUk6Zr+4MGthWuIYEtdu3bVs88+q99//13p6elat26d3nvvPZc+/fv3V5s2bTRv3jx98803euWVVzR69GgtX75cdevWdet9nnnmGU2ZMkX9+/dXdHS0AgMD5XA41KFDh1z9pX25Nm3ayM/PT7Nnz9Zdd92l2bNny8PDQ4888ojVJysrSw6HQwsXLpSnp2e2GkWLFnWZ/+u1SgUpr9ssMzNTLVq00PHjxzV48GBVrVpV/v7+OnjwoLp3757ttTltl7zI7bbOT6+99ppeeeUVPf744xo1apSCgoLk4eGh/v3752n/uvSacePGqU6dOjn2yc36VKpUSV5eXtq8eXOux/J3/hrQL/m77zO60v/35UdaYW8EIthShw4dNHDgQH322Wf6888/VaRIEZcjLJdUrFhRgwYN0qBBg7Rz507VqVNHb775pqZPn+7W+3z++efq1q2b3nzzTWvZuXPndPLkSZd+ERER1l/nl9uxY0e2Zf7+/rr//vs1Z84cjR8/XrNmzVLjxo1dLqCtWLGijDGKjIy0jubk1a5du2SMcfkQ+vXXXyXJ7YvLL8lpHX/99Vf5+flZR2vc3WZ/tXnzZv3666+aNm2aunbtai1fsmRJrsZ4uYoVK+qbb77R8ePHr3iUyN1tHRERIeniNrjnnnus5RcuXNCePXtUu3btXI/v888/V/PmzfXxxx+7LD958qRKlSqVrf9ft78xRrt27VKtWrWsdZEuHtmJiYnJ9Xj+ys/PT/fcc4+WL1+uAwcOXPXC8YiICC1dulSnTp1yOUq0fft2q136v6M7f90nruUIknTloAV74JQZbKlUqVKKi4vT9OnTlZCQoFatWrl8gJw9e1bnzp1zeU3FihVVrFgxpaenu/0+np6e2f4Cfffdd7P9JXvfffdp3bp1+uGHH6xlR48edTmtd7lHH31Uhw4d0kcffaSff/45W5h76KGH5OnpqREjRmR7f2OMjh075vY6HDp0yOVrCtLS0vTJJ5+oTp06CgkJcbuOJCUmJrpc23LgwAF9+eWXatmypfUXvLvb7K8uvf7y1xpjNGHChFyN8XLt2rWTMUYjRozI1nbpfdzd1vXr11fp0qX1wQcf6Pz581afqVOnXjXsXUlO22rOnDk6ePBgjv0/+eQTl9NXn3/+uQ4fPqy4uDhJUr169VSxYkW98cYbOn36dLbXXzqtmRvDhg2TMUZdunTJsebGjRs1bdo0SRd/DjIzM7MdrX3rrbfkcDiscQYEBKhUqVLZvrLh/fffz/X4Lufv75/n/wvc/DhCBNvq2rWrHn74YUnSqFGjXNp+/fVX3XvvvWrfvr2qV68uLy8vffHFF0pJSVGHDh3cfo/7779fn376qQIDA1W9enUlJiZq6dKlKlmypEu/F154QZ9++qlatWqlZ5991rrtPiIiQps2bcpW97777lOxYsX03HPPydPTU+3atXNpr1ixol599VUNGTJEe/fuVdu2bVWsWDHt2bNHX3zxhXr37q3nnnvOrXWoUqWKevbsqfXr1ys4OFiTJ09WSkqKpkyZ4vZ2uKRGjRqKjY11ue1ekkvgcHeb/VXVqlVVsWJFPffcczp48KACAgL03//+95quEWnevLm6dOmid955Rzt37lSrVq2UlZWlNWvWqHnz5urbt6/b27pIkSJ69dVX9eSTT+qee+7Ro48+qj179mjKlCl5vobo/vvv18iRI9WjRw/ddddd2rx5sxISEq5YLygoSHfffbd69OihlJQUvf3226pUqZKeeOIJSZKHh4c++ugjxcXF6fbbb1ePHj1UtmxZHTx4UCtWrFBAQIC++uqrXI3xrrvu0sSJE/X000+ratWq6tKliypXrqxTp05p5cqV+t///qdXX31V0sXTwc2bN9e//vUv7d27V7Vr19bixYv15Zdfqn///i63wffq1UtjxoxRr169VL9+fa1evdo6cplX9erV09KlSzV+/HiFhYUpMjJSDRs2vKaauIncyFvagMIkPT3dlChRwgQGBpo///zTpe2PP/4w8fHxpmrVqsbf398EBgaahg0bmtmzZ+fqPU6cOGF69OhhSpUqZYoWLWpiY2PN9u3bs90+bYwxmzZtMk2bNjU+Pj6mbNmyZtSoUebjjz++4q3NnTp1MpJMTEzMFd//v//9r7n77ruNv7+/8ff3N1WrVjXx8fFmx44dVp+mTZua22+/PcfXR0REmNatW5tvvvnG1KpVyzidTlO1alUzZ86cXG0HYy7eDh0fH2+mT59uKleubJxOp6lbt67LbfPGuL/Ncrrtftu2bSYmJsYULVrUlCpVyjzxxBPWrd+X36LdrVs34+/vn22Ml27RvlxGRoYZN26cqVq1qvH29jalS5c2cXFxZuPGjS793NnWxhjz/vvvm8jISON0Ok39+vXN6tWrTdOmTfN82/2gQYNMaGio8fX1Nf/4xz9MYmJitnqXttVnn31mhgwZYsqUKWN8fX1N69atXb6O4JKffvrJPPTQQ6ZkyZLG6XSaiIgI0759e7Ns2TKrjzu33V9u48aNpmPHjiYsLMwUKVLElChRwtx7771m2rRpLl8dcOrUKTNgwACrX+XKlc24ceNcvgbAmItfBdCzZ08TGBhoihUrZtq3b2+OHDlyxdvujx496vL6nMa/fft206RJE+Pr62skcQu+zTiM4Yoy2FNGRobCwsLUpk2bbNdgAADshWuIYFvz5s3T0aNHXS7ABQDYE0eIYDvff/+9Nm3apFGjRqlUqVJX/bK/nJw+fTrHC0QvV7p06Xy7tbswu9p3M/n6+ub5iwcB4EbhomrYzqRJkzR9+nTVqVMnx4dDuuONN97I8c6jy+3ZsyfXt6XfjEJDQ/+2vVu3bnnezgBwo3CECMiD3377zeURDzm5++675ePjc4NGVHCWLl36t+1hYWGqXr36DRoNAOQNgQgAANgeF1UDAADb4xoiN2RlZenQoUMqVqwYX+0OAMBNwhijU6dOKSwsTB4ef38MiEDkhkOHDl31GTwAAKBwOnDggMqVK/e3fQhEbrj0kMEDBw4oICCggEcDAADckZaWpvDwcJeHBV8JgcgNl06TBQQEEIgAALjJuHO5CxdVAwAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yvQQDR69Gg1aNBAxYoVU5kyZdS2bVvt2LHDpc+5c+cUHx+vkiVLqmjRomrXrp1SUlJc+uzfv1+tW7eWn5+fypQpo+eff14ZGRkufVauXKk77rhDTqdTlSpV0tSpU6/36gEAgJtEgQaiVatWKT4+XuvWrdOSJUt04cIFtWzZUmfOnLH6DBgwQF999ZXmzJmjVatW6dChQ3rooYes9szMTLVu3Vrnz5/X2rVrNW3aNE2dOlVDhw61+uzZs0etW7dW8+bNlZSUpP79+6tXr1765ptvbuj6AgCAwslhjDEFPYhLjh49qjJlymjVqlVq0qSJUlNTVbp0ac2YMUMPP/ywJGn79u2qVq2aEhMT1ahRIy1cuFD333+/Dh06pODgYEnSBx98oMGDB+vo0aPy9vbW4MGD9fXXX2vLli3We3Xo0EEnT57UokWLrjqutLQ0BQYGKjU1lYe7AgBwk8jN53ehuoYoNTVVkhQUFCRJ2rhxoy5cuKCYmBirT9WqVVW+fHklJiZKkhITE1WzZk0rDElSbGys0tLStHXrVqvP5TUu9blUAwAA2JtXQQ/gkqysLPXv31//+Mc/VKNGDUlScnKyvL29Vbx4cZe+wcHBSk5OtvpcHoYutV9q+7s+aWlp+vPPP+Xr6+vSlp6ervT0dGs+LS3t2lcQAAAUWoUmEMXHx2vLli369ttvC3ooGj16tEaMGHHVfmN++sOtei/WLXWtQwIAANdRoThl1rdvX82fP18rVqxQuXLlrOUhISE6f/68Tp486dI/JSVFISEhVp+/3nV2af5qfQICArIdHZKkIUOGKDU11ZoOHDhwzesIAAAKrwINRMYY9e3bV1988YWWL1+uyMhIl/Z69eqpSJEiWrZsmbVsx44d2r9/v6KjoyVJ0dHR2rx5s44cOWL1WbJkiQICAlS9enWrz+U1LvW5VOOvnE6nAgICXCYAAHDrKtBTZvHx8ZoxY4a+/PJLFStWzLrmJzAwUL6+vgoMDFTPnj01cOBABQUFKSAgQM8884yio6PVqFEjSVLLli1VvXp1denSRWPHjlVycrJefvllxcfHy+l0SpKeeuopvffee3rhhRf0+OOPa/ny5Zo9e7a+/vrrAlt3AABQeBToEaJJkyYpNTVVzZo1U2hoqDXNmjXL6vPWW2/p/vvvV7t27dSkSROFhIRo7ty5Vrunp6fmz58vT09PRUdHq3PnzuratatGjhxp9YmMjNTXX3+tJUuWqHbt2nrzzTf10UcfKTY29oauLwAAKJwK1fcQFVZX+h4DLqoGAKDwumm/hwgAAKAgEIgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtFWggWr16tdq0aaOwsDA5HA7NmzfPpd3hcOQ4jRs3zupToUKFbO1jxoxxqbNp0yY1btxYPj4+Cg8P19ixY2/E6gEAgJtEgQaiM2fOqHbt2po4cWKO7YcPH3aZJk+eLIfDoXbt2rn0GzlypEu/Z555xmpLS0tTy5YtFRERoY0bN2rcuHEaPny4Pvzww+u6bgAA4ObhVZBvHhcXp7i4uCu2h4SEuMx/+eWXat68uW677TaX5cWKFcvW95KEhASdP39ekydPlre3t26//XYlJSVp/Pjx6t2797WvBAAAuOndNNcQpaSk6Ouvv1bPnj2ztY0ZM0YlS5ZU3bp1NW7cOGVkZFhtiYmJatKkiby9va1lsbGx2rFjh06cOHFDxg4AAAq3Aj1ClBvTpk1TsWLF9NBDD7ks79evn+644w4FBQVp7dq1GjJkiA4fPqzx48dLkpKTkxUZGenymuDgYKutRIkS2d4rPT1d6enp1nxaWlp+rw4AAChEbppANHnyZHXq1Ek+Pj4uywcOHGj9u1atWvL29taTTz6p0aNHy+l05um9Ro8erREjRlzTeAEAwM3jpjhltmbNGu3YsUO9evW6at+GDRsqIyNDe/fulXTxOqSUlBSXPpfmr3Td0ZAhQ5SammpNBw4cuLYVAAAAhdpNEYg+/vhj1atXT7Vr175q36SkJHl4eKhMmTKSpOjoaK1evVoXLlyw+ixZskRRUVE5ni6TJKfTqYCAAJcJAADcugo0EJ0+fVpJSUlKSkqSJO3Zs0dJSUnav3+/1SctLU1z5szJ8ehQYmKi3n77bf3888/67bfflJCQoAEDBqhz585W2OnYsaO8vb3Vs2dPbd26VbNmzdKECRNcTrUBAAB7K9BriDZs2KDmzZtb85dCSrdu3TR16lRJ0syZM2WM0WOPPZbt9U6nUzNnztTw4cOVnp6uyMhIDRgwwCXsBAYGavHixYqPj1e9evVUqlQpDR06lFvuAQCAxWGMMQU9iMIuLS1NgYGBSk1NdTl9NuanP9x6/Yt1S12voQEAgCu40ud3Tm6Ka4gAAACuJwIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwvQINRKtXr1abNm0UFhYmh8OhefPmubR3795dDofDZWrVqpVLn+PHj6tTp04KCAhQ8eLF1bNnT50+fdqlz6ZNm9S4cWP5+PgoPDxcY8eOvd6rBgAAbiIFGojOnDmj2rVra+LEiVfs06pVKx0+fNiaPvvsM5f2Tp06aevWrVqyZInmz5+v1atXq3fv3lZ7WlqaWrZsqYiICG3cuFHjxo3T8OHD9eGHH1639QIAADcXr4J887i4OMXFxf1tH6fTqZCQkBzbfvnlFy1atEjr169X/fr1JUnvvvuu7rvvPr3xxhsKCwtTQkKCzp8/r8mTJ8vb21u33367kpKSNH78eJfgBAAA7KvQX0O0cuVKlSlTRlFRUerTp4+OHTtmtSUmJqp48eJWGJKkmJgYeXh46Pvvv7f6NGnSRN7e3laf2NhY7dixQydOnLhxKwIAAAqtAj1CdDWtWrXSQw89pMjISO3evVsvvfSS4uLilJiYKE9PTyUnJ6tMmTIur/Hy8lJQUJCSk5MlScnJyYqMjHTpExwcbLWVKFEi2/ump6crPT3dmk9LS8vvVQMAAIVIoQ5EHTp0sP5ds2ZN1apVSxUrVtTKlSt17733Xrf3HT16tEaMGHHd6gMAgMKl0J8yu9xtt92mUqVKadeuXZKkkJAQHTlyxKVPRkaGjh8/bl13FBISopSUFJc+l+avdG3SkCFDlJqaak0HDhzI71UBAACFyE0ViH7//XcdO3ZMoaGhkqTo6GidPHlSGzdutPosX75cWVlZatiwodVn9erVunDhgtVnyZIlioqKyvF0mXTxQu6AgACXCQAA3LoKNBCdPn1aSUlJSkpKkiTt2bNHSUlJ2r9/v06fPq3nn39e69at0969e7Vs2TI9+OCDqlSpkmJjYyVJ1apVU6tWrfTEE0/ohx9+0Hfffae+ffuqQ4cOCgsLkyR17NhR3t7e6tmzp7Zu3apZs2ZpwoQJGjhwYEGtNgAAKGQKNBBt2LBBdevWVd26dSVJAwcOVN26dTV06FB5enpq06ZNeuCBB1SlShX17NlT9erV05o1a+R0Oq0aCQkJqlq1qu69917dd999uvvuu12+YygwMFCLFy/Wnj17VK9ePQ0aNEhDhw7llnsAAGBxGGNMQQ+isEtLS1NgYKBSU1NdTp+N+ekPt17/Yt1S12toAADgCq70+Z2Tm+oaIgAAgOuBQAQAAGyvUH8PEQAAhYk7l0pwmcTNiSNEAADA9jhCdAviYm8AAHKHI0QAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2vAp6AAAAXE9jfvrjqn1erFvqBowEhRlHiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0VaCBavXq12rRpo7CwMDkcDs2bN89qu3DhggYPHqyaNWvK399fYWFh6tq1qw4dOuRSo0KFCnI4HC7TmDFjXPps2rRJjRs3lo+Pj8LDwzV27NgbsXoAAOAmUaCB6MyZM6pdu7YmTpyYre3s2bP68ccf9corr+jHH3/U3LlztWPHDj3wwAPZ+o4cOVKHDx+2pmeeecZqS0tLU8uWLRUREaGNGzdq3LhxGj58uD788MPrum4AAODm4VWQbx4XF6e4uLgc2wIDA7VkyRKXZe+9957uvPNO7d+/X+XLl7eWFytWTCEhITnWSUhI0Pnz5zV58mR5e3vr9ttvV1JSksaPH6/evXvn38oAAICb1k11DVFqaqocDoeKFy/usnzMmDEqWbKk6tatq3HjxikjI8NqS0xMVJMmTeTt7W0ti42N1Y4dO3TixIkbNXQAAFCIFegRotw4d+6cBg8erMcee0wBAQHW8n79+umOO+5QUFCQ1q5dqyFDhujw4cMaP368JCk5OVmRkZEutYKDg622EiVKZHuv9PR0paenW/NpaWnXY5UAAEAhcVMEogsXLqh9+/YyxmjSpEkubQMHDrT+XatWLXl7e+vJJ5/U6NGj5XQ68/R+o0eP1ogRI65pzAAA4OZR6APRpTC0b98+LV++3OXoUE4aNmyojIwM7d27V1FRUQoJCVFKSopLn0vzV7ruaMiQIS5BKy0tTeHh4de4JgAAd4356Y+r9nmxbqkbMBLYRaG+huhSGNq5c6eWLl2qkiVLXvU1SUlJ8vDwUJkyZSRJ0dHRWr16tS5cuGD1WbJkiaKionI8XSZJTqdTAQEBLhMAALh1FegRotOnT2vXrl3W/J49e5SUlKSgoCCFhobq4Ycf1o8//qj58+crMzNTycnJkqSgoCB5e3srMTFR33//vZo3b65ixYopMTFRAwYMUOfOna2w07FjR40YMUI9e/bU4MGDtWXLFk2YMEFvvfVWgawzAAAofAo0EG3YsEHNmze35i+dpurWrZuGDx+u//3vf5KkOnXquLxuxYoVatasmZxOp2bOnKnhw4crPT1dkZGRGjBggMvprsDAQC1evFjx8fGqV6+eSpUqpaFDh3LLPQAAsBRoIGrWrJmMMVds/7s2Sbrjjju0bt26q75PrVq1tGbNmlyPDwAA2EOhvoYIAADgRiAQAQAA2yMQAQAA2yv030ME4NbmzvfNSHznDIDri0AE4JZBuAKQVwQiAABQ6F3vP3i4hggAANgegQgAANgegQgAANgegQgAANgeF1UDAFAA3LlImDsib5w8HSG67bbbdOzYsWzLT548qdtuu+2aBwUAAHAj5SkQ7d27V5mZmdmWp6en6+DBg9c8KAAAgBspV6fM/ve//1n//uabbxQYGGjNZ2ZmatmyZapQoUK+DQ4AAOBGyFUgatu2rSTJ4XCoW7duLm1FihRRhQoV9Oabb+bb4AAAwNVxPdK1y1UgysrKkiRFRkZq/fr1KlWKjQsAAG5+ebrLbM+ePfk9DhRSPBsKAGAHeb7tftmyZVq2bJmOHDliHTm6ZPLkydc8MAAAgBslT4FoxIgRGjlypOrXr6/Q0FA5HI78HhcAAMANk6dA9MEHH2jq1Knq0qVLfo8HAADghsvT9xCdP39ed911V36PBQAAoEDkKRD16tVLM2bMyO+xAAAAFIg8nTI7d+6cPvzwQy1dulS1atVSkSJFXNrHjx+fL4MDAAC4EfIUiDZt2qQ6depIkrZs2eLSxgXWAADgZpOnQLRixYr8HgcAAECBydM1RAAAALeSPB0hat68+d+eGlu+fHmeBwTg//B8IgC4MfIUiC5dP3TJhQsXlJSUpC1btmR76CsAAEBhl6dA9NZbb+W4fPjw4Tp9+vQ1DQgAAOBGy9driDp37sxzzAAAwE0nzw93zUliYqJ8fHzysyRuIe5cDyNxTQwA4MbLUyB66KGHXOaNMTp8+LA2bNigV155JV8GBgAAcKPkKRAFBga6zHt4eCgqKkojR45Uy5Yt82VgAAAAN0qeriGaMmWKy/Txxx9rzJgxuQ5Dq1evVps2bRQWFiaHw6F58+a5tBtjNHToUIWGhsrX11cxMTHauXOnS5/jx4+rU6dOCggIUPHixdWzZ89sF3Zv2rRJjRs3lo+Pj8LDwzV27Ni8rDYAALhFXdNF1Rs3btT06dM1ffp0/fTTT7l+/ZkzZ1S7dm1NnDgxx/axY8fqnXfe0QcffKDvv/9e/v7+io2N1blz56w+nTp10tatW7VkyRLNnz9fq1evVu/eva32tLQ0tWzZUhEREdq4caPGjRun4cOH68MPP8z9CgMAgFtSnk6ZHTlyRB06dNDKlStVvHhxSdLJkyfVvHlzzZw5U6VLl3arTlxcnOLi4nJsM8bo7bff1ssvv6wHH3xQkvTJJ58oODhY8+bNU4cOHfTLL79o0aJFWr9+verXry9Jevfdd3XffffpjTfeUFhYmBISEnT+/HlNnjxZ3t7euv3225WUlKTx48e7BCcAAGBfeTpC9Mwzz+jUqVPaunWrjh8/ruPHj2vLli1KS0tTv3798mVge/bsUXJysmJiYqxlgYGBatiwoRITEyVdvKutePHiVhiSpJiYGHl4eOj777+3+jRp0kTe3t5Wn9jYWO3YsUMnTpzIl7ECAICbW56OEC1atEhLly5VtWrVrGXVq1fXxIkT8+2i6uTkZElScHCwy/Lg4GCrLTk5WWXKlHFp9/LyUlBQkEufyMjIbDUutZUoUSLbe6enpys9Pd2aT0tLu8a1AQAAhVmejhBlZWWpSJEi2ZYXKVJEWVlZ1zyogjZ69GgFBgZaU3h4eEEPCQAAXEd5CkT33HOPnn32WR06dMhadvDgQQ0YMED33ntvvgwsJCREkpSSkuKyPCUlxWoLCQnRkSNHXNozMjJ0/Phxlz451bj8Pf5qyJAhSk1NtaYDBw5c+woBAIBCK0+B6L333lNaWpoqVKigihUrqmLFioqMjFRaWprefffdfBlYZGSkQkJCtGzZMmtZWlqavv/+e0VHR0uSoqOjdfLkSW3cuNHqs3z5cmVlZalhw4ZWn9WrV+vChQtWnyVLligqKirH02WS5HQ6FRAQ4DIBAIBbV56uIQoPD9ePP/6opUuXavv27ZKkatWquVwA7Y7Tp09r165d1vyePXuUlJSkoKAglS9fXv3799err76qypUrKzIyUq+88orCwsLUtm1b6z1btWqlJ554Qh988IEuXLigvn37qkOHDgoLC5MkdezYUSNGjFDPnj01ePBgbdmyRRMmTLjiA2px83DnUSA8BgQA4I5cBaLly5erb9++WrdunQICAtSiRQu1aNFCkpSamqrbb79dH3zwgRo3buxWvQ0bNqh58+bW/MCBAyVJ3bp109SpU/XCCy/ozJkz6t27t06ePKm7775bixYtcnleWkJCgvr27at7771XHh4eateund555x2rPTAwUIsXL1Z8fLzq1aunUqVKaejQodxyDwAALLkKRG+//baeeOKJHE8hBQYG6sknn9T48ePdDkTNmjWTMeaK7Q6HQyNHjtTIkSOv2CcoKEgzZsz42/epVauW1qxZ49aYAACwM7sefc/VNUQ///yzWrVqdcX2li1bulzPAwAAcDPI1RGilJSUHG+3t4p5eeno0aPXPCjgRrPrX0QAgItydYSobNmy2rJlyxXbN23apNDQ0GseFAAAwI2Uq0B033336ZVXXnF5uOolf/75p4YNG6b7778/3wYHAABwI+TqlNnLL7+suXPnqkqVKurbt6+ioqIkSdu3b9fEiROVmZmpf/3rX9dloAAAANdLrgJRcHCw1q5dqz59+mjIkCHWHWIOh0OxsbGaOHFitmePAQAAFHa5/mLGiIgILViwQCdOnNCuXbtkjFHlypWv+K3PAAAAhV2evqlakkqUKKEGDRrk51hszZ27nCTudAIA4HrI07PMAAAAbiUEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHt5/qZqAAAu4dv2cbMjEAHATYTgAVwfnDIDAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2RyACAAC2x8NdAeA644GsQOFHIAIAmyKoAf+n0J8yq1ChghwOR7YpPj5ektSsWbNsbU899ZRLjf3796t169by8/NTmTJl9PzzzysjI6MgVgcAABRChf4I0fr165WZmWnNb9myRS1atNAjjzxiLXviiSc0cuRIa97Pz8/6d2Zmplq3bq2QkBCtXbtWhw8fVteuXVWkSBG99tprN2YlAABAoVboA1Hp0qVd5seMGaOKFSuqadOm1jI/Pz+FhITk+PrFixdr27ZtWrp0qYKDg1WnTh2NGjVKgwcP1vDhw+Xt7X1dxw/7cec0BKcgAKBwKfSnzC53/vx5TZ8+XY8//rgcDoe1PCEhQaVKlVKNGjU0ZMgQnT171mpLTExUzZo1FRwcbC2LjY1VWlqatm7dekPHDwAACqdCf4TocvPmzdPJkyfVvXt3a1nHjh0VERGhsLAwbdq0SYMHD9aOHTs0d+5cSVJycrJLGJJkzScnJ+f4Punp6UpPT7fm09LS8nlNAABAYXJTBaKPP/5YcXFxCgsLs5b17t3b+nfNmjUVGhqqe++9V7t371bFihXz9D6jR4/WiBEjrnm8AADg5nDTnDLbt2+fli5dql69ev1tv4YNG0qSdu3aJUkKCQlRSkqKS59L81e67mjIkCFKTU21pgMHDlzr8AEAQCF20wSiKVOmqEyZMmrduvXf9ktKSpIkhYaGSpKio6O1efNmHTlyxOqzZMkSBQQEqHr16jnWcDqdCggIcJkAAMCt66Y4ZZaVlaUpU6aoW7du8vL6vyHv3r1bM2bM0H333aeSJUtq06ZNGjBggJo0aaJatWpJklq2bKnq1aurS5cuGjt2rJKTk/Xyyy8rPj5eTqezoFYJAAAUIjdFIFq6dKn279+vxx9/3GW5t7e3li5dqrfffltnzpxReHi42rVrp5dfftnq4+npqfnz56tPnz6Kjo6Wv7+/unXr5vK9RQAAwN5uikDUsmVLGWOyLQ8PD9eqVauu+vqIiAgtWLDgegwNAADcAm6aa4gAAACul5viCBGAa8c3aOcODz4F7IUjRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPb4HiIAucZ3GgG41XCECAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B53mQEAgOvCnTtSpcJxVypHiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0V6kA0fPhwORwOl6lq1apW+7lz5xQfH6+SJUuqaNGiateunVJSUlxq7N+/X61bt5afn5/KlCmj559/XhkZGTd6VQAAQCHmVdADuJrbb79dS5cutea9vP5vyAMGDNDXX3+tOXPmKDAwUH379tVDDz2k7777TpKUmZmp1q1bKyQkRGvXrtXhw4fVtWtXFSlSRK+99toNXxcAAFA4FfpA5OXlpZCQkGzLU1NT9fHHH2vGjBm65557JElTpkxRtWrVtG7dOjVq1EiLFy/Wtm3btHTpUgUHB6tOnToaNWqUBg8erOHDh8vb2/tGrw4AACiECvUpM0nauXOnwsLCdNttt6lTp07av3+/JGnjxo26cOGCYmJirL5Vq1ZV+fLllZiYKElKTExUzZo1FRwcbPWJjY1VWlqatm7demNXBAAAFFqF+ghRw4YNNXXqVEVFRenw4cMaMWKEGjdurC1btig5OVne3t4qXry4y2uCg4OVnJwsSUpOTnYJQ5faL7VdSXp6utLT0635tLS0fFojAABQGBXqQBQXF2f9u1atWmrYsKEiIiI0e/Zs+fr6Xrf3HT16tEaMGHHd6gMAgMKl0J8yu1zx4sVVpUoV7dq1SyEhITp//rxOnjzp0iclJcW65igkJCTbXWeX5nO6LumSIUOGKDU11ZoOHDiQvysCAAAKlZsqEJ0+fVq7d+9WaGio6tWrpyJFimjZsmVW+44dO7R//35FR0dLkqKjo7V582YdOXLE6rNkyRIFBASoevXqV3wfp9OpgIAAlwkAANy6CvUps+eee05t2rRRRESEDh06pGHDhsnT01OPPfaYAgMD1bNnTw0cOFBBQUEKCAjQM888o+joaDVq1EiS1LJlS1WvXl1dunTR2LFjlZycrJdfflnx8fFyOp0FvHYAAKCwKNSB6Pfff9djjz2mY8eOqXTp0rr77ru1bt06lS5dWpL01ltvycPDQ+3atVN6erpiY2P1/vvvW6/39PTU/Pnz1adPH0VHR8vf31/dunXTyJEjC2qVAABAIVSoA9HMmTP/tt3Hx0cTJ07UxIkTr9gnIiJCCxYsyO+hAQCAW8hNdQ0RAADA9UAgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtleoA9Ho0aPVoEEDFStWTGXKlFHbtm21Y8cOlz7NmjWTw+FwmZ566imXPvv371fr1q3l5+enMmXK6Pnnn1dGRsaNXBUAAFCIeRX0AP7OqlWrFB8frwYNGigjI0MvvfSSWrZsqW3btsnf39/q98QTT2jkyJHWvJ+fn/XvzMxMtW7dWiEhIVq7dq0OHz6srl27qkiRInrttddu6PoAAIDCqVAHokWLFrnMT506VWXKlNHGjRvVpEkTa7mfn59CQkJyrLF48WJt27ZNS5cuVXBwsOrUqaNRo0Zp8ODBGj58uLy9va/rOgAAgMKvUJ8y+6vU1FRJUlBQkMvyhIQElSpVSjVq1NCQIUN09uxZqy0xMVE1a9ZUcHCwtSw2NlZpaWnaunXrjRk4AAAo1Ar1EaLLZWVlqX///vrHP/6hGjVqWMs7duyoiIgIhYWFadOmTRo8eLB27NihuXPnSpKSk5NdwpAkaz45OTnH90pPT1d6ero1n5aWlt+rAwAACpGbJhDFx8dry5Yt+vbbb12W9+7d2/p3zZo1FRoaqnvvvVe7d+9WxYoV8/Reo0eP1ogRI65pvAAA4OZxU5wy69u3r+bPn68VK1aoXLlyf9u3YcOGkqRdu3ZJkkJCQpSSkuLS59L8la47GjJkiFJTU63pwIED17oKAACgECvUgcgYo759++qLL77Q8uXLFRkZedXXJCUlSZJCQ0MlSdHR0dq8ebOOHDli9VmyZIkCAgJUvXr1HGs4nU4FBAS4TAAA4NZVqE+ZxcfHa8aMGfryyy9VrFgx65qfwMBA+fr6avfu3ZoxY4buu+8+lSxZUps2bdKAAQPUpEkT1apVS5LUsmVLVa9eXV26dNHYsWOVnJysl19+WfHx8XI6nQW5egAAoJAo1EeIJk2apNTUVDVr1kyhoaHWNGvWLEmSt7e3li5dqpYtW6pq1aoaNGiQ2rVrp6+++sqq4enpqfnz58vT01PR0dHq3Lmzunbt6vK9RQAAwN4K9REiY8zftoeHh2vVqlVXrRMREaEFCxbk17AAAMAtplAfIQIAALgRCEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2bBWIJk6cqAoVKsjHx0cNGzbUDz/8UNBDAgAAhYBtAtGsWbM0cOBADRs2TD/++KNq166t2NhYHTlypKCHBgAACphtAtH48eP1xBNPqEePHqpevbo++OAD+fn5afLkyQU9NAAAUMBsEYjOnz+vjRs3KiYmxlrm4eGhmJgYJSYmFuDIAABAYeBV0AO4Ef744w9lZmYqODjYZXlwcLC2b9+erX96errS09Ot+dTUVElSWlqaS79zp0+59f5pad5X7UOt3NVytx61bo1a7taj1q1Ry9161Lo1arlbLy+1Ln1uG2Ou/kJjAwcPHjSSzNq1a12WP//88+bOO+/M1n/YsGFGEhMTExMTE9MtMB04cOCqWcEWR4hKlSolT09PpaSkuCxPSUlRSEhItv5DhgzRwIEDrfmsrCwdP35cJUuWlMPhuOL7pKWlKTw8XAcOHFBAQMA1jZla1LqZxkYtalGLn+/CWMsYo1OnTiksLOyq9WwRiLy9vVWvXj0tW7ZMbdu2lXQx5Cxbtkx9+/bN1t/pdMrpdLosK168uNvvFxAQkC8/HNSi1o2oRy1qUavw1MrvetSSAgMD3apji0AkSQMHDlS3bt1Uv3593XnnnXr77bd15swZ9ejRo6CHBgAACphtAtGjjz6qo0ePaujQoUpOTladOnW0aNGibBdaAwAA+7FNIJKkvn375niKLL84nU4NGzYs2+k2alErP2rldz1qUYtahadWftejVu45jHHnXjQAAIBbly2+mBEAAODvEIgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYhsYs+ePcrIyMiXWvlV5xJudMT1xL4PO2K/zz0C0TXYtm2bnn76adWtW1ehoaEKDQ1V3bp19fTTT2vbtm25qnX48GFNnz5dCxYs0Pnz513azpw5o5EjR17TWKOiorRz585cvWbRokXavHmzpIuPOhk1apTKli0rp9OpcuXKacyYMW7v2Onp6XruuefUpEkTvf7665KkV199VUWLFlWxYsXUsWNH66nEeZGenq709PQ8v/56W7lypf78889rrpOenq7du3fn27qmpKQoOTk5169j3y88+35hdqt9KLPf3+L7/TU+SN62FixYYLy9vU2jRo3MsGHDzPvvv2/ef/99M2zYMHPXXXcZp9NpFi1a5FatH374wRQvXtwEBAQYX19fU6lSJbNlyxarPTk52Xh4eLhV65///GeOk4eHh4mJibHm3REVFWVWr15tjDHmtddeMyVLljTjx483CxcuNG+//bYJDg42Y8aMcavWgAEDTFhYmBk0aJCpVq2aefrpp0358uXN9OnTzYwZM0ylSpXMM88841atSxYvXmzi4uJM8eLFjYeHh/Hw8DDFixc3cXFxZsmSJbmqlZSUZEaNGmUmTpxojh496tKWmppqevTokat6f1WkSBGzbdu2XL1mypQpZu3atcYYY/7880/z+OOPG09PT+Ph4WG8vLzMk08+ac6dO+dWrWPHjpl27dqZ8PBw89RTT5mMjAzTs2dP43A4jIeHh4mOjjaHDh1yqxb7fsHu+1u3bjV9+vQxderUMSEhISYkJMTUqVPH9OnTx2zdutXtOsYYc+jQIfPpp5+ar7/+2qSnp7u0nT592owYMSJX9f4qL/v9woULzaZNm4wxxmRmZpqRI0easLAw4+HhYcqWLWtGjx5tsrKy3Kp17tw5M2jQINO4cWPr/2vUqFHG39/f+Pv7m8cee8ykpqa6VYv9vuB/5+fnvp8TAlEe1apVy7zyyitXbB82bJipWbOmW7ViYmJMjx49TGZmpklLSzN9+vQxJUuWND/++KMxJnc/HA6HwzRt2tR0797dZfLw8DBt27a15t3hdDrNvn37jDHG1KhRw8yePdulff78+aZSpUpu1QoPD7dCyu7du42Hh4eZN2+e1b548WITERHhVi1jjJk6darx8vIyHTp0MFOmTDELFiwwCxYsMFOmTDGPPfaYKVKkiPnkk0/cqvXNN98Yb29vc/vtt5vy5cubkiVLmuXLl1vtudn+devWzXFyOBymWrVq1rw7IiMjzbp164wxxjz33HOmQoUKZu7cueaXX34x8+bNM1WqVDHPP/+8W7Uef/xxU6NGDfPuu++apk2bmgcffNDUqlXLfPvtt2bt2rWmQYMGpmvXrm7VYt8vuH2fD+WC+1Bmvy/Y3/n5ue9fCYEoj3x8fMz27duv2L59+3bj4+PjVq0SJUqYHTt2uCwbPXq0KVGihPnhhx9y9cPx2WefmXLlypnJkye7LPfy8sp1gg4NDTWJiYnGGGOCg4OtH9ZLfv31V+Pr6+tWLV9fX+sHzZiLfzle/st3z549xs/Pz+2xVa5c2bz33ntXbJ84caLbP7jR0dHmpZdeMsYYk5WVZV5//XVTtGhRs3DhQmNM7n45eXl5mVatWpnhw4db07Bhw4yHh4d5+umnrWXuuPyXU5UqVazxXLJq1SpTvnx5t2qFhoaa7777zlofh8NhFi9ebLV/++23pmzZsm7VYt8vuH2fD+WC+1Bmvy/Y3/n5ue9fCYEoj6pWrWrefPPNK7a/+eabJioqyq1aJUqUMD///HO25ePGjTPFixc3c+fOdfuHw5iLO9o//vEP89BDD5njx48bY/L2w/H000+b+++/32RkZJjevXubXr16uRyqfuaZZ0x0dLRbtaKioszMmTONMRf/MvX29nb5AZ45c6apXLmy22NzOp359sspICDA7Nq1y2VZQkKC8ff3N1999VWufjl9++23pmLFimbo0KEmMzPTWp6X7R8REWEdqSpbtqxZv369S/u2bduMv7+/W7X8/PzM3r17rfkiRYqYzZs3W/O//fab27XY9wtu3+dDueA+lNnvC/Z3fn7u+1dCIMqj2bNnGy8vL9OmTRszYcIEM3PmTDNz5kwzYcIE88ADDxhvb2/z+eefu1WrcePGZtKkSTm2vf7668bpdObqh8OYi+fehw4dasLDw82iRYtMkSJFcv3DcfLkSVO/fn1TqVIl06VLF+Pj42MiIiJMixYtTGRkpAkMDLRO6VzNW2+9ZXx8fExMTIwpUaKEeeedd0xISIh54YUXzIsvvmgCAwPNyJEj3R7bHXfc8beni1544QVzxx13uFWrdOnSZsOGDdmWf/bZZ8bPz89MmjQpV9v/5MmTpkOHDqZhw4ZW0MrLL6eXXnrJREdHmxMnTpgXX3zRtGnTxpw6dcoYY8yZM2dM+/btTcuWLd2qVbt2beuI2oIFC0yxYsVcfrlPmjTJ1KhRw61a7PsFt+/zoVxwH8rs9wX7Oz8/9/0rIRBdg++++848+uijpnz58sbb29t4e3ub8uXLm0cffdS6GNYd/+///T/TuXPnK7aPGTPGVKhQIU9jXLNmjYmMjDQeHh55uujs/PnzZtKkSea+++4zVatWNVWqVDFNmzY1L730kjlw4ECuaiUkJJi+ffuaGTNmGGOMWbFihWncuLGpV6+eGT58uMsRlatZsWKF8ff3NzVr1jQDBgwwY8aMMWPGjDEDBgwwtWrVMkWLFjWrVq1yq1aLFi3MuHHjcmybMWOGKVKkSK5/ORljzOTJk01ISIj5z3/+k6dfTunp6eaBBx4wJUqUMC1atDA+Pj7Gz8/PVK5c2fj7+5vy5ctn+wv/SqZPn248PT1NpUqVjNPpNHPmzDFhYWGmffv2pkOHDsbb2/tvT0H+Fft+wez7fCgX7Icy+33B/c7Pz33/SghENnDq1CmTlJSU7S6Sm92ePXvMCy+8YJo0aWKqVKliqlSpYpo0aWIGDx5s9uzZ43aduXPnmv79+1+xPSEhwTRr1ixPY/z1119NgwYNjMPhyPNdEAsXLjRPP/20adWqlWnZsqXp1q2b+fDDD83p06dzVefbb781b7zxhnUt0datW02XLl1Mu3btzNSpU/M0tsLuVtz3+VAuuA/lm8WtuN8bk3/7/pU4jCmk35AE3CKysrJ06tQpBQQEyOFwFPRwgBvi9OnT2r17t6pVqyZvb++CHg5wVXwx43Xy0ksv6fHHH6dWAdQqbDw8PBQYGGibMFRY9ws71CpMihYtqtq1a9smDBXWfcIOtfILgeg6+f3337V3715qFUAtSerWrZvuueceahVArYMHD+bb/yW1cqewfmDZoVZh3SfsUEvKn/9Lr3waC/7ik08+oVYB1ZKksLAweXjkT96nVu5MmzYtX+pQK/d+//13/f7779S6gbWMMXI4HPny/0itvMuP/0uuIboGf/zxhyZPnqzExETreVAhISG666671L17d5UuXZpa16kWABQG3t7e+vnnn1WtWjVq3eBa+Y1AlEfr169XbGys/Pz8FBMTo+DgYEkXH5a5bNkynT17Vt98843q169PrXyu5Y4DBw5o2LBhmjx5MrWuQ60///xTGzduVFBQkKpXr+7Sdu7cOc2ePVtdu3al1nWo9csvv2jdunWKjo5W1apVtX37dk2YMEHp6enq3Llzrk59Usv9WgMHDsxx+YQJE9S5c2eVLFlSkjR+/Hhq5XOtnJw5c0azZ8/Wrl27FBoaqscee8yqmWfXfJ+aTTVs2ND07t07x4cMZmVlmd69e5tGjRpR6zrUckdSUlKevjuIWle3Y8cOExERYT0YtkmTJi4Phs3NNxxTK3e1Fi5caLy9vU1QUJDx8fExCxcuNKVLlzYxMTHmnnvuMZ6enmbZsmXUug61HA6HqVOnjmnWrJnL5HA4TIMGDUyzZs1M8+bNqXUdahljTLVq1cyxY8eMMcbs37/fVKhQwQQGBpoGDRqYoKAgU6ZMGfPbb7+5XS8nBKI88vHxMb/88ssV23/55Re3v0acWrmrZYwxX3755d9Ob731ltsfMtTKXa22bdua1q1bm6NHj5qdO3ea1q1bm8jISOsRCbn5gKdW7mpFR0ebf/3rX8aYi9+kXqJECes5fMYY8+KLL5oWLVpQ6zrUGj16tImMjMwWoPLybdzUyv13UzkcDpOSkmKMMaZTp07mrrvuMidPnjTGXPzepZiYGPPYY4/luu7lCER5VKFCBTNt2rQrtk+bNs3thwZSK3e1jDHWX9sOh+OKU24eTEkt92uVKVPGbNq0yZrPysoyTz31lClfvrzZvXt3rj7gqZW7WgEBAWbnzp3GmIvfCu3l5eXyrK/Nmzeb4OBgal2HWsZcfPxHlSpVzKBBg8z58+eNMXn/gKdW7lweiG677TaXh1Mbc/FLG8PDw3Nd93IEojx67733jNPpNP369TNffvmlWbdunVm3bp358ssvTb9+/Yyvr6+ZOHEita5DLWOMCQsLc3lq9V/99NNPbn/IUCt3tYoVK2a2bduWbXl8fLwpV66cWb16NbWuU62/Poi4aNGiZvfu3db83r178/xQY2q559SpU6Zr166mVq1aZvPmzXl6PAm18haIjhw5Yoy5+Pvs8odTG5O3/8u/IhBdg5kzZ5qGDRsaLy8v669sLy8v07BhQzNr1ixqXcdabdq0Ma+88soV25OSkozD4aDWdajVoEED88knn+TYFh8fb4oXL+72Bzy1clerVq1aZuHChdb85s2bzYULF6z51atXm8jISGpdh1p/9dlnn5ng4OA8P56EWrnjcDhMzZo1Td26dU3RokWzPbds1apVpmzZstc0RgJRPjh//rw5dOiQOXTokHVYkFrXt9bq1atdftH91enTp83KlSupdR1qvfbaayYuLu6K7X369HE7XFErd7UmTZpk5s+ff8X2IUOGmJ49e1LrOtTKyYEDB8y8efNy/VxBauW+1vDhw12mRYsWubQ/99xzpkOHDtc0Pm67BwAAtsejOwAAgO0RiAAAgO0RiAAAgO0RiADcEpo1a6b+/fu71XflypVyOBw6efLkNb1nhQoV9Pbbb19TDQCFA4EIAADYHoEIAADYHoEIwC3n008/Vf369VWsWDGFhISoY8eOOnLkSLZ+3333nWrVqiUfHx81atRIW7ZscWn/9ttv1bhxY/n6+io8PFz9+vXTmTNnbtRqALiBCEQAbjkXLlzQqFGj9PPPP2vevHnau3evunfvnq3f888/rzfffFPr169X6dKl1aZNG124cEGStHv3brVq1Urt2rXTpk2bNGvWLH377bfq27fvDV4bADeCV0EPAADy2+OPP279+7bbbtM777yjBg0a6PTp0ypatKjVNmzYMLVo0UKSNG3aNJUrV05ffPGF2rdvr9GjR6tTp07WhdqVK1fWO++8o6ZNm2rSpEny8fG5oesE4PriCBGAW87GjRvVpk0blS9fXsWKFVPTpk0lSfv373fpFx0dbf07KChIUVFR+uWXXyRJP//8s6ZOnaqiRYtaU2xsrLKysrRnz54btzIAbgiOEAG4pZw5c0axsbGKjY1VQkKCSpcurf379ys2Nlbnz593u87p06f15JNPql+/ftnaypcvn59DBlAIEIgA3FK2b9+uY8eOacyYMQoPD5ckbdiwIce+69ats8LNiRMn9Ouvv6patWqSpDvuuEPbtm1TpUqVbszAARQoTpkBuKWUL19e3t7eevfdd/Xbb7/pf//7n0aNGpVj35EjR2rZsmXasmWLunfvrlKlSqlt27aSpMGDB2vt2rXq27evkpKStHPnTn355ZdcVA3coghEAG4ppUuX1tSpUzVnzhxVr15dY8aM0RtvvJFj3zFjxujZZ59VvXr1lJycrK+++kre3t6SpFq1amnVqlX69ddf1bhxY9WtW1dDhw5VWFjYjVwdADeIwxhjCnoQAAAABYkjRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPb+PxzNDzVDAw8AAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHPCAYAAACyf8XcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNF0lEQVR4nO3deVgVdf//8dcB5ODCIspqCLjvS2pG5VYqmtltWaZl7tqCVmpmdueC3neYlmlldvu7c+kWs+U2u3PLXTPRzCLXTA3TUtBcQC1R5PP7o4v5egIUEAWc5+O65rqc+XzO+3zmMOeclzNzZhzGGCMAAAAbcyvqAQAAABQ1AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhFwjcaNGyeHw6HffvutqIdSYkVEROi+++4rtHoHDx6Uw+HQnDlzCq1mUenTp48iIiKu2q9169Zq3bp1vutnvVavvfZa/geXi3Xr1snhcGjdunWFVhO43ghEQAnzzjvv3BRf9ECWAwcO6IknnlCVKlXk5eUlHx8f3XnnnZo2bZr++OOPoh6eJN53duBR1AMAkD/vvPOOKlasqD59+hT1UIBrtmTJEj388MNyOp3q1auX6tWrpwsXLmjjxo0aMWKEdu3apZkzZxb1MHnf2QCBCCghfv/9d5UpU6ZQa2ZmZurChQvy8vIq1LqSlJGRoczMTHl6ehZ6bdwckpKS1L17d4WHh2vNmjUKCQmx2mJiYrR//34tWbKkCEcIO+GQGW46a9eulcPh0Keffpqtbf78+XI4HEpISJAkJScnq2/fvrrlllvkdDoVEhKiv/3tbzp48GC+n/e3335Tt27d5OPjowoVKujZZ5/V+fPns/WbN2+emjRpotKlS8vf31/du3fX4cOHXfq0bt1a9erV07Zt29SyZUuVKVNGL730kiIiIrRr1y6tX79eDodDDocjX+eNOBwODR48WPHx8apbt66cTqeWL1+uOXPmyOFwaOPGjXrmmWcUEBAgPz8/PfHEE7pw4YJOnz6tXr16qXz58ipfvrxeeOEFGWOsupefhzJ16lRVrVpVTqdTu3fvztdruGLFCjVq1EheXl6qU6eOFi5c6NJ+8uRJPf/886pfv77KlSsnHx8fdezYUd9///1Va2/fvl19+vSxDssEBwerX79+OnHihEu/rHPC9u/frz59+sjPz0++vr7q27evfv/992x1582bp9tuu01lypRR+fLl1bJlS61YscKlz7Jly9SiRQuVLVtW3t7e6tSpk3bt2pWt1qJFi1SvXj15eXmpXr16OW7DeXXhwgWNGTNGTZo0ka+vr8qWLasWLVpo7dq1uT7mjTfeUHh4uEqXLq1WrVpp586d2fr88MMPeuihh+Tv7y8vLy81bdpU//vf/wo0xkmTJuns2bN67733XMJQlmrVqunZZ5+15jMyMjRhwgRr+4qIiNBLL72k9PR0l8c5HA6NGzcuW72IiAiXPTxZ2/1XX32lYcOGKSAgQGXLltUDDzyg48ePuzzuWt53KBnYQ4SbTuvWrRUWFqb4+Hg98MADLm3x8fGqWrWqoqKiJEldu3bVrl27NGTIEEVEROjYsWNauXKlDh06lKcTWS/XrVs3RUREKC4uTps3b9abb76pU6dO6f3337f6/POf/9To0aPVrVs3DRgwQMePH9dbb72lli1b6rvvvpOfn5/V98SJE+rYsaO6d++unj17KigoSK1bt9aQIUNUrlw5/f3vf5ckBQUF5Wuca9as0UcffaTBgwerYsWKioiIUGJioiRpyJAhCg4OVmxsrDZv3qyZM2fKz89PmzZtUuXKlfXKK69o6dKlmjx5surVq6devXq51J49e7bOnz+vQYMGyel0yt/fP8/j2rdvnx555BE9+eST6t27t2bPnq2HH35Yy5cvV7t27SRJP/30kxYtWqSHH35YkZGRSklJ0b/+9S+1atVKu3fvVmhoaK71V65cqZ9++kl9+/ZVcHCwdShm165d2rx5sxwOh0v/bt26KTIyUnFxcfr222/173//W4GBgXr11VetPrGxsRo3bpzuuOMOjR8/Xp6entqyZYvWrFmj9u3bS5L+85//qHfv3oqOjtarr76q33//XTNmzNBdd92l7777ztrOVqxYoa5du6pOnTqKi4vTiRMnrLBeEGlpafr3v/+tHj16aODAgTpz5ozee+89RUdH6+uvv1ajRo1c+r///vs6c+aMYmJidP78eU2bNk133323duzYYW1ju3bt0p133qlKlSrpxRdfVNmyZfXRRx+pS5cu+u9//5vt/XY1n3/+uapUqaI77rgjT/0HDBiguXPn6qGHHtLw4cO1ZcsWxcXFac+ePdcUHocMGaLy5ctr7NixOnjwoKZOnarBgwfrww8/lCRNnTr1mt93KAEMcBMaNWqUcTqd5vTp09ayY8eOGQ8PDzN27FhjjDGnTp0ykszkyZOv6bnGjh1rJJn777/fZfnTTz9tJJnvv//eGGPMwYMHjbu7u/nnP//p0m/Hjh3Gw8PDZXmrVq2MJPPuu+9me766deuaVq1aFWiskoybm5vZtWuXy/LZs2cbSSY6OtpkZmZay6OioozD4TBPPvmktSwjI8PccsstLmNISkoykoyPj485duxYvscVHh5uJJn//ve/1rLU1FQTEhJiGjdubC07f/68uXTpkstjk5KSjNPpNOPHj882ntmzZ1vLfv/992zP+8EHHxhJZsOGDdayrL9nv379XPo+8MADpkKFCtb8vn37jJubm3nggQeyjSnrNTxz5ozx8/MzAwcOdGlPTk42vr6+LssbNWpkQkJCXLbZFStWGEkmPDw829j/qlWrVi5/k4yMDJOenu7S59SpUyYoKMhl3bJeq9KlS5tffvnFWr5lyxYjyQwdOtRads8995j69eub8+fPu6zrHXfcYapXr24tW7t2rZFk1q5dm+t4U1NTjSTzt7/97arrZowxiYmJRpIZMGCAy/Lnn3/eSDJr1qyxlkmy3ueXCw8PN71797bms7b7tm3bumz3Q4cONe7u7i5/i2t536Fk4JAZbkq9evVSenq6PvnkE2vZhx9+qIyMDPXs2VOSVLp0aXl6emrdunU6derUNT9nTEyMy/yQIUMkSUuXLpUkLVy4UJmZmerWrZt+++03awoODlb16tWzHcpwOp3q27fvNY/rr1q1aqU6derk2Na/f3+XPSXNmzeXMUb9+/e3lrm7u6tp06b66aefsj2+a9euCggIKNC4QkNDXfYw+Pj4qFevXvruu++UnJws6c/XxM3tz4+tS5cu6cSJEypXrpxq1qypb7/99or1S5cubf37/Pnz+u2333T77bdLUo6PffLJJ13mW7RooRMnTigtLU3Sn4e3MjMzNWbMGGtMWbJew5UrV+r06dPq0aOHy9/c3d1dzZs3t/7mR48eVWJionr37i1fX1+rTrt27XL9W12Nu7u7df5WZmamTp48qYyMDDVt2jTH9e3SpYsqVapkzd92221q3ry5tf2ePHlSa9asUbdu3XTmzBlrXU6cOKHo6Gjt27dPv/76a57Hl/U6ent756l/1jiGDRvmsnz48OGSdE3nGg0aNMhlu2/RooUuXbqkn3/+ucA1UfIQiHBTqlWrlpo1a6b4+HhrWXx8vG6//XZVq1ZN0p9frq+++qqWLVumoKAgtWzZUpMmTbK+fPOrevXqLvNVq1aVm5ubdT7Svn37ZIxR9erVFRAQ4DLt2bNHx44dc3l8pUqVrssJyZGRkbm2Va5c2WU+68s5LCws2/KcQuSVal9NtWrVsh22qlGjhiRZr2FmZqbeeOMNVa9eXU6nUxUrVlRAQIC2b9+u1NTUK9Y/efKknn32WQUFBal06dIKCAiwxpvTY//6WpQvX16SrPU+cOCA3NzcrhhY9u3bJ0m6++67s/3NV6xYYf3Ns754/7oNSVLNmjWvuF5XMnfuXDVo0EBeXl6qUKGCAgICtGTJkhzXN6fnrlGjhvXa79+/X8YYjR49Otu6jB07VpKybcNX4uPjI0k6c+ZMnvr//PPPcnNzs96/WYKDg+Xn53dN4eVqf2vYA+cQ4abVq1cvPfvss/rll1+Unp6uzZs36+2333bp89xzz6lz585atGiRvvjiC40ePVpxcXFas2aNGjdufE3P/9cv98zMTDkcDi1btkzu7u7Z+pcrV85l/vI9GoXpSnVzGlduy81lJ1XnpXZheOWVVzR69Gj169dPEyZMkL+/v9zc3PTcc88pMzPzio/t1q2bNm3apBEjRqhRo0YqV66cMjMz1aFDhxwfm9trkdN65yar7n/+8x8FBwdna/fwuH4fwfPmzVOfPn3UpUsXjRgxQoGBgXJ3d1dcXJwOHDiQ73pZ6/L8888rOjo6xz5/DStX4uPjo9DQ0BxP3L6Sv76v8uPSpUs5Li+MvzVKPgIRblrdu3fXsGHD9MEHH+iPP/5QqVKl9Mgjj2TrV7VqVQ0fPlzDhw/Xvn371KhRI73++uuaN29evp5v3759LntI9u/fr8zMTOuk2apVq8oYo8jISGvPR0FcyxdCcZa1B+Ly9fvxxx8lyXoNP/nkE7Vp00bvvfeey2NPnz6tihUr5lr71KlTWr16tWJjYzVmzBhredYenIKoWrWqMjMztXv37mwnKF/eR5ICAwPVtm3bXGuFh4fnOp69e/cWaHyffPKJqlSpooULF7q8pll7c/4qp+f+8ccfrde+SpUqkqRSpUpdcV3y47777tPMmTOVkJBg/dAhN+Hh4crMzNS+fftUu3Zta3lKSopOnz5tvYbSn3t4Tp8+7fL4Cxcu6OjRowUe6836vsP/4ZAZbloVK1ZUx44dNW/ePMXHx6tDhw4uX5q///57tp/FV61aVd7e3tl+xpsX06dPd5l/6623JEkdO3aUJD344INyd3dXbGxstv95GmOy/fw7N2XLls32YX8zOHLkiMsvhdLS0vT++++rUaNG1t4Vd3f3bK/dxx9/fNVzV7L2APz1sVOnTi3weLt06SI3NzeNHz8+2x6mrOeJjo6Wj4+PXnnlFV28eDFbjayfdoeEhKhRo0aaO3euy+GslStX5vvSBVlyWuctW7ZYl5z4q0WLFrm8jl9//bW2bNlibb+BgYFq3bq1/vWvf+UYLC7/mXpevfDCCypbtqwGDBiglJSUbO0HDhzQtGnTJEn33nuvpOx/sylTpkiSOnXqZC2rWrWqNmzY4NJv5syZue4hyoub9X2H/8MeItzUevXqpYceekiSNGHCBJe2H3/8Uffcc4+6deumOnXqyMPDQ59++qlSUlLUvXv3fD9XUlKS7r//fnXo0EEJCQmaN2+eHn30UTVs2FDSnx/S//jHPzRq1CgdPHhQXbp0kbe3t5KSkvTpp59q0KBBev7556/6PE2aNNGMGTP0j3/8Q9WqVVNgYKDuvvvufI+3uKlRo4b69++vrVu3KigoSLNmzVJKSopmz55t9bnvvvs0fvx49e3bV3fccYd27Nih+Ph4a+9Fbnx8fKxzxC5evKhKlSppxYoVSkpKKvB4q1Wrpr///e+aMGGCWrRooQcffFBOp1Nbt25VaGio4uLi5OPjoxkzZujxxx/Xrbfequ7duysgIECHDh3SkiVLdOedd1qHcePi4tSpUyfddddd6tevn06ePKm33npLdevW1dmzZ/M9vvvuu08LFy7UAw88oE6dOikpKUnvvvuu6tSpk2O9atWq6a677tJTTz2l9PR0TZ06VRUqVNALL7xg9Zk+fbruuusu1a9fXwMHDlSVKlWUkpKihIQE/fLLL3m6HtTlqlatqvnz5+uRRx5R7dq1Xa5UvWnTJn388cfWdYMaNmyo3r17a+bMmTp9+rRatWqlr7/+WnPnzlWXLl3Upk0bq+6AAQP05JNPqmvXrmrXrp2+//57ffHFF1fci3g1N+v7Dpcpip+2ATdKenq6KV++vPH19TV//PGHS9tvv/1mYmJiTK1atUzZsmWNr6+vad68ufnoo4/y9RxZP9PevXu3eeihh4y3t7cpX768GTx4cLbnNMaY//73v+auu+4yZcuWNWXLljW1atUyMTExZu/evVafVq1ambp16+b4fMnJyaZTp07G29vbSMrXT4ElmZiYmGzLs35+vHXr1hzX7fjx4y7Le/fubcqWLWvNZ/10u6CXMAgPDzedOnUyX3zxhWnQoIFxOp2mVq1a5uOPP3bpd/78eTN8+HATEhJiSpcube68806TkJCQ7SfnOf3s/pdffjEPPPCA8fPzM76+vubhhx82R44cyfYT7dzWOes1SkpKclk+a9Ys07hxY+N0Ok358uVNq1atzMqVK136rF271kRHRxtfX1/j5eVlqlatavr06WO++eYbl37//e9/Te3atY3T6TR16tQxCxcuNL179y7Qz+4zMzPNK6+8YsLDw43T6TSNGzc2ixcvzlbv8r/d66+/bsLCwozT6TQtWrSwLhlxuQMHDphevXqZ4OBgU6pUKVOpUiVz3333mU8++cRlfXWVn91f7scffzQDBw40ERERxtPT03h7e5s777zTvPXWWy4/8b948aKJjY01kZGRplSpUiYsLMyMGjXKpY8xxly6dMmMHDnSVKxY0ZQpU8ZER0eb/fv35/qz+79u9zmN/1redygZHMZw1hhuXhkZGQoNDVXnzp2znXcCAEAWziHCTW3RokU6fvx4tisqAwBwOfYQ4aa0ZcsWbd++XRMmTFDFihWvetG+nJw9e/aq524EBATk+pPdG+lq104qXbq0ywX/bpTjx49f8URWT0/PfN3eAwCuF06qxk1pxowZmjdvnho1aqQ5c+YUqMZrr72m2NjYK/ZJSkrK9z3Proecbox5ud69exf4dbgWzZo1u+IF81q1aqV169bduAEBQC7YQwTk4qeffsrx9hSXu+uuu+Tl5XWDRpS7VatWXbE9NDS0wLeAuBZfffWV/vjjj1zby5cvryZNmtzAEQFAzghEAADA9jipGgAA2B7nEOVBZmamjhw5Im9vby7fDgBACWGM0ZkzZxQaGio3tyvvAyIQ5cGRI0ey3e0bAACUDIcPH9Ytt9xyxT4Eojzw9vaW9OcL6uPjU8SjAQAAeZGWlqawsDDre/xKCER5kHWYzMfHh0AEAEAJk5fTXTipGgAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2F6RBqK4uDg1a9ZM3t7eCgwMVJcuXbR3716XPufPn1dMTIwqVKigcuXKqWvXrkpJSXHpc+jQIXXq1EllypRRYGCgRowYoYyMDJc+69at06233iqn06lq1appzpw513v1AABACVGkgWj9+vWKiYnR5s2btXLlSl28eFHt27fXuXPnrD5Dhw7V559/ro8//ljr16/XkSNH9OCDD1rtly5dUqdOnXThwgVt2rRJc+fO1Zw5czRmzBirT1JSkjp16qQ2bdooMTFRzz33nAYMGKAvvvjihq4vAAAonhzGGFPUg8hy/PhxBQYGav369WrZsqVSU1MVEBCg+fPn66GHHpIk/fDDD6pdu7YSEhJ0++23a9myZbrvvvt05MgRBQUFSZLeffddjRw5UsePH5enp6dGjhypJUuWaOfOndZzde/eXadPn9by5cuvOq60tDT5+voqNTWVm7sCAFBC5Of7u1idQ5SamipJ8vf3lyRt27ZNFy9eVNu2ba0+tWrVUuXKlZWQkCBJSkhIUP369a0wJEnR0dFKS0vTrl27rD6X18jqk1UDAADYm0dRDyBLZmamnnvuOd15552qV6+eJCk5OVmenp7y8/Nz6RsUFKTk5GSrz+VhKKs9q+1KfdLS0vTHH3+odOnSLm3p6elKT0+35tPS0q59BQEAQLFVbAJRTEyMdu7cqY0bNxb1UBQXF6fY2Nir9pv43W95qvdi44rXOiQAAHAdFYtDZoMHD9bixYu1du1a3XLLLdby4OBgXbhwQadPn3bpn5KSouDgYKvPX391ljV/tT4+Pj7Z9g5J0qhRo5SammpNhw8fvuZ1BAAAxVeRBiJjjAYPHqxPP/1Ua9asUWRkpEt7kyZNVKpUKa1evdpatnfvXh06dEhRUVGSpKioKO3YsUPHjh2z+qxcuVI+Pj6qU6eO1efyGll9smr8ldPplI+Pj8sEAABuXkV6yCwmJkbz58/XZ599Jm9vb+ucH19fX5UuXVq+vr7q37+/hg0bJn9/f/n4+GjIkCGKiorS7bffLklq37696tSpo8cff1yTJk1ScnKyXn75ZcXExMjpdEqSnnzySb399tt64YUX1K9fP61Zs0YfffSRlixZUmTrDgAAio8i3UM0Y8YMpaamqnXr1goJCbGmDz/80Orzxhtv6L777lPXrl3VsmVLBQcHa+HChVa7u7u7Fi9eLHd3d0VFRalnz57q1auXxo8fb/WJjIzUkiVLtHLlSjVs2FCvv/66/v3vfys6OvqGri8AACieitV1iIqr3K5jwEnVAAAUXyX2OkQAAABFgUAEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsr0jvdg8AQEmSl3tYcv/Kkok9RAAAwPYIRAAAwPYIRAAAwPY4h+gmlJdj3BLHuQEAyMIeIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHsEIgAAYHtFGog2bNigzp07KzQ0VA6HQ4sWLXJpdzgcOU6TJ0+2+kRERGRrnzhxokud7du3q0WLFvLy8lJYWJgmTZp0I1YPAACUEEUaiM6dO6eGDRtq+vTpObYfPXrUZZo1a5YcDoe6du3q0m/8+PEu/YYMGWK1paWlqX379goPD9e2bds0efJkjRs3TjNnzryu6wYAAEoOj6J88o4dO6pjx465tgcHB7vMf/bZZ2rTpo2qVKnistzb2ztb3yzx8fG6cOGCZs2aJU9PT9WtW1eJiYmaMmWKBg0adO0rAQAASrwScw5RSkqKlixZov79+2drmzhxoipUqKDGjRtr8uTJysjIsNoSEhLUsmVLeXp6Wsuio6O1d+9enTp16oaMHQAAFG9FuocoP+bOnStvb289+OCDLsufeeYZ3XrrrfL399emTZs0atQoHT16VFOmTJEkJScnKzIy0uUxQUFBVlv58uWzPVd6errS09Ot+bS0tMJeHQAAUIyUmEA0a9YsPfbYY/Ly8nJZPmzYMOvfDRo0kKenp5544gnFxcXJ6XQW6Lni4uIUGxt7TeMFAAAlR4k4ZPbll19q7969GjBgwFX7Nm/eXBkZGTp48KCkP89DSklJcemTNZ/beUejRo1SamqqNR0+fPjaVgAAABRrJSIQvffee2rSpIkaNmx41b6JiYlyc3NTYGCgJCkqKkobNmzQxYsXrT4rV65UzZo1czxcJklOp1M+Pj4uEwAAuHkVaSA6e/asEhMTlZiYKElKSkpSYmKiDh06ZPVJS0vTxx9/nOPeoYSEBE2dOlXff/+9fvrpJ8XHx2vo0KHq2bOnFXYeffRReXp6qn///tq1a5c+/PBDTZs2zeVQGwAAsLciPYfom2++UZs2baz5rJDSu3dvzZkzR5K0YMECGWPUo0ePbI93Op1asGCBxo0bp/T0dEVGRmro0KEuYcfX11crVqxQTEyMmjRpoooVK2rMmDH85B4AAFiKNBC1bt1axpgr9hk0aFCu4eXWW2/V5s2br/o8DRo00JdfflmgMQIAgJtfiTiHCAAA4HoiEAEAANsjEAEAANsjEAEAANsrMVeqBgCgICZ+99tV+7zYuOINGAmKM/YQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2/Mo6gEAAIBrM/G7367a58XGFW/ASEou9hABAADbYw8RAKDYYY8HbjT2EAEAANsjEAEAANvjkBkAAEWAw4LFC3uIAACA7RGIAACA7RGIAACA7RGIAACA7XFSNYCbRl5OUpU4URVAduwhAgAAtlekgWjDhg3q3LmzQkND5XA4tGjRIpf2Pn36yOFwuEwdOnRw6XPy5Ek99thj8vHxkZ+fn/r376+zZ8+69Nm+fbtatGghLy8vhYWFadKkSdd71QAAQAlSpIHo3LlzatiwoaZPn55rnw4dOujo0aPW9MEHH7i0P/bYY9q1a5dWrlypxYsXa8OGDRo0aJDVnpaWpvbt2ys8PFzbtm3T5MmTNW7cOM2cOfO6rRcAAChZivQcoo4dO6pjx45X7ON0OhUcHJxj2549e7R8+XJt3bpVTZs2lSS99dZbuvfee/Xaa68pNDRU8fHxunDhgmbNmiVPT0/VrVtXiYmJmjJliktwAgAA9lXszyFat26dAgMDVbNmTT311FM6ceKE1ZaQkCA/Pz8rDElS27Zt5ebmpi1btlh9WrZsKU9PT6tPdHS09u7dq1OnTt24FQEAAMVWsf6VWYcOHfTggw8qMjJSBw4c0EsvvaSOHTsqISFB7u7uSk5OVmBgoMtjPDw85O/vr+TkZElScnKyIiMjXfoEBQVZbeXLl8/2vOnp6UpPT7fm09LSCnvVAABAMVKsA1H37t2tf9evX18NGjRQ1apVtW7dOt1zzz3X7Xnj4uIUGxt73eoDAIDipdgfMrtclSpVVLFiRe3fv1+SFBwcrGPHjrn0ycjI0MmTJ63zjoKDg5WSkuLSJ2s+t3OTRo0apdTUVGs6fPhwYa8KAAAoRkpUIPrll1904sQJhYSESJKioqJ0+vRpbdu2zeqzZs0aZWZmqnnz5lafDRs26OLFi1aflStXqmbNmjkeLpP+PJHbx8fHZQIAADevIj1kdvbsWWtvjyQlJSUpMTFR/v7+8vf3V2xsrLp27arg4GAdOHBAL7zwgqpVq6bo6GhJUu3atdWhQwcNHDhQ7777ri5evKjBgwere/fuCg0NlSQ9+uijio2NVf/+/TVy5Ejt3LlT06ZN0xtvvFEk61zScOVfAIAdFOkeom+++UaNGzdW48aNJUnDhg1T48aNNWbMGLm7u2v79u26//77VaNGDfXv319NmjTRl19+KafTadWIj49XrVq1dM899+jee+/VXXfd5XKNIV9fX61YsUJJSUlq0qSJhg8frjFjxvCTewAAYCnSPUStW7eWMSbX9i+++OKqNfz9/TV//vwr9mnQoIG+/PLLfI8PAADYQ4k6hwgAAOB6IBABAADbIxABAADbIxABAADbK9ZXqgZw8+PSDgCKA/YQAQAA2yMQAQAA2yMQAQAA2+McIqAYy8v5NZxbAwDXjkAEAAAsdv2PGIfMAACA7RGIAACA7RGIAACA7RGIAACA7RGIAACA7RGIAACA7RGIAACA7RGIAACA7XFhRtww3NUcAFBcsYcIAADYHoEIAADYHoEIAADYHoEIAADYHoEIAADYHoEIAADYHoEIAADYHtchKia4Rg8AAEWHPUQAAMD22EOEEisve9XYowYAyAv2EAEAANsjEAEAANsjEAEAANvjHCIAAFDsXe9fYxfpHqINGzaoc+fOCg0NlcPh0KJFi6y2ixcvauTIkapfv77Kli2r0NBQ9erVS0eOHHGpERERIYfD4TJNnDjRpc/27dvVokULeXl5KSwsTJMmTboRqwcAAEqIIg1E586dU8OGDTV9+vRsbb///ru+/fZbjR49Wt9++60WLlyovXv36v7778/Wd/z48Tp69Kg1DRkyxGpLS0tT+/btFR4erm3btmny5MkaN26cZs6ceV3XDQAAlBxFesisY8eO6tixY45tvr6+Wrlypcuyt99+W7fddpsOHTqkypUrW8u9vb0VHBycY534+HhduHBBs2bNkqenp+rWravExERNmTJFgwYNKryVAQAAJVaJOqk6NTVVDodDfn5+LssnTpyoChUqqHHjxpo8ebIyMjKstoSEBLVs2VKenp7WsujoaO3du1enTp26UUMHAADFWIk5qfr8+fMaOXKkevToIR8fH2v5M888o1tvvVX+/v7atGmTRo0apaNHj2rKlCmSpOTkZEVGRrrUCgoKstrKly+f7bnS09OVnp5uzaelpV2PVQIAAMVEiQhEFy9eVLdu3WSM0YwZM1zahg0bZv27QYMG8vT01BNPPKG4uDg5nc4CPV9cXJxiY2OvacwoWbjqNQDYW7E/ZJYVhn7++WetXLnSZe9QTpo3b66MjAwdPHhQkhQcHKyUlBSXPlnzuZ13NGrUKKWmplrT4cOHr31FAABAsVWsA1FWGNq3b59WrVqlChUqXPUxiYmJcnNzU2BgoCQpKipKGzZs0MWLF60+K1euVM2aNXM8XCZJTqdTPj4+LhMAALh5Fekhs7Nnz2r//v3WfFJSkhITE+Xv76+QkBA99NBD+vbbb7V48WJdunRJycnJkiR/f395enoqISFBW7ZsUZs2beTt7a2EhAQNHTpUPXv2tMLOo48+qtjYWPXv318jR47Uzp07NW3aNL3xxhtFss4AAKD4KdJA9M0336hNmzbWfNb5QL1799a4ceP0v//9T5LUqFEjl8etXbtWrVu3ltPp1IIFCzRu3Dilp6crMjJSQ4cOdTmvyNfXVytWrFBMTIyaNGmiihUrasyYMfzkHgAAWIo0ELVu3VrGmFzbr9QmSbfeeqs2b9581edp0KCBvvzyy3yPDwAA2EOxPocIAADgRiAQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2ytQIKpSpYpOnDiRbfnp06dVpUqVax4UAADAjVSgQHTw4EFdunQp2/L09HT9+uuv1zwoAACAGylfd7v/3//+Z/37iy++kK+vrzV/6dIlrV69WhEREYU2OAAAgBshX4GoS5cukiSHw6HevXu7tJUqVUoRERF6/fXXC21wAAAAN0K+AlFmZqYkKTIyUlu3blXFihWvy6AAAABupHwFoixJSUmFPQ4AAIAiU6BAJEmrV6/W6tWrdezYMWvPUZZZs2Zd88AAAABulAIFotjYWI0fP15NmzZVSEiIHA5HYY8LAADghilQIHr33Xc1Z84cPf7444U9HgBACTTxu9/y1O/Fxpx7iuKpQNchunDhgu64447CHgsAAECRKFAgGjBggObPn1/YYwEAACgSBTpkdv78ec2cOVOrVq1SgwYNVKpUKZf2KVOmFMrgAAAAboQCBaLt27erUaNGkqSdO3e6tHGCNQBcP5yrA1wfBQpEa9euLexxAAAAFJkCnUMEAABwMynQHqI2bdpc8dDYmjVrCjwgAACAG61AgSjr/KEsFy9eVGJionbu3Jntpq8AAADFXYEC0RtvvJHj8nHjxuns2bPXNCAAAIAbrVDPIerZsyf3MQMAACVOoQaihIQEeXl5FWZJAACA665Ah8wefPBBl3ljjI4ePapvvvlGo0ePLpSBAQCuL65pBPyfAgUiX19fl3k3NzfVrFlT48ePV/v27QtlYAAAADdKgQ6ZzZ4922V67733NHHixHyHoQ0bNqhz584KDQ2Vw+HQokWLXNqNMRozZoxCQkJUunRptW3bVvv27XPpc/LkST322GPy8fGRn5+f+vfvn+3E7u3bt6tFixby8vJSWFiYJk2aVJDVBgAAN6kC7SHKsm3bNu3Zs0eSVLduXTVu3Dhfjz937pwaNmyofv36ZTsMJ0mTJk3Sm2++qblz5yoyMlKjR49WdHS0du/ebZ2r9Nhjj+no0aNauXKlLl68qL59+2rQoEHWzWfT0tLUvn17tW3bVu+++6527Nihfv36yc/PT4MGDbqW1QeAPOHQFFD8FSgQHTt2TN27d9e6devk5+cnSTp9+rTatGmjBQsWKCAgIE91OnbsqI4dO+bYZozR1KlT9fLLL+tvf/ubJOn9999XUFCQFi1apO7du2vPnj1avny5tm7dqqZNm0qS3nrrLd1777167bXXFBoaqvj4eF24cEGzZs2Sp6en6tatq8TERE2ZMoVABAAAJBXwkNmQIUN05swZ7dq1SydPntTJkye1c+dOpaWl6ZlnnimUgSUlJSk5OVlt27a1lvn6+qp58+ZKSEiQ9Oev2vz8/KwwJElt27aVm5ubtmzZYvVp2bKlPD09rT7R0dHau3evTp06VShjBQAAJVuB9hAtX75cq1atUu3ata1lderU0fTp0wvtpOrk5GRJUlBQkMvyoKAgqy05OVmBgYEu7R4eHvL393fpExkZma1GVlv58uWzPXd6errS09Ot+bS0tGtcG9hJXg6PcGgEAIqXAu0hyszMVKlSpbItL1WqlDIzM695UEUtLi5Ovr6+1hQWFlbUQwIAANdRgQLR3XffrWeffVZHjhyxlv36668aOnSo7rnnnkIZWHBwsCQpJSXFZXlKSorVFhwcrGPHjrm0Z2Rk6OTJky59cqpx+XP81ahRo5SammpNhw8fvvYVAgAAxVaBAtHbb7+ttLQ0RUREqGrVqqpataoiIyOVlpamt956q1AGFhkZqeDgYK1evdpalpaWpi1btigqKkqSFBUVpdOnT2vbtm1WnzVr1igzM1PNmze3+mzYsEEXL160+qxcuVI1a9bM8XCZJDmdTvn4+LhMAADg5lWgc4jCwsL07bffatWqVfrhhx8kSbVr13Y5ATovzp49q/3791vzSUlJSkxMlL+/vypXrqznnntO//jHP1S9enXrZ/ehoaHq0qWL9ZwdOnTQwIED9e677+rixYsaPHiwunfvrtDQUEnSo48+qtjYWPXv318jR47Uzp07NW3atFxvUAsAAOwnX4FozZo1Gjx4sDZv3iwfHx+1a9dO7dq1kySlpqaqbt26evfdd9WiRYs81fvmm2/Upk0ba37YsGGSpN69e2vOnDl64YUXdO7cOQ0aNEinT5/WXXfdpeXLl7vcLy0+Pl6DBw/WPffcIzc3N3Xt2lVvvvmm1e7r66sVK1YoJiZGTZo0UcWKFTVmzBh+cg8AACz5CkRTp07VwIEDczyE5OvrqyeeeEJTpkzJcyBq3bq1jDG5tjscDo0fP17jx4/PtY+/v791EcbcNGjQQF9++WWexgQAAOwnX+cQff/99+rQoUOu7e3bt3c5nwcAAKAkyFcgSklJyfHn9lk8PDx0/Pjxax4UAADAjZSvQFSpUiXt3Lkz1/bt27crJCTkmgcFAABwI+UrEN17770aPXq0zp8/n63tjz/+0NixY3XfffcV2uAAAABuhHydVP3yyy9r4cKFqlGjhgYPHqyaNWtKkn744QdNnz5dly5d0t///vfrMlAAAIDrJV+BKCgoSJs2bdJTTz2lUaNGWb8Qczgcio6O1vTp07PdewxA8cA91gAgd/m+MGN4eLiWLl2qU6dOaf/+/TLGqHr16rle9RkASqK8BEiJEAncLAp0pWpJKl++vJo1a1aYYwEAACgSBbqXGQAAwM2EQAQAAGyvwIfMANgXJ2gDuNmwhwgAANgegQgAANgegQgAANgegQgAANgegQgAANgevzIDAADXRUm64jt7iAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0V+0AUEREhh8ORbYqJiZEktW7dOlvbk08+6VLj0KFD6tSpk8qUKaPAwECNGDFCGRkZRbE6AACgGPIo6gFczdatW3Xp0iVrfufOnWrXrp0efvhha9nAgQM1fvx4a75MmTLWvy9duqROnTopODhYmzZt0tGjR9WrVy+VKlVKr7zyyo1ZCQAAUKwV+0AUEBDgMj9x4kRVrVpVrVq1spaVKVNGwcHBOT5+xYoV2r17t1atWqWgoCA1atRIEyZM0MiRIzVu3Dh5enpe1/EDAIDir9gfMrvchQsXNG/ePPXr108Oh8NaHh8fr4oVK6pevXoaNWqUfv/9d6stISFB9evXV1BQkLUsOjpaaWlp2rVr1w0dPwAAKJ6K/R6iyy1atEinT59Wnz59rGWPPvqowsPDFRoaqu3bt2vkyJHau3evFi5cKElKTk52CUOSrPnk5OQcnyc9PV3p6enWfFpaWiGvCQAAKE5KVCB677331LFjR4WGhlrLBg0aZP27fv36CgkJ0T333KMDBw6oatWqBXqeuLg4xcbGXvN4AQBAyVBiDpn9/PPPWrVqlQYMGHDFfs2bN5ck7d+/X5IUHByslJQUlz5Z87mddzRq1CilpqZa0+HDh691+AAAoBgrMYFo9uzZCgwMVKdOna7YLzExUZIUEhIiSYqKitKOHTt07Ngxq8/KlSvl4+OjOnXq5FjD6XTKx8fHZQIAADevEnHILDMzU7Nnz1bv3r3l4fF/Qz5w4IDmz5+ve++9VxUqVND27ds1dOhQtWzZUg0aNJAktW/fXnXq1NHjjz+uSZMmKTk5WS+//LJiYmLkdDqLapUAAEAxUiIC0apVq3To0CH169fPZbmnp6dWrVqlqVOn6ty5cwoLC1PXrl318ssvW33c3d21ePFiPfXUU4qKilLZsmXVu3dvl+sWAQAAeysRgah9+/YyxmRbHhYWpvXr11/18eHh4Vq6dOn1GBoAALgJlJhziAAAAK4XAhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALC9Yh2Ixo0bJ4fD4TLVqlXLaj9//rxiYmJUoUIFlStXTl27dlVKSopLjUOHDqlTp04qU6aMAgMDNWLECGVkZNzoVQEAAMWYR1EP4Grq1q2rVatWWfMeHv835KFDh2rJkiX6+OOP5evrq8GDB+vBBx/UV199JUm6dOmSOnXqpODgYG3atElHjx5Vr169VKpUKb3yyis3fF0AAEDxVOwDkYeHh4KDg7MtT01N1Xvvvaf58+fr7rvvliTNnj1btWvX1ubNm3X77bdrxYoV2r17t1atWqWgoCA1atRIEyZM0MiRIzVu3Dh5enre6NUBAADFULE+ZCZJ+/btU2hoqKpUqaLHHntMhw4dkiRt27ZNFy9eVNu2ba2+tWrVUuXKlZWQkCBJSkhIUP369RUUFGT1iY6OVlpamnbt2nVjVwQAABRbxXoPUfPmzTVnzhzVrFlTR48eVWxsrFq0aKGdO3cqOTlZnp6e8vPzc3lMUFCQkpOTJUnJyckuYSirPastN+np6UpPT7fm09LSCmmNAABAcVSsA1HHjh2tfzdo0EDNmzdXeHi4PvroI5UuXfq6PW9cXJxiY2OvW30AAFC8FPtDZpfz8/NTjRo1tH//fgUHB+vChQs6ffq0S5+UlBTrnKPg4OBsvzrLms/pvKQso0aNUmpqqjUdPny4cFcEAAAUKyUqEJ09e1YHDhxQSEiImjRpolKlSmn16tVW+969e3Xo0CFFRUVJkqKiorRjxw4dO3bM6rNy5Ur5+PioTp06uT6P0+mUj4+PywQAAG5exfqQ2fPPP6/OnTsrPDxcR44c0dixY+Xu7q4ePXrI19dX/fv317Bhw+Tv7y8fHx8NGTJEUVFRuv322yVJ7du3V506dfT4449r0qRJSk5O1ssvv6yYmBg5nc4iXjsAAFBcFOtA9Msvv6hHjx46ceKEAgICdNddd2nz5s0KCAiQJL3xxhtyc3NT165dlZ6erujoaL3zzjvW493d3bV48WI99dRTioqKUtmyZdW7d2+NHz++qFYJAAAUQ8U6EC1YsOCK7V5eXpo+fbqmT5+ea5/w8HAtXbq0sIcGAABuIiXqHCIAAIDrgUAEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsr1gHori4ODVr1kze3t4KDAxUly5dtHfvXpc+rVu3lsPhcJmefPJJlz6HDh1Sp06dVKZMGQUGBmrEiBHKyMi4kasCAACKMY+iHsCVrF+/XjExMWrWrJkyMjL00ksvqX379tq9e7fKli1r9Rs4cKDGjx9vzZcpU8b696VLl9SpUycFBwdr06ZNOnr0qHr16qVSpUrplVdeuaHrAwAAiqdiHYiWL1/uMj9nzhwFBgZq27ZtatmypbW8TJkyCg4OzrHGihUrtHv3bq1atUpBQUFq1KiRJkyYoJEjR2rcuHHy9PS8rusAAACKv2J9yOyvUlNTJUn+/v4uy+Pj41WxYkXVq1dPo0aN0u+//261JSQkqH79+goKCrKWRUdHKy0tTbt27boxAwcAAMVasd5DdLnMzEw999xzuvPOO1WvXj1r+aOPPqrw8HCFhoZq+/btGjlypPbu3auFCxdKkpKTk13CkCRrPjk5OcfnSk9PV3p6ujWflpZW2KsDAACKkRITiGJiYrRz505t3LjRZfmgQYOsf9evX18hISG65557dODAAVWtWrVAzxUXF6fY2NhrGi8AACg5SsQhs8GDB2vx4sVau3atbrnlliv2bd68uSRp//79kqTg4GClpKS49Mmaz+28o1GjRik1NdWaDh8+fK2rAAAAirFiHYiMMRo8eLA+/fRTrVmzRpGRkVd9TGJioiQpJCREkhQVFaUdO3bo2LFjVp+VK1fKx8dHderUybGG0+mUj4+PywQAAG5exfqQWUxMjObPn6/PPvtM3t7e1jk/vr6+Kl26tA4cOKD58+fr3nvvVYUKFbR9+3YNHTpULVu2VIMGDSRJ7du3V506dfT4449r0qRJSk5O1ssvv6yYmBg5nc6iXD0AAFBMFOs9RDNmzFBqaqpat26tkJAQa/rwww8lSZ6enlq1apXat2+vWrVqafjw4eratas+//xzq4a7u7sWL14sd3d3RUVFqWfPnurVq5fLdYsAAIC9Fes9RMaYK7aHhYVp/fr1V60THh6upUuXFtawAADATaZY7yECAAC4EQhEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9mwViKZPn66IiAh5eXmpefPm+vrrr4t6SAAAoBiwTSD68MMPNWzYMI0dO1bffvutGjZsqOjoaB07dqyohwYAAIqYbQLRlClTNHDgQPXt21d16tTRu+++qzJlymjWrFlFPTQAAFDEbBGILly4oG3btqlt27bWMjc3N7Vt21YJCQlFODIAAFAceBT1AG6E3377TZcuXVJQUJDL8qCgIP3www/Z+qenpys9Pd2aT01NlSSlpaW59Dt/9kyenj8tzfOqfaiVv1p5rUetm6NWXutR6+aoldd61Lo5auW1XkFqZX1vG2Ou/kBjA7/++quRZDZt2uSyfMSIEea2227L1n/s2LFGEhMTExMTE9NNMB0+fPiqWcEWe4gqVqwod3d3paSkuCxPSUlRcHBwtv6jRo3SsGHDrPnMzEydPHlSFSpUkMPhyPV50tLSFBYWpsOHD8vHx+eaxkwtapWksVGLWtTi/V0caxljdObMGYWGhl61ni0Ckaenp5o0aaLVq1erS5cukv4MOatXr9bgwYOz9Xc6nXI6nS7L/Pz88vx8Pj4+hfLmoBa1bkQ9alGLWsWnVmHXo5bk6+ubpzq2CESSNGzYMPXu3VtNmzbVbbfdpqlTp+rcuXPq27dvUQ8NAAAUMdsEokceeUTHjx/XmDFjlJycrEaNGmn58uXZTrQGAAD2Y5tAJEmDBw/O8RBZYXE6nRo7dmy2w23UolZh1CrsetSiFrWKT63Crket/HMYk5ffogEAANy8bHFhRgAAgCshEAEAANsjEAEAANsjEAEAANsjEAEAANsjENlEUlKSMjIyCqVWYdXJwg8dcT2x7cOO2O7zj0B0DXbv3q2nn35ajRs3VkhIiEJCQtS4cWM9/fTT2r17d75qHT16VPPmzdPSpUt14cIFl7Zz585p/Pjx1zTWmjVrat++ffl6zPLly7Vjxw5Jf97qZMKECapUqZKcTqduueUWTZw4Mc8bdnp6up5//nm1bNlSr776qiTpH//4h8qVKydvb289+uij1l2JCyI9PV3p6ekFfvz1tm7dOv3xxx/XXCc9PV0HDhwotHVNSUlRcnJyvh/Htl98tv3i7Gb7Uma7v8m3+2u8kbxtLV261Hh6eprbb7/djB071rzzzjvmnXfeMWPHjjV33HGHcTqdZvny5Xmq9fXXXxs/Pz/j4+NjSpcubapVq2Z27txptScnJxs3N7c81XrggQdynNzc3Ezbtm2t+byoWbOm2bBhgzHGmFdeecVUqFDBTJkyxSxbtsxMnTrVBAUFmYkTJ+ap1tChQ01oaKgZPny4qV27tnn66adN5cqVzbx588z8+fNNtWrVzJAhQ/JUK8uKFStMx44djZ+fn3FzczNubm7Gz8/PdOzY0axcuTJftRITE82ECRPM9OnTzfHjx13aUlNTTd++ffNV769KlSpldu/ena/HzJ4922zatMkYY8wff/xh+vXrZ9zd3Y2bm5vx8PAwTzzxhDl//nyeap04ccJ07drVhIWFmSeffNJkZGSY/v37G4fDYdzc3ExUVJQ5cuRInmqx7Rfttr9r1y7z1FNPmUaNGpng4GATHBxsGjVqZJ566imza9euPNcxxpgjR46Y//znP2bJkiUmPT3dpe3s2bMmNjY2X/X+qiDb/bJly8z27duNMcZcunTJjB8/3oSGhho3NzdTqVIlExcXZzIzM/NU6/z582b48OGmRYsW1t9rwoQJpmzZsqZs2bKmR48eJjU1NU+12O6L/jO/MLf9nBCICqhBgwZm9OjRubaPHTvW1K9fP0+12rZta/r27WsuXbpk0tLSzFNPPWUqVKhgvv32W2NM/t4cDofDtGrVyvTp08dlcnNzM126dLHm88LpdJqff/7ZGGNMvXr1zEcffeTSvnjxYlOtWrU81QoLC7NCyoEDB4ybm5tZtGiR1b5ixQoTHh6ep1rGGDNnzhzj4eFhunfvbmbPnm2WLl1qli5dambPnm169OhhSpUqZd5///081friiy+Mp6enqVu3rqlcubKpUKGCWbNmjdWen9e/cePGOU4Oh8PUrl3bms+LyMhIs3nzZmOMMc8//7yJiIgwCxcuNHv27DGLFi0yNWrUMCNGjMhTrX79+pl69eqZt956y7Rq1cr87W9/Mw0aNDAbN240mzZtMs2aNTO9evXKUy22/aLb9vlSLrovZbb7ov3ML8xtPzcEogLy8vIyP/zwQ67tP/zwg/Hy8spTrfLly5u9e/e6LIuLizPly5c3X3/9db7eHB988IG55ZZbzKxZs1yWe3h45DtBh4SEmISEBGOMMUFBQdabNcuPP/5oSpcunadapUuXtt5oxvz5P8fLP3yTkpJMmTJl8jy26tWrm7fffjvX9unTp+f5jRsVFWVeeuklY4wxmZmZ5tVXXzXlypUzy5YtM8bk78PJw8PDdOjQwYwbN86axo4da9zc3MzTTz9tLcuLyz+catSoYY0ny/r1603lypXzVCskJMR89dVX1vo4HA6zYsUKq33jxo2mUqVKearFtl902z5fykX3pcx2X7Sf+YW57eeGQFRAtWrVMq+//nqu7a+//rqpWbNmnmqVL1/efP/999mWT5482fj5+ZmFCxfm+c1hzJ8b2p133mkefPBBc/LkSWNMwd4cTz/9tLnvvvtMRkaGGTRokBkwYIDLruohQ4aYqKioPNWqWbOmWbBggTHmz/+Zenp6uryBFyxYYKpXr57nsTmdzkL7cPLx8TH79+93WRYfH2/Kli1rPv/883x9OG3cuNFUrVrVjBkzxly6dMlaXpDXPzw83NpTValSJbN161aX9t27d5uyZcvmqVaZMmXMwYMHrflSpUqZHTt2WPM//fRTnmux7Rfdts+XctF9KbPdF+1nfmFu+7khEBXQRx99ZDw8PEznzp3NtGnTzIIFC8yCBQvMtGnTzP333288PT3NJ598kqdaLVq0MDNmzMix7dVXXzVOpzNfbw5j/jz2PmbMGBMWFmaWL19uSpUqle83x+nTp03Tpk1NtWrVzOOPP268vLxMeHi4adeunYmMjDS+vr7WIZ2reeONN4yXl5dp27atKV++vHnzzTdNcHCweeGFF8yLL75ofH19zfjx4/M8tltvvfWKh4teeOEFc+utt+apVkBAgPnmm2+yLf/ggw9MmTJlzIwZM/L1+p8+fdp0797dNG/e3ApaBflweumll0xUVJQ5deqUefHFF03nzp3NmTNnjDHGnDt3znTr1s20b98+T7UaNmxo7VFbunSp8fb2dvlwnzFjhqlXr16earHtF922z5dy0X0ps90X7Wd+YW77uSEQXYOvvvrKPPLII6Zy5crG09PTeHp6msqVK5tHHnnEOhk2L/7f//t/pmfPnrm2T5w40URERBRojF9++aWJjIw0bm5uBTrp7MKFC2bGjBnm3nvvNbVq1TI1atQwrVq1Mi+99JI5fPhwvmrFx8ebwYMHm/nz5xtjjFm7dq1p0aKFadKkiRk3bpzLHpWrWbt2rSlbtqypX7++GTp0qJk4caKZOHGiGTp0qGnQoIEpV66cWb9+fZ5qtWvXzkyePDnHtvnz55tSpUrl+8PJGGNmzZplgoODzb/+9a8CfTilp6eb+++/35QvX960a9fOeHl5mTJlypjq1aubsmXLmsqVK2f7H35u5s2bZ9zd3U21atWM0+k0H3/8sQkNDTXdunUz3bt3N56enlc8BPlXbPtFs+3zpVy0X8ps90X3mV+Y235uCEQ2cObMGZOYmJjtVyQlXVJSknnhhRdMy5YtTY0aNUyNGjVMy5YtzciRI01SUlKe6yxcuNA899xzubbHx8eb1q1bF2iMP/74o2nWrJlxOBwF/hXEsmXLzNNPP206dOhg2rdvb3r37m1mzpxpzp49m686GzduNK+99pp1LtGuXbvM448/brp27WrmzJlToLEVdzfjts+XctF9KZcUN+N2b0zhbfu5cRhTTK+QBNwkMjMzdebMGfn4+MjhcBT1cIAb4uzZszpw4IBq164tT0/Poh4OcFVcmPE6eemll9SvXz9qFUGt4sbNzU2+vr62CUPFdbuwQ63ipFy5cmrYsKFtwlBx3SbsUKuwEIiuk19++UUHDx6kVhHUkqTevXvr7rvvplYR1Pr1118L7W9Jrfwprl9YdqhVXLcJO9SSCudv6VFIY8FfvP/++9QqolqSFBoaKje3wsn71MqfuXPnFkodauXfL7/8ol9++YVaN7CWMUYOh6NQ/o7UKrjC+FtyDtE1+O233zRr1iwlJCRY94MKDg7WHXfcoT59+iggIIBa16kWABQHnp6e+v7771W7dm1q3eBahY1AVEBbt25VdHS0ypQpo7Zt2yooKEjSnzfLXL16tX7//Xd98cUXatq0KbUKuVZeHD58WGPHjtWsWbOodR1q/fHHH9q2bZv8/f1Vp04dl7bz58/ro48+Uq9evah1HWrt2bNHmzdvVlRUlGrVqqUffvhB06ZNU3p6unr27JmvQ5/UynutYcOG5bh82rRp6tmzpypUqCBJmjJlCrUKuVZOzp07p48++kj79+9XSEiIevToYdUssGv+nZpNNW/e3AwaNCjHmwxmZmaaQYMGmdtvv51a16FWXiQmJhbo2kHUurq9e/ea8PBw68awLVu2dLkxbH6ucEyt/NVatmyZ8fT0NP7+/sbLy8ssW7bMBAQEmLZt25q7777buLu7m9WrV1PrOtRyOBymUaNGpnXr1i6Tw+EwzZo1M61btzZt2rSh1nWoZYwxtWvXNidOnDDGGHPo0CETERFhfH19TbNmzYy/v78JDAw0P/30U57r5YRAVEBeXl5mz549ubbv2bMnz5cRp1b+ahljzGeffXbF6Y033sjzlwy18lerS5cuplOnTub48eNm3759plOnTiYyMtK6RUJ+vuCplb9aUVFR5u9//7sx5s8rqZcvX966D58xxrz44oumXbt21LoOteLi4kxkZGS2AFWQq3FTK//XpnI4HCYlJcUYY8xjjz1m7rjjDnP69GljzJ/XXWrbtq3p0aNHvutejkBUQBEREWbu3Lm5ts+dOzfPNw2kVv5qGWOs/207HI5cp/zcmJJaea8VGBhotm/fbs1nZmaaJ5980lSuXNkcOHAgX1/w1MpfLR8fH7Nv3z5jzJ9Xhfbw8HC519eOHTtMUFAQta5DLWP+vP1HjRo1zPDhw82FCxeMMQX/gqdW/lweiKpUqeJyc2pj/rxoY1hYWL7rXo5AVEBvv/22cTqd5plnnjGfffaZ2bx5s9m8ebP57LPPzDPPPGNKly5tpk+fTq3rUMsYY0JDQ13uWv1X3333XZ6/ZKiVv1re3t5m9+7d2ZbHxMSYW265xWzYsIFa16nWX29EXK5cOXPgwAFr/uDBgwW+qTG18ubMmTOmV69epkGDBmbHjh0Fuj0JtQoWiI4dO2aM+fPz7PKbUxtTsL/lXxGIrsGCBQtM8+bNjYeHh/W/bA8PD9O8eXPz4YcfUus61urcubMZPXp0ru2JiYnG4XBQ6zrUatasmXn//fdzbIuJiTF+fn55/oKnVv5qNWjQwCxbtsya37Fjh7l48aI1v2HDBhMZGUmt61Drrz744AMTFBRU4NuTUCt/HA6HqV+/vmncuLEpV65ctvuWrV+/3lSqVOmaxkggKgQXLlwwR44cMUeOHLF2C1Lr+tbasGGDywfdX509e9asW7eOWteh1iuvvGI6duyYa/tTTz2V53BFrfzVmjFjhlm8eHGu7aNGjTL9+/en1nWolZPDhw+bRYsW5fu+gtTKf61x48a5TMuXL3dpf/7550337t2vaXz87B4AANget+4AAAC2RyACAAC2RyACAAC2RyACcFNo3bq1nnvuuTz1XbdunRwOh06fPn1NzxkREaGpU6deUw0AxQOBCAAA2B6BCAAA2B6BCMBN5z//+Y+aNm0qb29vBQcH69FHH9WxY8ey9fvqq6/UoEEDeXl56fbbb9fOnTtd2jdu3KgWLVqodOnSCgsL0zPPPKNz587dqNUAcAMRiADcdC5evKgJEybo+++/16JFi3Tw4EH16dMnW78RI0bo9ddf19atWxUQEKDOnTvr4sWLkqQDBw6oQ4cO6tq1q7Zv364PP/xQGzdu1ODBg2/w2gC4ETyKegAAUNj69etn/btKlSp688031axZM509e1blypWz2saOHat27dpJkubOnatbbrlFn376qbp166a4uDg99thj1ona1atX15tvvqlWrVppxowZ8vLyuqHrBOD6Yg8RgJvOtm3b1LlzZ1WuXFne3t5q1aqVJOnQoUMu/aKioqx/+/v7q2bNmtqzZ48k6fvvv9ecOXNUrlw5a4qOjlZmZqaSkpJu3MoAuCHYQwTgpnLu3DlFR0crOjpa8fHxCggI0KFDhxQdHa0LFy7kuc7Zs2f1xBNP6JlnnsnWVrly5cIcMoBigEAE4Kbyww8/6MSJE5o4caLCwsIkSd98802OfTdv3myFm1OnTunHH39U7dq1JUm33nqrdu/erWrVqt2YgQMoUhwyA3BTqVy5sjw9PfXWW2/pp59+0v/+9z9NmDAhx77jx4/X6tWrtXPnTvXp00cVK1ZUly5dJEkjR47Upk2bNHjwYCUmJmrfvn367LPPOKkauEkRiADcVAICAjRnzhx9/PHHqlOnjiZOnKjXXnstx74TJ07Us88+qyZNmig5OVmff/65PD09JUkNGjTQ+vXr9eOPP6pFixZq3LixxowZo9DQ0Bu5OgBuEIcxxhT1IAAAAIoSe4gAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDtEYgAAIDt/X9lYKi4s9VyQgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ys_adverb_balanced = special_value_interpolation(ys_adverb_basic)\n", + "ys_adverb_balanced = zero_five_balancing(ys_adverb_balanced)\n", + "ys_adverb_balanced = swap_or_eda(ys_adverb_balanced)\n", + "plot_label_count(ys_adverb_balanced, \"ys_adverb_balanced\")\n", + "\n", + "ys_bert_rmr_balanced = special_value_interpolation(ys_bert_rmr_basic)\n", + "ys_bert_rmr_balanced = zero_five_balancing(ys_bert_rmr_balanced)\n", + "ys_bert_rmr_balanced = swap_or_eda(ys_bert_rmr_balanced)\n", + "plot_label_count(ys_bert_rmr_balanced, \"ys_bert_rmr_balanced\")" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABp40lEQVR4nO3dd3QU9f7/8deGVBISSjqE0KRXUTEqTZFQFcWrYAEEARFQQRGwUP0axCuCiij3dykqSPFyUVGRpiBNBAxVEBAEhQSpAZQEks/vD0/2uiTAJmwmk+zzcc6cw8589r3v2d0P+857Z2ccxhgjAAAAAAAAwEI+hZ0AAAAAAAAAvA9NKQAAAAAAAFiOphQAAAAAAAAsR1MKAAAAAAAAlqMpBQAAAAAAAMvRlAIAAAAAAIDlaEoBAAAAAADAcjSlAAAAAAAAYDmaUgAAAAAAALAcTSngKg4cOCCHw6F//vOfHov5zTffyOFw6JtvvvFYzKLo0KFDCgwM1Jo1awrl8Vu0aKG6desWymMXBwUxN2bMmCGHw6EDBw54LGZhqVSpknr06OG8vXjxYoWEhOj3338vvKQAwAaorQpOYddW16pHjx6qVKlSoTy2J9+X2e/Hjz/+2AOZ/WXUqFFyOBwei1eYHA6HRo0a5bz97rvvqmLFikpPTy+8pFBoaEqhWMr+w3bjxo2FnYpH7Nu3T3379lWVKlUUGBio0NBQ3XrrrZo0aZL+/PPPwk5PkvTOO+9oxowZebrPmDFj1KRJE916660Fk5SN/PHHHxo1apTXF8verE2bNqpWrZqSkpIKOxUAyDNqK+tRW8Fb9OjRQxkZGXrvvfcKOxUUAt/CTgDAlX3++ef6xz/+oYCAAHXr1k1169ZVRkaGVq9erSFDhmjHjh2aOnVqYaepd955R+Hh4S5HhlzJ77//rpkzZ2rmzJkFm5hN/PHHHxo9erSkv47Qgnfq27evnn32WY0ePVqlSpUq7HQAwCtRWwH2EhgYqO7du2vChAkaOHBgsTkiDO6hKQXY2P79+9WlSxfFx8drxYoViomJcW7r37+/9u7dq88//7wQM8y/Dz/8UL6+vurYsWNhp1KgsrKylJGR4fG458+fl7+/v3x8PH/A67lz5xQcHOzxuJA6d+6sgQMHav78+erZs2dhpwMAXofaCpcqqFoNeXP//fdr/Pjx+vrrr3X77bcXdjqwED/fg9fKyMjQiBEj1LhxY4WFhSk4OFhNmzbV119/fdn7vPHGG4qPj1dQUJCaN2+u7du35xiza9cu3XfffSpbtqwCAwN1ww036NNPP81XjuPHj9fZs2f173//26VoylatWjU99dRTztsXL17U2LFjVbVqVQUEBKhSpUp6/vnnc/w++9LfcWe79Bw42Yfqr1mzRoMHD1ZERISCg4N1zz33uJwXp1KlStqxY4dWrlwph8Mhh8Nx1aOBFi5cqCZNmigkJMS5buTIkfLz88v1nDt9+vRR6dKldf78eUnSxo0blZiYqPDwcAUFBaly5cr5/iN/06ZNuuWWW5xx3n333Rxj0tPTNXLkSFWrVk0BAQGKi4vTc889l+tzO2DAAM2aNUt16tRRQECA3n33XUVEREiSRo8e7XyOcnsNcpN9XoI5c+boxRdfVPny5VWyZEmlpaWpR48eCgkJ0cGDB9WhQweFhISofPnymjx5siRp27Ztuv322xUcHKz4+HjNnj3bJXb2a7xy5Uo98cQTioyMVIUKFfL8HF5tbmzdulU9evRw/kwiOjpaPXv21PHjx68a+5NPPlH79u0VGxurgIAAVa1aVWPHjlVmZqbLuOxzhO3cuVMtW7ZUyZIlVb58eY0fPz5HzPPnz2vUqFGqXr26AgMDFRMTo3vvvVf79u1zjsnKytLEiRNVp04dBQYGKioqSn379tXJkyddYhlj9PLLL6tChQoqWbKkWrZsqR07duS6L5GRkapfv74++eSTq+43ABQ11FajcsTzttrq22+/1T/+8Q9VrFjRWS8NGjQo159ELly4UHXr1lVgYKDq1q2r//73vy7bL1y4oLJly+rRRx/Ncd+0tDQFBgbq2Wefda67llpt8eLFLmPceV+6IzMzU88//7yio6MVHBysu+66S4cOHXIZk5fn7FLTp0/X7bffrsjISAUEBKh27dqaMmVKjnGVKlVShw4dtHr1at10000KDAxUlSpV9P777+cYe+rUKQ0aNEiVKlVSQECAKlSooG7duunYsWPOMe4+1+np6Ro0aJAiIiJUqlQp3XXXXfr1119z3ZfGjRurbNmy1EheiCOl4LXS0tL0//7f/1PXrl3Vu3dvnTlzRv/+97+VmJioDRs2qGHDhi7j33//fZ05c0b9+/fX+fPnNWnSJN1+++3atm2boqKiJEk7duzQrbfeqvLly2vYsGEKDg7WvHnz1KlTJ/3nP//RPffck6ccP/vsM1WpUkW33HKLW+Mfe+wxzZw5U/fdd5+eeeYZfffdd0pKStKPP/6Y44M+LwYOHKgyZcpo5MiROnDggCZOnKgBAwZo7ty5kqSJEydq4MCBCgkJ0QsvvCBJzuckNxcuXND333+vfv36uax/5JFHNGbMGM2dO1cDBgxwrs/IyNDHH3+szp07KzAwUEePHlXr1q0VERGhYcOGqXTp0jpw4IAWLFiQ5307efKk2rVrp/vvv19du3bVvHnz1K9fP/n7+zsLsaysLN11111avXq1+vTpo1q1amnbtm1644039NNPP2nhwoUuMVesWKF58+ZpwIABCg8PV4MGDTRlyhT169dP99xzj+69915JUv369fOU69ixY+Xv769nn31W6enp8vf3l/RXwdO2bVs1a9ZM48eP16xZszRgwAAFBwfrhRde0EMPPaR7771X7777rrp166aEhARVrlzZJfYTTzyhiIgIjRgxQufOnctTXu7MjaVLl+rnn3/Wo48+qujoaOdPI3bs2KH169df8TDtGTNmKCQkRIMHD1ZISIhWrFihESNGKC0tTa+99prL2JMnT6pNmza69957df/99+vjjz/W0KFDVa9ePbVt29b5fHXo0EHLly9Xly5d9NRTT+nMmTNaunSptm/frqpVq0r666d2M2bM0KOPPqonn3xS+/fv19tvv60ffvhBa9askZ+fnyRpxIgRevnll9WuXTu1a9dOmzdvVuvWrS/7rWvjxo1zvGcAoDigtnJfca2t5s+frz/++EP9+vVTuXLltGHDBr311lv69ddfNX/+fOe4JUuWqHPnzqpdu7aSkpJ0/PhxPfrooy5fjPn5+emee+7RggUL9N577znrHumvhlZ6erq6dOki6dprtb+fXN2d96W7/u///k8Oh0NDhw7V0aNHNXHiRLVq1UrJyckKCgrK03OWmylTpqhOnTq666675Ovrq88++0xPPPGEsrKy1L9/f5exe/fu1X333adevXqpe/fumjZtmnr06KHGjRurTp06kqSzZ8+qadOm+vHHH9WzZ09df/31OnbsmD799FP9+uuvCg8Pz9Nz/dhjj+nDDz/Ugw8+qFtuuUUrVqxQ+/btL7s/119/fZE9ST+ugQGKoenTpxtJ5vvvv7/smIsXL5r09HSXdSdPnjRRUVGmZ8+eznX79+83kkxQUJD59ddfneu/++47I8kMGjTIue6OO+4w9erVM+fPn3euy8rKMrfccou57rrrnOu+/vprI8l8/fXXl83v9OnTRpK5++673dllk5ycbCSZxx57zGX9s88+aySZFStWONdJMiNHjswRIz4+3nTv3t15O/t5bNWqlcnKynKuHzRokClRooQ5deqUc12dOnVM8+bN3cp17969RpJ56623cmxLSEgwTZo0cVm3YMECl+frv//971VfX3c0b97cSDKvv/66c116erpp2LChiYyMNBkZGcYYYz744APj4+Njvv32W5f7v/vuu0aSWbNmjXOdJOPj42N27NjhMvb333+/7PN+NdnvlypVqpg//vjDZVv37t2NJPPKK6841508edIEBQUZh8Nh5syZ41y/a9euHDlkv8a33XabuXjxYp7yysvcuDRvY4z56KOPjCSzatWqHPns37//ivft27evKVmypMtcy34933//fee69PR0Ex0dbTp37uxcN23aNCPJTJgwIUfc7Pf5t99+aySZWbNmuWxfvHixy/qjR48af39/0759e5c58vzzzxtJLvMp2yuvvGIkmdTU1BzbAMCuqK3+h9rq8nL7zE5KSjIOh8P88ssvznUNGzY0MTExLvu7ZMkSI8nEx8c713311VdGkvnss89cYrZr185UqVLFedsTtVpe3pdXk/1+LF++vElLS3OunzdvnpFkJk2a5Fzn7nM2cuRIc+mf77ndNzEx0eW5Meav9+GlNdfRo0dNQECAeeaZZ5zrRowYYSSZBQsW5Iib/X5197nOnj9PPPGEy7gHH3zwsvOlT58+JigoKMd6FG/8fA9eq0SJEs5vXLKysnTixAldvHhRN9xwgzZv3pxjfKdOnVS+fHnn7ZtuuklNmjTRF198IUk6ceKEVqxYofvvv19nzpzRsWPHdOzYMR0/flyJiYnas2ePfvvtN7fzS0tLkyS3T4acncfgwYNd1j/zzDOSdE3nR+jTp4/LkSxNmzZVZmamfvnll3zFy/7JVpkyZXJs69atm7777juXn1HNmjVLcXFxat68uSSpdOnSkqRFixbpwoUL+cohm6+vr/r27eu87e/vr759++ro0aPatGmTpL++wapVq5Zq1qzpfF2PHTvm/L37pT9LaN68uWrXrn1NeeWme/fuzm/VLvXYY485/126dGnVqFFDwcHBuv/++53ra9SoodKlS+vnn3/Ocf/evXurRIkS+crranNDkkve58+f17Fjx3TzzTdLUq7z7e/+ft/sudW0aVP98ccf2rVrl8vYkJAQPfzww87b/v7+uummm1z2+T//+Y/Cw8M1cODAHI+V/T6fP3++wsLCdOedd7q85o0bN1ZISIjzNV+2bJkyMjJynJTz6aefvuz+ZL/v/34YPAAUB9RW7iuutdXfP7PPnTunY8eO6ZZbbpExRj/88IMk6ciRI0pOTlb37t0VFhbmHH/nnXfmqJ9uv/12hYeHO48gk/46Knrp0qV64IEHnOs8Wau5U9e4q1u3bi7vt/vuu08xMTGXrZEu95xdzt/ve/r0aR07dkzNmzfXzz//rNOnT7uMrV27tpo2beq8HRERoRo1auSokRo0aJDrEYh/r5Hcea6z9/HJJ590iXO1GunPP//UH3/8ccX9RvFCUwpebebMmapfv74CAwNVrlw5RURE6PPPP8/xn7gkXXfddTnWVa9eXQcOHJD01yGxxhi99NJLioiIcFlGjhwpSTp69KjbuYWGhkr6649wd/zyyy/y8fFRtWrVXNZHR0erdOnS+S5yJKlixYout7MLnkvPrZNXxpgc6x544AEFBARo1qxZkv76gF20aJEeeugh54dh8+bN1blzZ40ePVrh4eG6++67NX369By/Y3dHbGxsjpN6V69eXZKcr+2ePXu0Y8eOHK9r9rhLX9dLfxrnKZeLGxgY6DxnVbawsDBVqFAhx8/iwsLCcn3driXnq80N6a8/LJ566ilFRUUpKChIERERzsfMbb793Y4dO3TPPfcoLCxMoaGhioiIcDaeLr1vbvtcpkwZl33et2+fatSoIV/fy/+Cfc+ePTp9+rQiIyNzvO5nz551vubZ8+rS5yAiIiLXPwyk/73vubIMgOKI2so9xbW2OnjwoHr06KGyZcsqJCREERERzsZX9nvgcp+d0l9foP2dr6+vOnfurE8++cSZy4IFC3ThwgWXppQnazV36hp3XRrL4XCoWrVqLrHcec4uZ82aNWrVqpWCg4NVunRpRURE6Pnnn8/1vpe+56Tca6S6dete8THdfa6z50/2aRGyXfoa/x01knfinFLwWh9++KF69OihTp06aciQIYqMjFSJEiWUlJTk8k2Su7KysiRJzz77rBITE3Mdc2lRcyWhoaGKjY3N84kVr+U/8UtPHJ3tckfQ5Fb4uKNcuXKSci+8ypQpow4dOmjWrFkaMWKEPv74Y6Wnp7sc/eJwOPTxxx9r/fr1+uyzz/TVV1+pZ8+eev3117V+/XqXE3x6QlZWlurVq6cJEybkuj0uLs7l9uWOZrpWl4t7udcnL69bQeWc7f7779fatWs1ZMgQNWzYUCEhIcrKylKbNm2ccyc3p06dUvPmzRUaGqoxY8aoatWqCgwM1ObNmzV06NAc9/XUezUrK0uRkZHOAv5SlzYB8yL7fR8eHp7vGABgR9RWOXlTbZWZmak777xTJ06c0NChQ1WzZk0FBwfrt99+U48ePa74eX8lXbp00Xvvvacvv/xSnTp10rx581SzZk01aNDAOcYutVpeXctztm/fPt1xxx2qWbOmJkyYoLi4OPn7++uLL77QG2+8UaA1Ul6e67w4efKkSpYsaZvXB9agKQWv9fHHH6tKlSpasGCBS7GR/c3bpfbs2ZNj3U8//eQ8MWKVKlUk/XVSxlatWnkkxw4dOmjq1Klat26dEhISrjg2Pj5eWVlZ2rNnj2rVquVcn5qaqlOnTik+Pt65rkyZMjp16pTL/TMyMnTkyJF855qXgq1ixYoKCgrS/v37c93erVs33X333fr+++81a9YsNWrUyHkCxr+7+eabdfPNN+v//u//NHv2bD300EOaM2eOy0/Zrubw4cM6d+6cy9FSP/30kyQ5X9uqVatqy5YtuuOOO/JdmBbnb3yuNjdOnjyp5cuXa/To0RoxYsQV73epb775RsePH9eCBQvUrFkz5/rLvXfcUbVqVX333Xe6cOGC82TluY1ZtmyZbr311isWRtnzas+ePc7/AyTp999/v+y33fv371d4ePg1NbYAwI6orU653N/baqtt27bpp59+0syZM9WtWzfn+qVLl7qM+/tn56V2796dY12zZs0UExOjuXPn6rbbbtOKFSucJ3/P5olaLdvV3pfXEssYo7179zovduPuc5abzz77TOnp6fr0009djoK60tUur6Zq1apXbdq6+1xnz5/sI9Sz5fYaZ9u/f7/LXIN34Od78FrZ3xb8/duB7777TuvWrct1/MKFC13OW7BhwwZ99913zit6RUZGqkWLFnrvvfdyLUByuxTv1Tz33HMKDg7WY489ptTU1Bzb9+3bp0mTJkmS2rVrJ+mvq7X8Xfa3GH+/0kXVqlW1atUql3FTp0697Ld57ggODs5RjF2On5+fbrjhBm3cuDHX7W3btlV4eLheffVVrVy50uWbPOmvJsel3+pkX9Enr4eZX7x4Ue+9957zdkZGht577z1FRESocePGkv46yue3337Tv/71rxz3//PPP926Wl3JkiUlye3nqCi52tzIba5JOd+rucntvhkZGXrnnXfynW/nzp117Ngxvf322zm2ZT/O/fffr8zMTI0dOzbHmIsXLzpfx1atWsnPz09vvfWWS45X2rdNmzZd9Q8hACiKqK28u7bK7fU3xjifz2wxMTFq2LChZs6c6fITs6VLl2rnzp054vr4+Oi+++7TZ599pg8++EAXL150+eme5JlaLdvV3pd5kX0lv2wff/yxjhw5csUaKbfnLDe53ff06dOaPn16nvPM1rlzZ23ZsiXXK0v+vUZy57nO3sc333zTZcyVaqTNmze7fWVMFB8cKYVibdq0aVq8eHGO9U899ZQ6dOigBQsW6J577lH79u21f/9+vfvuu6pdu7bOnj2b4z7VqlXTbbfdpn79+ik9PV0TJ05UuXLl9NxzzznHTJ48Wbfddpvq1aun3r17q0qVKkpNTdW6dev066+/asuWLXnKv2rVqpo9e7YeeOAB1apVS926dVPdunWVkZGhtWvXav78+erRo4ckqUGDBurevbumTp3q/MnThg0bNHPmTHXq1EktW7Z0xn3sscf0+OOPq3Pnzrrzzju1ZcsWffXVV9f0c6LGjRtrypQpevnll1WtWjVFRkY6T3iYm7vvvlsvvPCC0tLSnOd4yObn56cuXbro7bffVokSJdS1a1eX7TNnztQ777yje+65R1WrVtWZM2f0r3/9S6Ghoc4C0l2xsbF69dVXdeDAAVWvXl1z585VcnKypk6d6jyK5pFHHtG8efP0+OOP6+uvv9att96qzMxM7dq1S/PmzdNXX32lG2644YqPExQUpNq1a2vu3LmqXr26ypYtq7p16171d/tFwdXmRmhoqJo1a6bx48frwoULKl++vJYsWeLW0U633HKLypQpo+7du+vJJ5+Uw+HQBx98kO+fN0h/fVv8/vvva/DgwdqwYYOaNm2qc+fOadmyZXriiSd09913q3nz5urbt6+SkpKUnJys1q1by8/PT3v27NH8+fM1adIk3XfffYqIiNCzzz6rpKQkdejQQe3atdMPP/ygL7/8Mtf5dPToUW3dujXHZZoBoKigtqK2upyaNWuqatWqevbZZ/Xbb78pNDRU//nPf3I9cjgpKUnt27fXbbfdpp49e+rEiRN66623VKdOnVzfKw888IDeeustjRw5UvXq1ctxNI0narVs7rwv3VW2bFnddtttevTRR5WamqqJEyeqWrVq6t27d56fs0u1bt1a/v7+6tixo/r27auzZ8/qX//6lyIjI/N9hN6QIUP08ccf6x//+Id69uypxo0b68SJE/r000/17rvvqkGDBm4/1w0bNlTXrl31zjvv6PTp07rlllu0fPly7d27N9fH3rRpk06cOKG77747X7mjCLPkGn+AxbIvt3u55dChQyYrK8u88sorJj4+3gQEBJhGjRqZRYsWme7du7tcijb78rCvvfaaef31101cXJwJCAgwTZs2NVu2bMnx2Pv27TPdunUz0dHRxs/Pz5QvX9506NDBfPzxx84x7ly2+O9++ukn07t3b1OpUiXj7+9vSpUqZW699Vbz1ltvuVwi+cKFC2b06NGmcuXKxs/Pz8TFxZnhw4e7jDHGmMzMTDN06FATHh5uSpYsaRITE83evXsve9niSy8PnFv+KSkppn379qZUqVJG0lUvYZyammp8fX3NBx98kOv2DRs2GEmmdevWObZt3rzZdO3a1VSsWNEEBASYyMhI06FDB7Nx48YrPualmjdvburUqWM2btxoEhISTGBgoImPjzdvv/12jrEZGRnm1VdfNXXq1DEBAQGmTJkypnHjxmb06NHm9OnTznGSTP/+/XN9vLVr15rGjRsbf3//y14KNzfZz/f8+fNzbOvevbsJDg6+7L5dKj4+3rRv3955251LfF9OXubGr7/+au655x5TunRpExYWZv7xj3+Yw4cP53gesvPZv3+/c92aNWvMzTffbIKCgkxsbKx57rnnnJeI/vt78HL7fOmcNuavSyi/8MILzrkSHR1t7rvvPrNv3z6XcVOnTjWNGzc2QUFBplSpUqZevXrmueeeM4cPH3aOyczMNKNHjzYxMTEmKCjItGjRwmzfvj3HfDLGmClTppiSJUu6XB4aAIoCaitqK3fs3LnTtGrVyoSEhJjw8HDTu3dvs2XLFiPJTJ8+3WXsf/7zH1OrVi0TEBBgateubRYsWJDrZ7YxxmRlZZm4uDgjybz88su5Pva11mp5fV9eSfbr+dFHH5nhw4ebyMhIExQUZNq3b29++eWXfD1nI0eONJf++f7pp5+a+vXrm8DAQFOpUiXz6quvmmnTpuWopS6t/7I1b948x/vq+PHjZsCAAaZ8+fLG39/fVKhQwXTv3t0cO3bMOcbd5/rPP/80Tz75pClXrpwJDg42HTt2NIcOHcq1Dh46dKipWLGiycrKcvNZRnHhMOYavm4GgGvQq1cv/fTTT/r2229zbNuyZYsaNmyo999/X4888kghZAd4XqNGjdSiRQu98cYbhZ0KAKAYorZCUZSenq5KlSpp2LBheuqppwo7HViMc0oBKDQjR47U999/rzVr1uTY9q9//UshISG69957CyEzwPMWL16sPXv2aPjw4YWdCgCgmKK2QlE0ffp0+fn56fHHHy/sVFAIOFIKgK189tln2rlzp1566SUNGDDgspebvZITJ04oIyPjsttLlChhiyufZWRk6MSJE1ccExYWZvllcTMzM6968tiQkBC3Lg8NAAAKlzfVVgXNrrUbUJTRlAJgK5UqVVJqaqoSExP1wQcfqFSpUnmO0aJFC61cufKy2+Pj43XgwIFryNIzvvnmG5eTpOZm+vTpzhOuWuXAgQOqXLnyFceMHDlSo0aNsiYhAACQb95UWxU0u9ZuQFFGUwpAsbNp06YrXrUkKChIt956q4UZ5e7kyZPatGnTFcfUqVNHMTExFmX0l/Pnz2v16tVXHFOlShVVqVLFoowAAEBhKiq1VUGza+0GFGU0pQAAAAAAAGA5TnQOAAAAAAAAy/kWdgJFQVZWlg4fPqxSpUrJ4XAUdjoAAMBCxhidOXNGsbGx8vHh+7y8oIYCAMA7uVs/0ZRyw+HDhxUXF1fYaQAAgEJ06NAhVahQobDTKFKooQAA8G5Xq59oSrkh+woVhw4dUmhoaCFnAwAArJSWlqa4uLh8XbHK21FDAQDgndytn2hKuSH7cPPQ0FAKKgAAvBQ/P8s7aigAALzb1eonTowAAAAAAAAAy9GUAgAAAAAAgOVoSgEAAAAAAMByNKUAAAAAAABgOZpSAAAAAAAAsBxNKQAAAAAAAFiOphQAAAAAAAAsR1MKAAAAAAAAlqMpBQAAAAAAAMvRlAIAAAAAAIDlaEoBAAAAAADAcjSlAAAAAAAAYDmaUgAAAAAAALAcTSkAAAAAAABYjqYUAAAAAAAALEdTCgAAAAAAAJYr1KZUUlKSbrzxRpUqVUqRkZHq1KmTdu/e7TLm/Pnz6t+/v8qVK6eQkBB17txZqampLmMOHjyo9u3bq2TJkoqMjNSQIUN08eJFlzHffPONrr/+egUEBKhatWqaMWNGQe8eAACAx1E/AQCA4qJQm1IrV65U//79tX79ei1dulQXLlxQ69atde7cOeeYQYMG6bPPPtP8+fO1cuVKHT58WPfee69ze2Zmptq3b6+MjAytXbtWM2fO1IwZMzRixAjnmP3796t9+/Zq2bKlkpOT9fTTT+uxxx7TV199Zen+AgAAXCvqJwAAUFw4jDGmsJPI9vvvvysyMlIrV65Us2bNdPr0aUVERGj27Nm67777JEm7du1SrVq1tG7dOt1888368ssv1aFDBx0+fFhRUVGSpHfffVdDhw7V77//Ln9/fw0dOlSff/65tm/f7nysLl266NSpU1q8ePFV80pLS1NYWJhOnz6t0NDQgtl5AABgS3avA+xaP0n2f+4AAEDBcLcGsNU5pU6fPi1JKlu2rCRp06ZNunDhglq1auUcU7NmTVWsWFHr1q2TJK1bt0716tVzFlSSlJiYqLS0NO3YscM55u8xssdkxwAAACiqqJ8AAEBR5VvYCWTLysrS008/rVtvvVV169aVJKWkpMjf31+lS5d2GRsVFaWUlBTnmL8XVNnbs7ddaUxaWpr+/PNPBQUFuWxLT09Xenq683ZaWtq17yAAAICH2al+kqihAABA3timKdW/f39t375dq1evLuxUlJSUpNGjR1913LgfjrkVb1ij8GtNCQAAIAc71U8SNRQAAMgbW/x8b8CAAVq0aJG+/vprVahQwbk+OjpaGRkZOnXqlMv41NRURUdHO8dcejWZ7NtXGxMaGprrt3zDhw/X6dOnncuhQ4eueR8BAAA8yW71k0QNBQAA8qZQm1LGGA0YMED//e9/tWLFClWuXNlle+PGjeXn56fly5c71+3evVsHDx5UQkKCJCkhIUHbtm3T0aNHnWOWLl2q0NBQ1a5d2znm7zGyx2THuFRAQIBCQ0NdFgAAADuwa/0kUUMBAIC8KdSf7/Xv31+zZ8/WJ598olKlSjnPYRAWFqagoCCFhYWpV69eGjx4sMqWLavQ0FANHDhQCQkJuvnmmyVJrVu3Vu3atfXII49o/PjxSklJ0Ysvvqj+/fsrICBAkvT444/r7bff1nPPPaeePXtqxYoVmjdvnj7//PNC23cAAID8oH4CAADFRaEeKTVlyhSdPn1aLVq0UExMjHOZO3euc8wbb7yhDh06qHPnzmrWrJmio6O1YMEC5/YSJUpo0aJFKlGihBISEvTwww+rW7duGjNmjHNM5cqV9fnnn2vp0qVq0KCBXn/9df2///f/lJiYaOn+AgAAXCvqJwAAUFw4jDGmsJOwu7S0NIWFhen06dMuh6Fzkk4AAIq/y9UBuDpqKAAAvJO79ZMtTnQOAAAAAAAA70JTCgAAAAAAAJajKQUAAAAAAADL0ZQCAAAAAACA5WhKAQAAAAAAwHI0pQAAAAAAAGA5mlIAAAAAAACwHE0pAAAAAAAAWI6mFAAAAAAAACxHUwoAAAAAAACWoykFAAAAAAAAy9GUAgAAAAAAgOVoSgEAAAAAAMByNKUAAAAAAABgOZpSAAAAAAAAsBxNKQAAAAAAAFiOphQAAAAAAAAsR1MKAAAAAAAAlvMt7AQAACjOxv1wzK1xwxqFF3AmAAAAgL1wpBQAAAAAAAAsR1MKAAAAAAAAlqMpBQAAAAAAAMvRlAIAAAAAAIDlONF5McbJdQEAAAAAgF1xpBQAAAAAAAAsR1MKAAAAAAAAlqMpBQAAAAAAAMvRlAIAAAAAAIDlaEoBAAAAAADAcjSlAAAAAAAAYDmaUgAAAAAAALAcTSkAAAAAAABYjqYUAAAAAAAALEdTCgAAAAAAAJajKQUAAAAAAADL0ZQCAAAAAACA5WhKAQAAAAAAwHI0pQAAAAAAAGA5mlIAAAAAAACwHE0pAAAAAAAAWI6mFAAAAAAAACxHUwoAAAAAAACWoykFAAAAAAAAy9GUAgAAAAAAgOVoSgEAAAAAAMByNKUAAAAAAABgOZpSAAAAAAAAsBxNKQAAAAAAAFiOphQAAAAAAAAsV6hNqVWrVqljx46KjY2Vw+HQwoULXbY7HI5cl9dee805plKlSjm2jxs3ziXO1q1b1bRpUwUGBiouLk7jx4+3YvcAAAAKBDUUAAAoDgq1KXXu3Dk1aNBAkydPznX7kSNHXJZp06bJ4XCoc+fOLuPGjBnjMm7gwIHObWlpaWrdurXi4+O1adMmvfbaaxo1apSmTp1aoPsGAABQUKihAABAceBbmA/etm1btW3b9rLbo6OjXW5/8sknatmypapUqeKyvlSpUjnGZps1a5YyMjI0bdo0+fv7q06dOkpOTtaECRPUp0+fa98JAAAAi1FDAQCA4qDInFMqNTVVn3/+uXr16pVj27hx41SuXDk1atRIr732mi5evOjctm7dOjVr1kz+/v7OdYmJidq9e7dOnjyZ62Olp6crLS3NZQEAACiKqKEAAIBdFeqRUnkxc+ZMlSpVSvfee6/L+ieffFLXX3+9ypYtq7Vr12r48OE6cuSIJkyYIElKSUlR5cqVXe4TFRXl3FamTJkcj5WUlKTRo0cX0J4AAABYhxoKAADYVZFpSk2bNk0PPfSQAgMDXdYPHjzY+e/69evL399fffv2VVJSkgICAvL1WMOHD3eJm5aWpri4uPwlDgAAUIiooQAAgF0ViabUt99+q927d2vu3LlXHdukSRNdvHhRBw4cUI0aNRQdHa3U1FSXMdm3L3cOhYCAgHwXYwAAAHZBDQUAAOysSJxT6t///rcaN26sBg0aXHVscnKyfHx8FBkZKUlKSEjQqlWrdOHCBeeYpUuXqkaNGrkedg4AAFBcUEMBAAA7K9Sm1NmzZ5WcnKzk5GRJ0v79+5WcnKyDBw86x6SlpWn+/Pl67LHHctx/3bp1mjhxorZs2aKff/5Zs2bN0qBBg/Twww87i6UHH3xQ/v7+6tWrl3bs2KG5c+dq0qRJLoeWAwAAFCXUUAAAoDgo1J/vbdy4US1btnTezi5yunfvrhkzZkiS5syZI2OMunbtmuP+AQEBmjNnjkaNGqX09HRVrlxZgwYNcimWwsLCtGTJEvXv31+NGzdWeHi4RowYwaWMAQBAkUUNBQAAigOHMcYUdhJ2l5aWprCwMJ0+fVqhoaHO9eN+OObW/Yc1Ci+o1K7I7vkBgDfg/+Ki73J1AK6uqNZQAADg2rhbPxWJc0oBAAAAAACgeKEpBQAAAAAAAMvRlAIAAAAAAIDlaEoBAAAAAADAcjSlAAAAAAAAYDmaUgAAAAAAALAcTSkAAAAAAABYzrewEwAAwE7G/XDMrXHDGoUXcCYAAABA8caRUgAAAAAAALAcTSkAAAAAAABYjqYUAAAAAAAALEdTCgAAAAAAAJajKQUAAAAAAADL0ZQCAAAAAACA5WhKAQAAAAAAwHI0pQAAAAAAAGA5mlIAAAAAAACwHE0pAAAAAAAAWI6mFAAAAAAAACxHUwoAAAAAAACWoykFAAAAAAAAy9GUAgAAAAAAgOVoSgEAAAAAAMByNKUAAAAAAABgOZpSAAAAAAAAsBxNKQAAAAAAAFiOphQAAAAAAAAsR1MKAAAAAAAAlqMpBQAAAAAAAMv5FnYCAACgcIz74Zhb44Y1Ci/gTAAAAOCNOFIKAAAAAAAAlqMpBQAAAAAAAMvRlAIAAAAAAIDlOKcUAKDIc+fcSJwXCQAAALAXjpQCAAAAAACA5WhKAQAAAAAAwHL8fA8AgCLEnZ8qSvxcEQAAAPbHkVIAAAAAAACwHE0pAAAAAAAAWI6mFAAAAAAAACxHUwoAAAAAAACWoykFAAAAAAAAy9GUAgAAAAAAgOV8CzsBALDKuB+OuTVuWKPwAs4EAAAAAMCRUgAAAAAAALAcTSkAAAAAAABYjqYUAAAAAAAALEdTCgAAAAAAAJYr1KbUqlWr1LFjR8XGxsrhcGjhwoUu23v06CGHw+GytGnTxmXMiRMn9NBDDyk0NFSlS5dWr169dPbsWZcxW7duVdOmTRUYGKi4uDiNHz++oHcNAACgwFBDAQCA4qBQm1Lnzp1TgwYNNHny5MuOadOmjY4cOeJcPvroI5ftDz30kHbs2KGlS5dq0aJFWrVqlfr06ePcnpaWptatWys+Pl6bNm3Sa6+9plGjRmnq1KkFtl8AAAAFiRoKAAAUB76F+eBt27ZV27ZtrzgmICBA0dHRuW778ccftXjxYn3//fe64YYbJElvvfWW2rVrp3/+85+KjY3VrFmzlJGRoWnTpsnf31916tRRcnKyJkyY4FJ4AQAAFBXUUAAAoDiw/TmlvvnmG0VGRqpGjRrq16+fjh8/7ty2bt06lS5d2llMSVKrVq3k4+Oj7777zjmmWbNm8vf3d45JTEzU7t27dfLkyVwfMz09XWlpaS4LAABAUUINBQAA7M7WTak2bdro/fff1/Lly/Xqq69q5cqVatu2rTIzMyVJKSkpioyMdLmPr6+vypYtq5SUFOeYqKgolzHZt7PHXCopKUlhYWHOJS4uztO7BgAAUGCooQAAQFFQqD/fu5ouXbo4/12vXj3Vr19fVatW1TfffKM77rijwB53+PDhGjx4sPN2WloaRRUAACgyqKEAAEBRYOsjpS5VpUoVhYeHa+/evZKk6OhoHT161GXMxYsXdeLECec5FKKjo5WamuoyJvv25c6zEBAQoNDQUJcFAACgqKKGAgAAdlSkmlK//vqrjh8/rpiYGElSQkKCTp06pU2bNjnHrFixQllZWWrSpIlzzKpVq3ThwgXnmKVLl6pGjRoqU6aMtTsAAABQCKihAACAHRVqU+rs2bNKTk5WcnKyJGn//v1KTk7WwYMHdfbsWQ0ZMkTr16/XgQMHtHz5ct19992qVq2aEhMTJUm1atVSmzZt1Lt3b23YsEFr1qzRgAED1KVLF8XGxkqSHnzwQfn7+6tXr17asWOH5s6dq0mTJrkcWg4AAFCUUEMBAIDioFDPKbVx40a1bNnSeTu7yOnevbumTJmirVu3aubMmTp16pRiY2PVunVrjR07VgEBAc77zJo1SwMGDNAdd9whHx8fde7cWW+++aZze1hYmJYsWaL+/furcePGCg8P14gRI7iUcT6M++HYVccMaxRuQSYAAHg3aigAAFAcFGpTqkWLFjLGXHb7V199ddUYZcuW1ezZs684pn79+vr222/znB8AAIAdUUMBAIDioEidUwoAAAAAAADFA00pAAAAAAAAWI6mFAAAAAAAACxHUwoAAAAAAACWoykFAAAAAAAAyxXq1fcAAAAAAAAuNe6HY1cdM6xRuAWZoCBxpBQAAAAAAAAsx5FSAGzLnW9HJL4hAQB4Dp89AABYhyOlAAAAAAAAYDmaUgAAAAAAALAcTSkAAAAAAABYjqYUAAAAAAAALMeJzoEihhOwAgAAAACKA46UAgAAAAAAgOU4UgoAAHgER3ICAAAgLzhSCgAAAAAAAJajKQUAAAAAAADL0ZQCAAAAAACA5WhKAQAAAAAAwHI0pQAAAAAAAGA5mlIAAAAAAACwHE0pAAAAAAAAWI6mFAAAAAAAACxHUwoAAAAAAACWoykFAAAAAAAAy9GUAgAAAAAAgOV8CzsBeKdxPxxza9ywRuEFnAkAAAAAACgMHCkFAAAAAAAAy9GUAgAAAAAAgOX4+R4AAAAAALgmnKIF+cGRUgAAAAAAALAcTSkAAAAAAABYjqYUAAAAAAAALEdTCgAAAAAAAJajKQUAAAAAAADL0ZQCAAAAAACA5WhKAQAAAAAAwHK+hZ0A/mfcD8fcGjesUXgBZwIAAAAAAFCwOFIKAAAAAAAAluNIKRQLHGUGAAAAAEDRwpFSAAAAAAAAsBxNKQAAAAAAAFiOphQAAAAAAAAsR1MKAAAAAAAAlqMpBQAAAAAAAMtx9T0AAOAVuFIrAACAvXCkFAAAAAAAACxHUwoAAAAAAACWK9Sm1KpVq9SxY0fFxsbK4XBo4cKFzm0XLlzQ0KFDVa9ePQUHBys2NlbdunXT4cOHXWJUqlRJDofDZRk3bpzLmK1bt6pp06YKDAxUXFycxo8fb8XuAQAAFAhqKAAAUBwUalPq3LlzatCggSZPnpxj2x9//KHNmzfrpZde0ubNm7VgwQLt3r1bd911V46xY8aM0ZEjR5zLwIEDndvS0tLUunVrxcfHa9OmTXrttdc0atQoTZ06tUD3DQAAoKBQQwEAgOKgUE903rZtW7Vt2zbXbWFhYVq6dKnLurfffls33XSTDh48qIoVKzrXlypVStHR0bnGmTVrljIyMjRt2jT5+/urTp06Sk5O1oQJE9SnTx/P7QwAAIBFqKEAAEBxUKTOKXX69Gk5HA6VLl3aZf24ceNUrlw5NWrUSK+99pouXrzo3LZu3To1a9ZM/v7+znWJiYnavXu3Tp48mevjpKenKy0tzWUBAAAoqqihAACAHRXqkVJ5cf78eQ0dOlRdu3ZVaGioc/2TTz6p66+/XmXLltXatWs1fPhwHTlyRBMmTJAkpaSkqHLlyi6xoqKinNvKlCmT47GSkpI0evToAtwb2B2XDQcAFBfUUAAAwK6KRFPqwoULuv/++2WM0ZQpU1y2DR482Pnv+vXry9/fX3379lVSUpICAgLy9XjDhw93iZuWlqa4uLj8JQ8AAFBIqKEAAICd2b4plV1M/fLLL1qxYoXLN3y5adKkiS5evKgDBw6oRo0aio6OVmpqqsuY7NuXO4dCQEBAvosxAAAAO6CGAgBcCb8OgR3Y+pxS2cXUnj17tGzZMpUrV+6q90lOTpaPj48iIyMlSQkJCVq1apUuXLjgHLN06VLVqFEj18POAQAAijpqKAAAUBQU6pFSZ8+e1d69e5239+/fr+TkZJUtW1YxMTG67777tHnzZi1atEiZmZlKSUmRJJUtW1b+/v5at26dvvvuO7Vs2VKlSpXSunXrNGjQID388MPOYunBBx/U6NGj1atXLw0dOlTbt2/XpEmT9MYbbxTKPgMAAFwraigAAFAcFGpTauPGjWrZsqXzdvY5CLp3765Ro0bp008/lSQ1bNjQ5X5ff/21WrRooYCAAM2ZM0ejRo1Senq6KleurEGDBrmcyyAsLExLlixR//791bhxY4WHh2vEiBFcyhgAABRZ1FAAAKA4KNSmVIsWLWSMuez2K22TpOuvv17r16+/6uPUr19f3377bZ7zAwAAsCNqKAAAUBzY+pxSAAAAAAAAKJ5oSgEAAAAAAMByNKUAAAAAAABgOZpSAAAAAAAAsBxNKQAAAAAAAFiOphQAAAAAAAAs51vYCQAAAAAAPGfcD8fcGjesUXgBZwIAV0ZTCgAAAABwWTS5ABQUfr4HAAAAAAAAy3GkFAAAAAAAAHIo6CMlOVIKAAAAAAAAlqMpBQAAAAAAAMvRlAIAAAAAAIDlaEoBAAAAAADAcjSlAAAAAAAAYDmuvgcAAAAAAIqtgr6CHPKPI6UAAAAAAABgOZpSAAAAAAAAsBxNKQAAAAAAAFiOphQAAAAAAAAsx4nOAQAAAAAA3MSJ0z2HI6UAAAAAAABguXw1papUqaLjx4/nWH/q1ClVqVLlmpMCAAAobqifAAAAXOWrKXXgwAFlZmbmWJ+enq7ffvvtmpMCAAAobqifAAAAXOXpnFKffvqp899fffWVwsLCnLczMzO1fPlyVapUyWPJAQAAFHXUT96N844AAHB5eWpKderUSZLkcDjUvXt3l21+fn6qVKmSXn/9dY8lBwAAUNRRPwEAAOQuT02prKwsSVLlypX1/fffKzycb3QAAACuhPoJAAAgd3lqSmXbv3+/p/MAAHgRfs4Cb0T9BAAA4CpfTSlJWr58uZYvX66jR486vwHMNm3atGtODAAAoLihfgIAAPiffDWlRo8erTFjxuiGG25QTEyMHA6Hp/MCAAAoVqifAAAAXOWrKfXuu+9qxowZeuSRRzydDwAAQLFE/QQAAODKJz93ysjI0C233OLpXAAAAIot6icAAABX+TpS6rHHHtPs2bP10ksveTofAIAHcCJxwH6onwAAAFzlqyl1/vx5TZ06VcuWLVP9+vXl5+fnsn3ChAkeSQ4AAKC4oH4CAABwla+m1NatW9WwYUNJ0vbt2122cdJOAACAnKifAAAAXOWrKfX11197Og8AAIBijfoJAADAVb6aUgAAAABQlHC+RQCwn3w1pVq2bHnFw8xXrFiR74QAAACKI+onAAAAV/lqSmWfDyHbhQsXlJycrO3bt6t79+6eyAsAAKBYoX4CAABwla+m1BtvvJHr+lGjRuns2bPXlBAAAEBxRP0EAADgyseTwR5++GFNmzbNkyEBAACKNeonAADgrTzalFq3bp0CAwM9GRIAAKBYo34CAADeKl8/37v33ntdbhtjdOTIEW3cuFEvvfSSRxIDAAAoTqif4AlcQQ4AUJzkqykVFhbmctvHx0c1atTQmDFj1Lp1a48kBgAAUJxQPwEAALjKV1Nq+vTpns4DAGBjfDMPXDvqJwAAAFf5akpl27Rpk3788UdJUp06ddSoUSOPJAUAAFBcUT8BAAD8JV9NqaNHj6pLly765ptvVLp0aUnSqVOn1LJlS82ZM0cRERGezBEAAKDIo34CAABwla+r7w0cOFBnzpzRjh07dOLECZ04cULbt29XWlqannzySU/nCAAAUORRPwEAALjKV1Nq8eLFeuedd1SrVi3nutq1a2vy5Mn68ssv3Y6zatUqdezYUbGxsXI4HFq4cKHLdmOMRowYoZiYGAUFBalVq1bas2ePy5gTJ07ooYceUmhoqEqXLq1evXrp7NmzLmO2bt2qpk2bKjAwUHFxcRo/fnzedxoACti4H45ddQFQdHmqfpKooQAAQPGQr6ZUVlaW/Pz8cqz38/NTVlaW23HOnTunBg0aaPLkybluHz9+vN588029++67+u677xQcHKzExESdP3/eOeahhx7Sjh07tHTpUi1atEirVq1Snz59nNvT0tLUunVrxcfHa9OmTXrttdc0atQoTZ06NQ97DAAAcG08VT9J1FAAAKB4yNc5pW6//XY99dRT+uijjxQbGytJ+u233zRo0CDdcccdbsdp27at2rZtm+s2Y4wmTpyoF198UXfffbck6f3331dUVJQWLlyoLl266Mcff9TixYv1/fff64YbbpAkvfXWW2rXrp3++c9/KjY2VrNmzVJGRoamTZsmf39/1alTR8nJyZowYYJL4QUAAFCQPFU/SdRQAACgeMjXkVJvv/220tLSVKlSJVWtWlVVq1ZV5cqVlZaWprfeessjie3fv18pKSlq1aqVc11YWJiaNGmidevWSZLWrVun0qVLO4spSWrVqpV8fHz03XffOcc0a9ZM/v7+zjGJiYnavXu3Tp48metjp6enKy0tzWUB8sudn2TxsywAKP6sqJ8kaigAAFB05OtIqbi4OG3evFnLli3Trl27JEm1atVyKX6uVUpKiiQpKirKZX1UVJRzW0pKiiIjI122+/r6qmzZsi5jKleunCNG9rYyZcrkeOykpCSNHj3aMzsCAAAga+oniRoKAAAUHXk6UmrFihWqXbu20tLS5HA4dOedd2rgwIEaOHCgbrzxRtWpU0fffvttQeVqmeHDh+v06dPO5dChQ4WdEgAAKKK8pX6SqKEAAEDe5KkpNXHiRPXu3VuhoaE5toWFhalv376aMGGCRxKLjo6WJKWmprqsT01NdW6Ljo7W0aNHXbZfvHhRJ06ccBmTW4y/P8alAgICFBoa6rIAAADkh5X1k0QNBQAAio48NaW2bNmiNm3aXHZ769attWnTpmtOSpIqV66s6OhoLV++3LkuLS1N3333nRISEiRJCQkJOnXqlMtjrlixQllZWWrSpIlzzKpVq3ThwgXnmKVLl6pGjRq5HnYOAADgSVbWTxI1FAAAKDry1JRKTU3N9VLG2Xx9ffX777+7He/s2bNKTk5WcnKypL9OzJmcnKyDBw/K4XDo6aef1ssvv6xPP/1U27ZtU7du3RQbG6tOnTpJ+us8DG3atFHv3r21YcMGrVmzRgMGDFCXLl2cV7V58MEH5e/vr169emnHjh2aO3euJk2apMGDB+dl1wEAAPLF0/WTRA0FAACKhzyd6Lx8+fLavn27qlWrluv2rVu3KiYmxu14GzduVMuWLZ23s4uc7t27a8aMGXruued07tw59enTR6dOndJtt92mxYsXKzAw0HmfWbNmacCAAbrjjjvk4+Ojzp07680333RuDwsL05IlS9S/f381btxY4eHhGjFiBJcyBgAAlvB0/SRRQ8Fz3LkC8LBG4RZkAgDwRnlqSrVr104vvfSS2rRp41LUSNKff/6pkSNHqkOHDm7Ha9GihYwxl93ucDg0ZswYjRkz5rJjypYtq9mzZ1/xcerXr19sTiAKAACKFk/XTxI1FAAAKB7y1JR68cUXtWDBAlWvXl0DBgxQjRo1JEm7du3S5MmTlZmZqRdeeKFAEgUAACiKqJ8AAMCVuHPUqlQ8j1zNU1MqKipKa9euVb9+/TR8+HDnN3QOh0OJiYmaPHmyoqKiCiRRAACAooj6CQAAIHd5akpJUnx8vL744gudPHlSe/fulTFG1113HVdhAQAAuAzqJwAAgJzy3JTKVqZMGd14442ezAUAAKBYo35CcebNPz8BAOSPT2EnAAAAAAAAAO9DUwoAAAAAAACWoykFAAAAAAAAy9GUAgAAAAAAgOXyfaJzAMUDJyUFAAAAABQGjpQCAAAAAACA5ThSCgDyiaPMAAAAACD/aEoBAACgSHPnSwK+IAAAwH74+R4AAAAAAAAsR1MKAAAAAAAAlqMpBQAAAAAAAMtxTikAHsXJvwEAAAAA7uBIKQAAAAAAAFiOphQAAAAAAAAsR1MKAAAAAAAAlqMpBQAAAAAAAMvRlAIAAAAAAIDlaEoBAAAAAADAcjSlAAAAAAAAYDnfwk4AAAAgN+N+OObWuGGNwgs4EwAAABQEmlIAAAAAANgcX9agOOLnewAAAAAAALAcR0oBAAAAACCORgKsxpFSAAAAAAAAsBxNKQAAAAAAAFiOphQAAAAAAAAsR1MKAAAAAAAAlqMpBQAAAAAAAMvRlAIAAAAAAIDlaEoBAAAAAADAcjSlAAAAAAAAYDmaUgAAAAAAALAcTSkAAAAAAABYjqYUAAAAAAAALEdTCgAAAAAAAJajKQUAAAAAAADL0ZQCAAAAAACA5WhKAQAAAAAAwHI0pQAAAAAAAGA538JOAAAAAACA/Bj3wzG3xg1rFF7AmQDID5pSAAAAAAAUAHeaZjTM4M34+R4AAAAAAAAsR1MKAAAAAAAAlqMpBQAAAAAAAMvZvilVqVIlORyOHEv//v0lSS1atMix7fHHH3eJcfDgQbVv314lS5ZUZGSkhgwZoosXLxbG7gAAABQ46icAAFAU2P5E599//70yMzOdt7dv364777xT//jHP5zrevfurTFjxjhvlyxZ0vnvzMxMtW/fXtHR0Vq7dq2OHDmibt26yc/PT6+88oo1OwEAAGAh6icAAFAU2L4pFRER4XJ73Lhxqlq1qpo3b+5cV7JkSUVHR+d6/yVLlmjnzp1atmyZoqKi1LBhQ40dO1ZDhw7VqFGj5O/vX6D5AwAAWI36CcWBO1ctk7hyGQAUZbb/+d7fZWRk6MMPP1TPnj3lcDic62fNmqXw8HDVrVtXw4cP1x9//OHctm7dOtWrV09RUVHOdYmJiUpLS9OOHTtyfZz09HSlpaW5LAAAAEWRVfWTRA0FAADyxvZHSv3dwoULderUKfXo0cO57sEHH1R8fLxiY2O1detWDR06VLt379aCBQskSSkpKS4FlSTn7ZSUlFwfJykpSaNHjy6YnQAAALCQVfWTRA0FAADypkg1pf7973+rbdu2io2Nda7r06eP89/16tVTTEyM7rjjDu3bt09Vq1bN1+MMHz5cgwcPdt5OS0tTXFxc/hMHAAAoJFbVTxI1FAAAyJsi05T65ZdftGzZMuc3eJfTpEkTSdLevXtVtWpVRUdHa8OGDS5jUlNTJemy51EICAhQQECAB7IGAAAoPFbWTxI1FAAAyJsic06p6dOnKzIyUu3bt7/iuOTkZElSTEyMJCkhIUHbtm3T0aNHnWOWLl2q0NBQ1a5du8DyBQAAKGzUTwAAwM6KxJFSWVlZmj59urp37y5f3/+lvG/fPs2ePVvt2rVTuXLltHXrVg0aNEjNmjVT/fr1JUmtW7dW7dq19cgjj2j8+PFKSUnRiy++qP79+/NNHgAAKLaonwAAgN0ViabUsmXLdPDgQfXs2dNlvb+/v5YtW6aJEyfq3LlziouLU+fOnfXiiy86x5QoUUKLFi1Sv379lJCQoODgYHXv3l1jxoyxejcAAAAsQ/0EAADsrkg0pVq3bi1jTI71cXFxWrly5VXvHx8fry+++KIgUgMAALAl6icAAGB3ReacUgAAAAAAACg+aEoBAAAAAADAcjSlAAAAAAAAYLkicU4pAAAAAEDRN+6HY26NG9YovIAzAWAHNKUAAAAAIA9orACAZ/DzPQAAAAAAAFiOphQAAAAAAAAsR1MKAAAAAAAAlqMpBQAAAAAAAMvRlAIAAAAAAIDlaEoBAAAAAADAcjSlAAAAAAAAYDmaUgAAAAAAALAcTSkAAAAAAABYjqYUAAAAAAAALOdb2AkAAAAAgDcb98Mxt8YNaxRewJkAgLU4UgoAAAAAAACWoykFAAAAAAAAy9GUAgAAAAAAgOVoSgEAAAAAAMByNKUAAAAAAABgOZpSAAAAAAAAsJxvYScAAAAAAACAazfuh2NujRvWKLyAM3EPR0oBAAAAAADAcjSlAAAAAAAAYDmaUgAAAAAAALAcTSkAAAAAAABYjqYUAAAAAAAALEdTCgAAAAAAAJajKQUAAAAAAADL0ZQCAAAAAACA5WhKAQAAAAAAwHI0pQAAAAAAAGA5mlIAAAAAAACwHE0pAAAAAAAAWI6mFAAAAAAAACxHUwoAAAAAAACWoykFAAAAAAAAy9GUAgAAAAAAgOVoSgEAAAAAAMByNKUAAAAAAABgOZpSAAAAAAAAsBxNKQAAAAAAAFiOphQAAAAAAAAsR1MKAAAAAAAAlqMpBQAAAAAAAMvRlAIAAAAAAIDlaEoBAAAAAADAcrZuSo0aNUoOh8NlqVmzpnP7+fPn1b9/f5UrV04hISHq3LmzUlNTXWIcPHhQ7du3V8mSJRUZGakhQ4bo4sWLVu8KAACAZaihAABAUeBb2AlcTZ06dbRs2TLnbV/f/6U8aNAgff7555o/f77CwsI0YMAA3XvvvVqzZo0kKTMzU+3bt1d0dLTWrl2rI0eOqFu3bvLz89Mrr7xi+b4AAABYhRoKAADYne2bUr6+voqOjs6x/vTp0/r3v/+t2bNn6/bbb5ckTZ8+XbVq1dL69et18803a8mSJdq5c6eWLVumqKgoNWzYUGPHjtXQoUM1atQo+fv7W707AAAAlqCGAgAAdmfrn+9J0p49exQbG6sqVarooYce0sGDByVJmzZt0oULF9SqVSvn2Jo1a6pixYpat26dJGndunWqV6+eoqKinGMSExOVlpamHTt2XPYx09PTlZaW5rIAAAAUJdRQAADA7mzdlGrSpIlmzJihxYsXa8qUKdq/f7+aNm2qM2fOKCUlRf7+/ipdurTLfaKiopSSkiJJSklJcSmmsrdnb7ucpKQkhYWFOZe4uDjP7hgAAEABooYCAABFga1/vte2bVvnv+vXr68mTZooPj5e8+bNU1BQUIE97vDhwzV48GDn7bS0NIoqAABQZFBDAQCAosDWR0pdqnTp0qpevbr27t2r6OhoZWRk6NSpUy5jUlNTnedPiI6OznElmezbuZ1jIVtAQIBCQ0NdFgAAgKKKGgoAANhRkWpKnT17Vvv27VNMTIwaN24sPz8/LV++3Ll99+7dOnjwoBISEiRJCQkJ2rZtm44ePeocs3TpUoWGhqp27dqW5w8AAFAYqKEAAIAd2frne88++6w6duyo+Ph4HT58WCNHjlSJEiXUtWtXhYWFqVevXho8eLDKli2r0NBQDRw4UAkJCbr55pslSa1bt1bt2rX1yCOPaPz48UpJSdGLL76o/v37KyAgoJD3DgAAoGBQQwEAgKLA1k2pX3/9VV27dtXx48cVERGh2267TevXr1dERIQk6Y033pCPj486d+6s9PR0JSYm6p133nHev0SJElq0aJH69eunhIQEBQcHq3v37hozZkxh7RIAAECBo4YCAABFga2bUnPmzLni9sDAQE2ePFmTJ0++7Jj4+Hh98cUXnk4NAADAtqihAABAUVCkzikFAAAAAACA4oGmFAAAAAAAACxHUwoAAAAAAACWoykFAAAAAAAAy9GUAgAAAAAAgOVoSgEAAAAAAMByNKUAAAAAAABgOZpSAAAAAAAAsBxNKQAAAAAAAFiOphQAAAAAAAAsR1MKAAAAAAAAlqMpBQAAAAAAAMvRlAIAAAAAAIDlaEoBAAAAAADAcjSlAAAAAAAAYDmaUgAAAAAAALAcTSkAAAAAAABYjqYUAAAAAAAALEdTCgAAAAAAAJajKQUAAAAAAADL0ZQCAAAAAACA5WhKAQAAAAAAwHI0pQAAAAAAAGA5mlIAAAAAAACwHE0pAAAAAAAAWI6mFAAAAAAAACxHUwoAAAAAAACWoykFAAAAAAAAy9GUAgAAAAAAgOVoSgEAAAAAAMByNKUAAAAAAABgOZpSAAAAAAAAsBxNKQAAAAAAAFiOphQAAAAAAAAsR1MKAAAAAAAAlqMpBQAAAAAAAMvRlAIAAAAAAIDlaEoBAAAAAADAcjSlAAAAAAAAYDmaUgAAAAAAALAcTSkAAAAAAABYjqYUAAAAAAAALEdTCgAAAAAAAJajKQUAAAAAAADL0ZQCAAAAAACA5WhKAQAAAAAAwHI0pQAAAAAAAGA5mlIAAAAAAACwnK2bUklJSbrxxhtVqlQpRUZGqlOnTtq9e7fLmBYtWsjhcLgsjz/+uMuYgwcPqn379ipZsqQiIyM1ZMgQXbx40cpdAQAAsAw1FAAAKAp8CzuBK1m5cqX69++vG2+8URcvXtTzzz+v1q1ba+fOnQoODnaO6927t8aMGeO8XbJkSee/MzMz1b59e0VHR2vt2rU6cuSIunXrJj8/P73yyiuW7g8AAIAVqKEAAEBRYOum1OLFi11uz5gxQ5GRkdq0aZOaNWvmXF+yZElFR0fnGmPJkiXauXOnli1bpqioKDVs2FBjx47V0KFDNWrUKPn7+xfoPgAAAFiNGgoAABQFtv753qVOnz4tSSpbtqzL+lmzZik8PFx169bV8OHD9ccffzi3rVu3TvXq1VNUVJRzXWJiotLS0rRjxw5rEgcAAChE1FAAAMCObH2k1N9lZWXp6aef1q233qq6des61z/44IOKj49XbGystm7dqqFDh2r37t1asGCBJCklJcWlmJLkvJ2SkpLrY6Wnpys9Pd15Oy0tzdO7AwAAYAlqKAAAYFdFpinVv39/bd++XatXr3ZZ36dPH+e/69Wrp5iYGN1xxx3at2+fqlatmq/HSkpK0ujRo68pXwAAADughgIAAHZVJH6+N2DAAC1atEhff/21KlSocMWxTZo0kSTt3btXkhQdHa3U1FSXMdm3L3cOheHDh+v06dPO5dChQ9e6CwAAAJajhgIAAHZm66aUMUYDBgzQf//7X61YsUKVK1e+6n2Sk5MlSTExMZKkhIQEbdu2TUePHnWOWbp0qUJDQ1W7du1cYwQEBCg0NNRlAQAAKCqooQAAQFFg65/v9e/fX7Nnz9Ynn3yiUqVKOc9fEBYWpqCgIO3bt0+zZ89Wu3btVK5cOW3dulWDBg1Ss2bNVL9+fUlS69atVbt2bT3yyCMaP368UlJS9OKLL6p///4KCAgozN0DAAAoENRQAACgKLD1kVJTpkzR6dOn1aJFC8XExDiXuXPnSpL8/f21bNkytW7dWjVr1tQzzzyjzp0767PPPnPGKFGihBYtWqQSJUooISFBDz/8sLp166YxY8YU1m4BAAAUKGooAABQFNj6SCljzBW3x8XFaeXKlVeNEx8fry+++MJTaQEAANgaNRQAACgKbH2kFAAAAAAAAIonmlIAAAAAAACwHE0pAAAAAAAAWI6mFAAAAAAAACxHUwoAAAAAAACWoykFAAAAAAAAy9GUAgAAAAAAgOVoSgEAAAAAAMByNKUAAAAAAABgOZpSAAAAAAAAsBxNKQAAAAAAAFiOphQAAAAAAAAsR1MKAAAAAAAAlqMpBQAAAAAAAMvRlAIAAAAAAIDlaEoBAAAAAADAcjSlAAAAAAAAYDmaUgAAAAAAALAcTSkAAAAAAABYjqYUAAAAAAAALEdTCgAAAAAAAJajKQUAAAAAAADL0ZQCAAAAAACA5WhKAQAAAAAAwHI0pQAAAAAAAGA5mlIAAAAAAACwHE0pAAAAAAAAWI6mFAAAAAAAACxHUwoAAAAAAACWoykFAAAAAAAAy9GUAgAAAAAAgOVoSgEAAAAAAMByNKUAAAAAAABgOZpSAAAAAAAAsBxNKQAAAAAAAFiOphQAAAAAAAAsR1MKAAAAAAAAlqMpBQAAAAAAAMvRlAIAAAAAAIDlaEoBAAAAAADAcjSlAAAAAAAAYDmaUgAAAAAAALAcTSkAAAAAAABYjqYUAAAAAAAALEdTCgAAAAAAAJajKQUAAAAAAADL0ZQCAAAAAACA5WhKAQAAAAAAwHJe1ZSaPHmyKlWqpMDAQDVp0kQbNmwo7JQAAABsjfoJAAAUFK9pSs2dO1eDBw/WyJEjtXnzZjVo0ECJiYk6evRoYacGAABgS9RPAACgIHlNU2rChAnq3bu3Hn30UdWuXVvvvvuuSpYsqWnTphV2agAAALZE/QQAAAqSVzSlMjIytGnTJrVq1cq5zsfHR61atdK6desKMTMAAAB7on4CAAAFzbewE7DCsWPHlJmZqaioKJf1UVFR2rVrV47x6enpSk9Pd94+ffq0JCktLc1l3PmzZ9x6/LQ0f7fGFYd4ds6tsOLZOTe7x7NzboUVz8652T2enXMrrHh2zs1O8bI//40xbt2/uMhr/STZu4Yqau87O8Wzc26FFc/Oudk9np1zK6x4ds7N7vHsnFthxbNLbm7XT8YL/Pbbb0aSWbt2rcv6IUOGmJtuuinH+JEjRxpJLCwsLCwsLCzO5dChQ1aVLraQ1/rJGGooFhYWFhYWFtflavWTVxwpFR4erhIlSig1NdVlfWpqqqKjo3OMHz58uAYPHuy8nZWVpRMnTqhcuXJyOByXfZy0tDTFxcXp0KFDCg0Nvea87RzPzrnZPZ6dc7N7PDvnZvd4ds7N0/HsnJvd49k5t8KMZ4zRmTNnFBsbe82PWZTktX6SimcNZefcPB3PzrnZPZ6dc7N7PDvnZvd4ds7N0/HsnJvd49m9fvKKppS/v78aN26s5cuXq1OnTpL+KpKWL1+uAQMG5BgfEBCggIAAl3WlS5d2+/FCQ0M98mIXhXh2zs3u8eycm93j2Tk3u8ezc26ejmfn3Owez865FVa8sLAwjz1eUZHX+kkq3jWUnXPzdDw752b3eHbOze7x7Jyb3ePZOTdPx7NzbnaPZ9f6ySuaUpI0ePBgde/eXTfccINuuukmTZw4UefOndOjjz5a2KkBAADYEvUTAAAoSF7TlHrggQf0+++/a8SIEUpJSVHDhg21ePHiHCfvBAAAwF+onwAAQEHymqaUJA0YMOCyh5t7QkBAgEaOHJnjsPXiGM/Oudk9np1zs3s8O+dm93h2zs3T8eycm93j2Tm3ohCvuCro+kmy92tr59w8Hc/Oudk9np1zs3s8O+dm93h2zs3T8eycm93j2Tk3SXIY42XXNwYAAAAAAECh8ynsBAAAAAAAAOB9aEoBAAAAAADAcjSlAAAAAAAAYDmaUgAAAAAAALAcTSkvs3//fl28eNEjsTwV5+847z6s5sk5ITEvUPQxJ4CcmBdATvxdAbhiTuQPTalrsHPnTj3xxBNq1KiRYmJiFBMTo0aNGumJJ57Qzp078xzvyJEj+vDDD/XFF18oIyPDZdu5c+c0ZsyYa865Ro0a2rNnT57us3jxYm3btk2SlJWVpbFjx6p8+fIKCAhQhQoVNG7cuDy9wdPT0/Xss8+qWbNmevXVVyVJL7/8skJCQlSqVCk9+OCDSktLy1OOuT1Genr6NcUoaN98843+/PNPj8RKT0/Xvn37PLbPqampSklJydd9PTkv7DonpKI5L+zO7n/05feDnDnBnEBOzAt7zgvqp2uX3xqKvyvsOSeKArvXT1L+aijmhBfNCYN8+eKLL4y/v7+5+eabzciRI80777xj3nnnHTNy5Ehzyy23mICAALN48WK3423YsMGULl3ahIaGmqCgIFOtWjWzfft25/aUlBTj4+Pjdrx77rkn18XHx8e0atXKedsdNWrUMKtWrTLGGPPKK6+YcuXKmQkTJpgvv/zSTJw40URFRZlx48a5ndugQYNMbGyseeaZZ0ytWrXME088YSpWrGg+/PBDM3v2bFOtWjUzcOBAt+NlW7JkiWnbtq0pXbq08fHxMT4+PqZ06dKmbdu2ZunSpXmKlZycbMaOHWsmT55sfv/9d5dtp0+fNo8++mie87uUn5+f2blzZ57vN336dLN27VpjjDF//vmn6dmzpylRooTx8fExvr6+pm/fvub8+fNuxTp+/Ljp3LmziYuLM48//ri5ePGi6dWrl3E4HMbHx8ckJCSYw4cPu52bJ+eFneeEMfafFzt27DD9+vUzDRs2NNHR0SY6Oto0bNjQ9OvXz+zYscPtONkOHz5sPvjgA/P555+b9PR0l21nz541o0ePznPMS+V3Tnz55Zdm69atxhhjMjMzzZgxY0xsbKzx8fEx5cuXN0lJSSYrK8utWOfPnzfPPPOMadq0qfP1Gzt2rAkODjbBwcGma9eu5vTp027nxpywz5wwxvPzAvnDvLDXvPBk/WRMwddQdqifjPFsDcXfFfaaE0WthrJD/WSMZ2so5kTxnhOXoimVT/Xr1zcvvfTSZbePHDnS1KtXz+14rVq1Mo8++qjJzMw0aWlppl+/fqZcuXJm8+bNxpi8TxSHw2GaN29uevTo4bL4+PiYTp06OW+7IyAgwPzyyy/GGGPq1q1r5s2b57J90aJFplq1am7nFhcX5yxy9u3bZ3x8fMzChQud25csWWLi4+PdjmeMMTNmzDC+vr6mS5cuZvr06eaLL74wX3zxhZk+fbrp2rWr8fPzM++//75bsb766ivj7+9v6tSpYypWrGjKlStnVqxY4dye19eiUaNGuS4Oh8PUqlXLedtdlStXNuvXrzfGGPPss8+aSpUqmQULFpgff/zRLFy40FSvXt0MGTLErVg9e/Y0devWNW+99ZZp3ry5ufvuu039+vXN6tWrzdq1a82NN95ounXr5nZunpwXdp4Txth7XnjTB7kxnv0w9/QHOXPifwr7s8LT8wL5x7z4n8KeF56sn4zxbA1l5/rJGM/WUPxd8T+FPSfsXEPZuX4yxrM1FHPif4rbnMgNTal8CgwMNLt27brs9l27dpnAwEC345UpU8bs3r3bZV1SUpIpU6aM2bBhQ54nykcffWQqVKhgpk2b5rLe19c3z93MmJgYs27dOmOMMVFRUc7Jm+2nn34yQUFBbscLCgpyTjxj/uru//0/5/3795uSJUvmKcfrrrvOvP3225fdPnnyZLcnc0JCgnn++eeNMcZkZWWZV1991YSEhJgvv/zSGJP3/7R8fX1NmzZtzKhRo5zLyJEjjY+Pj3niiSec69z19/+4qlev7swr28qVK03FihXdihUTE2PWrFljjPlrvxwOh1myZIlz++rVq0358uXdzs2T88LOc8IYe88Lb/ogN8azH+ae/iBnTvxPYX9WeHpeIP+YF/9T2PPCk/WTMZ6toexcPxnj2RqKvyv+p7DnhJ1rKDvXT8Z4toZiTvxPcZsTuaEplU81a9Y0r7/++mW3v/7666ZGjRpuxytTpozZsmVLjvWvvfaaKV26tFmwYEGeJooxf73hbr31VnPvvfeaEydOGGPyN1GeeOIJ06FDB3Px4kXTp08f89hjj7kcyjlw4ECTkJDgdrwaNWqYOXPmGGP++vbA39/fZULPmTPHXHfddXnKMSAgwGP/cYWGhpq9e/e6rJs1a5YJDg42n332WZ7/01q9erWpWrWqGTFihMnMzHSuz2+BGx8f7/zWsXz58ub777932b5z504THBzsVqySJUuaAwcOOG/7+fmZbdu2OW///PPPbscyxrPzws5zwhh7zwtv+iA3xrMf5p7+IGdO2GNOGOP5eYH8Y17YZ154sn4yxrM1lJ3rJ2M8W0Pxd4V95oSdayg710/GeLaGYk4U3zmRG5pS+TRv3jzj6+trOnbsaCZNmmTmzJlj5syZYyZNmmTuuusu4+/vbz7++GO34zVt2tRMmTIl122vvvqqCQgIyPNEMeav3wePGDHCxMXFmcWLFxs/P788T5RTp06ZG264wVSrVs088sgjJjAw0MTHx5s777zTVK5c2YSFhTkPh3bHG2+8YQIDA02rVq1MmTJlzJtvvmmio6PNc889Z4YNG2bCwsLMmDFj8pTj9ddff8VDrp977jlz/fXXuxUrIiLCbNy4Mcf6jz76yJQsWdJMmTIlz6/FqVOnTJcuXUyTJk2cxVp+P0Cef/55k5CQYE6ePGmGDRtmOnbsaM6cOWOMMebcuXPm/vvvN61bt3YrVoMGDZzfkH7xxRemVKlSLh8AU6ZMMXXr1nU7N0/OCzvPCWPsPS+86YPcGM9+mHv6g5w5YY85YYzn5wXyj3lhn3nhyfrJGM/XUHatn4zxbA3F3xX2mRN2r6HsWj8Z49kaijlRfOdEbmhKXYM1a9aYBx54wFSsWNH4+/sbf39/U7FiRfPAAw84T6Torn/961/m4Ycfvuz2cePGmUqVKuU712+//dZUrlzZ+Pj45Os/rYyMDDNlyhTTrl07U7NmTVO9enXTvHlz8/zzz5tDhw7lOd6sWbPMgAEDzOzZs40xxnz99demadOmpnHjxmbUqFEu34i54+uvvzbBwcGmXr16ZtCgQWbcuHFm3LhxZtCgQaZ+/fomJCTErFy50q1Yd955p3nttddy3TZ79mzj5+eXr/+0jDFm2rRpJjo62rz33nv5LnDT09PNXXfdZcqUKWPuvPNOExgYaEqWLGmuu+46ExwcbCpWrJjjG5nL+fDDD02JEiVMtWrVTEBAgJk/f76JjY01999/v+nSpYvx9/e/4mH9ufHUvLD7nDDGvvPCmz7IjfHsh3lBNM2ZE4U/J4zx/LzAtWFe2GNeeLJ+Mqbgaii71U/GeL6G4u8Ke8yJolBD2bF+MsbzNRRzonjOidzQlPIiZ86cMcnJyTmu+lBc7N+/3zz33HOmWbNmpnr16qZ69eqmWbNmZujQoWb//v1ux1mwYIF5+umnL7t91qxZpkWLFvnO86effjI33nijcTgc13S1gi+//NI88cQTpk2bNqZ169ame/fuZurUqebs2bN5irN69Wrzz3/+03lehB07dphHHnnEdO7c2cyYMSPf+RUFxXlOeNMHuTGe/TD3dNO8KCnOc8IYz84LeI/iPi88VT8ZU7A1lN3qJ2OooYrrvCgqNZTd6idjqKGYE/njMMYYAbBUVlaWzpw5o9DQUDkcjsJOByh0Z8+e1b59+1SrVi35+/sXdjoAABuifgJcUT+hOPAp7ASKq+eff149e/b0inh2zs2ufHx8FBYW5nUFlTe97+wez25CQkLUoEEDryuomBP2iQf7YF7YJ57dUD8V/3h2zs2OqJ+Kfzw75+YpNKUKyK+//qoDBw54RTw755ate/fuuv32220Xy+7xPJ3bb7/95rHX1pOxvC2e3T/c7BzP07kxJ+wTz45FmrfyphrF7vG8qUaxczy7///pTZ9l3lSj2Dme3d8nzIm88fVQLrjE+++/7zXx7JxbttjYWPn4eKYH68lYdo/n6dxmzpxpy1jeFu/XX3/Vr7/+SrxCjGWMkcPh8Mjr6slY3hgvm6ffd8g/b6pR7B7Pm2oUO8ezc03h6Xh2zk3yjhrFzvHsXlN4U32XzROvK+eUugbHjh3TtGnTtG7dOqWkpEiSoqOjdcstt6hHjx6KiIgoNvHsnBsAFDX+/v7asmWLatWqZatY3hgPhcObahS7xwOAosLuNYU31XeeRFMqn77//nslJiaqZMmSatWqlaKioiRJqampWr58uf744w999dVXuuGGG4p8PDvn5q5Dhw5p5MiRmjZtmq1i2T1efmL9+eef2rRpk8qWLavatWu7bDt//rzmzZunbt26WR7L2+L9+OOPWr9+vRISElSzZk3t2rVLkyZNUnp6uh5++OE8/6TAm+J5MtbgwYNzXT9p0iQ9/PDDKleunCRpwoQJlsbyxniXOnfunObNm6e9e/cqJiZGXbt2dcZEwfKmGsXu8a6muNUodo5n55rC0/HsnJvkPTWKnePZvabwpvruUgVSP13z9fu8VJMmTUyfPn1MVlZWjm1ZWVmmT58+5uabby4W8eycm7uSk5ONj4+P7WLZPV5eY+3evdvEx8cbh8NhfHx8TLNmzczhw4ed21NSUtyO58lY3hbvyy+/NP7+/qZs2bImMDDQfPnllyYiIsK0atXK3H777aZEiRJm+fLlbufmTfE8nZvD4TANGzY0LVq0cFkcDoe58cYbTYsWLUzLli0tj+WN8WrVqmWOHz9ujDHm4MGDplKlSiYsLMzceOONpmzZsiYyMtL8/PPPbsdD/nlTjWL3eFdTnGoUO8ezc03h6Xh2zs0Y76pR7BzP7jWFN9V3VtRPNKXyKTAw0Pz444+X3f7jjz+awMDAYhHPzrll++STT664vPHGG25/IHkylt3jeTq3Tp06mfbt25vff//d7Nmzx7Rv395UrlzZ/PLLL8aYvBUGnozlbfESEhLMCy+8YIwx5qOPPjJlypQxzz//vHP7sGHDzJ133ul2bt4Uz9O5JSUlmcqVK+cownx9fc2OHTvcjuPpWN4Yz+FwmNTUVGOMMQ899JC55ZZbzKlTp4wxxpw5c8a0atXKdO3aNc9xkXfeVKPYPZ431Sh2jmfnmsLT8eycmzHeVaPYOZ7dawpvqu+sqJ9oSuVTpUqVzMyZMy+7febMmSY+Pr5YxLNzbtmyvx1xOByXXdz9QPJkLLvH83RukZGRZuvWrc7bWVlZ5vHHHzcVK1Y0+/bty1Nh4MlY3hYvNDTU7NmzxxhjTGZmpvH19TWbN292bt+2bZuJiopyOzdviufp3IwxZsOGDaZ69ermmWeeMRkZGcaY/BcGnozlbfH+XlRVqVLFLFmyxGX7mjVrTFxcXL7yRN54U41i93jeVKPYOZ6dawpPx7NzbsZ4V41i93h2rik8Hc/OuVlRP9GUyqe3337bBAQEmCeffNJ88sknZv369Wb9+vXmk08+MU8++aQJCgoykydPLhbx7JxbttjYWLNw4cLLbv/hhx/c/kDyZCy7x/N0bqVKlTI7d+7Msb5///6mQoUKZtWqVW7H82Qsb4sXGhpq9u7d67wdEhJi9u3b57x94MCBPH2T7k3xPJ1btjNnzphu3bqZ+vXrm23bthk/P798FxqejOVN8RwOhzl69Kgx5q//+7Zt2+ayPb+vLfLOm2oUu8fzphrFzvHsXFN4Op6dczPGu2oUu8czxr41RUHEs2tuVtRPNKWuwZw5c0yTJk2Mr6+v8xsRX19f06RJEzN37txiFc/OuRljTMeOHc1LL7102e3JycnG4XBYHsvu8Tyd24033mjef//9XLf179/flC5d2u3CwJOxvC1e/fr1zZdffum8vW3bNnPhwgXn7VWrVpnKlSu7nZs3xfN0bpf66KOPTFRUlPHx8bmmQsPTsbwhnsPhMPXq1TONGjUyISEh5uOPP3bZvnLlSlO+fPlrzhPu8aYaxc7xvKlGsXM8O9cUno5n59yM8a4axe7x/s5uNUVBxrNbblbUTzSlPCAjI8McPnzYHD582Hl4XHGNZ9fcVq1a5fKf4KXOnj1rvvnmG8tj2T2ep3N75ZVXTNu2bS+7vV+/fm4XaJ6M5W3xpkyZYhYtWnTZ7cOHDze9evVyOzdviufp3HJz6NAhs3DhQnP27NlriuPpWMU93qhRo1yWxYsXu2x/9tlnTZcuXTySJ9znDTWKneN5U41i53h2rik8Hc/OuRnjXTWK3eNdyk41RUHHs1NuVtRPDmOMubbr9wEAAAAAAAB541PYCQAAAAAAAMD70JQCAAAAAACA5WhKAQAAAAAAwHI0pQAAAAAAAGA5mlIAvEKLFi309NNPuzX2m2++kcPh0KlTp67pMStVqqSJEydeUwwAAIDCRA0FoCDRlAIAAAAAAIDlaEoBAAAAAADAcjSlAHidDz74QDfccINKlSql6OhoPfjggzp69GiOcWvWrFH9+vUVGBiom2++Wdu3b3fZvnr1ajVt2lRBQUGKi4vTk08+qXPnzlm1GwAAAJaihgLgaTSlAHidCxcuaOzYsdqyZYsWLlyoAwcOqEePHjnGDRkyRK+//rq+//57RUREqGPHjrpw4YIkad++fWrTpo06d+6srVu3au7cuVq9erUGDBhg8d4AAABYgxoKgKf5FnYCAGC1nj17Ov9dpUoVvfnmm7rxxht19uxZhYSEOLeNHDlSd955pyRp5syZqlChgv773//q/vvvV1JSkh566CHniT+vu+46vfnmm2revLmmTJmiwMBAS/cJAACgoFFDAfA0jpQC4HU2bdqkjh07qmLFiipVqpSaN28uSTp48KDLuISEBOe/y5Ytqxo1aujHH3+UJG3ZskUzZsxQSEiIc0lMTFRWVpb2799v3c4AAABYhBoKgKdxpBQAr3Lu3DklJiYqMTFRs2bNUkREhA4ePKjExERlZGS4Hefs2bPq27evnnzyyRzbKlas6MmUAQAACh01FICCQFMKgFfZtWuXjh8/rnHjxikuLk6StHHjxlzHrl+/3lkcnTx5Uj/99JNq1aolSbr++uu1c+dOVatWzZrEAQAAChE1FICCwM/3AHiVihUryt/fX2+99ZZ+/vlnffrppxo7dmyuY8eMGaPly5dr+/bt6tGjh8LDw9WpUydJ0tChQ7V27VoNGDBAycnJ2rNnjz755BNO0gkAAIolaigABYGmFACvEhERoRkzZmj+/PmqXbu2xo0bp3/+85+5jh03bpyeeuopNW7cWCkpKfrss8/k7+8vSapfv75Wrlypn376SU2bNlWjRo00YsQIxcbGWrk7AAAAlqCGAlAQHMYYU9hJAAAAAAAAwLtwpBQAAAAAAAAsR1MKAAAAAAAAlqMpBQAAAAAAAMvRlAIAAAAAAIDlaEoBAAAAAADAcjSlAAAAAAAAYDmaUgAAAAAAALAcTSkAAAAAAABYjqYUAAAAAAAALEdTCgAAAAAAAJajKQUAAAAAAADL0ZQCAAAAAACA5f4/ua5cit6Zg/YAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_multiple_label_counts(\n", + " [ys_bert_rmr_balanced, ys_adverb_balanced],\n", + " [\"ys_bert_rmr_balanced\", \"ys_adverb_balanced\"],\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "ys_adverb_balanced.to_csv(\"../data/ys_adverb_balanced.csv\")\n", + "ys_bert_rmr_balanced.to_csv(\"../data/ys_bert_rmr_balanced.csv\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "ame", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/utils/preprocess/data_preprocess.ipynb b/utils/preprocess/data_preprocess.ipynb new file mode 100644 index 0000000..91bec0b --- /dev/null +++ b/utils/preprocess/data_preprocess.ipynb @@ -0,0 +1,354 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 전처리/증강 데이터셋 버전 \n", + "#### 형식\n", + "- v{대분류}_{인덱스}\n", + "#### 대분류\n", + "- v1: 전처리만 적용\n", + "- v2: v1 + swap만 적용 \n", + "- v3: v2 + 데이터 증강 기법 적용\n", + "- v4: v3 + 매우 실험적인 전처리/증강 기법 적용\n", + "#### 인덱스\n", + "- 01부터 99까지 차례로 순서를 매김\n", + "#### 예시\n", + "- 맞춤법 교정 데이터셋 -> v1_01\n", + "- 특수문자 제거 데이터셋 -> v1_02\n", + "- 특수문자 제거, 띄어쓰기 교정, swap 데이터셋 -> v2_01\n", + "- 맞춤법 교정, swap, RS, SR -> v3_01\n", + "- ChatGPT api 증강 데이터셋 -> v4_01" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import warnings\n", + "\n", + "# 모든 경고 메시지 무시\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def print_label_count(df):\n", + " \"\"\"라벨 분포 확인용\"\"\"\n", + " print(len(df))\n", + " df[\"label_int\"] = pd.cut(\n", + " df[\"label\"],\n", + " bins=[x for x in range(6)],\n", + " labels=[x for x in range(5)],\n", + " right=False,\n", + " )\n", + " print(df.groupby(\"label_int\")[\"id\"].count())" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "def replace_special_letters(df):\n", + " \"\"\"특수문자 제거 \\n \n", + " 초성(ㄱ-ㅎ), 중성(ㅏ-ㅣ), 완성된 한글(가-힣), 알파벳(A-Za-z), 숫자(0-9), 그리고 공백(\\s)만 허용\"\"\"\n", + " df[\"sentence_1\"] = df[\"sentence_1\"].str.replace(\n", + " r\"[^A-Za-z0-9가-힣ㄱ-ㅎㅏ-ㅣ\\s]\", \"\", regex=True\n", + " )\n", + " df[\"sentence_2\"] = df[\"sentence_2\"].str.replace(\n", + " r\"[^A-Za-z0-9가-힣ㄱ-ㅎㅏ-ㅣ\\s]\", \"\", regex=True\n", + " )\n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from hanspell import passportKey, spell_checker\n", + "\n", + "# passportKey 설정\n", + "passportKey.init()\n", + "\n", + "\n", + "def spell_check(df):\n", + " \"\"\"맞춤법(오탈자, 띄어쓰기 등 전부) 교정\"\"\"\n", + " df[\"sentence_1\"] = df.apply(lambda row: spell_checker.check(row[\"sentence_1\"]).checked, axis=1)\n", + " df[\"sentence_2\"] = df.apply(lambda row: spell_checker.check(row[\"sentence_2\"]).checked, axis=1)\n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "import pykospacing\n", + "\n", + "\n", + "def spacing_text(df):\n", + " \"\"\"띄어쓰기만 교정\"\"\"\n", + " spacing = pykospacing.Spacing()\n", + " df[\"sentence_1\"] = df[\"sentence_1\"].map(spacing)\n", + " df[\"sentence_2\"] = df[\"sentence_2\"].map(spacing)\n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def swap(df):\n", + " \"\"\"sentence 1과 2를 교환한 데이터 추가\"\"\"\n", + " df_swaped = df.rename(\n", + " columns={\"sentence_1\": \"sentence_2\", \"sentence_2\": \"sentence_1\"}\n", + " )\n", + " return pd.concat([df, df_swaped])\n", + "\n", + "\n", + "def swap_over_one_label(df):\n", + " \"\"\"sentence 1과 2를 교환한 데이터 추가\"\"\"\n", + " df_swaped = df.rename(\n", + " columns={\"sentence_1\": \"sentence_2\", \"sentence_2\": \"sentence_1\"}\n", + " )\n", + " df_filtered = df_swaped[df_swaped[\"label\"] >= 1]\n", + "\n", + " return pd.concat([df, df_filtered])" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "from eda import eda\n", + "\n", + "# 커스텀된 EDA 함수 말고 원본 패키지 사용하고 싶다면 https://github.com/toriving/KoEDA\n", + "def apply_eda(df, alpha_sr=0.1, alpha_ri=0.1, alpha_rs=0.1, num_aug=2):\n", + " \"\"\"\n", + " EDA 적용 함수 \\n \n", + " 주의: 한글 제외한 나머지 문자 제거됨 \\n\n", + " alpha_sr: 특정 단어를 유의어로 교체할 확률 \\n\n", + " alpha_ri: 임의의 단어를 삽입할 확률 \\n\n", + " alpha_rs: 문장 내 임의의 두 단어의 위치를 바꿀 확률 \\n\n", + " num_aug: 데이터 증강하는 개수 \\n\n", + " \"\"\"\n", + " def _conditional_eda(row, column_name):\n", + " if row[\"label\"] >= 0: \n", + " return eda.EDA(\n", + " row[column_name], alpha_sr, alpha_ri, alpha_rs, num_aug)\n", + " else:\n", + " return [row[column_name]]\n", + "\n", + " def _replace_person_token(df):\n", + " \"\"\"Speicial 토큰 처리: -> 궯궯궯\"\"\"\n", + " df[\"sentence_1\"] = df[\"sentence_1\"].str.replace(\"\", \"궯궯궯\")\n", + " df[\"sentence_2\"] = df[\"sentence_2\"].str.replace(\"\", \"궯궯궯\")\n", + " return df\n", + "\n", + " def _recover_person_token(df):\n", + " \"\"\"Speicial 토큰 처리: 궯궯궯 -> \"\"\"\n", + " df[\"sentence_1\"] = df[\"sentence_1\"].str.replace(\"궯궯궯\", \"\")\n", + " df[\"sentence_2\"] = df[\"sentence_2\"].str.replace(\"궯궯궯\", \"\")\n", + " return df\n", + "\n", + " df = _replace_person_token(df)\n", + " df[\"sentence_1\"] = df.apply(lambda row: _conditional_eda(row, \"sentence_1\"), axis=1)\n", + " df = df.explode(\"sentence_1\").reset_index(drop=True)\n", + " df[\"sentence_2\"] = df.apply(lambda row: _conditional_eda(row, \"sentence_2\"), axis=1)\n", + " df = df.explode(\"sentence_2\").reset_index(drop=True)\n", + " df = _recover_person_token(df)\n", + " \n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from eda import eda\n", + "\n", + "\n", + "# 커스텀된 EDA 함수 말고 원본 패키지 사용하고 싶다면 https://github.com/toriving/KoEDA\n", + "def apply_eda(df, alpha_sr=0.1, alpha_ri=0.1, alpha_rs=0.1, num_aug=2):\n", + " \"\"\"\n", + " EDA 적용 함수 \\n\n", + " 주의: 한글 제외한 나머지 문자 제거됨 \\n\n", + " alpha_sr: 특정 단어를 유의어로 교체할 확률 \\n\n", + " alpha_ri: 임의의 단어를 삽입할 확률 \\n\n", + " alpha_rs: 문장 내 임의의 두 단어의 위치를 바꿀 확률 \\n\n", + " num_aug: 데이터 증강하는 개수 \\n\n", + " \"\"\"\n", + "\n", + " def _conditional_eda(row, column_name):\n", + " if row[\"label\"] >= 0:\n", + " return eda.EDA(row[column_name], alpha_sr, alpha_ri, alpha_rs, num_aug)\n", + " else:\n", + " return [row[column_name]]\n", + "\n", + " df[\"sentence_1\"] = df.apply(lambda row: _conditional_eda(row, \"sentence_1\"), axis=1)\n", + " df = df.explode(\"sentence_1\").reset_index(drop=True)\n", + " df[\"sentence_2\"] = df.apply(lambda row: _conditional_eda(row, \"sentence_2\"), axis=1)\n", + " df = df.explode(\"sentence_2\").reset_index(drop=True)\n", + "\n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# 전처리 및 증강 적용한 csv 파일 생성 (원하는 함수를 선택하여 사용)\n", + "def make(df, df_name):\n", + " df = replace_special_letters(df)\n", + " df = spell_check(df)\n", + " df = spacing_text(df)\n", + " df = swap(df)\n", + " df = apply_eda(df)\n", + " df = df.drop_duplicates()\n", + " df.to_csv(f\"./{df_name}.csv\")\n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "def make_v1(df, df_name):\n", + " df = replace_special_letters(df)\n", + " df = spell_check(df)\n", + " df = df.drop_duplicates()\n", + " df.to_csv(f\"../data/{df_name}.csv\")\n", + " return df\n", + "\n", + "\n", + "def make_v1_02(df, df_name):\n", + " df = spell_check(df)\n", + " df = df.drop_duplicates()\n", + " df.to_csv(f\"../data/{df_name}.csv\")\n", + " return df\n", + "\n", + "\n", + "def make_v2(df, df_name):\n", + " df = replace_special_letters(df)\n", + " df = spell_check(df)\n", + " df = swap(df)\n", + " df = df.drop_duplicates()\n", + " df.to_csv(f\"../data/{df_name}.csv\")\n", + " return df\n", + "\n", + "\n", + "def make_v2_02(df, df_name):\n", + " df = replace_special_letters(df)\n", + " df = spell_check(df)\n", + " df = swap_over_one_label(df)\n", + " df = df.drop_duplicates()\n", + " df.to_csv(f\"../data/{df_name}.csv\")\n", + " return df\n", + "\n", + "\n", + "def make_v2_03(df, df_name):\n", + " df = spell_check(df)\n", + " df = swap_over_one_label(df)\n", + " df = df.drop_duplicates()\n", + " df.to_csv(f\"../data/{df_name}.csv\")\n", + " return df\n", + "\n", + "\n", + "def make_v3(df, df_name):\n", + " df = replace_special_letters(df)\n", + " df = spell_check(df)\n", + " df = swap_over_one_label(df)\n", + " df = apply_eda(df, alpha_sr=0.3, alpha_ri=0.3, alpha_rs=0.3)\n", + " df = df.drop_duplicates()\n", + " df.to_csv(f\"../data/{df_name}.csv\")\n", + " return df\n", + "\n", + "def make_swap(df,df_name):\n", + " df = swap(df)\n", + " df.to_csv(f\"./{df_name}.csv\")\n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train = pd.read_csv(\"../data/raw/train.csv\", encoding=\"UTF-8\")\n", + "dev = pd.read_csv(\"../data/raw/dev.csv\", encoding=\"UTF-8\")\n", + "\n", + "train_v1 = make_v1_02(train, \"train_v1_02\")\n", + "dev_v1 = make_v1_02(dev, \"dev_v1_02\")\n", + "\n", + "print_label_count(train_v1)\n", + "print_label_count(dev_v1)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "train = pd.read_csv(\"../data/raw/train.csv\", encoding=\"UTF-8\")\n", + "train_swap = make_swap(train,\"ys_raw_swap\")" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "ys_adverb_basic = pd.read_csv(\"../data/processed/ys_adverb_basic.csv\", encoding=\"UTF-8\")\n", + "ys_adverb_swap = swap_over_one_label(ys_adverb_basic)\n", + "ys_adverb_swap.to_csv(\"../data/ys_adverb_swap.csv\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "ame", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/utils/preprocess/test.py b/utils/preprocess/test.py new file mode 100644 index 0000000..640c5b1 --- /dev/null +++ b/utils/preprocess/test.py @@ -0,0 +1,36 @@ +import yaml +import torch +import os + +import pytorch_lightning as pl +from utils import data_pipeline, utils +from model.model import Model + +if __name__ == "__main__": + + # baseline_config 설정 불러오기 + with open("./config/config.yaml", encoding="utf-8") as f: + CFG = yaml.load(f, Loader=yaml.FullLoader) + + # dataloader 설정 (test data만 사용) + dataloader = data_pipeline.Dataloader(CFG) + + # experiments 폴더 내부 실험 폴더 + exp_name = CFG["inference"]["exp_name"] + + # 저장된 모델 불러오기 + model_path = f"./experiments/{exp_name}/model.pt" + + if os.path.exists(model_path): + model = torch.load(model_path) + print(f"모델이 불러와졌습니다: {model_path}") + else: + raise FileNotFoundError(f"{model_path} 파일을 찾을 수 없습니다.") + + # trainer 인스턴스 생성 + trainer = pl.Trainer(accelerator="gpu", devices=1) + + # Test part (metrics) + trainer.test(model=model, datamodule=dataloader) + ## datamodule에서 test_dataloader 호출 + ## predict_path로 설정된 test.csv가 사용된다 diff --git a/utils/preprocess/validation_tuning.ipynb b/utils/preprocess/validation_tuning.ipynb new file mode 100644 index 0000000..47c9e76 --- /dev/null +++ b/utils/preprocess/validation_tuning.ipynb @@ -0,0 +1,232 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import warnings\n", + "\n", + "# 모든 경고 메시지 무시\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "train = pd.read_csv(\"../data/raw/train.csv\", encoding=\"UTF-8\")\n", + "dev = pd.read_csv(\"../data/raw/dev.csv\", encoding=\"UTF-8\")\n", + "test = pd.read_csv(\"../data/raw/test.csv\", encoding=\"UTF-8\")" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_label_count(df, df_name):\n", + " grouped_data = df.groupby(\"label\")[\"id\"].count()\n", + " grouped_data.plot(kind=\"bar\", color=\"skyblue\")\n", + " plt.title(f\"{df_name} label Count\")\n", + " plt.xlabel(\"label\")\n", + " plt.ylabel(\"Count\")\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "def special_value_interpolation(df):\n", + " # 0.5, 1.5, 2.5, 3.5, 4.5에 해당하는 값을 필터링\n", + " target_values = [0.5, 1.5, 2.5, 3.5, 4.5]\n", + " filtered_df = df[df[\"label\"].isin(target_values)]\n", + "\n", + " # 각 값에 대해 절반은 +0.1, 절반은 -0.1\n", + " def adjust_labels(group):\n", + " n = len(group)\n", + " # 절반으로 나눔\n", + " half_n = n // 2\n", + " # 첫 절반은 -0.1, 나머지는 +0.1\n", + " group.iloc[:half_n] -= 0.1\n", + " group.iloc[half_n:] += 0.1\n", + " return group\n", + "\n", + " # 필터링된 값들에 대한 보정\n", + " df.loc[df[\"label\"].isin(target_values), \"label\"] = filtered_df.groupby(\"label\")[\n", + " \"label\"\n", + " ].transform(adjust_labels)\n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHPCAYAAACyf8XcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDXklEQVR4nO3de1xVVf7/8ffhcg7ewCu3QiTNuyiZYzTjrVA0s2lyprxrOWkJ9k0bM7oo6hSmZVo59m1+qTVpWjNmZWreUkqxzCK8Z6aDpWCmcMQSBNbvjx7ubyewDgQC7tfz8diPB3uvdT57bdyc83bvdc5xGGOMAAAAbMynqgcAAABQ1QhEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEACpcs2bNNGrUqAqrl5ycLIfDUe6x3HzzzRU2FklyOBxKTk6u0JoAqhaBCLChbdu2KTk5WTk5OVU9lMue2+3WtGnT1LFjR9WtW1e1atVS+/btNXnyZB07dqyqhydJWr16NQEPtudX1QMAcOlt27ZN06ZN06hRo1S/fv0Kr3/gwAH5+PD/ra+++kpxcXHKzMzUX/7yF40ZM0ZOp1MZGRl66aWX9Oabb+qLL76o6mFq9erVmj9/PqEItkYgAvCLiouLVVBQoICAAK8f43K5KnFENUNhYaFuu+02ZWdna/PmzfrDH/7g0f7444/rySefrKLRAfg5/gsH2ExycrImTZokSYqKipLD4ZDD4dCRI0ck/Tg/JjExUUuWLFG7du3kcrm0du1aSdJTTz2l66+/Xo0aNVKtWrXUuXNn/fvf/y6xj5/PIVq8eLEcDoe2bt2qiRMnqkmTJqpTp47+9Kc/6dtvvy3XcSxatEg33HCDgoOD5XK51LZtWy1YsOCi/detW6dOnTopICBAbdu21YoVK0r0ycnJ0f3336+IiAi5XC61aNFCTz75pIqLi8s8vv/85z/6/PPP9cgjj5QIQ5IUGBioxx9/3GPbG2+8oc6dO6tWrVpq3Lixhg0bpm+++cajT8+ePdWzZ88S9UaNGqVmzZpZ60eOHJHD4dBTTz2lF198Uc2bN5fL5VKXLl20Y8cOj8fNnz9fkqxzobzztYCajCtEgM3cdttt+uKLL/Taa6/pmWeeUePGjSVJTZo0sfps2rRJr7/+uhITE9W4cWPrhXbevHm65ZZbNHToUBUUFGjZsmX6y1/+olWrVql///6/uu/x48erQYMGmjp1qo4cOaK5c+cqMTFRy5cvL/NxLFiwQO3atdMtt9wiPz8/vfPOOxo3bpyKi4uVkJDg0ffgwYO64447dM8992jkyJFatGiR/vKXv2jt2rXq3bu3JOn7779Xjx499M0332js2LFq2rSptm3bpqSkJB0/flxz584t0/jefvttSdLw4cO96r948WLdeeed6tKli1JSUpSdna158+Zp69at+uyzz8p9a3Pp0qU6c+aMxo4dK4fDoVmzZum2227TV199JX9/f40dO1bHjh3T+vXr9a9//atc+wAuCwaA7cyePdtIMocPHy7RJsn4+PiYPXv2lGj7/vvvPdYLCgpM+/btzQ033OCxPTIy0owcOdJaX7RokZFk4uLiTHFxsbV9woQJxtfX1+Tk5PzieKdOnWp+/nT187EYY0x8fLy56qqrSoxFkvnPf/5jbcvNzTVhYWEmJibG2jZjxgxTp04d88UXX3g8/qGHHjK+vr4mMzPT2ibJTJ069RfHHBMTY4KCgn6xzwUFBQUmODjYtG/f3vzwww/W9lWrVhlJZsqUKda2Hj16mB49epSoMXLkSBMZGWmtHz582EgyjRo1MqdOnbK2v/XWW0aSeeedd6xtCQkJJX6/gN1wywxACT169FDbtm1LbK9Vq5b18+nTp5Wbm6tu3brp008/9arumDFjPG7HdOvWTUVFRfrvf/9b5jH+dCy5ubk6efKkevTooa+++kq5ubkefcPDw/WnP/3JWg8MDNSIESP02WefKSsrS9KPt6u6deumBg0a6OTJk9YSFxenoqIipaamlml8brdb9erV86rvJ598ohMnTmjcuHEec7X69++v1q1b69133y3Tvn/qjjvuUIMGDaz1bt26SfpxwjeA/8MtMwAlREVFlbp91apV+vvf/6709HTl5+db272dc9K0aVOP9Qsv1KdPny7zGLdu3aqpU6cqLS1N33//vUdbbm6ugoKCrPUWLVqUGGPLli0l/TjXJjQ0VAcPHlRGRobHrcOfOnHiRJnGFxgY6HXouBAIW7VqVaKtdevW+vDDD8u075+qyN85cDkjEAEo4adXXy744IMPdMstt6h79+76xz/+obCwMPn7+2vRokVaunSpV3V9fX1L3W6MKdP4Dh06pBtvvFGtW7fWnDlzFBERIafTqdWrV+uZZ54p1yTo4uJi9e7dWw8++GCp7RcClLdat26tzz77TEePHlVERESZx3MxDoej1N9XUVFRqf0r6ncOXO4IRIANleddRP/5z38UEBCg9957z+Nt9YsWLarIoXnlnXfeUX5+vt5++22PKyDvv/9+qf2//PJLGWM8jvvC5/9cmDDevHlz5eXlKS4urkLGOGDAAL322mt69dVXlZSU9It9IyMjJf34+U033HCDR9uBAwesdunHKzylXXkqz23HC3hXGcDb7gFbqlOnjiSV6ZOqfX195XA4PK5EHDlyRCtXrqzg0Xk3FsnzKkdubu5Fw9mxY8f05ptvWutut1uvvPKKOnXqpNDQUEnS7bffrrS0NL333nslHp+Tk6PCwsIyjfHPf/6zOnTooMcff1xpaWkl2s+cOaNHHnlEknTttdcqODhYL7zwgsetyDVr1mjfvn0e7+Br3ry59u/f7/FxBZ9//rm2bt1apvH9VHnOB+BywxUiwIY6d+4sSXrkkUc0aNAg+fv7a8CAAdYLY2n69++vOXPmqG/fvhoyZIhOnDih+fPnq0WLFsrIyLhUQ5ck9enTR06nUwMGDNDYsWOVl5enf/7znwoODtbx48dL9G/ZsqVGjx6tHTt2KCQkRAsXLlR2drZHgJo0aZLefvtt3XzzzRo1apQ6d+6ss2fPateuXfr3v/+tI0eOWB9R4A1/f3+tWLFCcXFx6t69u26//Xb9/ve/l7+/v/bs2aOlS5eqQYMGevzxx+Xv768nn3xSd955p3r06KHBgwdbb7tv1qyZJkyYYNW96667NGfOHMXHx2v06NE6ceKEXnjhBbVr105ut7tcv88L58N9992n+Ph4+fr6atCgQeWqBdRYVfoeNwBVZsaMGeaKK64wPj4+Hm/Bl2QSEhJKfcxLL71krr76auNyuUzr1q3NokWLSn1L/MXedr9jxw6Pfu+//76RZN5///1fHGtp+3j77bdNdHS0CQgIMM2aNTNPPvmkWbhwYYmPE4iMjDT9+/c37733nomOjrbG/sYbb5TYz5kzZ0xSUpJp0aKFcTqdpnHjxub66683Tz31lCkoKLD6yYu33V9w+vRpM2XKFNOhQwdTu3ZtExAQYNq3b2+SkpLM8ePHPfouX77cxMTEGJfLZRo2bGiGDh1qvv766xI1X331VXPVVVcZp9NpOnXqZN57772Lvu1+9uzZJR7/8/EXFhaa8ePHmyZNmhiHw8Fb8GFLDmOYWQcAAOyNOUQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2+GBGLxQXF+vYsWOqV68eH3EPAEANYYzRmTNnFB4eLh+fX74GRCDywrFjxyr0yxkBAMClc/ToUV155ZW/2IdA5IV69epJ+vEXGhgYWMWjAQAA3nC73YqIiLBex38JgcgLF26TBQYGEogAAKhhvJnuwqRqAABgewQiAABgewQiAABgewQiAABgewQiAABgewQiAABgewQiAABgewQiAABgewQiAABgewQiAABgewQiAABgewQiAABgewQiAABgewQiAABgewQiAABge35VPYCabOZnJ73q91BM40oeCQAA+C24QgQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyvSgNRSkqKunTponr16ik4OFi33nqrDhw44NHn3LlzSkhIUKNGjVS3bl0NHDhQ2dnZHn0yMzPVv39/1a5dW8HBwZo0aZIKCws9+mzevFnXXHONXC6XWrRoocWLF1f24QEAgBqiSgPRli1blJCQoO3bt2v9+vU6f/68+vTpo7Nnz1p9JkyYoHfeeUdvvPGGtmzZomPHjum2226z2ouKitS/f38VFBRo27Ztevnll7V48WJNmTLF6nP48GH1799fvXr1Unp6uu6//3799a9/1XvvvXdJjxcAAFRPDmOMqepBXPDtt98qODhYW7ZsUffu3ZWbm6smTZpo6dKl+vOf/yxJ2r9/v9q0aaO0tDRdd911WrNmjW6++WYdO3ZMISEhkqQXXnhBkydP1rfffiun06nJkyfr3Xff1e7du619DRo0SDk5OVq7du2vjsvtdisoKEi5ubkKDAy0ts/87KRXx/VQTOOy/BoAAEAFuNjrd2mq1Ryi3NxcSVLDhg0lSTt37tT58+cVFxdn9WndurWaNm2qtLQ0SVJaWpo6dOhghSFJio+Pl9vt1p49e6w+P61xoc+FGj+Xn58vt9vtsQAAgMtXtQlExcXFuv/++/X73/9e7du3lyRlZWXJ6XSqfv36Hn1DQkKUlZVl9flpGLrQfqHtl/q43W798MMPJcaSkpKioKAga4mIiKiQYwQAANVTtQlECQkJ2r17t5YtW1bVQ1FSUpJyc3Ot5ejRo1U9JAAAUIn8qnoAkpSYmKhVq1YpNTVVV155pbU9NDRUBQUFysnJ8bhKlJ2drdDQUKvPxx9/7FHvwrvQftrn5+9My87OVmBgoGrVqlViPC6XSy6Xq0KODQAAVH9VeoXIGKPExES9+eab2rRpk6KiojzaO3fuLH9/f23cuNHaduDAAWVmZio2NlaSFBsbq127dunEiRNWn/Xr1yswMFBt27a1+vy0xoU+F2oAAAB7q9IrRAkJCVq6dKneeust1atXz5rzExQUpFq1aikoKEijR4/WxIkT1bBhQwUGBmr8+PGKjY3VddddJ0nq06eP2rZtq+HDh2vWrFnKysrSo48+qoSEBOsqzz333KPnn39eDz74oO666y5t2rRJr7/+ut59990qO3YAAFB9VOkVogULFig3N1c9e/ZUWFiYtSxfvtzq88wzz+jmm2/WwIED1b17d4WGhmrFihVWu6+vr1atWiVfX1/FxsZq2LBhGjFihKZPn271iYqK0rvvvqv169erY8eOevrpp/X//t//U3x8/CU9XgAAUD1Vq88hqq74HCIAAGqeGvs5RAAAAFWBQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyvSgNRamqqBgwYoPDwcDkcDq1cudKj3eFwlLrMnj3b6tOsWbMS7TNnzvSok5GRoW7duikgIEARERGaNWvWpTg8AABQQ1RpIDp79qw6duyo+fPnl9p+/Phxj2XhwoVyOBwaOHCgR7/p06d79Bs/frzV5na71adPH0VGRmrnzp2aPXu2kpOT9eKLL1bqsQEAgJrDryp33q9fP/Xr1++i7aGhoR7rb731lnr16qWrrrrKY3u9evVK9L1gyZIlKigo0MKFC+V0OtWuXTulp6drzpw5GjNmzG8/CAAAUOPVmDlE2dnZevfddzV69OgSbTNnzlSjRo0UExOj2bNnq7Cw0GpLS0tT9+7d5XQ6rW3x8fE6cOCATp8+Xeq+8vPz5Xa7PRYAAHD5qtIrRGXx8ssvq169errttts8tt9333265ppr1LBhQ23btk1JSUk6fvy45syZI0nKyspSVFSUx2NCQkKstgYNGpTYV0pKiqZNm1ZJRwIAAKqbGhOIFi5cqKFDhyogIMBj+8SJE62fo6Oj5XQ6NXbsWKWkpMjlcpVrX0lJSR513W63IiIiyjdwAABQ7dWIQPTBBx/owIEDWr58+a/27dq1qwoLC3XkyBG1atVKoaGhys7O9uhzYf1i845cLle5wxQAAKh5asQcopdeekmdO3dWx44df7Vvenq6fHx8FBwcLEmKjY1Vamqqzp8/b/VZv369WrVqVertMgAAYD9VGojy8vKUnp6u9PR0SdLhw4eVnp6uzMxMq4/b7dYbb7yhv/71ryUen5aWprlz5+rzzz/XV199pSVLlmjChAkaNmyYFXaGDBkip9Op0aNHa8+ePVq+fLnmzZvncUsMAADYW5XeMvvkk0/Uq1cva/1CSBk5cqQWL14sSVq2bJmMMRo8eHCJx7tcLi1btkzJycnKz89XVFSUJkyY4BF2goKCtG7dOiUkJKhz585q3LixpkyZwlvuAQCAxWGMMVU9iOrO7XYrKChIubm5CgwMtLbP/OykV49/KKZxZQ0NAABcxMVev0tTI+YQAQAAVCYCEQAAsD0CEQAAsD0CEQAAsD0CEQAAsD0CEQAAsD0CEQAAsD0CEQAAsD0CEQAAsD0CEQAAsD0CEQAAsD0CEQAAsD0CEQAAsD0CEQAAsD0CEQAAsD0CEQAAsD0CEQAAsD0CEQAAsD0CEQAAsD0CEQAAsD0CEQAAsD0CEQAAsD0CEQAAsD0CEQAAsD0CEQAAsD0CEQAAsD0CEQAAsD0CEQAAsD0CEQAAsD0CEQAAsL0qDUSpqakaMGCAwsPD5XA4tHLlSo/2UaNGyeFweCx9+/b16HPq1CkNHTpUgYGBql+/vkaPHq28vDyPPhkZGerWrZsCAgIUERGhWbNmVfahAQCAGqRKA9HZs2fVsWNHzZ8//6J9+vbtq+PHj1vLa6+95tE+dOhQ7dmzR+vXr9eqVauUmpqqMWPGWO1ut1t9+vRRZGSkdu7cqdmzZys5OVkvvvhipR0XAACoWfyqcuf9+vVTv379frGPy+VSaGhoqW379u3T2rVrtWPHDl177bWSpOeee0433XSTnnrqKYWHh2vJkiUqKCjQwoUL5XQ61a5dO6Wnp2vOnDkewQkAANhXtZ9DtHnzZgUHB6tVq1a699579d1331ltaWlpql+/vhWGJCkuLk4+Pj766KOPrD7du3eX0+m0+sTHx+vAgQM6ffp0qfvMz8+X2+32WAAAwOWrWgeivn376pVXXtHGjRv15JNPasuWLerXr5+KiookSVlZWQoODvZ4jJ+fnxo2bKisrCyrT0hIiEefC+sX+vxcSkqKgoKCrCUiIqKiDw0AAFQjVXrL7NcMGjTI+rlDhw6Kjo5W8+bNtXnzZt14442Vtt+kpCRNnDjRWne73YQiAAAuY9X6CtHPXXXVVWrcuLG+/PJLSVJoaKhOnDjh0aewsFCnTp2y5h2FhoYqOzvbo8+F9YvNTXK5XAoMDPRYAADA5atGBaKvv/5a3333ncLCwiRJsbGxysnJ0c6dO60+mzZtUnFxsbp27Wr1SU1N1fnz560+69evV6tWrdSgQYNLewAAAKBaqtJAlJeXp/T0dKWnp0uSDh8+rPT0dGVmZiovL0+TJk3S9u3bdeTIEW3cuFF//OMf1aJFC8XHx0uS2rRpo759++ruu+/Wxx9/rK1btyoxMVGDBg1SeHi4JGnIkCFyOp0aPXq09uzZo+XLl2vevHket8QAAIC9VWkg+uSTTxQTE6OYmBhJ0sSJExUTE6MpU6bI19dXGRkZuuWWW9SyZUuNHj1anTt31gcffCCXy2XVWLJkiVq3bq0bb7xRN910k/7whz94fMZQUFCQ1q1bp8OHD6tz58564IEHNGXKFN5yDwAALA5jjKnqQVR3brdbQUFBys3N9ZhPNPOzk149/qGYxpU1NAAAcBEXe/0uTY2aQwQAAFAZCEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2CEQAAMD2qjQQpaamasCAAQoPD5fD4dDKlSuttvPnz2vy5Mnq0KGD6tSpo/DwcI0YMULHjh3zqNGsWTM5HA6PZebMmR59MjIy1K1bNwUEBCgiIkKzZs26FIcHAABqiCoNRGfPnlXHjh01f/78Em3ff/+9Pv30Uz322GP69NNPtWLFCh04cEC33HJLib7Tp0/X8ePHrWX8+PFWm9vtVp8+fRQZGamdO3dq9uzZSk5O1osvvlipxwYAAGoOv6rceb9+/dSvX79S24KCgrR+/XqPbc8//7x+97vfKTMzU02bNrW216tXT6GhoaXWWbJkiQoKCrRw4UI5nU61a9dO6enpmjNnjsaMGVNxBwMAAGqsGjWHKDc3Vw6HQ/Xr1/fYPnPmTDVq1EgxMTGaPXu2CgsLrba0tDR1795dTqfT2hYfH68DBw7o9OnTpe4nPz9fbrfbYwEAAJevKr1CVBbnzp3T5MmTNXjwYAUGBlrb77vvPl1zzTVq2LChtm3bpqSkJB0/flxz5syRJGVlZSkqKsqjVkhIiNXWoEGDEvtKSUnRtGnTKvFoAABAdVIjAtH58+d1++23yxijBQsWeLRNnDjR+jk6OlpOp1Njx45VSkqKXC5XufaXlJTkUdftdisiIqJ8gwcAANVetQ9EF8LQf//7X23atMnj6lBpunbtqsLCQh05ckStWrVSaGiosrOzPfpcWL/YvCOXy1XuMAUAAGqeaj2H6EIYOnjwoDZs2KBGjRr96mPS09Pl4+Oj4OBgSVJsbKxSU1N1/vx5q8/69evVqlWrUm+XAQAA+6nSK0R5eXn68ssvrfXDhw8rPT1dDRs2VFhYmP785z/r008/1apVq1RUVKSsrCxJUsOGDeV0OpWWlqaPPvpIvXr1Ur169ZSWlqYJEyZo2LBhVtgZMmSIpk2bptGjR2vy5MnavXu35s2bp2eeeaZKjhkAAFQ/DmOMKeuDrrrqKu3YsaPEFZucnBxdc801+uqrr7yqs3nzZvXq1avE9pEjRyo5ObnEZOgL3n//ffXs2VOffvqpxo0bp/379ys/P19RUVEaPny4Jk6c6HHLKyMjQwkJCdqxY4caN26s8ePHa/LkyV4fr9vtVlBQkHJzcz1u2c387KRXj38oprHX+wIAABXjYq/fpSnXFaIjR46oqKioxPb8/Hx98803Xtfp2bOnfimP/VpWu+aaa7R9+/Zf3U90dLQ++OADr8cFAADspUyB6O2337Z+fu+99xQUFGStFxUVaePGjWrWrFmFDQ4AAOBSKFMguvXWWyVJDodDI0eO9Gjz9/dXs2bN9PTTT1fY4AAAAC6FMgWi4uJiSVJUVJQ1HwcAAKCmK9ccosOHD1f0OAAAAKpMud92v3HjRm3cuFEnTpywrhxdsHDhwt88MAAAgEulXIFo2rRpmj59uq699lqFhYXJ4XBU9LgAAAAumXIFohdeeEGLFy/W8OHDK3o8AAAAl1y5vrqjoKBA119/fUWPBQAAoEqUKxD99a9/1dKlSyt6LAAAAFWiXLfMzp07pxdffFEbNmxQdHS0/P39PdrnzJlTIYMDAAC4FMoViDIyMtSpUydJ0u7duz3amGANAABqmnIFovfff7+ixwEAAFBlyjWHCAAA4HJSritEvXr1+sVbY5s2bSr3gAAAAC61cgWiC/OHLjh//rzS09O1e/fuEl/6CgAAUN2VKxA988wzpW5PTk5WXl7ebxoQAADApVahc4iGDRvG95gBAIAap0IDUVpamgICAiqyJAAAQKUr1y2z2267zWPdGKPjx4/rk08+0WOPPVYhAwMAALhUyhWIgoKCPNZ9fHzUqlUrTZ8+XX369KmQgQEAAFwq5QpEixYtquhxAAAAVJlyBaILdu7cqX379kmS2rVrp5iYmAoZFAAAwKVUrkB04sQJDRo0SJs3b1b9+vUlSTk5OerVq5eWLVumJk2aVOQYAQAAKlW53mU2fvx4nTlzRnv27NGpU6d06tQp7d69W263W/fdd19FjxEAAKBSlesK0dq1a7Vhwwa1adPG2ta2bVvNnz+fSdUAAKDGKdcVouLiYvn7+5fY7u/vr+Li4t88KAAAgEupXIHohhtu0P/8z//o2LFj1rZvvvlGEyZM0I033lhhgwMAALgUyhWInn/+ebndbjVr1kzNmzdX8+bNFRUVJbfbreeee66ixwgAAFCpyjWHKCIiQp9++qk2bNig/fv3S5LatGmjuLi4Ch0cAADApVCmK0SbNm1S27Zt5Xa75XA41Lt3b40fP17jx49Xly5d1K5dO33wwQeVNVYAAIBKUaZANHfuXN19990KDAws0RYUFKSxY8dqzpw5XtdLTU3VgAEDFB4eLofDoZUrV3q0G2M0ZcoUhYWFqVatWoqLi9PBgwc9+pw6dUpDhw5VYGCg6tevr9GjRysvL8+jT0ZGhrp166aAgABFRERo1qxZ3h80AAC47JUpEH3++efq27fvRdv79OmjnTt3el3v7Nmz6tixo+bPn19q+6xZs/Tss8/qhRde0EcffaQ6deooPj5e586ds/oMHTpUe/bs0fr167Vq1SqlpqZqzJgxVrvb7VafPn0UGRmpnTt3avbs2UpOTtaLL77o9TgBAMDlrUxziLKzs0t9u71VzM9P3377rdf1+vXrp379+pXaZozR3Llz9eijj+qPf/yjJOmVV15RSEiIVq5cqUGDBmnfvn1au3atduzYoWuvvVaS9Nxzz+mmm27SU089pfDwcC1ZskQFBQVauHChnE6n2rVrp/T0dM2ZM8cjOAEAAPsq0xWiK664Qrt3775oe0ZGhsLCwn7zoCTp8OHDysrK8pioHRQUpK5duyotLU2SlJaWpvr161thSJLi4uLk4+Ojjz76yOrTvXt3OZ1Oq098fLwOHDig06dPl7rv/Px8ud1ujwUAAFy+yhSIbrrpJj322GMet6wu+OGHHzR16lTdfPPNFTKwrKwsSVJISIjH9pCQEKstKytLwcHBHu1+fn5q2LChR5/Savx0Hz+XkpKioKAga4mIiPjtBwQAAKqtMt0ye/TRR7VixQq1bNlSiYmJatWqlSRp//79mj9/voqKivTII49UykAvpaSkJE2cONFad7vdhCIAAC5jZQpEISEh2rZtm+69914lJSXJGCNJcjgcio+P1/z580tcjSmv0NBQST/OW/rpbbjs7Gx16tTJ6nPixAmPxxUWFurUqVPW40NDQ5Wdne3R58L6hT4/53K55HK5KuQ4AABA9VfmT6qOjIzU6tWrdfLkSX300Ufavn27Tp48qdWrVysqKqrCBhYVFaXQ0FBt3LjR2uZ2u/XRRx8pNjZWkhQbG6ucnByPd7Zt2rRJxcXF6tq1q9UnNTVV58+ft/qsX79erVq1UoMGDSpsvAAAoOYq11d3SFKDBg3UpUsX/e53vyt3sMjLy1N6errS09Ml/TiROj09XZmZmXI4HLr//vv197//XW+//bZ27dqlESNGKDw8XLfeequkHz8du2/fvrr77rv18ccfa+vWrUpMTNSgQYMUHh4uSRoyZIicTqdGjx6tPXv2aPny5Zo3b57HLTEAAGBv5frqjoryySefqFevXtb6hZAycuRILV68WA8++KDOnj2rMWPGKCcnR3/4wx+0du1aBQQEWI9ZsmSJEhMTdeONN8rHx0cDBw7Us88+a7UHBQVp3bp1SkhIUOfOndW4cWNNmTKFt9wDAACLw1yYCISLcrvdCgoKUm5ursendM/87KRXj38opnFlDQ0AAFzExV6/S1PuW2YAAACXCwIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwPQIRAACwvWofiJo1ayaHw1FiSUhIkCT17NmzRNs999zjUSMzM1P9+/dX7dq1FRwcrEmTJqmwsLAqDgcAAFRDflU9gF+zY8cOFRUVWeu7d+9W79699Ze//MXadvfdd2v69OnWeu3ata2fi4qK1L9/f4WGhmrbtm06fvy4RowYIX9/fz3xxBOX5iAAAEC1Vu0DUZMmTTzWZ86cqebNm6tHjx7Wttq1ays0NLTUx69bt0579+7Vhg0bFBISok6dOmnGjBmaPHmykpOT5XQ6K3X8AACg+qv2t8x+qqCgQK+++qruuusuORwOa/uSJUvUuHFjtW/fXklJSfr++++ttrS0NHXo0EEhISHWtvj4eLndbu3Zs6fU/eTn58vtdnssAADg8lXtrxD91MqVK5WTk6NRo0ZZ24YMGaLIyEiFh4crIyNDkydP1oEDB7RixQpJUlZWlkcYkmStZ2VllbqflJQUTZs2rXIOAgAAVDs1KhC99NJL6tevn8LDw61tY8aMsX7u0KGDwsLCdOONN+rQoUNq3rx5ufaTlJSkiRMnWutut1sRERHlHzgAAKjWakwg+u9//6sNGzZYV34upmvXrpKkL7/8Us2bN1doaKg+/vhjjz7Z2dmSdNF5Ry6XSy6XqwJGDQAAaoIaM4do0aJFCg4OVv/+/X+xX3p6uiQpLCxMkhQbG6tdu3bpxIkTVp/169crMDBQbdu2rbTxAgCAmqNGXCEqLi7WokWLNHLkSPn5/d+QDx06pKVLl+qmm25So0aNlJGRoQkTJqh79+6Kjo6WJPXp00dt27bV8OHDNWvWLGVlZenRRx9VQkICV4EAAICkGhKINmzYoMzMTN11110e251OpzZs2KC5c+fq7NmzioiI0MCBA/Xoo49afXx9fbVq1Srde++9io2NVZ06dTRy5EiPzy0CAAD25jDGmKoeRHXndrsVFBSk3NxcBQYGWttnfnbSq8c/FNO4soYGAAAu4mKv36WpMXOIAAAAKguBCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6BCAAA2F61DkTJyclyOBweS+vWra32c+fOKSEhQY0aNVLdunU1cOBAZWdne9TIzMxU//79Vbt2bQUHB2vSpEkqLCy81IcCAACqMb+qHsCvadeunTZs2GCt+/n935AnTJigd999V2+88YaCgoKUmJio2267TVu3bpUkFRUVqX///goNDdW2bdt0/PhxjRgxQv7+/nriiScu+bEAAIDqqdoHIj8/P4WGhpbYnpubq5deeklLly7VDTfcIElatGiR2rRpo+3bt+u6667TunXrtHfvXm3YsEEhISHq1KmTZsyYocmTJys5OVlOp/NSHw4AoAab+dnJX+3zUEzjSzASVLRqfctMkg4ePKjw8HBdddVVGjp0qDIzMyVJO3fu1Pnz5xUXF2f1bd26tZo2baq0tDRJUlpamjp06KCQkBCrT3x8vNxut/bs2XNpDwQAAFRb1foKUdeuXbV48WK1atVKx48f17Rp09StWzft3r1bWVlZcjqdql+/vsdjQkJClJWVJUnKysryCEMX2i+0XUx+fr7y8/OtdbfbXUFHBAAAqqNqHYj69etn/RwdHa2uXbsqMjJSr7/+umrVqlVp+01JSdG0adMqrX5l8+aSrsRlXQAALqj2t8x+qn79+mrZsqW+/PJLhYaGqqCgQDk5OR59srOzrTlHoaGhJd51dmG9tHlJFyQlJSk3N9dajh49WrEHAgAAqpUaFYjy8vJ06NAhhYWFqXPnzvL399fGjRut9gMHDigzM1OxsbGSpNjYWO3atUsnTpyw+qxfv16BgYFq27btRffjcrkUGBjosQAAgMtXtb5l9re//U0DBgxQZGSkjh07pqlTp8rX11eDBw9WUFCQRo8erYkTJ6phw4YKDAzU+PHjFRsbq+uuu06S1KdPH7Vt21bDhw/XrFmzlJWVpUcffVQJCQlyuVxVfHQAAKC6qNaB6Ouvv9bgwYP13XffqUmTJvrDH/6g7du3q0mTJpKkZ555Rj4+Pho4cKDy8/MVHx+vf/zjH9bjfX19tWrVKt17772KjY1VnTp1NHLkSE2fPr2qDgkAAFRD1ToQLVu27BfbAwICNH/+fM2fP/+ifSIjI7V69eqKHhoAALiM1Kg5RAAAAJWBQAQAAGyvWt8yAwDgt+LrNuANrhABAADbIxABAADbIxABAADbYw4RAABVgLlN1QuBCABQ7RAWcKlxywwAANgegQgAANgegQgAANgegQgAANgek6rxi7yZ2CgxuREAULNxhQgAANgegQgAANgegQgAANgegQgAANgek6pxyTBBGwBQXXGFCAAA2B5XiKoJrp4AAFB1CESosfjyRwBARSEQASJcAYDdMYcIAADYHoEIAADYHoEIAADYHoEIAADYHoEIAADYHoEIAADYHm+7BwD8Zny4LGo6rhABAADb4woRANQgXIkBKke1vkKUkpKiLl26qF69egoODtatt96qAwcOePTp2bOnHA6Hx3LPPfd49MnMzFT//v1Vu3ZtBQcHa9KkSSosLLyUhwIAAKqxan2FaMuWLUpISFCXLl1UWFiohx9+WH369NHevXtVp04dq9/dd9+t6dOnW+u1a9e2fi4qKlL//v0VGhqqbdu26fjx4xoxYoT8/f31xBNPXNLjAWBP1fWqTnUdF1AVqnUgWrt2rcf64sWLFRwcrJ07d6p79+7W9tq1ays0NLTUGuvWrdPevXu1YcMGhYSEqFOnTpoxY4YmT56s5ORkOZ3OSj0G2A/fiwYANU+1vmX2c7m5uZKkhg0bemxfsmSJGjdurPbt2yspKUnff/+91ZaWlqYOHTooJCTE2hYfHy+32609e/aUup/8/Hy53W6PBQAAXL6q9RWinyouLtb999+v3//+92rfvr21fciQIYqMjFR4eLgyMjI0efJkHThwQCtWrJAkZWVleYQhSdZ6VlZWqftKSUnRtGnTKulIAABAdVNjAlFCQoJ2796tDz/80GP7mDFjrJ87dOigsLAw3XjjjTp06JCaN29ern0lJSVp4sSJ1rrb7VZERET5Bg5UE9zKKxvm1wD2UiMCUWJiolatWqXU1FRdeeWVv9i3a9eukqQvv/xSzZs3V2hoqD7++GOPPtnZ2ZJ00XlHLpdLLperAkYOXJ4IVwAuN9V6DpExRomJiXrzzTe1adMmRUVF/epj0tPTJUlhYWGSpNjYWO3atUsnTpyw+qxfv16BgYFq27ZtpYwbAADULNX6ClFCQoKWLl2qt956S/Xq1bPm/AQFBalWrVo6dOiQli5dqptuukmNGjVSRkaGJkyYoO7duys6OlqS1KdPH7Vt21bDhw/XrFmzlJWVpUcffVQJCQlcBQIAAJKq+RWiBQsWKDc3Vz179lRYWJi1LF++XJLkdDq1YcMG9enTR61bt9YDDzyggQMH6p133rFq+Pr6atWqVfL19VVsbKyGDRumESNGeHxuEQAAsLdqfYXIGPOL7REREdqyZcuv1omMjNTq1asralgAAFQrzOv77ar1FSIAAIBLgUAEAABsr1rfMgOAsuCzgwCUF4EIQJUixACoDghEQDXGREkAuDSYQwQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGyPQAQAAGzPr6oHAAAA8GtmfnbSq34PxTQuV30CEQAAsHgTPMobOqozbpkBAADbIxABAADbIxABAADbIxABAADbY1I1AACoFJX9zrCKxBUiAABgewQiAABgewQiAABgewQiAABge7YKRPPnz1ezZs0UEBCgrl276uOPP67qIQEAgGrANoFo+fLlmjhxoqZOnapPP/1UHTt2VHx8vE6cOFHVQwMAAFXMNoFozpw5uvvuu3XnnXeqbdu2euGFF1S7dm0tXLiwqocGAACqmC0CUUFBgXbu3Km4uDhrm4+Pj+Li4pSWllaFIwMAANWBLT6Y8eTJkyoqKlJISIjH9pCQEO3fv79E//z8fOXn51vrubm5kiS32+3R71zeGa/273Y7f7UPtcpWy9t61Lo8anlbj1qXRy1v61Hr8qjlbb3y1Lrwum2M+fUHGhv45ptvjCSzbds2j+2TJk0yv/vd70r0nzp1qpHEwsLCwsLCchksR48e/dWsYIsrRI0bN5avr6+ys7M9tmdnZys0NLRE/6SkJE2cONFaLy4u1qlTp9SoUSM5HI6L7sftdisiIkJHjx5VYGDgbxoztahVk8ZGLWpRi7/v6ljLGKMzZ84oPDz8V+vZIhA5nU517txZGzdu1K233irpx5CzceNGJSYmlujvcrnkcrk8ttWvX9/r/QUGBlbIHwe1qHUp6lGLWtSqPrUquh61pKCgIK/q2CIQSdLEiRM1cuRIXXvttfrd736nuXPn6uzZs7rzzjuremgAAKCK2SYQ3XHHHfr22281ZcoUZWVlqVOnTlq7dm2JidYAAMB+bBOIJCkxMbHUW2QVxeVyaerUqSVut1GLWhVRq6LrUYta1Ko+tSq6HrXKzmGMN+9FAwAAuHzZ4oMZAQAAfgmBCAAA2B6BCAAA2B6BCAAA2B6BCAAA2B6ByCYOHz6swsLCCqlVUXUu4I2OqEyc+7AjzvuyIxD9Bnv37tW4ceMUExOjsLAwhYWFKSYmRuPGjdPevXvLVOv48eN69dVXtXr1ahUUFHi0nT17VtOnT/9NY23VqpUOHjxYpsesXbtWu3btkvTjV53MmDFDV1xxhVwul6688krNnDnT6xM7Pz9ff/vb39S9e3c9+eSTkqS///3vqlu3rurVq6chQ4ZY30pcHvn5+crPzy/34yvb5s2b9cMPP/zmOvn5+Tp06FCFHWt2draysrLK/DjO/epz7ldnl9uLMuf9ZX7e/8Yvkret1atXG6fTaa677jozdepU849//MP84x//MFOnTjXXX3+9cblcZu3atV7V+vjjj039+vVNYGCgqVWrlmnRooXZvXu31Z6VlWV8fHy8qvWnP/2p1MXHx8fExcVZ695o1aqVSU1NNcYY88QTT5hGjRqZOXPmmDVr1pi5c+eakJAQM3PmTK9qTZgwwYSHh5sHHnjAtGnTxowbN840bdrUvPrqq2bp0qWmRYsWZvz48V7VumDdunWmX79+pn79+sbHx8f4+PiY+vXrm379+pn169eXqVZ6erqZMWOGmT9/vvn222892nJzc82dd95Zpno/5+/vb/bu3VumxyxatMhs27bNGGPMDz/8YO666y7j6+trfHx8jJ+fnxk7dqw5d+6cV7W+++47M3DgQBMREWHuueceU1hYaEaPHm0cDofx8fExsbGx5tixY17V4tyv2nN/z5495t577zWdOnUyoaGhJjQ01HTq1Mnce++9Zs+ePV7XMcaYY8eOmX/961/m3XffNfn5+R5teXl5Ztq0aWWq93PlOe/XrFljMjIyjDHGFBUVmenTp5vw8HDj4+NjrrjiCpOSkmKKi4u9qnXu3DnzwAMPmG7duln/XjNmzDB16tQxderUMYMHDza5uble1eK8r/rn/Io890tDICqn6Oho89hjj120ferUqaZDhw5e1YqLizN33nmnKSoqMm6329x7772mUaNG5tNPPzXGlO2Pw+FwmB49ephRo0Z5LD4+PubWW2+11r3hcrnMf//7X2OMMe3btzevv/66R/uqVatMixYtvKoVERFhhZRDhw4ZHx8fs3LlSqt93bp1JjIy0qtaxhizePFi4+fnZwYNGmQWLVpkVq9ebVavXm0WLVpkBg8ebPz9/c0rr7ziVa333nvPOJ1O065dO9O0aVPTqFEjs2nTJqu9LL//mJiYUheHw2HatGljrXsjKirKbN++3RhjzN/+9jfTrFkzs2LFCrNv3z6zcuVK07JlSzNp0iSvat11112mffv25rnnnjM9evQwf/zjH010dLT58MMPzbZt20yXLl3MiBEjvKrFuV915z4vylX3osx5X7XP+RV57l8MgaicAgICzP79+y/avn//fhMQEOBVrQYNGpgDBw54bEtJSTENGjQwH3/8cZn+OF577TVz5ZVXmoULF3ps9/PzK3OCDgsLM2lpacYYY0JCQqw/1gu++OILU6tWLa9q1apVy/pDM+bH/zn+9Mn38OHDpnbt2l6P7eqrrzbPP//8Rdvnz5/v9R9ubGysefjhh40xxhQXF5snn3zS1K1b16xZs8YYU7YnJz8/P9O3b1+TnJxsLVOnTjU+Pj5m3Lhx1jZv/PTJqWXLltZ4LtiyZYtp2rSpV7XCwsLM1q1breNxOBxm3bp1VvuHH35orrjiCq9qce5X3bnPi3LVvShz3lftc35FnvsXQyAqp9atW5unn376ou1PP/20adWqlVe1GjRoYD7//PMS22fPnm3q169vVqxY4fUfhzE/nmi///3vzW233WZOnTpljCnfH8e4cePMzTffbAoLC82YMWPMX//6V49L1ePHjzexsbFe1WrVqpVZtmyZMebH/5k6nU6PP+Bly5aZq6++2uuxuVyuCntyCgwMNF9++aXHtiVLlpg6deqYd955p0xPTh9++KFp3ry5mTJliikqKrK2l+f3HxkZaV2puuKKK8yOHTs82vfu3Wvq1KnjVa3atWubI0eOWOv+/v5m165d1vpXX33ldS3O/ao793lRrroXZc77qn3Or8hz/2IIROX0+uuvGz8/PzNgwAAzb948s2zZMrNs2TIzb948c8sttxin02n+/e9/e1WrW7duZsGCBaW2Pfnkk8blcpXpj8OYH++9T5kyxURERJi1a9caf3//Mv9x5OTkmGuvvda0aNHCDB8+3AQEBJjIyEjTu3dvExUVZYKCgqxbOr/mmWeeMQEBASYuLs40aNDAPPvssyY0NNQ8+OCD5qGHHjJBQUFm+vTpXo/tmmuu+cXbRQ8++KC55pprvKrVpEkT88knn5TY/tprr5natWubBQsWlOn3n5OTYwYNGmS6du1qBa3yPDk9/PDDJjY21pw+fdo89NBDZsCAAebMmTPGGGPOnj1rbr/9dtOnTx+vanXs2NG6orZ69WpTr149jyf3BQsWmPbt23tVi3O/6s59XpSr7kWZ875qn/Mr8ty/GALRb7B161Zzxx13mKZNmxqn02mcTqdp2rSpueOOO6zJsN745z//aYYNG3bR9pkzZ5pmzZqVa4wffPCBiYqKMj4+PuWadFZQUGAWLFhgbrrpJtO6dWvTsmVL06NHD/Pwww+bo0ePlqnWkiVLTGJiolm6dKkxxpj333/fdOvWzXTu3NkkJyd7XFH5Ne+//76pU6eO6dChg5kwYYKZOXOmmTlzppkwYYKJjo42devWNVu2bPGqVu/evc3s2bNLbVu6dKnx9/cv85OTMcYsXLjQhIaGmv/93/8t15NTfn6+ueWWW0yDBg1M7969TUBAgKldu7a5+uqrTZ06dUzTpk1L/A//Yl599VXj6+trWrRoYVwul3njjTdMeHi4uf32282gQYOM0+n8xVuQP8e5XzXnPi/KVfuizHlfdc/5FXnuXwyByAbOnDlj0tPTS7yLpKY7fPiwefDBB0337t1Ny5YtTcuWLU337t3N5MmTzeHDh72us2LFCnP//fdftH3JkiWmZ8+e5RrjF198Ybp06WIcDke53wWxZs0aM27cONO3b1/Tp08fM3LkSPPiiy+avLy8MtX58MMPzVNPPWXNJdqzZ48ZPny4GThwoFm8eHG5xlbdXY7nPi/KVfeiXFNcjue9MRV37l+Mw5hq+glJwGWiuLhYZ86cUWBgoBwOR1UPB7gk8vLydOjQIbVp00ZOp7OqhwP8Kj6YsZI8/PDDuuuuu6hVBbWqGx8fHwUFBdkmDFXX88IOtaqTunXrqmPHjrYJQ9X1nLBDrYpCIKokX3/9tY4cOUKtKqglSSNHjtQNN9xArSqo9c0331TYvyW1yqa6vmDZoVZ1PSfsUEuqmH9LvwoaC37mlVdeoVYV1ZKk8PBw+fhUTN6nVtm8/PLLFVKHWmX39ddf6+uvv6bWJaxljJHD4aiQf0dqlV9F/Fsyh+g3OHnypBYuXKi0tDTr+6BCQ0N1/fXXa9SoUWrSpAm1KqkWAFQHTqdTn3/+udq0aUOtS1yrohGIymnHjh2Kj49X7dq1FRcXp5CQEEk/flnmxo0b9f333+u9997TtddeS60KruWNo0ePaurUqVq4cCG1KqHWDz/8oJ07d6phw4Zq27atR9u5c+f0+uuva8SIEdSqhFr79u3T9u3bFRsbq9atW2v//v2aN2+e8vPzNWzYsDLd+qSW97UmTpxY6vZ58+Zp2LBhatSokSRpzpw51KrgWqU5e/asXn/9dX355ZcKCwvT4MGDrZrl9pvfp2ZTXbt2NWPGjCn1SwaLi4vNmDFjzHXXXUetSqjljfT09HJ9dhC1ft2BAwdMZGSk9cWw3bt39/hi2LJ8wjG1ylZrzZo1xul0moYNG5qAgACzZs0a06RJExMXF2duuOEG4+vrazZu3EitSqjlcDhMp06dTM+ePT0Wh8NhunTpYnr27Gl69epFrUqoZYwxbdq0Md99950xxpjMzEzTrFkzExQUZLp06WIaNmxogoODzVdffeV1vdIQiMopICDA7Nu376Lt+/bt8/pjxKlVtlrGGPPWW2/94vLMM894/SJDrbLVuvXWW03//v3Nt99+aw4ePGj69+9voqKirK9IKMsLPLXKVis2NtY88sgjxpgfP0m9QYMG1vfwGWPMQw89ZHr37k2tSqiVkpJioqKiSgSo8nwaN7XK/tlUDofDZGdnG2OMGTp0qLn++utNTk6OMebHz12Ki4szgwcPLnPdnyIQlVOzZs3Myy+/fNH2l19+2esvDaRW2WoZY6z/bTscjosuZfliSmp5Xys4ONhkZGRY68XFxeaee+4xTZs2NYcOHSrTCzy1ylYrMDDQHDx40Bjz46dC+/n5eXzX165du0xISAi1KqGWMT9+/UfLli3NAw88YAoKCowx5X+Bp1bZ/DQQXXXVVR5fTm3Mjx/aGBERUea6P0UgKqfnn3/euFwuc99995m33nrLbN++3Wzfvt289dZb5r777jO1atUy8+fPp1Yl1DLGmPDwcI9vrf65zz77zOsXGWqVrVa9evXM3r17S2xPSEgwV155pUlNTaVWJdX6+RcR161b1xw6dMhaP3LkSLm/1Jha3jlz5owZMWKEiY6ONrt27SrX15NQq3yB6MSJE8aYH5/Pfvrl1MaU79/y5whEv8GyZctM165djZ+fn/W/bD8/P9O1a1ezfPlyalVirQEDBpjHHnvsou3p6enG4XBQqxJqdenSxbzyyiultiUkJJj69et7/QJPrbLVio6ONmvWrLHWd+3aZc6fP2+tp6ammqioKGpVQq2fe+2110xISEi5v56EWmXjcDhMhw4dTExMjKlbt26J7y3bsmWLueKKK37TGAlEFaCgoMAcO3bMHDt2zLosSK3KrZWamurxRPdzeXl5ZvPmzdSqhFpPPPGE6dev30Xb7733Xq/DFbXKVmvBggVm1apVF21PSkoyo0ePplYl1CrN0aNHzcqVK8v8vYLUKnut5ORkj2Xt2rUe7X/729/MoEGDftP4eNs9AACwPb66AwAA2B6BCAAA2B6BCAAA2B6BCMBloWfPnrr//vu96rt582Y5HA7l5OT8pn02a9ZMc+fO/U01AFQPBCIAAGB7BCIAAGB7BCIAl51//etfuvbaa1WvXj2FhoZqyJAhOnHiRIl+W7duVXR0tAICAnTddddp9+7dHu0ffvihunXrplq1aikiIkL33Xefzp49e6kOA8AlRCACcNk5f/68ZsyYoc8//1wrV67UkSNHNGrUqBL9Jk2apKefflo7duxQkyZNNGDAAJ0/f16SdOjQIfXt21cDBw5URkaGli9frg8//FCJiYmX+GgAXAp+VT0AAKhod911l/XzVVddpWeffVZdunRRXl6e6tata7VNnTpVvXv3liS9/PLLuvLKK/Xmm2/q9ttvV0pKioYOHWpN1L766qv17LPPqkePHlqwYIECAgIu6TEBqFxcIQJw2dm5c6cGDBigpk2bql69eurRo4ckKTMz06NfbGys9XPDhg3VqlUr7du3T5L0+eefa/Hixapbt661xMfHq7i4WIcPH750BwPgkuAKEYDLytmzZxUfH6/4+HgtWbJETZo0UWZmpuLj41VQUOB1nby8PI0dO1b33XdfibamTZtW5JABVAMEIgCXlf379+u7777TzJkzFRERIUn65JNPSu27fft2K9ycPn1aX3zxhdq0aSNJuuaaa7R37161aNHi0gwcQJXilhmAy0rTpk3ldDr13HPP6auvvtLbb7+tGTNmlNp3+vTp2rhxo3bv3q1Ro0apcePGuvXWWyVJkydP1rZt25SYmKj09HQdPHhQb731FpOqgcsUgQjAZaVJkyZavHix3njjDbVt21YzZ87UU089VWrfmTNn6n/+53/UuXNnZWVl6Z133pHT6ZQkRUdHa8uWLfriiy/UrVs3xcTEaMqUKQoPD7+UhwPgEnEYY0xVDwIAAKAqcYUIAADYHoEIAADYHoEIAADYHoEIAADYHoEIAADYHoEIAADYHoEIAADYHoEIAADYHoEIAADYHoEIAADYHoEIAADYHoEIAADY3v8HF33sAmx43HYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHPCAYAAABJKDADAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzrUlEQVR4nO3deXRU9f3/8deEbGwJW0gIJIR9jyCmiMoiBiJVWgpfWdxAbUFZrFC3aGXVAlURtRTbnrJYRcSWRSwEFQWKQqtUNlkEDAVlFYUQhLDk/fuDH3Mck8AkDMx8kufjnHtO7r2fec97kg8zL+7cmesxMxMAAICDwoLdAAAAQEkRZAAAgLMIMgAAwFkEGQAA4CyCDAAAcBZBBgAAOIsgAwAAnEWQAQAAziLIAAAAZxFkgFJqzJgx8ng8Tt1vSkqKbr311oD24/F4NGbMmIDWBBA6CDIA8P/l5ORo7Nixuuqqq1SpUiWVL19eLVu21GOPPaa9e/cGuz1J0uLFiwlmwA+EB7sBAAgFX375pdLT07V7927ddtttGjRokCIjI7Vhwwb99a9/1fz58/XFF18Eu00tXrxYU6dOJcwA/x9BBkCZd+bMGfXq1UsHDhzQ8uXLdcMNN/jsf+aZZzRp0qQgdQfgQnhrCSgFVq1apbS0NEVHR6tBgwb605/+VOTY1157TW3btlX58uVVrVo19evXT3v27PHuHzZsmCpVqqTvv/++wG379++vhIQEnT17tlj9zZgxQ126dFHNmjUVFRWl5s2ba9q0aUWOf/fdd9W6dWtFR0erefPmmjdvXoExR44c0UMPPaSkpCRFRUWpYcOGmjRpkvLz84vVmyT94x//0Pr16/Xkk08WCDGSFBMTo2eeecZn21tvveX9PdaoUUN33nmnvv76a58xnTt3VufOnQvUGzhwoFJSUrzru3btksfj0XPPPac///nPatCggaKiopSWlqZPPvnE53ZTp06VdO7cn/MLUJZxRAZw3MaNG9WtWzfFxcVpzJgxOnPmjEaPHq34+PgCY5955hk99dRT6tOnj375y1/q0KFDevnll9WxY0d99tlnqlKlivr27aupU6fqn//8p2677Tbvbb///nstWrRIAwcOVLly5YrV47Rp09SiRQv97Gc/U3h4uBYtWqQhQ4YoPz9fQ4cO9Rm7fft29e3bV/fff78GDBigGTNm6LbbblNWVpa6du3q7aVTp076+uuvNXjwYCUnJ+vjjz9WZmam9u3bpylTphSrv7fffluSdNddd/k1fubMmbrnnnuUlpamCRMm6MCBA3rxxRf10UcfeX+PJTF79mwdO3ZMgwcPlsfj0e9//3v16tVLX375pSIiIjR48GDt3btX7733nv72t7+V6D6AUscAOK1nz54WHR1t//vf/7zbNm/ebOXKlbMf/hPftWuXlStXzp555hmf22/cuNHCw8O92/Pz86127drWu3dvn3Fz5841SbZy5coL9jN69Gj78VPL999/X2BcRkaG1a9f32db3bp1TZL94x//8G47evSo1apVy9q0aePdNn78eKtYsaJ98cUXPrd//PHHrVy5crZ7927vNkk2evToC/bcpk0bi42NveCY806dOmU1a9a0li1b2okTJ7zb33nnHZNko0aN8m7r1KmTderUqUCNAQMGWN26db3r2dnZJsmqV69u3377rXf7woULTZItWrTIu23o0KEFfr9AWcZbS4DDzp49q6VLl6pnz55KTk72bm/WrJkyMjJ8xs6bN0/5+fnq06ePvvnmG++SkJCgRo0a6cMPP5R07i2L2267TYsXL1Zubq739m+++aZq165d6FsvF1O+fHnvz0ePHtU333yjTp066csvv9TRo0d9xiYmJuoXv/iFdz0mJkZ33323PvvsM+3fv1/Subd1OnTooKpVq/o8lvT0dJ09e1YrV64sVn85OTmqXLmyX2M//fRTHTx4UEOGDFF0dLR3+y233KKmTZvqn//8Z7Hu+4f69u2rqlWretc7dOgg6dyJyAAKR5ABHHbo0CGdOHFCjRo1KrCvSZMmPuvbt2+XmalRo0aKi4vzWbZs2aKDBw96x/bt21cnTpzwvuWSm5urxYsX67bbbivRORkfffSR0tPTVbFiRVWpUkVxcXF64oknJKlAkGnYsGGB+2jcuLGkc+eSnH8sWVlZBR5Henq6JPk8Fn/ExMTo2LFjfo393//+J6ng71eSmjZt6t1fEj8Mo5K8oea7774rcU2gtOMcGaCMyM/Pl8fj0ZIlSwo9x6VSpUren6+99lqlpKRo7ty5uv3227Vo0SKdOHFCffv2Lfb97ty5UzfddJOaNm2qyZMnKykpSZGRkVq8eLFeeOGFEp2cm5+fr65du+rRRx8tdP/54OOvpk2b6rPPPtOePXuUlJRU7H6K4vF4ZGYFthd1snRR5x4VVgPAOQQZwGFxcXEqX768tm/fXmDftm3bfNYbNGggM1O9evX8eqHv06ePXnzxReXk5OjNN99USkqKrr322mL3uGjRIuXl5entt9/2OeJw/q2sH9uxY4fMzOeozPnvbzn/SZ8GDRooNzfXewTmUvXo0UNvvPGGXnvtNWVmZl5wbN26dSWd+/126dLFZ9+2bdu8+6VzR1QKe1voUo7a8CklwBdvLQEOK1eunDIyMrRgwQLt3r3bu33Lli1aunSpz9hevXqpXLlyGjt2bIH/4ZuZDh8+7LOtb9++ysvL06xZs5SVlaU+ffqUuMfz93He0aNHNWPGjELH7927V/Pnz/eu5+Tk6NVXX1Xr1q2VkJAg6VzIWr16dYHHKJ37WPaZM2eK1eP//d//qVWrVnrmmWe0evXqAvuPHTumJ598UpJ0zTXXqGbNmnrllVeUl5fnHbNkyRJt2bJFt9xyi3dbgwYNtHXrVh06dMi7bf369froo4+K1d8PVaxYUdK5xwmAIzKA88aOHausrCx16NBBQ4YM0ZkzZ/Tyyy+rRYsW2rBhg3dcgwYN9PTTTyszM1O7du1Sz549VblyZWVnZ2v+/PkaNGiQHn74Ye/4q6++Wg0bNtSTTz6pvLy8Er2tJEndunVTZGSkevToocGDBys3N1d/+ctfVLNmTe3bt6/A+MaNG+u+++7TJ598ovj4eE2fPl0HDhzwCT6PPPKI3n77bd16660aOHCg2rZtq+PHj2vjxo36+9//rl27dqlGjRp+9xgREaF58+YpPT1dHTt2VJ8+fXT99dcrIiJCn3/+uWbPnq2qVavqmWeeUUREhCZNmqR77rlHnTp1Uv/+/b0fv05JSdGIESO8de+9915NnjxZGRkZuu+++3Tw4EG98soratGihXJyckr0+2zbtq0k6cEHH1RGRobKlSunfv36lagWUCoE7wNTAAJlxYoV1rZtW4uMjLT69evbK6+8UujHoM3M/vGPf9gNN9xgFStWtIoVK1rTpk1t6NChtm3btgJjn3zySZNkDRs29LuXwu737bffttTUVIuOjraUlBSbNGmSTZ8+3SRZdna2d1zdunXtlltusaVLl1pqaqpFRUVZ06ZN7a233ipwP8eOHbPMzExr2LChRUZGWo0aNey6666z5557zk6dOuUdJz8+fn3ed999Z6NGjbJWrVpZhQoVLDo62lq2bGmZmZm2b98+n7FvvvmmtWnTxqKioqxatWp2xx132FdffVWg5muvvWb169e3yMhIa926tS1durTIj18/++yzBW7/4/7PnDljw4cPt7i4OPN4PHwUG2Wex4yzyAAAgJs4RwYAADiLIAMAAJxFkAEAAM4iyAAAAGcRZAAAgLMIMgAAwFml/gvx8vPztXfvXlWuXJmv9gYAwBFmpmPHjikxMVFhYUUfdyn1QWbv3r0BvQgcAAC4cvbs2aM6deoUub/UB5nKlStLOveLiImJCXI3AADAHzk5OUpKSvK+jhel1AeZ828nxcTEEGQAAHDMxU4L4WRfAADgLIIMAABwFkEGAAA4iyADAACcRZABAADOIsgAAABnEWQAAICzCDIAAMBZBBkAAOAsggwAAHAWQQYAADiLIAMAAJxFkAEAAM4iyAAAAGcRZAAAgLPCg90AcCkmfvaNX+Meb1PjMncCAAgGjsgAAABnEWQAAICzCDIAAMBZBBkAAOAsggwAAHAWQQYAADiLIAMAAJxFkAEAAM4iyAAAAGcRZAAAgLMIMgAAwFkEGQAA4CyCDAAAcBZBBgAAOIsgAwAAnEWQAQAAziLIAAAAZxFkAACAswgyAADAWQQZAADgLIIMAABwVlCDzIQJE5SWlqbKlSurZs2a6tmzp7Zt2+YzpnPnzvJ4PD7L/fffH6SOAQBAKAlqkFmxYoWGDh2qNWvW6L333tPp06fVrVs3HT9+3Gfcr371K+3bt8+7/P73vw9SxwAAIJSEB/POs7KyfNZnzpypmjVrau3aterYsaN3e4UKFZSQkHCl2wMAACEupM6ROXr0qCSpWrVqPttff/111ahRQy1btlRmZqa+//77Imvk5eUpJyfHZwEAAKVTUI/I/FB+fr4eeughXX/99WrZsqV3++233666desqMTFRGzZs0GOPPaZt27Zp3rx5hdaZMGGCxo4de6XaBgCUMRM/+8avcY+3qXGZO4EUQkFm6NCh2rRpk1atWuWzfdCgQd6fW7VqpVq1aummm27Szp071aBBgwJ1MjMzNXLkSO96Tk6OkpKSLl/jAAAgaEIiyAwbNkzvvPOOVq5cqTp16lxwbLt27SRJO3bsKDTIREVFKSoq6rL0CQAAQktQg4yZafjw4Zo/f76WL1+uevXqXfQ269atkyTVqlXrMncHAABCXVCDzNChQzV79mwtXLhQlStX1v79+yVJsbGxKl++vHbu3KnZs2frpz/9qapXr64NGzZoxIgR6tixo1JTU4PZOgAACAFBDTLTpk2TdO5L735oxowZGjhwoCIjI/X+++9rypQpOn78uJKSktS7d2/99re/DUK3AAAg1AT9raULSUpK0ooVK65QNwAAwDUh9T0yAAAAxUGQAQAAziLIAAAAZxFkAACAswgyAADAWQQZAADgLIIMAABwFkEGAAA4iyADAACcRZABAADOIsgAAABnEWQAAICzCDIAAMBZBBkAAOAsggwAAHAWQQYAADiLIAMAAJxFkAEAAM4iyAAAAGeFB7sBAO6a+Nk3Fx3zeJsaV6ATXAp//o4Sf0uEJo7IAAAAZxFkAACAswgyAADAWQQZAADgLIIMAABwFkEGAAA4iyADAACcRZABAADOIsgAAABnEWQAAICzCDIAAMBZBBkAAOAsLhoJvwTyonJcoK54+N0XXyAvZlkWaoWqsjD3Q7UvyZ35yhEZAADgLIIMAABwFkEGAAA4iyADAACcRZABAADOIsgAAABnEWQAAICzCDIAAMBZBBkAAOAsggwAAHAWQQYAADiLIAMAAJxVZi8ayQXXznH9MaL0YL6WDqF8EUSUThyRAQAAziLIAAAAZxFkAACAswgyAADAWQQZAADgLIIMAABwFkEGAAA4iyADAACcFdQgM2HCBKWlpaly5cqqWbOmevbsqW3btvmMOXnypIYOHarq1aurUqVK6t27tw4cOBCkjgEAQCgJapBZsWKFhg4dqjVr1ui9997T6dOn1a1bNx0/ftw7ZsSIEVq0aJHeeustrVixQnv37lWvXr2C2DUAAAgVQb1EQVZWls/6zJkzVbNmTa1du1YdO3bU0aNH9de//lWzZ89Wly5dJEkzZsxQs2bNtGbNGl177bXBaBsAAISIkDpH5ujRo5KkatWqSZLWrl2r06dPKz093TumadOmSk5O1urVqwutkZeXp5ycHJ8FAACUTiFz0cj8/Hw99NBDuv7669WyZUtJ0v79+xUZGakqVar4jI2Pj9f+/fsLrTNhwgSNHTv2crcLXBAXzgOAKyNkjsgMHTpUmzZt0pw5cy6pTmZmpo4ePepd9uzZE6AOAQBAqAmJIzLDhg3TO++8o5UrV6pOnTre7QkJCTp16pSOHDnic1TmwIEDSkhIKLRWVFSUoqKiLnfLAAAgBAT1iIyZadiwYZo/f74++OAD1atXz2d/27ZtFRERoWXLlnm3bdu2Tbt371b79u2vdLsAACDEBPWIzNChQzV79mwtXLhQlStX9p73Ehsbq/Llyys2Nlb33XefRo4cqWrVqikmJkbDhw9X+/bt+cQSAAAIbpCZNm2aJKlz584+22fMmKGBAwdKkl544QWFhYWpd+/eysvLU0ZGhv74xz9e4U4BAEAoCmqQMbOLjomOjtbUqVM1derUK9ARAABwSch8agkAAKC4CDIAAMBZBBkAAOAsggwAAHAWQQYAADiLIAMAAJwVEpcoAEIBF3oE4LKy+hzGERkAAOAsggwAAHAWQQYAADiLIAMAAJxFkAEAAM4iyAAAAGcRZAAAgLMIMgAAwFkEGQAA4CyCDAAAcBZBBgAAOIsgAwAAnEWQAQAAziLIAAAAZxFkAACAswgyAADAWQQZAADgLIIMAABwFkEGAAA4iyADAACcRZABAADOIsgAAABnEWQAAICzCDIAAMBZBBkAAOCs8GA3AF8TP/vmomMeb1PjCnQCAEDo44gMAABwFkEGAAA4iyADAACcRZABAADOIsgAAABnEWQAAICzCDIAAMBZBBkAAOAsggwAAHAWQQYAADiLIAMAAJxFkAEAAM4iyAAAAGcRZAAAgLMIMgAAwFkEGQAA4CyCDAAAcBZBBgAAOKtEQaZ+/fo6fPhwge1HjhxR/fr1L7kpAAAAf5QoyOzatUtnz54tsD0vL09ff/31JTcFAADgj/DiDH777be9Py9dulSxsbHe9bNnz2rZsmVKSUkJWHMAAAAXUqwg07NnT0mSx+PRgAEDfPZFREQoJSVFzz//vN/1Vq5cqWeffVZr167Vvn37NH/+fO99SNLAgQM1a9Ysn9tkZGQoKyurOG0DAIBSqlhBJj8/X5JUr149ffLJJ6pRo8Yl3fnx48d11VVX6d5771WvXr0KHXPzzTdrxowZ3vWoqKhLuk8AAFB6FCvInJednR2QO+/evbu6d+9+wTFRUVFKSEgIyP0BAIDSpURBRpKWLVumZcuW6eDBg94jNedNnz79khs7b/ny5apZs6aqVq2qLl266Omnn1b16tWLHJ+Xl6e8vDzvek5OTsB6AQAAoaVEn1oaO3asunXrpmXLlumbb77Rd99957MEys0336xXX31Vy5Yt06RJk7RixQp179690E9MnTdhwgTFxsZ6l6SkpID1AwAAQkuJjsi88sormjlzpu66665A9+OjX79+3p9btWql1NRUNWjQQMuXL9dNN91U6G0yMzM1cuRI73pOTg5hBgCAUqpER2ROnTql6667LtC9XFT9+vVVo0YN7dixo8gxUVFRiomJ8VkAAEDpVKIg88tf/lKzZ88OdC8X9dVXX+nw4cOqVavWFb9vAAAQekr01tLJkyf15z//We+//75SU1MVERHhs3/y5Ml+1cnNzfU5upKdna1169apWrVqqlatmsaOHavevXsrISFBO3fu1KOPPqqGDRsqIyOjJG0DAIBSpkRBZsOGDWrdurUkadOmTT77PB6P33U+/fRT3Xjjjd718+e2DBgwQNOmTdOGDRs0a9YsHTlyRImJierWrZvGjx/Pd8kAAABJJQwyH374YUDuvHPnzjKzIvcvXbo0IPcDAABKpxKdIwMAABAKSnRE5sYbb7zgW0gffPBBiRsCAADwV4mCzPnzY847ffq01q1bp02bNhW4mCQAAMDlUqIg88ILLxS6fcyYMcrNzb2khgAAAPwV0HNk7rzzzoBeZwkAAOBCAhpkVq9erejo6ECWBAAAKFKJ3lrq1auXz7qZad++ffr000/11FNPBaQxAACAiylRkImNjfVZDwsLU5MmTTRu3Dh169YtII0BAABcTImCzIwZMwLdBwAAQLGVKMict3btWm3ZskWS1KJFC7Vp0yYgTQEAAPijREHm4MGD6tevn5YvX64qVapIko4cOaIbb7xRc+bMUVxcXCB7BAAAKFSJPrU0fPhwHTt2TJ9//rm+/fZbffvtt9q0aZNycnL04IMPBrpHAACAQpXoiExWVpbef/99NWvWzLutefPmmjp1Kif7AgCAK6ZER2Ty8/MVERFRYHtERITy8/MvuSkAAAB/lCjIdOnSRb/+9a+1d+9e77avv/5aI0aM0E033RSw5gAAAC6kREHmD3/4g3JycpSSkqIGDRqoQYMGqlevnnJycvTyyy8HukcAAIBClegcmaSkJP33v//V+++/r61bt0qSmjVrpvT09IA2BwAAcCHFOiLzwQcfqHnz5srJyZHH41HXrl01fPhwDR8+XGlpaWrRooX+9a9/Xa5eAQAAfBQryEyZMkW/+tWvFBMTU2BfbGysBg8erMmTJwesOQAAgAspVpBZv369br755iL3d+vWTWvXrr3kpgAAAPxRrCBz4MCBQj92fV54eLgOHTp0yU0BAAD4o1hBpnbt2tq0aVOR+zds2KBatWpdclMAAAD+KFaQ+elPf6qnnnpKJ0+eLLDvxIkTGj16tG699daANQcAAHAhxfr49W9/+1vNmzdPjRs31rBhw9SkSRNJ0tatWzV16lSdPXtWTz755GVpFAAA4MeKFWTi4+P18ccf64EHHlBmZqbMTJLk8XiUkZGhqVOnKj4+/rI0CgAA8GPF/kK8unXravHixfruu++0Y8cOmZkaNWqkqlWrXo7+AAAAilSib/aVpKpVqyotLS2QvQAAABRLia61BAAAEAoIMgAAwFkEGQAA4CyCDAAAcBZBBgAAOIsgAwAAnEWQAQAAziLIAAAAZxFkAACAswgyAADAWQQZAADgLIIMAABwFkEGAAA4iyADAACcRZABAADOIsgAAABnEWQAAICzCDIAAMBZBBkAAOAsggwAAHAWQQYAADiLIAMAAJxFkAEAAM4iyAAAAGcRZAAAgLMIMgAAwFkEGQAA4KygBpmVK1eqR48eSkxMlMfj0YIFC3z2m5lGjRqlWrVqqXz58kpPT9f27duD0ywAAAg5QQ0yx48f11VXXaWpU6cWuv/3v/+9XnrpJb3yyiv697//rYoVKyojI0MnT568wp0CAIBQFB7MO+/evbu6d+9e6D4z05QpU/Tb3/5WP//5zyVJr776quLj47VgwQL169fvSrYKAABCUMieI5Odna39+/crPT3duy02Nlbt2rXT6tWri7xdXl6ecnJyfBYAAFA6hWyQ2b9/vyQpPj7eZ3t8fLx3X2EmTJig2NhY75KUlHRZ+wQAAMETskGmpDIzM3X06FHvsmfPnmC3BAAALpOQDTIJCQmSpAMHDvhsP3DggHdfYaKiohQTE+OzAACA0ilkg0y9evWUkJCgZcuWebfl5OTo3//+t9q3bx/EzgAAQKgI6qeWcnNztWPHDu96dna21q1bp2rVqik5OVkPPfSQnn76aTVq1Ej16tXTU089pcTERPXs2TN4TQMAgJAR1CDz6aef6sYbb/Sujxw5UpI0YMAAzZw5U48++qiOHz+uQYMG6ciRI7rhhhuUlZWl6OjoYLUMAABCSFCDTOfOnWVmRe73eDwaN26cxo0bdwW7AgAArgjZc2QAAAAuhiADAACcRZABAADOIsgAAABnEWQAAICzCDIAAMBZBBkAAOAsggwAAHAWQQYAADiLIAMAAJxFkAEAAM4iyAAAAGcRZAAAgLMIMgAAwFkEGQAA4CyCDAAAcBZBBgAAOIsgAwAAnEWQAQAAziLIAAAAZxFkAACAswgyAADAWQQZAADgLIIMAABwFkEGAAA4iyADAACcRZABAADOIsgAAABnEWQAAICzCDIAAMBZBBkAAOAsggwAAHBWeLAbKA0mfvbNRcc83qbGFegEAICyhSMyAADAWQQZAADgLIIMAABwFkEGAAA4iyADAACcRZABAADOIsgAAABnEWQAAICzCDIAAMBZBBkAAOAsggwAAHAWQQYAADiLIAMAAJxFkAEAAM4iyAAAAGcRZAAAgLMIMgAAwFkEGQAA4CyCDAAAcBZBBgAAOIsgAwAAnBXSQWbMmDHyeDw+S9OmTYPdFgAACBHhwW7gYlq0aKH333/fux4eHvItAwCAKyTkU0F4eLgSEhKC3QYAAAhBIf3WkiRt375diYmJql+/vu644w7t3r37guPz8vKUk5PjswAAgNIppINMu3btNHPmTGVlZWnatGnKzs5Whw4ddOzYsSJvM2HCBMXGxnqXpKSkK9gxAAC4kkI6yHTv3l233XabUlNTlZGRocWLF+vIkSOaO3dukbfJzMzU0aNHvcuePXuuYMcAAOBKCvlzZH6oSpUqaty4sXbs2FHkmKioKEVFRV3BrgAAQLCE9BGZH8vNzdXOnTtVq1atYLcCAABCQEgHmYcfflgrVqzQrl279PHHH+sXv/iFypUrp/79+we7NQAAEAJC+q2lr776Sv3799fhw4cVFxenG264QWvWrFFcXFywWwMAACEgpIPMnDlzgt0CAAAIYSH91hIAAMCFEGQAAICzCDIAAMBZBBkAAOAsggwAAHAWQQYAADiLIAMAAJxFkAEAAM4iyAAAAGcRZAAAgLMIMgAAwFkEGQAA4CyCDAAAcBZBBgAAOIsgAwAAnEWQAQAAziLIAAAAZxFkAACAswgyAADAWQQZAADgLIIMAABwFkEGAAA4iyADAACcRZABAADOIsgAAABnEWQAAICzCDIAAMBZBBkAAOAsggwAAHAWQQYAADiLIAMAAJxFkAEAAM4iyAAAAGcRZAAAgLMIMgAAwFkEGQAA4CyCDAAAcBZBBgAAOIsgAwAAnEWQAQAAziLIAAAAZxFkAACAswgyAADAWQQZAADgLIIMAABwFkEGAAA4iyADAACcRZABAADOIsgAAABnEWQAAICzCDIAAMBZBBkAAOAsggwAAHAWQQYAADjLiSAzdepUpaSkKDo6Wu3atdN//vOfYLcEAABCQMgHmTfffFMjR47U6NGj9d///ldXXXWVMjIydPDgwWC3BgAAgizkg8zkyZP1q1/9Svfcc4+aN2+uV155RRUqVND06dOD3RoAAAiykA4yp06d0tq1a5Wenu7dFhYWpvT0dK1evTqInQEAgFAQHuwGLuSbb77R2bNnFR8f77M9Pj5eW7duLfQ2eXl5ysvL864fPXpUkpSTk+Mz7mTusYvef05OpF99Uqt49ahVOmr5W49apaOWv/WoVTpq+VvvctY6/7ptZhe+oYWwr7/+2iTZxx9/7LP9kUcesZ/85CeF3mb06NEmiYWFhYWFhaUULHv27LlgVgjpIzI1atRQuXLldODAAZ/tBw4cUEJCQqG3yczM1MiRI73r+fn5+vbbb1W9enV5PJ5Cb5OTk6OkpCTt2bNHMTExl9x3IOtRi1rUCp1aodwbtahV2mqZmY4dO6bExMQL1gvpIBMZGam2bdtq2bJl6tmzp6RzwWTZsmUaNmxYobeJiopSVFSUz7YqVar4dX8xMTEBeaK7HPWoRS1qhU6tQNejFrWoVbjY2NiL1gnpICNJI0eO1IABA3TNNdfoJz/5iaZMmaLjx4/rnnvuCXZrAAAgyEI+yPTt21eHDh3SqFGjtH//frVu3VpZWVkFTgAGAABlT8gHGUkaNmxYkW8lBUJUVJRGjx5d4C2pUKhHLWpRK3RqBboetahFrUvnMbvY55oAAABCU0h/IR4AAMCFEGQAAICzCDIAAMBZBBkAAOAsggwAAHAWQSbEZWdn68yZMwGrF8haki5+MS+ghAI59wM97yXmPi6fUJ77oTjvy2SQ2bx5s4YMGaI2bdqoVq1aqlWrltq0aaMhQ4Zo8+bNxaq1b98+vfbaa1q8eLFOnTrls+/48eMaN27cJfXapEkTbd++vdi3y8rK0saNGyWdu6zD+PHjVbt2bUVFRalOnTqaOHGi3xMyLy9PDz/8sDp27KhJkyZJkp5++mlVqlRJlStX1u23317g6uL++vHVykPR8uXLdeLEiUuuk5eXp507dwbs8R44cED79+8v1m1K+9wP5LyXLu/cD3Wl7cWUuR8az/mXxSVeoNo5ixcvtsjISLv22mtt9OjR9sc//tH++Mc/2ujRo+26666zqKgoy8rK8qvWf/7zH6tSpYrFxMRY+fLlrWHDhrZp0ybv/v3791tYWJhftX7xi18UuoSFhVl6erp33V9NmjSxlStXmpnZ7373O6tevbpNnjzZlixZYlOmTLH4+HibOHGiX7VGjBhhiYmJ9pvf/MaaNWtmQ4YMseTkZHvttdds9uzZ1rBhQxs+fLjfvb377rvWvXt3q1KlioWFhVlYWJhVqVLFunfvbu+9957fdczM1q1bZ+PHj7epU6faoUOHfPYdPXrU7rnnnmLVK0xERIRt3ry5WLeZMWOG96rtJ06csHvvvdfKlStnYWFhFh4eboMHD7aTJ0/6Vevw4cPWu3dvS0pKsvvvv9/OnDlj9913n3k8HgsLC7P27dvb3r17L1qnLMz9QM57s8DP/c8//9weeOABa926tSUkJFhCQoK1bt3aHnjgAfv888/9rmNmtnfvXvvb3/5m//znPy0vL89nX25uro0dO7ZY9X6sJPN+yZIltmHDBjMzO3v2rI0bN84SExMtLCzMateubRMmTLD8/Hy/ap08edJ+85vfWIcOHbx/s/Hjx1vFihWtYsWK1r9/fzt69KhftZj7wX3OD+S8L0yZCzKpqan21FNPFbl/9OjR1qpVK79qpaen2z333GNnz561nJwce+CBB6x69er23//+18yKN6E9Ho916tTJBg4c6LOEhYVZz549vev+ioqKsv/9739mZtayZUubO3euz/533nnHGjZs6FetpKQkb8DYuXOnhYWF2YIFC7z73333Xatbt65ftWbOnGnh4eHWr18/mzFjhi1evNgWL15sM2bMsP79+1tERIS9+uqrftVaunSpRUZGWosWLSw5OdmqV69uH3zwgXd/cX7/ZmZt2rQpdPF4PNasWTPvuj/q1atna9asMTOzhx9+2FJSUmzevHm2ZcsWW7BggTVu3NgeeeQRv2rde++91rJlS3v55ZetU6dO9vOf/9xSU1Nt1apV9vHHH1taWprdfffdF61TFuZ+IOe9WWDnPi+mwXsxZe4H7zk/kPO+KGUuyERHR9vWrVuL3L9161aLjo72q1bVqlVt27ZtPtsmTJhgVatWtf/85z/FmtBvvPGG1alTx6ZPn+6zPTw8vESJtVatWrZ69WozM4uPj/f+Izvviy++sPLly/tVq3z58t5/IGbn/qf2wyfN7Oxsq1Chgl+1GjVqZH/4wx+K3D916lS//7G1b9/ennjiCTMzy8/Pt0mTJlmlSpVsyZIlZlb8IBMeHm4333yzjRkzxruMHj3awsLCbMiQId5t/vjhk0rjxo29PZ23YsUKS05O9qtWrVq17KOPPvI+Jo/HY++++653/6pVq6x27doXrVMW5n4g571ZYOc+L6bBezFl7gfvOT+Q874oZS7ING3a1J5//vki9z///PPWpEkTv2pVrVrV1q9fX2D7s88+a1WqVLF58+YV64U0Ozvbrr/+euvVq5d9++23ZlbyIDNkyBC79dZb7cyZMzZo0CD75S9/6XNId/jw4da+fXu/ajVp0sTmzJljZuf+JxgZGenzD2/OnDnWqFEjv2pFRUUF7AklJibGduzY4bPt9ddft4oVK9qiRYuKHWRWrVplDRo0sFGjRtnZs2e920vyN6hbt6736FDt2rXtk08+8dm/efNmq1ixol+1KlSoYLt27fKuR0RE2MaNG73rX375pV+1ysLcD+S8Nwvs3OfFNHgvpsz94D3nB3LeF6XMBZm5c+daeHi49ejRw1588UWbM2eOzZkzx1588UX72c9+ZpGRkfb3v//dr1odOnSwadOmFbpv0qRJFhUVVawJbXbufeVRo0ZZUlKSZWVlWURERImCzJEjR+yaa66xhg0b2l133WXR0dFWt25d69q1q9WrV89iY2O9b31czAsvvGDR0dGWnp5uVatWtZdeeskSEhLs0Ucftccff9xiY2Nt3LhxftW6+uqrL/iWyqOPPmpXX321X7Xi4uLs008/LbD9jTfesAoVKti0adOK/fs/cuSI9evXz9q1a+cNSSV5UnniiSesffv29t1339njjz9uPXr0sGPHjpmZ2fHjx61Pnz7WrVs3v2pdddVV3qNYixcvtsqVK/s8KU+bNs1atmx50TplYe4Hct6bBXbu82IavBdT5n7wnvMDOe+LUuaCjJnZRx99ZH379rXk5GSLjIy0yMhIS05Otr59+3pP0PTHX/7yF7vzzjuL3D9x4kRLSUkpUY//+te/rF69ehYWFlbik6FOnTpl06ZNs5/+9KfWtGlTa9y4sXXq1MmeeOIJ27NnT7Fqvf766zZs2DCbPXu2mZl9+OGH1qFDB2vbtq2NGTPG5wjGhXz44YdWsWJFa9WqlY0YMcImTpxoEydOtBEjRlhqaqpVqlTJVqxY4Vetrl272rPPPlvovtmzZ1tERESxn1DOmz59uiUkJNif/vSnEj2p5OXl2c9+9jOrWrWqde3a1aKjo61ChQrWqFEjq1ixoiUnJxf4H3VRXnvtNStXrpw1bNjQoqKi7K233rLExETr06eP9evXzyIjIy/4dt0PlYW5H8h5bxa4uc+LafBeTM2Y+8F6zg/kvC9KmQwyrjh27JitW7euwCcSXJednW2PPvqodezY0Ro3bmyNGze2jh072mOPPWbZ2dl+15k3b5499NBDRe5//fXXrXPnziXu84svvrC0tDTzeDwlDpNLliyxIUOG2M0332zdunWzAQMG2J///GfLzc0tVp1Vq1bZc8895z1X5vPPP7e77rrLevfubTNnzixRb6GstM59XkyD82LqktI49wM174viMQvBb7cBQkR+fr6OHTummJgYeTyeYLcDXBG5ubnauXOnmjVrpsjIyGC3A1xQmfxCvAt54okndO+995bqWoGuF+jeQklYWJhiY2PLRIgJ1TkRqrUuR71QUalSJV111VVlJsSE6hwrC7UCgSDzI1999ZV27dpVqmsFul4gaw0YMEBdunQJuVqBrheKtb7++uuA/R3LQq1A1wvVF5qyUCtU51hZqBWIv2N4QDopRV599dVSXyvQ9QJZKzExUWFhgcnXgawV6HqhWGvWrFkB6Kbs1Ap0va+++kpfffUVta5gLTOTx+MJyN+RWiUTiL9jmTxH5ptvvtH06dO1evVq77VqEhISdN1112ngwIGKi4tzvlao9wYAwRYZGan169erWbNm1LrCtQKpzAWZTz75RBkZGapQoYLS09MVHx8v6dwF+JYtW6bvv/9eS5cu1TXXXONsrVDv7UL27Nmj0aNHa/r06SFVK9D1glXrxIkTWrt2rapVq6bmzZv77Dt58qTmzp2ru+++26/7LQu1Al1vy5YtWrNmjdq3b6+mTZtq69atevHFF5WXl6c777yzWG8RUsv/WiNHjix0+4svvqg777xT1atXlyRNnjyZWgGu9WPHjx/X3LlztWPHDtWqVUv9+/f31iuxS/7ck2PatWtngwYNKvTCZfn5+TZo0CC79tprna4V6r1dyLp160r83S+Xs1ag6wWj1rZt26xu3brei0127NjR52KTxfk22LJQK9D1lixZYpGRkVatWjWLjo62JUuWWFxcnKWnp1uXLl2sXLlytmzZMmpdhloej8dat25tnTt39lk8Ho+lpaVZ586d7cYbb6TWZajVrFkzO3z4sJmZ7d6921JSUiw2NtbS0tKsWrVqVrNmTfvyyy/9qlWUMhdkoqOjbcuWLUXu37Jli99flxyqtUK5t4ULF15weeGFF/x+YQhkrVDuLVC1evbsabfccosdOnTItm/fbrfccovVq1fP+zXwxXlRLgu1Al2vffv29uSTT5rZuW+frlq1qvdaYWZmjz/+uHXt2pVal6HWhAkTrF69egWCT0m+vZhaxavl8XjswIEDZmZ2xx132HXXXWdHjhwxs3PfmZOenm79+/cvVs0fK3NBJiUlxWbNmlXk/lmzZvl9IbJQrRXKvZ3/n63H4ylyKc7F7gJVK5R7C1StmjVr2oYNG7zr+fn5dv/991tycrLt3LmzWC/KZaFWoOvFxMTY9u3bzezct+iGh4f7XIto48aNFh8fT63LUMvs3GUOGjdubL/5zW/s1KlTZlbya9lRy38/DDL169f3ueCt2bkvy0tKSip2fz9U5oLMH/7wB4uKirIHH3zQFi5caGvWrLE1a9bYwoUL7cEHH7Ty5cvb1KlTna4Vyr0lJib6XMH2xz777DO/XxgCWSuUewtUrcqVK9vmzZsLbB86dKjVqVPHVq5c6XdPZaFWoOv9+CKnlSpVsp07d3rXd+3aVeILplLLP8eOHbO7777bUlNTbePGjSW+lh21/OfxeOzgwYNmdu657IcXvDUr2d/xx8pckDE7d7Gxdu3aWXh4uPd/tOHh4dauXTt78803S0WtUO2tR48eF7yk+7p168zj8VzxWqHcW6BqpaWl2auvvlrovqFDh1qVKlX8flEuC7UCXS81NdWWLFniXd+4caOdPn3au75y5UqrV68etS5DrR974403LD4+/pKuZUct/3g8HmvVqpW1adPGKlWqVOC6SitWrLDatWtfUn9lMsicd+rUKdu7d6/t3bvXe+istNUKtd5Wrlzp8+T0Y7m5ubZ8+fIrXiuUewtUrd/97nfWvXv3Ivc/8MADfoerslAr0PWmTZtm77zzTpH7MzMz7b777qPWZahVmD179tiCBQuKfd0zahWv1pgxY3yWrKwsn/0PP/yw9evX75J6K3MfvwYAAKUHlygAAADOIsgAAABnEWQAAICzCDIAgqpz58566KGH/Bq7fPlyeTweHTly5JLuMyUlRVOmTLmkGgBCA0EGAAA4iyADAACcRZABEDL+9re/6ZprrlHlypWVkJCg22+/XQcPHiww7qOPPlJqaqqio6N17bXXatOmTT77V61apQ4dOqh8+fJKSkrSgw8+qOPHj1+phwHgCiLIAAgZp0+f1vjx47V+/XotWLBAu3bt0sCBAwuMe+SRR/T888/rk08+UVxcnHr06KHTp09Lknbu3Kmbb75ZvXv31oYNG/Tmm29q1apVGjZs2BV+NACuhPBgNwAA5917773en+vXr6+XXnpJaWlpys3NVaVKlbz7Ro8era5du0qSZs2apTp16mj+/Pnq06ePJkyYoDvuuMN7AnGjRo300ksvqVOnTpo2bZqio6Ov6GMCcHlxRAZAyFi7dq169Oih5ORkVa5cWZ06dZIk7d6922dc+/btvT9Xq1ZNTZo00ZYtWyRJ69ev18yZM1WpUiXvkpGRofz8fGVnZ1+5BwPgiuCIDICQcPz4cWVkZCgjI0Ovv/664uLitHv3bmVkZOjUqVN+18nNzdXgwYP14IMPFtiXnJwcyJYBhACCDICQsHXrVh0+fFgTJ05UUlKSJOnTTz8tdOyaNWu8oeS7777TF198oWbNmkmSrr76am3evFkNGza8Mo0DCCreWgIQEpKTkxUZGamXX35ZX375pd5++22NHz++0LHjxo3TsmXLtGnTJg0cOFA1atRQz549JUmPPfaYPv74Yw0bNkzr1q3T9u3btXDhQk72BUopggyAkBAXF6eZM2fqrbfeUvPmzTVx4kQ999xzhY6dOHGifv3rX6tt27bav3+/Fi1apMjISElSamqqVqxYoS+++EIdOnRQmzZtNGrUKCUmJl7JhwPgCvGYmQW7CQAAgJLgiAwAAHAWQQYAADiLIAMAAJxFkAEAAM4iyAAAAGcRZAAAgLMIMgAAwFkEGQAA4CyCDAAAcBZBBgAAOIsgAwAAnEWQAQAAzvp/KG2PBUSnC6EAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "train = special_value_interpolation(train)\n", + "dev = special_value_interpolation(dev)\n", + "plot_label_count(train, \"train\")\n", + "plot_label_count(dev, \"dev\")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "\n", + "\n", + "def random_sampling(df,SEED):\n", + " # 0.0에서 5.0까지 0.2 간격으로 라벨을 설정\n", + " labels = [round(x * 0.2, 1) for x in range(0, 26)] # 0.0 ~ 5.0 까지\n", + "\n", + " sample_size_per_label = 20 # 각 라벨에서 추출할 개수\n", + " sampled_df_list = []\n", + "\n", + " for label in labels:\n", + " # 각 라벨에 해당하는 데이터 추출\n", + " label_df = df[df[\"label\"] == label]\n", + "\n", + " # 해당 라벨에서 샘플링할 수 있는 데이터가 충분하지 않으면 오류 방지\n", + " if len(label_df) < sample_size_per_label:\n", + " print(f\"라벨 {label}에서 샘플링할 데이터가 부족합니다.\")\n", + " continue\n", + "\n", + " # 각 라벨에서 지정된 개수만큼 무작위로 샘플링 (random_state=42로 고정)\n", + " sampled_label_df = label_df.sample(\n", + " n=sample_size_per_label, random_state=SEED, replace=False\n", + " )\n", + " sampled_df_list.append(sampled_label_df)\n", + "\n", + " # 샘플링된 데이터를 하나의 DataFrame으로 합침\n", + " final_sampled_df = pd.concat(sampled_df_list).reset_index(drop=True)\n", + "\n", + " # 남은 데이터를 하나의 DataFrame으로 합침 (추출되지 않은 데이터들)\n", + " final_remaining_df = df.drop(final_sampled_df.index).reset_index(drop=True)\n", + "\n", + " # 추출한 510개의 데이터와 남은 데이터를 반환\n", + " return final_sampled_df, final_remaining_df" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "new_dev, new_train = random_sampling(train,0)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "new_train = pd.concat([new_train,dev])" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "def swap_over_zero_label(df):\n", + " \"\"\"sentence 1과 2를 교환한 데이터 추가\"\"\"\n", + " df_swaped = df.rename(\n", + " columns={\"sentence_1\": \"sentence_2\", \"sentence_2\": \"sentence_1\"}\n", + " )\n", + " df_filtered = df_swaped[df_swaped[\"label\"] != 0.0]\n", + "\n", + " return pd.concat([df, df_filtered])" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "new_train = swap_over_zero_label(new_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "new_train = new_train.sample(frac=1, random_state=0).reset_index(drop=True)\n", + "new_dev = new_dev.sample(frac=1, random_state=0).reset_index(drop=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "new_train.to_csv(\"./split_v2_train.csv\")\n", + "new_dev.to_csv(\"./split_v2_dev.csv\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "ame", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 99dbae7ea1fc5cbd3106a8a1228c4fde556a8a97 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=EC=9D=B4=EC=98=88=EC=84=9C?= <49704047+yeseoLee@users.noreply.github.com> Date: Mon, 30 Sep 2024 10:50:00 +0900 Subject: [PATCH 20/27] =?UTF-8?q?[feat]=20EDA=20=EB=8D=B0=EC=9D=B4?= =?UTF-8?q?=ED=84=B0=20=EB=B6=84=EC=84=9D?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- utils/preprocess/eda.ipynb | 1619 +++++++++++++++++++++++++++++++ utils/preprocess/wordnet.pickle | Bin 0 -> 236584 bytes 2 files changed, 1619 insertions(+) create mode 100644 utils/preprocess/eda.ipynb create mode 100644 utils/preprocess/wordnet.pickle diff --git a/utils/preprocess/eda.ipynb b/utils/preprocess/eda.ipynb new file mode 100644 index 0000000..f303bd9 --- /dev/null +++ b/utils/preprocess/eda.ipynb @@ -0,0 +1,1619 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 목적\n", + "- 해당 노트북의 목적은 EDA(Exploratory Data Analysis)를 통한 실험 아이디어 도출에 있습니다. \n", + "- 여러 데이터 전처리 방법과 아이디어를 소개하고, 이를 시각화를 통해 보여줍니다. \n", + "- 빈약한 부분이나 오류가 있을 수 있습니다. 관련하여 댓글로 알려주시거나 질문해주시면 감사하겠습니다. " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import warnings\n", + "\n", + "# 모든 경고 메시지 무시\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 데이터 불러오기" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "train dataset count: 9324\n", + "dev dataset count: 550\n", + "test dataset count: 1100\n" + ] + } + ], + "source": [ + "train = pd.read_csv(\"../data/raw/train.csv\", encoding=\"UTF-8\")\n", + "dev = pd.read_csv(\"../data/raw/dev.csv\", encoding=\"UTF-8\")\n", + "test = pd.read_csv(\"../data/raw/test.csv\", encoding=\"UTF-8\")\n", + "print(\"train dataset count:\", len(train))\n", + "print(\"dev dataset count:\", len(dev))\n", + "print(\"test dataset count:\", len(test))" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idsourcesentence_1sentence_2labelbinary-label
0boostcamp-sts-v1-train-000nsmc-sampled스릴도있고 반전도 있고 여느 한국영화 쓰레기들하고는 차원이 다르네요~반전도 있고,사랑도 있고재미도있네요.2.20.0
1boostcamp-sts-v1-train-001slack-rtt앗 제가 접근권한이 없다고 뜹니다;;오, 액세스 권한이 없다고 합니다.4.21.0
2boostcamp-sts-v1-train-002petition-sampled주택청약조건 변경해주세요.주택청약 무주택기준 변경해주세요.2.40.0
3boostcamp-sts-v1-train-003slack-sampled입사후 처음 대면으로 만나 반가웠습니다.화상으로만 보다가 리얼로 만나니 정말 반가웠습니다.3.01.0
4boostcamp-sts-v1-train-004slack-sampled뿌듯뿌듯 하네요!!꼬옥 실제로 한번 뵈어요 뿌뿌뿌~!~!0.00.0
\n", + "" + ], + "text/plain": [ + " id source \\\n", + "0 boostcamp-sts-v1-train-000 nsmc-sampled \n", + "1 boostcamp-sts-v1-train-001 slack-rtt \n", + "2 boostcamp-sts-v1-train-002 petition-sampled \n", + "3 boostcamp-sts-v1-train-003 slack-sampled \n", + "4 boostcamp-sts-v1-train-004 slack-sampled \n", + "\n", + " sentence_1 sentence_2 \\\n", + "0 스릴도있고 반전도 있고 여느 한국영화 쓰레기들하고는 차원이 다르네요~ 반전도 있고,사랑도 있고재미도있네요. \n", + "1 앗 제가 접근권한이 없다고 뜹니다;; 오, 액세스 권한이 없다고 합니다. \n", + "2 주택청약조건 변경해주세요. 주택청약 무주택기준 변경해주세요. \n", + "3 입사후 처음 대면으로 만나 반가웠습니다. 화상으로만 보다가 리얼로 만나니 정말 반가웠습니다. \n", + "4 뿌듯뿌듯 하네요!! 꼬옥 실제로 한번 뵈어요 뿌뿌뿌~!~! \n", + "\n", + " label binary-label \n", + "0 2.2 0.0 \n", + "1 4.2 1.0 \n", + "2 2.4 0.0 \n", + "3 3.0 1.0 \n", + "4 0.0 0.0 " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Label 분포\n", + "- Label 값의 분포를 통해 데이터가 불균형한지, 숨겨진 특징은 없는지 확인할 수 있습니다. \n", + "- 다양한 데이터 증강 기법이나 샘플링 기법 등을 적용할 아이디어를 얻을 수 있습니다. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Label 별 데이터셋 특징\n", + "아래 표는 작년 AI Tech 6기 4조에서 분석했던 내용을 가져왔습니다.\n", + "\n", + "

\n", + "\n", + "| Label 구간 | sentence_1 | sentence_2 | 특징 |\n", + "|:---:|:---|:---|:---|\n", + "| 5.0 | 검정고시가 페지되어야 한다고 봅니다 | 검정고시 페지해야 한다고 봅니다 | 문장부호의 개수 및 띄어쓰기, 조사가 생략되거나 하는 다소의 차이가 존재하나, 문장이 거의 일치합니다. |\n", + "| 4.0 ~ 4.9 | 나는 이걸 왜 보았을까?? | 이거 내가 왜 봤지? | 문장의 의미가 거의 일치하나, 단어의 어순이 다르거나 일부 단어가 유의어로 교체되었습니다. |\n", + "| 3.0 ~ 3.9 | 히딩크감독을 다시 대한민국 축구 감독으로 | 히딩크감독님을 모셔와야합니다 | 문장의 맥락이 거의 일치하나, 주요한 보어 혹은 목적어가 누락되거나 유의어 대체 등에서 뚜렷한 차이를 보입니다. |\n", + "| 2.0 ~ 2.9 | 대회 때문에 정신 없어서 오늘 올립니다. | 오늘은 대회로 바쁘지 않아서 올립니다. | 문장에서 다루는 주제와 상황은 유사하지만, 읽는 사람에 따라 다르게 해석될 여지가 있습니다. |\n", + "| 1.0 ~ 1.9 | 다크나이트와 함께 최고의 히어로물 | 히트했던 드라마인 각시탈 또한 제대로된 히어로물입니다; | 일부 단어가 일치하거나 주제는 유사하지만, 서로 다른 의미를 가지는 문장입니다. |\n", + "| 0.1 ~ 0.9 | 공짜로 주어지는 것은 아무 것도 없다. | 아무 것도 남는게 없다.. | 일부 단어는 일치하나, 맥락과 의미가 전혀 다릅니다. |\n", + "| 0.0 | 부모님 댁으로 받았는데 너무 맛있다고 하셔요!! ㅎㅎㅎ | 타고 싶은데 넘 비싸요 ㅎㅎ | 공통점이 없는 전혀 다른 문장입니다. |\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_label_count(df, df_name):\n", + " grouped_data = df.groupby(\"label\")[\"id\"].count()\n", + " grouped_data.plot(kind=\"bar\", color=\"skyblue\")\n", + " plt.title(f\"{df_name} label Count\")\n", + " plt.xlabel(\"label\")\n", + " plt.ylabel(\"Count\")\n", + " plt.show()\n", + "\n", + "\n", + "def plot_multiple_label_counts(dfs, df_names):\n", + " num_experiments = len(df_names)\n", + " num_cols = 2 # 한 줄에 두 개씩 배치\n", + " num_rows = (num_experiments + 1) // num_cols # 행의 수 계산\n", + "\n", + " # 전체 subplot 크기 설정\n", + " fig, axes = plt.subplots(\n", + " num_rows, num_cols, figsize=(18, 6 * num_rows)\n", + " ) # subplot의 크기 설정\n", + "\n", + " for idx, df in enumerate(dfs):\n", + " row = idx // num_cols\n", + " col = idx % num_cols\n", + "\n", + " grouped_data = df.groupby(\"label\")[\"id\"].count()\n", + " # subplot에 각각의 그래프 그리기\n", + " if num_rows > 1:\n", + " ax = axes[row, col] # 2차원 배열에서 해당 위치의 subplot 지정\n", + " else:\n", + " ax = axes[col] # 1차원 배열일 경우\n", + "\n", + " grouped_data.plot(kind=\"bar\", color=\"skyblue\", ax=ax)\n", + "\n", + " # subplot의 제목 및 축 설정\n", + " ax.set_title(f\"Label Count ({df_names[idx]})\")\n", + " ax.set_xlabel(\"label\")\n", + " ax.set_ylabel(\"Count\")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUmElEQVR4nO3dd3hUZf7+8fdMkkmvpEMSkgAhAUIvUQERJCBi46uiqKBYl+giuyzLTwUsK1bEgrpFwQIrNlBR6VKEIM0AoYROKKlAMul1fn8gs0ZAISSZJHO/rutcZs555sznnCBz85znPMdgsVgsiIiIiNgxo60LEBEREbE1BSIRERGxewpEIiIiYvcUiERERMTuKRCJiIiI3VMgEhEREbunQCQiIiJ2T4FIRERE7J4CkYiIiNg9BSIRO9S6dWvGjBlTZ/ubNm0aBoOh1rVcf/31dVYLgMFgYNq0aXW6T4BVq1ZhMBhYtWpVne/7t853Tg0GA0lJSfX+2QBz5szBYDBw+PDhBvk8EVtTIBJphNavX8+0adPIy8uzdSnN1uHDhzEYDNbFyckJf39/rrjiCv7f//t/pKen19lnPf/88yxcuLDO9leXGnNtIg1JgUikEVq/fj1PP/10vQWitLQ0/v3vf9fLvpuaO+64g48++oj33nuPp556iqioKGbOnElsbCyffPJJjbb9+vWjpKSEfv36XdJn1CZ0PPnkk5SUlFzSe2rjQrXdfffdlJSUEBERUe81iDQGjrYuQEQuT3V1NeXl5bi4uFz0e5ydneuxoqalW7du3HXXXTXWHTlyhMGDBzN69GhiY2Pp3LkzAEaj8ZLOc20UFRXh7u6Oo6Mjjo62+yvawcEBBwcHm32+SENTD5FIIzNt2jQmTpwIQGRkpPWSztmxHGfHkcydO5cOHTrg7OzM4sWLAXjllVe44ooraNGiBa6urnTv3p3PP//8nM/47Riis+NF1q1bx4QJEwgICMDd3Z2bb76ZnJycWh3H7NmzueaaawgMDMTZ2Zm4uDjeeeedC7ZfunQpXbp0wcXFhbi4OL788stz2uTl5TF+/HjCwsJwdnamTZs2vPjii1RXV9eqxguJiIhgzpw5lJeX89JLL1nXn28M0b59+xgxYgTBwcG4uLjQqlUrRo4cSX5+PnDm91VUVMQHH3xg/V2ePfdnxwnt2rWLO++8E19fX6666qoa285n7ty5xMTE4OLiQvfu3VmzZk2N7WPGjKF169bnvO+3+/y92i40hujtt9+2/rkLDQ1l3Lhx5/RkXn311XTs2JFdu3YxYMAA3NzcaNmyZY1zKdLYqIdIpJG55ZZb2Lt3L//973957bXX8Pf3ByAgIMDaZuXKlXz66ackJSXh7+9v/fJ7/fXXueGGGxg1ahTl5eV88skn3HrrrSxatIhhw4b94Wc/+uij+Pr6MnXqVA4fPszMmTNJSkpi/vz5l3wc77zzDh06dOCGG27A0dGRb775hj/96U9UV1czbty4Gm337dvH7bffzsMPP8zo0aOZPXs2t956K4sXL+baa68FoLi4mP79+3P8+HEeeughwsPDWb9+PZMnTyYjI4OZM2deco2/JyEhgejoaJYtW3bBNuXl5SQmJlJWVsajjz5KcHAwx48fZ9GiReTl5eHt7c1HH33E/fffT69evXjwwQcBiI6OrrGfW2+9lbZt2/L8889jsVh+t67Vq1czf/58HnvsMZydnXn77bcZMmQIGzdupGPHjpd0jBdT269NmzaNp59+mkGDBvHII4+QlpbGO++8w6ZNm1i3bh1OTk7WtqdPn2bIkCHccsst3HbbbXz++edMmjSJTp06MXTo0EuqU6RBWESk0Xn55ZctgOXQoUPnbAMsRqPRsnPnznO2FRcX13hdXl5u6dixo+Waa66psT4iIsIyevRo6+vZs2dbAMugQYMs1dXV1vWPP/64xcHBwZKXl/e79U6dOtXy279OfluLxWKxJCYmWqKios6pBbB88cUX1nX5+fmWkJAQS9euXa3rnn32WYu7u7tl7969Nd7/97//3eLg4GBJT0+3rgMsU6dO/d2aDx06ZAEsL7/88gXb3HjjjRbAkp+fb7FYLJYffvjBAlh++OEHi8Visfz8888WwPLZZ5/97me5u7vXON9nnT1vd9xxxwW3/RpgASybN2+2rjty5IjFxcXFcvPNN1vXjR492hIREXFR+7xQbWf/TJz9M5idnW0xmUyWwYMHW6qqqqzt3nrrLQtgef/9963r+vfvbwEsH374oXVdWVmZJTg42DJixIhzPkukMdAlM5EmqH///sTFxZ2z3tXV1frz6dOnyc/Pp2/fvmzduvWi9vvggw/WuKTSt29fqqqqOHLkyCXX+Ota8vPzyc3NpX///hw8eNB6Oems0NBQbr75ZutrLy8v7rnnHn7++WcyMzMB+Oyzz+jbty++vr7k5uZal0GDBlFVVXXOZaO64OHhAUBBQcF5t3t7ewOwZMkSiouLa/05Dz/88EW3TUhIoHv37tbX4eHh3HjjjSxZsoSqqqpa1/BHli9fTnl5OePHj8do/N9XxwMPPICXlxfffvttjfYeHh41xmaZTCZ69erFwYMH661GkcuhS2YiTVBkZOR51y9atIjnnnuOlJQUysrKrOsvdo6g8PDwGq99fX2BM+HqUq1bt46pU6eSnJx8TljIz8+3hgmANm3anFNju3btgDO3xwcHB7Nv3z62b99e49Lhr2VnZ19yjX+ksLAQAE9Pz/Nuj4yMZMKECcyYMYO5c+fSt29fbrjhBu66664ax/dHLvT7PJ+2bdues65du3YUFxeTk5NDcHDwRe/rUpwNxTExMTXWm0wmoqKizgnNrVq1Oud36uvry/bt2+ulPpHLpUAk0gT9uvflrLVr13LDDTfQr18/3n77bUJCQnBycmL27NnMmzfvovZ7obuKLH8wruW3Dhw4wMCBA2nfvj0zZswgLCwMk8nEd999x2uvvVarQdDV1dVce+21/O1vfzvv9rMBqi6lpqYSGBiIl5fXBdu8+uqrjBkzhq+++oqlS5fy2GOPMX36dDZs2ECrVq0u6nPO9/u8HBcKwPXZg/RbdfVnSaShKBCJNEK1mfX5iy++wMXFhSVLltS4rX727Nl1WdpF+eabbygrK+Prr7+u0ev0ww8/nLf9/v37sVgsNY577969ANYB49HR0RQWFjJo0KD6K/xXkpOTOXDgwDm35J9Pp06d6NSpE08++STr16/nyiuv5N133+W5554Davf7vJB9+/ads27v3r24ublZe898fX3PO4fV+S59XmxtZ+cjSktLIyoqyrq+vLycQ4cONdjvRaS+aAyRSCPk7u4OcEkTMzo4OGAwGGr0Ahw+fNgmsxCf7R34dW9Afn7+BcPZiRMnWLBggfW12Wzmww8/pEuXLtZLQLfddhvJycksWbLknPfn5eVRWVlZZ/UfOXKEMWPGYDKZrFMgnI/ZbD7nczt16oTRaKxxydLd3b3OJtlMTk6uMSbs6NGjfPXVVwwePNh63qOjo8nPz69xeSojI6PGOb7U2gYNGoTJZOKNN96o8Xt97733yM/Pv6i7GEUaM/UQiTRCZwfNPvHEE4wcORInJyeGDx9uDUrnM2zYMGbMmMGQIUO48847yc7OZtasWbRp06bBx20MHjwYk8nE8OHDeeihhygsLOTf//43gYGBZGRknNO+Xbt2jB07lk2bNhEUFMT7779PVlZWjQA1ceJEvv76a66//nrGjBlD9+7dKSoqYseOHXz++eccPnzYOkXBpdi6dSsff/wx1dXV5OXlsWnTJr744gsMBgMfffQR8fHxF3zvypUrSUpK4tZbb6Vdu3ZUVlby0Ucf4eDgwIgRI6ztunfvzvLly5kxYwahoaFERkbSu3fvS64VoGPHjiQmJta47R7g6aeftrYZOXIkkyZN4uabb+axxx6juLiYd955h3bt2p0zwP5iawsICGDy5Mk8/fTTDBkyhBtuuIG0tDTefvttevbseVE9aSKNmk3vcRORC3r22WctLVu2tBiNxhq3PwOWcePGnfc97733nqVt27YWZ2dnS/v27S2zZ88+763WF7rtftOmTTXa/fY28ws532d8/fXXlvj4eIuLi4uldevWlhdffNHy/vvvnzOdQEREhGXYsGGWJUuWWOLj4621n+9W9oKCAsvkyZMtbdq0sZhMJou/v7/liiuusLzyyiuW8vJyazsu4bb7s4ujo6PFz8/P0rt3b8vkyZMtR44cOec9vz0fBw8etNx3332W6Ohoi4uLi8XPz88yYMAAy/Lly2u8b8+ePZZ+/fpZXF1dLYD13J89bzk5ORd1Ts/+7j/++GPr77lr167n/f0sXbrU0rFjR4vJZLLExMRYPv744/Pu80K1/fa2+7PeeustS/v27S1OTk6WoKAgyyOPPGI5ffp0jTb9+/e3dOjQ4ZyaLjQdgEhjYLBYNMJNRERE7JvGEImIiIjdUyASERERu6dAJCIiInZPgUhERETsngKRiIiI2D0FIhEREbF7mpjxIlRXV3PixAk8PT3rdAp+ERERqT8Wi4WCggJCQ0MxGn+/D0iB6CKcOHGCsLAwW5chIiIitXD06NE/fNiyAtFF8PT0BM6c0N976rWIiIg0HmazmbCwMOv3+O9RILoIZy+TeXl5KRCJiIg0MRcz3EWDqkVERMTuKRCJiIiI3VMgEhEREbunQCQiIiJ2T4FIRERE7J5NA9H06dPp2bMnnp6eBAYGctNNN5GWllajzdVXX43BYKixPPzwwzXapKenM2zYMNzc3AgMDGTixIlUVlbWaLNq1Sq6deuGs7Mzbdq0Yc6cOfV9eCIiItJE2DQQrV69mnHjxrFhwwaWLVtGRUUFgwcPpqioqEa7Bx54gIyMDOvy0ksvWbdVVVUxbNgwysvLWb9+PR988AFz5sxhypQp1jaHDh1i2LBhDBgwgJSUFMaPH8/999/PkiVLGuxYRUREpPEyWCwWi62LOCsnJ4fAwEBWr15Nv379gDM9RF26dGHmzJnnfc/333/P9ddfz4kTJwgKCgLg3XffZdKkSeTk5GAymZg0aRLffvstqamp1veNHDmSvLw8Fi9e/Id1mc1mvL29yc/P1zxEIiIiTcSlfH83qjFE+fn5APj5+dVYP3fuXPz9/enYsSOTJ0+muLjYui05OZlOnTpZwxBAYmIiZrOZnTt3WtsMGjSoxj4TExNJTk6ur0MRERGRJqTRzFRdXV3N+PHjufLKK+nYsaN1/Z133klERAShoaFs376dSZMmkZaWxpdffglAZmZmjTAEWF9nZmb+bhuz2UxJSQmurq41tpWVlVFWVmZ9bTab6+5ARUREpNFpNIFo3LhxpKam8uOPP9ZY/+CDD1p/7tSpEyEhIQwcOJADBw4QHR1dL7VMnz6dp59+ul72LSIiIo1Po7hklpSUxKJFi/jhhx/+8Gm0vXv3BmD//v0ABAcHk5WVVaPN2dfBwcG/28bLy+uc3iGAyZMnk5+fb12OHj1auwMTERGRJsGmgchisZCUlMSCBQtYuXIlkZGRf/ielJQUAEJCQgBISEhgx44dZGdnW9ssW7YMLy8v4uLirG1WrFhRYz/Lli0jISHhvJ/h7OxsfZCrHugqIiLS/Nk0EI0bN46PP/6YefPm4enpSWZmJpmZmZSUlABw4MABnn32WbZs2cLhw4f5+uuvueeee+jXrx/x8fEADB48mLi4OO6++262bdvGkiVLePLJJxk3bhzOzs4APPzwwxw8eJC//e1v7Nmzh7fffptPP/2Uxx9/3GbHLiIiIo2HTW+7NxgM510/e/ZsxowZw9GjR7nrrrtITU2lqKiIsLAwbr75Zp588skavTZHjhzhkUceYdWqVbi7uzN69GheeOEFHB3/N0Rq1apVPP744+zatYtWrVrx1FNPMWbMmIuqs75vu09PTyc3N7fO9+vv7094eHid71dERKQpuJTv70Y1D1FjVZ+BKD09nfaxsZT8aiqBuuLq5sae3bsVikRExC5dyvd3o7nLzF7l5uZSUlzMqEkvExRed3fNZaUfYO6LE8nNzVUgEhER+QMKRI1EUHg0rdp2sHUZIiIidqlR3HYvIiIiYksKRCIiImL3FIhERETE7ikQiYiIiN1TIBIRERG7p0AkIiIidk+BSEREROyeApGIiIjYPQUiERERsXsKRCIiImL3FIhERETE7ikQiYiIiN1TIBIRERG7p0AkIiIidk+BSEREROyeApGIiIjYPQUiERERsXsKRCIiImL3FIhERETE7ikQiYiIiN1TIBIRERG7p0AkIiIidk+BSEREROyeApGIiIjYPQUiERERsXsKRCIiImL3FIhERETE7ikQiYiIiN1TIBIRERG7p0AkIiIidk+BSEREROyeApGIiIjYPQUiERERsXsKRCIiImL3FIhERETE7ikQiYiIiN1TIBIRERG7p0AkIiIidk+BSEREROyeApGIiIjYPQUiERERsXsKRCIiImL3FIhERETE7ikQiYiIiN1TIBIRERG7p0AkIiIidk+BSEREROyeApGIiIjYPQUiERERsXsKRCIiImL3FIhERETE7ikQiYiIiN1TIBIRERG7p0AkIiIidk+BSEREROyeApGIiIjYPQUiERERsXsKRCIiImL3FIhERETE7tk0EE2fPp2ePXvi6elJYGAgN910E2lpaTXalJaWMm7cOFq0aIGHhwcjRowgKyurRpv09HSGDRuGm5sbgYGBTJw4kcrKyhptVq1aRbdu3XB2dqZNmzbMmTOnvg9PREREmgibBqLVq1czbtw4NmzYwLJly6ioqGDw4MEUFRVZ2zz++ON88803fPbZZ6xevZoTJ05wyy23WLdXVVUxbNgwysvLWb9+PR988AFz5sxhypQp1jaHDh1i2LBhDBgwgJSUFMaPH8/999/PkiVLGvR4RUREpHFytOWHL168uMbrOXPmEBgYyJYtW+jXrx/5+fm89957zJs3j2uuuQaA2bNnExsby4YNG+jTpw9Lly5l165dLF++nKCgILp06cKzzz7LpEmTmDZtGiaTiXfffZfIyEheffVVAGJjY/nxxx957bXXSExMbPDjFhERkcalUY0hys/PB8DPzw+ALVu2UFFRwaBBg6xt2rdvT3h4OMnJyQAkJyfTqVMngoKCrG0SExMxm83s3LnT2ubX+zjb5uw+fqusrAyz2VxjERERkear0QSi6upqxo8fz5VXXknHjh0ByMzMxGQy4ePjU6NtUFAQmZmZ1ja/DkNnt5/d9nttzGYzJSUl59Qyffp0vL29rUtYWFidHKOIiIg0To0mEI0bN47U1FQ++eQTW5fC5MmTyc/Pty5Hjx61dUkiIiJSj2w6huispKQkFi1axJo1a2jVqpV1fXBwMOXl5eTl5dXoJcrKyiI4ONjaZuPGjTX2d/YutF+3+e2daVlZWXh5eeHq6npOPc7Ozjg7O9fJsYmIiEjjZ9MeIovFQlJSEgsWLGDlypVERkbW2N69e3ecnJxYsWKFdV1aWhrp6ekkJCQAkJCQwI4dO8jOzra2WbZsGV5eXsTFxVnb/HofZ9uc3YeIiIjYN5v2EI0bN4558+bx1Vdf4enpaR3z4+3tjaurK97e3owdO5YJEybg5+eHl5cXjz76KAkJCfTp0weAwYMHExcXx913381LL71EZmYmTz75JOPGjbP28jz88MO89dZb/O1vf+O+++5j5cqVfPrpp3z77bc2O3YRERFpPGzaQ/TOO++Qn5/P1VdfTUhIiHWZP3++tc1rr73G9ddfz4gRI+jXrx/BwcF8+eWX1u0ODg4sWrQIBwcHEhISuOuuu7jnnnt45plnrG0iIyP59ttvWbZsGZ07d+bVV1/lP//5j265FxEREcDGPUQWi+UP27i4uDBr1ixmzZp1wTYRERF89913v7ufq6++mp9//vmSaxQREZHmr9HcZSYiIiJiKwpEIiIiYvcUiERERMTuKRCJiIiI3VMgEhEREbunQCQiIiJ2T4FIRERE7J4CkYiIiNg9BSIRERGxewpEIiIiYvcUiERERMTuKRCJiIiI3VMgEhEREbunQCQiIiJ2T4FIRERE7J4CkYiIiNg9BSIRERGxewpEIiIiYvcUiERERMTuKRCJiIiI3VMgEhEREbunQCQiIiJ2T4FIRERE7J4CkYiIiNg9BSIRERGxewpEIiIiYvcUiERERMTuKRCJiIiI3VMgEhEREbunQCQiIiJ2T4FIRERE7J4CkYiIiNg9BSIRERGxewpEIiIiYvcUiERERMTuKRCJiIiI3VMgEhEREbunQCQiIiJ2T4FIRERE7J4CkYiIiNg9BSIRERGxewpEIiIiYvcUiERERMTuKRCJiIiI3VMgEhEREbunQCQiIiJ2T4FIRERE7J4CkYiIiNg9BSIRERGxewpEIiIiYvcUiERERMTuKRCJiIiI3VMgEhEREbunQCQiIiJ2T4FIRERE7J4CkYiIiNg9BSIRERGxewpEIiIiYvcUiERERMTuKRCJiIiI3bNpIFqzZg3Dhw8nNDQUg8HAwoULa2wfM2YMBoOhxjJkyJAabU6dOsWoUaPw8vLCx8eHsWPHUlhYWKPN9u3b6du3Ly4uLoSFhfHSSy/V96GJiIhIE2LTQFRUVETnzp2ZNWvWBdsMGTKEjIwM6/Lf//63xvZRo0axc+dOli1bxqJFi1izZg0PPvigdbvZbGbw4MFERESwZcsWXn75ZaZNm8a//vWvejsuERERaVocbfnhQ4cOZejQob/bxtnZmeDg4PNu2717N4sXL2bTpk306NEDgDfffJPrrruOV155hdDQUObOnUt5eTnvv/8+JpOJDh06kJKSwowZM2oEJxEREbFfjX4M0apVqwgMDCQmJoZHHnmEkydPWrclJyfj4+NjDUMAgwYNwmg08tNPP1nb9OvXD5PJZG2TmJhIWloap0+fPu9nlpWVYTabaywiIiLSfDXqQDRkyBA+/PBDVqxYwYsvvsjq1asZOnQoVVVVAGRmZhIYGFjjPY6Ojvj5+ZGZmWltExQUVKPN2ddn2/zW9OnT8fb2ti5hYWF1fWgiIiLSiNj0ktkfGTlypPXnTp06ER8fT3R0NKtWrWLgwIH19rmTJ09mwoQJ1tdms1mhSEREpBlr1D1EvxUVFYW/vz/79+8HIDg4mOzs7BptKisrOXXqlHXcUXBwMFlZWTXanH19obFJzs7OeHl51VhERESk+WpSgejYsWOcPHmSkJAQABISEsjLy2PLli3WNitXrqS6uprevXtb26xZs4aKigprm2XLlhETE4Ovr2/DHoCIiIg0SjYNRIWFhaSkpJCSkgLAoUOHSElJIT09ncLCQiZOnMiGDRs4fPgwK1as4MYbb6RNmzYkJiYCEBsby5AhQ3jggQfYuHEj69atIykpiZEjRxIaGgrAnXfeiclkYuzYsezcuZP58+fz+uuv17gkJiIiIvbNpoFo8+bNdO3ala5duwIwYcIEunbtypQpU3BwcGD79u3ccMMNtGvXjrFjx9K9e3fWrl2Ls7OzdR9z586lffv2DBw4kOuuu46rrrqqxhxD3t7eLF26lEOHDtG9e3f+8pe/MGXKFN1yLyIiIlY2HVR99dVXY7FYLrh9yZIlf7gPPz8/5s2b97tt4uPjWbt27SXXJyIiIvahSY0hEhEREakPCkQiIiJi9xSIRERExO4pEImIiIjdUyASERERu1erQBQVFVXjIatn5eXlERUVddlFiYiIiDSkWgWiw4cPWx+w+mtlZWUcP378sosSERERaUiXNA/R119/bf15yZIleHt7W19XVVWxYsUKWrduXWfFiYiIiDSESwpEN910EwAGg4HRo0fX2Obk5ETr1q159dVX66w4ERERkYZwSYGouroagMjISDZt2oS/v3+9FCUiIiLSkGr16I5Dhw7VdR0iIiIiNlPrZ5mtWLGCFStWkJ2dbe05Ouv999+/7MJEREREGkqtAtHTTz/NM888Q48ePQgJCcFgMNR1XSIiIiINplaB6N1332XOnDncfffddV2PiIiISIOr1TxE5eXlXHHFFXVdi4iIiIhN1CoQ3X///cybN6+uaxERERGxiVpdMistLeVf//oXy5cvJz4+HicnpxrbZ8yYUSfFiYiIiDSEWgWi7du306VLFwBSU1NrbNMAaxEREWlqahWIfvjhh7quQ0RERMRmajWGSERERKQ5qVUP0YABA3730tjKlStrXZCIiIhIQ6tVIDo7fuisiooKUlJSSE1NPeehryIiIiKNXa0C0WuvvXbe9dOmTaOwsPCyChIRERFpaHU6huiuu+7Sc8xERESkyanTQJScnIyLi0td7lJERESk3tXqktktt9xS47XFYiEjI4PNmzfz1FNP1UlhIiIiIg2lVoHI29u7xmuj0UhMTAzPPPMMgwcPrpPCRERERBpKrQLR7Nmz67oOEREREZupVSA6a8uWLezevRuADh060LVr1zopSkRERKQh1SoQZWdnM3LkSFatWoWPjw8AeXl5DBgwgE8++YSAgIC6rFFERESkXtXqLrNHH32UgoICdu7cyalTpzh16hSpqamYzWYee+yxuq5RREREpF7Vqodo8eLFLF++nNjYWOu6uLg4Zs2apUHVIiIi0uTUqoeouroaJyenc9Y7OTlRXV192UWJiIiINKRaBaJrrrmGP//5z5w4ccK67vjx4zz++OMMHDiwzooTERERaQi1CkRvvfUWZrOZ1q1bEx0dTXR0NJGRkZjNZt588826rlFERESkXtVqDFFYWBhbt25l+fLl7NmzB4DY2FgGDRpUp8WJiIiINIRL6iFauXIlcXFxmM1mDAYD1157LY8++iiPPvooPXv2pEOHDqxdu7a+ahURERGpF5cUiGbOnMkDDzyAl5fXOdu8vb156KGHmDFjRp0VJyIiItIQLikQbdu2jSFDhlxw++DBg9myZctlFyUiIiLSkC4pEGVlZZ33dvuzHB0dycnJueyiRERERBrSJQWili1bkpqaesHt27dvJyQk5LKLEhEREWlIlxSIrrvuOp566ilKS0vP2VZSUsLUqVO5/vrr66w4ERERkYZwSbfdP/nkk3z55Ze0a9eOpKQkYmJiANizZw+zZs2iqqqKJ554ol4KFREREakvlxSIgoKCWL9+PY888giTJ0/GYrEAYDAYSExMZNasWQQFBdVLoSIiIiL15ZInZoyIiOC7777j9OnT7N+/H4vFQtu2bfH19a2P+kRERETqXa1mqgbw9fWlZ8+edVmLiIiIiE3U6llmIiIiIs2JApGIiIjYPQUiERERsXsKRCIiImL3FIhERETE7ikQiYiIiN1TIBIRERG7p0AkIiIidk+BSEREROyeApGIiIjYPQUiERERsXsKRCIiImL3FIhERETE7ikQiYiIiN1TIBIRERG7Z9NAtGbNGoYPH05oaCgGg4GFCxfW2G6xWJgyZQohISG4uroyaNAg9u3bV6PNqVOnGDVqFF5eXvj4+DB27FgKCwtrtNm+fTt9+/bFxcWFsLAwXnrppfo+tMtWWVVNfkkFlVXVti5FRESk2XO05YcXFRXRuXNn7rvvPm655ZZztr/00ku88cYbfPDBB0RGRvLUU0+RmJjIrl27cHFxAWDUqFFkZGSwbNkyKioquPfee3nwwQeZN28eAGazmcGDBzNo0CDeffddduzYwX333YePjw8PPvhggx7vHymrqGLzkdPsyjBTXF4FgKPRQJifG+2DPWkb6IHBYLBxlSIiIs2PTQPR0KFDGTp06Hm3WSwWZs6cyZNPPsmNN94IwIcffkhQUBALFy5k5MiR7N69m8WLF7Np0yZ69OgBwJtvvsl1113HK6+8QmhoKHPnzqW8vJz3338fk8lEhw4dSElJYcaMGY0qEB0uNLJo/WHKKv/XI2Q0QGW1hUO5RRzKLWJXCzcGtg/E08XJhpWKiIg0P412DNGhQ4fIzMxk0KBB1nXe3t707t2b5ORkAJKTk/Hx8bGGIYBBgwZhNBr56aefrG369euHyWSytklMTCQtLY3Tp0+f97PLysowm801lvrk2eNGtpxypKyyGj93E9fHh/BQvyiSBrThzl7h9Gzti4PRwJGTxXz8UzrHT5fUaz0iIiL2ptEGoszMTACCgoJqrA8KCrJuy8zMJDAwsMZ2R0dH/Pz8arQ53z5+/Rm/NX36dLy9va1LWFjY5R/QBXy5uxC/gQ8A0D3Cl1G9w4kO8MDFyQGDwUCApzNXRPtzZ69wgrycKa+s5qttxxWKRERE6lCjDUS2NHnyZPLz863L0aNH6+VzVu/N4eMdBQDEeldyZXQLjBcYI+TnbuL/urUi3M+NiioLX207Tka+QpGIiEhdaLSBKDg4GICsrKwa67OysqzbgoODyc7OrrG9srKSU6dO1Whzvn38+jN+y9nZGS8vrxpLfejX1p8h0W6cXv0Bcd7Vfzhg2tHByPD4EGsoWrQ9g6KyynqpTURExJ402kAUGRlJcHAwK1assK4zm8389NNPJCQkAJCQkEBeXh5btmyxtlm5ciXV1dX07t3b2mbNmjVUVFRY2yxbtoyYmBh8fX0b6GjOz2Aw8EA3L8wbPrvo9zg6GLk+PoQW7iaKy6v4PjWT6mpLPVYpIiLS/Nk0EBUWFpKSkkJKSgpwZiB1SkoK6enpGAwGxo8fz3PPPcfXX3/Njh07uOeeewgNDeWmm24CIDY2liFDhvDAAw+wceNG1q1bR1JSEiNHjiQ0NBSAO++8E5PJxNixY9m5cyfz58/n9ddfZ8KECTY66ppqcxu9k4ORYZ1CMDkYOZ5XwvqDJ+uhMhEREfth09vuN2/ezIABA6yvz4aU0aNHM2fOHP72t79RVFTEgw8+SF5eHldddRWLFy+2zkEEMHfuXJKSkhg4cCBGo5ERI0bwxhtvWLd7e3uzdOlSxo0bR/fu3fH392fKlCmN6pb72vB1NzEoLpDvdmSy5chpovzdCfVxtXVZIiIiTZJNA9HVV1+NxXLhyz0Gg4FnnnmGZ5555oJt/Pz8rJMwXkh8fDxr166tdZ2NVdtAT2JDitidUcDy3Vnc2SscR4dGexVURESk0bJpIJLL169tAEdOFnO6uIKNh09xRbS/rUsSEWlW0tPTyc3NrfP9+vv7Ex4eXuf7ldpRIGriXJwcGBATyLc7Mth85DQxQZ608HC2dVkiIs1Ceno67WNjKSkurvN9u7q5sWf3boWiRkKBqBloE+hBdIA7B3KKWL03h5u7trR1SSIizUJubi4lxcWMmvQyQeHRdbbfrPQDzH1xIrm5uQpEjYQCUTPRt20Ah08Wc/R0CQdyinD547eIiMhFCgqPplXbDrYuQ+qRRuA2E96uTnQL9wFg7b4cqjQ1kYiIyEVTIGpGekT44e7sgLm0kv0F+tWKiIhcLH1rNiMmRyNXRJ25yyzN7IDB2d3GFYmIiDQNCkTNTPsQT/zcTFRUG/DudbOtyxEREWkSFIiaGaPBQEJ0CwA8e9xIXmmVjSsSERFp/BSImqHoAHd8TdUYTa58vqvQ1uWIiIg0egpEzZDBYKCjz5meoaUHizl6qu4nFBMREWlOFIiaqUAXCyWHU6ishtdX7LN1OSIiIo2aAlEzlrfmQwC+3HqMfVkFNq5GRESk8VIgasbKM/bSu6Uz1RZ4deleW5cjIiLSaCkQNXN3dvTEaIDFOzNJPZ5v63JEREQaJQWiZi7M24kbu5x52Otry9RLJCIicj4KRHbgsYFtcTAaWLEnm5/TT9u6HBERkUZHgcgORPq7c0vXX3qJluuOMxERkd9SILITjw1si6PRwJq9OWw+fMrW5YiIiDQqCkR2IszPjVt7hAEwQ2OJREREalAgsiNJ17TB5GBk/YGTJB84aetyREREGg0FIjvS0seVkb3O9BK9tmwvFovFxhWJiIg0DgpEduZPV7fB5Ghk4+FTrNuvXiIRERFQILI7wd4u3NU7AoBXl6Wpl0hERAQFIrv08NVRuDgZ+Tk9j1V7c2xdjoiIiM0pENmhQE8XRie0BjSWSEREBBSI7NaD/aJwMzmw/Vg+y3dn27ocERERm1IgslMtPJwZc0VrAF5ZkkZVtXqJRETEfikQ2bGH+kXj7epEWlYBX2w5ZutyREREbEaByI55uznx6DVtgDN3nJWUV9m4IhEREdtQILJzdydE0MrXlSxzGe+vO2TrckRERGxCgcjOOTs6MDExBoB3Vh0gt7DMxhWJiIg0PAUiYXh8KJ1aelNYVsmbK/bZuhwREZEGp0AkGI0GJl/XHoC5P6VzMKfQxhWJiIg0LAUiAeCKaH8GxARQWW3h5SVpti5HRESkQSkQidXfh8ZiNMD3qZlsPHTK1uWIiIg0GAUisYoJ9uT2nuEATPkqlcqqahtXJCIi0jAUiKSGiYkx+Lg5sSezgI82HLF1OSIiIg3C0dYFSOPi527ir4NjeHJhKjOW7uX6+FACPJ1tXVadSE9PJzc3t1727e/vT3h4eL3sW0RE6p8CkZzjjl7hfLIpndTjZp5dtIs37uhq65IuW3p6Ou1jYykpLq6X/bu6ubFn926FIhGRJkqBSM7hYDTwj5s6cfPb6/h62wlu7tqSAe0DbV3WZcnNzaWkuJhRk14mKDy6TvedlX6AuS9OJDc3V4FIRKSJUiCS8+oc5sN9V0bynx8P8cSCHSyd0B8P56b/xyUoPJpWbTvYugwREWlkNKhaLmjC4HaE+blyIr+UlxbvsXU5IiIi9UaBSC7IzeTI9JvjAfgw+Qhr9+XYuCIREZH6oUAkv+uqtv7c3ScCgL9+to284nIbVyQiIlL3FIjkD/2/62KJ8ncny1zGEwtTsVgsti5JRESkTikQyR9yNTnw2u1dcDAa+HZ7BvM2ptu6JBERkTqlQCQXpXOYDxMTYwB4+utdpB7Pt3FFIiIidUeBSC7ag32jGBQbRHlVNX+au5X8kgpblyQiIlInFIjkohmNBl69tTOtfF1JP1VM0rytegCsiIg0CwpEckm83Zz41909cDM5sHZfLs8s2mXrkkRERC6bApFcsrhQL14f2RWD4cz8RO//eMjWJYmIiFwWBSKplWvjgvj7kPYAPLNoFwt+PmbjikRERGpPgUhq7cF+Udx3ZSQAf/1sO8t3Zdm4IhERkdpRIJJaMxgMPDksllu6tqSq2sKf5m5VKBIRkSZJgUgui9Fo4MX/i+e6TsGUV1Xz8MdbWJyaYeuyRERELomjrQuQps/JwcgbI7vi5LCNr1JO8Ke5W3nupk7c2Tvc1qWJNFvp6enk5ubWy779/f0JD29e//8WlFaQZS4l21xGQVklZZXVWCwW3EyOeDg7EuLtQoiPC86ODrYuVWxEgUjqhKODkRm3dcHF0YH5m4/y/xbs4HheMX+5Ngaj0WDr8kSalfT0dNrHxlJSXFwv+3d1c2PP7t1NNhQVlFaw+chpthw+zbZjeezNKiDLXPaH7zMYIMrfnfhWPnSL8GVATEADVCuNhQKR1BkHo4EXRnQixMeFmcv3MeuHA+zPLuSVWzvj6eJk6/JEmo3c3FxKiosZNellgsKj63TfWekHmPviRHJzc5tUIMrML2XZ7iyW7sxkw8GTVFSd+xBqLxdHAr1c8HZ1wuRgxGCA4vIqzKUVnMgrobSimgM5RRzIKWLBz8cBCPd2xKvXCEoqG/qIpKEpEEmdMhgMjB/UjpY+rjyxIJUlO7PYl72Od+/qTrsgT1uXJ9KsBIVH06ptB1uXYTPm0gq+SjnB51uOse1oXo1t4X5u9GztR9dwH2JDPGkT6Im364X/YWaxWMgpLGPnCTPbjuaxbn8uW46cJj2/Et8B9/LdCQttKzPoFuFLsJdLPR+Z2EKjHlQ9bdo0DAZDjaV9+/bW7aWlpYwbN44WLVrg4eHBiBEjyMqqeZdTeno6w4YNw83NjcDAQCZOnEhlpaJ+fbu1RxifPpxAiLcLB3OKGP7mj3yUfBiL5dx/tYmIXCyLxULK0Twmfb6d3v9YwVMLU61hqGu4D5OGtGf5hP6s+dsAXr2tM3f1iaB7hN/vhiE484+5QE8XBsQEMn5QOz57+Aq2PnUtj/TwpvToTsDAvuxC5m86ysKfj5NT8MeX4KRpafQ9RB06dGD58uXW146O/yv58ccf59tvv+Wzzz7D29ubpKQkbrnlFtatWwdAVVUVw4YNIzg4mPXr15ORkcE999yDk5MTzz//fIMfi73pEubDN49exV8+3cbqvTk89dVOlu/O5vlbOtHSx9XW5YlIE1JVbWHJzkzeXX2A7cfyrevbBHpwR69whseHEFjHPTc+biaujXLj7/MmMfa1BRzHj7SsAo6cKubIxnRigz25qq0/bqZG/1UqF6HR/xYdHR0JDg4+Z31+fj7vvfce8+bN45prrgFg9uzZxMbGsmHDBvr06cPSpUvZtWsXy5cvJygoiC5duvDss88yadIkpk2bhslkaujDsTv+Hs7MHtOTD5IPM/37Pazem8PgGauZmBjDXX0icHRo1J2UImJjZZVVLPz5OP9cfZCDuUUAmByNDOsUwp29w+kR4YvBUP83bnibLHRoG0zvqBasP5DL3qxCdmcWcDC3iKva+tMhxKtB6pD60+i/jfbt20doaChRUVGMGjWK9PR0ALZs2UJFRQWDBg2ytm3fvj3h4eEkJycDkJycTKdOnQgKCrK2SUxMxGw2s3Pnzgt+ZllZGWazucYitWc0Grj3yki+e+wqekT4UlRexbRvdjHk9bWs2J2ly2gico6Kqmo+3nCE/i+tYtIXOziYW4S3qxOPDWzLhskDee32LvRs7dfgIcTb1YmhHUO4vUcYAR7OlFVWs2J3Nl9vO0FRmYZjNGWNOhD17t2bOXPmsHjxYt555x0OHTpE3759KSgoIDMzE5PJhI+PT433BAUFkZmZCUBmZmaNMHR2+9ltFzJ9+nS8vb2tS1hYWN0emJ1qE+jJpw8l8OxNHfF1c2J/diFjP9jMqP/8ROrx/D/egYg0exaLhW+3ZzD4tTU8uTCVTHMpQV7OPDkslnV/v4YJ17bDz932vfvB3i6M7BnGVW38cTAaOHyymLk/pXPkZJGtS5NaatSXzIYOHWr9OT4+nt69exMREcGnn36Kq2v9jUGZPHkyEyZMsL42m80KRXXEaDRwd58IbuwSyts/HOD9dYdYf+Akw9/6kes6hvBw/2g6tfK2dZkiYgPrD+Ty4vd72PbLGCF/DxOPXtOWkb3CGuWEiUajge4RvkS0cGPxzkxOFpazMOUECVEt6Nm6YS7lSd1p1IHot3x8fGjXrh379+/n2muvpby8nLy8vBq9RFlZWdYxR8HBwWzcuLHGPs7ehXa+cUlnOTs74+zsXPcHYAO7d++ul/1e7ky2Xi5O/H1oe+7qE84rS9JYmHKCb3dk8O2ODK6IbsHD/aPp29Zff6GI2IFdJ8y8uPjMGEMAd5MDD/SL4v6+UXg4N/6vKX8PZ0b2CGP13hxST5hJPniSLHMpiR2CMTk26gsx8iuN/0/arxQWFnLgwAHuvvtuunfvjpOTEytWrGDEiBEApKWlkZ6eTkJCAgAJCQn84x//IDs7m8DAQACWLVuGl5cXcXFxNjuOhmA+deYvlrvuuqte9l9XM9m28nVj5siuPHx1NP9afZCvt51g/YGTrD9wktgQL0b1DufGLqGa2FGkGTp6qphXl6bx1bYTWCzgaDQwqnc4Sde0JcCzaf2j1NHByMDYIIK9XfghLYeDuUV8vvUYN8SH4uHSpL5q7Vaj/i399a9/Zfjw4URERHDixAmmTp2Kg4MDd9xxB97e3owdO5YJEybg5+eHl5cXjz76KAkJCfTp0weAwYMHExcXx913381LL71EZmYmTz75JOPGjWs2PUAXUlJ4ZiD4sIeeICa+e53uuz5msm0f7MWM27vwl8QY/rP2IJ9sPMruDDNPLkzlH9/u5obOoYzsFUaXMB/1Gok0cScLy3jrh/18vOGIdUbpGzqH8pfB7Yho4W7j6i5Ph1Bv/NxNfLMtg5yCMuZvPsrNXVs2inFP8vsadSA6duwYd9xxBydPniQgIICrrrqKDRs2EBBw5vkyr732GkajkREjRlBWVkZiYiJvv/229f0ODg4sWrSIRx55hISEBNzd3Rk9ejTPPPOMrQ6pwbUIjWhSM9m29HFl6vAOPHZNW77Yeoz/bkznQE4R8zcfZf7mo0QHuDO8cyjDO4cSHeBh63JF5BIUl1fy3tpD/HPNQQp/uSOrb1t/Jg1pT8eWzWfsYIi3K7f3DOPrlBOcKi7n8y3HuKlrKIGemuG6MWvUgeiTTz753e0uLi7MmjWLWbNmXbBNREQE3333XV2XJvXM193E/X2jGHtVJJuPnOa/P6Xz7Y4MDuQUMXP5PmYu30dciBfXdw5heHwoYX5uti5ZRC6goqqaTzYd5fXl+8gtPDPDc8eWXkwa0p6+bevmAarp6enk5ubWyb5+rbbjML1dnfi/7q1YmHKc7IIyvth6nJu6hBLirUlpG6tGHYhEDAYDPVv70bO1H0/f2IFlu7L4ZtsJ1u7LZVeGmV0ZZl5anEaXMB+u6xRMYofgJt/lLtJcWCwWvtuRyStL0zj0y6SK4X5u/DUxhus7hWA01s3l7/T0dNrHxlJSXFwn+zufwsLCS36Pq8mBW7q15KuUE2Tkl7Lg5+P6B1wjpkAkTYanixO3dGvFLd1acbqonCU7M/lm+wmSD5wk5WgeKUfzeP67PcSGeDGkQzBDOgbTLshDY45EGpjFYuGHtGxeXbqXnSfOjGds4W7isYFtuaNXeJ3feZWbm0tJcTGjJr1MUHh0ne5798bVfP/B65SWltbq/c6ODtzctSWLtmeQfqqYr7adYFinEHSbSOOjQCRNkq+7iZG9whnZK5zsglIWp2ayZGcmGw6eYneGmd0ZZl5bvpfWLdxI7BhMpGM5oGAkUp8sFgvrD5zklaVp/JyeB5y5hX5s3yge7HfmFvr6uLR19rJWUHh0nY+ZzEo/cNn7cHIwMrxzCItTMzmQU3RmehF//X3U2CgQSZMX6OnCPQmtuSehNaeLylm+O4slO7NYsy+HwyeL+efqgwC0/NNsUk45YDlVTEsf1zrrrpea6mssB1z+/FdSfzYdPsWrS9PYcPAUAC5ORkYntOah/tHWO6zq+9JWbS5rNRRHo5GhHUP4PvXMWMj1OY44t4y1dVnyKwpE0qz4upu4tUcYt/YIo7CsktVpOSzemcmynRmUevpzoBAO/HwcFycjUf4etAn0IMzXVQ+ZrSP1/YVXV/NfSd2wWCz8dOgUb686wJpfJlU0ORi5s3c4fxoQfc5dVfV1aetyL2s1FAejgSEdg/lm25nLZ4G3TuPAqQq62bowARSIpBnzcHZkWHwIw+JD2LCpmmtGPkyvMU+RWe5EaUW1dVC2k4OByBbuRAd60LqFu2aWvQz1OZajPua/ktqpqrawbFcm76w+yLajecCZSRVv7RHGo9e0IdTn9++kqutLW3VxWauhOBqNXB8fwqfJ+8jFnafXnCS+YwExwZ62Ls3uKRBJrTXWx4Kcj8nBQMnBzXRvUUVodAzH80o4kFPIgZwiCssq2ZtdyN7sQhyMBsL93GgT4EFkgDuuTo3v+UlNQX2M5RDbKyitYOHPx5m97jAHf7lrzORo5NburXioXzThLXT31MVwcjByRUAln208BKExjPrPT3z5yBU6fzamQCSXrKk8FuRCjEYDYX5uhPm50b+dhSxzGftzCtmfXUh+SQWHcos4lFuEYQ+08nElOtCD6ACPJvFMJZH6sDvDzMcbjrDw5+MUlVcB4OXiyD0JrRl9Resm95iNxsDJCNmfTeWqKZ9zJL+M0bM38vnDCbTw0Lm0Ff0NL5esqT0W5PcYDAaCvV0I9nbhyugWnCwq50B2IftzCsktLOfo6RKOni5hVVoOwV4utA/2pF2wp3qOpNkrKKvm4w1HWPDzcbYcOW1dHxXgzl29I7itZ5j+kXCZqksLeaqfH1PXFnAot4j7PtjMfx/ojZtJ59UWdNal1praY0H+iMFgwN/DGX8PZ3pHtSC/pMIajjLyS8k0n1nW7Msh0t+duBAvTQIpzUpFVTVHi4wE3PIUY7/JorI6CzgzPmhwhyDu6hNBQlQLze1Vh/xcHfjgvl7837vr2XY0j6R5P/Ovu7vrRg8bUCASuQBvVye6RfjSLcKXwrJK9mUVsDuzgJyCMg7kFHEgpwhXJwdaujjgFBiFxWKxdckil6yg9H+XiY+eLqGq2hG3tr2prIa4EC9u6hrKjV1aEuSl53DVlzaBHrw3ugd3/vsnVu7J5okFqbwwopOCZwNTIBK5CB7OjnQN96VruC+5hWXszjCzJ7OA4vIq9lc4EHrvG0xYmsvdxQe5sUtLjamQRqu0oooTeSUcO13C0dPF5BaW19ju5mAhY+2nzHl6HDcO6G2jKu1P9wg/3ryjKw9/vIX5m48S7O3C49e2s3VZdkWBSOQS+Xs407dtAFdG+3PkVDFb9h3lmLmaI/nw3Le7mf79HgbEBHJrj1YMiAnUbfxiM1XVFk4VlZNdUEq2uYwMcyk5BWXntAvxdiHS351If3dKTuzntbUfEeY9vuELtnODOwTz7E0deWJBKq+v2EeQlwt39tYUEw1FgUgapbq+pb8+pggwGg1E+rvjdLqKmc/fzXMffs9POUZSjuaxfHcWy3dn0cLdxI1dWnJrj1bEhnjVeQ0iZ5VVVnG6qIKTRWVkm8vILigjp7CMqupzL+X6ujnR0teVVj5uhPm51hjEe0xXaWxqVO8IsvJLeWPlfp5cuIMAT2eujQuydVl2QYFIGpX6vqW/vqb2ry4rIrGNO5Nv68a+rAI+33KML38+Tk5BGe+vO8T76w7RsaUXt3YP48Yuofi4meqlDmneqqstnMgv4efMMjy738DWUw78tOUYp4rLKf7ldvjfMjkYCfR0JtDLmSAvF1r6uOKuu8MatcevbUemuZRPNx/j0f9uZd4DfegW7mvrspo9/V8hjUp93dLfkFP7tw3yZPJ1sUxMjGH13hw+33KM5buzSD1uJvX4Tv7x7W6ujQvi/3q0om8bf91NIucoKa/iYO6ZiUMPZBdaJxE9lFtIaUU1AH6DHuRQIUCJ9X3uzg74upnOBCBPFwK9nPFxddLg3CbGYDDwj5s7kVNQxg9pOYyds4kvHrmCqAAPW5fWrCkQSaNU17f022Jqf0cHIwNjgxgYG8SponK+SjnOZ5uPsSvDzLc7Mvh2Rwb+HiaGdgzh+vgQerT2w0EPnLUrBaUV7M8uZF9WIfuyC9j3y8/H80ou+B4nBwPB7g7s2bSabj37ENEqFF93E75uTjg7an6s5sLJwcisUd24418b2HYsn9GzN/LFI1ec83w4qTsKRCINwM/dxL1XRnLvlZHsPJHPZ5uP8VXKcXILy/lowxE+2nCEQE9nrut0Jhx1C/fFqHDUbJRXVrM3q4CdJ/LZm1X4S/ApICP/wj2WPm5OtAk4M0t6dKD7mf8GeNDK15Xt21Lo/sR0Ol77Ja00Nq3ZcjM58t6Ynox4Zz1HThZz35xNfPJggibErCc6qyINrEOoNx1u8OaJYbGs25/Lt9szWLIzk+yCMuasP8yc9YcJ8Xbh2rggBsQE0ieqBa4m/cu/qTgbflKP57P9eD6px/PZk1FAeVX1edsHejrTNsiDtoGe1v+2CfTAz13jzOTMXa0f3NuLEe+sJ/W4mT/N3cp7o3vgpEvtdU6BSMRGnByMXB0TyNUxgfzj5k6s3ZfDt9szWLori4z8Uj5MPsKHyUdwdjSSEN2C/u0C6BPVgpggT/UeNRIVVb8KP8fOhJ/dFwg/Xi6OdGzpTUywJ+2CPGkbeCb8eLs52aByaUpa+7vz3pie3PGvDazZm8Pfv9jBK7fGa2xYHVMgEmkETI7/G29UWlHFj/ty+SEtm1VpORzPO/MstVVpZ+7A83JxpFekH70i/egS5ktcqJe60BtARVU1+7IKST2ez45fen92Z5gprzw3/Hi6OBLfypuOLb3p1NKb+JY+hPm56gtMaq1LmA+zRnXlgQ+38MXWY4R4u/DXxBhbl9Ws6G9RkUbGxcmBQXFBDIoLwmKxsC+7kJV7sll/4CRbDp/CXFrJ8t3ZLN+dDYDBAJEt3OnQ0pu4EC+iAtyJDnAn3M9dk0LWUmVVNfuyC9nxyyWv7cfOhJ+yC4SfjqHe1gAU38qbcD83hR+pc9e0D+L5mzsy6YsdvPXDfoK9XbirT4Sty2o2FIhEGjGDwUC7oDOXWB7uH01lVTU7T5j56dBJNh46TerxfDLNpRzMLeJgbhHfbDthfa/RAGF+brT0cSXYy4Ugb5cz//VyIfiXn33ddWdSSXkVaVkF7DphZueJfHZlmNmdYbbe3v5rns6OdGjpRXwrH2vvT4Sfmy5hSoO5vWc4mfllvLZ8L1O+SiXQ05nBHYJtXVazoEAk0oQ4OhjpHOZD5zAfHux3Zl1uYRk7T5hJPZ5PWmYBh3KLOJhTSFF5FUdOFnPkZPHv7tPVyQEfNye8XZ3wcXPCx9V05vUvP3u5OuLl4oSniyNerk54uThZ1zk7GptMT0hpRRWHTxZxKOdMeEzLLGBXhpmDOYWcZzJnPJwd6RDqRaeW3nRqdSb8tG7hrvAjNvfYwDZkmkv478ajPPrfn5n3QB+6R2jixsulQCTSxPl7ONO/XQD92wVY11ksFnIKyjiYW0RGfgmZ+WVkmUvJzC8l01xKlrmU7IIzj3UoqaiiJL/qd28BvxCTgxEvV0c8XZzwcnGEihL8b/w7W046cIgcnB0dcHY04uxoxORkxNnBAWenX147GjE51F2gKq2oOucYj50u+SUgFnEivwTLeYIPQAt3E3GhXmeWEC86tvQm0s7DT3087qY+9mmPDAYDz97YkWxzGSv2ZDP2g0188mAf2gdrCobLoUAk0gwZDAYCvVwI9LrwJG7V1RYKyyvJL64gr7iCvJLyX/5bQX7xmZ9PF1dQUFqBubQCc0kl5tIKCkorKSitoNoC5VXV5BaW13hiunv7qzhcBIeL8v64Ts4MKD8Tmn4JT05GHI1GDIYz2zGAAQOF+Q743ziJ5388hevPP1FSXkV+SYV1Od/4nt/ydHEkKsCDKH932gR6EBfqRYcQLwI8nZtMT1d9q+/H50D9PULHnjg6GHnzzq6M+s9P/Jyex13/2cinD/XRbNaXQYFIxE4ZjYYzl79cnAjzu7T3VldbKCqvpKC08n9hqaSCHWn7mPrci1z1f/fj4u1PWWU1ZZXVlFdWU1ZZRVlF9S/rqqi2gAWsbaDyDz7VAff2fdl8ogw494ntAM6ORoK9fxkn5eVCqI8rUf7uRAaceZJ7C3dTgwef9PR0cnNz63Sf9dnTUl+Pz4GGfYSOPXAzOTJnTC9G/nsDuzPMjPrPT3z6UAJhfm62Lq1JUiASqSP18SXl7+9PeHh4ne/3chmNBjxdnPB0cSIUV+t6v9LjFGxdROzY+2jVNuCC77dYLFRVW6xhqKyy6n/BqaKaiurqX9qBBQsWCxSczGL1Z//hib9Pok1Ua1xNDni7OlmXM+ObHGsVeOojtABkZGTwf7feSmnJhR/FcTnqs6elrh+fA7Z5hE5z5+3mxEdje3H7P5M5kFPEXe+dCUVBv9M7LOenQCRymerzEoOrmxt7du9ulKHochgMBhwdDDg6GHF3vrj3HKvIYNHWRVwb/TTdurWqs1rS09NpHxtLSfHvDz6/HDc/9gyRMR3rbH/qaZFf8/dwZu79fbjtn8kcOVnMqP/8xPwH+9DC4yL/5xJAgUjkstXXJYas9APMfXEiubm59RKImtqlnPqSm5tLSXExoya9TFB4dJ3u+2xw8WwR3OQfViyNW7C3C3Pv781t/0xmf3Yhd/x7Ax/f31sPg70ECkQidaQ+LjHUl/ruFWmKg2aDwqN1iUiatDA/N+be35s7/r2BvVmFjPznBuY+0JsQb9c/frMoEInYo/rqFdGlHBHbigrw4NOHErjz3z9xMLeI2/6ZzLz7+2ig9UVQIBKxY3XdK6IeERHbi2jhzqcPJ3Dnvzdw5GTxmVD0QB8i/d1tXVqjpgcdiYiINDMtfVz59KEEogPcycgv5dZ3k9lxLN/WZTVq6iESERGxkfq6EeHslB3zH0rg7vc2sjvDzG3/TOaNO7pybVxQvXxmU6dAJCIi0sDqe0bwX0/Z8elDfRg372fW7M3hwY82M+X6OO69MrJePrcpUyASaeT0TCmR5qc+ZwT/7ZQdni5OvDe6B1O+2sl/N6bz9De7OHKymKeuj8PBjp/X91sKRCKNlJ4pdX51HeYUDsWWGmq6DicHI8/f3JHWLdyY/v0e5qw/zIGcQl67vQv+msARUCASabT0TKma6jsgNsVwKHIpDAYDD/WPJszPjb98uo21+3IZ9sZa3hjZld5RLWxdns0pEIk0cnqm1Bn1FRCbYjgUuRzXdQqhTaAHf5q7lf3Zhdz5n5/4y+B2PNwvGqMdX0JTIBKRJqWuA2JTDIcil6tdkCdfjbuSpxam8uXPx3lpcRo/HTzFiyPiCfa2z8d9aB4iERERO+Tu7Mirt3XmxRGdcHY0snpvDtfOWM28n9KprrbYurwGpx4iERERO2UwGLi9Zzhdw3352+fbSTmax/9bsIOvUo7zwoj4c2a3ro+HQp91du4kW1EgEhERsXPtgjz54pErmLP+MK8sSeOnQ6cYMnMNj1wdzQN9o3B3dqz3h0L/eu4kW1AgEhERERyMBsZeFcnguCAmf7mDH/fnMnP5Pub+lM74QW1p51A/D4WGc+dOsgUFIhEREbEK83Pjo7G9WLQ9g5eXpJF+qpgnFqTS0tMB17Z9CAyr24dCNxYaVC0iIiI1GAwGhncOZfmE/kwdHoevmxPHC6oIvOVJlmc6sivDTFUzG3itQCQiIiLnZXI0cu+Vkaz+2wBGxLpTXVaMucLIsl1ZzFl/mK1HTlNWWWXrMuuEApGIiIj8Li8XJ0Z18uLY22Po6FOJm8mBwrJK1u7P5T9rD7FsVxYn8kqwWJpur5HGEImIiMhFsZQXE+NVTf+urdmTWcDP6XmcKipnV4aZXRlmWribiAv1IibIE3fnphUxmla1IiIiYnOORiMdQ73pEOJFRn4pqSfy2ZdVyMmictbuy2Xtvlxa+brSLsiTNgEeuJocbF3yH1IgEhERaYZ2795d7/szGAyE+rgS6uNK/3ZVpGUWsCezgIz8Uo6dLuHY6RJWpWXTyteNKH93Iv3d8XJ1qtO66ooCkYiISDNiPpUDwF133VUv+y8sLDzvemdHB+Jb+RDfygdzSQX7sgvZm1VAdkEZ6aeKST9VzKq9Ofh7mIjy9yAqwJ1AT2cMhsbxQFkFIhERkWakpNAMwLCHniAmvnud7Xf3xtV8/8HrlJaW/mFbL1cnukf40j3Cl9PF5RzKKeJgbhEn8krILSwnt/AUGw+fwt3ZgdYt3PEsN2AwudZZrbWhQCQiItIMtQiNqNMJFLPSD9Tqfb5uJnwjTHSL8KWkoorDuWfC0ZGTRRSVVbHzhBlwolXSR5RV2u4uNQUiERERaRCuTg7EhngRG+JFZXU1x0+XcPhkMfszTpN7dD/OjpE2q03zEImIiEiDczQaiWjhTv92ASSGVpD92TSb1qNAJCIiIjZnqfjjsUn1SYFIRERE7J4CkYiIiNg9uwpEs2bNonXr1ri4uNC7d282btxo65JERESkEbCbQDR//nwmTJjA1KlT2bp1K507dyYxMZHs7GxblyYiIiI2ZjeBaMaMGTzwwAPce++9xMXF8e677+Lm5sb7779v69JERETExuwiEJWXl7NlyxYGDRpkXWc0Ghk0aBDJyck2rExEREQaA7uYmDE3N5eqqiqCgoJqrA8KCmLPnj3ntC8rK6OsrMz6Oj8/HwCz2VzntZ19JsyxfTspKymus/2enVE08/BeDri71dl+m+q+VXPD7Fs1N8y+m2LN9blv1dww+67PmnOOHQLOfCfW5Xft2X1ZLBcxA7bFDhw/ftwCWNavX19j/cSJEy29evU6p/3UqVMtgBYtWrRo0aKlGSxHjx79w6xgFz1E/v7+ODg4kJWVVWN9VlYWwcHB57SfPHkyEyZMsL6urq7m1KlTtGjRos6fyms2mwkLC+Po0aN4eXnV6b7lf3SeG4bOc8PQeW44OtcNo77Os8VioaCggNDQ0D9saxeByGQy0b17d1asWMFNN90EnAk5K1asICkp6Zz2zs7OODs711jn4+NTrzV6eXnpf7YGoPPcMHSeG4bOc8PRuW4Y9XGevb29L6qdXQQigAkTJjB69Gh69OhBr169mDlzJkVFRdx77722Lk1ERERszG4C0e23305OTg5TpkwhMzOTLl26sHjx4nMGWouIiIj9sZtABJCUlHTeS2S25OzszNSpU8+5RCd1S+e5Yeg8Nwyd54ajc90wGsN5NlgsF3MvmoiIiEjzZRcTM4qIiIj8HgUiERERsXsKRCIiImL3FIhERETE7ikQ2dCsWbNo3bo1Li4u9O7dm40bN9q6pGZnzZo1DB8+nNDQUAwGAwsXLrR1Sc3S9OnT6dmzJ56engQGBnLTTTeRlpZm67KanXfeeYf4+Hjr5HUJCQl8//33ti6r2XvhhRcwGAyMHz/e1qU0O9OmTcNgMNRY2rdvb5NaFIhsZP78+UyYMIGpU6eydetWOnfuTGJiItnZ2bYurVkpKiqic+fOzJo1y9alNGurV69m3LhxbNiwgWXLllFRUcHgwYMpKiqydWnNSqtWrXjhhRfYsmULmzdv5pprruHGG29k586dti6t2dq0aRP//Oc/iY+Pt3UpzVaHDh3IyMiwLj/++KNN6tBt9zbSu3dvevbsyVtvvQWceZRIWFgYjz76KH//+99tXF3zZDAYWLBggfXxLVJ/cnJyCAwMZPXq1fTr18/W5TRrfn5+vPzyy4wdO9bWpTQ7hYWFdOvWjbfffpvnnnuOLl26MHPmTFuX1axMmzaNhQsXkpKSYutS1ENkC+Xl5WzZsoVBgwZZ1xmNRgYNGkRycrINKxOpG/n5+cCZL2upH1VVVXzyyScUFRWRkJBg63KapXHjxjFs2LAaf1dL3du3bx+hoaFERUUxatQo0tPTbVKHXc1U3Vjk5uZSVVV1zmNDgoKC2LNnj42qEqkb1dXVjB8/niuvvJKOHTvaupxmZ8eOHSQkJFBaWoqHhwcLFiwgLi7O1mU1O5988glbt25l06ZNti6lWevduzdz5swhJiaGjIwMnn76afr27Utqaiqenp4NWosCkYjUqXHjxpGammqzcQDNXUxMDCkpKeTn5/P5558zevRoVq9erVBUh44ePcqf//xnli1bhouLi63LadaGDh1q/Tk+Pp7evXsTERHBp59+2uCXgRWIbMDf3x8HBweysrJqrM/KyiI4ONhGVYlcvqSkJBYtWsSaNWto1aqVrctplkwmE23atAGge/fubNq0iddff51//vOfNq6s+diyZQvZ2dl069bNuq6qqoo1a9bw1ltvUVZWhoODgw0rbL58fHxo164d+/fvb/DP1hgiGzCZTHTv3p0VK1ZY11VXV7NixQqNBZAmyWKxkJSUxIIFC1i5ciWRkZG2LsluVFdXU1ZWZusympWBAweyY8cOUlJSrEuPHj0YNWoUKSkpCkP1qLCwkAMHDhASEtLgn60eIhuZMGECo0ePpkePHvTq1YuZM2dSVFTEvffea+vSmpXCwsIa/9I4dOgQKSkp+Pn5ER4ebsPKmpdx48Yxb948vvrqKzw9PcnMzATA29sbV1dXG1fXfEyePJmhQ4cSHh5OQUEB8+bNY9WqVSxZssTWpTUrnp6e54x/c3d3p0WLFhoXV8f++te/Mnz4cCIiIjhx4gRTp07FwcGBO+64o8FrUSCykdtvv52cnBymTJlCZmYmXbp0YfHixecMtJbLs3nzZgYMGGB9PWHCBABGjx7NnDlzbFRV8/POO+8AcPXVV9dYP3v2bMaMGdPwBTVT2dnZ3HPPPWRkZODt7U18fDxLlizh2muvtXVpIrVy7Ngx7rjjDk6ePElAQABXXXUVGzZsICAgoMFr0TxEIiIiYvc0hkhERETsngKRiIiI2D0FIhEREbF7CkQiIiJi9xSIRERExO4pEImIiIjdUyASERERu6dAJCLNwtVXX8348eMvqu2qVaswGAzk5eVd1me2bt2amTNnXtY+RKRxUCASERERu6dAJCIiInZPgUhEmp2PPvqIHj164OnpSXBwMHfeeSfZ2dnntFu3bh3x8fG4uLjQp08fUlNTa2z/8ccf6du3L66uroSFhfHYY49RVFTUUIchIg1IgUhEmp2KigqeffZZtm3bxsKFCzl8+PB5HzI7ceJEXn31VTZt2kRAQADDhw+noqICgAMHDjBkyBBGjBjB9u3bmT9/Pj/++CNJSUkNfDQi0hD0tHsRaXbuu+8+689RUVG88cYb9OzZk8LCQjw8PKzbpk6dan1S/AcffECrVq1YsGABt912G9OnT2fUqFHWgdpt27bljTfeoH///rzzzju4uLg06DGJSP1SD5GINDtbtmxh+PDhhIeH4+npSf/+/QFIT0+v0S4hIcH6s5+fHzExMezevRuAbdu2MWfOHDw8PKxLYmIi1dXVHDp0qOEORkQahHqIRKRZKSoqIjExkcTERObOnUtAQADp6ekkJiZSXl5+0fspLCzkoYce4rHHHjtnW3h4eF2WLCKNgAKRiDQre/bs4eTJk7zwwguEhYUBsHnz5vO23bBhgzXcnD59mr179xIbGwtAt27d2LVrF23atGmYwkXEpnTJTESalfDwcEwmE2+++SYHDx7k66+/5tlnnz1v22eeeYYVK1aQmprKmDFj8Pf356abbgJg0qRJrF+/nqSkJFJSUti3bx9fffWVBlWLNFMKRCLSrAQEBDBnzhw+++wz4uLieOGFF3jllVfO2/aFF17gz3/+M927dyczM5NvvvkGk8kEQHx8PKtXr2bv3r307duXrl27MmXKFEJDQxvycESkgRgsFovF1kWIiIiI2JJ6iERERMTuKRCJiIiI3VMgEhEREbunQCQiIiJ2T4FIRERE7J4CkYiIiNg9BSIRERGxewpEIiIiYvcUiERERMTuKRCJiIiI3VMgEhEREbunQCQiIiJ27/8DGcZd/noKaEwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.histplot(train[\"label\"], kde=True, bins=20)\n", + "plt.title(\"train label Distribution\")\n", + "plt.xlabel(\"label\")\n", + "plt.ylabel(\"Count\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHHCAYAAACle7JuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABGDklEQVR4nO3deXxU1f3/8ffMJJOEbBASEpaEJSxhi0BkiQsIRiIqivBVxA2sVWsBRX61lroA1hasreCCaFsFN77gBohVqKDAFwFlFZB9TViSECB7Mklm7u+PkNEIWAhJ7tzwej4e98HMvXfOfOYSmHfOPfcem2EYhgAAACzIbnYBAAAA1UWQAQAAlkWQAQAAlkWQAQAAlkWQAQAAlkWQAQAAlkWQAQAAlkWQAQAAlkWQAQAAlkWQAUwyadIk2Ww2S71vq1atdNNNN9VoPTabTZMmTarRNiVp+fLlstlsWr58eY23/XNnO6Y2m01jxoyp9feWpNmzZ8tms+ngwYN18n6ALyHIAPB5Bw8elM1m8y7+/v6KjIzUFVdcoT/+8Y9KS0ursff6y1/+ogULFtRYezXJl2sDzEKQAWAZI0aM0Lvvvqs333xTTz/9tNq0aaPp06erY8eOmjt3bpV9+/btq+LiYvXt2/eC3qM6YeGpp55ScXHxBb2mOs5V2z333KPi4mK1bNmy1msAfI2f2QUAwPnq0aOH7r777irrDh06pIEDB2rkyJHq2LGjLrvsMkmS3W5XYGBgrdZTWFio4OBg+fn5yc/PvP9OHQ6HHA6Hae8PmIkeGaAOrFq1Sj179lRgYKDi4+P1xhtvnHPf9957T0lJSQoKClJERITuuOMOpaene7ePGTNGISEhKioqOuO1I0aMUExMjNxu9wXVN2vWLA0YMEBNmjRRQECAOnXqpJkzZ55z///85z/q1q2bAgMD1alTJ33yySdn7JOTk6Nx48YpNjZWAQEBatu2rZ5//nl5PJ4Lqu2/admypWbPnq3S0lL99a9/9a4/2xiZPXv2aNiwYYqJiVFgYKBatGihO+64Q7m5uZIqxrUUFhbq7bff9p7GGjVqlKQfx8Fs375dd955pxo1aqSrrrqqyrazef/999WhQwcFBgYqKSlJK1eurLJ91KhRatWq1Rmv+3mbv1TbucbIvPbaa+rcubMCAgLUrFkzjR49Wjk5OVX2ueaaa9SlSxdt375d/fv3V4MGDdS8efMqxxLwZfTIALVs69atGjhwoKKiojRp0iSVl5dr4sSJio6OPmPfP//5z3r66ad1++2369e//rWOHz+uV155RX379tWmTZvUsGFDDR8+XDNmzNC///1v3Xbbbd7XFhUVadGiRRo1atQF/3Y+c+ZMde7cWTfffLP8/Py0aNEi/fa3v5XH49Ho0aOr7Ltnzx4NHz5cv/nNbzRy5EjNmjVLt912mxYvXqzrrrvOW0u/fv105MgRPfTQQ4qLi9Pq1as1YcIEHTt2TNOnT7/wA/kLkpOTFR8fry+//PKc+5SWlio1NVUul0tjx45VTEyMjhw5os8++0w5OTkKDw/Xu+++q1//+tfq1auXHnzwQUlSfHx8lXZuu+02tWvXTn/5y19kGMYv1rVixQrNmzdPjzzyiAICAvTaa6/p+uuv13fffacuXbpc0Gc8n9p+atKkSZo8ebJSUlL08MMPa9euXZo5c6bWrVunb775Rv7+/t59T506peuvv15Dhw7V7bffro8++khPPPGEunbtqkGDBl1QnUCdMwDUqiFDhhiBgYHGoUOHvOu2b99uOBwO46f/BA8ePGg4HA7jz3/+c5XXb9261fDz8/Ou93g8RvPmzY1hw4ZV2e+DDz4wJBkrV678xXomTpxo/PyfflFR0Rn7paamGm3atKmyrmXLloYk4+OPP/auy83NNZo2bWp0797du+5Pf/qTERwcbOzevbvK6//whz8YDofDSEtL866TZEycOPEXaz5w4IAhyXjhhRfOuc8tt9xiSDJyc3MNwzCMr7/+2pBkfP3114ZhGMamTZsMScaHH374i+8VHBxsjBw58oz1lcdtxIgR59z2U5IMScb69eu96w4dOmQEBgYat956q3fdyJEjjZYtW55Xm+eqbdasWYYk48CBA4ZhGEZWVpbhdDqNgQMHGm6327vfq6++akgy3nrrLe+6fv36GZKMd955x7vO5XIZMTExZ/yMAb6IU0tALXK73VqyZImGDBmiuLg47/qOHTsqNTW1yr6ffPKJPB6Pbr/9dmVnZ3uXmJgYtWvXTl9//bWkilMMt912mz7//HMVFBR4Xz9v3jw1b97ce7rjQgQFBXkf5+bmKjs7W/369dP+/fu9p10qNWvWTLfeeqv3eVhYmO69915t2rRJGRkZkqQPP/xQV199tRo1alTls6SkpMjtdp9xeqUmhISESJLy8/PPuj08PFyStGTJkrOeljtfv/nNb8573+TkZCUlJXmfx8XF6ZZbbtGSJUsu+PTfhVi6dKlKS0s1btw42e0//jf/wAMPKCwsTP/+97+r7B8SElJl7JHT6VSvXr20f//+WqsRqCkEGaAWHT9+XMXFxWrXrt0Z2zp06FDl+Z49e2QYhtq1a6eoqKgqy44dO5SVleXdd/jw4SouLtann34qSSooKNDnn3+u2267rVr3iPnmm2+UkpKi4OBgNWzYUFFRUfrjH/8oSWcEmbZt257xHu3bt5ck7xiNPXv2aPHixWd8jpSUFEmq8llqSmWoCw0NPev21q1ba/z48frXv/6lyMhIpaamasaMGWd8vv+mdevW573v2f7e27dvr6KiIh0/fvyC3vdCHDp0SNKZP2NOp1Nt2rTxbq/UokWLM/5OGzVqpFOnTtVajUBNYYwM4CM8Ho9sNpu++OKLs45xqexxkKQ+ffqoVatW+uCDD3TnnXdq0aJFKi4u1vDhwy/4ffft26drr71WCQkJevHFFxUbGyun06nPP/9c06ZNq9bgXI/Ho+uuu06///3vz7q9MvjUpG3btqlJkyYKCws75z5///vfNWrUKC1cuFD/+c9/9Mgjj2jKlClau3atWrRocV7v89Peq5pwruBZmz02P3euMVXGfxkDBPgCggxQi6KiohQUFKQ9e/acsW3Xrl1VnsfHx8swDLVu3fq8vuhvv/12vfTSS8rLy9O8efPUqlUr9enT54JrXLRokVwulz799NMqp78qT2X93N69e2UYRpUv4N27d0uS9+qb+Ph4FRQUeHtgatuaNWu0b9++My7NPpuuXbuqa9eueuqpp7R69WpdeeWVev311/Xcc89JOnewqI6z/b3v3r1bDRo0UFRUlKSKno+fX0kk6YxekwuprfJ+Mrt27VKbNm2860tLS3XgwIE6+3sB6gKnloBa5HA4lJqaqgULFlS5++yOHTu0ZMmSKvsOHTpUDodDkydPPuM3YcMwdOLEiSrrhg8fLpfLpbfffluLFy/W7bffXu0aK9+jUm5urmbNmnXW/Y8ePar58+d7n+fl5emdd95Rt27dFBMTI6kiZK1Zs+aMzyhVXJZdXl5erVrP5tChQxo1apScTqcef/zxc+6Xl5d3xvt27dpVdrtdLpfLuy44OPiswaI61qxZo40bN3qfp6ena+HChRo4cKD3uMfHxys3N1dbtmzx7nfs2LEqx/hCa0tJSZHT6dTLL79c5e/1zTffVG5urm688caL+FSAb6FHBqhlkydP1uLFi3X11Vfrt7/9rcrLy/XKK6+oc+fOVb684uPj9dxzz2nChAk6ePCghgwZotDQUB04cEDz58/Xgw8+qN/97nfe/Xv06KG2bdvqySeflMvlqtZpJUkaOHCgnE6nBg8erIceekgFBQX65z//qSZNmujYsWNn7N++fXvdf//9WrdunaKjo/XWW28pMzOzSvB5/PHH9emnn+qmm27SqFGjlJSUpMLCQm3dulUfffSRDh48qMjIyAuudePGjXrvvffk8XiUk5OjdevW6eOPP5bNZtO7776rxMTEc772q6++0pgxY3Tbbbepffv2Ki8v17vvviuHw6Fhw4Z590tKStLSpUv14osvqlmzZmrdurV69+59wbVKUpcuXZSamlrl8mup4mei0h133KEnnnhCt956qx555BEVFRVp5syZat++fZUQdCG1RUVFacKECZo8ebKuv/563Xzzzdq1a5dee+019ezZ87x6rgDLMO+CKeDSsWLFCiMpKclwOp1GmzZtjNdff/2sl9cahmF8/PHHxlVXXWUEBwcbwcHBRkJCgjF69Ghj165dZ+z75JNPGpKMtm3bnnctZ3vfTz/91EhMTDQCAwONVq1aGc8//7zx1ltvVbmk1zAqLr++8cYbjSVLlhiJiYlGQECAkZCQcNZLmvPz840JEyYYbdu2NZxOpxEZGWlcccUVxt/+9jejtLTUu58u4PLrysXPz8+IiIgwevfubUyYMKHKpe2Vfn759f79+41f/epXRnx8vBEYGGhEREQY/fv3N5YuXVrldTt37jT69u1rBAUFGZK8lztXHrfjx4+f1zGVZIwePdp47733jHbt2hkBAQFG9+7dvfX81H/+8x+jS5cuhtPpNDp06GC89957Z23zXLX9/PLrSq+++qqRkJBg+Pv7G9HR0cbDDz9snDp1qso+/fr1Mzp37nxGTee6LBzwNTbDYDQXAACwJsbIAAAAyyLIAAAAyyLIAAAAyyLIAAAAyyLIAAAAyyLIAAAAy6r3N8TzeDw6evSoQkNDa/TW4wAAoPYYhqH8/Hw1a9asyizuP1fvg8zRo0cVGxtrdhkAAKAa0tPTf3FS13ofZEJDQyVVHIhfmhUXAAD4jry8PMXGxnq/x8+l3geZytNJYWFhBBkAACzmvw0LYbAvAACwLIIMAACwLIIMAACwLFODzKRJk2Sz2aosCQkJ3u0lJSUaPXq0GjdurJCQEA0bNkyZmZkmVgwAAHyJ6T0ynTt31rFjx7zLqlWrvNsee+wxLVq0SB9++KFWrFiho0ePaujQoSZWCwAAfInpVy35+fkpJibmjPW5ubl68803NWfOHA0YMECSNGvWLHXs2FFr165Vnz596rpUAADgY0zvkdmzZ4+aNWumNm3a6K677lJaWpokacOGDSorK1NKSop334SEBMXFxWnNmjVmlQsAAHyIqT0yvXv31uzZs9WhQwcdO3ZMkydP1tVXX61t27YpIyNDTqdTDRs2rPKa6OhoZWRknLNNl8sll8vlfZ6Xl1db5QMAAJOZGmQGDRrkfZyYmKjevXurZcuW+uCDDxQUFFStNqdMmaLJkyfXVIkAAMCHmX5q6acaNmyo9u3ba+/evYqJiVFpaalycnKq7JOZmXnWMTWVJkyYoNzcXO+Snp5ey1UDAACz+FSQKSgo0L59+9S0aVMlJSXJ399fy5Yt827ftWuX0tLSlJycfM42AgICvNMRMC0BAAD1m6mnln73u99p8ODBatmypY4ePaqJEyfK4XBoxIgRCg8P1/3336/x48crIiJCYWFhGjt2rJKTk7liCQAASDI5yBw+fFgjRozQiRMnFBUVpauuukpr165VVFSUJGnatGmy2+0aNmyYXC6XUlNT9dprr5lZMgAA8CE2wzAMs4uoTXl5eQoPD1dubi6nmQAAsIjz/f42/YZ4wPlIS0tTdnZ2jbcbGRmpuLi4Gm8XAFA3CDLweWlpaUro2FHFRUU13nZQgwbauWMHYQYALIogA5+XnZ2t4qIi3fXEC4qOi6+xdjPT9un95x9XdnY2QQYALIogA8uIjotXi3adzS4DAOBDfOo+MgAAABeCIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLKQoAAPVSWlqasrOza6XtyMhI5mjzEQQZAEC9k5aWpoSOHVVcVFQr7Qc1aKCdO3YQZnwAQQYAUO9kZ2eruKhIdz3xgqLj4mu07cy0fXr/+ceVnZ1NkPEBBBkAQL0VHRevFu06m10GahGDfQEAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGUxRQEAr9qaLZiZggHUFoIMAEm1O1swMwUDqC0EGQCSam+2YGYKBlCbCDIAqmC2YABWwmBfAABgWQQZAABgWQQZAABgWQQZAABgWQz2BYA6Vlv365G4Zw/Orb7eJ4ogAwB1qDbv1yNxzx6cXX2+TxRBBgDqUG3dr0finj04t/p8nyiCDACYgPv1wAz18eeOwb4AAMCyCDIAAMCyCDIAAMCyCDIAAMCyCDIAAMCyCDIAAMCyCDIAAMCyCDIAAMCyCDIAAMCyCDIAAMCyCDIAAMCyCDIAAMCyCDIAAMCyCDIAAMCyCDIAAMCyCDIAAMCyCDIAAMCyCDIAAMCyCDIAAMCyCDIAAMCyCDIAAMCyfCbITJ06VTabTePGjfOuKykp0ejRo9W4cWOFhIRo2LBhyszMNK9IAADgU3wiyKxbt05vvPGGEhMTq6x/7LHHtGjRIn344YdasWKFjh49qqFDh5pUJQAA8DWmB5mCggLddddd+uc//6lGjRp51+fm5urNN9/Uiy++qAEDBigpKUmzZs3S6tWrtXbtWhMrBgAAvsL0IDN69GjdeOONSklJqbJ+w4YNKisrq7I+ISFBcXFxWrNmzTnbc7lcysvLq7IAAID6yc/MN587d642btyodevWnbEtIyNDTqdTDRs2rLI+OjpaGRkZ52xzypQpmjx5ck2XCgAAfJBpPTLp6el69NFH9f777yswMLDG2p0wYYJyc3O9S3p6eo21DQAAfItpQWbDhg3KyspSjx495OfnJz8/P61YsUIvv/yy/Pz8FB0drdLSUuXk5FR5XWZmpmJiYs7ZbkBAgMLCwqosAACgfjLt1NK1116rrVu3Vll33333KSEhQU888YRiY2Pl7++vZcuWadiwYZKkXbt2KS0tTcnJyWaUDAAAfIxpQSY0NFRdunSpsi44OFiNGzf2rr///vs1fvx4RUREKCwsTGPHjlVycrL69OljRskAAMDHmDrY97+ZNm2a7Ha7hg0bJpfLpdTUVL322mtmlwUAAHyETwWZ5cuXV3keGBioGTNmaMaMGeYUBAAAfJrp95EBAACoLoIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLFODzMyZM5WYmKiwsDCFhYUpOTlZX3zxhXd7SUmJRo8ercaNGyskJETDhg1TZmamiRUDAABfYmqQadGihaZOnaoNGzZo/fr1GjBggG655Rb98MMPkqTHHntMixYt0ocffqgVK1bo6NGjGjp0qJklAwAAH+Jn5psPHjy4yvM///nPmjlzptauXasWLVrozTff1Jw5czRgwABJ0qxZs9SxY0etXbtWffr0MaNkAADgQ3xmjIzb7dbcuXNVWFio5ORkbdiwQWVlZUpJSfHuk5CQoLi4OK1Zs+ac7bhcLuXl5VVZAABA/WR6kNm6datCQkIUEBCg3/zmN5o/f746deqkjIwMOZ1ONWzYsMr+0dHRysjIOGd7U6ZMUXh4uHeJjY2t5U8AAADMYnqQ6dChgzZv3qxvv/1WDz/8sEaOHKnt27dXu70JEyYoNzfXu6Snp9dgtQAAwJeYOkZGkpxOp9q2bStJSkpK0rp16/TSSy9p+PDhKi0tVU5OTpVemczMTMXExJyzvYCAAAUEBNR22QAAwAeY3iPzcx6PRy6XS0lJSfL399eyZcu823bt2qW0tDQlJyebWCEAAPAVpvbITJgwQYMGDVJcXJzy8/M1Z84cLV++XEuWLFF4eLjuv/9+jR8/XhEREQoLC9PYsWOVnJzMFUsAAECSyUEmKytL9957r44dO6bw8HAlJiZqyZIluu666yRJ06ZNk91u17Bhw+RyuZSamqrXXnvNzJIBAIAPMTXIvPnmm7+4PTAwUDNmzNCMGTPqqCIAAGAlPjdGBgAA4HwRZAAAgGURZAAAgGURZAAAgGURZAAAgGURZAAAgGVVK8i0adNGJ06cOGN9Tk6O2rRpc9FFAQAAnI9q3Ufm4MGDcrvdZ6x3uVw6cuTIRRdlFWlpacrOzq6VtiMjIxUXF1crbQMAUF9cUJD59NNPvY8rpxGo5Ha7tWzZMrVq1arGivNlaWlpSujYUcVFRbXSflCDBtq5YwdhBoBpDMOQ22OovHJxe1TmrlhX5vac3nbmujJ3xfqK11S8rvz0vuXuqu1V7u/+6f6eqq+p3MfjMWSz2WS3SXabTXb76T9tNvk5bGrgdKiB009B/g4dzyhSg459dbTIJtupYjVwOhTkdCjAzy6bzWb2oUUNuqAgM2TIEEmSzWbTyJEjq2zz9/dXq1at9Pe//73GivNl2dnZKi4q0l1PvKDouPgabTszbZ/ef/5xZWdnE2QAC/F4DJW6PSp1e1RWXvEFX1p++rnbo9Jyj3Zklyogrqsyim0qPV4gt8eQ+3RgcHsMeQx5H7uNii/vn+7j+cljw5AMSR6j4nFxoZ+iR0zRH7/KVtDab+Q5HRgq2q147PG2q9MhoeL15W7PGe/t9hhmH9KLEnXz77UmW1L2Ye86u01q4PRTaKCfwoP8FRbor7AgPzVq4FTjEKcC/BzmFYxquaAg4/F4JEmtW7fWunXrFBkZWStFWUl0XLxatOtsdhlAvWQYp4PB6VBQ5n1c8dt65ePKbb/0uLKN8srn53zNz56XV9RQ7ql4XOb+MZiUuw3v48peifMRM2KKvjku6fixGj5idgXGddXO7DJJOTXc9o8cdpv87Db5O+xy2G3yd9hOr7N7H/s77PJz2OSw2+Vvr7rO7/RzP4ddfqdf52e3ebd51//09Q6bHDZbleDmOR38PEbF30tRqVvFpW4Vlbl1LOuEVq39Tk3bdZXhCFBRmVul5RVhrcBVrgJXuY7llpzx2cIC/RQVGqDIkAA1DQ9U0/AgOf24LsaXVWuMzIEDB2q6DqBWGIbh/U+ruNStotP/yZWUupVzyqHGN47XX1efUtD336n8dLe1TZLtdNd1oL9dgX4OBTodCvI/vTgdCvR3KDTAT8EBfgoJ9FNIQMVveMEBFY9DAvzksNe/7muPx1CZ58cv+vKfhYHKUw8V+1Q8PnXSocY3PKq/rTml4G3rvaGisqeiyp/lP4aO0tOvtzJ/R8WXt7/DLqefXU6HXZ7yUh06sF9NmsUqMKiBHPaKUyQOW8WXe+Wf9p8//slzh73i9IrNZvP+rNolnco8on+/9Te98PxUtY2P977W7/Rrve38tO3Tp2XsP31/R+X+kr+9InxUhhY/u80Sp2Y2btyopHFP6q4Zn6hFuw6SKnqgikvdKix1K7+4TLnFZcotKVNecblOFpaqwFWuvJKKZd/xQkkVPThNQgPVvFGQYhsFqUWjBmZ+LJxFtSeNXLZsmZYtW6asrCxvT02lt95666ILAy5UgatcGbklysov0amiMuUUlSqnqEzl5/wt2aGQLgO09nCJpDN/M7tYDZwOBQf4KfR02Al2VvzpfR7wYwAKOR2KfrqtgdPh/fKx2yq+WGynxwQ4Tn+B2Ww6PQahIjxUBotyT9WAUVzqVnFZufc31uKy06Gu1K2SMreKSst1+FiOIodM0KosP/nlHT4zoHiqe6rBoZCu12l1+sUf58rf0v0dFaHA32GXv59N/vafPHbYK577/SREOH78Mq54Xtk78ONjf7+KXgCnn92730+DiL/DVvGep/erDCf+jqqvq/izoib7WcLsxo0blZQ0SCNmfKIW7WIv6nj83OGCdBXtXKU+LYLUo3NMjbZdH/jZ7QoNtCs00F8xYYFnbC8ucys736XsApey8l06klOs/JJyZeSVKCOvRBsOnZLTz65op0NB7ZNVUu45y7ugrlUryEyePFnPPvusLr/8cjVt2tQS6Rz1z6miUh3MLtTR3BJl5JaowFV+1v3sNnmDQeVAwCCnQ8U5x/XNgrf1+/GPqV2bVvJz2LxjDozTXdeu8oov/eJSj4rLKr70K7uuC13lKigpV76rvOKxq1z5JWXeXoTKoHA831WHR+XiBHe4UpklkkqKf3E/m02nw0PFaYCff+H7OSpOB/g77CrOPaE1n76r3417RG1ax8l5+ss+wK9qT0VlEAjwO73u59sdZw8GQE0J8ncoNqKBYiN+7HXJKy7T4ZxiHT5VpEMnilRU6lZ6uUNNbn1SoxZm6ob9m3Rn75bq2aoR34UmqVaQef311zV79mzdc889NV0PcE4eQ0o/WaQDJwp1ILtQOUVlVbbbJDUOcSomLFCNgp1q1MCphg0qBvOd7TTP4T2Z+uK7+RrU7in16FFzvxm7yt0qdLlPh5yyiseuMuWXVISdswegHx9Xbispc3sHf54vb4+F/cfxCU6HTUGVIe70KbLKKzh+Gu5OHc/QtL89r4F3PKjoZi3OCCjeHo3TpybO9z/tw3uytOTbj3Rj+wnq0aNlNY8qYI6wIH91CvJXp6Zh8hiGMnJLtHn3Ie1IPy41jNGCzUe1YPNRtWsSohG94jSsRwuFN/A3u+xLSrWCTGlpqa644oqargU4q8N55WrYb5S+OOKvkvQf71Nkt0nNGwYpNqKBmoYHqklooE8MygvwcyjAz6GIYGeNtek5fdVJ5cBGT+VVK/pxDMPFjl3YuLFAf9r0uVr9+tdqER1aY7UD9YXdZlOzhkHyNHJr6VO/1tz/rNHG3Ab69Puj2pNVoGc/264XluzSPckt9cDVbRQVGmB2yZeEagWZX//615ozZ46efvrpmq4HkCSVlLm1cPMRzVuXro1pOQrv8z8q8UiB/na1jgxW68bBimvc4JK5VNJut8kuuq0BX9KusVPDr0vUkzd11MJNR/T+t2namZGvf6zcr3fWHNRdvVvqoX5t1CT0zPE4qDnVCjIlJSX6xz/+oaVLlyoxMVH+/lW70V588cUaKQ6XnvySMr3/bZreXHXAO7bEbpMK9nynAX266/KuHevl1UAArCss0F/3JLfS3X1aavmu45q+bI++T8/Rm6sO6L21h3Tfla01dkBbBQdU+/oa/IJqHdUtW7aoW7dukqRt27ZV2cZgJ1THiQKX3vrmgN5Zc0j5JRWDdpuGB+re5FZq539S1131rJoP+IQQA8Bn2Ww29U9ooms6RGnlnmy9tHS3Nqbl6PUV+7Rw8xE9eWNH3diVC2RqWrWCzNdff13TdeASVVLm1uzVBzXjq73KP33VUXxUsH7TL163dGsup59dGzfmmlwlAJw/m82mfu2j1LddpJbtyNLkz35Q+slijZmzSf/bNk2Tb+6stk0Yh1ZT6OeCKQzD0OdbMzR18Q6ln6y41LdzszA9cm07XdcxmstsAViezWZTSqdoXdUuUq+v2KeZy/fpm70nNOil/9P/G9hBD17dhv/rakC1gkz//v1/sWvsq6++qnZBqP92Z+brj59s1fpDpyRJ0WEB+n1qgm7t3px/1ADqnUB/h8altNfQ7i00adEP+mpnlqZ+sVMrdh3Xi8MvU9PwILNLtLRqBZnK8TGVysrKtHnzZm3btu2MySSBSmVuj15fvk8vf7VHZW5DQf4OPdSvjR7s20YNnHQOAqjf4ho30JsjL9cH69M16dPtWrP/hK6f/n+aMrSrbuja1OzyLKta3x7Tpk076/pJkyapoKDgogpC/bTtSK5+/9EWbT+WJ0m6NqGJnru1C7+JALik2Gw2De8Zp56tIjRu3mZtOZyr376/USN6xWrSzZ0vmVtK1KQavXvY3XffzTxLqMLtMfTS0j0aMuMbbT+Wp4YN/PXSHd30r5GXE2IAXLLaRIXo44ev0Oj+8bLZpP/9Ll13/GOtMvNqft63+q5Gg8yaNWsUGMiNf1AhK79Ed//rW01bulvlHkM3dm2qLx/rp1u6NefyQwCXPH+HXY+nJmjWqJ4KC/TTprQcDX5llbYd4UrNC1GtU0tDhw6t8twwDB07dkzr16/nbr+QJH2zN1uPzt2s7AKXGjgd+sutXTWke3OzywIAn3NNhyb6dMxVevDd9dqdWaDb31ijV+/srgEJ0WaXZgnV6pEJDw+vskREROiaa67R559/rokTJ9Z0jbAQt8fQtC936+43v1V2gUsJMaFaNPYqQgwA/IJWkcH66OErdFXbSBWVuvXrt9frw/XpZpdlCdXqkZk1a1ZN14F6oNBVrkfnbtLSHVmSpBG9YjVxcGcF+jN4DQD+m7BAf826r6f++MlWfbjhsB7/aItc5R7d3YdZ43/JRV3zumHDBu3YsUOS1LlzZ3Xv3r1GioL1HM0p1v1vr9eOY3ly+tk1dWhXDe3RwuyyAMBS/B12/fV/EhUc4KfZqw/qqQXb5Cr36P6rWptdms+qVpDJysrSHXfcoeXLl6thw4aSpJycHPXv319z585VVFRUTdYIH7c5PUcPvLNex/NdigwJ0D/uTVKPuEZmlwUAlmSz2TRxcCcF+jv0+op9+tNn21VS5tbo/m3NLs0nVWuMzNixY5Wfn68ffvhBJ0+e1MmTJ7Vt2zbl5eXpkUceqeka4cM+33pMw99Yo+P5FeNhFo65khADABfJZrPpies76LGU9pKkF5bs0otf7ja5Kt9UrR6ZxYsXa+nSperYsaN3XadOnTRjxgwNHDiwxoqDb3tv7SE9vXCbDKPiBncvjeiuEKapB4AaYbPZ9GhKOwX62zXli516edkeNWrgr/uu5DTTT1WrR8bj8cjf3/+M9f7+/vJ4PBddFHybYRia8fVePbWgIsTc06el/nHv5YQYAKgFD/WL1+8GVvTMTF60XQs3HzG5It9SrSAzYMAAPfroozp69Kh33ZEjR/TYY4/p2muvrbHi4HsMw9DUL3bqhSW7JEljB7TVs7d0loPJHgGg1ozu31ajrmglSfrdh99r5e7j5hbkQ6oVZF599VXl5eWpVatWio+PV3x8vFq3bq28vDy98sorNV0jfITbY+gPH2/VGyv3S5KeurGj/t/ADtylFwBqmc1m0zM3ddJNiU1V5jb0m/c26Pv0HLPL8gnVOhcQGxurjRs3aunSpdq5c6ckqWPHjkpJSanR4uA73B5Dj3/4vT7ZdER2mzR1aKJu7xlrdlkAcMmw2236++2XKaeoTKv2Zuu+2ev0ycNXqFVksNmlmeqCemS++uorderUSXl5ebLZbLruuus0duxYjR07Vj179lTnzp31f//3f7VVK0zi8Rh64uMt+mTTETnsNr16Zw9CDACYIMDPodfvSVJii3CdLCzVA++sV4Gr3OyyTHVBQWb69Ol64IEHFBYWdsa28PBwPfTQQ3rxxRdrrDiYz+Mx9Mf5W/XRhsNy2G16+Y7uuqFrU7PLAoBLVkiAn/517+WKDgvQnqwCjZ+3WR6PYXZZprmgIPP999/r+uuvP+f2gQMHasOGDRddFHyDYRh6auE2zV2XLrtNmja8m25MJMQAgNmahAXq9buT5HTY9Z/tmXrlq71ml2SaCwoymZmZZ73supKfn5+OH2ckdX1gGIYmL9quOd+myWaTXry9m26+rJnZZQEATuse10jP3dpFkjRt6W59uT3T5IrMcUFBpnnz5tq2bds5t2/ZskVNm/Ibe33w0rI9mr36oGw26YX/uYzZqwHAB91+eaz3suzH5m3W3qx8cwsywQUFmRtuuEFPP/20SkpKzthWXFysiRMn6qabbqqx4mCOd9ce0vSleyRJz97cWf+TxOSPAOCrnryxo3q3jlCBq1wPvrNBhZfY4N8LCjJPPfWUTp48qfbt2+uvf/2rFi5cqIULF+r5559Xhw4ddPLkST355JO1VSvqwL+3HNMzCyt63R69tp3uSW5lbkEAgF/k77Drtbt6qGl4oPZnF2ryoh/MLqlOXdB9ZKKjo7V69Wo9/PDDmjBhggyjYpS0zWZTamqqZsyYoejo6FopFLVv1Z5sjZu3SYYh3d0nTuNS2pldEgDgPDQOCdC04d004p9r9cH6w+rbPko3JV4a4xov+IZ4LVu21Oeff65Tp05p7969MgxD7dq1U6NGzHhsZduO5Oqhd9erzG3ohq4xmnxzF+7YCwAW0qdNY43p31avfLVXEz7ZqstaNFRsRAOzy6p11ZqiQJIaNWqknj17qlevXoQYizuWW6xfzV6nwlK3rohvrGnDuzF3EgBY0KPXtlOPuIbKLynXo3M3qdxd/ydyrnaQQf1Q6CrXr2avV1a+S+2jQ/T6PUkK8HOYXRYAoBr8HHa9dEd3hQb4aWNajl5etsfskmodQeYS5vYYeuR/N2nHsTxFhjj11qieCgs8932CAAC+Lzaigf48tKsk6dWv9+q7AydNrqh2EWQuYc/9e7uW7cxSgJ9d/7z3crVoVP/PpQLApeDmy5rpf5JayGNIv//oe7nK6+8UBtWa/RrWlpaWpnfXHNKsTXmSpLE9w2RkH9DG7AMX1a7L5VJAQEBNlFjFjh07arzNupCWlqbs7Owab5fjXBXHuW7eo7aOR221zc+zdEusR19tt+vgiSK9urL+9soQZC4xaWlp6nrdbWp4y5Oy2R06tXy2xj7/UQ21bpNUe6m/oKCg1tquaWlpaUro2FHFRUW10DrHuRLHuaq8kxVTxNx999013nbtHo/aa/tS/3kOanO5mtw2SauOO+Vs1sFSx+N8EWQuMT8czFBY6qOy2R2KC3Zr6D13ynbvnRfd7o7vVuiLt1/SjQ89qQ6JSTVQ6Zltn+2O0r4qOztbxUVFuuuJFxQdF19j7XKcq+I4V1VcUNHLWtN118XxqK2a+XmW1mW7lVbkUOQN41RUbJ3jcb4IMpeQotJyPb/6lBwNwtXI6dHgnu3l56iZYVKZafskSY2btVSLdp1rpM2ft21F0XHxNXo8OM5nx3GuqqbrrovjUVs1W1FN/zxHtnLrrZW7pcaxOliWrx411rJvYLDvJcIwDP3+oy06mFMud+Ep9Yksr7EQAwDwXYH+DsUrQ5KUXh6izLz61SvDN9kl4vUV+/XZlmNy2KTjC6aqAX1xAHDJiFS+CneslGTT0h2Zcnvqz1VMBJlLwIrdx/XXJTslSfd3D5Pr8KU1oRgAQDq59A35ya3sglJ9fzjH7HJqDL+X13NHcor16NyKiSCHXx6r1NZlYn5ymKE2Loe16iW2gBk8Rblq48zX7tKGWrv/hNpHhyokwPoxwPqfAOdUWu7Rb9/fqJyiMnVtHq7Jt3TW9q3fm10WLjG1e0lwhfp4SSlQG2IcRcoLi1FGXon+b89xDerS1OySLhpBph77y+c79H16jsIC/fTaXT0U6M8cSqh7tXVJsGTNS2wBM9lsUv8OUZq7Ll27MwvUuVmR4iw+QzZBpp5a9P1RzV59UJL04u3dLomp3OHbrHopM1DfNAkLVNcW4dpyOFfLd2Xprt4t5bDbzC6r2kwd7DtlyhT17NlToaGhatKkiYYMGaJdu3ZV2aekpESjR49W48aNFRISomHDhikzM9Okiq1hb1aB/vDxFknSw9fEK6VTtMkVAQB8yRVtGivI36FTRWXalHbK7HIuiqlBZsWKFRo9erTWrl2rL7/8UmVlZRo4cKAKCwu9+zz22GNatGiRPvzwQ61YsUJHjx7V0KFDTazatxWXuvXb9zeosNStPm0i9P+ua292SQAAHxPg79DV7SIlSd8eOKn8kjKTK6o+U08tLV68uMrz2bNnq0mTJtqwYYP69u2r3Nxcvfnmm5ozZ44GDBggSZo1a5Y6duyotWvXqk+fPmaU7dOe/Wy7dmcWKCo0QC+P6M5N7wAAZ5UQE6ptR3N1NKdEq/Zka1BXaw789alvudzcXElSRESEJGnDhg0qKytTSkqKd5+EhATFxcVpzZo1Z23D5XIpLy+vynKp+PeWY/rf79Jks0nTh3dTk9BAs0sCAPgom82ma9o3kSTtzirQsdxikyuqHp8JMh6PR+PGjdOVV16pLl26SJIyMjLkdDrVsGHDKvtGR0crIyPjrO1MmTJF4eHh3iU2Nra2S/cJ6SeL9IdPTo+L6RevK9tGmlwRAMDXRYUGqHOzMEnSyt3ZMgzr3fHXZ4LM6NGjtW3bNs2dO/ei2pkwYYJyc3O9S3p6eg1V6LvK3B49MneT8kvK1T2uoR5jXAwA4Dwlt2ksf4dNGXkl2p1pvXsy+USQGTNmjD777DN9/fXXatGihXd9TEyMSktLlZOTU2X/zMxMxcTEnLWtgIAAhYWFVVnqu2lf7tamtByFBvrp5Tu6y59xMQCA8xQc4KfLW1YM6fhmX7bK3R6TK7owpn7jGYahMWPGaP78+frqq6/UunXrKtuTkpLk7++vZcuWedft2rVLaWlpSk5OrutyfdI3e7M1c0XFvTSeH5bI/WIAABese1xDhQT4Kb+kXJvSc8wu54KYetXS6NGjNWfOHC1cuFChoaHecS/h4eEKCgpSeHi47r//fo0fP14REREKCwvT2LFjlZyczBVLknKKSjX+g80yDGlErzjdYNER5wAAc/k77LoyvrGWbM/U+oOn1KlpmIItMg+TqT0yM2fOVG5urq655ho1bdrUu8ybN8+7z7Rp03TTTTdp2LBh6tu3r2JiYvTJJ5+YWLVvMAxDTy7Ypsw8l9pEBeuZmzqZXRIAwMI6xISqSWiASt0erT1wwuxyzpupcet8RkcHBgZqxowZmjFjRh1UZB0LNh/Rv7cck5/dpunDuynIyTxKAFCXanr2dbNnc7fZbOrbLkofbTysH47kqXtsI0UEO02t6XxYo98IVRw+VaRnFvwgSXrk2nZKbNHQ3IIA4BJS2zO6mzmbe/NGQYqPCta+44VavS9bNyU2M62W80WQsRiPx9D/++B75bsqLrX+7TXxZpcEAJeU2prR3Vdmc09u01j7jxdq3/FCZeSWKCbct2+uSpCxmH+t2q9vD5xUA6dD04d3YwoCADBJTc/o7iuzuTcOCVBC01DtOJavb/Zla2j35rLZfHd2bL4FLWTHsTz9bcluSdIzN3VSy8bBJlcEAKiP+rRuLIfNpsOnipV2ssjscn4RQcYiSsrcGjd3s0rdHqV0jNbwnpfG1AsAgLoXFuSvri3CJUmr953w6akLCDIW8bclu7QrM1+RIU5NHdbVp7v5AADW17NVI/k7bMrKd2lvlu9OXUCQsYA1+07oX6sOSKq4e29kSIDJFQEA6rsGTj/1iGskqaJXxu3xzV4ZgoyPK3SV6/GPvpckjegVq2s7RptcEQDgUtEjrpGC/B3KKS7TjmN5ZpdzVgQZH/f84p06fKpYzRsG6ckbuXsvAKDuOP3s6tmqolfm2wMnVe7xvQklCTI+bGuWS++sOSSp4pRSiEXmvQAA1B9dm4crOMChAle5fjjqe70yBBkfZfMP1GvrciVJd/aO01XtIk2uCABwKfJz2NWzVYQkad3Bkyp3+1avDEHGRzXsN0qZhW41bxikP97Q0exyAACXsM7NwhQS4KdCl1vbfKxXhiDjg7JKbApLukkSp5QAAObzs9vVq7Vv9soQZHxMablHG05UBJeBbRpwSgkA4BM6NQ1TaKCfikrd2nIk1+xyvPhV38d8sy9bRW6bynOzdO9lXc0u55KwY8cOS7QJAGZy2G3q1TpCy3Zkaf3BU+raPNzskiQRZHzK4VNF2nK4IuWe+OIlNXjgLZMrqt/yTh6XJN1999219h4FBb57N0wAuFAdY8K0/uAp5RaXacvhXPnCnc0IMj6izO3Rl9szJUmtQ9w6dOh7kyuq/4oLKgas3fjQk+qQmFSjbe/4boW+ePsllZSU1Gi7AGCmyl6ZL7dnav2hkxroA0mGIOMj1uw7obyScoUG+qlrw1ItN7ugS0jjZi3Vol3nGm0zM21fjbYHAL4iITpU6w6cVE5xmfYXmD/U1vwKoIzcEm1Oz5EkDUhoIn/+VgAAPsput6nn6SuYduc5ZPM3d/4/vjJN5vYYWrozU4akhJhQtWocbHZJAAD8ooToUIUH+avUY1No9xtMrYUgY7INh07pREGpgvwd6tsuyuxyAAD4r+x2m3cOprBeQ+UqN29mbMbImOhkYam+O3BSktS3faSCnI4q27ksGADgqxJiwrR6d6aKghvpP/sKldzLnDoIMiYxDEPLdmTKbRhq2biBOkSHerdxWTAAwNc57DYlhLu1etN2te3f37Q6CDIm2XokV0dzS+TvsGlAhyay2WzebVwWDACwglbBHs2f+0d1fHyDaTUQZExQUFKub/aekCRdER+psCD/s+7HZcEAAF/2k9/BTcNg3zpmGIa+3pWlUrdHMWGBSmzhG7d4BgDAiggydWxvVoH2ZxfKbpNSOjaR3RfiLAAAFkWQqUMlZW4t310xkPfyVhFqHGLuTYQAALA6gkwd+mZftopK3WrUwN97/T0AAKg+gkwdOZZbrG1HKq5GGpDQRH52Dj0AABeLb9M64PYYWrYjS5LUqWmYWjRqYHJFAADUDwSZOrAp/ZROFJYq0N+uq9pGml0OAAD1BkGmluUVl+nb/RXTEFzdNuqMaQgAAED1EWRqUeU9Y8o9hpo3DFLHpqH//UUAAOC8EWRq0d6sAh08USS7rWKAr417xgAAUKMIMrXEVe7Wisp7xrSMUESw0+SKAACofwgytWTNvhMqLHUrPIh7xgAAUFsIMrUgI69E3x/OlXT6njEODjMAALWBb9ga5vEY+mpnxT1jEmJCFRfBPWMAAKgtBJkatvlwjo7nuxTgZ9fV7bhnDAAAtYkgU4PyS8q0dv8JSdJVbSPVwOlnckUAANRvBJkatHzXcZW5DTUND1TnZmFmlwMAQL1HkKkh+44XaH92oew26VruGQMAQJ0gyNSA0nKPlu+quGdMj7hGahwSYHJFAABcGggyNWDt/hMqcJUrLNBPvVpHmF0OAACXDEajXqScUps2Z+RIkvonNJE/94wBAKDO8K17MWx2bTzpkCGpfZMQtWocbHZFAABcUggyFyG0+w06VWqX02FX3/ZRZpcDAMAlhyBTTSeL3WrY915J0hVtGys4gLN0AADUNYJMNb21KU/2gAaKcHrUtXm42eUAAHBJIshU05VxgSrPzVL3CLfs3DMGAABTEGSqKblFkI784wE1dBpmlwIAwCWLIHMxPG6zKwAA4JJGkAEAAJZFkAEAAJZFkAEAAJZFkAEAAJZFkAEAAJZFkAEAAJZFkAEAAJZFkAEAAJZlapBZuXKlBg8erGbNmslms2nBggVVthuGoWeeeUZNmzZVUFCQUlJStGfPHnOKBQAAPsfUIFNYWKjLLrtMM2bMOOv2v/71r3r55Zf1+uuv69tvv1VwcLBSU1NVUlJSx5UCAABf5Gfmmw8aNEiDBg066zbDMDR9+nQ99dRTuuWWWyRJ77zzjqKjo7VgwQLdcccddVkqAADwQT47RubAgQPKyMhQSkqKd114eLh69+6tNWvWnPN1LpdLeXl5VRYAAFA/+WyQycjIkCRFR0dXWR8dHe3ddjZTpkxReHi4d4mNja3VOgEAgHl8NshU14QJE5Sbm+td0tPTzS4JAADUEp8NMjExMZKkzMzMKuszMzO9284mICBAYWFhVRYAAFA/+WyQad26tWJiYrRs2TLvury8PH377bdKTk42sTIAAOArTL1qqaCgQHv37vU+P3DggDZv3qyIiAjFxcVp3Lhxeu6559SuXTu1bt1aTz/9tJo1a6YhQ4aYVzQAAPAZpgaZ9evXq3///t7n48ePlySNHDlSs2fP1u9//3sVFhbqwQcfVE5Ojq666iotXrxYgYGBZpUMAAB8iKlB5pprrpFhGOfcbrPZ9Oyzz+rZZ5+tw6oAAIBV+OwYGQAAgP+GIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACzLEkFmxowZatWqlQIDA9W7d2999913ZpcEAAB8gM8HmXnz5mn8+PGaOHGiNm7cqMsuu0ypqanKysoyuzQAAGAynw8yL774oh544AHdd9996tSpk15//XU1aNBAb731ltmlAQAAk/l0kCktLdWGDRuUkpLiXWe325WSkqI1a9aYWBkAAPAFfmYX8Euys7PldrsVHR1dZX10dLR27tx51te4XC65XC7v89zcXElSXl5ejdZWUFAgSTq85we5iotqtO3MtH2SpIyDu7UvuIEl2qbmummbmuumbSvWXJttU3PdtG3Fmo8fPiCp4juxpr9nK9szDOOXdzR82JEjRwxJxurVq6usf/zxx41evXqd9TUTJ040JLGwsLCwsLDUgyU9Pf0Xs4JP98hERkbK4XAoMzOzyvrMzEzFxMSc9TUTJkzQ+PHjvc89Ho9Onjypxo0by2az1VhteXl5io2NVXp6usLCwmqsXZyJY103OM51g+NcNzjOdaM2j7NhGMrPz1ezZs1+cT+fDjJOp1NJSUlatmyZhgwZIqkimCxbtkxjxow562sCAgIUEBBQZV3Dhg1rrcawsDD+kdQRjnXd4DjXDY5z3eA4143aOs7h4eH/dR+fDjKSNH78eI0cOVKXX365evXqpenTp6uwsFD33Xef2aUBAACT+XyQGT58uI4fP65nnnlGGRkZ6tatmxYvXnzGAGAAAHDp8fkgI0ljxow556kkswQEBGjixIlnnMZCzeNY1w2Oc93gONcNjnPd8IXjbDOM/3ZdEwAAgG/y6RviAQAA/BKCDAAAsCyCDAAAsCyCDAAAsCyCTDXNmDFDrVq1UmBgoHr37q3vvvvO7JLqnZUrV2rw4MFq1qyZbDabFixYYHZJ9c6UKVPUs2dPhYaGqkmTJhoyZIh27dpldln10syZM5WYmOi9cVhycrK++OILs8uq16ZOnSqbzaZx48aZXUq9M2nSJNlstipLQkKCKbUQZKph3rx5Gj9+vCZOnKiNGzfqsssuU2pqqrKysswurV4pLCzUZZddphkzZphdSr21YsUKjR49WmvXrtWXX36psrIyDRw4UIWFhWaXVu+0aNFCU6dO1YYNG7R+/XoNGDBAt9xyi3744QezS6uX1q1bpzfeeEOJiYlml1Jvde7cWceOHfMuq1atMqUOLr+uht69e6tnz5569dVXJVVMmxAbG6uxY8fqD3/4g8nV1U82m03z58/3TlWB2nH8+HE1adJEK1asUN++fc0up96LiIjQCy+8oPvvv9/sUuqVgoIC9ejRQ6+99pqee+45devWTdOnTze7rHpl0qRJWrBggTZv3mx2KfTIXKjS0lJt2LBBKSkp3nV2u10pKSlas2aNiZUBFy83N1dSxRcsao/b7dbcuXNVWFio5ORks8upd0aPHq0bb7yxyv/TqHl79uxRs2bN1KZNG911111KS0szpQ5L3NnXl2RnZ8vtdp8xRUJ0dLR27txpUlXAxfN4PBo3bpyuvPJKdenSxexy6qWtW7cqOTlZJSUlCgkJ0fz589WpUyezy6pX5s6dq40bN2rdunVml1Kv9e7dW7Nnz1aHDh107NgxTZ48WVdffbW2bdum0NDQOq2FIANAUsVvsdu2bTPtPPeloEOHDtq8ebNyc3P10UcfaeTIkVqxYgVhpoakp6fr0Ucf1ZdffqnAwECzy6nXBg0a5H2cmJio3r17q2XLlvrggw/q/FQpQeYCRUZGyuFwKDMzs8r6zMxMxcTEmFQVcHHGjBmjzz77TCtXrlSLFi3MLqfecjqdatu2rSQpKSlJ69at00svvaQ33njD5Mrqhw0bNigrK0s9evTwrnO73Vq5cqVeffVVuVwuORwOEyusvxo2bKj27dtr7969df7ejJG5QE6nU0lJSVq2bJl3ncfj0bJlyzjXDcsxDENjxozR/Pnz9dVXX6l169Zml3RJ8Xg8crlcZpdRb1x77bXaunWrNm/e7F0uv/xy3XXXXdq8eTMhphYVFBRo3759atq0aZ2/Nz0y1TB+/HiNHDlSl19+uXr16qXp06ersLBQ9913n9ml1SsFBQVV0v2BAwe0efNmRUREKC4uzsTK6o/Ro0drzpw5WrhwoUJDQ5WRkSFJCg8PV1BQkMnV1S8TJkzQoEGDFBcXp/z8fM2ZM0fLly/XkiVLzC6t3ggNDT1jfFdwcLAaN27MuK8a9rvf/U6DBw9Wy5YtdfToUU2cOFEOh0MjRoyo81oIMtUwfPhwHT9+XM8884wyMjLUrVs3LV68+IwBwLg469evV//+/b3Px48fL0kaOXKkZs+ebVJV9cvMmTMlSddcc02V9bNmzdKoUaPqvqB6LCsrS/fee6+OHTum8PBwJSYmasmSJbruuuvMLg24YIcPH9aIESN04sQJRUVF6aqrrtLatWsVFRVV57VwHxkAAGBZjJEBAACWRZABAACWRZABAACWRZABAACWRZABAACWRZABAACWRZABAACWRZABYKprrrlG48aNO699ly9fLpvNppycnIt6z1atWmn69OkX1QYA30CQAQAAlkWQAQAAlkWQAeAz3n33XV1++eUKDQ1VTEyM7rzzTmVlZZ2x3zfffKPExEQFBgaqT58+2rZtW5Xtq1at0tVXX62goCDFxsbqkUceUWFhYV19DAB1iCADwGeUlZXpT3/6k77//nstWLBABw8ePOvklY8//rj+/ve/a926dYqKitLgwYNVVlYmSdq3b5+uv/56DRs2TFu2bNG8efO0atUqjRkzpo4/DYC6wOzXAHzGr371K+/jNm3a6OWXX1bPnj1VUFCgkJAQ77aJEyd6Z41+++231aJFC82fP1+33367pkyZorvuuss7gLhdu3Z6+eWX1a9fP82cOVOBgYF1+pkA1C56ZAD4jA0bNmjw4MGKi4tTaGio+vXrJ0lKS0ursl9ycrL3cUREhDp06KAdO3ZIkr7//nvNnj1bISEh3iU1NVUej0cHDhyouw8DoE7QIwPAJxQWFio1NVWpqal6//33FRUVpbS0NKWmpqq0tPS82ykoKNBDDz2kRx555IxtcXFxNVkyAB9AkAHgE3bu3KkTJ05o6tSpio2NlSStX7/+rPuuXbvWG0pOnTql3bt3q2PHjpKkHj16aPv27Wrbtm3dFA7AVJxaAuAT4uLi5HQ69corr2j//v369NNP9ac//ems+z777LNatmyZtm3bplGjRikyMlJDhgyRJD3xxBNavXq1xowZo82bN2vPnj1auHAhg32BeoogA8AnREVFafbs2frwww/VqVMnTZ06VX/729/Ouu/UqVP16KOPKikpSRkZGVq0aJGcTqckKTExUStWrNDu3bt19dVXq3v37nrmmWfUrFmzuvw4AOqIzTAMw+wiAAAAqoMeGQAAYFkEGQAAYFkEGQAAYFkEGQAAYFkEGQAAYFkEGQAAYFkEGQAAYFkEGQAAYFkEGQAAYFkEGQAAYFkEGQAAYFkEGQAAYFn/HyoCRjyqcznmAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.histplot(dev[\"label\"], kde=True, bins=20)\n", + "plt.title(\"dev label Distribution\")\n", + "plt.xlabel(\"label\")\n", + "plt.ylabel(\"Count\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABccAAAIrCAYAAAAqSyFUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABoPklEQVR4nO3deXhV5bk/7icBEuYwE9AwOCEqKEWLaFVUBNHSempbp1asA2rRVnCkdUDst6BtHdqDejxHxVapQ38WW7WoKIIDOFARQaWCWLQaHCFCS0B4f3/0sI8pYAkkJJt139e1rytrrXc/+1lJ1s67PllZKUgppQAAAAAAgAwprOsGAAAAAABgWxOOAwAAAACQOcJxAAAAAAAyRzgOAAAAAEDmCMcBAAAAAMgc4TgAAAAAAJkjHAcAAAAAIHOE4wAAAAAAZI5wHAAAAACAzBGOA1TTW2+9FQUFBfHzn/+8xmo++eSTUVBQEE8++WSN1cxHb7/9djRu3DieeeaZbfJ667+WEydOrPZzP/roo2jWrFk8/PDDNd8YAAB1xny/9lRnvj9gwIAYMGBArfViPg9ECMeBjJg4cWIUFBTEiy++WNet1IhFixbFmWeeGTvttFM0btw4WrZsGQceeGDccMMN8Y9//KOu24uIiBtvvLHaofPYsWOjX79+ceCBB+bWTZo0Ka6//vqaba4GtG3bNk4//fS47LLL6roVAIDMM9/f9mpqvl9XzOeBiIiGdd0AANXz0EMPxbe+9a0oLi6Ok08+Ofbaa69YvXp1PP3003HhhRfG/Pnz45ZbbqnrNuPGG2+Mdu3axSmnnLJZ4z/44IO444474o477qiyftKkSTFv3rw477zzarzHrl27xj/+8Y9o1KjRFj3/rLPOil/+8pfxxBNPxGGHHVbD3QEAkEVZm+/XJfN5QDgOkEcWL14cxx9/fHTt2jWeeOKJ6NSpU27biBEjYuHChfHQQw/VYYdb7s4774yGDRvG0KFDt7jGqlWroqioKAoLN+8PowoKCqJx48Zb/Ho9e/aMvfbaKyZOnGgyDQDAVjPf37bM5wG3VQH4X6tXr47LL788+vbtGyUlJdGsWbM46KCDYtq0aZt8znXXXRddu3aNJk2axCGHHBLz5s3bYMzrr78e3/zmN6NNmzbRuHHj2HfffeMPf/jDFvV4zTXXxIoVK+LWW2+tMlFeb5dddokf/vCHueXPPvssrrrqqth5552juLg4unXrFj/60Y+isrKyyvMKCgpizJgxG9Tr1q1blStB1v+56jPPPBOjRo2K9u3bR7NmzeI//uM/4oMPPqjyvPnz58f06dOjoKAgCgoK/u39AidPnhz9+vWL5s2b59YNGDAgHnroofjrX/+aq9OtW7eI+L/7Nt59991x6aWXxg477BBNmzaNioqK+Pjjj+OCCy6IXr16RfPmzaNly5YxZMiQePnll6u85sbuOX7KKadE8+bN429/+1scc8wx0bx582jfvn1ccMEFsXbt2g36PuKII+KPf/xjpJS+cP8AAKhb5vtjNqhX1/P99W655ZbYeeedo0mTJvHlL385nnrqqY3WqKysjCuuuCJ22WWXKC4ujrKysrjooouq7O9ee+0Vhx566AbPXbduXeywww7xzW9+s8p683nINleOA/yvioqK+J//+Z844YQT4owzzohPP/00br311hg8eHA8//zzsc8++1QZ/+tf/zo+/fTTGDFiRKxatSpuuOGGOOyww+KVV16Jjh07RkTE/Pnz48ADD4wddtghLrnkkmjWrFnce++9ccwxx8T/9//9f/Ef//Ef1erxj3/8Y+y0005xwAEHbNb4008/Pe6444745je/Geeff34899xzMW7cuHjttdfi97//fbVe+/POPffcaN26dVxxxRXx1ltvxfXXXx/nnHNO3HPPPRERcf3118e5554bzZs3jx//+McREbnPycasWbMmXnjhhTj77LOrrP/xj38cy5cvj3feeSeuu+66iIgNJtNXXXVVFBUVxQUXXBCVlZVRVFQUr776akyePDm+9a1vRffu3WPp0qXxX//1X3HIIYfEq6++Gp07d/7C/Vu7dm0MHjw4+vXrFz//+c9j6tSp8Ytf/CJ23nnnDXrs27dvXHfddTF//vzYa6+9Nu8TCADANme+v/m21Xw/IuLWW2+NM888Mw444IA477zz4s0334yvfe1r0aZNmygrK8uNW7duXXzta1+Lp59+OoYPHx49e/aMV155Ja677rr4y1/+EpMnT46IiOOOOy7GjBkT5eXlUVpamnv+008/He+++24cf/zxVV7ffB4yLgFkwO23354iIr3wwgubHPPZZ5+lysrKKus++eST1LFjx3Tqqafm1i1evDhFRGrSpEl65513cuufe+65FBFp5MiRuXWHH3546tWrV1q1alVu3bp169IBBxyQdt1119y6adOmpYhI06ZN22R/y5cvTxGRvv71r2/OLqc5c+akiEinn356lfUXXHBBioj0xBNP5NZFRLriiis2qNG1a9c0bNiw3PL6z+PAgQPTunXrcutHjhyZGjRokJYtW5Zbt+eee6ZDDjlks3pduHBhioj0q1/9aoNtRx99dOratesG69d/znbaaaf097//vcq2VatWpbVr11ZZt3jx4lRcXJzGjh1bZV1EpNtvvz23btiwYSkiqoxLKaU+ffqkvn37btDHs88+myIi3XPPPZuzqwAA1ALz/f+TT/P91atXpw4dOqR99tmnytfmlltuSRFRpf5vfvObVFhYmJ566qkqNW6++eYUEemZZ55JKaW0YMGCjb7W97///dS8efMNzh3M5yHb3FYF4H81aNAgioqKIuKfVyV8/PHH8dlnn8W+++4bf/7znzcYf8wxx8QOO+yQW/7yl78c/fr1i4cffjgiIj7++ON44okn4tvf/nZ8+umn8eGHH8aHH34YH330UQwePDjeeOON+Nvf/rbZ/VVUVERERIsWLTZr/Po+Ro0aVWX9+eefHxGxVfcqHD58eBQUFOSWDzrooFi7dm389a9/3aJ6H330UUREtG7dutrPHTZsWDRp0qTKuuLi4tx9x9euXRsfffRRNG/ePHr06LHRr+XGnHXWWVWWDzrooHjzzTc3GLe+5w8//LDavQMAsO2Y72++bTXff/HFF+P999+Ps846K/e1ifjnrQ5LSkqqjL3vvvuiZ8+esfvuu+c+1x9++GHuXuHrb4+z2267xT777JO7yj3in+cEv/vd72Lo0KEbnDuYz0O2CccBPueOO+6I3r17R+PGjaNt27bRvn37eOihh2L58uUbjN111103WLfbbrvFW2+9FRERCxcujJRSXHbZZdG+ffsqjyuuuCIiIt5///3N7q1ly5YREfHpp59u1vi//vWvUVhYGLvsskuV9aWlpdGqVastnthGRHTp0qXK8voJ5SeffLLFNSNii+7z17179w3WrVu3Lq677rrYddddo7i4ONq1axft27ePuXPnbvRr+a8aN24c7du3r7KudevWG92/9T1//uQBAID6yXx/82yr+f76Hv/1c92oUaPYaaedqqx74403Yv78+Rt8rnfbbbeIqPq5Pu644+KZZ57J/XLiySefjPfffz+OO+64TfZkPg/Z5J7jAP/rzjvvjFNOOSWOOeaYuPDCC6NDhw7RoEGDGDduXCxatKja9datWxcRERdccEEMHjx4o2P+dSL7RVq2bBmdO3fe6D8B+iJbM8nb2D+gjPjnVTcbsyXhdkRE27ZtI2LLJtv/euVHRMRPf/rTuOyyy+LUU0+Nq666Ktq0aROFhYVx3nnn5b4uX2RT+7cx63tu167d5jcNAMA2Z76/oXyY76+3bt266NWrV1x77bUb3f75+5Mfd9xxMXr06LjvvvvivPPOi3vvvTdKSkriyCOP3OB55vOQbcJxgP/1u9/9Lnbaaae4//77q0ww11/18a/eeOONDdb95S9/iW7dukVE5K50aNSoUQwcOLBGevzqV78at9xyS8ycOTP69+//hWO7du0a69atizfeeCN69uyZW7906dJYtmxZdO3aNbeudevWsWzZsirPX716dbz33ntb3Gt1JuldunSJJk2axOLFi7eqznq/+93v4tBDD41bb721yvply5bV+KR3fc+f/xwDAFD/mO8vq/L8+jDfX9/jG2+8kbs9SsQ//4Hn4sWLY++9986t23nnnePll1+Oww8//N++dvfu3ePLX/5y3HPPPXHOOefE/fffH8ccc0wUFxdvMNZ8HrLNbVUA/tf6qyM+fzXEc889FzNnztzo+MmTJ1e5h+Dzzz8fzz33XAwZMiQiIjp06BADBgyI//qv/9ropPODDz6odo8XXXRRNGvWLE4//fRYunTpBtsXLVoUN9xwQ0REHHXUURHxz/8k/3nrr7Q4+uijc+t23nnnmDFjRpVxt9xyyyavJNkczZo122ACvimNGjWKfffdN1588cWN1tmcW6F8XoMGDTa4quW+++6r1j0fN9fs2bOjpKQk9txzzxqvDQBAzTHfr3/z/X333Tfat28fN998c6xevTq3fuLEiRvU/va3vx1/+9vf4r//+783qP+Pf/wjVq5cWWXdcccdF7NmzYrbbrstPvzww43eUiXCfB6yzpXjQKbcdtttMWXKlA3W//CHP4yvfvWrcf/998d//Md/xNFHHx2LFy+Om2++OfbYY49YsWLFBs/ZZZdd4itf+UqcffbZUVlZGddff320bds2LrrootyYCRMmxFe+8pXo1atXnHHGGbHTTjvF0qVLY+bMmfHOO+/Eyy+/XK3+d95555g0aVIcd9xx0bNnzzj55JNjr732itWrV8ezzz4b9913X5xyyikREbH33nvHsGHD4pZbbolly5bFIYccEs8//3zccccdccwxx8Shhx6aq3v66afHWWedFccee2wcccQR8fLLL8cjjzyyVVdZ9+3bN2666ab4yU9+Ervsskt06NChytUg/+rrX/96/PjHP46Kiorc/RbX17nnnnti1KhRsd9++0Xz5s1j6NChX/jaX/3qV2Ps2LHxve99Lw444IB45ZVX4q677trgvoU14bHHHouhQ4e6RyEAQD1gvp9f8/1GjRrFT37ykzjzzDPjsMMOi+OOOy4WL14ct99++wZz9+9+97tx7733xllnnRXTpk2LAw88MNauXRuvv/563HvvvfHII4/Evvvumxv/7W9/Oy644IK44IILok2bNpu8ut98HjIuAWTA7bffniJik4+33347rVu3Lv30pz9NXbt2TcXFxalPnz7pwQcfTMOGDUtdu3bN1Vq8eHGKiPSzn/0s/eIXv0hlZWWpuLg4HXTQQenll1/e4LUXLVqUTj755FRaWpoaNWqUdthhh/TVr341/e53v8uNmTZtWoqING3atM3an7/85S/pjDPOSN26dUtFRUWpRYsW6cADD0y/+tWv0qpVq3Lj1qxZk6688srUvXv31KhRo1RWVpZGjx5dZUxKKa1duzZdfPHFqV27dqlp06Zp8ODBaeHChalr165p2LBhG3weX3jhhSrP31j/5eXl6eijj04tWrRIEZEOOeSQL9ynpUuXpoYNG6bf/OY3VdavWLEinXjiialVq1YpInJfi/Wved99921Qa9WqVen8889PnTp1Sk2aNEkHHnhgmjlzZjrkkEOq9LH+a3n77bfn1g0bNiw1a9Zsg5pXXHFF+tcfm6+99lqKiDR16tQv3DcAAGqX+X7+zvdTSunGG29M3bt3T8XFxWnfffdNM2bM2GDunlJKq1evTldffXXac889U3FxcWrdunXq27dvuvLKK9Py5cs3qHvggQemiEinn376RnsynwcKUtrC/6YAADXstNNOi7/85S/x1FNP1XUrm+W8886LGTNmxOzZs11pAgAA/0Z9m++bzwPCcQDqjSVLlsRuu+0Wjz/+eBx44IF13c4X+uijj6Jr165x77335u73CAAAbFp9mu+bzwMRwnEAAAAAADKosK4bAAAAAACAbU04DgAAAABA5gjHAQAAAADIHOE4AAAAAACZ07CuG8gH69ati3fffTdatGgRBQUFdd0OAAA1JKUUn376aXTu3DkKC103kiXm+AAA26fqzPGF45vh3XffjbKysrpuAwCAWvL222/HjjvuWNdtsA2Z4wMAbN82Z44vHN8MLVq0iIh/fkJbtmxZx90AAFBTKioqoqysLDffIzvM8QEAtk/VmeMLxzfD+j+zbNmypYkzAMB2yG01ssccHwBg+7Y5c3w3VgQAAAAAIHOE4wAAAAAAZI5wHAAAAACAzBGOAwAAAACQOcJxAAAAAAAyRzgOAAAAAEDmCMcBAAAAAMgc4TgAAAAAAJkjHAcAAAAAIHOE4wAAAAAAZI5wHAAAAACAzBGOAwAAAACQOcJxAAAAAAAyRzgOAAAAAEDmCMcBAAAAAMgc4TgAAAAAAJkjHAcAAAAAIHOE4wAAAAAAZI5wHAAAAACAzGlY1w3ku/EvfbhZ4y7p066WOwEAAKC+cc4IAPWXK8cBAAAAAMgc4TgAAAAAAJkjHAcAAAAAIHOE4wAAAAAAZI5wHAAAAACAzBGOAwAAAACQOcJxAAAAAAAyRzgOAAAAAEDmCMcBAAAAAMgc4TgAAAAAAJkjHAcAAAAAIHOE4wAAAAAAZI5wHAAAAACAzBGOAwAAAACQOcJxAAAAAAAyRzgOAAAAAEDmCMcBAAAAAMgc4TgAAAAAAJkjHAcAAAAAIHOE4wAAAAAAZE6dhuPjxo2L/fbbL1q0aBEdOnSIY445JhYsWFBlzKpVq2LEiBHRtm3baN68eRx77LGxdOnSKmOWLFkSRx99dDRt2jQ6dOgQF154YXz22WdVxjz55JPxpS99KYqLi2OXXXaJiRMn1vbuAQAAAABQT9VpOD59+vQYMWJEzJo1Kx577LFYs2ZNDBo0KFauXJkbM3LkyPjjH/8Y9913X0yfPj3efffd+MY3vpHbvnbt2jj66KNj9erV8eyzz8Ydd9wREydOjMsvvzw3ZvHixXH00UfHoYceGnPmzInzzjsvTj/99HjkkUe26f4CAAAAAFA/FKSUUl03sd4HH3wQHTp0iOnTp8fBBx8cy5cvj/bt28ekSZPim9/8ZkREvP7669GzZ8+YOXNm7L///vGnP/0pvvrVr8a7774bHTt2jIiIm2++OS6++OL44IMPoqioKC6++OJ46KGHYt68ebnXOv7442PZsmUxZcqUDfqorKyMysrK3HJFRUWUlZXF8uXLo2XLllXGjn/pw83at0v6tKv25wMAgNpVUVERJSUlG53nsX3ztWdbcc4IANtWdeZ59eqe48uXL4+IiDZt2kRExOzZs2PNmjUxcODA3Jjdd989unTpEjNnzoyIiJkzZ0avXr1ywXhExODBg6OioiLmz5+fG/P5GuvHrK/xr8aNGxclJSW5R1lZWc3tJAAAAAAAda7ehOPr1q2L8847Lw488MDYa6+9IiKivLw8ioqKolWrVlXGduzYMcrLy3NjPh+Mr9++ftsXjamoqIh//OMfG/QyevToWL58ee7x9ttv18g+AgAAAABQPzSs6wbWGzFiRMybNy+efvrpum4liouLo7i4uK7bAAAAAACgltSLK8fPOeecePDBB2PatGmx44475taXlpbG6tWrY9myZVXGL126NEpLS3Njli5dusH29du+aEzLli2jSZMmNb07AAAAAADUc3UajqeU4pxzzonf//738cQTT0T37t2rbO/bt280atQoHn/88dy6BQsWxJIlS6J///4REdG/f/945ZVX4v3338+Neeyxx6Jly5axxx575MZ8vsb6MetrAAAA9ce4ceNiv/32ixYtWkSHDh3imGOOiQULFlQZM2DAgCgoKKjyOOuss+qoYwAA8lGdhuMjRoyIO++8MyZNmhQtWrSI8vLyKC8vz90HvKSkJE477bQYNWpUTJs2LWbPnh3f+973on///rH//vtHRMSgQYNijz32iO9+97vx8ssvxyOPPBKXXnppjBgxIndrlLPOOivefPPNuOiii+L111+PG2+8Me69994YOXJkne07AACwcdOnT48RI0bErFmz4rHHHos1a9bEoEGDYuXKlVXGnXHGGfHee+/lHtdcc00ddQwAQD6q03uO33TTTRHxz6s+Pu/222+PU045JSIirrvuuigsLIxjjz02KisrY/DgwXHjjTfmxjZo0CAefPDBOPvss6N///7RrFmzGDZsWIwdOzY3pnv37vHQQw/FyJEj44Ybbogdd9wx/ud//icGDx5c6/sIAABUz5QpU6osT5w4MTp06BCzZ8+Ogw8+OLe+adOmuVspAgBAddVpOJ5S+rdjGjduHBMmTIgJEyZsckzXrl3j4Ycf/sI6AwYMiJdeeqnaPQIAAHVr+fLlERHRpk2bKuvvuuuuuPPOO6O0tDSGDh0al112WTRt2nSjNSorK6OysjK3XFFRUXsNAwCQF+o0HAcAAPgi69ati/POOy8OPPDA2GuvvXLrTzzxxOjatWt07tw55s6dGxdffHEsWLAg7r///o3WGTduXFx55ZXbqm0AoB4b/9KHmzXukj7tarkT6ppwHAAAqLdGjBgR8+bNi6effrrK+uHDh+c+7tWrV3Tq1CkOP/zwWLRoUey8884b1Bk9enSMGjUqt1xRURFlZWW11zgAAPWecBwAAKiXzjnnnHjwwQdjxowZseOOO37h2H79+kVExMKFCzcajhcXF0dxcXGt9AkAQH4SjgMAAPVKSinOPffc+P3vfx9PPvlkdO/e/d8+Z86cORER0alTp1ruDgCA7YVwHAAAqFdGjBgRkyZNigceeCBatGgR5eXlERFRUlISTZo0iUWLFsWkSZPiqKOOirZt28bcuXNj5MiRcfDBB0fv3r3ruHsAAPKFcBwAAKhXbrrppoiIGDBgQJX1t99+e5xyyilRVFQUU6dOjeuvvz5WrlwZZWVlceyxx8all15aB90CAJCvhOMAAEC9klL6wu1lZWUxffr0bdQNAADbq8K6bgAAAAAAALY14TgAAAAAAJkjHAcAAAAAIHOE4wAAAAAAZI5wHAAAAACAzBGOAwAAAACQOcJxAAAAAAAyRzgOAAAAAEDmCMcBAAAAAMgc4TgAAAAAAJkjHAcAAAAAIHOE4wAAAAAAZI5wHAAAAACAzBGOAwAAAACQOcJxAAAAAAAyRzgOAAAAAEDmCMcBAAAAAMgc4TgAAAAAAJkjHAcAAAAAIHOE4wAAAAAAZI5wHAAAAACAzBGOAwAAAACQOcJxAAAAAAAyRzgOAAAAAEDmCMcBAAAAAMgc4TgAAAAAAJnTsK4bAAAAANiejH/pw80ee0mfdrXYCQBfxJXjAAAAAABkjnAcAAAAAIDMEY4DAAAAAJA5wnEAAAAAADJHOA4AAAAAQOYIxwEAAAAAyJw6DcdnzJgRQ4cOjc6dO0dBQUFMnjy5yvaCgoKNPn72s5/lxnTr1m2D7ePHj69SZ+7cuXHQQQdF48aNo6ysLK655pptsXsAAAAAANRTdRqOr1y5Mvbee++YMGHCRre/9957VR633XZbFBQUxLHHHltl3NixY6uMO/fcc3PbKioqYtCgQdG1a9eYPXt2/OxnP4sxY8bELbfcUqv7BgAAAABA/dWwLl98yJAhMWTIkE1uLy0trbL8wAMPxKGHHho77bRTlfUtWrTYYOx6d911V6xevTpuu+22KCoqij333DPmzJkT1157bQwfPnzrdwIAAAAAgLyTN/ccX7p0aTz00ENx2mmnbbBt/Pjx0bZt2+jTp0/87Gc/i88++yy3bebMmXHwwQdHUVFRbt3gwYNjwYIF8cknn2z0tSorK6OioqLKAwAAAACA7UedXjleHXfccUe0aNEivvGNb1RZ/4Mf/CC+9KUvRZs2beLZZ5+N0aNHx3vvvRfXXnttRESUl5dH9+7dqzynY8eOuW2tW7fe4LXGjRsXV155ZS3tCQAAAAAAdS1vwvHbbrstTjrppGjcuHGV9aNGjcp93Lt37ygqKoozzzwzxo0bF8XFxVv0WqNHj65St6KiIsrKyrascQAAAAAA6p28CMefeuqpWLBgQdxzzz3/dmy/fv3is88+i7feeit69OgRpaWlsXTp0ipj1i9v6j7lxcXFWxysAwAAAABQ/+XFPcdvvfXW6Nu3b+y9997/duycOXOisLAwOnToEBER/fv3jxkzZsSaNWtyYx577LHo0aPHRm+pAgAAAADA9q9Ow/EVK1bEnDlzYs6cORERsXjx4pgzZ04sWbIkN6aioiLuu+++OP300zd4/syZM+P666+Pl19+Od5888246667YuTIkfGd73wnF3yfeOKJUVRUFKeddlrMnz8/7rnnnrjhhhuq3DYFAAAAAIBsqdPbqrz44otx6KGH5pbXB9bDhg2LiRMnRkTE3XffHSmlOOGEEzZ4fnFxcdx9990xZsyYqKysjO7du8fIkSOrBN8lJSXx6KOPxogRI6Jv377Rrl27uPzyy2P48OG1u3MAAADUivEvfbjZYy/p067OalLzfO1r3ubuf3X2fXurWZ26vp/y42tPzaqt7/tt8bWv03B8wIABkVL6wjHDhw/fZJD9pS99KWbNmvVvX6d3797x1FNPbVGPAAAAAABsf/LinuMAAAAAAFCThOMAAAAAAGSOcBwAAAAAgMwRjgMAAAAAkDnCcQAAAAAAMkc4DgAAAABA5gjHAQAAAADIHOE4AAAAAACZIxwHAAAAACBzhOMAAAAAAGSOcBwAAAAAgMwRjgMAAAAAkDnCcQAAAAAAMkc4DgAAAABA5jSs6wYAAADqk/EvfbhZ4y7p066WOwGoyvsTQM1y5TgAAAAAAJkjHAcAAAAAIHOE4wAAAAAAZI5wHAAAAACAzBGOAwAAAACQOcJxAAAAAAAyRzgOAAAAAEDmCMcBAAAAAMgc4TgAAAAAAJkjHAcAAAAAIHOE4wAAAAAAZI5wHAAAAACAzBGOAwAA9cq4ceNiv/32ixYtWkSHDh3imGOOiQULFlQZs2rVqhgxYkS0bds2mjdvHscee2wsXbq0jjoGACAfCccBAIB6Zfr06TFixIiYNWtWPPbYY7FmzZoYNGhQrFy5Mjdm5MiR8cc//jHuu+++mD59erz77rvxjW98ow67BgAg3zSs6wYAAAA+b8qUKVWWJ06cGB06dIjZs2fHwQcfHMuXL49bb701Jk2aFIcddlhERNx+++3Rs2fPmDVrVuy///510TYAAHnGleMAAEC9tnz58oiIaNOmTUREzJ49O9asWRMDBw7Mjdl9992jS5cuMXPmzI3WqKysjIqKiioPAACyzZXjAABAvbVu3bo477zz4sADD4y99torIiLKy8ujqKgoWrVqVWVsx44do7y8fKN1xo0bF1deeWVtt8tGjH/pw80ee0mfdrXYCQBAVa4cBwAA6q0RI0bEvHnz4u67796qOqNHj47ly5fnHm+//XYNdQgAQL5y5TgAAFAvnXPOOfHggw/GjBkzYscdd8ytLy0tjdWrV8eyZcuqXD2+dOnSKC0t3Wit4uLiKC4uru2WAQDII64cBwAA6pWUUpxzzjnx+9//Pp544ono3r17le19+/aNRo0axeOPP55bt2DBgliyZEn0799/W7cLAECecuU4AABQr4wYMSImTZoUDzzwQLRo0SJ3H/GSkpJo0qRJlJSUxGmnnRajRo2KNm3aRMuWLePcc8+N/v37x/7771/H3QMAkC+E4wAAQL1y0003RUTEgAEDqqy//fbb45RTTomIiOuuuy4KCwvj2GOPjcrKyhg8eHDceOON27hTAADymXAcAACoV1JK/3ZM48aNY8KECTFhwoRt0BEAANsj9xwHAAAAACBzhOMAAAAAAGSOcBwAAAAAgMyp03B8xowZMXTo0OjcuXMUFBTE5MmTq2w/5ZRToqCgoMrjyCOPrDLm448/jpNOOilatmwZrVq1itNOOy1WrFhRZczcuXPjoIMOisaNG0dZWVlcc801tb1rAAAAAADUY3Uajq9cuTL23nvvL/wnOkceeWS89957ucdvf/vbKttPOumkmD9/fjz22GPx4IMPxowZM2L48OG57RUVFTFo0KDo2rVrzJ49O372s5/FmDFj4pZbbqm1/QIAAAAAoH5rWJcvPmTIkBgyZMgXjikuLo7S0tKNbnvttddiypQp8cILL8S+++4bERG/+tWv4qijjoqf//zn0blz57jrrrti9erVcdttt0VRUVHsueeeMWfOnLj22murhOgAAAAAAGRHvb/n+JNPPhkdOnSIHj16xNlnnx0fffRRbtvMmTOjVatWuWA8ImLgwIFRWFgYzz33XG7MwQcfHEVFRbkxgwcPjgULFsQnn3yy0desrKyMioqKKg8AAAAAALYf9TocP/LII+PXv/51PP7443H11VfH9OnTY8iQIbF27dqIiCgvL48OHTpUeU7Dhg2jTZs2UV5enhvTsWPHKmPWL68f86/GjRsXJSUluUdZWVlN7xoAAAAAAHWoTm+r8u8cf/zxuY979eoVvXv3jp133jmefPLJOPzww2vtdUePHh2jRo3KLVdUVAjIAQAAAAC2I/U6HP9XO+20U7Rr1y4WLlwYhx9+eJSWlsb7779fZcxnn30WH3/8ce4+5aWlpbF06dIqY9Yvb+pe5sXFxVFcXFwLewAAAAAAdWv8Sx9u9thL+rSrxU62Hz6n+ale31blX73zzjvx0UcfRadOnSIion///rFs2bKYPXt2bswTTzwR69ati379+uXGzJgxI9asWZMb89hjj0WPHj2idevW23YHAAAAAACoF+o0HF+xYkXMmTMn5syZExERixcvjjlz5sSSJUtixYoVceGFF8asWbPirbfeiscffzy+/vWvxy677BKDBw+OiIiePXvGkUceGWeccUY8//zz8cwzz8Q555wTxx9/fHTu3DkiIk488cQoKiqK0047LebPnx/33HNP3HDDDVVumwIAAAAAQLbUaTj+4osvRp8+faJPnz4RETFq1Kjo06dPXH755dGgQYOYO3dufO1rX4vddtstTjvttOjbt2889dRTVW55ctddd8Xuu+8ehx9+eBx11FHxla98JW655Zbc9pKSknj00Udj8eLF0bdv3zj//PPj8ssvj+HDh2/z/QUAAAAAoH6o03uODxgwIFJKm9z+yCOP/Nsabdq0iUmTJn3hmN69e8dTTz1V7f4AAAAAANg+5dU9xwEAAAAAoCYIxwEAAAAAyBzhOAAAAAAAmSMcBwAAAAAgc4TjAAAAAABkjnAcAAAAAIDMEY4DAAAAAJA5wnEAAAAAADJHOA4AAAAAQOYIxwEAAAAAyBzhOAAAAAAAmdOwrhsAAAAAtj/jX/pws8de0qddLXYCABvnynEAAAAAADJHOA4AAAAAQOYIxwEAAAAAyBzhOAAAAAAAmSMcBwAAAAAgc4TjAAAAAABkjnAcAAAAAIDMEY4DAAAAAJA5wnEAAAAAADJHOA4AAAAAQOYIxwEAAAAAyBzhOAAAAAAAmSMcBwAAAAAgc4TjAAAAAABkjnAcAAAAAIDMEY4DAAAAAJA5Deu6AQAAAGDzjX/pw80ad0mfdrXcCQDkN1eOAwAAAACQOcJxAAAAAAAyRzgOAAAAAEDmCMcBAAAAAMgc4TgAAAAAAJkjHAcAAAAAIHOE4wAAAAAAZI5wHAAAAACAzBGOAwAAAACQOcJxAAAAAAAyRzgOAAAAAEDmCMcBAAAAAMicOg3HZ8yYEUOHDo3OnTtHQUFBTJ48ObdtzZo1cfHFF0evXr2iWbNm0blz5zj55JPj3XffrVKjW7duUVBQUOUxfvz4KmPmzp0bBx10UDRu3DjKysrimmuu2Ra7BwAAAABAPVWn4fjKlStj7733jgkTJmyw7e9//3v8+c9/jssuuyz+/Oc/x/333x8LFiyIr33taxuMHTt2bLz33nu5x7nnnpvbVlFREYMGDYquXbvG7Nmz42c/+1mMGTMmbrnlllrdNwAAAAAA6q+GdfniQ4YMiSFDhmx0W0lJSTz22GNV1v3nf/5nfPnLX44lS5ZEly5dcutbtGgRpaWlG61z1113xerVq+O2226LoqKi2HPPPWPOnDlx7bXXxvDhw2tuZwAAAAAAyBt1Go5X1/Lly6OgoCBatWpVZf348ePjqquuii5dusSJJ54YI0eOjIYN/7lrM2fOjIMPPjiKiopy4wcPHhxXX311fPLJJ9G6desNXqeysjIqKytzyxUVFbWzQwAAAFto/Esfbta4S/q0q+VOAADyU96E46tWrYqLL744TjjhhGjZsmVu/Q9+8IP40pe+FG3atIlnn302Ro8eHe+9915ce+21ERFRXl4e3bt3r1KrY8eOuW0bC8fHjRsXV155ZS3uDQAAAAAAdSkvwvE1a9bEt7/97UgpxU033VRl26hRo3If9+7dO4qKiuLMM8+McePGRXFx8Ra93ujRo6vUraioiLKysi1rHgAAAACAeqfeh+Prg/G//vWv8cQTT1S5anxj+vXrF5999lm89dZb0aNHjygtLY2lS5dWGbN+eVP3KS8uLt7iYB0AAAAAgPqvsK4b+CLrg/E33ngjpk6dGm3btv23z5kzZ04UFhZGhw4dIiKif//+MWPGjFizZk1uzGOPPRY9evTY6C1VAAAAAADY/tXpleMrVqyIhQsX5pYXL14cc+bMiTZt2kSnTp3im9/8Zvz5z3+OBx98MNauXRvl5eUREdGmTZsoKiqKmTNnxnPPPReHHnpotGjRImbOnBkjR46M73znO7ng+8QTT4wrr7wyTjvttLj44otj3rx5ccMNN8R1111XJ/sMAAAAAEDdq9Nw/MUXX4xDDz00t7z+Pt/Dhg2LMWPGxB/+8IeIiNhnn32qPG/atGkxYMCAKC4ujrvvvjvGjBkTlZWV0b179xg5cmSV+4WXlJTEo48+GiNGjIi+fftGu3bt4vLLL4/hw4fX/g4CAAAAAFAv1Wk4PmDAgEgpbXL7F22LiPjSl74Us2bN+rev07t373jqqaeq3R8AAAAAANunen3PcQAAAAAAqA3CcQAAAAAAMkc4DgAAAABA5gjHAQAAAADInC0Kx3faaaf46KOPNli/bNmy2Gmnnba6KQAAIP/U5HnCjBkzYujQodG5c+coKCiIyZMnV9l+yimnREFBQZXHkUceuTXtAwCQMVsUjr/11luxdu3aDdZXVlbG3/72t61uCgAAyD81eZ6wcuXK2HvvvWPChAmbHHPkkUfGe++9l3v89re/rXbPAABkV8PqDP7DH/6Q+/iRRx6JkpKS3PLatWvj8ccfj27dutVYcwAAQP1XG+cJQ4YMiSFDhnzhmOLi4igtLa1WXQAAWK9a4fgxxxwTEREFBQUxbNiwKtsaNWoU3bp1i1/84hc11hwAAFD/1dV5wpNPPhkdOnSI1q1bx2GHHRY/+clPom3bthsdW1lZGZWVlbnlioqKGu8HAID8Uq1wfN26dRER0b1793jhhReiXbt2tdIUAACQP+riPOHII4+Mb3zjG9G9e/dYtGhR/OhHP4ohQ4bEzJkzo0GDBhuMHzduXFx55ZW13hcAQH02/qUPN3vsJX22/+y3WuH4eosXL67pPgAAgDy3Lc8Tjj/++NzHvXr1it69e8fOO+8cTz75ZBx++OEbjB89enSMGjUqt1xRURFlZWXbpFcAAOqnLQrHIyIef/zxePzxx+P999/PXSmy3m233bbVjQEAAPmnrs4Tdtppp2jXrl0sXLhwo+F4cXFxFBcX19rrAwCQf7YoHL/yyitj7Nixse+++0anTp2ioKCgpvsCAADyTF2eJ7zzzjvx0UcfRadOnbbZawIAkN+2KBy/+eabY+LEifHd7363pvsBAADyVE2eJ6xYsSIWLlyYW168eHHMmTMn2rRpE23atIkrr7wyjj322CgtLY1FixbFRRddFLvssksMHjx4q18bAIBs2KJwfPXq1XHAAQfUdC8AAEAeq8nzhBdffDEOPfTQ3PL6+4UPGzYsbrrpppg7d27ccccdsWzZsujcuXMMGjQorrrqKrdOAQBgs21ROH766afHpEmT4rLLLqvpfgAAgDxVk+cJAwYMiJTSJrc/8sgjW/0aAABk2xaF46tWrYpbbrklpk6dGr17945GjRpV2X7ttdfWSHMAAED+cJ4AAEA+2aJwfO7cubHPPvtERMS8efOqbPPPOQEAIJucJwAAkE+2KByfNm1aTfcBAADkOecJAADkk8K6bgAAAAAAALa1Lbpy/NBDD/3CP4t84okntrghAAAgPzlPAAAgn2xROL7+PoLrrVmzJubMmRPz5s2LYcOG1URfAABAnnGeAABAPtmicPy6667b6PoxY8bEihUrtqohAAAgPzlPAAAgn9ToPce/853vxG233VaTJQEAgDznPAEAgPqoRsPxmTNnRuPGjWuyJAAAkOecJwAAUB9t0W1VvvGNb1RZTinFe++9Fy+++GJcdtllNdIYAACQX5wnAACQT7YoHC8pKamyXFhYGD169IixY8fGoEGDaqQxAAAgvzhPAAAgn2xROH777bfXdB8AAECec54AAEA+2aJwfL3Zs2fHa6+9FhERe+65Z/Tp06dGmgIAAPKX8wQAAPLBFoXj77//fhx//PHx5JNPRqtWrSIiYtmyZXHooYfG3XffHe3bt6/JHgEAgDzgPAEAgHxSuCVPOvfcc+PTTz+N+fPnx8cffxwff/xxzJs3LyoqKuIHP/hBTfcIAADkAecJAADkky26cnzKlCkxderU6NmzZ27dHnvsERMmTPCPdgAAIKOcJwAAkE+26MrxdevWRaNGjTZY36hRo1i3bt1WNwUAAOQf5wkAAOSTLQrHDzvssPjhD38Y7777bm7d3/72txg5cmQcfvjhNdYcAACQP5wnAACQT7YoHP/P//zPqKioiG7dusXOO+8cO++8c3Tv3j0qKiriV7/6VU33CAAA5AHnCQAA5JMtuud4WVlZ/PnPf46pU6fG66+/HhERPXv2jIEDB9ZocwAAQP5wngAAQD6p1pXjTzzxROyxxx5RUVERBQUFccQRR8S5554b5557buy3336x5557xlNPPVVbvQIAAPWQ8wQAAPJRtcLx66+/Ps4444xo2bLlBttKSkrizDPPjGuvvbbGmgMAAOo/5wkAAOSjaoXjL7/8chx55JGb3D5o0KCYPXv2VjcFAADkD+cJAADko2qF40uXLo1GjRptcnvDhg3jgw8+2OqmAACA/OE8AQCAfFStcHyHHXaIefPmbXL73Llzo1OnTlvdFAAAkD+cJwAAkI+qFY4fddRRcdlll8WqVas22PaPf/wjrrjiivjqV79aY80BAAD1n/MEAADyUbXC8UsvvTQ+/vjj2G233eKaa66JBx54IB544IG4+uqro0ePHvHxxx/Hj3/8482uN2PGjBg6dGh07tw5CgoKYvLkyVW2p5Ti8ssvj06dOkWTJk1i4MCB8cYbb1QZ8/HHH8dJJ50ULVu2jFatWsVpp50WK1asqDJm7ty5cdBBB0Xjxo2jrKwsrrnmmursNgAA8AVq+jwBAAC2hYbVGdyxY8d49tln4+yzz47Ro0dHSikiIgoKCmLw4MExYcKE6Nix42bXW7lyZey9995x6qmnxje+8Y0Ntl9zzTXxy1/+Mu64447o3r17XHbZZTF48OB49dVXo3HjxhERcdJJJ8V7770Xjz32WKxZsya+973vxfDhw2PSpEkREVFRURGDBg2KgQMHxs033xyvvPJKnHrqqdGqVasYPnx4dXYfAADYiJo+TwAAgG2hWuF4RETXrl3j4Ycfjk8++SQWLlwYKaXYddddo3Xr1tV+8SFDhsSQIUM2ui2lFNdff31ceuml8fWvfz0iIn79619Hx44dY/LkyXH88cfHa6+9FlOmTIkXXngh9t1334iI+NWvfhVHHXVU/PznP4/OnTvHXXfdFatXr47bbrstioqKYs8994w5c+bEtddeKxwHAIAaUpPnCQAAsC1U67Yqn9e6devYb7/94stf/nKtTHgXL14c5eXlMXDgwNy6kpKS6NevX8ycOTMiImbOnBmtWrXKBeMREQMHDozCwsJ47rnncmMOPvjgKCoqyo0ZPHhwLFiwID755JONvnZlZWVUVFRUeQAAAP9ebZ8nAABATdnicLy2lZeXR0Rs8OeXHTt2zG0rLy+PDh06VNnesGHDaNOmTZUxG6vx+df4V+PGjYuSkpLco6ysbOt3CAAAAACAeqPehuN1afTo0bF8+fLc4+23367rlgAAAAAAqEH1NhwvLS2NiIilS5dWWb906dLcttLS0nj//ferbP/ss8/i448/rjJmYzU+/xr/qri4OFq2bFnlAQAAAADA9qPehuPdu3eP0tLSePzxx3PrKioq4rnnnov+/ftHRET//v1j2bJlMXv27NyYJ554ItatWxf9+vXLjZkxY0asWbMmN+axxx6LHj16uAciAAAAAEBG1Wk4vmLFipgzZ07MmTMnIv75TzjnzJkTS5YsiYKCgjjvvPPiJz/5SfzhD3+IV155JU4++eTo3LlzHHPMMRER0bNnzzjyyCPjjDPOiOeffz6eeeaZOOecc+L444+Pzp07R0TEiSeeGEVFRXHaaafF/Pnz45577okbbrghRo0aVUd7DQAAAABAXWtYly/+4osvxqGHHppbXh9YDxs2LCZOnBgXXXRRrFy5MoYPHx7Lli2Lr3zlKzFlypRo3Lhx7jl33XVXnHPOOXH44YdHYWFhHHvssfHLX/4yt72kpCQeffTRGDFiRPTt2zfatWsXl19+eQwfPnzb7SgAAAAAAPVKnYbjAwYMiJTSJrcXFBTE2LFjY+zYsZsc06ZNm5g0adIXvk7v3r3jqaee2uI+AQAAAADYvtTbe44DAAAAAEBtEY4DAAAAAJA5wnEAAAAAADJHOA4AAAAAQOYIxwEAAAAAyBzhOAAAAAAAmSMcBwAAAAAgc4TjAAAAAABkjnAcAAAAAIDMEY4DAAAAAJA5wnEAAAAAADJHOA4AAAAAQOYIxwEAAAAAyBzhOAAAAAAAmSMcBwAAAAAgc4TjAAAAAABkjnAcAAAAAIDMEY4DAAAAAJA5wnEAAAAAADJHOA4AAAAAQOYIxwEAAAAAyBzhOAAAAAAAmSMcBwAAAAAgc4TjAAAAAABkjnAcAAAAAIDMEY4DAAAAAJA5wnEAAAAAADJHOA4AAAAAQOYIxwEAAAAAyBzhOAAAAAAAmSMcBwAAAAAgc4TjAAAAAABkjnAcAAAAAIDMEY4DAAAAAJA5wnEAAKDemTFjRgwdOjQ6d+4cBQUFMXny5CrbU0px+eWXR6dOnaJJkyYxcODAeOONN+qmWQAA8pJwHAAAqHdWrlwZe++9d0yYMGGj26+55pr45S9/GTfffHM899xz0axZsxg8eHCsWrVqG3cKAEC+aljXDQAAAPyrIUOGxJAhQza6LaUU119/fVx66aXx9a9/PSIifv3rX0fHjh1j8uTJcfzxx2/LVgEAyFOuHAcAAPLK4sWLo7y8PAYOHJhbV1JSEv369YuZM2du9DmVlZVRUVFR5QEAQLYJxwEAgLxSXl4eEREdO3assr5jx465bf9q3LhxUVJSknuUlZXVep8AANRvwnEAAGC7N3r06Fi+fHnu8fbbb9d1SwAA1DHhOAAAkFdKS0sjImLp0qVV1i9dujS37V8VFxdHy5YtqzwAAMi2eh+Od+vWLQoKCjZ4jBgxIiIiBgwYsMG2s846q0qNJUuWxNFHHx1NmzaNDh06xIUXXhifffZZXewOAACwlbp37x6lpaXx+OOP59ZVVFTEc889F/3796/DzgAAyCcN67qBf+eFF16ItWvX5pbnzZsXRxxxRHzrW9/KrTvjjDNi7NixueWmTZvmPl67dm0cffTRUVpaGs8++2y89957cfLJJ0ejRo3ipz/96bbZCQAAoFpWrFgRCxcuzC0vXrw45syZE23atIkuXbrEeeedFz/5yU9i1113je7du8dll10WnTt3jmOOOabumgYAIK/U+3C8ffv2VZbHjx8fO++8cxxyyCG5dU2bNt3kn08++uij8eqrr8bUqVOjY8eOsc8++8RVV10VF198cYwZMyaKiopqtX8AAKD6XnzxxTj00ENzy6NGjYqIiGHDhsXEiRPjoosuipUrV8bw4cNj2bJl8ZWvfCWmTJkSjRs3rquWAQDIM/X+tiqft3r16rjzzjvj1FNPjYKCgtz6u+66K9q1axd77bVXjB49Ov7+97/nts2cOTN69epV5T/ZDx48OCoqKmL+/PkbfZ3KysqoqKio8gAAALadAQMGREppg8fEiRMjIqKgoCDGjh0b5eXlsWrVqpg6dWrstttudds0AAB5pd5fOf55kydPjmXLlsUpp5ySW3fiiSdG165do3PnzjF37ty4+OKLY8GCBXH//fdHRER5eXmVYDwicsvl5eUbfZ1x48bFlVdeWTs7AQAAAABAncurcPzWW2+NIUOGROfOnXPrhg8fnvu4V69e0alTpzj88MNj0aJFsfPOO2/R64wePTr3Z5sR//znPmVlZVveOAAAAAAA9UrehON//etfY+rUqbkrwjelX79+ERGxcOHC2HnnnaO0tDSef/75KmOWLl0aEbHJ+5QXFxdHcXFxDXQNAAAAAEB9lDf3HL/99tujQ4cOcfTRR3/huDlz5kRERKdOnSIion///vHKK6/E+++/nxvz2GOPRcuWLWOPPfaotX4BAAAAAKi/8uLK8XXr1sXtt98ew4YNi4YN/6/lRYsWxaRJk+Koo46Ktm3bxty5c2PkyJFx8MEHR+/evSMiYtCgQbHHHnvEd7/73bjmmmuivLw8Lr300hgxYoSrwwEAAAAAMiovwvGpU6fGkiVL4tRTT62yvqioKKZOnRrXX399rFy5MsrKyuLYY4+NSy+9NDemQYMG8eCDD8bZZ58d/fv3j2bNmsWwYcNi7Nix23o3AAAAAACoJ/IiHB80aFCklDZYX1ZWFtOnT/+3z+/atWs8/PDDtdEaAAAAAAB5KG/uOQ4AAAAAADVFOA4AAAAAQOYIxwEAAAAAyBzhOAAAAAAAmSMcBwAAAAAgc4TjAAAAAABkjnAcAAAAAIDMEY4DAAAAAJA5wnEAAAAAADJHOA4AAAAAQOYIxwEAAAAAyBzhOAAAAAAAmSMcBwAAAAAgc4TjAAAAAABkjnAcAAAAAIDMEY4DAAAAAJA5wnEAAAAAADJHOA4AAAAAQOYIxwEAAAAAyBzhOAAAAAAAmSMcBwAAAAAgc4TjAAAAAABkjnAcAAAAAIDMEY4DAAAAAJA5wnEAAAAAADJHOA4AAAAAQOYIxwEAAAAAyBzhOAAAAAAAmSMcBwAAAAAgc4TjAAAAAABkjnAcAAAAAIDMEY4DAAAAAJA5wnEAAAAAADJHOA4AAAAAQOYIxwEAAAAAyJyGdd0AAADA9m78Sx9u1rhL+rSr5U4AgHyxufOHCHOILeXKcQAAAAAAMkc4DgAAAABA5gjHAQAAAADIHOE4AAAAAACZIxwHAAAAACBzGtZ1A19kzJgxceWVV1ZZ16NHj3j99dcjImLVqlVx/vnnx9133x2VlZUxePDguPHGG6Njx4658UuWLImzzz47pk2bFs2bN49hw4bFuHHjomHDer3rAEAN8N/dAQAA2JR6nxDvueeeMXXq1Nzy50PtkSNHxkMPPRT33XdflJSUxDnnnBPf+MY34plnnomIiLVr18bRRx8dpaWl8eyzz8Z7770XJ598cjRq1Ch++tOfbvN9AQAAAACgfqj34XjDhg2jtLR0g/XLly+PW2+9NSZNmhSHHXZYRETcfvvt0bNnz5g1a1bsv//+8eijj8arr74aU6dOjY4dO8Y+++wTV111VVx88cUxZsyYKCoq2ta7AwAAAABAPVDv7zn+xhtvROfOnWOnnXaKk046KZYsWRIREbNnz441a9bEwIEDc2N333336NKlS8ycOTMiImbOnBm9evWqcpuVwYMHR0VFRcyfP3+Tr1lZWRkVFRVVHgAAAAAAbD/qdTjer1+/mDhxYkyZMiVuuummWLx4cRx00EHx6aefRnl5eRQVFUWrVq2qPKdjx45RXl4eERHl5eVVgvH129dv25Rx48ZFSUlJ7lFWVlazOwYAAAAAQJ2q17dVGTJkSO7j3r17R79+/aJr165x7733RpMmTWrtdUePHh2jRo3KLVdUVAjIAQAAAAC2I/X6yvF/1apVq9htt91i4cKFUVpaGqtXr45ly5ZVGbN06dLcPcpLS0tj6dKlG2xfv21TiouLo2XLllUeAAAAAABsP/IqHF+xYkUsWrQoOnXqFH379o1GjRrF448/ntu+YMGCWLJkSfTv3z8iIvr37x+vvPJKvP/++7kxjz32WLRs2TL22GOPbd4/AAAAAAD1Q72+rcoFF1wQQ4cOja5du8a7774bV1xxRTRo0CBOOOGEKCkpidNOOy1GjRoVbdq0iZYtW8a5554b/fv3j/333z8iIgYNGhR77LFHfPe7341rrrkmysvL49JLL40RI0ZEcXFxHe/dtjH+pQ83e+wlfdrVYicAAAAAAPVHvQ7H33nnnTjhhBPio48+ivbt28dXvvKVmDVrVrRv3z4iIq677rooLCyMY489NiorK2Pw4MFx44035p7foEGDePDBB+Pss8+O/v37R7NmzWLYsGExduzYutolAAAAAADqgXodjt99991fuL1x48YxYcKEmDBhwibHdO3aNR5++OGabg0AAAAAgDyWV/ccBwAAAACAmiAcBwAAAAAgc4TjAAAAAABkTr2+5zgAkC3jX/pws8Zd0qddLXcCAADA9s6V4wAAAAAAZI5wHAAAAACAzBGOAwAAAACQOcJxAAAAAAAyxz/kBACoBv80FAAAYPvgynEAAAAAADJHOA4AAAAAQOYIxwEAgLwzZsyYKCgoqPLYfffd67otAADyiHuOAwAAeWnPPfeMqVOn5pYbNnR6AwDA5jN7BAAA8lLDhg2jtLS0rtsAACBPCccBgC02/qUPN2vcJX3a1XInQBa98cYb0blz52jcuHH0798/xo0bF126dNno2MrKyqisrMwtV1RUbKs2AQCop9xzHAAAyDv9+vWLiRMnxpQpU+Kmm26KxYsXx0EHHRSffvrpRsePGzcuSkpKco+ysrJt3DEAAPWNcBwAAMg7Q4YMiW9961vRu3fvGDx4cDz88MOxbNmyuPfeezc6fvTo0bF8+fLc4+23397GHQMAUN+4rQoAAJD3WrVqFbvttlssXLhwo9uLi4ujuLh4G3cFAEB95spxAAAg761YsSIWLVoUnTp1qutWAADIE64cp85t7j9zi/AP3QAA+KcLLrgghg4dGl27do133303rrjiimjQoEGccMIJdd0aAAB5QjgOAADknXfeeSdOOOGE+Oijj6J9+/bxla98JWbNmhXt27ev69YAAMgTwnEAACDv3H333XXdAgAAeU44znZpc2/V4jYtAAAAAJBN/iEnAAAAAACZIxwHAAAAACBz3FalnnE7EAAAAACA2icch83glxYAAAAAsH1xWxUAAAAAADLHleNQR1yNDgAAAAB1x5XjAAAAAABkjnAcAAAAAIDMcVsVAAAAyDi3fQQgi1w5DgAAAABA5gjHAQAAAADIHOE4AAAAAACZIxwHAAAAACBzhOMAAAAAAGSOcBwAAAAAgMxpWNcNAEBdGP/Sh5s17pI+7Wq5EwAAAKAuCMcBoJ4S4AMAAEDtcVsVAAAAAAAyp15fOT5u3Li4//774/XXX48mTZrEAQccEFdffXX06NEjN2bAgAExffr0Ks8788wz4+abb84tL1myJM4+++yYNm1aNG/ePIYNGxbjxo2Lhg3r9e4D8L/y4QrqfOgRAAAA+D/1Oh2ePn16jBgxIvbbb7/47LPP4kc/+lEMGjQoXn311WjWrFlu3BlnnBFjx47NLTdt2jT38dq1a+Poo4+O0tLSePbZZ+O9996Lk08+ORo1ahQ//elPt+n+AAAAAABQP9TrcHzKlClVlidOnBgdOnSI2bNnx8EHH5xb37Rp0ygtLd1ojUcffTReffXVmDp1anTs2DH22WefuOqqq+Liiy+OMWPGRFFRUa3uAwAAAAAA9U+9Dsf/1fLlyyMiok2bNlXW33XXXXHnnXdGaWlpDB06NC677LLc1eMzZ86MXr16RceOHXPjBw8eHGeffXbMnz8/+vTps8HrVFZWRmVlZW65oqKiNnYHapRbOgAAAADA5subcHzdunVx3nnnxYEHHhh77bVXbv2JJ54YXbt2jc6dO8fcuXPj4osvjgULFsT9998fERHl5eVVgvGIyC2Xl5dv9LXGjRsXV155ZS3tCQAAAAAAdS1vwvERI0bEvHnz4umnn66yfvjw4bmPe/XqFZ06dYrDDz88Fi1aFDvvvPMWvdbo0aNj1KhRueWKioooKyvbssaBWuWKeQAAAAC2RGFdN7A5zjnnnHjwwQdj2rRpseOOO37h2H79+kVExMKFCyMiorS0NJYuXVplzPrlTd2nvLi4OFq2bFnlAQAAAADA9qNeXzmeUopzzz03fv/738eTTz4Z3bt3/7fPmTNnTkREdOrUKSIi+vfvH//v//2/eP/996NDhw4REfHYY49Fy5YtY4899qi13oH85Er0muHzCAAAUDM29/wqwjkWVFe9DsdHjBgRkyZNigceeCBatGiRu0d4SUlJNGnSJBYtWhSTJk2Ko446Ktq2bRtz586NkSNHxsEHHxy9e/eOiIhBgwbFHnvsEd/97nfjmmuuifLy8rj00ktjxIgRUVxcXJe7BwAAAABAHanXt1W56aabYvny5TFgwIDo1KlT7nHPPfdERERRUVFMnTo1Bg0aFLvvvnucf/75ceyxx8Yf//jHXI0GDRrEgw8+GA0aNIj+/fvHd77znTj55JNj7NixdbVbAAAAAADUsXp95XhK6Qu3l5WVxfTp0/9tna5du8bDDz9cU20BAAAAAJDn6vWV4wAAAAAAUBvq9ZXjAADbO/9gCQAAoG64chwAAAAAgMwRjgMAAAAAkDnCcQAAAAAAMsc9xwFqkXsJAwAAANRPwnGAPLO5gbuwHQAAAGDT3FYFAAAAAIDMEY4DAAAAAJA5bqsCbDNuBwIAAABAfeHKcQAAAAAAMkc4DgAAAABA5ritCgAAABGx+bfBi3ArPAAg/7lyHAAAAACAzBGOAwAAAACQOcJxAAAAAAAyRzgOAAAAAEDmCMcBAAAAAMgc4TgAAAAAAJkjHAcAAAAAIHOE4wAAAAAAZI5wHAAAAACAzBGOAwAAAACQOcJxAAAAAAAyRzgOAAAAAEDmCMcBAAAAAMichnXdAAAAbK3xL324WeMu6dOuljsBAADyhSvHAQAAAADIHFeOAwDwhVyVDQAAbI9cOQ4AAAAAQOYIxwEAAAAAyBzhOAAAAAAAmeOe4wAAbHPuYw4AANQ1V44DAAAAAJA5wnEAAAAAADJHOA4AAAAAQOYIxwEAAAAAyBz/kJNq8w+0AAAAAIB8JxwHgIzwy00AAAD4P26rAgAAAABA5rhyHNgkV5lmw+Z+nSN8rQEAAIDtR6auHJ8wYUJ069YtGjduHP369Yvnn3++rlsCAAC2gjk+AABbKjNXjt9zzz0xatSouPnmm6Nfv35x/fXXx+DBg2PBggXRoUOHum4PAKDG+MsfssIcHwCArZGZK8evvfbaOOOMM+J73/te7LHHHnHzzTdH06ZN47bbbqvr1gAAgC1gjg8AwNbIxJXjq1evjtmzZ8fo0aNz6woLC2PgwIExc+bMDcZXVlZGZWVlbnn58uUREVFRUbHB2FUrPt2sHioqijZrXF3Vq42aWexxc+vVRk091kxN39/btqbvnW1bM4s9bk/f37VR0/fO/83vUkqb9Xzqj3ya42+PNatTN8s1q1M3yzWrUzfLNatTV82arVmdulmuWZ26Wa5ZnbpZrlmdulszxy9IGTgTePfdd2OHHXaIZ599Nvr3759bf9FFF8X06dPjueeeqzJ+zJgxceWVV27rNgEAqCNvv/127LjjjnXdBtVgjg8AwBfZnDl+Jq4cr67Ro0fHqFGjcsvr1q2Ljz/+ONq2bRsFBQVf+NyKioooKyuLt99+O1q2bLnVvdR0vdqoWd/r1UZNPeqxPtWs7/Vqo6Ye9Vifatb3erVRc3vqMaUUn376aXTu3HmrX5P6rT7N8dWs+Zq1VVfNbNasrbpqqul7VM36WLO26tZlzerM8TMRjrdr1y4aNGgQS5curbJ+6dKlUVpausH44uLiKC4urrKuVatW1XrNli1b1ug3aU3Xq42a9b1ebdTUY/2sVxs1s9hjFve5NmrqsX7Wq42a9b1ebdTcXnosKSmpsddj29ke5vhq1nzN2qqrZjZr1lZdNdWs73XVzGbN2qpbVzU3d46fiX/IWVRUFH379o3HH388t27dunXx+OOPV/kTTAAAID+Y4wMAsLUyceV4RMSoUaNi2LBhse+++8aXv/zluP7662PlypXxve99r65bAwAAtoA5PgAAWyMz4fhxxx0XH3zwQVx++eVRXl4e++yzT0yZMiU6duxYo69TXFwcV1xxxQZ/sllf6tVGzfperzZq6lGP9almfa9XGzX1qMf6VLO+16uNmlntkfonX+f4atbO8ZkvvapZ/2vWVl011axJ+dKrmvW/Zm3VzZeaBSmlVGPVAAAAAAAgD2TinuMAAAAAAPB5wnEAAAAAADJHOA4AAAAAQOYIxwEAAAAAyBzhOAAAAAAAmSMcz6DFixfHZ599VtdtfKHa6i+lVCt1oa5l9bh2TLO9ckwDWyof3j8izPehJtXGce8YhZrh53L9P+aF41vp1Vdfje9///vRp0+f6NSpU3Tq1Cn69OkT3//+9+PVV1+tdr333nsv7rzzznj44Ydj9erVVbatXLkyxo4du9U99+jRI954442trhMR8e6778YVV1wRJ510UlxwwQXx+uuvV+v5U6ZMiVdeeSUiItatWxdXXXVV7LDDDlFcXBw77rhjjB8/vtoHUmVlZVxwwQVx8MEHx9VXXx0RET/5yU+iefPm0aJFizjxxBOjoqKiWjU39hqVlZVbVWNbefLJJ+Mf//hHXbexSZWVlbFo0aIa/XwuXbo0ysvLt+i5NX1MR+TXcb21x3REzR/X2+KYzif5MLmqT6Fp1o/piPr3s9oxTT7I1/eOiPr1/hGRv/P99a+TL3P+9er73D+idub/EVt3DhCR3eM+n4/RfJMP8/iI+hmSZvX4/FdZ/7lcaxJb7OGHH05FRUVp//33T1dccUW68cYb04033piuuOKKdMABB6Ti4uI0ZcqUza73/PPPp1atWqWWLVumJk2apF122SXNmzcvt728vDwVFhZudr3/+I//2OijsLAwDRw4MLdcHU2aNEnvv/9+Siml+fPnp5KSkrTLLrukb33rW2n33XdPTZs2TS+//PJm1+vRo0eaMWNGSimln/70p6lt27bp2muvTX/605/S9ddfnzp27JjGjx9frR5HjhyZOnfunM4///zUs2fP9P3vfz916dIl3XnnnWnSpElpl112Seeee261aqaU0qOPPpqGDBmSWrVqlQoLC1NhYWFq1apVGjJkSHrssceqXW/OnDnpqquuShMmTEgffPBBlW3Lly9P3/ve96pdc2MaNWqUXn311Wo/b+nSpVWWX3rppXTyySenAw44IB177LFp2rRp1a55++23p2effTallNI//vGPdOqpp6YGDRqkwsLC1LBhw3TmmWemVatWbXa9jz76KB177LGprKwsnXXWWemzzz5Lp512WiooKEiFhYWpf//+6d13393sejV9TKdU/4/rmj6mU6r547q2jun58+ens88+O+2zzz6ptLQ0lZaWpn322SedffbZaf78+dWu9+6776bf/OY36aGHHkqVlZVVtq1YsSJdeeWV1a65MVt6TP+rv/3tb+nyyy9PJ554Yjr//PPTa6+9Vu0af/rTn9LcuXNTSimtXbs2jR07NnXu3DkVFhamHXbYIY0bNy6tW7dus+utWrUqnX/++emggw7KfY9cddVVqVmzZqlZs2bphBNOSMuXL9/selk8plOq/z+r8+WYJrvy4b0jpfx4/0gpv+b7KdX8nD+lbTfvT2nr5gn5MP9PqebPAVLK9nGfT8dobfys31Zz+JRqbh6fUv2cy6dU8/P5lLJ9fPq5vG3m+MLxrdC7d+902WWXbXL7FVdckXr16rXZ9QYOHJi+973vpbVr16aKiop09tlnp7Zt26Y///nPKaXqH5wFBQXpkEMOSaecckqVR2FhYTrmmGNyy9VRUFCQmzR9/etfT0OHDk1r1qxJKf3zzfT4449PX/3qVze7XnFxcfrrX/+aUkppr732Svfee2+V7Q8++GDaZZddqtVjWVlZbuK6aNGiVFhYmCZPnpzb/uijj6auXbtWq+bEiRNTw4YN0/HHH59uv/329PDDD6eHH3443X777emEE05IjRo1Sr/+9a83u94jjzySioqK0p577pm6dOmS2rZtm5544onc9i15I+7Tp89GHwUFBalnz5655c1VWFiY+1o/88wzqVGjRumQQw5JF154YTriiCNSw4YN0/Tp06vVY/fu3dOsWbNSSildcMEFqVu3bun+++9Pr732Wpo8eXLabbfd0oUXXrjZ9U499dS01157pV/96lfpkEMOSV//+tdT796909NPP52effbZtN9++6WTTz55s+vV9DGdUv0/rmv6mE6p5o/r2jim6/svN1Pyi5CamFRl8ZheX7M+/6zOh2OabMuH946U8uP9I6X8me+nVPNz/pRqZ96fUs3P/VPKj/l/SjV/DpBSto/7fDlG8yUgTUlIWtMhaZaPz6z/XN5Wc3zh+FZo3Lhxev311ze5/fXXX0+NGzfe7HqtW7dOCxYsqLJu3LhxqXXr1un555+v9sH529/+Nu24447ptttuq7K+YcOGW/zblc8fmGVlZbk30vX+/Oc/p06dOm12vU6dOqWZM2emlFLq2LFj7o1ovb/85S+pSZMm1eqxSZMmuQM9pX/+dvbzP+AWL16cmjZtWq2au+66a/rP//zPTW6fMGFCtd48+vfvn370ox+llFJat25duvrqq1Pz5s3Tn/70p5TSlr0RN2zYMB155JFpzJgxuccVV1yRCgsL0/e///3cus31+a/1EUcckU499dQq23/4wx+mww47rFo9fv5NeLfddsvt73rTp09PXbp02ex6nTp1Ss8880xK6Z+fs4KCgvToo4/mtj/99NNphx122Ox6NX1Mp1T/j+uaPqZTqvnjujaO6fr+y82U/CKkJiZVWTymU6r/P6vz4Zgm2/LhvSOl/Hj/SCl/5vsp1fycP6XamfenVPNz/5TyY/6fUs2fA6SU7eM+X47RfAlIUxKS1nRImuXjM+s/l7fVHF84vhV233339Itf/GKT23/xi1+kHj16bHa91q1bb/Q3fT/72c9Sq1at0v3331/tg3Px4sXpwAMPTN/4xjfSxx9/nFLaugOzsLAw99vKrl27btDvm2++Wa03pe9///vpq1/9avrss8/S8OHD0+mnn17lz3bOPffc1L9//2r12KNHj3T33XenlP75m+CioqIqb05333132nXXXatVs7i4uEbfjFu2bJkWLlxYZd1dd92VmjVrlv74xz9u0Rvx008/nXbeeed0+eWXp7Vr1+bW10Ro+vk3z/XmzZuX2rVrV62aXbt2zV0ps8MOO6QXXnihyvZXX301NWvWbLPrNW3aNL311lu55UaNGqVXXnklt/zmm29Wq15NH9Mp1f/juqaP6ZRq/riujWO6vv9yMyW/CElp6ydVWTymU6r/P6vz4Zgm2/LlvSOl+v/+kVL+zPdTqvk5f0q1M+9Pqebn/inlx/w/pZo/B0gp28d9vhyj+RKQpiQkremQNMvHZ9Z/Lm+rOb5wfCvce++9qWHDhmno0KHphhtuSHfffXe6++670w033JC+9rWvpaKiovS73/1us+sddNBB6aabbtrotquvvjoVFxdv0cG5du3adPnll6eysrI0ZcqU1KhRo616Q27VqlVq3bp1atSoUfrNb35TZfujjz6aunXrttn1li1blvbdd9+0yy67pO9+97upcePGqWvXrumII45I3bt3TyUlJbk/w9tc1113XWrcuHEaOHBgat26dfrlL3+ZSktL00UXXZQuueSSVFJSksaOHVutml/60pe+8M/9LrroovSlL31ps+u1b98+vfjiixus/+1vf5uaNm2abrrppi36Wi9btiwdf/zxqV+/frlJ+NYEaQsXLkzLly9P3bt33+AH5cKFC6v9Q+1HP/pR6t+/f/rkk0/SJZdckoYOHZo+/fTTlFJKK1euTN/+9rfToEGDNrve3nvvnbu65+GHH04tWrSo8kPzpptuSnvttddm16vpYzql+n9c1/QxnVLNH9e1cUznwy83U/KLkK2dVGXxmE6p/v+szodjmmzLp/eOlOr3+0dK+TPfT6nm5/wp1d68P6WanfunlB/z/5Rq/hwgpWwf9/lyjOZTQJqSkDSlmgtJs3x8Zv3n8raa4wvHt9IzzzyTjjvuuNSlS5dUVFSUioqKUpcuXdJxxx2X+8cjm+u///u/03e+851Nbh8/fny1v+k/76mnnkrdu3dPhYWFW3xgTpw4scrjX68mGDt2bBo5cmS1aq5evTrddNNN6aijjkq777572m233dIhhxySfvSjH6W33357i/q866670jnnnJMmTZqUUkpp2rRp6aCDDkp9+/ZNY8aMqXJ1xeaYNm1aatasWerVq1caOXJkGj9+fBo/fnwaOXJk6t27d2revHm17r93xBFHpJ/97Gcb3TZp0qTUqFGjLX4jTiml2267LZWWlqb/+q//2qrQdP0/ISooKEi33HJLle0PPPBAtf/EqrKyMn3ta19LrVu3TkcccURq3Lhxatq0adp1111Ts2bNUpcuXTb4zf0XufPOO1ODBg3SLrvskoqLi9N9992XOnfunL797W+n448/PhUVFX3hn8ZuTE0e0ynV/+O6No7plGr+uK7pYzpffrmZkl+EbO2kKmvHdEr58bO6vh/TkG/vHSnV3/ePlPJjvr++Rk3O+VOq/Xl/SjUz908pP+b/KdXOOUBK2T3uU8qPYzTfAtKUhKQ1GZJm9fjM+s/lbTXHL0gppSAzVqxYEYsWLYqePXtGUVFRXbeTV95666246aabYtasWVFeXh4REaWlpdG/f/8466yzolu3bptd6/e//33MmDEjrrvuuo1unzRpUvz3f/93TJs2bYv7feONN+Kkk06KF198MebNmxd77LFHtZ4/ffr0KsudOnWK3XbbLbd8ww03xOrVq+PCCy+sdm9TpkyJP/7xj/Hmm2/GunXrolOnTnHggQfGiSeeGM2aNatWrWeeeSZmzZoV/fv3jwMOOCBeffXVGD9+fPz973+PoUOHxrBhw6rdX75xXG+ZZ599Nn75y1/GzJkzNzimf/jDH0b//v03u9b//M//xPTp0+M3v/nNRrdfffXVcfPNN8fixYu3uN+nn346Tj755PjrX/8ar7zySrWP6TvuuKPKco8ePWL//ffPLV911VXxySefxLXXXlutumvWrIlbb711o8f02WefHTvuuGO16k2aNClmzpwZBxxwQJxwwgnx5JNPxuWXX547pi+77LIoLCysVs1845jeMjV5TEO+8v6x9Wpyzh+xbeb9EVs/94/In/l/hHOAz8vScV/TP+u3xRw+Yuvn8RH5M5ePMJ//vCwdn7VlW8zxheOwHVu3bl18+umn0bJlyygoKKjrdoCtZHIFAGyKuT/UX+bxUH9l41c1deRHP/pRnHrqqZmpVxs186HH+qywsDBKSkpMjmtIPnw/1vd6tVEzS8d08+bNY++99zahriFZ/f6u7z1m6ZgmP+XDcalmNt9HzP1rT758n2a5Zn1nHl978uV7VM36e8wLx2vRO++8E2+99VZm6tVGzXzoMSJi2LBhcdhhh9XberVRM4s9/u1vf6vx752arlnf69VGzdroMR/CPj1uvax+f9f3HvPhmCbb8mV+qmbN1ozIj/lvbdbNcs18+Hmc9Zr5MJetzbpZrpkv36Nq1mzNiJr7fmpYA72wCb/+9a8zVa82auZDjxERnTt3rtF7ZtV0vdqomcUe//U+b/WxZn2vVxs1a6PHd955J9555516W682amapx5RSFBQU1Oj3Tk3XzGKPtbHP69XG9zfZlS/zUzVrXj7Mf2uzbpZr5sOcOOs182EuW5t1s1gzH+bLatbe/D6i5r6f3HN8K3344Ydx2223bXBj+AMOOCBOOeWUaN++/XZVL6s9ArD9KCoqipdffjl69uxZb2tmscfa2GfYUvkyP1XTfB8gq/JhvqxmfszvheNb4YUXXojBgwdH06ZNY+DAgdGxY8eIiFi6dGk8/vjj8fe//z0eeeSR2HfffbeLelntcXO8/fbbccUVV8Rtt91WL+vVRs3ttcd//OMfMXv27GjTps0G/0V81apVce+998bJJ59crT5qumZ9r5cvPb722msxa9as6N+/f+y+++7x+uuvxw033BCVlZXxne98p9p/jlvT9fS49fVGjRq10fU33HBDfOc734m2bdtGRMS1115bZzWz2GNt7PO/WrlyZdx7772xcOHC6NSpU5xwwgm5uvDv5Mv8VM1tO9+PyI/5b23W3d5r5sOcOOs182Eum2+95kPNfJgvq1n78/uIWpzjJ7ZYv3790vDhw9O6des22LZu3bo0fPjwtP/++2839bLa4+aYM2dOKiwsrLf1aqPm9tjjggULUteuXVNBQUEqLCxMBx98cHr33Xdz28vLy6vdX03XrO/18qXHP/3pT6moqCi1adMmNW7cOP3pT39K7du3TwMHDkyHHXZYatCgQXr88cfrrJ4ea6ZeQUFB2meffdKAAQOqPAoKCtJ+++2XBgwYkA499NBq7XNN18xij7Wxzz179kwfffRRSimlJUuWpG7duqWSkpK03377pTZt2qQOHTqkN998s1o1ya58mZ+quW3n+ynlx/y3NutuzzXzYU6c9Zr5MJfNt17zpWY+zJfVrPmaKW27Ob5wfCs0btw4vfbaa5vc/tprr6XGjRtvN/Wy2mNKKT3wwANf+Ljuuuuq9cO9puvpsWbqHXPMMenoo49OH3zwQXrjjTfS0Ucfnbp3757++te/ppS2bBJX0zXre7186bF///7pxz/+cUoppd/+9repdevW6Uc/+lFu+yWXXJKOOOKIOqunx5qpN27cuNS9e/cNJuANGzZM8+fP3+w6tVkziz3Wxj4XFBSkpUuXppRSOumkk9IBBxyQli1bllJK6dNPP00DBw5MJ5xwwhbVJnvyZX6qZs3WTCk/5r/51mu+1MyHOXHWa+bDXDbfes2XmvkwX1az5mumtO3m+MLxrdCtW7d0xx13bHL7HXfckbp27brd1KuNmvnQY0op9xvvgoKCTT6q88O9puvpsWbqdejQIc2dOze3vG7dunTWWWelLl26pEWLFm3RJK6ma9b3evnSY8uWLdMbb7yRUkpp7dq1qWHDhunPf/5zbvsrr7ySOnbsWGf19FhzPT7//PNpt912S+eff35avXp1SmnrJ2k1XTOLPdZ0vc9PnHfaaaf06KOPVtn+zDPPpLKysi2qTfbky/xUzZqtmVJ+zH/zrdd8qZkPc+Ks18yHuWy+9ZovNVPKj/mymjVfc1vN8YXjW+E///M/U3FxcfrBD36QHnjggTRr1qw0a9as9MADD6Qf/OAHqUmTJmnChAnbTb2s9phSSp07d06TJ0/e5PaXXnqpWj/ca7qeHmumXosWLdKrr766wfoRI0akHXfcMc2YMaPa+1zTNet7vXzpsWXLlmnhwoW55ebNm6dFixbllt96661qXXFW0/X0WHM9pvTPqwpOPvnk1Lt37/TKK6+kRo0abdUkrTZqZrHHmqxXUFCQ3n///ZTSP382vPLKK1W2b+n3DtmUL/NTNWu2Zkr5Mf+tzbpZrpkPc+Ks18yHuWy+9ZovNdfLh/mymjVbc1vN8YXjW+nuu+9O/fr1Sw0bNsz9lrphw4apX79+6Z577tnu6mW1x6FDh6bLLrtsk9vnzJmTCgoK6qyeHmum3n777Zd+/etfb3TbiBEjUqtWrao9iavpmvW9Xr702Lt37/SnP/0pt/zKK6+kNWvW5JZnzJiRunfvXmf19FhzPX7eb3/729SxY8dUWFi41RO/2qqZxR5rol5BQUHq1atX6tOnT2revHn63e9+V2X79OnT0w477LDVvZId+TA/VbPma+bD/Lc262a5Zj7MibNeMx/msvnWa77U/Ff5MF9Ws2Zqbqs5vnC8hqxevTq9++676d133839+cD2XK82atbnHmfMmFHlDf5frVixIj355JN1Vk+PNVPvpz/9aRoyZMgmt5999tnVnmjXdM36Xi9ferzpppvSgw8+uMnto0ePTqeddlqd1dNjzfX4r95+++00efLktGLFiq2qU5s1s9jj1tYbM2ZMlceUKVOqbL/gggvS8ccfXxOtkjH1eX6qZs3XzIf5b23WzXLNfJgTZ71mPsxla7NulmtuTD7Ml9Xc+prbao5fkFJKAQAAAAAAGVJY1w0AAAAAAMC2JhwHAAAAACBzhOMAAAAAAGSOcBwAAAAAgMwRjgNspwYMGBDnnXfeZo198skno6CgIJYtW7ZVr9mtW7e4/vrrt6oGAACwceb4ADVLOA4AAAAAQOYIxwEAAAAAyBzhOEAG/OY3v4l99903WrRoEaWlpXHiiSfG+++/v8G4Z555Jnr37h2NGzeO/fffP+bNm1dl+9NPPx0HHXRQNGnSJMrKyuIHP/hBrFy5clvtBgAA8L/M8QG2nnAcIAPWrFkTV111Vbz88ssxefLkeOutt+KUU07ZYNyFF14Yv/jFL+KFF16I9u3bx9ChQ2PNmjUREbFo0aI48sgj49hjj425c+fGPffcE08//XScc84523hvAAAAc3yArdewrhsAoPadeuqpuY932mmn+OUvfxn77bdfrFixIpo3b57bdsUVV8QRRxwRERF33HFH7LjjjvH73/8+vv3tb8e4cePipJNOyv0DoF133TV++ctfxiGHHBI33XRTNG7ceJvuEwAAZJk5PsDWc+U4QAbMnj07hg4dGl26dIkWLVrEIYccEhERS5YsqTKuf//+uY/btGkTPXr0iNdeey0iIl5++eWYOHFiNG/ePPcYPHhwrFu3LhYvXrztdgYAADDHB6gBrhwH2M6tXLkyBg8eHIMHD4677ror2rdvH0uWLInBgwfH6tWrN7vOihUr4swzz4wf/OAHG2zr0qVLTbYMAAB8AXN8gJohHAfYzr3++uvx0Ucfxfjx46OsrCwiIl588cWNjp01a1ZuEvzJJ5/EX/7yl+jZs2dERHzpS1+KV199NXbZZZdt0zgAALBR5vgANcNtVQC2c126dImioqL41a9+FW+++Wb84Q9/iKuuumqjY8eOHRuPP/54zJs3L0455ZRo165dHHPMMRERcfHFF8ezzz4b55xzTsyZMyfeeOONeOCBB/yzHgAA2MbM8QFqhnAcYDvXvn37mDhxYtx3332xxx57xPjx4+PnP//5RseOHz8+fvjDH0bfvn2jvLw8/vjHP0ZRUVFERPTu3TumT58ef/nLX+Kggw6KPn36xOWXXx6dO3felrsDAACZZ44PUDMKUkqprpsAAAAAAIBtyZXjAAAAAABkjnAcAAAAAIDMEY4DAAAAAJA5wnEAAAAAADJHOA4AAAAAQOYIxwEAAAAAyBzhOAAAAAAAmSMcBwAAAAAgc4TjAAAAAABkjnAcAAAAAIDMEY4DAAAAAJA5/z/MXqLyEn2YtgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_multiple_label_counts([train,dev],[\"train\",\"dev\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# 정수 구간에 따라 분류\n", + "# df[\"label\"].map(int) 사용 시 5점이 따로 분류된다.\n", + "train[\"label_int\"] = pd.cut(\n", + " train[\"label\"],\n", + " bins=[x for x in range(6)],\n", + " labels=[x for x in range(5)],\n", + " right=False,\n", + ")\n", + "\n", + "dev[\"label_int\"] = pd.cut(\n", + " dev[\"label\"],\n", + " bins=[x for x in range(6)],\n", + " labels=[x for x in range(5)],\n", + " right=False,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "label_int\n", + "0 3711\n", + "1 1368\n", + "2 1137\n", + "3 1715\n", + "4 1302\n", + "Name: id, dtype: int64" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# 0점대(0~0.99)가 나머지 점수대에 비해 3배 가까이 많다.\n", + "train.groupby(\"label_int\")[\"id\"].count()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "label_int\n", + "0 88\n", + "1 110\n", + "2 110\n", + "3 110\n", + "4 110\n", + "Name: id, dtype: int64" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# 0점대(0~0.99)가 다소 적으나 나머지는 동일한 갯수로 고루 분포하는 것을 알 수 있다.\n", + "dev.groupby(\"label_int\")[\"id\"].count()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 데이터 source\n", + "### source\n", + "데이터셋의 출처는 총 3가지 source로 구성되어 있습니다. \n", + "- petition 데이터셋은 국민청원 게시판 제목 데이터로, 대체로 오탈자가 적은 격식체의 문장들로 구성되어 있습니다. \n", + "- NSMC(Naver Sentiment Movie Corpus) 데이터셋은 네이버 영화 감성 분석 코퍼스로, 문어체와 구어체가 섞여 있었고, 일부 문장에서 특수문자가 발견되었습니다. \n", + "- Slack 데이터셋은 Upstage에서 제공한 slack 데이터셋으로, 전반적으로 구어체의 문장으로 구성되어 있었으며, 오탈자와 함께 문장 부호, 특수문자(이모티콘, 이모지 등)가 발견되었습니다. \n", + "### RTT\n", + "- RTT(round-trip translation)란 한국어 문장을 영어로 번역했다가 다시 한국어로 번역하여 유사한 문장 쌍을 생성하는 기법입니다. \n", + "- 동일한 source에서 가져온 데이터셋에서도 RTT로 생성한 데이터와 아닌 데이터의 분포에는 차이를 보입니다. \n", + "- RTT로 생성한 데이터셋은 비교적 높은 유사도가 큰 비중을 차지하는 모습을 보입니다. 이는 RRT 기법을 생각해볼 때 어쩌면 자연스러운 결과입니다. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Source 별 데이터셋 특징\n", + "아래 표는 작년 AI Tech 6기 4조에서 분석했던 내용을 가져왔습니다. \n", + "
\n", + "\n", + "| channel | sentence_1 | sentence_2 |\n", + "|:---:|:---|:---|\n", + "| **nsmc** | 혹평하신분들은 로맨틱코메디를 얼마나 심오하게 보시는분들인지는 모르겠지만 개인적으로는 가볍게 기분좋게 보기 좋은 영화라고 생각합니다.. | 로맨틱코미디를 비판하는 사람들이 얼마나 심한지는 모르겠지만 개인적으로는 가볍게 보기 좋은 영화라고 생각한다. |\n", + "| | 울면서 본 영화다. | 울컥 하면서 보는 드라마입니다. |\n", + "| | 킹콩이면 도대체 콩진호가 얼마나 큰 건가요? | . 콩진호가 나가신다! |\n", + "| **petition** | 심평원, 한전 회식카드지출비 해외출장비 지원자금 조사의뢰 건 | 공동주택 일자리안정자금에 대한 문제점(미화원, 경비원 2019년 임금 동결건) |\n", + "| | 고등학생도 휴업 해주세요. | 근로자의 휴식권을 찾아주세요.. |\n", + "| | 청소년법 폐지 간곡히 요청합니다 | 청소년보호법 폐지 간곡히 부탁드립니다. |\n", + "| **slack** | 제가 모르는 종목도 많이 알고 계셨습니다. | 제가 있던 테이블에서도 너무나 가슴 뛰는 아이디어도 많이 나누었습니다. |\n", + "| | 두 분 어디 도장깨기 하러 가시는가요… ㅋㅋㅋ | 둘이 봉인을 어디서 뜯으려나... 하하하 |\n", + "| | 너무 감사드립니다 ㅠㅠ | 너무 부럽습니다 ㅠㅠ |\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "source\n", + "nsmc-rtt 788\n", + "nsmc-sampled 2296\n", + "petition-rtt 817\n", + "petition-sampled 2352\n", + "slack-rtt 1047\n", + "slack-sampled 2024\n", + "Name: id, dtype: int64" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train.groupby(\"source\")[\"id\"].count()" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "source\n", + "nsmc-rtt 48\n", + "nsmc-sampled 127\n", + "petition-rtt 65\n", + "petition-sampled 127\n", + "slack-rtt 84\n", + "slack-sampled 99\n", + "Name: id, dtype: int64" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dev.groupby(\"source\")[\"id\"].count()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "source\n", + "nsmc-rtt 107\n", + "nsmc-sampled 261\n", + "petition-rtt 137\n", + "petition-sampled 256\n", + "slack-rtt 158\n", + "slack-sampled 181\n", + "Name: id, dtype: int64" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test.groupby(\"source\")[\"id\"].count()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAHqCAYAAADrpwd3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZxN9f8H8Ne5+2x39sXEDCFrKMQUEjKmqYgWpah8Uxoqfkm+lTUpCpFoEfrGV5t8S4VJobIkpYSEMDJmN/vMXc/vj3vPmblmxmx3m7mv5+Mxj4d7z7n3fs6Ycz/nvM/7vN+CKIoiiIiIiIiIiIiIiIioCoWnB0BERERERERERERE5K0YRCciIiIiIiIiIiIiqgGD6ERERERERERERERENWAQnYiIiIiIiIiIiIioBgyiExERERERERERERHVgEF0IiIiIiIiIiIiIqIaMIhORERERERERERERFQDBtGJiIiIiIiIiIiIiGrAIDoRERERERERERERUQ0YRCcioiZv586dEAQBO3fudNp7zp49G4IgOO39iNzlzJkzEAQBa9eurdP6giBg9uzZLh0Tka/g/udanO+puXjwwQfRunVrl71/69atceutt7rs/YmaMu5/zueKuXTgwIEYOHCgU9+zsRhEpyantLQUs2fPrvbg+auvvuKJCBER+YQNGzZg6dKldVq3qc2PnOvJ2zXn/Y+IqCZHjx7F7NmzcebMmSrL3nzzzTpfQCQiaooYRKcmp7S0FHPmzKnxxHrOnDnuHxQREZGb1RTEi4+PR1lZGR544AH5ucvNj2VlZXj++eddNcwG4VxP3q45739ERDU5evQo5syZwyA6EfkklacHQFRXVqsVRqPR08MgIiLyaoIgQKfT1Xn9+qzrapzrqalryvsfEVFNysvLodFoPD0MIiKPYiZ6MyTVIjp58iQefPBBhISEIDg4GA899BBKS0vl9VJTU9GvXz+EhIQgMDAQHTp0wL///W95uVRz8KOPPsKcOXNwxRVXICgoCHfeeScKCgpgMBjw1FNPISoqCoGBgXjooYdgMBiqjOeDDz7AddddB39/f4SGhmLAgAHYvn17rdshCAImTZqE9evXo0uXLtBqtVi1ahUiIyMBAHPmzIEgCHItyQcffBArVqyQXyv9ELlLc9n3ahuf0WjEzJkz0bNnTwQHByMgIAD9+/fHd9995/A+Ul3YV199FStWrMCVV14Jf39/DB06FOfOnYMoipg3bx5atmwJPz8/DB8+HHl5eQ7vIdWT2759O3r06AGdTofOnTtj06ZNdfo/2b9/P4YNG4bg4GD4+/vjxhtvxI8//lhlvR9++AG9e/eGTqdD27Zt8dZbb9Xp/YnqQ/qO+PPPP3H33XdDr9cjPDwcTz75JMrLyx3W/eCDD9CzZ0/4+fkhLCwMo0ePxrlz5+TlAwcOxJdffomzZ8/K851U2/HSmsy1zY/V1WT+9ddfkZSUBL1ej8DAQAwePBj79u1zWGft2rUQBAE//vgjpk6disjISAQEBOCOO+5AdnZ2nX4nnOvJXbj/VcX5nvM9uU5RURGeeuoptG7dGlqtFlFRUbj55pvxyy+/1PiaV199Fddffz3Cw8Ph5+eHnj174pNPPql23YYc569btw4qlQrTpk277HrSucjGjRvx/PPP44orroC/vz+WLVuGu+66CwBw0003yd9nO3fuROvWrXHkyBHs2rVLft7bahmT72jK+x8ALF++HF26dJHfv1evXtiwYYO8/OzZs3j88cfRoUMH+Pn5ITw8HHfddVeVO0SkY4UffvgBTzzxBCIjIxESEoJHH30URqMR+fn5GDt2LEJDQxEaGopnnnkGoijKr688vy9ZsgTx8fHw8/PDjTfeiD/++KPW7ZB+V5c7ppK8/fbbaNu2Lfz8/HDdddfh+++/r9P7uxsz0Zuxu+++G23atMGCBQvwyy+/4N1330VUVBReeeUVHDlyBLfeeiu6deuGuXPnQqvV4uTJk9UebC5YsAB+fn549tlncfLkSSxfvhxqtRoKhQIXL17E7NmzsW/fPqxduxZt2rTBzJkz5dfOmTMHs2fPxvXXX4+5c+dCo9Fg//79+PbbbzF06NBat+Hbb7/FRx99hEmTJiEiIgLdu3fHypUrMXHiRNxxxx0YOXIkAKBbt24oKSlBeno6UlNT8Z///Md5v0iiemrK+15dxldYWIh3330X9957Lx555BEUFRVh9erVSExMxE8//YQePXo4vOf69ethNBoxefJk5OXlYeHChbj77rsxaNAg7Ny5E9OnT5e37+mnn8Z7773n8PoTJ07gnnvuwWOPPYZx48ZhzZo1uOuuu7B161bcfPPNNW7Lt99+i6SkJPTs2ROzZs2CQqHAmjVrMGjQIHz//fe47rrrAACHDx/G0KFDERkZidmzZ8NsNmPWrFmIjo6+7P8zUUPdfffdaN26NRYsWIB9+/Zh2bJluHjxIt5//30AwPz58/HCCy/g7rvvxr/+9S9kZ2dj+fLlGDBgAH799VeEhITgueeeQ0FBAf755x8sWbIEABAYGFjt5z366KP1mh+PHDmC/v37Q6/X45lnnoFarcZbb72FgQMHYteuXejTp4/D+pMnT0ZoaChmzZqFM2fOYOnSpZg0aRI+/PDDOv0+ONeTO3H/q/gczvec78l1HnvsMXzyySeYNGkSOnfujNzcXPzwww84duwYrr322mpf8/rrr+P222/HmDFjYDQasXHjRtx1113YsmULkpOT5fUacpz/9ttv47HHHsO///1vvPjii3Xahnnz5kGj0eDpp5+GwWDA0KFD8cQTT2DZsmX497//jU6dOgEAOnXqhKVLl2Ly5MkIDAzEc889BwDct8hjmvL+98477+CJJ57AnXfeKV/o//3337F//37cd999AIADBw5gz549GD16NFq2bIkzZ85g5cqVGDhwII4ePQp/f3+H95w8eTJiYmIwZ84c7Nu3D2+//TZCQkKwZ88exMXF4aWXXsJXX32FRYsWoWvXrhg7dqzD699//30UFRUhJSUF5eXleP311zFo0CAcPnz4svt5XY6pAGD16tV49NFHcf311+Opp57C33//jdtvvx1hYWFo1arVZX9fbidSszNr1iwRgPjwww87PH/HHXeI4eHhoiiK4pIlS0QAYnZ2do3v891334kAxK5du4pGo1F+/t577xUFQRCTkpIc1k9ISBDj4+PlxydOnBAVCoV4xx13iBaLxWFdq9Va63YAEBUKhXjkyBGH57Ozs0UA4qxZs6q8JiUlReSfNXlKc9j36jI+s9ksGgwGh+cuXrwoRkdHO2z76dOnRQBiZGSkmJ+fLz8/Y8YMEYDYvXt30WQyOWyfRqMRy8vL5efi4+NFAOKnn34qP1dQUCC2aNFCvOaaa+TnpN/Zd999J29n+/btxcTERIdtLi0tFdu0aSPefPPN8nMjRowQdTqdePbsWfm5o0ePikqlkt8n5FTSd8Ttt9/u8Pzjjz8uAhB/++038cyZM6JSqRTnz5/vsM7hw4dFlUrl8HxycrLDvi+R9r01a9bIz11ufrx0Th0xYoSo0WjEU6dOyc+lp6eLQUFB4oABA+Tn1qxZIwIQhwwZ4rCfTZkyRVQqlQ77fU0415O7cP9zxPnehvM9uUpwcLCYkpJS4/Jx48ZV+Q4pLS11eGw0GsWuXbuKgwYNkp+r63F+fHy8mJycLIqiKL7++uuiIAjivHnz6jR2aT+78sorq4zp448/dtgHK+vSpYt444031ukziFypKe9/w4cPF7t06XLZdS4dqyiK4t69e0UA4vvvvy8/Jx0rXDpHJiQkiIIgiI899pj8nNlsFlu2bOmwD0vzu5+fn/jPP//Iz+/fv18EIE6ZMkV+TjrOktT1mMpoNIpRUVFijx49HI453n77bRGA132nsJxLM/bYY485PO7fvz9yc3NRWFgoX/H53//+B6vVetn3GTt2LNRqtfy4T58+EEURDz/8sMN6ffr0wblz52A2mwEAmzdvhtVqxcyZM6FQOP6p1fXW6xtvvBGdO3eu07pE3qIp73t1GZ9SqZRrIlqtVuTl5cFsNqNXr17V3iJ31113ITg42GG8AHD//fdDpVI5PG80GnH+/HmH18fGxuKOO+6QH+v1eowdOxa//vorMjIyqh3joUOHcOLECdx3333Izc1FTk4OcnJyUFJSgsGDB2P37t2wWq2wWCzYtm0bRowYgbi4OPn1nTp1QmJi4uV+VUQNlpKS4vB48uTJAGzNBzdt2gSr1Yq7775b/rvNyclBTEwM2rdvX6WMgrNZLBZs374dI0aMwJVXXik/36JFC9x333344YcfUFhY6PCaCRMmOHy39O/fHxaLBWfPnq3TZ3KuJ3fi/mfD+d6G8z25SkhICPbv34/09PQ6v8bPz0/+98WLF1FQUID+/fs77G/1Pc5fuHAhnnzySbzyyiv1bmI8btw4hzERNRVNef8LCQnBP//8gwMHDtRprCaTCbm5uWjXrh1CQkKqnZ/Hjx/vMD4prjB+/Hj5OaVSiV69euHvv/+u8voRI0bgiiuukB9fd9116NOnD7766qsax1jXY6qff/4ZWVlZeOyxxxz6Ljz44IMOxxTegkH0ZqzyASIAhIaGArB9Idxzzz244YYb8K9//QvR0dEYPXo0Pvroo2oPoi99H+kP+dLbKoKDg2G1WlFQUAAAOHXqFBQKxWVPjAsKCpCRkSH/XFofsU2bNnXcWiLv0ZT3vbqOb926dejWrRt0Oh3Cw8MRGRmJL7/8Uh5DQ7dD+j1V1q5duyoHJVdddRUAVKn7Jjlx4gQA28F/ZGSkw8+7774Lg8GAgoICZGdno6ysDO3bt6/yHh06dKj2vYka69K/t7Zt20KhUODMmTM4ceIERFFE+/btq/ztHjt2DFlZWS4dW3Z2NkpLS6v9++/UqROsVmuVOoaX+84DONeTd+H+x/n+UpzvyRUWLlyIP/74A61atcJ1112H2bNnVxucqmzLli3o27cvdDodwsLCEBkZiZUrVzrsb3U5zpfs2rUL06dPx/Tp06utw5ydne3w/VBcXOywnPMzNVVNef+bPn06AgMDcd1116F9+/ZISUmpUvq1rKwMM2fORKtWraDVahEREYHIyEjk5+c3en6+dG4Gqh47Abb5uaa5GUCdj6mki/6XfoZarXZIKPAWrInejCmVymqfF0URfn5+2L17N7777jt8+eWX2Lp1Kz788EMMGjQI27dvd3htTe9zufevqyeffBLr1q2TH994443YuXOn/JhXvqkpasr7Xl3G98EHH+DBBx/EiBEjMG3aNERFRUGpVGLBggU4depUncfrjO2oiRQEWLRoUZWarZLAwMBqG7ISuVvloJHVaoUgCPj666+r3UdqqrvsSbXty5zryZv56v7H+Z7Ite6++270798fn332GbZv345FixbhlVdewaZNm5CUlFRl/e+//x633347BgwYgDfffBMtWrSAWq3GmjVrHBoK1keXLl2Qn5+P//znP3j00UerBMV79+7tcNfKrFmzHBodc36mpqop73+dOnXC8ePHsWXLFmzduhWffvop3nzzTcycORNz5swBYLuLbs2aNXjqqaeQkJCA4OBgCIKA0aNHV5ucV5/52RlzM9A0j6nqgkF0H6ZQKDB48GAMHjwYixcvxksvvYTnnnsO3333HYYMGdLo92/bti2sViuOHj1a40HtM888g/vvv19+LGXPXM7lylHUtUwMkSd5+75X2/g++eQTXHnlldi0aZPDPjdr1qxGj706J0+ehCiKDp/1119/AQBat25d7Wvatm0LwHYr+OV+p5GRkfDz85Mz2So7fvx4I0ZNVLMTJ044HEifPHkSVqsVrVu3hlKphCiKaNOmjZyBWZP6zHl1XTcyMhL+/v7V/v3/+eefUCgU9W7ww7mevAn3P873l+J8T67SokULPP7443j88ceRlZWFa6+9FvPnz682iPfpp59Cp9Nh27Zt0Gq18vNr1qxxWK8ux/mSiIgIfPLJJ+jXrx8GDx6MH374AbGxsfLy9evXo6ysTH5cl6xPzs/UVDTl/S8gIAD33HMP7rnnHhiNRowcORLz58/HjBkzoNPp8Mknn2DcuHF47bXX5NeUl5cjPz+/rr+eeqlu7vzrr79qnJsB2++qLsdU8fHx8mcMGjRIft5kMuH06dPo3r17wwfuAizn4qMuvZUagPwl4KxMjREjRkChUGDu3LlVroZJV7c6d+6MIUOGyD89e/as9X2lTsPVfUEEBATUuIzIG3j7vleX8UlXkitfpd6/fz/27t3rlPFfKj09HZ999pn8uLCwEO+//z569OiBmJiYal/Ts2dPtG3bFq+++mqVW1MB2+1zgG1bEhMTsXnzZqSlpcnLjx07hm3btjl5S4hsVqxY4fB4+fLlAICkpCSMHDkSSqUSc+bMqZIJIooicnNz5ccBAQHV3rJZnbrOj0qlEkOHDsX//vc/h1s0MzMzsWHDBvTr1w96vb5OnynhXE/ehPsf53vO9+RqFoulyvdDVFQUYmNjazzeVyqVEAQBFotFfu7MmTPYvHmzw3p1Oc6vrGXLlvjmm29QVlaGm2++2eF77IYbbnD4fqhLEP1y32cBAQGcm8njmvr+V3kdANBoNOjcuTNEUYTJZJLHe+nnLV++3GH8zrR582aHPiY//fQT9u/fX+0FCUldj6l69eqFyMhIrFq1CkajUV5n7dq1Xvl9wkx0HzV37lzs3r0bycnJiI+PR1ZWFt588020bNkS/fr1c8pntGvXDs899xzmzZuH/v37Y+TIkdBqtThw4ABiY2OxYMGCBr2vn58fOnfujA8//BBXXXUVwsLC0LVrV3Tt2lU+MXjiiSeQmJgIpVKJ0aNHO2V7iJzB2/e9uozv1ltvxaZNm3DHHXcgOTkZp0+fxqpVq9C5c+dqT2Ab66qrrsL48eNx4MABREdH47333kNmZmaVzIDKFAoF3n33XSQlJaFLly546KGHcMUVV+D8+fP47rvvoNfr8cUXXwAA5syZg61bt6J///54/PHHYTabsXz5cnTp0gW///6707eH6PTp07j99tsxbNgw7N27Fx988AHuu+8+OdPixRdfxIwZM3DmzBmMGDECQUFBOH36ND777DNMmDABTz/9NABb8OjDDz/E1KlT0bt3bwQGBuK2226r9jPrMz+++OKLSE1NRb9+/fD4449DpVLhrbfegsFgwMKFC13wG6mKcz25Cvc/G873nO/JdYqKitCyZUvceeed6N69OwIDA/HNN9/gwIEDDpmjlSUnJ2Px4sUYNmwY7rvvPmRlZWHFihVo166dw99nQ47z27Vrh+3bt2PgwIFITEzEt99+W+8LcpIePXpAqVTilVdeQUFBAbRaLQYNGoSoqCj07NkTK1euxIsvvoh27dohKirKIbOUyB2a+v43dOhQxMTE4IYbbkB0dDSOHTuGN954A8nJyQgKCgJgm5//85//IDg4GJ07d8bevXvxzTffIDw8vJG/veq1a9cO/fr1w8SJE2EwGLB06VKEh4fjmWeeqfE1bdu2rdMxlVqtxosvvohHH30UgwYNwj333IPTp09jzZo1XlkTHSI1O7NmzRIBiNnZ2Q7Pr1mzRgQgnj59WtyxY4c4fPhwMTY2VtRoNGJsbKx47733in/99Ze8/nfffScCED/++ONq3+fAgQN1+tz33ntPvOaaa0StViuGhoaKN954o5iamlrrdgAQU1JSql22Z88esWfPnqJGoxEBiLNmzRJFURTNZrM4efJkMTIyUhQEQeSfOLlTc9j36jI+q9UqvvTSS2J8fLyo1WrFa665RtyyZYs4btw4MT4+Xl7v9OnTIgBx0aJFDp9Rn+2Lj48Xk5OTxW3btondunUTtVqt2LFjxyqvld7zu+++c3j+119/FUeOHCmGh4eLWq1WjI+PF++++25xx44dDuvt2rVL/k658sorxVWrVsm/VyJnkf6mjh49Kt55551iUFCQGBoaKk6aNEksKytzWPfTTz8V+/XrJwYEBIgBAQFix44dxZSUFPH48ePyOsXFxeJ9990nhoSEiADk/U/a99asWSOve7n5sfI8Kvnll1/ExMREMTAwUPT39xdvuukmcc+ePQ7r1PSdVNP+WB3O9eQu3P8ccb7nfE+uYzAYxGnTpondu3cXg4KCxICAALF79+7im2++Ka9z6X4kiqK4evVqsX379vLf/5o1a2r8+6ztOF/apyrbv3+/GBQUJA4YMEAsLS2tcfw17buSd955R7zyyitFpVLpsD9mZGSIycnJYlBQkAhAvPHGG2v5TRE5X1Pf/9566y1xwIAB8nzWtm1bcdq0aWJBQYG8zsWLF8WHHnpIjIiIEAMDA8XExETxzz//FOPj48Vx48bJ69U3fjBu3DgxICBAflx5fn/ttdfEVq1aiVqtVuzfv7/422+/Vfuel6rLMZUoiuKbb74ptmnTRtRqtWKvXr3E3bt3izfeeKPXfY8IouikqvFERERO1rp1a3Tt2hVbtmzx9FCIGm327NmYM2cOsrOzERER4enhEPkU7n/ejfM9ERGRdzlz5gzatGmDRYsWyXfi+TrWRCciIiIiIiIiIiIiqgGD6ERERERERERERERENWAQnYiIiIiIiIiIiIioBqyJTkRERERERERERERUA2aiExERUYPMnj0bgiA4/HTs2FFeXl5ejpSUFISHhyMwMBCjRo1CZmamw3ukpaUhOTkZ/v7+iIqKwrRp02A2m929KUREREREREQ1Unl6AERERNR0denSBd988438WKWqOLSYMmUKvvzyS3z88ccIDg7GpEmTMHLkSPz4448AAIvFguTkZMTExGDPnj24cOECxo4dC7VajZdeesnt20JERERERERUHZZzAWC1WpGeno6goCAIguDp4RBVIYoiioqKEBsbC4WCN5DUF/dx8nZNdR+fPXs2Nm/ejEOHDlVZVlBQgMjISGzYsAF33nknAODPP/9Ep06dsHfvXvTt2xdff/01br31VqSnpyM6OhoAsGrVKkyfPh3Z2dnQaDR1Ggf3cfJ2TXUf9xbcx8nbcR9vHO7j5O24jzcO93HydnXdx5mJDiA9PR2tWrXy9DCIanXu3Dm0bNnS08NocriPU1PRFPfxEydOIDY2FjqdDgkJCViwYAHi4uJw8OBBmEwmDBkyRF63Y8eOiIuLk4Poe/fuxdVXXy0H0AEgMTEREydOxJEjR3DNNddU+5kGgwEGg0F+fP78eXTu3Nl1G0nkJE1xH/cGnMepqeA+3jDcx6mp4D7eMNzHqamobR9nEB1AUFAQANsvS6/Xe3g0RFUVFhaiVatW8t8q1Q/3cfJ2TXUf79OnD9auXYsOHTrgwoULmDNnDvr3748//vgDGRkZ0Gg0CAkJcXhNdHQ0MjIyAAAZGRkOAXRpubSsJgsWLMCcOXOqPM99nLxVU93HvQXncfJ23Mcbh/s4eTvu443DfZy8XV33cQbRAfl2Er1ezx2avBpvfWoY7uPUVDS1fTwpKUn+d7du3dCnTx/Ex8fjo48+gp+fn8s+d8aMGZg6dar8WDro4T5O3q6p7ePegvM4NRXcxxuG+zg1FdzHG4b7ODUVte3jLOZEREREThESEoKrrroKJ0+eRExMDIxGI/Lz8x3WyczMRExMDAAgJiYGmZmZVZZLy2qi1Wrlg3AejBMREREREZGrMYhORERETlFcXIxTp06hRYsW6NmzJ9RqNXbs2CEvP378ONLS0pCQkAAASEhIwOHDh5GVlSWvk5qaCr1ezxrnRERERERE5DVYzoWIiIga5Omnn8Ztt92G+Ph4pKenY9asWVAqlbj33nsRHByM8ePHY+rUqQgLC4Ner8fkyZORkJCAvn37AgCGDh2Kzp0744EHHsDChQuRkZGB559/HikpKdBqtR7eOiIiIiIiIiIbBtGJiIioQf755x/ce++9yM3NRWRkJPr164d9+/YhMjISALBkyRIoFAqMGjUKBoMBiYmJePPNN+XXK5VKbNmyBRMnTkRCQgICAgIwbtw4zJ0711ObRERERERERFQFy7kQkc/bvXs3brvtNsTGxkIQBGzevNlh+aZNmzB06FCEh4dDEAQcOnTIYXleXh4mT56MDh06wM/PD3FxcXjiiSdQUFDgsJ4gCFV+Nm7c6OKtI3KdjRs3Ij09HQaDAf/88w82btyItm3byst1Oh1WrFiBvLw8lJSUYNOmTVVqncfHx+Orr75CaWkpsrOz8eqrr0Kl4jV+Iqq7xs7jlYmiiKSkpCrv89tvv+Hee+9Fq1at4Ofnh06dOuH11193zQYRERHVora5DwCOHTuG22+/HcHBwQgICEDv3r2RlpYmLy8vL0dKSgrCw8MRGBiIUaNGVelXlJaWhuTkZPj7+yMqKgrTpk2D2Wx29eYReSUG0YnI55WUlKB79+5YsWJFjcv79euHV155pdrl6enpSE9Px6uvvoo//vgDa9euxdatWzF+/Pgq665ZswYXLlyQf0aMGOHMTSEiIvI5jZ3HK1u6dCkEQajy/MGDBxEVFYUPPvgAR44cwXPPPYcZM2bgjTfeaPT4iYiI6qu2ue/UqVPo168fOnbsiJ07d+L333/HCy+8AJ1OJ68zZcoUfPHFF/j444+xa9cupKenY+TIkfJyi8WC5ORkGI1G7NmzB+vWrcPatWsxc+ZMl28fkTdiqhcR+bykpCQkJSXVuPyBBx4AAJw5c6ba5V27dsWnn34qP27bti3mz5+P+++/H2az2SGrNiQkpEomLhERETVcY+dxyaFDh/Daa6/h559/RosWLRyWPfzwww6Pr7zySuzduxebNm3CpEmTGjZwIiKiBqpt7nvuuedwyy23YOHChfJzle8YLSgowOrVq7FhwwYMGjQIgC3hq1OnTti3bx/69u2L7du34+jRo/jmm28QHR2NHj16YN68eZg+fTpmz54NjUbjug0k8kLMRCcicoGCggLo9foqZSlSUlIQERGB6667Du+99x5EUfTQCImIiEhSWlqK++67DytWrKjzxe6CggKEhYW5eGRERET1Y7Va8eWXX+Kqq65CYmIioqKi0KdPH4eSLwcPHoTJZMKQIUPk5zp27Ii4uDjs3bsXALB3715cffXViI6OltdJTExEYWEhjhw5UuPnGwwGFBYWOvwQNQcMohMROVlOTg7mzZuHCRMmODw/d+5cfPTRR0hNTcWoUaPw+OOPY/ny5R4aJREREUmmTJmC66+/HsOHD6/T+nv27MGHH35YZa4nIiLytKysLBQXF+Pll1/GsGHDsH37dtxxxx0YOXIkdu3aBQDIyMiARqNBSEiIw2ujo6ORkZEhr1M5gC4tl5bVZMGCBQgODpZ/WrVq5cStI/IclnMhInKiwsJCJCcno3Pnzpg9e7bDshdeeEH+9zXXXIOSkhIsWrQITzzxhJtHSURERJLPP/8c3377LX799dc6rf/HH39g+PDhmDVrFoYOHeri0REREdWP1WoFAAwfPhxTpkwBAPTo0QN79uzBqlWrcOONN7r082fMmIGpU6fKjwsLCxlIp2aBmehERE5SVFSEYcOGISgoCJ999hnUavVl1+/Tpw/++ecfGAwGN42QiIiILvXtt9/i1KlTCAkJgUqlkkuxjRo1CgMHDnRY9+jRoxg8eDAmTJiA559/3gOjJSIiuryIiAioVCp07tzZ4flOnTohLS0NABATEwOj0Yj8/HyHdTIzM+WyZjExMcjMzKyyXFpWE61WC71e7/BD1BwwiE5E5ASFhYUYOnQoNBoNPv/8c4eu5zU5dOgQQkNDodVq3TBCIiIiqs6zzz6L33//HYcOHZJ/AGDJkiVYs2aNvN6RI0dw0003Ydy4cZg/f76HRktERHR5Go0GvXv3xvHjxx2e/+uvvxAfHw8A6NmzJ9RqNXbs2CEvP378ONLS0pCQkAAASEhIwOHDh5GVlSWvk5qaCr1eXyVAT+QLWM6FiHxecXExTp48KT8+ffo0Dh06hLCwMMTFxSEvLw9paWlIT08HAPlgJCYmBjExMXIAvbS0FB988IFD85TIyEgolUp88cUXyMzMRN++faHT6ZCamoqXXnoJTz/9tPs3mIiIqBlp7Dwu/VwqLi4Obdq0AWAr4TJo0CAkJiZi6tSpci1YpVKJyMhIV28iERGRg9rmvmnTpuGee+7BgAEDcNNNN2Hr1q344osvsHPnTgBAcHAwxo8fj6lTpyIsLAx6vR6TJ09GQkIC+vbtCwAYOnQoOnfujAceeAALFy5ERkYGnn/+eaSkpDARjHyTSGJBQYEIQCwoKPD0UIiqxb/Rxqnt9/fdd9+JAKr8jBs3ThRFUVyzZk21y2fNmnXZ1wMQT58+LYqiKH799ddijx49xMDAQDEgIEDs3r27uGrVKtFisbjhN0Dejvt44/D3R96Of6ON4+p5vDoAxM8++0x+PGvWrGrfIz4+3nkbSk0W9/HG4e+PvJ03/o3WNveJoiiuXr1abNeunajT6cTu3buLmzdvdniPsrIy8fHHHxdDQ0NFf39/8Y477hAvXLjgsM6ZM2fEpKQk0c/PT4yIiBD/7//+TzSZTPUaqzf+/ogqq+vfqCCKouj0yHwTU1hYiODgYBQUFLBWE3kl/o02Dn9/5O34N9o4/P2Rt+PfaOPw90fejn+jjcPfH3k7/o02Dn9/5O3q+jfKmujkcwrLTfjo53P44USOp4dCRERETlZusuDTg//gZFaRp4dCREREl/F3djHW7TmDvzI5Z/uycpMFXx2+gDM5JZ4eCtFlsSY6+ZRSoxl3rPgRp7JtX86vj+6B4T2u8PCoyNPS0tKQk+OZiyoRERGIi4vzyGcTETU3tnl+D45nFkGlELBizLVI7FK11jU1L5zHiYianqyictzz9j5kFxmgUgjYnHIDul4R7OlhkZtZrSLufmsvfv+nAG0jA/DN1BshCIKnh0VULQbRyaes3HlKDqADwOzPjyCxSwx0aqUHR0WelJaWho6dOqGstNQjn+/n748/jx3jCTgRkRO8s/s0jtuz2cxWEXO/OIqBHSKhVXGeb644jxMRNU1LUk8gu8gAwDZnz/78CD6ZeL2HR0XudiKrGL//UwAAOJVdgr8yi9EhJsjDoyKqHoPo5DMsVhEf/XwOgC0DfeHW4zifX4bPD6Xj7t6tPDw68pScnByUlZZizPRFiI5r69bPzkw7hfWvTENOTg5PvomIGslksWLNntMAgEV3dsNr2//C+fwybP0jg3edNWOV5/Hwlm1xrFCJcjPQI8wCtYsLV3IeJyJqmFKjGV/8lg4AWHpPD0z96BB+PnsR5/JK0SrM38OjI3c6cCbP4XHq0QwG0clrMYhOPuPHkznILDQg1F+NpK4t8M/FMizadhxf/M4gOgHRcW3Rsn0XTw+DiIga6MeTOcgvNSEiUIOR17bE2dxSvPHdSQbRfUR0XFv8aY7AX4WFAICA4BAM7cBSPkRE3ujbP7NQbDAjLswfw3vEYuOBNOz7Ow9fHb6AR290b2ITedbBsxcBAMF+ahSUmfCbPSudyBuxsSj5jO9PZAMAhnaOgUalwNDO0QCA/afzUGa0eHJoRERE1Ehb/8gAACR1bQGlQsCwrrYA6s7j2Sg3cZ5v7kxW4HhGRWO6YxeKUGIwe3BERERUkx9O2PpYDO0cDUEQ5P4lP57K9eSwyAOkTPR77ImNf2cXe3I4RJfFIDr5jD32Cfn6duEAgHZRgYgN1sFotmLfaU7WRERETZk0zw/qGAUA6BKrR2SQFmUmi1xrk5qv9DIFzFYRof5qRAVpAQCnc0pqeRUREXnCj6dsQfQb2kUAAHrFhwEADqVdhNUqemxc5H5vP9AL84Z3wahrWwIA0vJKYbZYPTwqouoxiE4+oaDUhKMXbLf3JrS1BdEFQcD19kn7F/stRERERNT0XCgoQ1peKRQC0Kt1KADbPN8r3vbvn8/mXe7l1AzkGgQAwJURgbgyMgAAg+hERN4oPb8M5/LKoFIIuK6NLXjesUUQdGoFCsvN+Jvf3T6lc6weDyS0RvuoQGhVCpgsIv65WObpYRFVi0F08gm/n8+HKALx4f6ICtLJz/doFQIAOHQu3zMDIyIiokb76bQtSN71imAE6dTy8z3tQXReLG/+LtqD6NF6LeLsTekyCsshisxoJCLyJtLdYVdFByFAa2vTp1Yq0O2KEADAr2mcs32RQiGgTQQvgpN3YxCdfMLh87aJuusVwQ7PS0H0387l87YxIiKiJuq3c7Z5/tq4UIfnr7E/PnSO5VyaNaUaBSYpiK5DRKAWAoBSowUlBtbDJyLyJofP5wMAurV0PDfvHKsHAJzIYk1sXxUfbrsIfjaXQXTyTgyik084ct5WyuXqS4LoHWKCoFXZbhs7m1fqiaGRl7EyY42IqMn5I736i+UdY4IgCEBOsQE5xQZPDI3cQBMZDxEC/NRKBOlUUCsVCAvUAACyiso9PDoiIqpMykS/dM5uFxUIADiRWVTlNeQbYvS2qgFZRTxmI+/EIDr5BOnkuov96rZErVTgquggAMDxDE7WvkwUgV1/ZWPVrlP8WyAiakKsVhFH020Xy7te4TjPB2hViLeX9uB3e/OlCr0CABAaoIYg2DLSpeaiPBEnIvIuFXO2YxC9vRREZya6z4qyB9EzCzl3k3diEJ2avXKTBWn2LPOOMfoqy9tH2ybrv3jF26edL1Xg0Ll8mCwiUo9losRg9vSQiIioDs7mlaLYYIZWpUC7yMAqy6W5/5i9wTg1P+qwWABAiJ9Gfi4iwBZEzysxemRMRERUVW6xAbn27+Wroh3n7Pb25LZ/Lpah1MhzMV9UkYnOu8jIOzGITs3eqexiiCIQ7KdGRKCmynIpE51BdN92vkyQ/22xijiVzQwIIqKmQLrtu11UIFTKqoe2HWJ4x1lzpwppAQAI8a9oKiv9+2Ipg+hERN5CyjJvGeoHf43KYVlYgAZhAbbz9b+zWRPbF0XLmegMopN3YhCdmr2T9om6fVSgfItvZR3sQfQTmQya+ixBgaxy29dhRTMT1sgnImoK/s6xnWi3rSYLHaiosXo6hyfkzVVFJnpFED3UHojJLzVBZL8TIiKvIF34lhLZLhVnL8H2z0Wei/miaL3tLjKWcyFvxSA6NXun7EF06ST6UpVPri1WnmT5InVEPIxWARqlAn3bhAMAzl0shZV/D0REXk+a56+MDKh2eZsI2/NnchlEb64qMtEr7jjU69RQCIDZKqKYJdqIiLzCiUoJbtVpZQ+iS+VYybdINdELykwoN1k8PBqiqhhEp2bvlP1WsJqC6LEhftAoFTBarEjPL3Pn0MhLqCNaAQDCAzWI1muhVgowWUTkl5k8PDIiIqqNlIl+ZQ2Z6K3tQfScYiMK+L3e7JSZrFD625rT6f0qSgMoFQL0flJJF/6/ExF5g9O13D0WF+YHADiXx/NyX6TXqeCnVgJgSRfyTgyiU7N3zn4rmHRr2KWUCgGt7JM1S3j4JnW4LYgeFqCBIAgItzcjyy7ibWRERN7ub3sPiysjqs9ED9SqEBVk+14/w5IuzU5emRUAoBJEaFVKh2VSeZdCXjwhIvIKUoZ5XHj15+atQpmJ7ssEQUC4vY9dTjF7mpD3YRCdmr1z9gm4VQ1BdKDiVu/TvNXbJ6kj4gBAbmQTIU/cDKITEXmzvBKjnGVcUzkXoNI8zyB6s5NbZrvd209ZdZleZw+ilzOITkTkaWaLFecv2jLM42sIokuJb+dYE91nhdvPyS+WMIhO3odBdGrWig1m+eS6ZahfjevFh9vrpfLk2iepw1sCqBREt2csZjOITkTk1aQs9NhgHfw1qhrXk07Kz7NsW7MjB9FVVfuY6OVMdNZEJyLytAsF5TBbRWhUCkQH6apdp2Wo1Fi0jE2hfZTUGDyvlEF08j4MolOzJnX1DvFXI8iejVQdqV7qWWai+xyrKEIdEgsACLU3JIuwl3Ph1W8iIu/2d/bl66FLYkNsF9L/ucggenOTW2oLovsrqwmi62wXVpiJTkTkeVLp1FahflAohGrXiQ62nYcZzVb2s/BRYfZz8jyei5MXYhCdmjWpIYlUW60mLe0n1+fz2bzC1xQarBBUagAiArW2k+1gf9sFl6JyMyxWZkAQEXmrUzn2euiXKeUCAFfY53k2EG9+cu010asr5xLkx3IuRETeQq6Hfpkyq1qVUi6teaGAc7YvCmM5F/JiDKJTs1ZRD73mUi5ARYYaJ2rfk1tqO/nWKW1NZgEgQKOESiFABE+8iYi8mZSJ3raOmegMojc/OaU1l3MJtt+FWGKwwGyxunVcRETk6Gyebc6+XBAdAGKCbaVeMgqY4OaL5HIuDKKTF2IQnZo1qSFJbZnosSG2iTq/1IQSA+tm+pIcuSFZxcm3IAgIsWej5/M2QiIiryVdLI+roUGZRJrn0/NZY7W5KTBImehV/191agVU9gvkJUaLW8dFRESOKubsy989FqOXEtwYRPdFYQyikxdjEJ2aNan26eWaigJAkE6NIHvdTGaj+xY5g+2S28CD7beAF5QxiE5E5I1EUZTn+Va1zPNSJnqJ0cImk83MK4PDce71exGpqxpEFwQBAfZSbcVMkiAi8iipJnptmegtmInu08LYWJS8GIPo1KxJV7tb1jJRAxX1UlkX3bfIDckuuQ08xN7QJJ+TNxGRVyosM8uB0StCLj/P69QVNVbPs6RLsyIIAqzlRVBW36MOAVrbVXLeaUhE5DmiKCLNHkSPr+XuMamcCzPRfRNropM3YxCdmi3HDLXag+isl+qbcqsp5wIAQcxcIyLyav/k207GwwM08NNU01XyErHyxXLO874kUMP5nIjI0/JLTSiyfw/Xdm4eo7cF0TMLGUT3RaH2ZLZcBtHJCzGITs1WQZlJPmGqrZwL4FgvlXyHVM7F/5L4i1Tep6icJ91ERN5IulB+RR3meACIDebFcl8UYJ/PmYlOROQ5Uq+yyCBtrRe+I4K0AICcYoPLx0XeRyqrWmwww2plHxvyLgyiU7MlnVxHBmmhUzNDjar3XP8wpL87EVF+VofnAxlEJyLyaufr2PdEwjvOfJOUiV5iYGNRIiJPSbeXTJXm4suRyq/lFDMT2Rfp/WzztihCvnuByFswiE7NllRDLdZeU602Uk30C6yJ7lP81QqYcs9Bc8m3YaC9nEuZyQKz1VrNK4mIyJOki95X1OGEHKi444wXy30LG4sSEXnehQLb3FuXc/OIQFsmel6JgZnIPkirUkKntp2cF5aZPDwaIkcMolOzJdVQi9bXLYjeQrrNu4An1wT4qZVQKmxdypi9RkTkff6x3xresg59T4CKYDsz0X0LG4sSEXlehj3BLaYOQXSpsaRVBC6WMhvdF+l1tpIuBQyik5dhEJ2arfoG0aUMtQv55bziTRAEQc5GLyrn5E1E5G3qm4ku1U5nJrpvkebyEqMZosjjOyIiT0iX7xKvfc5WKxUI9bcFUdlc0jfp7XXRC3keTl6GQXRqtiqC6No6rR+t10EhAEaLFTklbGJCFc1Fi1kXnYjI69S3sWiM/aJ6dpEBFl4s9xlSOReTRYTRwvJsRESekGG/27tFSN0S3MLtJV1yinhe7ov09vPwwjKeh5N3YRCdmq3MQtuEW9dMdLVSIa+bzrroBCBIykTnLeBERF6lxGBGfqktO6muQfTwQC0Ugu328FxeLPcZaqUCGpXtlIfl2YiIPEM6v25Rx35lcnNRZqL7pGApE53lXMjLMIhOzVZ9y7lUXld6Lfm2QGaiExF5Jakki16nkutm1kapEBAWYMtsy2Zmm08JZHNRIiKPsVpF+fy6RR3KuQDMRPd1LOdC3opBdGq2GhJEjwriyTVVCNLaJm9mohMReZfzcimXujUVlXCe901sLkpUvfPnz+P+++9HeHg4/Pz8cPXVV+Pnn3+Wl4uiiJkzZ6JFixbw8/PDkCFDcOLECYf3yMvLw5gxY6DX6xESEoLx48ejuLjY3ZtCXiyn2ACzVYRCqJiHaxNpD6LzzjHfJCVIMBOdvA2D6NQslZssuGi/zTumHkH0SPuknsWTawIz0YmIvNUFuUFZ3ed4gPO8rwrUMBOd6FIXL17EDTfcALVaja+//hpHjx7Fa6+9htDQUHmdhQsXYtmyZVi1ahX279+PgIAAJCYmory84q7dMWPG4MiRI0hNTcWWLVuwe/duTJgwwRObRF5KmrOjgnRQKesWggoPsJdzKWI5F1+k97PXROd5OHkZlacHQOQKUoaZVqWQv4DrIpIZalRJoFwTnVfAiYi8SYZ0t1kDg+ic532L1FyUmehEFV555RW0atUKa9askZ9r06aN/G9RFLF06VI8//zzGD58OADg/fffR3R0NDZv3ozRo0fj2LFj2Lp1Kw4cOIBevXoBAJYvX45bbrkFr776KmJjY927UeSVLtibisbUY86OCGImui+TaqIXMBOdvAwz0alZqlzKRRCEOr8uKsg2sfPkmgAgyJ6JXm6ywmSxeng0REQkybRntdXnbjOA5Vx8lRRELzWysSiR5PPPP0evXr1w1113ISoqCtdccw3eeecdefnp06eRkZGBIUOGyM8FBwejT58+2Lt3LwBg7969CAkJkQPoADBkyBAoFArs37/ffRtDXk1qKhobUvc5W8pEzy5mJnpNdu/ejdtuuw2xsbEQBAGbN2+ucd3HHnsMgiBg6dKlDs/XpRzT77//jv79+0On06FVq1ZYuHChC7bGEcu5kLdiEJ2aJSlDrb4n1xUZamwsSrY7GdRK20UY3gJOROQ9Gj/PM4juS/w1tproDKITVfj777+xcuVKtG/fHtu2bcPEiRPxxBNPYN26dQCAjIwMAEB0dLTD66Kjo+VlGRkZiIqKcliuUqkQFhYmr1Mdg8GAwsJChx9qvirm7Lo1FQUqZaIXc76uSUlJCbp3744VK1Zcdr3PPvsM+/btq/bOkNrKMRUWFmLo0KGIj4/HwYMHsWjRIsyePRtvv/2207enMjYWJW/FIDo1S5mFtsk2Sl+3xiUSnlzXXW1Xvp3ViMgTV74lgiAgwF5HtdTAE28iIm+R2cByLrzjzDf5qaUgOi+IE0msViuuvfZavPTSS7jmmmswYcIEPPLII1i1apXLP3vBggUIDg6Wf1q1auXyzyTPSc+3lXOpTyZ6RIDtvDyn2ABRFF0yrqYuKSkJL774Iu64444a1zl//jwmT56M9evXQ61WOyyTyjG9++676NOnD/r164fly5dj48aNSE9PBwCsX78eRqMR7733Hrp06YLRo0fjiSeewOLFi126bRWZ6Jy3ybswiE7NUuVyLvUh3+bNybpWtV35dkYjIk9d+a5MrqPKE28iIq/R2Ez0LN5x5lOYiU5UVYsWLdC5c2eH5zp16oS0tDQAQExMDAAgMzPTYZ3MzEx5WUxMDLKyshyWm81m5OXlyetUZ8aMGSgoKJB/zp071+jtIe/VkHPziCBbOZdyk5Xf3Q1ktVrxwAMPYNq0aejSpUuV5XUpx7R3714MGDAAGo1GXicxMRHHjx/HxYsXXTZ21kQnb8XGotQsZTbw5Doi0HZybbKIyC81ITRAU8srfFdSUhKSkpKqXeasRkSVr3xrNBp06dIFhw4dwuLFix2C7a4UoLWdeLOcCxGRdyg3WZBfajupYjkXqgt/+wVxg9kKi1WEUlH3fjlEzdUNN9yA48ePOzz3119/IT4+HoCtyWhMTAx27NiBHj16ALAluOzfvx8TJ04EACQkJCA/Px8HDx5Ez549AQDffvstrFYr+vTpU+Nna7VaaLX1u2OYmi7pLvH6NBb116jgp1aizGRBTrFBTmyiunvllVegUqnwxBNPVLu8LuWYMjIyHBoOAxUlnjIyMhAaGlrtexsMBhgMFcda9S3ZpPez/X+znAt5G2aiU7MkBdHrW85Fo1Ig1N921TOb9dcazFmNiBp65duZdRZZzoWIyLtIc7xOrZBPsupKuuOsxGhBCS+O+gydSgGpz3wZMxqJAABTpkzBvn378NJLL+HkyZPYsGED3n77baSkpACwlTV86qmn8OKLL+Lzzz/H4cOHMXbsWMTGxmLEiBEAbJnrw4YNwyOPPIKffvoJP/74IyZNmoTRo0dXW3+ZfI8oivLdX9IcXFdSNnoOz8vr7eDBg3j99dexdu1aCIL7Lxw3tmSTVM6l1GiByWJ1xRCJGoRBdGqWcu1dvKXM8vqQb/Uu5GTdUM5qRJSRkVHte1T+jOo4s86ilPVQzHIuREReIaOg4m6z+p4YBmhVcmkPZqP7DkEQ4M+66EQOevfujc8++wz//e9/0bVrV8ybNw9Lly7FmDFj5HWeeeYZTJ48GRMmTEDv3r1RXFyMrVu3QqeryChev349OnbsiMGDB+OWW25Bv3793Fp6kbxbkcGMcpMtCCr1JamrMHtd9IslzEaur++//x5ZWVmIi4uDSqWCSqXC2bNn8X//939o3bo1gLqVY4qJiam2pJO0rCaNLdkUpKtIkihkSRfyIgyiU7OUV2ILooc1oByLfKt3MeulNlXOrLMolXNhxiIRkXfIaGDfE0lkpf4nvswXGoRX5ifVRTcxE51Icuutt+Lw4cMoLy/HsWPH8MgjjzgsFwQBc+fORUZGBsrLy/HNN9/gqquuclgnLCwMGzZsQFFREQoKCvDee+8hMDDQnZtBXkxKTAvSquTv4boKsdfFzmcQtd4eeOAB/P777zh06JD8Exsbi2nTpmHbtm0AHMsxSS4tx5SQkIDdu3fDZKr4P0hNTUWHDh1qLOUC2Eo26fV6h5/6UCkVCNRKJV14Hk7eg0F0anasVhEXS21B9PAGBNGlK+TMRG84ZzUiauiV78ZO2pVJ5VwYRCci8g5SOZcW9aitWlkU7zgD4DsNwiX+Unk2lnMhInIbqZRLZD3LrAJAiL3Mar793J4cFRcXywFywFZS9dChQ0hLS0N4eDi6du3q8KNWqxETE4MOHToAqFs5pvvuuw8ajQbjx4/HkSNH8OGHH+L111/H1KlTXb59ens2OjPRyZswiE7NTkGZCVbR9u8Q/0ZkovM27war3IhIIjUiSkhIAODaK9/OJJVzKWFNdCIir5BRYJufoxsYRK+Y5337jrOkpCS8+OKLuOOOO6osu7RBeLdu3fD+++8jPT1dzliXGoS/++676NOnD/r164fly5dj48aNSE9PBwCHBuFdunTB6NGj8cQTT2Dx4sXu3FQAkMv4sCY6EZH7SBeso+tZygWolIleyiBqdX7++Wdcc801uOaaawAAU6dOxTXXXIOZM2fW+T1qK8cUHByM7du34/Tp0+jZsyf+7//+DzNnznS4YO4qevv/P5uLkjdhEJ2anVx7KZcgnQoaVf3/xKN4m3edXO7Kt7MaEXnyyrdEKuditFjZ1ISIyAtImegxDSjn8vLLL2Pl/b2Q983b8jxfXl6OlJQUhIeHIzAwEKNGjapyF5QkNzcXLVu2hCAIyM/Pb/A2eLvm1CBcIgXRWROdiMh95KaiDcpEt80d+WXMRK/OwIEDIYpilZ+1a9dWu/6ZM2fw1FNPOTxXl3JM3bp1w/fff4/y8nL8888/mD59uou2yJEURC9gJjp5EQbRqdlpTCkXgI1F66q2K9/OaETkySvfEo1SAZXC1riOJV2IiDwvo4FB9AMHDuCtt95C7JW225il/ilTpkzBF198gY8//hi7du1Ceno6Ro4cWe17jB8/Ht26dWvE6JuG5tQgXMJyLkRE7iedU0uJavVRUc6FQdTmrro+LXqdPRO9zIzZs2ejY8eOCAgIQGhoKIYMGSJfsJfMnz8f119/Pfz9/RESElLt5+zYsQPXX389goKCEBMTg+nTp8Ns5jk+1R2D6NTs5BbbTopDGxhEjwi0TfA5zES/rNqufDurEZGnrnxLBEFgSRciIi8iZaJH1SOIXlxcjDFjxuCdd96BPjgEgO14oaCgAKtXr8bixYsxaNAg9OzZE2vWrMGePXuwb98+h/dYuXIl8vPz8fTTTzttW6h6zmwQLpEbizKITkTkNllFUhC9AeVcGET3GdX1adH72c7BC8pMuOqqq/DGG2/g8OHD+OGHH9C6dWsMHToU2dnZ8vpGoxF33XUXJk6cWO1n/Pbbb7jlllswbNgw/Prrr/jwww/x+eef49lnn3XtxlGzovL0AIicTcosa2gmepj9ddL7EAVolSgoM6GEt4ATEXmUKIryRe7IwLpntaWkpCA5ORlDhgyBWjkTEG3z/MGDB2EymRzKlnTs2BFxcXHYu3cv+vbtCwA4evQo5s6di/379+Pvv/927kZ5ocoNwlu0aCE/n5mZiR49esjruLJBuFZb/6zFy2FNdCIi92tUORc/lnPxFUlJSUhKSnJ4TspELzaYMPG++xyWLV68GKtXr8bvv/+OwYMHAwDmzJkDADWWs/nwww/RrVs3+c75du3aYeHChbj77rsxa9YsBAUFOXOTqJliJjo1O1I5l7AGBtGl4PvFUiOsUodS8mmBGikTnUF0IiJPKjFaUG6y9aeICKrbPL9x40b88ssvWLBgAQBApbSV6MorMSIjIwMajabKbb+Vy5YYDAbce++9WLRoEeLi4py0Jd6tOTUIl/irWROdiMjdpEz0SJZzoXoKtN8NXlzuOG8bjUa8/fbbCA4ORvfu3ev8fgaDwaG0LAD4+fmhvLzc4ViG6HIYRKdmp7HlXKTXWUUgn00sCIA/y7kQEXmFHPvJeIBGKde4vpxz587hySefxPr16+UTJ7XCdvibW8c7zmbMmIFOnTrh/vvvb+CovZOvNAiXyDXRTRaIIpMkiIjcIdteEz26Ac3ApcaiBQyi+ySppGqx/Rx8y5YtCAwMhE6nw5IlS5CamoqIiIg6v19iYiL27NmD//73v7BYLDh//jzmzp0LALhw4YLzN4CaJa8Jor/88svyAbukvLwcKSkpCA8PR2BgIEaNGlXlltC0tDQkJyfD398fUVFRmDZtGhsD+Li8EttE3dByLmqlAnqdyuG9yLdJV8FZzoWIyLOy7aVcIuqY0Xbw4EFkZWXh2muvhUqlgkqlwk97f0DRwS/w+5wkhEdEwmg0Ij8/3+F1mZmZcrmRb7/9Fh9//LH8eum24YiICMyaNct5G+dmvtIgXCLVRBdFoNxsdfvnExH5mlKjGUX2O3kb1FjUz5aJXmQww2Th97avCdRJQXTbRZSbbroJhw4dwp49ezBs2DDcfffdVcrKXc7QoUOxaNEiPPbYY9Bqtbjqqqtwyy23AAAUCq8JjZKX84qa6AcOHMBbb72Fbt26OTw/ZcoUfPnll/j4448RHByMSZMmYeTIkfjxxx8BABaLBcnJyYiJicGePXtw4cIFjB07Fmq1Gi+99JInNoW8QJ79SnVYQMNraYYHalFYbkZusRHtopw1MmqqAuwn3sUs50JE5FFSJnpEHeuhDx48GIcPH3Z47qGHHsKxsiDo+4xC287doFarsWPHDowaNQoAcPz4caSlpcllSz799FOUlZXJrz9w4AAefvhhfP/992jbtq0zNssjpAbhNZEahEtZWtWRGoRfjtQg3NOUCgFalQIGsxWlBjP87OVdiIjINbLsWeh+aqWclFQfej81BMF28bOgzFTnuZ+ahyA5E912Dh4QEIB27dqhXbt26Nu3L9q3b4/Vq1djxowZdX7PqVOnYsqUKbhw4QJCQ0Nx5swZzJgxA1deeaVLtoGaH48H0YuLizFmzBi88847ePHFF+XnCwoKsHr1amzYsAGDBg0CAKxZswadOnXCvn370LdvX2zfvh1Hjx7FN998g+joaPTo0QPz5s3D9OnTMXv2bGg0DctEpqZNyh4PC1A3+D3CAjQ4nVPC5qIEoOJWslKWcyEi8iipqWhEYN2O8YKCgtC1a1eH5wICAuCvCoEmsjXMKj+MHz8eU6dORVhYGPR6PSZPnoyEhAS5qeilgfKcnBwAtnIml9ZSJ+/mp1HCYLaizMT5nIjI1aR66FF6LQRBqPfrlQoBep0aBWUm5JcyiO5rLi3ncimr1QqDof6VAwRBkMvO/fe//0WrVq1w7bXXNnyg5FM8fs9CSkoKkpOTMWTIEIfnDx48CJPJ5PB8x44dERcXh7179wIA9u7di6uvvhrR0dHyOomJiSgsLMSRI0fcswHkdfKKpcaiDZ9kpaakda2XSs2bPIGznAsRkUdl2+f4hjQoq0ynth0C5xUbsWTJEtx6660YNWoUBgwYgJiYGGzatKnRYyXvIzUXLTMyiE5E5GrZUlPRRgS/peaiBWU8L2/OquvTkn7qGMyFWSgoKMS///1v7Nu3D2fPnsXBgwfx8MMP4/z587jrrrvk90hLS5N7u1gsFvn9iouL5XUWLVqEw4cP48iRI5g3bx5efvllLFu2DEol706juvFoJvrGjRvxyy+/4MCBA1WWZWRkQKPRVMnwiY6ORkZGhrxO5QC6tFxaVhODweBwxaqwsLChm0BeKK/UNsE2tCZ65ddKTUrJtwVobZOq0WyFyWKFWunx649ERD6pIhO94SfkO3fuxN1v7cVPp/OQW2KETqfDihUrsGLFijq9vrYyKOS9pLrozEQnInK93JLGz9khfmqcBXCxhM1Fm7Off/4ZN910k/xYakAe0HUwSu6cij///BPr1q1DTk4OwsPD0bt3b3z//ffo0qWL/JqZM2di3bp18mOp58t3332HgQMHAgC+/vprzJ8/HwaDAd27d8f//vc/JCUluWELqbnwWCTo3LlzePLJJ7F+/XqHBkXusGDBAgQHB8s/rVq1cuvnk+uUGs0oN9majoQ2Johuv02cjUUJADRKBVQK2y2IJayLTlQtNggnd8iuZ030mkgXy1m2zbdIddBLmYlORORych+ToIaflwf7216bX8YgenMmJShU/vk7uxgRyVNQZlVi06ZNOH/+PAwGA9LT0/G///0PvXv3dniPtWvXVnkPURTlADpgaxafn5+PsrIy7Nu3jwF0qjePZaIfPHgQWVlZDrWHLBYLdu/ejTfeeAPbtm2D0WhEfn6+QzZ6ZmYmYmJiAAAxMTH46aefHN5XOjmX1qnOjBkz5CtbgC0TnYH05kHKHNeoFHIzyIaQSsGwnAsBtrppAVoVCspMKDFYEOLv6REReRc2CCd3qUsmelpamly3vCbWMttdiEdOnsUvujynjC0iIgJxcXFOeS9yDWaiExG5T06JdId44zLRASC/lOflviawUmNRq1WEQlH/uvpEzuaxIPrgwYNx+PBhh+ceeughdOzYEdOnT0erVq2gVquxY8cOjBo1CgBw/PhxpKWlISEhAQCQkJCA+fPnIysrC1FRUQCA1NRU6PV6dO7cucbP1mq10GrZlKI5uliplEtDmpdImKFGlwrQKm1BdNZFJ3LABuHkTlIQPbKGrLa0tDR07NQJZaWll32f4H5jEHLDvVj9wYdYlLrSKWPz8/fHn8eOMZDuxfw1tlMf1kQnInK9XOnCdyP6mITKNdGZid6cVZcAYTBXlM7bc+Ag/NWuKaTBJAiqD48F0YOCgtC1a1eH5wICAhAeHi4/P378eEydOhVhYWHQ6/WYPHkyEhIS0LdvXwDA0KFD0blzZzzwwANYuHAhMjIy8PzzzyMlJYVBch8lZY6H+jcu8BLGIDpdIsB+4s1yLkSOKjcIrxxEr61BeN++fWtsED5x4kQcOXJErmVIJMkpss3LNWWi5+TkoKy0FGOmL0J0XNsa3+dkkQK/XQQ63pCEviNubvS4MtNOYf0r05CTk8MTMS8mlXNhJjoRkevl2O8Sj2hEmVWpnMtFZqI3W5dLgIh7ejMEpQoDhwyDpTjXJZ/PJAiqD482Fq3NkiVLoFAoMGrUKBgMBiQmJuLNN9+UlyuVSmzZsgUTJ05EQkICAgICMG7cOMydO9eDoyZPyrNP1FJN84aSgugs50KSAPvtZCXMXiOSsUE4uVOJwSwHP2uriR4d1xYt23epcXlJRhF+u5gBaAPQsn1Lp46TvJdczoVzORGRyzkjE72inAsz0ZuryyVAfP6PEiYr8NCL70Cvdv5nMwmC6surgug7d+50eKzT6bBixQqsWLGixtfEx8fjq6++cvHIqKmQrlCHNeJqN1ARhL9YYoQoio0qDUPNQ4DWduLNTHQiG6lBeGpqqkcahM+ZM8etn0meJzUV9dco5QubDcXa2L6JjUWJiNxHykQPb8S5eQjLufiM6hIgdFmnYSo3I+yKtogJdu/5BlF1XFNUiMhDnF3OxWwVUVjGoCkBgSznQuSgcoNwlUoFlUqFXbt2YdmyZVCpVIiOjpYbhFd2aYNwqSF45eXSsprMmDEDBQUF8s+5c+ecu3HklerSVLSu5LIeDKb6FOniSbnZAlEUa1mbiIgaqtxkQbH9vCm8EfN2KMu5+DSNyhayNFqsHh4JkQ2D6NSs5DnhajcAaFVKuRt0bomhlrXJF/hL5VwMDLgQARUNwg8dOiT/9OrVC2PGjJH/LTUIl1TXIPzw4cPIysqS16lrg3C9Xu/wQ81fRRC98Q1n/aVgqonBVF8iXTwRRaDczBNyIiJXkeZsjVIBva7hd4/p/WyvLSpnIpMv0ijtQXTO2eQlvKqcC1Fj5UnlXJxwgh0WoEGxwYy8EiOujGz021ETFyjXROcBHBHABuHkftnFl28qWh86KZgKWzBVCq5S86ZUCNCqFDCYrSgzWvj/TkTkIrmVepU1pjSqXmcr51LIci4+Sc5EZxCdvAQz0alZybOXcwlrZDkXgM1FyVGAPWvRYLbCxNvJiOpkyZIluPXWWzFq1CgMGDAAMTEx2LRpk7xcahCuVCqRkJCA+++/H2PHjmWDcKpWjr0memQjGpRJlApBzm4qZ110n8JSPkREruesEmx6e2PRwnIz7xzzQXImOs+/yUswE52aFTmI3shyLpXfI5/11wi2q+AqhQCzVUSJwYwQJ1yoIWpu2CCcXCnbiTXRAUCnVsBosTKI7mP8NErkl5lQauKdZURErlI5E70xguylYCxWEaVGS6Mbi1PTwkx08jbMRKdmRQqiN3ayBoAQ+1Xvi6W8dYwAQRDkg7YSZq8REbmdlIke4YRMdKCipEu5iSdmvoSZ6ERErpdT4pwL335qJVQKWzkY1kX3PcxEJ2/DIDo1GyaLFQX2WmmhTsgSljKN8xlEJzuppEuJgQdwRETuJt0aHumEC+VA5SA6g6m+RGoqW8b/dyIil8kpck5ymyAIlUq68Lzc1zATnbwNg+jUbFy0l10RBDil1EaIv22yZjkXksiZ6AyiExG5XY4TG4sCtnIuAIOpvsZPw0x0IiJXy5Uy0QMaP2dLJV3YXNT3yEF0ZqKTl2AQnZqNiyUVWehKRcM7gEtC5SA6J2uyYTkXIiLPkTPRnVzOxcByLj5FLufCiydERC4jNxYNanxym17HTHRfJZdzYSY6eQkG0anZkK52S8Hvxgq2Z7NfZCY62bGcCxGRZ5QYzCi1X8B0Wia6isFUXyRlopfygjgRkcvIjUWdkImu97MlMrEmuu+RMtFNDKKTl2AQnZoNuamoEyZqoCIYX8DbxsiO5VyIiDxDymjzUyvl7+LGksq5sCa6b2EmOhGR68mZ6E648C1novO83OewsSh5GwbRqdm4aA+ihwU4p+FYiB8z0ckRy7kQEXmGM28Ll0jB1HIzv9N9ib/GNpezJjoRkWtYrKKc4BbhhGbgck10ZqL7HLU9E93ATHTyEgyiU7ORa5+oQ50VRGdNdLoEy7kQEXlGdpFzm4oCgFYKorMmuk+RL56YLBBF0cOjISJqfvJLjbDav16dcW7Omui+S8pENzETnbwEg+jUbFSUc3FuEN1gtvJWbwJQkYluMFth5kROROQ2zrwtXFI5mEq+Q6exnf5YRWa2ERG5Qo69HnqovxpqZeNDTno/qZwLE5l8jVbFxqLkXRhEp2Yjz8nlXAK1KqgUAgCWdCEbrUoBpf1vgiVdiIjcRwqiRwY5L4jOmui+SaVQyJltLOlCROR8ufY5O9xJF771cjkXZqL7Gqmci9kqwmrl3WPkeQyiU7Ph7CC6IAgs6UIOBEGQS7oUs6QLEZHbZBc5PxNdZ89EN1lEWHhi5lP87HN5KS+gEBE5XbZ895hzzsuD2FjUZ2kq3cnA5qLkDRhEp2bD2UF0AAi23zrGTHSSSCVdShlEJyJyGzkT3Ukn5IDt7iLB/m9mo/sWf3sQnZnoRETOl2sv5+K0THT7OXkRG4v6HKVCkO8EZ0kX8gYMolOz4Yogeqi/7b0KmIlOdlIQnZnoRETuI9VXdWYmuiAI0NpLupQxiO5TpHr4/H8nInK+igvfLOdCjSdlozMTnbwBg+jULIiiKGeLhzsxS00q53KRQXSyC9TYDuJYE52IyH3kxqJOrIkOVJR0MZh4YuZL/JiJTkTkMnImupOS29hY1Ldp2FyUvAiD6OT1Vq5ciW7dukGv10Ov1yMhIQFff/21vHzgwIFQKBQ4+VIyzr5yK2JD/PHYY4/Jy3NzczFs2DDExsZCq9WiVatWmDRpEgoLC2v97BB7Jnp+Gcu5kI2/1nbiXcJMdCIit8kpcm5Wm0SnYkayL5Iz0RlEJyJyutwS5zYWDWImuk+Tg+jMRCcvoPL0AIhq07JlS7z88sto3749RFHEunXrMHz4cPz666/o0qULAGD0Aw/iB/1g+GsU2PXMIPj7+8uvVygUGD58OF588UVERkbi5MmTSElJQV5eHjZs2HDZzw7xY2NRchSolTLRGUQnInKHUqNZvvvH+ZnothMz1kT3LRWNRTmXExE5W7Zcgs25mehGsxXlJot8Fxn5BrmcCzPRyQswiE5e77bbbnN4PH/+fKxcuRL79u2Tg+iCSgtlYCiiwvwQExPjsH5oaCgmTpwoP46Pj8fjjz+ORYsW1frZofZb0PLZWJTspJroJQYGXIiI3CGnyDYH69QKBGice+IsZSSXm/md7kv8WROdiMhlcoudm4keqFFBEABRtDUXZRDdtzATnbwJy7lQk2KxWLBx40aUlJQgISFBfv6rzR/j3LL78NvSf2HGjBkoLS2t8T3S09OxadMm3HjjjbV+XjAz0ekSUgCH5VyIiNwjW6qHHqiFIAhOfW+tFERnTXSfwproRESuIYqi0xuLKhQCgrQs6XKp3bt347bbbkNsbCwEQcDmzZvlZSaTCdOnT8fVV1+NgIAAxMbGYuzYsUhPT3d4j7y8PIwZMwZ6vR4hISEYP348iouLHdb5/fff0b9/f+h0OrRq1QoLFy50x+bJmIlO3oRBdGoSDh8+jMDAQGi1Wjz22GP47LPP0LlzZwDAfffdh8dnv47oe19Cj1sfxH/+8x/cf//9Vd7j3nvvhb+/P6644gro9Xq8++67tX5uqFQTnUF0spMy0Q1mK8y8Gk5E5HI5lYLoziZnojMj2aewJjoRkWuUGi3yhelwJ5VzAYAgnS25raiciUySkpISdO/eHStWrKiyrLS0FL/88gteeOEF/PLLL9i0aROOHz+O22+/3WG9MWPG4MiRI0hNTcWWLVuwe/duTJgwQV5eWFiIoUOHIj4+HgcPHsSiRYswe/ZsvP322y7fPgkbi5I3YTkXahI6dOiAQ4cOoaCgAJ988gnGjRuHXbt2oXPnzpgwYQJW7jwFTfqf6H1tP8we3Q+DBw/GqVOn0LZtW/k9lixZglmzZuGvv/7CjBkzMHXqVLz55puX/dwQf3smOhuLkp1WpYBSIcBiFVFitCDYj9ciiYhcSc5oc3I9dIA10X2VnIluskAURaff4UBE5KukOdtPrZSTj5xB76fG+fwyFJYxuU2SlJSEpKSkapcFBwcjNTXV4bk33ngD1113HdLS0hAXF4djx45h69atOHDgAHr16gUAWL58OW655Ra8+uqriI2Nxfr162E0GvHee+9Bo9GgS5cuOHToEBYvXuwQbHclKRPdxAQ28gKM/lCToNFo0K5dO/Ts2RMLFixA9+7d8frrr8vL8+wdwMMC1OjTpw8A4OTJkw7vERMTg44dO+L222/HW2+9hZUrV+LChQuX/VwpiH6RmehkJwgCS7oQEblRdpHrMtF1LOfik6RMdKvIzDYiImfKsTcVdWYWOgDodbaAfAGD6A1WUFAAQRAQEhICANi7dy9CQkLkADoADBkyBAqFAvv375fXGTBgADSaiv/PxMREHD9+HBcvXnTLuJmJTt6EQXRqkqxWKwwGg/w4r8Q2mYYFaHHo0CEAQIsWLS77egAO71GdEHs5l4JSE0RRbMyQqRmpaC7KIDoRkatV1FZ17gk5UDmIzkx0X6JSKuTMtlL+3xMROU2Ok5uKSqRyLsU8/2qQ8vJyTJ8+Hffeey/0ej0AICMjA1FRUQ7rqVQqhIWFISMjQ14nOjraYR3psbROdQwGAwoLCx1+GopBdPImLOdCXm/GjBlISkpCXFwcioqKsGHDBuzcuRPbtm3DqVOnsGHDBvxljoO5wILTBzPw6psvYcCAAejWrRsA4KuvvkJmZiZ69+6NwMBAHDlyBNOmTcMNN9yA1q1bX/azQ+2Z6EaLFaVGi1NvSaOmSw6is5YqEZHL5RTZstoiWM6FnMhPo4SxzIoyowWh/p4eDRFR85Brz0R39oXvIHsmejFrotebyWTC3XffDVEUsXLlSrd85oIFCzBnzhynvJdaaSu5ZmQ5F/ICzEQnr5eVlYWxY8eiQ4cOGDx4MA4cOIBt27bh5ptvhkajwTfffINtrz6B8+88hvXL5mPUqFH44osv5Nf7+fnhnXfeQb9+/dCpUydMmTIFt99+O7Zs2VLrZ/uplXKmUj5vHSO7QI39II6ZEERELufKxqKVy7nwjjPfIjcX5QUU8mGzZ8+GIAgOPx07dpSXl5eXIyUlBeHh4QgMDMSoUaOQmZnp8B5paWlITk6Gv78/oqKiMG3aNJjNPEb2VblSJnqAc+fsQHsSUxHPv+pFCqCfPXsWqampchY6YCt3m5WV5bC+2WxGXl4eYmJi5HUu3eelx9I61ZkxYwYKCgrkn3PnzjV4G5iJTt6EabXk9VavXl3jslatWmHXrl3ov/BbnMsrw6cTr0fP+FCHdW666Sbs2bOnQZ8tCAKC/dXILjLgYokRV4T4Neh9qHmRMiGKynlhhYjI1VwaRFfZAqkWUYTJIkKjYoNJXyE3F+VdZeTjunTpgm+++UZ+rFJVhAimTJmCL7/8Eh9//DGCg4MxadIkjBw5Ej/++CMAwGKxIDk5GTExMdizZw8uXLiAsWPHQq1W46WXXnL7tpDnyXN2kHMz0QOZiV5vUgD9xIkT+O677xAeHu6wPCEhAfn5+Th48CB69uwJAPj2229htVrlPnMJCQl47rnnYDKZoFbb7tJPTU1Fhw4dEBrqGHepTKvVQqt1znGblNTITHTyBsxEp2YhT2pgEuD8eqlSSRc2MSFJkJ/tIK6wjAdxRESuJjUWjXRBORe1UoBSsAXOy80MpvoSKROdNdHJ16lUKsTExMg/ERERAGxNCFevXo3Fixdj0KBB6NmzJ9asWYM9e/Zg3759AIDt27fj6NGj+OCDD9CjRw8kJSVh3rx5WLFiBYxGoyc3izwkp0Q6L3dNJnqxgefkkuLiYhw6dEjuCXf69GkcOnQIaWlpMJlMuPPOO/Hzzz9j/fr1sFgsyMjIQEZGhrxvdurUCcOGDcMjjzyCn376CT/++CMmTZqE0aNHIzY2FgBw3333QaPRYPz48Thy5Ag+/PBDvP7665g6darbtpOZ6ORNmIlOXiktLQ05OTl1WtdoEeXa1OdOHkNeWuOuDUVERCAuLk5+HOJnC8znl3LCJhu9vbFNITPRiYhcqsxokef4CBc0FhUEATq1AiVGC8pNFvn7nZo/ZqIT2Zw4cQKxsbHQ6XRISEjAggULEBcXh4MHD8JkMmHIkCHyuh07dkRcXBz27t2Lvn37Yu/evbj66qsdGg8mJiZi4sSJOHLkCK655hpPbBJ5UE6R1FjURTXRWc5F9vPPP+Omm26SH0uB7XHjxmH27Nn4/PPPAQA9evRweN13332HgQMHAgDWr1+PSZMmYfDgwVAoFBg1ahSWLVsmrxscHIzt27cjJSUFPXv2REREBGbOnIkJEya4duMqYSY6eRMG0cnrpKWloWOnTigrLa3T+sqgcLR8fB1EiwkDEno3+vP9/P3x57FjciA9xJ6JfrGU2RRkIwVZSo0WmC1WqJS8qYeIyBWk28K1KoWcheZsOrXSHkTnyZkv8WdNdCL06dMHa9euRYcOHXDhwgXMmTMH/fv3xx9//IGMjAxoNBqEhIQ4vCY6OhoZGRkAgIyMDIcAurRcWlYTg8EAg8EgPy4sLHTSFpGn5ZZIjUVdVBOd5VxkAwcOvGw/l7r0egkLC8OGDRsuu063bt3w/fff13t8ziJlopvM7F1DnscgOnmdnJwclJWWYsz0RYiOa1vr+vlGATsyAD+NClNXbGrUZ2emncL6V6YhJyenShCd5VxIolMroFYKMFlEFBnMCPV3fnYkEREB2ZXqoQuCa+qVVzQXZTDVlzATnQhISkqS/92tWzf06dMH8fHx+Oijj+Dn57peUAsWLMCcOXNc9v7kOdLF73AXBdGZie57pCC6RRRhtlqhUjCBjTyHQXTyWtFxbdGyfZda17PklgAZ6Qjw06Jl+6ucPg4pQHqxhJnoZCMIAvQ6NXJLjCgsMzGITkTkItJt4REuqIcu0altJ2MMovsWqSY6g+hEFUJCQnDVVVfh5MmTuPnmm2E0GpGfn++QjZ6ZmYmYmBgAQExMDH766SeH98jMzJSX1WTGjBkONZULCwvRqlUrJ24JeYLJYpVLoDq7BBsbi/oudaW7vo1mK1QaBtHJc/jXR02edBuudDLkbMH2TPR8ZqJTJVJdvkIeyBERuYyUie7s28IrkzPR2bDKp8iZ6Lx4QiQrLi7GqVOn0KJFC/Ts2RNqtRo7duyQlx8/fhxpaWlISEgAACQkJODw4cPIysqS10lNTYVer0fnzp1r/BytVgu9Xu/wQ02flHSmEIAQJycZSeU0Wc7F9ygEAWql7W5Ek4UlXcizmIlOTZ6UQeTvoiA6G4tSdfR+9uaivLhCROQyOUX22qpBrrvjR6eyHT8YGEz1KZXLuYii6LJyQUTe7Omnn8Ztt92G+Ph4pKenY9asWVAqlbj33nsRHByM8ePHY+rUqQgLC4Ner8fkyZORkJCAvn37AgCGDh2Kzp0744EHHsDChQuRkZGB559/HikpKdBqXXfxk7yTdOE7LEALpcK536ks5+LbNEoFTBYLjEx4IA9jEJ2aPCmDSKdxUSY6g6VUDSkborCcfxdERK6SU6kmuqto5XIuPDHzJVLyhUUUYbRYoVW55jiSyJv9888/uPfee5Gbm4vIyEj069cP+/btQ2RkJABgyZIlUCgUGDVqFAwGAxITE/Hmm2/Kr1cqldiyZQsmTpyIhIQEBAQEYNy4cZg7d66nNok8KLfYduHb2aVcgErlXAxmWK0iFE4O0pN3U6sUgJFBdPI8BtGpyXN1ORe9n1S2g8FSqqDXsUM8EZGruSOILmWisya6b1EpK5qElxktDKKTT9q4ceNll+t0OqxYsQIrVqyocZ34+Hh89dVXzh4aNUEVTUVdEETXVoSuSoxmBNkTmsg3aOx10Y0WBtHJs1gTnZo8qZyLn4sz0QuYiU6VyOVceHGFiMhl3BJElzLRzQyi+xq5uSgvoBARNVpFJrrz52ytSiHXxWZJF9+jUdmD6MxEJw9jEJ2aPJc3FmUQnaohlXMpMVhg5hVxIiKXyC6yNxYNcmU5F6kmOr/LfU3luuhERNQ4ciZ6gPPnbEEQKuqi805gn8NMdPIWDKJTk1dutH2Ruqyciz1YWmq0wMQvbbLTqRXyZF7IAzkiIpfIcWF9VYmcic5sZJ8jHTuW8v+eiKjR5DnbRc3ApbroRcxE9znMRCdvwSA6NXlyJrqLyrlIZTsANhelCoIgIMTf9rdxsdTo4dEQETU/5SaLfMt2hAsz0eWa6GYrRFF02eeQ92EmOhGR88gl2FyQiQ4AgVrbuRcz0X0PM9HJWzCITk2aVRRdXs5FqRAQZL91jCVd6sdiseCFF15AmzZt4Ofnh7Zt22LevHkOQQpRFDFz5ky0aNECfn5+GDJkCE6cOOHwPnl5eRgzZgz0ej1CQkIwfvx4FBcXu3tzqmAQnYjIdaRSLhqVQp6HXUFnP36wWEWYrQyi+xJ/te3vikF0IqLGyy2xB9FdlIkuHQuwJrrvYSY6eQsG0alJq1y/VOeiIDpQuYkkJ+z6eOWVV7By5Uq88cYbOHbsGF555RUsXLgQy5cvl9dZuHAhli1bhlWrVmH//v0ICAhAYmIiysvL5XXGjBmDI0eOIDU1FVu2bMHu3bsxYcIET2ySg1B/2wFifikvrhAROZuU0RYZqIUgCC77HLVSgML+9izp4lvkTHT+vxMRNZrUWNQVNdGBSuVcynnu5WvUDKKTl3BdWg+RG0gnPVqVAkqF606w9X5qnM8vYyZ6Pe3ZswfDhw9HcnIyAKB169b473//i59++gmALQt96dKleP755zF8+HAAwPvvv4/o6Ghs3rwZo0ePxrFjx7B161YcOHAAvXr1AgAsX74ct9xyC1599VXExsZ6ZuNQEURnJjoRkfNJmeiurIcO2MpzaVVKlJksKDdZEaRz6ceRF5HuYmQmOhFR44iiWBFEd9G8LTUWLWJim8/R2su5sEcdeRoz0alJk056XFXKRRLsx3IuDXH99ddjx44d+OuvvwAAv/32G3744QckJSUBAE6fPo2MjAwMGTJEfk1wcDD69OmDvXv3AgD27t2LkJAQOYAOAEOGDIFCocD+/fvduDVVyeVcSvh3QUTkbFKDskgX1kOXSM1FDWYGU30JM9GJiJyjsNws16uOCHTNvB2kYzkXX8VMdPIWDKJTk+bqpqISvc5ezoVB9Hp59tlnMXr0aHTs2BFqtRrXXHMNnnrqKYwZMwYAkJGRAQCIjo52eF10dLS8LCMjA1FRUQ7LVSoVwsLC5HUuZTAYUFhY6PDjClImepnJAgNPwImInEpuUOaik/HKpJJw5SaenEmae18ToOL4sZSZ6EREjSLN2YFalcvKrErlXNhY1PewsSh5CwbRqUlzXya6LYjOTPT6+eijj7B+/Xps2LABv/zyC9atW4dXX30V69atc+nnLliwAMHBwfJPq1atXPI5GpUCAfYT8Iusi05E5FQeCaIzE13W3PuaAIC/uiITvfLFASIiqh+plIsrS7CxsajvYmNR8hYMolOT5q5M9GC5sSgDpfUxbdo0ORv96quvxgMPPIApU6ZgwYIFAICYmBgAQGZmpsPrMjMz5WUxMTHIyspyWG42m5GXlyevc6kZM2agoKBA/jl37pyzN01W0VyUddGJiJypIoju2proAKCzn5wZmIkuq9zXpHXr1rjzzjsxdOjQGvuadOvWDe+//z7S09OxefNmAJD7mrz77rvo06cP+vXrh+XLl2Pjxo1IT0/34NbZSMePFqsIk4VBdCKihpLm7HAXXviWa6IziO5zmIlO3oJBdGrS5CC6izPR9X4s59IQpaWlUCgcv2aUSiWsVtvk16ZNG8TExGDHjh3y8sLCQuzfvx8JCQkAgISEBOTn5+PgwYPyOt9++y2sViv69OlT7edqtVro9XqHH1eR66IzE52IyKnkxqJuqImulcu5MBNd0tz7mgCAWqmAyt6YnnXRiYgaLlcKoge47sJ3oL3EKsu5+B5mopO3UHl6AESNIZdzcVMmOsu51M9tt92G+fPnIy4uDl26dMGvv/6KxYsX4+GHHwYACIKAp556Ci+++CLat2+PNm3a4IUXXkBsbCxGjBgBAOjUqROGDRuGRx55BKtWrYLJZMKkSZMwevRoxMbGenDrbELtB4p5JcxEJyJyJrmxqDvKudhPzhhEr/Dss8+isLAQHTt2hFKphMViwfz5813e1wSw9TYxGAzyY1f1NgFsx5BF5WaUGS3y8R4REdWPNGe78sJ3IMu5+KzKmeiiKEIQBA+PiHwVM9GpSXNfJrptwi4s44RdH8uXL8edd96Jxx9/HJ06dcLTTz+NRx99FPPmzZPXeeaZZzB58mRMmDABvXv3RnFxMbZu3QqdTievs379enTs2BGDBw/GLbfcgn79+uHtt9/2xCZVIdXqzS421LImERHVR44bM9EraqIzw0niqb4mgPt6mwAVx5ClJh7jERHVxcsvvywnQ0nkci7+aiQlJUEQBLm016Vyc3PRsmVLCIKA/Pz8On9ukL2xaBFLrPocKRNdFG0l2Ig8hZno1KS5K4jOTPSGCQoKwtKlS7F06dIa1xEEAXPnzsXcuXNrXCcsLAwbNmxwwQgbT6rVW1BmgtFslSd4IiJquHKTRa556o7Golo1M9EvVbmvCQBcffXVOHv2LBYsWIBx48Y59DVp0aKF/LrMzEz06NEDQMP6mgC23iZTp06VHxcWFroskC7dzSjd3UhERDU7cOAA3nrrLXTr1s3heamx6MGv1teaJTx+/Hh069YN58+fr9dny5noLOfic9TKir8pg9kKlZLn3OQZ/MujJo3lXMjT/DUqBGhtf385zEYnInIK6ftUo1RAr3N9zoeUic7GohU81dcEcG9vE381g+hERHVRXFyMMWPG4J133kFoaKjDspxiA4yZf2P7xtV47733anyPlStXIj8/H08//XS9Pz9Qx8aivkoQBLmki4nNRcmDGESnJksURfeVc7E3MSnkrWNUDSlLkkF0IiLnkGurBmrcUvdSp5LKuTCQKpH6mnz55Zc4c+YMPvvsMyxevBh33HEHAMe+Jp9//jkOHz6MsWPH1tjX5KeffsKPP/7oVX1NgEqZ6LwLgYjoslJSUpCcnOzQUFqSmVeAnC8WYfrcV2q80+jo0aOYO3cu3n///SoXaesiqFJNdFFkSQ9fo1bZjgfZXJQ8ieVcqMkyWUS5Hpa7MtELy0ywWkUoFGxkQRUiA7U4m1uK7CIG0YmInCHbjfXQAUDHci5VLF++HC+88AIef/xxZGVlITY2Fo8++ihmzpwpr/PMM8+gpKQEEyZMQH5+Pvr161dtX5NJkyZh8ODBUCgUGDVqFJYtW+aJTaoWy7kQEdVu48aN+OWXX3DgwIFqlx/ZtBzaKzph5Mg7ql1uMBhw7733YtGiRYiLi8Pff/9d7zEE2RPbRBEoNVoQoGU4y5dolAqUwAIjM9HJg/itQ02WlDGkUghQu7gmlt4eRLeKQLHRLGemEwFAZJCUiW708EiIiJoH6c6eSDfUQwcqyrlIF+iVvFjuE31NgMqNRRlEJyKqzrlz5/Dkk08iNTXV4SKp5JNNm1F0+hBaPLgMEQHVz9szZsxAp06dcP/99zd4HDq1AkqFAItVRLHBzCC6j5F6jzETnTyJ5VyoyZIyhnQuLuUifYb0pV3Iuuh0icrlXKy8tZCIqNFypEx0NwXRKzeFZja6b2EmOhHR5R08eBBZWVm49tproVKpoFKpsGvXLixbtgwqlQpfbt0G88UMnFt6D8L1flCpbMHtUaNGYeDAgQBs/TA+/vhj+fWDBw8GAERERGDWrFl1GocgCHJz0SI2F/U5Uk10ZqKTJ/HSHTVZUia6v4tLuUiC/dTILjKgoMyElqG1r0++I8RfDZVCgNkqIr/UhLAAjaeHRETUpEmZ6BFB7vk+VQgCtCoFDGYrDGYrakiko2bIX207HWJNdCKi6g0ePBiHDx92eO6hhx5Cx44dMX36dGQY1Nhm6YrIQC3WP9IXAHD11VdjyZIluO222wAAn376KcrKyuTXHzhwAA8//DC+//57tG3bts5jCdSqUFBmQjGbi/ocZqKTN2AQnZosdzUVlVQOohNVphAERAVpkV5QjoyCcgbRiYgaqaKxqPui2Tq1EgazlZnoPoaZ6ERElxcUFISuXbs6PBcQEIDw8HB07doVGUczoYlsjbgrgh3Wi4uLQ5s2bQCgSqA8JycHgK0BdUhISN3HorM3F2Umus9hJjp5A5ZzoSZLOtlxdVNRid4+YReWccKmqloE+wEALhSU1bImERHVJtvN5VyASs1FzQym+hIpGcNsFWHiiTkRUb3llkhztusTiSrKuTCxzddImegmM8unkucwE52aLCkT3R010QFbJjrAmuhUvRYhOiANuFBQ7umhEBE1eXI5FzcG0bUq2/GEwcRAqi9RKwW5UV2p0YJgP+YYERHVZufOnfK/pbvHwivN2WItfaIGDhxY6zrVCbQnthWxnIvPUStZzoU8j0eJ1GS5OxNdDqLzqjdVI0Zv61SfW2KEgVmMRESNImWiR+k9kInOci4+RRAEORudJV2IiOrPnXePSZnoLOfie6RMdIOFczV5DjPRqcmSG4u6KRNdbw+isyY6VSdAq0KwnxoFZSZkFJQjPjzA00MiImqSyk0WOcMsMsiNQXR7Jno5M9F9jr9GiWKDmc1FiYjs0tLS5LrltTlx7iIAwJCfhV9+KW30Z0dERCAuLq7aZXJNdGai+xypJjrLuZAnMYhOTVa5h8q5MIhONWkRrENBmQkXGEQnImowKaNNq1IgSOu+Q1XpeII10X2PdFdjqZFBGSKitLQ0dOzUCWWldQuIR4+eD118dyycNxOzj+1q9Of7+fvjz2PHqg2ky5noDKL7HCkTnY1FyZMYRKcmq9RT5VwYRKcatAjW4c+MIqTns7koEVFDZdvroUcGaSEIgts+V8tyLj7L334sWcJyLkREyMnJQVlpKcZMX4TouLa1rr/9ggpFJmDkv55ClO7JRn12ZtoprH9lGnJycmoIotvOyYtYzsXnyEF01kQnD2IQnZost5dz0TETnS7vihA/AEB6QTnMFitUSradICKqL3fWVq1MykRnY1HfE6CxnRKVMrORiEgWHdcWLdt3qXU904VTAKyIa9PW5XM3y7n4LqmcCzPRyZMY4aEmyWIV5SuQOjdlorMmOtUmLECDAI0SFquICwXlnh4OEVGTJAXR3VkPHQB09gwnlnPxPQH28gDMRCciqh+LVZR7ifi74bxcKudSVM5zcl/DTHTyBgyiU5Mk3WotCBUnva6m97NN2IW8dYxqIAgCWoX5AwDOXWx8Ux0iIl/ksSC6mo1FfVWAVM6FmY1ERPUi3R0uwD29ygLtmej8vvY9zEQnb8AgOjVJUj10nUrptnqpbCxKddEq1B5Ez2NddCKihpBronuonAtrovsef3tmYykz0YmI6qWsUp8yhRvOyysy0RlE9zVSJrrJbIUoih4eDfkqjwbRV65ciW7dukGv10Ov1yMhIQFff/21vLy8vBwpKSkIDw9HYGAgRo0ahczMTIf3SEtLQ3JyMvz9/REVFYVp06bBbOYXanMnXfF2V1NRgEF0qptWYba66JmF5TCwJAARUb15KhNdaz85M/DkzOdUzkTn/z0RUd2VGm2xF3edl8uZ6EbGfHbv3o3bbrsNsbGxEAQBmzdvdlguiiJmzpyJFi1awM/PD0OGDMGJEycc1snLy8OYMWOg1+sREhKC8ePHo7i42GGd33//Hf3794dOp0OrVq2wcOFCV29atdT2THQRgNnKuZo8w6NB9JYtW+Lll1/GwYMH8fPPP2PQoEEYPnw4jhw5AgCYMmUKvvjiC3z88cfYtWsX0tPTMXLkSPn1FosFycnJMBqN2LNnD9atW4e1a9di5syZntokchMpS8zPTU1FgYqa6EazlVlqVKMgnRohfmqIAP65yGx0IqL68nQ5F8AWSCffIdVEN1tF3iZORFQP0h087qiHDlRkohczEx0lJSXo3r07VqxYUe3yhQsXYtmyZVi1ahX279+PgIAAJCYmory8onfXmDFjcOTIEaSmpmLLli3YvXs3JkyYIC8vLCzE0KFDER8fj4MHD2LRokWYPXs23n77bZdv36XUyoo7HVgXnTxF5ckPv+222xwez58/HytXrsS+ffvQsmVLrF69Ghs2bMCgQYMAAGvWrEGnTp2wb98+9O3bF9u3b8fRo0fxzTffIDo6Gj169MC8efMwffp0zJ49GxqNxhObRW5Q+bYxdwnUqKAQAKsIFJaZ3FLzjZqm+HB/5P9TgLO5pWgbGejp4RARNSk5xZ4JoisVAtRKASaLiHKThfO8D1ErFdAoFTBarCg1WKBV8f+eiKguKoLo7gktyUF01kRHUlISkpKSql0miiKWLl2K559/HsOHDwcAvP/++4iOjsbmzZsxevRoHDt2DFu3bsWBAwfQq1cvAMDy5ctxyy234NVXX0VsbCzWr18Po9GI9957DxqNBl26dMGhQ4ewePFih2C7OwiCAI1KAaPZCqPZigD3HiYSAfCimugWiwUbN25ESUkJEhIScPDgQZhMJgwZMkRep2PHjoiLi8PevXsBAHv37sXVV1+N6OhoeZ3ExEQUFhbK2ezUPJV6IBNdoRDkbHSWdKHLiQ8PAACczS3hbeFERPUgimJFJrqba6IDkIOn5cxw8jn+WntJF5YIICKqM6mci9sy0e3lXEwWkaUzL+P06dPIyMhwiKcFBwejT58+DvG0kJAQOYAOAEOGDIFCocD+/fvldQYMGOCQoJqYmIjjx4/j4sWLbtqaCpVL7xF5gseD6IcPH0ZgYCC0Wi0ee+wxfPbZZ+jcuTMyMjKg0WgQEhLisH50dDQyMjIAABkZGQ4BdGm5tKwmBoMBhYWFDj/UtHgiEx0A9DpbEL2wnEF0qlnLUD8oBQGF5Wbkl/JvhZov9jYhZysymOUTowgPBNF1avvJGcu2+ZwAexZliYH/90REdeXuci4BlTLeWdKlZlI8rLp4WeV4WlRUlMNylUqFsLAwr425aeQgOudq8gyPB9E7dOiAQ4cOYf/+/Zg4cSLGjRuHo0ePuvQzFyxYgODgYPmnVatWLv08cj4piO7v5lut2VyU6kKtVCA2RAcAOJtX6uHRELkOe5uQs0lZ6EFaldsvlAMVddHLTcxw8jUBzEQnIqo3OYiudk85F6VCkAP2LOnivVwVc9Pam4uyJjp5iseD6BqNBu3atUPPnj2xYMECdO/eHa+//jpiYmJgNBqRn5/vsH5mZiZiYmIAADExMVUy2qTH0jrVmTFjBgoKCuSfc+fOOXejyOXKTJ7JRJeC6IVlnLDp8qSSLmdySzw8EiLXue2223DLLbegffv2uOqqqzB//nwEBgZi3759KCgowOrVq7F48WIMGjQIPXv2xJo1a7Bnzx7s27cPAOTeJh988AF69OiBpKQkzJs3DytWrIDRaPTw1pEneKqpqEQnlXNhJrrPkbIbS5mJTkRUZ+4u5wJU1EUvYiZ6jaR4WHXxssrxtKysLIflZrMZeXl5Xhtz07CcC3mYx4Pol7JarTAYDOjZsyfUajV27NghLzt+/DjS0tKQkJAAAEhISMDhw4cddvzU1FTo9Xp07ty5xs/QarXyrefSDzUtnpisAUDvZ5uwmYlOtYkP9wcAnL9YBrOFkzw1f+xtQs4gBdEjPBVEt5dzKedtwj6HNdGJiOqvzM3lXICKIHoJM9Fr1KZNG8TExDjE0woLC7F//36HeFp+fj4OHjwor/Ptt9/CarWiT58+8jq7d++GyVQR/0hNTUWHDh0QGhpa4+e7KuYm9a5hJjp5invuuanBjBkzkJSUhLi4OBQVFWHDhg3YuXMntm3bhuDgYIwfPx5Tp05FWFgY9Ho9Jk+ejISEBPTt2xcAMHToUHTu3BkPPPAAFi5ciIyMDDz//PNISUmBVstWvc2ZXBOd5VzIS4UHaBCgVaLEYMH5/DI5M52ouTl8+DASEhJQXl6OwMBAubfJoUOHXNrbxGAwyI/Z26T58HQmupblXHyWXBOdQXQiojoRRRGlJimI7r7QktRc1NfLuRQXF+PkyZPy49OnT+PQoUMICwtDXFwcnnrqKbz44oto37492rRpgxdeeAGxsbEYMWIEAKBTp04YNmwYHnnkEaxatQomkwmTJk3C6NGjERsbCwC47777MGfOHIwfPx7Tp0/HH3/8gddffx1LlizxxCazsSh5nEeD6FlZWRg7diwuXLiA4OBgdOvWDdu2bcPNN98MAFiyZAkUCgVGjRoFg8GAxMREvPnmm/LrlUoltmzZgokTJyIhIQEBAQEYN24c5s6d66lNIjewWEWU27803d5YVC7nwiA6XZ4gCIgPC8DRC4U4m1fKIDo1W1Jvk4KCAnzyyScYN24cdu3a5dLPXLBgAebMmePSzyDPyCm2B9E90FQUYGNRXxagZTkXIqL6KDdZIYq2f7vzvFzKRPf1IPrPP/+Mm266SX48depUAMC4ceOwdu1aPPPMMygpKcGECROQn5+Pfv36YevWrdDpdPJr1q9fj0mTJmHw4MFy7G3ZsmXy8uDgYGzfvh0pKSno2bMnIiIiMHPmTEyYMMF9G1qJVM6FmejkKR4Noq9evfqyy3U6HVasWIEVK1bUuE58fDy++uorZw+NvJhUp1RARQMwd9HrmIlOddc63N8WRM8tBdp7ejREriH1NgGAnj174sCBA3j99ddxzz33yL1NKmejX1qL8aeffnJ4v7rWWZROFABbJjqbhDcPns5El2ui8+TM5wSwUR0RUb1IJVa1KgWUCsFtn8sgus3AgQMhSlcxqiEIAubOnXvZJNOwsDBs2LDhsp/TrVs3fP/99w0epzPJmegWXvAmz/C6muhEtZE6gOvUSigE903WAMu5UP20CvOHACCvxIiicv7NkG9gbxNqjGyPZ6KzsaivksoDGMxWmNjLhIioVqUeqIcOVAqis7Goz2EmOnmaRzPRiRqizOSZyRqoKOfCIDrVhU6tREywDhcKynE2txRdrwj29JCInIq9TcjZPJ6JLjUWZRDd52iUCqiVAkwWEcUGM0L9NZ4eEhGRV6sIors3rMSa6L5LaizKmujkKQyiU5Mj3Tbm7nroQEUmeiGvelMdxYf5M4hOzRZ7m5CzeTqIzpMz3yUIAgK1KlwsNaG4nEF0IqLaSOflHstEZxDd5zATnTyNQXRqcsqkK95urocOAHr7VW82FqW6ig8PwL7TeUjLK4XFKrq1XiCRq7G3CTmTxSoit8QIwDsy0UVRhODmsnHkWYE6exCdgRkiolp5qpxLAMu5+Cy5JjqD6OQhrIlOTY5UzsWzmegMolPdROm10KkUMFqsyCgs9/RwiIi81sVSIyxWEYIAhAV4JgtYqoluFQGTpeZmXdQ8MbuRfNnLL78MQRDw1FNPyc+Vl5cjJSUF4eHhCAwMxKhRo+QG4JK0tDQkJyfD398fUVFRmDZtGsxm7kO+oKLMqntzM4NYzsVnaeQgOsvukWcwiE5NjnTF2xNBdKkmelG5GRYrT66pdgpBQFy4PwAgLbfUw6MhIvJeUimXMH8N1ErPHKKqFAKU9uzzcp6g+ZwgbcVxHpEvOXDgAN566y1069bN4fkpU6bgiy++wMcff4xdu3YhPT0dI0eOlJdbLBYkJyfDaDRiz549WLduHdauXYuZM2e6exPIAzzeWJRBdJ+jrVTORRQZjyH3YxCdmpyKci7ur0ak16nlf/P2Maqr+PAAAMCZ3BIPj4SIyHvlFNuC6BGBnmsqKwgCtPaSLgYTbxX2NWxWR76ouLgYY8aMwTvvvIPQ0FD5+YKCAqxevRqLFy/GoEGD0LNnT6xZswZ79uzBvn37AADbt2/H0aNH8cEHH6BHjx5ISkrCvHnzsGLFChiNRk9tErkJa6KTu0m9a6wiYGZSI3kAg+jU5HiynItGpYCf/VbvAtZFpzqKD7NlomcVGeSDTSIicuTppqISqaRLuYmZ6L6GgRnyRSkpKUhOTsaQIUMcnj948CBMJpPD8x07dkRcXBz27t0LANi7dy+uvvpqREdHy+skJiaisLAQR44cqfEzDQYDCgsLHX6o6SkxeKacSyBrovsstVKA1K2GzUXJExhEpybHk+VcAEDvZ28uyrroVEcBWhUiAm31fdPyWNKFiKg6XhNEV1U0FyXfwsAM+ZqNGzfil19+wYIFC6osy8jIgEajQUhIiMPz0dHRyMjIkNepHECXlkvLarJgwQIEBwfLP61atWrklpC7iaIoJwcFaN2cic67hnyWIAiV6qIziE7uxyA6NTllHqq9JpGbizITnepBKulylnXRiYiq5TVBdCkTnSdnPkdqVldmssBs4f8/NW/nzp3Dk08+ifXr10On07n1s2fMmIGCggL559y5c279fGq8cpMVUjUNj2WiM4jukzSV6qITuRuD6NSkmC1WGO0nNf5qD2Wi2+uis5wL1UecvaTLPxfL2ASFiKga2faa6JEerIkOQK6Jzkx036NVKaBS2G4ULzHy/5+at4MHDyIrKwvXXnstVCoVVCoVdu3ahWXLlkGlUiE6OhpGoxH5+fkOr8vMzERMTAwAICYmBpmZmVWWS8tqotVqodfrHX6oaSmxZ6Hr1AooFUItaztX5SA6z6t8j1bOROc8Te7HIDo1KVI9dIVQcQXS3fRSJjrLuVA9tAjWQSHYDvYKeZs4EVEV3paJzsaivkcQBJZ0IZ8xePBgHD58GIcOHZJ/evXqhTFjxsj/VqvV2LFjh/ya48ePIy0tDQkJCQCAhIQEHD58GFlZWfI6qamp0Ov16Ny5s9u3idynxJ4FHuDmLHSgopyLKFaUeiXfwUx08iT3f+MRNULleuiC4N4r3pKKci48uaK6UysViArSIaOwHOfzy+S/IyIisvGaILpKKufCE3NfFKhTIb/MhCKDCYCfp4dD5DJBQUHo2rWrw3MBAQEIDw+Xnx8/fjymTp2KsLAw6PV6TJ48GQkJCejbty8AYOjQoejcuTMeeOABLFy4EBkZGXj++eeRkpICrdaz3+XkWtJ5eYDW/SElP7USCgGwirZgvifGQJ6jtR+nsSY6eQIz0alJkeuhqz03UertV75ZzoXq64pQ28n4+YtlHh4JEZH3kcq5RHi4nIuO5Vx8mpSJXsRMdCIsWbIEt956K0aNGoUBAwYgJiYGmzZtkpcrlUps2bIFSqUSCQkJuP/++zF27FjMnTvXg6Mmd5Ay0V3dp2zlypXo1q2bXPYnISEBW7durfiuNpixd+9eDBo0CAEBAdDr9RgwYADKyirOt3755RfcfPPNCAkJQXh4OCZMmIDi4mKXjptcR8vGouRBDKJTkyKVc/HzUFNRoFImOsu5UD21DLEH0fMZRCciqqzcZEF+qW1ejdG7t8HdpeTGoizn4pOk3jcMopMv2rlzJ5YuXSo/1ul0WLFiBfLy8lBSUoJNmzZVqXUeHx+Pr776CqWlpcjOzsarr74KlYqZwc1diZsy0Vu2bImXX34ZBw8exM8//4xBgwZh+PDhUOT/AwD48cc9GDZsGIYOHYqffvoJBw4cwKRJk6BQ2EJd6enpGDJkCNq1a4f9+/dj69atOHLkCB588EGXjptch+VcyJMYRKcmpXI5F0+Ra6IzE53qqUWIDgJsdzEU8SIMEfmIBQsWoHfv3ggKCkJUVBRGjBiB48ePO6yTVWiA4fwxZG38N2IjQ6rNJLv99tsRFxcHnU6HFi1a4IEHHkB6errTx8uGVb5N72cLCPE4j4ioZhU10V17Xn7bbbfhlltuQfv27XHVVVdh/vz5CAwMhOmC7Tjildn/xhNPPIFnn30WXbp0QYcOHXD33XfL5YS2bNkCtVqNFStWoEOHDujduzdWrVqFTz/9FCdPnnTp2Mk1eJxGnsQgOjUpFeVcPBhEt2cosZwL1ZdWpZRr/TIbnYh8xa5du5CSkoJ9+/YhNTUVJpMJQ4cORUlJibxO6q7vkfnRLER3uq7aTDIAuOmmm/DRRx/h+PHj+PTTT3Hq1CnceeedTh8vM9F9m3ScxzsOiYhq5oma6BaLBRs3bkRJSQlaXNUNlpJ8HP3tIKKionD99dcjOjoaN954I3744Qf5NQaDARqNxuF4ws/Pdndw5fWo6WAmOnkS77OiJqXUZLvi7RWZ6LzNlxrgilA/ZBUZcP5iGTrwG5iIfMDWrVsdHq9duxZRUVE4ePAgBgwYAABYNHsG9D1vQ+/hD6NLly4AgA4dOji8bsqUKfK/4+Pj8eyzz2LEiBEwmUxQq53XrLkiiM4MJ19U+ThPFEWPNbInIvJm7qqJDgCHDx9GQkICysvLERgYiM8++wz/vRCOIzttQfDZs2fj1VdfRY8ePfD+++9j8ODB+OOPP9C+fXsMGjQIU6dOxaJFi/Dkk0+ipKQEzz77LADgwoULLh87OR8bi5InMROdmpQyryjnwsai1HBXsC46Efm4goICAEBYWBgAICsrC8cP/wpFQAi+X/xYtZlkl8rLy8P69etx/fXXOzWADgA6e4aT2SrCbOEJmq8J0qogCIDFKso1f4mIyFGJ0V7OxQ2Z6B06dMChQ4ewf/9+TJw4EePGjYMpNw2iKAIAHn30UTz00EO45pprsGTJEnTo0AHvvfceAKBLly5Yt24dXnvtNfj7+yMmJgZt2rRBdHS0Q3Y6NR3ScVo5y7mQBzToW+PKK69Ebm5ulefz8/Nx5ZVXNnpQRDUp9aJyLk21Vib3X8+SgugXS00o57xPHsLvAfIUq9WKp556CjfccAO6du0KAPj7778BAAU/bEDfW+7G1q1bce2112Lw4ME4ceKEw+unT5+OgIAAhIeHIy0tDf/73/+cPkaNSgEp99gbs5y4/7qWQiEgSMu66OTd+D1AnmQ0W2Gy2ALYARrXB9E1Gg3atWuHnj17YsGCBejevTuOpX4IZWAoAKBz584O63fq1AlpaWny4/vuuw8ZGRk4f/48cnNzMXv2bGRnZ3tsX+H+2zhaeyzIwLJ75AENCqKfOXMGFkvV6I/BYMD58+cbPSiimshBdDdM1jUJ9mvatTK5/3qWTq1EmL8GAJBn4C3i5Bn8HiBPSUlJwR9//IGNGzfKz1mttpOgwB7DkDRydLWZZJJp06bh119/xfbt26FUKjF27Fg5E81ZBEGAVm3PcvLCki7cf12PddHJ2/F7gDxJykJXKwW5PrU7Wa1WCFYzVMHR0IdHVWlW/tdffyE+Pr7K66KjoxEYGIgPP/wQOp0ON998s7uG7ID7b+MwE508qV6RyM8//1z+97Zt2xAcHCw/tlgs2LFjB1q3bu20wRFVJooiSu0Ttr/W8zXRy01WGMwWuSaXt+P+6z1ignXIKzUiz8hbCMm9+D1AnjRp0iRs2bIFu3fvRsuWLeXnW7RoAQBQR8QhWq+Tn780kwwAIiIiEBERgauuugqdOnVCq1atsG/fPiQkJDh1rDqVEuUmq1c1F+X+6z56PzWQX4bCMva/Ie/C7wHyBqUG9yW2zZgxA0lJSYiLi0NRURE2bNiAnTt34pH572JbgYA+wx/EsmXL0L17d/To0QPr1q3Dn3/+iU8++UR+jzfeeAPXX389AgMDkZqaimnTpuHll19GSEiIy8dfGfdf52AmOnlSvb71RowYAcCWoTNu3DiHZWq1Gq1bt8Zrr73mtMERVVZutsJqTzZzRwOTmki1MkURKCwzIzKoaQTRuf96jxbBOhy9UIhcZqKTm/F7gDxBFEVMnjwZn332GXbu3Ik2bdo4LG/dujU0+giYc/9xCKL/9ddfSEpKqvF9pQx2g8Hg9DHr1EqgzORVWU7cf91Hr7OXc2EmOnkZfg+QN5DrobvhnDwrKwtjx47FhQsXEBwcjG7dumHbtm04rb0S2776E12H3otB7UMxZcoU5OXloXv37khNTUXbtm3l9/jpp58wa9YsFBcXo2PHjnjrrbfwwAMPuHzsl+L+6xw6tWPvGpWSiWnkPvUKoksnK23atMGBAwcQERHhkkERVafU3gFcq1JA5cEmIFKtzMJyMwrLTYgM0npsLPXB/dd7tAi2BYkuGgVA4KRP7sPvAfKElJQUbNiwAf/73/8QFBSEjIwMAEBwcDD8/PwgCAJC+45E1s4PcHDnrYiw9q2SSbZ//34cOHAA/fr1Q2hoKE6dOoUXXngBbdu2dXoWOgCvLOfC/dd9pLsO2USevA2/B8gblBjc11R09erV1T6/Yb/tTrUigxmLn30Wzz77bI3v8f7777tkbPXF/dc5NEpb7xoRtt41DKKTOzXoW+/06dPOHgdRrUrs9dDd0bykNno/NQrLzU3y5Ir7r+eFBWigUSlgNFuhiWpT+wuInIzfA+ROK1euBAAMHDjQ4fk1a9bgwQcfRFG5CbprbkewwYAFs2bgmWoyyfz9/bFp0ybMmjULJSUlaNGiBYYNG4bnn38eWq3zL2brvPhWYe6/ricF0YvKWc6FvBO/B8iTvOG8PMBe3rW4CX5Pc/9tHEEQoFUpUG62otxkccvFHCJJg//aduzYgR07diArK0u+oia5tAkUkTN4Qz10SbCfGv9cLENhEwyiA9x/PU0QBLTQ63A2rxSa2I6eHg75KH4PkLvU1vgzs9BWjqXlwHtxeOfaate5+uqr8e233zp7aDXy9qZV3H9dSyrnUlRugtUqQqFg+TXyPvweIE+R7hB35Xn5sWPHLrs8M70cAJB1sRC//PKLUz4zIiICcXFxTnmv2nD/bRytWmkLopu9L9mBmrcGBdHnzJmDuXPnolevXmjRogUEgQeW5HpSAxOvyETXNd3bfLn/eoeYYFsQXXsFg+jkfvweIG+SVWg7Ea5cD93TpEx0b2osKuH+63qBWhVUCgFmq4jCchNC/DWeHhKRA34PkCe5MhO9MC8bAHD//fdfdj1tyy6IGfMK/jx5Gj2fTXTKZ/v5++PPY8dcHkjn/tt4OrUCBWWAwYvK7pFvaNC33qpVq7B27VqPNGMg31XiRZnoej+p4VTTu32M+693kOqia5mJTh7A7wFytbS0NOTk5NRp3f1nSwEA/jA2Opustsy1uqoo5+J9J2fcf11PEASE+KuRU2zExVIG0cn78HuAPEluLOqC8/Ky4kIAQPKjz6FDt541rpdvFLAjAwiKvAJTV2xq9Odmpp3C+lemIScnx+VBdO6/jadT2ZMdmIlObtagILrRaMT111/v7LEQXZY31F6TBNtrZTbFci7cf71DTLAOgAh1aAvkl3tfkIaaN34PkCulpaWhY6dOKCstrdP6+j6jEDrwIez5dit6/t9ip4yhuLi4Ua+vKOfifSdn3H/dI9RfYw+iG9EGAZ4eDpEDfg+QJ0l3iPu78Lw8PDYeLdt3qXF5UJkJyDgDMxSXXc8bcf9tPKkBvDcmO1Dz1qBvvX/961/YsGEDXnjhBWePh6hGcu01jRdkouuabhCd+6930KqU0KtFFJoEHM81YZCnB0Q+hd8D5Eo5OTkoKy3FmOmLEB3Xttb1D+UpcaoY6Hn9jeh6S79Gffaxn3bh63Wvo7y8vFHvo5XLuXjfyRn3X/cItWefXywxengkRFXxe4A8xWIVUWafG12RiV5XGqUtiGq2irCKIhRNqCQK99/GkzPRvbDsHjVvDQqil5eX4+2338Y333yDbt26Qa1WOyxfvNg5WURElZVKmehu7L68YMECbNq0CX/++Sf8/Pxw/fXX45VXXoFeykQvrwiii6KIW265BVu3bsVnn32GESNGyMvS0tIwceJEfPfddwgMDMS4ceOwYMECqFTuz6p39/57/vx5TJ8+HV9//TVKS0vRrl07rFmzBr169QJg+73NmjUL77zzDvLz83HDDTdg5cqVaN++vfweeXl5mDx5Mr744gsoFAqMGjUKr7/+OgIDA506VncL04goNAEncnmCTu7FeZzcITqubZ2yw347fAEoLkZMTAxatgpp1Gdmpp1q1OslOnuGkzcG0bn/ukeIv+33ml/a9BImqPnj9wB5Sqm9lItCAPzUnguiq1UVQXOT2Spf/G4KuP82npyJ7qUN4Kn5alAE7/fff0ePHj0AAH/88YfDMjZFIFeRa6K7MRN9165dSElJQe/evWE2m/Hvf/8bQ4cOxXPvfQ0AKCyrqIm+dOnSav/+LRYLkpOTERMTgz179uDChQsYO3Ys1Go1XnrpJbdti8Sd++/Fixdxww034KabbsLXX3+NyMhInDhxAqGhofI6CxcuxLJly7Bu3Tq0adMGL7zwAhITE3H06FHodLa64WPGjMGFCxeQmpoKk8mEhx56CBMmTMCGDRucOl53C9OKOFMC/JXHE3RyL87j5E1KDK6rrdpQ3lxrk/uve8iZ6KW80E3eh98D5CkllUq5ePJvTaVQQCkIsIgiDJamFUTn/tt4zEQnT2lQEP27775z9jiILstiFeUvSHfWRN+6davD47Vr1yIqKgpZp48C8EOBvZzLoUOH8Nprr+Hnn39GixYtHF6zfft2HD16FN988w2io6PRo0cPzJs3D9OnT8fs2bOh0bi3WZU7999XXnkFrVq1wpo1a+Tn2rRpI/9bFEUsXboUzz//PIYPHw4AeP/99xEdHY3Nmzdj9OjROHbsGLZu3YoDBw7I2evLly/HLbfcgldffRWxsbFu2x5nC9OIAICTeSZYrCKUCh40kXtwHidvUmwPoge68U6z2kgZTkazFVarCIUXfT9z/3WPUHsmeonRAoPZAq2q6QRoqPnj9wB5ijfN2RqVAmUmC0xeeMH7crj/Np50nFbOTPT/Z+++w6Oqs8ePv+/MJJM+aaSRQi+ht8WAIgJLEV1QVn+soOj6FdcNKLBrYRcbFtayirqIq18E/Aqya8GCClIEC6EFQ+8tgTRCSCZ1Mu33x2QGIh0mc2cy5/U88zzO3Dsz52LuvXPPPZ/zER6mUTsAIS7H2cPGnEOs1VBeXg5AYlws4GjnUl1dzV133cWcOXNISEg45z1ZWVl06dKF+Ph412vDhg3DaDSya9cuzwSuki+//JLevXtzxx13EBcXR48ePXjvvfdcy48cOUJhYSFDhgxxvWYwGOjbty9ZWVmA498vMjLSlUAHGDJkCBqNho0bN573e00mE0ajscHDG0UE2LGZqqm12DlYfG2T4AkhhC+y2+1nVaKrf0HuFHRWwtTkYxfn7nTixAnGjx9PTEwMwcHBdOnShS1btriW2+12nnrqKRITEwkODmbIkCEcOHCgwWeUlpYybtw4IiIiiIyM5P7777/miV89QR+gdbUqkJYuQgjh4G1JdIA6q/+ep/1VUP352SSV6MLDrurId9NNN110mMmaNWuuOiAhzqeqTv1hYzabjSlTptC/f3+6de0K67MorzEzdepU+vXr56qk/rXCwsIGCXTA9bywsLDR4/41T+6/hw8fZu7cuUybNo2//e1vbN68mYcffpjAwEAmTJjg2v7z/fs4lxUWFhIXF9dguU6nIzo6+oL/frNmzeLZZ59123Y0FkWBusKDBKV1JSfvNO0TwtUOSfgJOY8Lb1FrtmFzDMrx6EizS9FoFAK1GuqsNmotVoK9YFJzJ0/tv9KSDaJCA6gps3K6uo74iCC1wxHCRc7jQi2uJHqQ+ufsAK1jH6jzsZvdsv9euzNt96QSXXjWVR35nP2bnMxmMzk5OezcuZMJEya4Iy4hGqg2eb4f+q9lZmayc+dOfvrpJ6rrJ//I++UH8jev4ZdfflEtrivlyf3XZrPRu3dvV+/3Hj16sHPnTt55551GPVZMnz6dadOmuZ4bjUZSUlIa7fuuhalgX30SvYz/1ydV7XCEn5DzuPAWzovx4ACt17W0CgqoT6J72eSintp/pSWboy96flktp6USXXgZOY8LtXhlJbqPJdFl/712rolFpRJdeNhVHflef/31877+zDPP+MTwTOF7nJXoag31njRpEsuWLeOHH34gOTmZImMtAKcO/ELFoUNERkY2WH/MmDHccMMNrF27loSEBDZt2tRgeVFREcB52780Nk/uv4mJiaSnpzd4rWPHjnz66afAme0vKipq0Eu+qKjI9eMiISGB4uLiBp9hsVgoLS294L+fXq9Hr9e7azMalSl/PwC/5JapG4jwK3IeF97Cmy7Gfy0oQIux1uJ1k1Z5av/98ssvGTZsGHfccQfr1q2jefPm/PnPf+aBBx4ALt2SbezYsZdsyXbbbbed97tNJhMmk8n1XK22bNGhjnlrTlWaLrGmEJ4l53Ghlspa75kMPFDrm+1cZP+9dmdXotvtdpmQVXiMW5tLjx8/nvfff9+dHykEcOYi29Mna7vdzqRJk1i6dClr1qxxVWBFBDkq0SP6/p4NW7aSk5PjeoDjxOis3MrIyGDHjh0NEsErV64kIiLinASzmhpj/+3fvz/79u1r8Nr+/ftJS0sDHBVtCQkJrF692rXcaDSyceNGMjIyAMe/X1lZGdnZ2a511qxZg81mo2/fvm6NVw11BY5/n/1FFa6+wEKoRc7jwtMqah0VvuFeMCz8185UOXlXJfqFuHv/dbZka9u2LStWrOChhx7i4YcfZuHChQCN1pINHG3ZDAaD66HWaLLYMMcN+ZLKOlW+X4grJedx0dic1+Xh+gCVI/HdSvQLkf338jl/o9ntYLbaVY5G+BO3XrFkZWW5+h8K4U5VKlWqZWZmsnjxYr744gvCw8NdF3wRERGOHmxhUSS3ak9SZHCD96WmproS7kOHDiU9PZ27776bl19+mcLCQmbMmEFmZqZXVUs3xv7r7Bf/4osvcuedd7Jp0ybeffdd3n33XQAURWHKlCk8//zztG3b1tVPNSkpidGjRwOOyvXhw4fzwAMP8M4772A2m5k0aRJjx471+mHgl8NaWUpMsIZTNTa2Hy8no3WM2iEJPybnceFp3tRb9dfOVDn5xsW5u/dftVqygfe0ZWtWn0QvrzFTZ7G5EjZCeCs5j4vG1HAycC+qRPeR8/SlyP57+XQaBa2iYLXbqTVb5fwsPOaqrlhuv/32Bs/tdjsFBQVs2bKFJ5980i2BCXE2tYZ7z507F4CBAwc2eH3+/PkYgptTUlmHsdZMEsHnebeDVqtl2bJlPPTQQ2RkZBAaGsqECROYOXNmY4Z+QZ7cf/v06cPSpUuZPn06M2fOpGXLlsyePZtx48a51nnssceoqqpi4sSJlJWVcf3117N8+fIGPyAWLVrEpEmTGDx4MBqNhjFjxvDmm2+6NVY1tY0J5NTxWnLyyiSJLjxCzuPCW1TUOivavDCJHlCfRPeySnRP7b9qtWQD72nLFhyoJVSvpcpkpaTSdE7RhBBqkfO4UIPJYsNSPxu4N7Rhc1Wi+1g7F0/tv1arlWeeeYYPP/yQwsJCkpKSuPfee5kxY4ar/Yndbufpp5/mvffeo6ysjP79+7tGoTmVlpYyefJkvvrqK9e1+BtvvEFYWJjbYr1SiqKgD9BQXWel1mIlAvVHRgj/cFVHPoPB0OC5RqOhffv2zJw5k6FDh7olMCHOplYS3W6/8NCgD15dS0llHeW/mmzqfO9JS0vjm2++cXt8V8PT++8tt9zCLbfccsHliqIwc+bMi95UiI6OZvHixW6PzVu0iw5gw/FacvJOqx2K8BNyHhfewpVED/K+i58gL520ylP775W0ZHMmzZ0t2R566CGgYUu2Xr16Ab7Xki02TE+VqVqS6MKryHlcqMF5TR4UoEGnVb/y11fbuXhq/33ppZeYO3cuCxcupFOnTmzZsoX77rsPg8HAww8/DMDLL7/Mm2++ycKFC12jwocNG8bu3btdRW3jxo2joKCAlStXYjabue+++5g4caLq1+fBAVpHEt3LfqeJpu2qMpLOXs9CeEqVawIT9e94O0UEOy74jbW+1cda9l/v0y7GMXFZTl6ZuoEIvyHHAeEtfKOdi3dVontq/5WWbA7NwvQcO1XNSZlcVHgROY8LNXjbZOC+OrGop/bf9evXM2rUKEaOHAlAixYt+Oijj9i0aRPgKP6bPXs2M2bMYNSoUQB88MEHxMfH8/nnnzN27Fj27NnD8uXL2bx5s2uS8Lfeeoubb76ZV199VdVzuXPEYE2dd/1OE03bNR39srOz2bNnDwCdOnWiR48ebglKiLNZrDZXP1JPnbCdf9cXZa4BYPveA8TUnrjm74yNjSU1NfWaP+dyyf7rPVpHBaDVKBQZTRSU15BokEo34RlyHBBqstvtZyYW9ZIL8rM5J63ytnYuTo29/0pLNgfX5KIVMrmo8D5yHheeVOllhW2+Wonu1Nj7b79+/Xj33XfZv38/7dq1Y9u2bfz000+89tprABw5coTCwkKGDBnieo/BYKBv375kZWUxduxYsrKyiIyMdCXQAYYMGYJGo2Hjxo3cdttt5/1uk8mEyXTm5rPRaHTrtoGj5RpAjZf+ThNN01Ud/YqLixk7dixr164lMjISgLKyMm666SaWLFlCs2bN3Bmj8HPOO946jYK+kSeMMJaeBBwzY19K7O8eI7TjAJ598RX+mv3lNX93cEgIe/fsafREuuy/3kevU2gfH87uAiM5uWUkdpEkumhcchwQ3qC6zorNDgrec0F+tjM90b3r4tyT+6+0ZIPYMMdosVNVJux2u6uPrBBqkvO4UIPzutxbbnz7aiW6p/bfJ554AqPRSIcOHdBqtVitVl544QXXzfDCwkIA4uPjG7wvPj7etaywsJC4uLgGy3U6HdHR0a51zmfWrFk8++yzbtmOCwmWSnShgqs6+k2ePJmKigp27dpFx44dAdi9ezcTJkzg4Ycf5qOPPnJrkMK/VZkcB8VQva7RL1xqKh13SEc++Hfad+110XW3lmo5Ugn9x/yR9D/ee03fW5R7iEUvPUpJSUmjJ9Fl//VO3VMjHUn0vDJGdEm89BuEuAZyHBDeoMJ0pqJNq/G+xKS3tnOR/dezokIC0WoUzFY7p6vNRIcGqh2SEHIcEKqoMkklujt4av/973//y6JFi1i8eDGdOnUiJyeHKVOmkJSUxIQJE9zyHRcyffp0pk2b5npuNBpJSUlx63dIJbpQw1Ud/ZYvX86qVatcOzxAeno6c+bMkYlMhNup0XstJimN5LadLrrOsYMlHKk8jT4iluS2vlPtIfuvd+qeEsnijbn8In3RhQfIcUB4A+ewcG/prfprei+dWFT2X8/SaBTiI/Tkl9VSUF4jSXThFeQ4INRQ4W090euT6GarXeVIroyn9t9HH32UJ554grFjxwLQpUsXjh07xqxZs5gwYQIJCQkAFBUVkZh4poirqKjINWF4QkICxcXFDT7XYrFQWlrqev/56PV69Hq927blfEKkEl2o4Kp6Y9hsNgICAs55PSAgAJvNuy40hO/ztglMnJytZUxeVqF2KbL/eqceKZEA7DhejsXHhiQK3yPHAeENXP3QvXBSUTi7nYsVu917LtBl//U851wlheW1KkcihIMcB4QaqrxsMnBXOxcfq0T31P5bXV2NRtMw5afVal3f0bJlSxISEli9erVrudFoZOPGjWRkZACQkZFBWVkZ2dnZrnXWrFmDzWajb9++bov1akglulDDVSXRBw0axCOPPEJ+fr7rtRMnTjB16lQGDx7stuCEAC9OotdfXHtbhdqlyP7rnVo3CyNcr6PGbGVfUYXa4YgmTo4Dwhs4K9q8Nolef7Pcjnf1W5X91/MSDY6JUgskiS68hBwHhBq87brcV9u5eGr/vfXWW3nhhRf4+uuvOXr0KEuXLuW1115zTQaqKApTpkzh+eef58svv2THjh3cc889JCUlMXr0aAA6duzI8OHDeeCBB9i0aRM///wzkyZNYuzYsSQlJbkt1qshPdGFGq4qif6vf/0Lo9FIixYtaN26Na1bt6Zly5YYjUbeeustd8co/NyZ3mtalSNp6Ewlum+dtGX/9U4ajULXFAMAOdLSRTQyOQ4Ib+Dt7Vx0Wg26+l7t3jS5qOy/npcQ4Uiin6qqwyQVb8ILyHFAeJrFanOdC73lvO2sRLfa7Vh8aASGp/bft956i9///vf8+c9/pmPHjvz1r3/lwQcf5LnnnnOt89hjjzF58mQmTpxInz59qKysZPny5QQFBbnWWbRoER06dGDw4MHcfPPNXH/99bz77rtui/NqSSW6UMNVHf1SUlLYunUrq1atYu/evYDjDtWQIUPcGpwQ4H13vJ18tZ2L7L/eq3tKJD8fPEVObhnj+qapHY5owuQ4ILxBRa2zEv3cIc3eIihAS6XJQq3ZiiHYO+KU/dfzQvU6DMEBlNeYKTTWkhYTqnZIws/JcUB4mvOaXKdRXNfBags4Kw6zxY7OR6as8NT+Gx4ezuzZs5k9e/YF11EUhZkzZzJz5swLrhMdHc3ixYvdGps7uCrRzVZsdjsaxfsmqRdNzxUd/dasWUN6ejpGoxFFUfjtb3/L5MmTmTx5Mn369KFTp078+OOPjRWr8FOVXtZ7zcnVzsVHKtFl//V+PVKiAKlEF41HjgPCm1SYvLsnOpyZXLTWC6qcZP9VV4K0dBFeQI4DQi1VJsd5MFSvQ/GSZKVGUQjQOmLxprZrFyL7r3s5564B7/idJvzDFSXRZ8+ezQMPPEBERMQ5ywwGAw8++CCvvfaa24ITwma3n5nAxFsr0b1oiPfFyP7r/bqnRgJw8GSla8I9IdxJjgPCW1htdtcFubed388WpHNOLqr+uV72X3Ul1SfRj5+uUTkS4c/kOCDU4rzx7W3n7AAfmlxU9l/30p41KkL6ogtPuaIk+rZt2xg+fPgFlw8dOrTBrL1CXKtqkxWbHRTFcdfbmzgvrOusNmw2u8rRXJrsv94vNkxPclQwdjtsP16udjiiCZLjgPAWzhvkWkUhJNC75jw5m3OosDdUOMn+q67U6BAACsprfCJZI5omOQ4ItXjrjW9fmlxU9l/3k77owtOuKIleVFREQMCF+0HqdDpOnjx5zUEJ4WSsPXPH29t6XAWe1YPN5APDx2T/9Q3dUyIBaekiGoccB4S3cPZDDwvynmHh5xMUWF/h5AUXZ7L/qssQHEBEkA6bHU6USTW6UIccB4RanNfl3taCzTm5qC+0c5H91/1cfdGlEl14yBUl0Zs3b87OnTsvuHz79u0kJiZec1BCODkvsiO8cNIxreZMDzaTF1xcX4rsv77BmUT/JbdM1ThE0yTHAeEtXP3Qvayi7ddCAhzxeUMSXfZfdSmKQmqMoxr92KkqlaMR/kqOA0ItZyYD967zti9Vosv+634hUokuPOyKkug333wzTz75JLW1506oU1NTw9NPP80tt9zituCEqPDSO95Oep3vTC4q+69v6FHfFz0nrwy73fvbBAnfIscB4S3OrkT3ZkEB3tNrU/Zf9aVFhwKQW1qtciTCX8lxQKjFeV3ubcVtvlSJLvuv+0kluvC0K7pymTFjBp999hnt2rVj0qRJtG/fHoC9e/cyZ84crFYrf//73xslUOGfvPWOt5Nep6HS5BtJdNl/fUOnJAM6jUJJpYkTZTUkR4WoHZJoQuQ4ILyFt5/fnbyp16bsv+pLiQpGUeB0tRljjUwALjxPjgNCLd563valSnTZf93Pm36nCf9wRUfA+Ph41q9fz0MPPcT06dNdVZKKojBs2DDmzJlDfHx8owQq/NOZ3mvedcfbyTkbtC+0c5H91zcEBWjpmBjBjhPl/JJbJkl04VZyHBDewnl+jwj2zvO7k6vCyQvO87L/qk8foCXJEMyJshoOnqwkTu2AhN+R44BQg8lidRWNedt1uS8l0WX/dT+pRBeedsW3EdPS0vjmm284ffo0Bw8exG6307ZtW6KiohojPuHnzvRE96473k76AN9p5wKy//qK7imR7DhRTk5eGbd2S1I7HNHEyHFAeIPy+ipeg5ddjP+as8Kp1ksuzmT/VV/buDBHEr24kjiD2tEIfyTHAeFpzmvyIJ3GlbT2Fr7UzgVk/3U35++0ai8odhD+4aozk1FRUfTp08edsQhxjjPDxrzzIttVie4jSXQn2X+9W4/USP5vwzFy8srUDkU0YXIcEGqx2+1U1DjO7wYfqkS32+0oiqJyRA6y/6qnTVwYa/efpKC8lupQtaMR/kyOA8JTXNfkXnjO9qVK9LPJ/useIYGOlGa1lxQ7iKbPu24jCnGWOtuZO8re1nvNKcg1sagctIX7dE+JBGDniXLMPlJVIYQQl6vKZMVqt6MoEKb3zvO7kzOJbrP7TpWbaFyheh1JkUEAnKiWSykhRNPnarHqhedsX6tEF+7l/B1ZZbKoHInwF/LLT3itGouj2is4QEuA1jv/VAMDHHHVmuWkLdynZWwohuAATBYbewsq1A5HCCHcytnKJVyvQ6PxjsruC9FpNQRoHTFKv03h1DYuHIA8SaILIfzAmRarUokuvEuo/kx7XSk+E54gv/yE16qqv5norVXocHY7F7mwFu6jKArd6qvRc/JOqxuMEEK4mbOizdtbuTh50+Siwju0iw9Do8DpOg0BsWlqhyPEVZs7dy5du3YlIiKCiIgIMjIy+Pbbb13La2tryczMJCYmhrCwMMaMGUNRUVGDz8jNzWXkyJGEhIQQFxfHo48+isUiVaFNSYWzEt0Lr8udSXRJoPqnQK0GXX1BhlSjC0+QJLrwWtVWx8HQG0/WTmfauchJW7iXs6XLL9IXXQjRxDgr0SN8JIke5EyiSyW6qBcSqKNlrKMheli3oSpHI8TVS05O5h//+AfZ2dls2bKFQYMGMWrUKHbt2gXA1KlT+eqrr/j4449Zt24d+fn53H777a73W61WRo4cSV1dHevXr2fhwoUsWLCAp556Sq1NEo3gzDxl3ndd7mrnItfjfklRFEKdLV3kd5rwAEmiC69VXd/OxRuHjTnp69u5mKSdi3CzHq5K9DJV4xBCCHdzVqL7ShI9OFAq0cW5OiUZAAjtdBNmq13laIS4Orfeeis333wzbdu2pV27drzwwguEhYWxYcMGysvLmTdvHq+99hqDBg2iV69ezJ8/n/Xr17NhwwYAvvvuO3bv3s2HH35I9+7dGTFiBM899xxz5syhrq5O5a0T7uLqie6F5+1A18hwuR73V86WLlKJLjxBkujCa1XWJ9G9ebi3tHMRjcXZzuXwySrKq83qBiOEEG7krEQ3ePFN8rNJOxdxPmkxIQRr7WiDI8g6Xqt2OEJcM6vVypIlS6iqqiIjI4Ps7GzMZjNDhgxxrdOhQwdSU1PJysoCICsriy5duhAfH+9aZ9iwYRiNRlc1+/mYTCaMRmODh/BOVpudKpPj/OfNE4tKOxf/FRYok4sKz5EkuvBazp7o3p1El3YuonFEhwaSFhMCwLbjZeoGI4QQbmSscZzgvfn8fjZnJXptnZzrxRkaRaFlmCOxtOxAFXa7VKML37Rjxw7CwsLQ6/X86U9/YunSpaSnp1NYWEhgYCCRkZEN1o+Pj6ewsBCAwsLCBgl053LnsguZNWsWBoPB9UhJSXHvRgm3qaxPTGo1CiH150NvcvbEonIc9k+udi4mKXYQjU+S6MJrVTkr0UO89yJbL8PHRCNy9UXPLVM1DiGEcBeLzea6II8I9r6KtvNxVqJXm6XCSTTUKsyG3VLHwVIzW+VcLXxU+/btycnJYePGjTz00ENMmDCB3bt3N+p3Tp8+nfLyctcjLy+vUb9PXD1jzZlJRRVFUTmaczmT6HbAYpMkuj9yJtEr6+R3mmh8kkQXXkkTGonVrqDgGz3RrTY7FhlCJtzsTF/00+oGIoQQbuKcnEynUVzJaW/njLNW5j8Rv6LXQtXutQC8//MRdYMR4ioFBgbSpk0bevXqxaxZs+jWrRtvvPEGCQkJ1NXVUVZW1mD9oqIiEhISAEhISKCoqOic5c5lF6LX64mIiGjwEN6pwuS9k4qC4/eEM7Uvk4v6J+mJLjxJkujCKwVEJgIQFqRDq/G+O95OgVqN66Qt1ejC3bZ+tYBjL93CsndnNRiemJWVxaBBgwgNDSUiIoIBAwZQU1MDwNGjR7n//vtp2bIlwcHBtG7dmqefflomdxJCeAVnRZshOMArK9rOxzWxaJ0MExbnMm75EoDlOwvJL6tRORohrp3NZsNkMtGrVy8CAgJYvXq1a9m+ffvIzc0lIyMDgIyMDHbs2EFxcbFrnZUrVxIREUF6errHYxfuV1F/3vbWwjZFUQhwtnSRoja/FKaXnujCc7zzdqLwe7r6JLq390tVFIVAnQaTxYbJYiNUr3ZEoqnYvHkzX/7nAwLjWmIy28gtrSYtJpSsrCyGDx/O9OnTeeutt9DpdGzbtg2NxvHjce/evdhsNv7973/Tpk0bdu7cyQMPPEBVVRWvvvqqylslhPB3zklFI7z8/H42mVhUXIz55FE6xwWys7iOD7KO8cSIDmqHJMRlmz59OiNGjCA1NZWKigoWL17M2rVrWbFiBQaDgfvvv59p06YRHR1NREQEkydPJiMjg+uuuw6AoUOHkp6ezt13383LL79MYWEhM2bMIDMzE71eLoyaAm+vRAdHYVudxSaV6H5KeqILT1K1En3WrFn06dOH8PBw4uLiGD16NPv27WuwTm1tLZmZmcTExBAWFsaYMWPOGTKWm5vLyJEjCQkJIS4ujkcffRSLRe5C+TJdlGP4X6QPXGQHBTgnF5WDtnCPyspKxo0bx/++9x7hEQYAcvLKAJg6dSoPP/wwTzzxBJ06daJ9+/bceeedrguV4cOHM3/+fIYOHUqrVq343e9+x1//+lc+++wztTZHCCFcjPXtXAxeWtF2Pq4kulSiiwu4pW0oAB9tyqVaerIKH1JcXMw999xD+/btGTx4MJs3b2bFihX89re/BeD111/nlltuYcyYMQwYMICEhIQGvym1Wi3Lli1Dq9WSkZHB+PHjueeee5g5c6ZamyTczFjr7Inuvedt/VmTiwr/ExroSKLXWeVGimh8qibR161bR2ZmJhs2bGDlypWYzWaGDh1KVVWVa52pU6fy1Vdf8fHHH7Nu3Try8/O5/fbbXcutVisjR46krq6O9evXs3DhQhYsWMBTTz2lxiYJN/GVSnQ4c9KWXqnCXTIzMxk5ciRDhgwhrL7q45fcMoqLi9m4cSNxcXH069eP+Ph4brzxRn766aeLfl55eTnR0dGeCF0IIS7K6KpE996Ktl9ztnOps9qwyqRl4jx6JepJiwmhvMbMZ1tPqB2OEJdt3rx5HD16FJPJRHFxMatWrXIl0AGCgoKYM2cOpaWlVFVV8dlnn53T6zwtLY1vvvmG6upqTp48yauvvopO5zvHeHFxxpr6ycC9uBI9QCvtXPxZoE5DYP3fQJXcyBaNTNUk+vLly7n33nvp1KkT3bp1Y8GCBeTm5pKdnQ04Ej/z5s3jtddeY9CgQfTq1Yv58+ezfv16NmzYAMB3333H7t27+fDDD+nevTsjRozgueeeY86cOdID2IfpIh0/znwhie6cEVwq0YU7LFmyhK1btzJr1izgTNXHhsOnOHz4MADPPPMMDzzwAMuXL6dnz54MHjyYAwcOnPfzDh48yFtvvcWDDz7omQ0QQoiL8MV2LnqdBmf7dmnpIs5Hq1GYkNECgIXrjzaYx0QIIXyVzQ4VtWfmMvFWUokuZHJR4SleNbFoeXk5gKtiMjs7G7PZzJAhQ1zrdOjQgdTUVLKysgDHBHtdunQhPj7etc6wYcMwGo3s2rXLg9ELdwpwJtFDvPdk7RSkq2/nIpXo4hrl5eXxyCOPsGjRIoKCgoAzVR97Cys4XVkLwIMPPsh9991Hjx49eP3112nfvj3vv//+OZ934sQJhg8fzh133MEDDzzguQ0RfkPasokrYbfbXUl0b74Y/zVFUVznemnpIi7k972TCQnUcqC4kvWHTqkdjhBCXLNqqyORrtUorskbvZHeVdQm1+P+ytkXvaJWrh9E4/KaJLrNZmPKlCn079+fzp07A1BYWEhgYCCRkZEN1o2Pj6ewsNC1ztkJdOdy57LzMZlMGI3GBg/hParNNrShUYBvXGQHBdS3c5FKdHGNsrOzKS4upmfPnuh0OnQ6Het/+pGKrV9x7OXfkV/n6Huenp7e4H0dO3YkNze3wWv5+fncdNNN9OvXj3fffddj2yD8i7RlE1eixmx1XeD6wpwnZwsJlMlFxcVFBAXw+17JACxYf1TdYIQQwg2qzI5hWIagABTnkCwvJCPDRUT96G1nD38hGovX3E7MzMxk586dl+zt6w6zZs3i2WefbfTvEVfnRIXj7mGQ1o6+vvLLm+nrJxyTnujiWg0ePJgdO3Y0eO2+++6jLiyBk62Gc9gUSlJS0jmVvvv372fEiBGu5ydOnOCmm25ytcDSaLzmfqloYpYvX97g+YIFC4iLiyM7O5sBAwa42rItXryYQYMGATB//nw6duzIhg0buO6661xt2VatWkV8fDzdu3fnueee4/HHH+eZZ54hMDBQjU0TjaCs2jk5mQ6d1reOS0Guc71coIsLuyejBR9kHWPVniLySqtJiQ5ROyQhhLhqVRZH4tzb5zFxXo9LJbr/chZfOnv4C9FYvOIKZtKkSSxbtozvv/+e5ORk1+sJCQnU1dVRVlbWYP2ioiLXhCYJCQnnDAt3Pv/1pCdO06dPp7y83PXIy8tz49aIa3XC6Djwhet8o5+ksxLdJBfW4hqFh4fTuXPnBo/Q0FBaJScQ2KwFWYdLefTRR3nzzTf55JNPOHjwIE8++SR79+7l/vvvBxwJ9IEDB5Kamsqrr77KyZMnKSwsvODIHCHcyVNt2WREmW86Xe2YqyYqxPdujDgnF5V2LuJi2sSFcUPbWOx2+CDrqNrhCCHENXEm0SODvfu87apEl6I2v+VsgeqcwF6IxqJqEt1utzNp0iSWLl3KmjVraNmyZYPlvXr1IiAggNWrV7te27dvH7m5uWRkZACQkZHBjh07KC4udq2zcuVKIiIizml54KTX64mIiGjwEN7DWYkeHuAjSfT6avlaufMtGkmCIRiNAodPVvGHP/6J6dOnM3XqVLp168bq1atZuXIlrVu3BhzHv4MHD7J69WqSk5NJTEx0PYRoTJ5syzZr1iwMBoPrkZKS4uatEY3BWYke6QPznfxacIC0cxGX595+LQD4JPu4tBYQQvi0yvokurfPUyYTiwrnhPXl0s5FNDJVk+iZmZl8+OGHLF68mPDwcFe1ZE1NDQAGg4H777+fadOm8f3335Odnc19991HRkYG1113HQBDhw4lPT2du+++m23btrFixQpmzJhBZmYmer1ezc0TV+mE0XHB4TNJdBniLRrR2rVrmfuvN+nc3ABA1qFTPPHEE+Tl5VFVVcX69eu5/vrrXevfe++92O328z6EaEzOtmxLlixp9O+SEWW+yacr0QOkEl1cnhvbNSM+Qs/pajOrdhdf+g1CCOGlquo7Y3j7PGV66Ynu95xJ9EqTBZtNrntF41E1iT537lzKy8sZOHBgg2rJ//znP651Xn/9dW655RbGjBnDgAEDSEhI4LPPPnMt12q1LFu2DK1WS0ZGBuPHj+eee+5h5syZamyScANXJbqPtXORJLpoTBmtYgBYf6hE5UiEOJen27LJiDLf5NOV6DKxqLhMOq3GNcHoks25l1hbCCG8l7Odi/cn0aUnur8LDdSi1SjY7VBhkr7oovGoOkPE5VRGBgUFMWfOHObMmXPBddLS0vjmm2/cGZpQicVqo6DSt9q5OE/aMrGouFp79uy55DrN7LUAfL+7gOxsC4qiXPP3xsbGkpqaes2fI/yX3W5n8uTJLF26lLVr1160LduYMWOA87dle+GFFyguLiYuLg64dFs24Xvsdjtl9X0qfbESPaQ+iV4tlejiMtzZO4U53x9i2f/NRfmf63jkkUeYPXs2AA8++CCrVq0iPz+fsLAw+vXrx0svvUSHDh1c73/44Yf5+eef2blzJx07diQnJ0edDRFC+C1NcAQWe/3EokFePrGoqxJdrsf9laIohAfpKKs2Y6wxe/2NH+G7vPtoKPxObmk1FhvY6moJ1nrFvLeX5JpY1GLFbre7Jbkp/IOx9CQA48ePv+S6SoCelIeXcLIarhs2Gsup49f8/cEhIezds0cS6eKqZWZmsnjxYr744gtXWzZwtGMLDg5u0JYtOjqaiIgIJk+efMG2bC+//DKFhYXSlq0Jqqi1YLXZ0SgQ7uUX4+dzJoku1U3i0tJiQmmnKWJNznKSWrVvsKxXr16MGzeO1NRUSktLeeaZZxg6dChHjhxBq9W61vvjH//Ixo0b2b59u6fDF0IIdFGO+ZTC9Dp0Xn5dHig90QVgCApwJNGlL7poRL53FSOatEMnqwAwlx5HaeMbiT1nn1SbHcxWO4E6SaKLy1NTaQRg5IN/p33XXpdc/6diLUW1MPyv/6JdxLX9SCzKPcSilx6lpKREkujiqs2dOxeAgQMHNnh9/vz53HvvvYCjLZtGo2HMmDGYTCaGDRvG22+/7VrX2ZbtoYceIiMjg9DQUCZMmCBt2ZoYZz/0yOBAND54szkk0PGTWSrRxeWorKxk56LniRk+mcpNHzcYfTtx4kTXf7do0YLnn3+ebt26cfToUdck4W+++SYAJ0+elCS6EEIVAZGOJLovVPSe3RNditr8l7MvurFGCh5E45EkuvAqh05WAmApPQ74RmJPp9Wg1ShYbXZqzVbXnXAhLldMUhrJbTtdcr0OQWUU7T9JKeEkt02+5PpCNDZpyyYuly/3Q4czlegmiw2LzYZOI+d6cWGZmZmMGX0rayN7c2D9EoqMpvOuV1VVxfz582nZsiUpKSkejlIIIS5MF+mYl8Y3kuhnitosNjsBWkmi+yNn26FyqUQXjUiuAIRXOVDkSKKb3dCqwpNck4vKjOCiEbWMDQUgv7xGJrIVQvgUZyW6L/ZDB0eVm6b+mrxGqtHFRSxZsoStW7fyyksvMbyzIwnlLBJxevvttwkLCyMsLIxvv/2WlStXEhjom/uGEKJp0jkr0X3g5neAVsGZNpeWLv7rTCW6JNFF45EkuvAqewsd7S3qTh5VN5ArFCSTiwoPMAQHEB0SiN0Ox05Vqx2OEEJcNl+vRFcURVq6iEvKy8vjkUceYdGiRQQFBTGqe3MAjp6qapDYGTduHL/88gvr1q2jXbt23HnnndTW1qoVthBCnMNViR7k/edtRVFco8FlclH/5Rw1US5JdNGIpJ2L8BoWq40DxfWV6MVHVI7mygQFOJPocmEtGlfLZqGUHqvj0MlK2ieEqx2OEEJcFl+vRAdHS5dKk0WS6OKCsrOzKS4upmfPnq7XrFYrprxdBAcFUmcyodVqMRgMGAwG2rZty3XXXUdUVBRLly7lD3/4g4rRCyHEGa4kuo/c/NbrNJgsNkwyMtxvOX9jVtdZqTVbXTkaIdxJKtGF13BW6QTpFCzlxWqHc0Vc7VwkiS4aWdu4MACOlFTJcEUhhE+w2GwYax2TPPlqJTqc6YteXScTVonzGzx4MDt27CAnJ8f1SGrTidBOA/nDrI/Qas+9oLfb7djtdkym8/dNF0IITzNZ7OjCYwCI9IGe6HCmL7pUojd04sQJxo8fT0xMDMHBwXTp0oUtW7a4ltvtdp566ikSExMJDg5myJAhHDhwoMFnlJaWMm7cOCIiIoiMjOT++++nsrLy11+lukCdhjC9o064tKpO5WhEUyWV6MJr7CmoACDVoGMfl56szps4T9q1ctIWjSwuXI8hOIDyGjNHSqqkGl0I4fXK61u5BGo1rkS0L3K2c6mSSnRxAeHh4XTu3LnBa4mxkVSYw9laEc6uvfv5cumnDB06lGbNmnH8+HH+8Y9/EBwczM033+x6z8GDB6msrKSwsJCamhpycnIASE9Pl97pQohGV1DpuFkcoLH7TDWvvr6dixQZnXH69Gn69+/PTTfdxLfffkuzZs04cOAAUVFRrnVefvll3nzzTRYuXEjLli158sknGTZsGLt37yYoKAhwtCArKChg5cqVmM1m7rvvPiZOnMjixYvV2rQLigkNpNJkobSqjqTIYLXDEU2QJNGF13D2Q08z+Mbd7rM5K9FNUokuGpmiKLSLD2Pz0dMcKK6QJLoQwus5q4GiQgNQFOUSa3sv5w2AGpOc68XlC9PrCNfqqK6zsjmvkh9//JHZs2dz+vRp4uPjGTBgAOvXrycuLs71nv/5n/9h3bp1ruc9evQA4MiRI7Ro0cLTmyCE8DP5FY4kerjOdwrb9K7rcUmiO7300kukpKQwf/5812stW7Z0/bfdbmf27NnMmDGDUaNGAfDBBx8QHx/P559/ztixY9mzZw/Lly9n8+bN9O7dG4C33nqLm2++mVdffZWkpCTPbtQlRIcGcqy0mlNSiS4aibRzEV5jX6GjEj3N4Hv3ds70RJeTtmh8beMcifOjp6qlhZAQwus5L2RiQvUqR3JtpJ2LuBpr165l8t9fAGBzMXzzzTcUFRVRV1dHXl4eixYton379ue8x9nm5eyHJNCFEJ5wwplED/CdJPqZiUXl2sjpyy+/pHfv3txxxx3ExcXRo0cP3nvvPdfyI0eOUFhYyJAhQ1yvGQwG+vbtS1ZWFgBZWVlERka6EugAQ4YMQaPRsHHjxgt+t8lkwmg0Nnh4QnSoY7SWtHMRjUWS6MJrONu5pEX6YBJdJxOLCs+JDQskNiwQq83OngLP/CARQoir5Uqih/l2GwpnOxeZWFRcqRGdHRP0fb+vWH4rCiG8Xn6F4zgV5kuV6NIT/RyHDx9m7ty5tG3blhUrVvDQQw/x8MMPs3DhQgAKCwsBiI+Pb/C++Ph417LCwsIGI6UAdDod0dHRrnXOZ9asWa5JtA0GAykpKe7ctAuSJLpobL6XrRRNkrHWzImyGsC327nUyp1v4QGKotCluYHv951kx4lyuqdE+nSLBCFE03aq0jFhYkyoryfRnZXocq4XDe3Zs+eiy+12O7EhWkqqrcxfvpG+zYPc8r2xsbGkpqa65bOEEMLJtyvRJYnuZLPZ6N27Ny+++CLgaA22c+dO3nnnHSZMmNCo3z19+nSmTZvmem40Gj2SSHcm0StNFkwWq+vmihDuIkl04RV2nXBU0zaPDCYs0PcGSOjr27lIDzbhKe0TwvnpYAmnq83kl9XSPEomThFCeB+LzUZZjWNi0egmk0SXdi7CwVh6EoDx48dfct2oQf9DRJ/RPPnvTzn19Wtu+f7gkBD27tkjiXQhhNvY7fazeqKrHMwVkIlFz5WYmEh6enqD1zp27Minn34KQEKCY5RUUVERiYmJrnWKioro3r27a53i4uIGn2GxWCgtLXW9/3z0ej16vefb+AUFaAkJ1FJdZ+V0lZkEgyTRhXv50GFRNGU7TpQB0DXZoG4gVyk4QNq5CM/S67S0jw9nZ76RX/JOSxJdCOGVyqrN2O2OCrEwvW//7HS2c6m12LDa7Gg1MgLI39VUOopARj74d9p37XXRdUtqFdYVQ1SXm7h7xPVc659PUe4hFr30KCUlJZJEF0K4zclKE9VmO3ablVAfqkTXS0/0c/Tv3599+/Y1eG3//v2kpaUBjklGExISWL16tStpbjQa2bhxIw899BAAGRkZlJWVkZ2dTa9ejvPcmjVrsNls9O3b13MbcwWiQwOprqvhVJWJBIN7Rn4J4eTbVzOiydh+vByALskGwPd6POtd7Vxs2O12aa0hPKJHahQ7840cOlnFyQoTzcJ9e9I+IUTTc6rSOalooM+fG4MCNGgUsNmhps5KWJD8jBYOMUlpJLftdNF1mtvtbP7pCNV1VmzRLUiNDfVQdEIIcfkOn6wCwFJejFaJUTmayyc90c81depU+vXrx4svvsidd97Jpk2bePfdd3n33XcBR4vQKVOm8Pzzz9O2bVtatmzJk08+SVJSEqNHjwYclevDhw/ngQce4J133sFsNjNp0iTGjh1LUlKSilt3Yc3C9Bw/XUNxhYmLn5mFuHK+1zdDNEk7TjiS6F2bR6obyFVyTixqtdmx2Hznjr3wbdGhgbSLDwNg45FTKkcjhBDnOlXVNPqhg+NiM1hauoirpCgKrZs5ztkHT1aqHI0QQpyfK4leekLlSK6MtHM5V58+fVi6dCkfffQRnTt35rnnnmP27NmMGzfOtc5jjz3G5MmTmThxIn369KGyspLly5cTFHSmgnvRokV06NCBwYMHc/PNN3P99de7EvHeKD7CEXuRsVblSERTJEl0obryajPHTlUD0KW5b7ZzCdAqrmG50tLl/P7xj3+47nY71dbWkpmZSUxMDGFhYYwZM4aioqIG78vNzWXkyJGEhIQQFxfHo48+isUiyQun37SIBuDQySoKymtUjkYIIRoqraqvRA9rGiNlnC1dZHJRcTXaxDmS6IdOVmKTogshhBc6XH+Tz1x6XOVIroxMLHp+t9xyCzt27KC2tpY9e/bwwAMPNFiuKAozZ86ksLCQ2tpaVq1aRbt27RqsEx0dzeLFi6moqKC8vJz333+fsLAwT27GFYmPcPzmLKmowyrnWuFmkkQXqnNWoafFhGAICVA5mqujKApBrr7ocuL+tc2bN/Pvf/+brl27Nnh96tSpfPXVV3z88cesW7eO/Px8br/9dtdyq9XKyJEjqaurY/369SxcuJAFCxbw1FNPeXoTvFZMmJ70xAgAVu8plh8KQgivUlLfzsXXJxV1ck4uWiWV6OIqJEcGExSgodZs40SZ3PgWQngf50gZ8ynfSqJLT3ThZAgOIEinwWq3U1JpUjsc0cRIEl2obnv9pKK+WoXu5GzpIpXoDVVWVjJu3Djee+89oqKiXK+Xl5czb948XnvtNQYNGkSvXr2YP38+69evZ8OGDQB899137N69mw8//JDu3bszYsQInnvuOebMmUNdXZ1am+R1rm8bS3CAllNVdWw5Vqp2OEIIAYDVBuU1ZqBptHOBM0l0f6xElxFl106jUWgVW9/SpVhaugghvM+BovokekmuypFcGWdPdLPVLiN9/JyiKK6WLoXS0kW4mSTRheq259VPKurjSfQzk4v634X1xWRmZjJy5EiGDBnS4PXs7GzMZnOD1zt06EBqaipZWVkAZGVl0aVLF+Lj413rDBs2DKPRyK5duzyzAT4gOEDLDW1jAdh4uJRjp6pUjkgIIaDC4uhzFhSgcSWffZ2/tnOREWXuc3ZLF7tdEj1CCO9RUWt2jZIxlxxTOZor42znAlBnlZHh/k76oovGIkl0oSq73U527mkAeqZFXWJt7+Zs52KSdi4uS5YsYevWrcyaNeucZYWFhQQGBhIZGdng9fj4eAoLC13rnJ1Ady53LrsQk8mE0Whs8GjqOiSEk54YgR34dmchp2TomhBCZeVmRxI9JlSPoigqR+MeIX44saiMKHOvlOhgArUaquqsFJTLxb0QwnscqB8hEx2swWbyraIcrUZBVz9JmfRFF86+6EVGuSYW7iVJdKGq46drOFlhIkCr+HwlepCzEl3auQCQl5fHI488wqJFixrM7u0Js2bNwmAwuB4pKSke/X41KIrCTe2bER+hx2Sx8dkvJ1wT+gkhhBqMdY6L2abSDx38s52LjChzL51GQ8tmoYC0dBFCeJcDRRUApEToVI7k6jhHhktfdOGsRC+tqvOrwgfR+CSJLlSVfcxRhd65ucFVye2rXD3R5c434Li4Li4upmfPnuh0OnQ6HevWrePNN99Ep9MRHx9PXV0dZWVlDd5XVFREQkICAAkJCef0VnU+d65zPtOnT6e8vNz1yMvLc+/GeSmdVsPo7s1pFqanus7Kx9l5FEqVmxBCJWX1lejNwvUqR+I+znYuNX6SRJcRZY2jTbP6vujS0kUI4UX2FTpu7KVEBKgcydXRa2VkuHAI1etc8/EcPy0TeQv3kSS6UJVzEsReqb7dygXOtHORSnSHwYMHs2PHDnJyclyP3r17M27cONd/BwQEsHr1atd79u3bR25uLhkZGQBkZGSwY8cOiouLXeusXLmSiIgI0tPTL/jder2eiIiIBg9/ERSg5baezYkL11NrtvHp1uMcLpFKNyGE55XVNcUkuv9UosuIssbTIiaEAK1CRa1FhpoLIbzGgeL6SnSDr1eiSxJdQEp0CAB5pdUqRyKaEkmiC1VlHysDoJeP90OHsyYWlSQ6AOHh4XTu3LnBIzQ0lJiYGDp37ozBYOD+++9n2rRpfP/992RnZ3PfffeRkZHBddddB8DQoUNJT0/n7rvvZtu2baxYsYIZM2aQmZmJXt90kjLuFhygZUzPZNJiQrDY7CzbVsDOE+UXfc/cuXPp2rWr66ZDRkYG3377rWv5wIEDURSlweNPf/rTeT/r1KlTJCcnoyjKOSMNhBD+QRseQ51NQVEgtgm1cwl1VqKbrVhtTbuCWEaUNR6dVkPLWEdLF2fSSggh1La/vp1Lqo8m0Z2Ti9ZJEl0AqfVJ9FxJogs3kiS6UE1FrZl9hY7huU0hiR7sqkSXk/blev3117nlllsYM2YMAwYMICEhgc8++8y1XKvVsmzZMrRaLRkZGYwfP5577rmHmTNnqhi1bwjUabi1a5JrstHVe4vZcPjUBYeNJycn849//IPs7Gy2bNnCoEGDGDVqVIOetQ888AAFBQWux8svv3zez7r//vvp2rVrY2yWEMJHBMa1BiA6JBCdtun83AwK0FA/b1mT77EpI8oaV9u4cAD2F0lLFyGE+sqrza6RMT7bE10nPdHFGc0jg9EoYKy1UF5jVjsc0UT45tFRNAlbc8uw2SElOpi4CM8OE24M0s7l0tauXdvgeVBQEHPmzGHOnDkXfE9aWhrffPNNI0fWNGk1CkM6xhGm17HpaCkbj5RSabIwqH3cOeveeuutDZ6/8MILzJ07lw0bNtCpUycAQkJCLlo5CI6K9rKyMp566qkGlexCCP8SmOBIojelVi7gmMQ5VK+jotZCpclCeJBv9o29HM4RZWc7e0QZ4BpRFh0dTUREBJMnT77giLKXX36ZwsJCGVFWz9nSpdJkodBYS6IhWO2QhBB+bF99FXqSIYiQAN+8+a2vn6NM2rkIcBSVJRiCyC+rJfdUNV2SDWqHJJoA3zw6iiYh69ApAK5rGaNyJO7hrESvkSS68CKKopDROoab2jdDAXblG/l6RwEX60JgtVpZsmQJVVVVrmpCgEWLFhEbG0vnzp2ZPn061dUNh8bt3r2bmTNn8sEHH6DRyOlFCH8WGNcKaHpJdIAwvaMGpcok53sZUXb1dFoNrWIdE4weKJK5S4QQ6tqd72j9mJ7kuyN/AnXSE100lBbtaJ12SOYIE24ilehCNVmH65PorZpeEt1ut6MoisoRCXFG1+RIQvU6vt1ZyOGSKmyh2nPW2bFjBxkZGdTW1hIWFsbSpUtdw+3vuusu0tLSSEpKYvv27Tz++OPs27fPlSwxmUz84Q9/4JVXXiE1NZXDhw97dPuEEN4lMN5RiR7XBJPozr7oVaam3c7lfGREmXu1iw9jX1EFB4oruaFtrPx2FEKoZle+o81qepIB8M2Eo7RzEb/WNi6MrMOnyCutptZsdXUPEOJqSRJdqKKi1uya6DCjddNIogfVD3uz2x2TmejlAC28TOtmYdzcOYFl2ws4WqUlIuPOBsvbt29PTk4O5eXlfPLJJ0yYMIF169aRnp7OxIkTXet16dKFxMREBg8ezKFDh2jdujXTp0+nY8eOjB8/3tObJYTwMhUmGzqDo21Us7Cml0R3VqJX+mESXbhXanQIgVoNlSYLBeW1JEVKSxchhDp2F9Qn0RMjoM43k+hB9e1cZGJR4RQVGkhMWCCnKus4dLKSTknS0kVcGxlvL1Sx+WgpVpudtJiQJnPBoNNqCNA6KoikpYvwVq2ahXFju2YARA24h59ya1zLAgMDadOmDb169WLWrFl069aNN95447yf07dvXwAOHjwIwJo1a/j444/R6XTodDoGDx4MQGxsLE8//XRjbpIQwsscKXNM3hSqszfJG8qhesc2+WMlunAvnVZDq2aOoeYHin0zaSWE8H11FpurrVQnH27n4ixqqzVLEl2c0TauvnWanGeFG0gSXajC2Q89o4m0cnGSvujCF3RLiaRtuONv9F+by1yjQn7NZrNhMpnOuywnJweAxMREAD799FO2bdtGTk4OOTk5/O///i8AP/74I5mZmW7eAiGENzt82pFEjwy4yOQLPizUWYleJ0l0ce3axjsv7iuw25vmPiOE8G4Hiyups9oID9KRHOW7BW7OG/e1ci0uztI2LhyAvNJqquW3m7hG0s5FqOLng/VJ9CbSysUpKECLsdZCTZ2cuIV36xJpZXvOL9C6NxM/2EKfkuWMGXUrqampVFRUsHjxYtauXcuKFSs4dOgQixcv5uabbyYmJobt27czdepUBgwYQNeuXQFo3bp1g88vKSkBoGPHjkRGRnp684QQKnJWokcGNs1KsFCZWFS4UWp0CHqdhiqTleOna0iJDlE7JCGEnzm7lYsvz83gqkSXnujiLNGhgcRH6CkymthdYKR3WrTaIQkfJpXowuOKjbXsLjCiKNC/Taza4bhVcKBUogvfoChw8qtXaB6uJb+8li+z9nLPPffQvn17Bg8ezObNm1mxYgW//e1vCQwMZNWqVQwdOpQOHTrwl7/8hTFjxvDVV1+pvRlCCC/krEQ3BDbNqtowvf9OLCrcT6fRuKrRnYksIYTwpN2uSUV9t5ULnOmJLu1cxK91ae7ohb7zhFFGfYlrIpXowuPW7j8JQNfmBmKb2IRjwQFy4ha+w26q4on+0fzt+9NUDPgTf/hNCi/e1uWcCpSUlBTWrVt3RZ89cOBA+YEihB8y1prJr3DcSI5uokl0Z090k8WG2WojQCs1KeLapCdGsPOEkYPFldzU3kagTv6mhBCeszPf0doxPdHHk+j11+JWmx2L1YZOzs+iXrv4cH7YX0J5jZm80zWkyqgvcZXkqCI8bu2+YgBubB+nciTuJz3Rha9pHqHjzT/0QFHgo015/N+GY2qHJITwYdvzyrED5rJC9E1vTlEAAs+aSFyq0YU7JEQEERkSgMVm50BxhdrhCCH8iNVmd82P1C0lUt1grlGAVkFTXwskRW3ibAFaDR0THb3Rc/LK1A1G+DSpRBceZbHa+PGAo1fywPbNVI7G/YKc7VykJ7rwEXv27KFjRxjfJZz/217BM1/uwl5WQJf4xh0lEhsbS2pqaqN+hxDC83LyTgNQV7Aful6ncjSNQ1EUQgN1lNWYqTJZiZRiJnGNFEWhY2IEWYdOsaeggk5JBrVDEkL4if1FFVTXWQnT62jdLEztcK6JoijodVpqzFZqLVbCJN0lztItJZJtx8s5UlJFSaWpyXVFEJ4hRxXhUVtzy6iotRAVEkC35Ei1w3G7YJkRXPgIY6mjrdL48eNdr8Xc8hfCOt3EkyvzOfnpTGpzt1/25+kiE9FFxqNodFjKizCXngD7hStAgkNC2LtnjyTShWhicvIc1Wym/H1A00yig2Ny0bIaM5VSiS7cpGNCOFmHTnGirIbyGjOG4AC1QxJC+IFt9VW5XZob0Gp8d1JRp6AAjSOJLtfj4leiQgJpGxfGgeJKso+dZlinBLVDEj5IkujCo5ytXAa0a9YkTtK/Ju1chK+oqXRMIDTywb/TvmsvAKw2WF9io5ggEv/wAl2jrLQKs6FcYFc1muF4lZbj1RoqLA1XCtLaaRtupU24jV/v6kW5h1j00qOUlJRIEl2IJsRut7uGyNYV7FM3mEbm7Isu7VyEu4QHBZASHUxeaQ278svp1zpW7ZCEH5g1axafffYZe/fuJTg4mH79+vHSSy/Rvn171zq1tbX85S9/YcmSJZhMJoYNG8bbb79NfHy8a53c3Fweeughvv/+e8LCwpgwYQKzZs1Cp5N0g7dznre7p0aqGoe7OPqim6Wdiziv3mlRHCiuZF9RBX1bRqsdjvBBclYTHrV2n6P6tSm2coGzkujSzkX4iJikNJLbdnI9b97WxvKdhRw6WUXOaR3F9iC6J0eSYAhCq1Eck7GU1nCguIKSyjrX+7SKQmRIABpFoaymjlor7CjTUUowIzonEKqX040QTd2JshpKKk1oFagrOqx2OI0qrP6YVlknSXThPl2SDOSV1rDzhJHftIxGp5Hpq0TjWrduHZmZmfTp0weLxcLf/vY3hg4dyu7duwkNDQVg6tSpfP3113z88ccYDAYmTZrE7bffzs8//wyA1Wpl5MiRJCQksH79egoKCrjnnnsICAjgxRdfVHPzxGVwJtGbyihx5+SitRa5HhfniosIIi0mhGOnqtlwuJTO0tFFXCHJagiPKSivYXeBEUWBAW2bZhI9KMBxsSOV6MJX6TQaRnZJJCevjJ8PniK/rJb8ssLzrqtRIDU6hHbx4bRqFope5/jRarXZ2VNg5McDJZwoq+G/W/K4s3eKJNKFaOKcF+ItIgM4bKm7+Mo+znk8k0p04U6tmoURqtdSZbJysLiSDgkRaockmrjly5c3eL5gwQLi4uLIzs5mwIABlJeXM2/ePBYvXsygQYMAmD9/Ph07dmTDhg1cd911fPfdd+zevZtVq1YRHx9P9+7dee6553j88cd55plnCAwMVGPTxGWoMlnYX+SYzLhHU6lE1zmux01SiS4uoF/rGI6dqmZfUQUpCU2vO4JoXFLeIDzm2x2ORFzvtChimugkDsH1E4uaLDZsNrvK0QhxdRRFoUdqFBP6pdErLYqokABXS5fgAC2tm4UyuEMc/3NDK0Z1b07HxAhXAh1Aq1Ho3NzA2N+kYAgOwFhrYWnOCUxyc0mIJs3ZV7VNdNPv5RzmSqLLcU24j1aj0KV+UtHtx8tVjkb4o/Jyx99ddLSjzUF2djZms5khQ4a41unQoQOpqalkZWUBkJWVRZcuXRq0dxk2bBhGo5Fdu3ad93tMJhNGo7HBQ3jejhPl2OyQaAgiPiJI7XDcQi9zlIlLiAsPom2cYxLdXeXaS6wtRENSFig85tudBQCM6JyociSNJ+isRGKtxUpIoOxiwneFBwVwfZtYrm8Ti9VmRwE0VzCXQVRIILf1aM5/t+RxqrKO1XuLGdFZJnARoqlyVqK3i2n6SfTQ+vO7TCwq3K1zcwObjpZSUF5LcUUtceFNI7ElvJ/NZmPKlCn079+fzp07A1BYWEhgYCCRkZEN1o2Pj6ewsNC1ztkJdOdy57LzmTVrFs8++6ybt0Bcqc1HSgHomRqlciTu4xwZLkl0cTEZrWI4eLKSghoN+uYd1A5H+BCpRBceUWSsZcux0wCM6NJ0k2gajeIaQiZ90UVTotUoV5RAdzIEB3BrtyQ0ChwormRXgVQaCdEUma02dpxwVDC2jW76Q/fPnljUbpeRZ8J9QvU62tRXyG3Lk2p04TmZmZns3LmTJUuWNPp3TZ8+nfLyctcjLy+v0b9TnGvTUUcSvW+rpjPBorOordYi7VzEhUWFBpKe6GiZFjlggvyWE5dNkujCI5bvLMRuh56pkSQagtUOp1EF1bd0kb7oQjgkRASR0SoGgB/2n6RaCjeFaHL2FVZQa7YRHqQjKbzpD411tnOx2OzUyYW6cDPnBH97C41U1spJUzS+SZMmsWzZMr7//nuSk5NdryckJFBXV0dZWVmD9YuKikhISHCtU1RUdM5y57Lz0ev1RERENHgIzzJbbWTXF7n9pmUTSqJLOxdxmfq2jEaDnaDULmwratpz+Qj3kSS68Ihvdjhaudzcpem2cnEKrj9xSyW6EGf0Sosi0RCE2Wpn22lpcyREU7Opfkh477QoNErTn6RJp9Wgrx95Ji1dhLslRQaTFBmEzQ5b806rHY5owux2O5MmTWLp0qWsWbOGli1bNljeq1cvAgICWL16teu1ffv2kZubS0ZGBgAZGRns2LGD4uJi1zorV64kIiKC9PR0z2yIuGI7T5RTXWfFEBxAu7hwtcNxG2c7F5lYVFxKeFAArcIdfycf7ayQanRxWSSJLhrdyQqTa6jYcD/ohxxSX4leLXe/hXBRFIWb2sehKJBfoyGoVS+1QxJCuNHm+vN87xZNp5rtUpzV6JJEF42hT/2+tON4uYxuFI0mMzOTDz/8kMWLFxMeHk5hYSGFhYXU1NQAYDAYuP/++5k2bRrff/892dnZ3HfffWRkZHDdddcBMHToUNLT07n77rvZtm0bK1asYMaMGWRmZqLX69XcPHERzpvffVpEX1XLRm/lmljUIsdNcWntI6zYzLUcKDXz/b7iS79B+D1JootG9+3OAux26JZsIDkqRO1wGp1zMtFqqUQXooFm4Xq6p0QCEDXwj1htcrdfiKbAbre7kuhNaUj4pYRKEl00orToEJqF67HY7K5Je4Vwt7lz51JeXs7AgQNJTEx0Pf7zn/+41nn99de55ZZbGDNmDAMGDCAhIYHPPvvMtVyr1bJs2TK0Wi0ZGRmMHz+ee+65h5kzZ6qxSeIyOZPofZvYeds5P5m0cxGXI0gLFVu/BuC1lfulGl1ckoypF43u0+zjANzaLUnlSDwj2FmJXicX1UL8Wt8W0ew6fhqapbH2aA19eqsdkRDiWh0pqaKkso5AnYauyQZ2laodkWeEBzl+RlfUWjCoHItoehRFoU9aFN/sLGRbXhk9UyPR65r+fAPCsy4nYRQUFMScOXOYM2fOBddJS0vjm2++cWdoohGZrTY2Hml6k4rCmZ7oZqsdq82OtglV2YvGYdz4KfH9f8/OE0a+213EsE5Nv3uCuHpSiS4a1cHiCrYdL0enURjdo7na4XiEs52L9EQX4lz6AC3tIxz7xke7KmQ/EaIJcFahd0/2ryRfuFSii0bWOi6M6JBATJYzEwAKIcS12nrsNJUmC9GhgXROalq3gZ3zlYBUo4vLY6sxMrKto2PC6yv3Y5PR0uIiJIkuGtUn2ScAGNi+GbFh/tETLyTAWYkuJ20hzqd1uA1LWSGlNTbe//mI2uEIIa7RpiOO5F6fllEqR+JZ4UEBgKMSXYjGoFEU+rWJAeCX3DKq5IaNEMINfjhwEoDr28Q2qX7o4BjF42zpYrLI5KLi8vyuXRjheh17CytYsatQ7XCEF5MkurhsP/zwA7feeitJSUkoisLnn3/eYPlnn33G0KFDiYmJQVEUtmRvZekvjlYuv++V3GBdu93OiBEjzvs5vk56ogtxcVoFTv/wfwC8s/YQp6vqVI5ICHEtthw7MzmZPznTzsWsciSiKWsVG0qiIQiLzc6GI6cuuN6sWbPo06cP4eHhxMXFMXr0aPbt2+dafvToURRFOe/j448/dq23efNmBg8eTGRkJFFRUQwbNoxt27Y16jYKITxr3X5HEv3Gds1UjqRxOCcXlRGv4nKF6zXc278FAO/+eFjdYIRXkyS6uGxVVVV069btgv3wqqqquP7663nppZcA2HiklCKjiZjQQG7qENdg3dmzZ6MoTeuut5O0cxHi0qr3/ECLSB0VJgvvrDukdjhCiKtUbKzl2KlqNAr0SvOvSvSws3qiyzxUorEoikL/1rEA7Mo3XvDG87p168jMzGTDhg2sXLkSs9nM0KFDqaqqAiAlJYWCgoIGj2effZawsDBGjBgBQGVlJcOHDyc1NZWNGzfy008/ER4ezrBhwzCbL3yzyF0J/PMtX7JkyTX/GwohziipNLHzhBGAG9rFqhxN43Bdj0s7F3EF7s5II1Cr4ZfcMrKP+ckEP+KKycSi4rKNGDHC9SP7fO6++27A8UMZ4OvtBUA0/69PSoMeqTk5Ofzzn/9ky5YtJCYmNmbIqnCetOusNixWGzqt3KsS4lx2xncJ5/kfT7Ng/VHu7d+CREOw2kEJIa7Qpvp+6B0SIlztTfyFsye6xWanTkaMi0bUPCqYlrGhHCmpYt3+k4zqnnTOOsuXL2/wfMGCBcTFxZGdnc2AAQPQarUkJDScLG3p0qXceeedhIWFAbB3715KS0uZOXMmKSkpADz99NN07dqVY8eO0aZNm/PG50zg9+nTB4vFwt/+9jeGDh3K7t27CQ0NdSXwz/buu+/yyiuvnHNtMX/+fIYPH+56HhkZeXn/SEKIy/JDfRV6emIEceFBKkfTOIKlEl1chbjwIEb3SOK/W47z3g9H6HW3f42wFJdHsnui0eTklaEo8IffpLpeq66u5q677mLOnDnn/JBvKgJ1GrT1VfbS0kWIC+uRoOc3LaMp/nEJPXtduILNKSsri0GDBhEaGkpERAQDBgygpqamwTpff/01ffv2JTg4mKioKEaPHu2hrRHCP2047Ggv8ZuW/nehodNqzlyoW5vm6DrhPW5oG4tWUThWWs2hk1WXXL+8vByA6Ojz75vZ2dnk5ORw//33u15r3749MTExzJs3j7q6Ompqapg3bx4dO3akRYsWF/yu5cuXc++999KpUye6devGggULyM3NJTs7G8CVwD/78esEvlNkZCQJCQnYgw1sKrLx1c6T7CkwXnJ7hRCX57tdRQAM+tVI8aYkKEAq0cXV+Z8bWgGwYnchx05d+lwr/I8k0UWjGtQ+jpToENfzqVOn0q9fP0aNGqViVI1LURSC66vRq+XELcQFKYrC48PbU5u3E2uH3/Lfb9acdwg6OBLow4cPZ+jQoWzatInNmzczadIkNJozp7FPP/2Uu+++m/vuu49t27bx888/c9ddd6mxaUL4jZ8POpLo/ds0zSHhl+Lsi14t8z2KRhYVEkjPtEjAMSngxebLs9lsTJkyhf79+9O5c+fzruNMjvfr18/1Wnh4OGvXruXDDz8kODiYsLAwli9fzrfffotOd/kDmK8mge/0p4f+THB4FC06duOP01/irx9vY8QbP3LXexs4UVZznk8TQlyumjora/cXAzC8c9MsaANc1+KSRG/oH//4B4qiMGXKFNdrtbW1ZGZmEhMTQ1hYGGPGjKGoqKjB+3Jzcxk5ciQhISHExcXx6KOPYrE0zR8+7eLDGdi+GXY7vP/TEbXDEV5IkujC7cqqz/Rq/OP1LV3//eWXX7JmzRpmz56tQlSe5WzpUl3XNE8uQrhLr7Roxj39DiGdh7AsV3veCjZw3IB7+OGHeeKJJ+jUqRPt27fnzjvvRK/XA2CxWHjkkUd45ZVX+NOf/kS7du1IT0/nzjvvVGvThGjyTpTVcKSkCq1GoW8r/6tEhzNJdKlEF57Qp0U04UE6Kmot7DFqL7heZmYmO3fuvGA/8ZqaGhYvXnxOErumpob777+f/v37s2HDBn7++Wc6d+7MyJEjzxn5dSFXm8AH+OPDjxM64q9E/f5ZQtr15/TKd4g9toYArcL6Q6e4bc7PHCmRykAhrta6/cXUmm2kRAfTKSlC7XAaTYi0cznH5s2b+fe//03Xrl0bvD516lS++uorPv74Y9atW0d+fj633367a7nVamXkyJHU1dWxfv16Fi5cyIIFC3jqqac8vQkec399DuuzrSfkb0icQ5Lowu0+yT4OQJu4MPq1jnG9vmbNGg4dOkRkZCQ6nc5V0TJmzBgGDhyoRqiNJlgmFxXisv11WHsUBb7eUcD242XnVLAVFxezceNG4uLi6NevH/Hx8dx444389NNPrs/YunUrJ06cQKPR0KNHDxITExkxYgQ7d+5UZZuE8Ac/HywBoGuygQg/64fuFK53bHe1RZLoovEFaDXc2K4ZAPuNGgIT252zzqRJk1i2bBnff/89ycnJ5/2cTz75hOrqau65554Gry9evJijR48yf/58+vTpw3XXXcfixYs5cuQIX3zxxWXFeDUJfLvdzty1h/g+5Aasce3p26cXPy9+g79Pf5zinz9m9bSBtIsPo7jCxAMfbKHKJEUqQlyN5TsLARjeKQFFabrnLalEb6iyspJx48bx3nvvERV1ZhL48vJy5s2bx2uvvcagQYPo1asX8+fPZ/369WzYsAGA7777jt27d/Phhx/SvXt3RowYwXPPPcecOXOoqzv/RNe+rn/rWFKjQ6gwWVi2PV/tcISXkSS6cKsqk4XPtjqS6Hf0Tm5wcn7iiSfYvn07OTk5rgfA66+/zvz589UIt9GcqUSXE7cQl9IhIYLbujcH4OVv95xTwXb48GEAnnnmGR544AGWL19Oz549GTx4MAcOHDhnnRkzZrBs2TKioqIYOHAgpaUyu7oQjcGZRL/eT1u5wNmV6CoHIvxG62ZhtI8PBxRiR07FZLEDjkT0pEmTWLp0KWvWrKFly5YX/Ix58+bxu9/9jmbNmjV4vbq6Go1Gg6Io1Fls/HjgJLO+3Uud1c4ry/dw5ztZPLLkF9774TAHiyvO+dyrSeBX11mY9NEvvLR8LzY7/OE3KSyZeB3pSRH07duX48ePEx+mZdH/XEd8hJ6DxZW8suLceVOEEBdXa7ayeo+jlcuwTk23lQuc1RNdrsUBx83NkSNHMmTIkAavZ2dnYzabG7zeoUMHUlNTycrKAhwtNbt06UJ8fLxrnWHDhmE0Gtm1a9cFv9NkMmE0Ghs8fIVGozD2N47JtRdvylU5GuFtLr+5nfB7lZWVHDx40PX8yJEj5OTkEB0dTWpqKqWlpbzxRRanjjuSWbGWU+Tk5JwzkdCvpaamXvSHvi8KCazvkSonbiEuy9TftuOr7fl88fZzhJ3cyeYN613LbDZH49cHH3yQ++67D4AePXqwevVq3n//fWbNmuVa5+9//ztjxowBYP78+SQnJ/Pxxx/z4IMPeniLhGja7Ha7qx96v9b+m0QPc/ZEl3YuwoMGtm/GsRIjxKTw4Q4jGb9xJEkWL17MF198QXh4OIWFjopTg8FAcHCw670HDx7khx9+4Jtvvjnnc3/729/y6KOPMvC28ZxuMYiSChPGjZ9gRUNRWBtOHXXclP4iJ58XvtlDh4Rw7u3Xgt91S+Kxv0xh6dKlrF279rIT+Hml1TzwwRb2Flag0yg8O6oT4/qmudbNyckhKioKvV5PMz28ekc37p63iYVZR7mrbyrt4sPd9U8qRJO3ak8RFSYLzSOD6Zkadek3+DCpRD9jyZIlbN26lc2bN5+zrLCwkMDAQCIjIxu8Hh8f7zqHFBYWNkigO5c7l13IrFmzePbZZ68xevX8vlcyr323n19yy9hTYKRjYtNtfySujFSii8u2ZcsWevToQY8ePQCYNm0aPXr0cPXD+vizpcz84y0Uf+I4WN511x/o0aMH77zzjmoxq0V6ogtxZVKiQ4jK+ZCaQ5tpPeFl4hOTXMsSExMBSE9Pb/Cejh07kpube8F19Ho9rVq1cq0jhHCf/UWVlFSaCArQuCY79EdnJhaVJLrwnKAALT2jHb8xvz5QzcrdRcydO5fy8nIGDhxIYmKi6/Gf//ynwXvff/99kpOTGTp06Dmfe9QSSau7ZrJxSw4733mE4o+eIEap4uk5H7Lgz0OZc1dPHh3WnhvbNSNAq7C3sIInPttB6g23MW/BB8ydt8CVwC8sLDynj7ozgf8///M/rNhVyC1v/cTewgpiw/T8uVUZNTtWsnPnTg4ePMjcuXN58cUXmTx5suv9N7RtxrBO8djt8K81B38dvhDiIj7begKA23s2R6Np2ucsV090sxW73a5yNOrJy8vjkUceYdGiRQQFBXn0u6dPn055ebnrkZeX59Hvv1pz586la9eutGkeR+7rd1Lwf3/hubmLzlnPbrczYsQIFEXh888/d71+6tQphg8fTlJSEnq9npSUFCZNmuRTlfji4qQSXVy2gQMHXvQkVJ12A2mPLyMlOphV025Er7vwhEdOTfWkJpOZCHH57HY7kydP5vgv62j3x1c4bg1nwc9HeWBAKwBatGhBUlIS+/Y1HL69f/9+RowYAUCvXr3Q6/Xs27eP66+/HgCz2czRo0dJS0tDCOFeP9W3cunTIvqyzvdNlbMneq0VUKQ2RXhOYrAd45Yviej9O6b9J4fDJytpGRt6yfe9+OKLvPjiiw1eqzRZeObLXY55jeI60WvSW0wZ0pZR3ZsTqDv37zrzJiivNvPfLXkszDrKz5uXATBqRMPE/Pz587n33ntdz99//30Smzdn+ek4Pl/rmDy8W0ok74zvybasdUyf/gpTp07FbrfTpk0bXnvtNR544IEGnzl5UFtW7Cpi2fZ8pgxpS6tmYZf17yWEPztZYWLd/pMA3NajucrRND5nJbrVZsdstROoa9o3DS4kOzub4uJievbs6XrNarXyww8/8K9//YsVK1ZQV1dHWVlZg2r0oqIiVweBhIQENm3a1OBzi4qKXMsuRK/Xo9fr3bg1npGcnMw//vEP2rZty+Yjp3jomddZ8sLD/PX2/vTsfmZS1tmzZ593XgGNRsOoUaN4/vnnadasGQcPHiQzM5PS0lIWL17syU0RjUSS6MItioy1vPuDo43LE8M7+vUFNZw5cUs7FyEu7ewh6Puqw3ju6z28+vkGhrSLomVCFIqi8Oijj/L000/TrVs3unfvzsKFC9m7dy+ffPIJABEREfzpT3/i6aefJiUlhbS0NF555RUA7rjjDjU3T4gmab30QwcgRK9Fo4DNrqANi1Y7HOFnTn//Pr8ZPoa9JWbunb+JT/7Uj2bhV5a02Jp7milLcsgtrUZR4E83tubhQW1dv2UvxBASwAMDWvHH61uy4uZ83ll3iO3Hy13Le6ZGcrp5M77ZUUBQgIYTZbWcTh9DyD3X8/m2AgAmDmjFX4e2J1CnIXH4cIYPH37JeDs3NzC4Qxyr9xbzzrpDvPz7ble0vUL4oy9yTmC12emeEukXN54CtBp0GgWLzU6N2Xrem4H+YPDgwezYsaPBa/fddx8dOnTg8ccfJyUlhYCAAFavXu1qh7lv3z5yc3PJyMgAICMjgxdeeIHi4mLi4uIAWLlyJREREeeMEm4Kbr31Vtd/t27dhjlbH2TDL9+w8POVriR6Tk4O//znP9myZYtrNLRTVFQUDz30kOt5Wloaf/7zn13XpcL3SRJdXFBubi4lJSWXte6czWXUmK20jwkgwZzP1q0FV/29e/bsuer3eotQvWPXqpJ2LkJc0ty5cwHHaJez3V/1NGv+/QwAU6ZMoba2lqlTp1JaWkq3bt1YuXIlrVu3dq3/yiuvoNPpuPvuu6mpqaFv376sWbOmwSz0QohrV2u2sv6Qox/69W39O4muURRC9Toqai3oIvz730KowGZhdGwJ82uiOXaqmjvnrOWpAdEYgi5dzGKx2fl0TyUf767EZofYEC2P9DXQqVk1e3Zuu+T7Y2NjSU1NRatRuLlLIiM6J7DhcCn//uEQ6/afZGtuGVtzy8773t+0iGbGLR3pmhx5hRvs8NDA1qzeW8yX2/J58pZ0woMCrupzhPAHdrudxRsdrQ3v6H3+CX+boqAALZUmCzV1VgzB/nmMCA8Pp3Pnzg1eCw0NJSYmxvX6/fffz7Rp04iOjiYiIoLJkyeTkZHBddddB8DQoUNJT0/n7rvv5uWXX6awsJAZM2aQmZnpk5XmV8Jut5FW9gvrzbUcD3TsO9XV1dx1113MmTPnopX4Tvn5+Xz22WfceOONjR2u8BBJoovzys3NpUPHjtRUV19y3YBmLUm87w0URcPa2Q/T+7F9l3zP5aisrHTL56ghrD6JXmu2YbHZ0Gn88+63EJfj122ddp4oZ9Scnzlss/NFzglGdXcMO33iiSd44oknLvg5AQEBvPrqq7z66quNGq8Q/m7D4VPUmK0kRASRLhMtER7kSKJrI+LUDkX4EWOpozXDQ/eNQxeVRMK4lzhCFOMX5FD86bNYSk9c8L0BsWnEjJyKPqENAFW715H73dvcY6q67O/XBwXx6SefNKjC0wMPd9Mxvl0cG0/UcuCUmYJKC2abnaggLS0idfRLCaZlZACW4sNsLb66bW8WE0PrZqEcOlnF19sLGPub1Kv7ICH8wPpDpzhcUkWYXuf6Te0PQgIdSfRqsxS1Xczrr7+ORqNhzJgxmEwmhg0bxttvv+1artVqWbZsGQ899BAZGRmEhoYyYcIEZs6cqWLUjWvHjh1kZGRQW1tLSGgYcbf9nW2V4ZyqNPG3v0ylX79+jBo16qKf8Yc//IEvvviCmpoabr31Vv73f//XQ9GLxiZJdHFeJSUl1FRXM+7xV4hPbX3B9ex2+OmkjuJaDckhVsb8fdY1f/eeTev4duEb1NbWXvNnqUWv06DVKFhtdqpNViKCJYkuxOXq3NzA5EFtmL3qAE9+vpPftIwm0RCsdlhCiHpr9joyXzd1iDtvP0h/4+iLXosuXCrRhefUVDomKRv54N9p37UXFWb4qdhOdXQSKRPfoWOElVbhNgLP+glaYYYDFVqOVmqwoxCgsdMjykrysAyU4RmX/d2Hd27h87kvcsstt1xx3K9d8TvOFRwSwlOLf+DQySr+uyVPkuhCXMSHG44BMLpHkqvQyx8E189RVltnUzkS77J27doGz4OCgpgzZw5z5sy54HvS0tL45ptvGjky79G+fXtycnIoLy/nk08+4bW3ZqM1zOK5tz9gzZo1/PLLL5f8jNdff52nn36a/fv3M336dKZNm9bg5oTwXf5zFBVXJT61NcltO11w+ZGSKorz8tEqCkO6t3bLUKmi3EPX/BlqUxSF0EAtxloLlSYLEX46hEyIi7lY66Z+kXaWRQdwsNTMn97/iScHRKNxU7LOOQRdCHHl7Ha7K4k+uINUXoOjEh1AG9FM5UiEP4pJSnP9Vk9tbWHFrkLyTtewq1zH3gqFuHA9ep0GY42F0uo61/taNwvlpvZxrhaEV8L5W92ZwPekotxDLHrpUXrH2tBqFLbmlnGwuJI2cU2/z7MQVyq/rIbvdjsmgRx/XZrK0XiWc16HGrPMUSauTGBgIG3aOEZq9erViy9W/kDeli/56lA4Rw4dajAJK8CYMWO44YYbGtygSEhIICEhgQ4dOhAdHc0NN9zAk08+eU4PdeF7JIkurprNZuenA46e6d1TIv2219iFhOp1GGstVJlkCJkQZ3MOQR8/fvxF19NFNyfx3jfYVgRDHn6V8vVL3PL9wSEh7N2zRxLpQlyFA8WVHD9dQ6BOQ782MWqH4xWcSXSdtHMRKgvV67itR3P2FFaw9dhpTlXVUVB+ZmSnokBadAi906JpHnXtI7zOTuB7WnSwlhvaxrJ230m+3VHA5MFtVYlDCG82/+cjWG12rmsVTYcE/2q/FlRfiV5TJ0l0cW1iQgPIO22mrtPv+PrZv5ISHeJa1qVLF15//fUGE5L+ms3mGA1hMpkaPVbR+CSJLq7arnwjpdV1BAVo6NNCJu77tTOTi8qJW4iz/XoI+sUcq9SwpRQibxjHzbf/PxKD7Rdd/1KcFWwlJSWSRBfiKqze46hC79c6hpBA+RkJEFE/qaHOIEl0oT5FUUhPjKBjQjgllXWcrq7DZLERHqQjPjzIVZ3ZFNzcOZG1+06yfFehJNGF+BVjrZmPNuUB8OCAC7dnbaqcxzrpiS6uxPTp0xkxYgSpqalUVFSwePFifv7xB4ZMe4P9uij21BoY0bl9g/ekpqbSsmVLAL755huKioro06cPYWFh7Nq1i0cffZT+/fvTokULFbZIuJtc/YirYrJYyTp8CoC+LWPQBzSdH+TuElafXJBKdCHO73Iq2JIB095idpwoJ/u0nrFtUogMCfRMgEKIc3xf38plkLRycXG2bNMZ4s6ZKFkItSiKQrNwPc3C9WqH0miGpMdjfPS/rNqXRdjfCggJCaZfv3689NJLtG/vSHKUlpby9NNP891335Gbm0uzZs0YPXo0zz33HAaDocHnLViwgNdee439+/cTERHBHXfccdE+wUJ4syWbcqk0WWgbF8aN7fyv3ViIVKKLq1BcXMw999xDQUEBBoOBrl27smLFCqqbpfPIkhyW5pxg6m/bXXBOoODgYN577z2mTp2KyWQiJSWF22+/nSeeeMLDWyIaiyTRxVXJPnaaGrOVyJAAujQ3XPoNfihU7zhxSxJdiGtzY7tmlFSaKCiv5avtBdzZOxm9Tm7cCeFpZdV1bDlWCsBN7SWJ7uRs56LRh1JlliS6EJ4SHRqI/uQ+ND1HMvn/DWN0t0T+9re/MXToUHbv3k1oaCj5+fnk5+fz6quvkp6ezrFjx/jTn/5Efn4+n3zyieuzXnvtNf75z3/yyiuv0LdvX6qqqjh69Kh6GyfENTBbbcz/+SgAD9zQCo3G/yYBl57o4mrMmzfvvK/X1FkJDdSSV1pD9rHT9G4RDXBO8cRNN93E+vXrGz1OoR7NpVdpPD/88AO33norSUlJKIrC559/3mC53W7nqaeeIjExkeDgYIYMGcKBAwcarFNaWsq4ceOIiIggMjKS+++/n8rKSg9uhf+pqDWzNbcMgOvbxKL1w5Py5XC2c6mskyS6ENdCq1G4uUsioXotpVV1rNhVJNWeQqjgu11F2OzQISG8QT9Ifxeg1aDXOI5JxVVysS6EJ8169yPCugxhZ3UE3bp1Y8GCBeTm5pKdnQ1A586d+fTTT7n11ltp3bo1gwYN4oUXXuCrr77CYnH8Rj99+jQzZszggw8+4K677qJ169Z07dqV3/3ud2pumhDnuFj+xGw28/jjj9OlSxfCw8LY/OKdVCyfTZ/4hp+xf/9+Ro0aRWxsLBEREVx//fV8//33nt0QDwh1jQqX87K4dsGBWoZ3dkwK+nnOCZWjEWpStRK9qqqKbt268cc//pHbb7/9nOUvv/wyb775JgsXLqRly5Y8+eSTDBs2jN27dxMUFATAuHHjKCgoYOXKlZjNZu677z4mTpzI4sWLPb05fmP9oVNYbXaaRwbTKjZU7XC8lqsnupy4hbhmYXodt3RN4pPs4xwpqSLr8Cn6tY5VOywh/MrXOwoAuKVrosqReJ8QnR1TnSJJdCE8bEh6PM98tZutuWWU15gpLy8HIDo6+oLvKS8vJyIiAp3O8Vt95cqV2Gw2Tpw4QceOHamoqKBfv37885//JCUlxSPbIcTluFj+pLq6mq1btzJjxgzmbLNwIK8Q/ZYPuOP229iyZYtrvVtuuYW2bduyZs0agoODmT17NrfccguHDh0iISHB05vUaELqR4VX11mw2+0XbL8hBMCePXsuuU7ncBOfAp9vzePW5nUEaK/9byo2Nlbm6fIxqibRR4wYwYgRI867zG63M3v2bGbMmMGoUaMA+OCDD4iPj+fzzz9n7Nix7Nmzh+XLl7N582Z69+4NwFtvvcXNN9/Mq6++SlJSkse2xV+UVJrYW1gBwA1tY+VkdBGhgdLORQh3SogIYkiHOFbsLmLz0dPEhulpFx+udlh+7YcffuCVV14hOzubgoICli5dyujRo13L7XY7Tz/9NO+99x5lZWX079+fuXPn0rbtmQngSktLmTx5Ml999RUajYYxY8bwxhtvEBYWpsIWiQspq67j54MlANzcRZLovxais3O6Dk5WyTlfCE9KjgqhVbNQDp+s4qf9xcz9+xT69+9P586dz7t+SUkJzz33HBMnTnS9dvjwYWw2Gy+++CJvvPEGBoOBGTNm8Nvf/pbt27cTGChzsQjvcLH8icFgYOXKlfx8sITcXzYS2SKGORPnMnhAf3Jzc0lNTaWkpIQDBw4wb948unbtCsA//vEP3n77bXbu3Nm0kuj11+I2O9SabU1qUmXhPsbSkwCMHz/+0isrGpo/NJ/K8BhuuuvP1BzcdM3fHxwSwt49eySR7kO8tif6kSNHKCwsZMiQIa7XDAYDffv2JSsri7Fjx5KVlUVkZKQrgQ4wZMgQNBoNGzdu5LbbblMj9CZt/SHHZKJt48KIjwhSORrvFlZfiW6y2LBYbei0qnZPEqJJ6JAYQUllHdm5p1m5u4jI4ADi5FikGhlR5j++21WExWanQ0I4rZrJDY5faxtuY+uCZ+l/6ztqhyKE3xnQthmHT1bx5GNTKd23k59++um86xmNRkaOHEl6ejrPPPOM63WbzYbZbObNN99k6NChAHz00UckJCTw/fffM2zYME9shhBu8e4PhwH4f31SsJkKUBSFyMhIAGJiYmjfvj0ffPABPXv2RK/X8+9//5u4uDh69eqlYtTup9NoCNJpqLXYqKqzSBJdnFdNpRGAkQ/+nfZdL70PbD+t5UAF9Lj771wXe22jD4tyD7HopUcpKSmRJLoP8dokemFhIQDx8Q2beMXHx7uWFRYWEhfXcGIrnU5HdHS0a53zMZlMmEwm13Oj0eiusJu0/LIajpRUoSiQ0TpG7XC8XqBOg06jYLHZqaqzYgiWJLoQ7tCvTQwlVSaOnarmq+0FjO2T4mqfJDxLRpT5D2nlcnExeju1R7YSHSwX6UJ42o3tmvHas49TcGgTe7ZuIDk5+Zx1KioqxffLDwAAWJFJREFUGD58OOHh4SxdupSAgADXssREx3EtPT3d9VqzZs2IjY0lNze38TdACDc5UFTBuv0n0ShwV69E/vC7e/jDH/5AREQEAIqisGrVKkaPHk14eDgajYa4uDiWL19OVFSUytG7X6heR62ljiqThdgwvdrhCC8Wk5RGcttOl1wvsKKWA5vyKKzV0axlW/Q6+d3nb/wyqzdr1iwMBoPrIb3uLs1ut7uq0NMTI4gKkWGNl6IoypnJRaWlixBuo1EURnRKICokgEqTha93FGCx2dQOS/zKpUaUAZccUXYhJpMJo9HY4CEaj7RyEUJ4K7vdzn/eeIbq/RuIvfN5bGFx56xjNBoZOnQogYGBfPnll66RUE79+/cHYN++fa7XSktLKSkpIS0trXE3QAg3ev/nIwAMbhfLXx+6F7vdzty5c13L7XY7mZmZxMXF8eOPP7Jp0yZGjx7NrbfeSkFBgVphN5ozfdFlvhLhHs3C9ESHBmK12TlYXKl2OEIFXptEd/bjKioqavB6UVGRa1lCQgLFxcUNllssFkpLSy/az2v69OmUl5e7Hnl5eW6Ovuk5frqGE2U1aDUKfVteeKIe0ZD0RReicegDtNzaLYlAnYaC8lp+OlCidkjiVxpzRJncDPesFbsKpZWLEMIrZWZmsuSjxQz800w0gSF8lbWbwsJCampqgDMJ9KqqKubNm4fRaKSwsJDCwkKsVkdirV27dowaNYpHHnmE9evXs3PnTiZMmECHDh246aab1Nw8IS5baVUdn209gd1q4cCSmRw7doyVK1e6qtAB1qxZw7Jly1iyZAn9+/enZ8+evP322wQHB7Nw4UIVo28coYGOgja5FhfuoigKHRIcc3I55woU/sVrk+gtW7YkISGB1atXu14zGo1s3LiRjIwMADIyMigrKyM7O9u1zpo1a7DZbPTt2/eCn63X64mIiGjwEBe35dhpADolRhAeFHCJtYVTWJBUogvRWKJCAhnRyXHDdNvxcnJLq1WOSHiK3Az3rE+yjwPwu+7SXkcI4V3mzp1LeXk5q1/N5Picu5k2ui+JiYn85z//AWDr1q1s3LiRHTt20KZNGxITE12Ps88dH3zwAX379mXkyJHceOONBAQEsHz58gZtX4TwZos2HKPWVIfpu39ScuIYq1atIiamYQvW6mrHb2WNpmEaSKPRYGuCozpdSXSpRBdu1D7ekUQ/frqGilqzytEIT1O1iWxlZSUHDx50PT9y5Ag5OTlER0eTmprKlClTeP7552nbtq1rQrKkpCRGjx4NQMeOHRk+fDgPPPAA77zzDmazmUmTJjF27Fjpo+pGRcZackurURTomdb0eqU1JucNh4paSaIL0RhaxIbSNdnA9uPlrNxdxPi+qegDpDedNzh7RJmz36zzeffu3V3rXM2IMr1ej14vvS094fDJSjYfPY1GgTE9z+0zLIQQarLb7QDsKTAy4o0fCQrQkPPUUILqfwsMHDjQtc7FREREMG/ePObNm9eo8QpxLS6UPwmNMLDg50Oc/HwWIRW5LFrxLVar1TWqLzo6msDAQDIyMoiKimLChAk89dRTBAcH895773HkyBFGjhyp1mY1Glc7FyloE24UERxAUmQQ+WW17C+qpJfkyPyKqpXoW7ZsoUePHvTo0QOAadOm0aNHD5566ikAHnvsMSZPnszEiRPp06cPlZWVLF++vEEfu0WLFtGhQwcGDx7MzTffzPXXX8+7776ryvY0Vc4q9Hbx4RiCpRrjSoTX90SXO5RCNJ7r28RiCHb0R1+3/6Ta4Yh6jTmiTLiH1WrlySefpGXLlgQHB9O6dWuee+65Bgmnj7fkUfbjhxTOnUCL+CiGDBnCgQMHVIxaCCHO1SEhnLhwPbVmG1vrr12EaGoulD+Z+MhjFBXkU3NwI6eKCujevXuDURfr168HIDY2luXLl1NZWcmgQYPo3bs3P/30E1988QXdunVTc9MahVSii8bSIcHRzWJPofGybtSKpkPVSvRLVQYoisLMmTOZOXPmBdeJjo5m8eLFjRGeACrMuCZM6C132K5YeJAziS53v4VoLAFaDcM6xfPxluPsKawgPSmC5KgQtcPyCzKizLe99NJLzJ07l4ULF9KpUye2bNnCfffdh8Fg4OGHH8ZitfGvN/6JMfsrZrz8Fr8f2Isnn3ySYcOGsXv37nMm5xNCCE/Zs2fPOa91jNZQXAGf/ryTIKP723XGxsaSmprq9s8V4nKdL39it9u55a2f0OUb+deaA2Te1Oain9G7d29WrFjRmGF6jdD6SvSqOrkWF+7VNi6MdftPcqqyjuIKE/ER8pvYX6iaRBfe72CF48TTIiaE2DAZOn+lpJ2LEJ6RaAimc3MDO06Us3b/Se7qk4pGo6gdVpO3ZcuWBpOuTZs2DYAJEyawYMECHnvsMaqqqpg4cSJlZWVcf/315x1RNmnSJAYPHoxGo2HMmDG8+eabHt8Wf7R+/XpGjRrlGsLdokULPvroIzZt2gTAD/tPUvDTZyTe+Adm/HkCgToNH3zwAfHx8Xz++eeMHTtWzfCFEH7IWOoYcTZ+/PhzloV2HkTsyGksXr2V1+79i9u/OzgkhL179kgiXXiVbcfL2ZVvRK/TcNdv5G/zbM5K9GqTVKIL9woK0NImLox9hRXsOFEuSXQ/Ikl0cUFKYDC5VY6OPz1SpQr9ajgr0WvMVixWGzqt187lK4TPy2gdw4GiCk5V1rH9RDndUyLVDqnJkxFlvq1fv368++677N+/n3bt2rFt2zZ++uknXnvtNQDmfbsBa9Vpbh0xnECd4/xlMBjo27cvWVlZkkQXQnhcTaURgJEP/p32XXs1WFZtgW/zQZ/UjklvfUagG392F+UeYtFLj1JSUiJJdOExubm5lJSUXHSdtzeXAXBdcz1H9u3kiBu+93wjPXyRsyd6ndWG2WojQK7FhRt1STKwr7CC/UUV3NA2Fr1O5uXyB5JEFxcU1nkwFrtCVEgAKVHBaofjk/Q6DQFaBbPVToXJQlRIoNohCdFkBQdoyWgdw/f7TpJ1+BTt4sMICZTTnBAX8sQTT2A0GunQoQNarRar1coLL7zAuHHjyC+rYW2Oo/f5XTd1afC++Ph412RlQgihhpikNJLbdjrn9ayyo5RVm7FHp5HcLEyFyIRwj9zcXDp07EhNdfUF11ECg0nO/ABNYDD/efFhPji+y60xVFZWuvXzPC1Qq0GnUbDY7FSZLETKtbhwo6TIIKJCAjhdbWZ/YSVdkg1qhyQ8QLIL4rzsdjthPW4GoFtyJIoibRGuhqIohAcFUFpVR0Wt/yXRZ82axWeffcbevXsJDg6mX79+vPTSS7Rv3961Tm1tLX/5y19YsmQJJpOJYcOG8fbbbxMfH+9aJzc3l4ceeojvv/+esLAwJkyYwKxZs9Dp5BAmGurc3MDOfCMnK0xsOXaaAW2bqR2SEF7rv//9L4sWLWLx4sV06tSJnJwcpkyZQlJSEkXxfbHaHOu1jQtXN1AhhLhMqVEhlFWXk1daTWtJogsfVlJSQk11NeMef4X41NbnXedIpYatpTrCdHb+/MRzuOuSfc+mdXy78A1qa2vd84EqURSFUL2O8hozVXVWImXKJOFGiqLQubmBHw+UsDO/XJLofkIyUOK8dhbXERibik6x0yFRLp6vRXiQrj6JblY7FI9bt24dmZmZ9OnTB4vFwt/+9jeGDh3K7t27CQ0NBWDq1Kl8/fXXfPzxxxgMBiZNmsTtt9/Ozz//DIDVamXkyJEkJCSwfv16CgoKuOeeewgICODFF19Uc/OEF9IoCv1ax/BFTj7bj5fTMyWKsCA51QlxPo8++ihPPPGEqy1Lly5dOHbsGC++OIuQcW+iDXO0cisqKiIxMdH1vqKiIrp3765GyMLD5Ga48DUp0SFsP1FObumFq3eF8CXxqa3PO+oC4KfNuYCJ7i2akZLmvvarRbmH3PZZagsJ1DqS6CaZo0y4X8eECNYfPEVxhYlCYy0J0hu9yZOmUOK8vj3k+OGZGmqT3k7XKFzvuED0x8lFly9fzr333kunTp3o1q0bCxYsIDc3l+zsbADKy8uZN28er732GoMGDaJXr17Mnz+f9evXs2HDBgC+++47du/ezYcffkj37t0ZMWIEzz33HHPmzKGurk7NzRNeKi06hERDEFabnc1HS9UORwivVV1djUbT8KegVqvFWFPH6WozaWktSEhIYPXq1a7lRqORjRs3kpGR4elwhQqcN8M3bNjAypUrMZvNDB06lKqqKtc6U6dO5auvvuLjjz9m3bp15Ofnc/vtt7uWO2+G19XVsX79ehYuXMiCBQt46qmn1Ngk0cQl17egPF1tptIPf3sL/3GywkSR0YRGgQ4JUvR2Ic45yvzxWlw0vuBALW3jHaOefsk9rXI0whMkiS7OUVpVx5Z8x9CtVmE2laPxfeFBAYCcuMGRNAfHRIIA2dnZmM1mhgwZ4lqnQ4cOpKamkpWVBUBWVhZdunRpUNE2bNgwjEYju3adv++fyWTCaDQ2eAj/odRXowPszC/HWON/o0CEuBy33norL7zwAl9//TVHjx5l6dKlvPbaa2hb/QaABwa0YsqUKTz//PN8+eWX7Nixg3vuuYekpCRGjx6tbvDCI+RmuPA1QQFa4sL1AOSdlmp00XTtyndcV7WKDSNUL6N6LuTMtbhcD4jG0TPVMQrkQHGlXHf6AUmii3N8mXMCiw1MBQcwBNrVDsfnnbn77d8HVJvNxpQpU+jfvz+dO3cGoLCwkMDAQCIjIxuse/akdYWFhQ0S6M7lzmXnM2vWLAwGg+uRkpLi5q0R3i45KoSU6GBsdqQaXYgLeOutt/j973/Pn//8Zzp27Mhf//pXbvzdH9D2GUtMaCBj+6Ty2GOPMXnyZCZOnEifPn2orKxk+fLlBAXJcFV/JDfDhS9IjXY0Ps6Tli6iibJYbewtrACgc/MIlaPxbs5r8Upp5yIaSbNwPSnRwdjt8EtemdrhiEYmSXRxjk+2HgegaufqS6wpLocMIXPIzMxk586dLFmypNG/a/r06ZSXl7seeXl5jf6dwvv0bemoRt9TUCF9EIU4j/DwcGbPns2xY8eoqalh3/4DlKbfjqIN4P4bWhIcqEVRFGbOnElhYSG1tbWsWrWKdu3aqR26UIHcDBe+IqU+iZ57uhq7XQqCRNNz8GQlJouN8CCd6+9dnJ8/t1YVntOrvhp954lyue5s4iSJLhrYU2Bk5wkjOg1U7V6ndjhNQsRZ7VxsfvpDftKkSSxbtozvv/+e5ORk1+sJCQnU1dVRVlbWYP2ioiISEhJc6xQVFZ2z3LnsfPR6PREREQ0ewv8kGYIcvdHtdnKkKkCIS/o4+ziHT1YRFRLA3delqR2O8DJyM1z4iiRDEFqNQpXJyulq/x4JKpqmnScco3M6JUagURSVo/Fu0lpVeEJqdAjxEXosNjtbjklv9KZMmmeJBj7NdlSh904K4lBthcrRNA1hQTo0CljtdiprLUQEB6gdksfY7XYmT57M0qVLWbt2LS1btmywvFevXgQEBLB69WrGjBkDwL59+8jNzXVNWpeRkcELL7xAcXExcXFxAKxcuZKIiAjS09M9u0HCpyiKQq+0KJZtL2DHiXL6tIhWOyQhPCo3N5eSkpLLWtdksfPyN8UAjG4XzIHdO676e/fs2XPV7xXeyXkz/IcffrjgzfCzq9F/fTN806ZNDT7vcm6G6/V6N2+F8Bc6rYZEQxDHT9eQV1pNdGig2iEJ4Tanq+s4UVaDAqQnSaHQpThHhdeYrVisNnRaqSMV7qcoChmtYvg8J58dJ8rplRpFWJCkW5si+b8qXMxWG5/n5ANwU4tg/qNyPE2FRlEwBAdwutpMWY3Zr5LomZmZLF68mC+++ILw8HDXsG2DwUBwcDAGg4H777+fadOmER0dTUREBJMnTyYjI4PrrrsOgKFDh5Kens7dd9/Nyy+/TGFhITNmzCAzM1MusMUltYoNJTIkgLJqMzvzy4lTOyAhPCQ3N5cOHTtSU315PYEN/e8i8vq7sJQV8sz40TxjvfaKrcrKymv+DKEuuRkufFVqdIgjiX66mm4pkWqHI4Tb7Mp3VKGnxYS4qqzFhel1GgK0CmarnQqThagQuakmGkdqdAhJhiDyy2tZf6iEoZ3OXyggfJsk0YXLD/tPUlJpIjYskB4Jkpx0J2cSvdzPZmueO3cuAAMHDmzw+vz587n33nsBeP3119FoNIwZMwaTycSwYcN4++23XetqtVqWLVvGQw89REZGBqGhoUyYMIGZM2d6ajOED1MUhV6pUazeW8wvuWX8VrLowk+UlJRQU13NuMdfIT619UXXrTDDqoIAbED/1rEkv/nfa/ruPZvW8e3CN6itrb2mzxHqk5vhwlelRIUAp8g7XYPNbpeWF6JJsNrs7K5PondublA5Gt+gKArh+gBKq+uoqJUkumg8iqJwQ9tm/GdLHnsKK+iaHEmCIUjtsISbSRJduHxS38pldPfm6DRy4etOkSGBcKqacj/ry3g5kzkFBQUxZ84c5syZc8F10tLS+Oabb9wZmvAjHRLCWX/oFJUmCwU1chEt/Et8amuS23a64HK73c7SnBPYqCE1OoS+3ZJQrjHZVJR76JreL7yH3AwXviouQk+gTkOdxUax0SSJjAv44YcfeOWVV8jOzqagoIClS5cyevRo13K73c7TTz/Ne++9R1lZGf3792fu3Lm0bdvWtU5paSmTJ0/mq6++ch0L3njjDcLCwlTYoqbtSEkVNWYrIYFaWsSEqh2OzwgP0tUn0f3rWlx4XoIhiI6J4ewpqOD7fcX8v94paDRy/dmUSEMoAcDpqjpW7XH0pxzTK/kSa4srZahv4VJWU6dyJEL4H51W4+oZebhSq3I0QniX7cfLySutQatRuKl9s2tOoIumxW63n/fhTKDDmZvhpaWlVFVV8dlnn53T69x5M7y6upqTJ0/y6quvotNJLY9oPBpFISUqGIC805fX1sofVVVV0a1btwsWs7z88su8+eabvPPOO2zcuJHQ0FCGDRvWYKTRuHHj2LVrFytXrnTNnTBx4kRPbYJf2ZlfDkB6YgRaScxdNmdfdJlcVHhC/9axBOo0FFeYZJLRJkiS6AKAL7flY7ba6dw8go6JMkGJu0W6kuhy91sINXSpH/JaXKtBF5WkcjRCeIdTlSZ+POiYePT6NrGOUVNCCNFEOFq6QG6pJNEvZMSIETz//PPcdttt5yyz2+3Mnj2bGTNmMGrUKLp27coHH3xAfn4+n3/+OeCYSHr58uX87//+L3379uX666/nrbfeYsmSJeTn53t4a5o2Y62ZY6ccf8udZELRK+LsHS9JdOEJoXodA9s1A2DjkVOcrDCpHJFwJ0miC+BMK5cxPaUKvTEYQhwn7vJq82W1OBFCuJchOICWsY5hr+E9blY5GiHUV2u28tX2Aqw2O2kxIXRLlt6qQoimJSXakUQvKK/FYrWpHI3vOXLkCIWFhQwZMsT1msFgoG/fvmRlZQGQlZVFZGQkvXv3dq0zZMgQNBoNGzdu9HjMTdnOE44q9OSoYLnpfYVclegmKWgTntEhIZzWzUKx2WHFrkI5BzUhkkQX7CusYMeJcgK0CqO6N1c7nCYpIigARQGLzU51nVXtcITwS13rk4RhXYZQa5EfMsJ/WW12vtlZQHmNmfAgHUPT46WNixCiyYkKCSBUr8Vqs5NfLvM9XSnnRMLx8fENXo+Pj3ctKywsJC6u4aztOp2O6Oho1zrnYzKZMBqNDR7iwqw2O7vqJxTtKhOKXjFXEr1GKtGFZyiKwqAOcQQHaDlVVce6/SfVDkm4iSTRBZ9udVShD+oQR3So3NVuDFqNQkT9MLIyP5tcVAhvkRYdQqjOjiYojB+PycW08E82m53lOwvJK61Bp1G4tWsSIYHSm1oI0fQoikJqfUuXPGnp4lVmzZqFwWBwPVJSUtQOyasdPllJdZ1jQtFWzWTC1isVUd9a1VhrxmaTUeHCM0ICdQzr5LgJuTPf6JrT4GJ++OEHbr31VpKSklAUxdU6y6myspJJkyaRnJxMcHAw6enpvPPOOw3WefDBB2ndujXBwcE0a9aMUaNGsXfvXrdtl7+TJLqfs1htfLb1BAC/7yU/XhqTTC4qhLoURaFVmGMkyLeHqqS1kvA7JouVZTsKOHiyEq2icEvXRJqF69UOSwghGo2zpYv0Rb9yzgmCi4qKGrxeVFTkWpaQkEBxcXGD5RaLhdLS0nMmGD7b9OnTKS8vdz3y8vLcHH3Tsr2+lUvnJINMKHoVwvU6tBoFmx0qTFKNLjwnLSaUjFYxAKzdd5JC48ULuS412fO0adNYvnw5H374IXv27GHKlClMmjSJL7/80rVOr169mD9/Pnv27GHFihXY7XaGDh2K1SodEdxBkuh+bt3+k5RUmogJDWRg+2Zqh9OkOScXPS2V6EKopkWoDZvZxNEyCztOXLoaQIimorSqjv9szuNISRVajcLNXRJIiwlVOywhhGhUzslFiytM1JolgXAlWrZsSUJCAqtXr3a9ZjQa2bhxIxkZGQBkZGRQVlZGdna2a501a9Zgs9no27fvBT9br9cTERHR4CHOz2iG46drUIBOzeXf6WooinKmoK1aCtqEZ/VpEUWr2FCsNjtfbcvHWHvhfNDFJnsGWL9+PRMmTGDgwIG0aNGCiRMn0q1bNzZt2uRaZ+LEiQwYMIAWLVrQs2dPnn/+efLy8jh69Ki7N80vSRLdz328xdHKZXSP5gRo5c+hMTlb5ZRWyYlbCLUEaqFmv2MyrP9slqon4R8On6zkP5vzOF1tJkyv445eyTIcXAjhF8KCdESFOJJnx0/XqByN96msrCQnJ4ecnBzAMZloTk4Oubm5KIrClClTeP755/nyyy/ZsWMH99xzD0lJSYwePRqAjh07Mnz4cB544AE2bdrEzz//zKRJkxg7dixJSUnqbVgTcrhCC0CL2FBXe1Bx5SKDpbWqUIeiKAztFE9MWCDVdVa+zMnHZLm6m7r9+vXjyy+/5MSJE9jtdr7//nv279/P0KFDz7t+VVUV8+fPp2XLltI2y00ka+rHTlWaWLXHMTzvzt6yQzW2mDBHEv1UpUnlSITwb5XbvwPgy5x8amSiX9GkKewp1/DV9gLqrDaaRwbzh9+kEB8RpHZgQgjhManR0hf9QrZs2UKPHj3o0aMH4GgV0KNHD5566ikAHnvsMSZPnszEiRPp06cPlZWVLF++nKCgM+eRRYsW0aFDBwYPHszNN9/M9ddfz7vvvqvK9jQ1mqBwjlY5UjbdUyLVDcbHRYY4W6v6VxJ91qxZ9OnTh/DwcOLi4hg9ejT79u1rsE5tbS2ZmZnExMQQFhbGmDFjzmnjlJuby8iRIwkJCSEuLo5HH30Ui0Va41wuvU7LqG5JhAY6Jhr9ZkchV9Oe/6233iI9PZ3k5GQCAwMZPnw4c+bMYcCAAQ3We/vttwkLCyMsLIxvv/2WlStXEhgo8x+6gyTR/djnOflYbHa6JhtonxCudjhNnrMS3VhrwWy1qRyNEP6rNncH8aFaKkwWvt1ZoHY4QjSKarONZrf9jd3ljklDuyUbuK1Hc5lEVAjhd1x90U9LEv3XBg4ciN1uP+exYMECwFFBOXPmTAoLC6mtrWXVqlW0a9euwWdER0ezePFiKioqKC8v5/333ycsTEY7uUN4z5FY7QrNwvWkRAWrHY5Piwx2XIv7WzuXdevWkZmZyYYNG1i5ciVms5mhQ4dSVVXlWmfq1Kl89dVXfPzxx6xbt478/Hxuv/1213Kr1crIkSOpq6tj/fr1LFy4kAULFrhutonLEx4UwK3dktBpFHJLq/mlVHvFn/HWW2+xYcMGvvzyS7Kzs/nnP/9JZmYmq1atarDeuHHj+OWXX1i3bh3t2rXjzjvvpLb24v3YxeWRKyk/Zbfb+XiLo5XBHb2SVY7GP4QE6ggO0FJjtlJaVSeVgEKoxs5NLYJZssvR4uL2nnIMFE3L0ZIqnlh9ipB2GWiwM6hjPJ2SDGqHJYQQqkiODEbB0cbBWGMmIlhaYgjvZ7LYCe85EoBeqVEoikwoei2clejlflaJvnz58gbPFyxYQFxcHNnZ2QwYMIDy8nLmzZvH4sWLGTRoEADz58+nY8eObNiwgeuuu47vvvuO3bt3s2rVKuLj4+nevTvPPfccjz/+OM8884xUOF+B+IggRnRO4KvtBRyt0mLoN/ay31tTU8Pf/vY3li5dysiRjmND165dycnJ4dVXX2XIkCGudQ0GAwaDgbZt23Ldddf9//buPDyq8u7/+HuWZCb7vhCSQNh3JCwKKi4gFERxRSnK8lC3QgX5VX1sn7q0WvBpa63V4vJYRFuLK2KtYhEqqwIJBgFZw5KF7PtMksl2fn9EohECgSyTTD6v65rrImfOzPneF/kkme85574JCQlh9erVzJw5s9XH1NXoSvQuam9mKQeyy/C2mrl+eHd3l9NlhH17NXqB5kUXcaurE3wxmWD7sUKO5zvP/QKRTmLHsUJu+MtWMkprqCkr4IqoGjXQRaRLs3lZ6BZcf/HKUf3Ol07ikyNOLH4h+FoM+kbqyv6WCvpeE73uQubR8BAlJSVA/R0kAMnJyVRXVzdqwA4YMID4+Hi++KJ+HakvvviCoUOHEhUV1bDP5MmTKS0tZd++fe1YvWfoFeHPlf0iAAi+/A7+dah5v5eqq6uprq7GbG7cxrVYLNTVNT3Twak7jFwuTSvcGtRE76Le/vYq9MmDoxt+oUjbC/12XvRCh5roIu4U7mthfN/6P17eSdYCo+IZ1qRkcsf/bae4vJo+oV5kr1xMqK3rflAUETml97eLKafmOtxcici5lVVW8/6B+u/VQUG1mM26Cr2lAmxWLGYTdQaUubrmXN51dXUsXryYSy+9lCFDhgCQnZ2Nt7c3wcHBjfaNiooiOzu7YZ/vN9BPPX/quTNxuVyUlpY2esh3hscFMyio/vvw1ZTShlkizrbYc2BgIFdccQUPPvggn3/+OceOHeO1117j9ddf58YbbwTg6NGjLF26lOTkZNLS0ti2bRu33norPj4+TJ061S1j9TRqoreBZcuWNaxmfso999xD79698fHxISIigunTp3PgwAG31FdZXcualExAU7m0t++uRNdZQBF3O7Wg8rvJGdRonQLp5N5OSmfxWylU1dYxZUg0v7kyjFpnkbvLEhHpEE410TOLK7SouHR4r2w6iqPKoLognTg//Y3aGkwmE0HfTuXU1eZFP2XBggXs3buXVatWtfmxli5d2jClSFBQEHFxcW1+zM5mQGAdpTs/AODh975mTUrmORd7XrVqFaNHj2bWrFkMGjSIZcuW8dRTT3HvvfcCYLfb2bx5M1OnTqVPnz7cdtttBAQEsG3bNiIjI90yTk+jOdFb2c6dO3nppZcYNmxYo+0jR45k1qxZxMfHU1hYyOOPP86kSZM4duwYFsv5LyjQEp/szaK0soaYIDuX9glv12N3dWF+NkDTuYh0BBMHRRLi60VOqYtNh/O4ekDUuV8k0gG9nZTOw+99jWHAHZfE8+vrh5CS8pW7yxIR6TCCfLwI9/cm31HFsXwng2IC3V2SyBmdKHDy4qajABRv/hvmEf/PzRV5jhBfLwqdVRSVV9MjzN3VtK+FCxfy0UcfsWnTJmJjv7uQMjo6mqqqKoqLixtdjZ6Tk0N0dHTDPjt27Gj0fjk5OQ3PnckjjzzCkiVLGr4uLS1VI/0HTCYo2vB/3DhjJuuPVbBoVQqPThuEYTR9F2l0dDQrVqw443NOVw0pBSYuW/gHYvOdmE0mIgNtjOsdTnxCRFsNo8vRleityOFwMGvWLF555RVCQkIaPXf33Xczfvx4evbsSWJiIk8++STp6ekcP3683et8bdsJAGaOiceiW8Pa1anpXMoqa3DV6CoYEXeyWS3cOKL+j8i3dmpKF+mcPtmT1dBAnz22B7+ZPkS3fYuInMGpq9EP55a5uRKRMzMMg8c/3EdVTR3DorwpP7jV3SV5lNBTd4U7us5d4YZhsHDhQlavXs2GDRtISEho9PzIkSPx8vJi/fr1DdsOHjxIWloaY8eOBWDs2LHs2bOH3Nzchn3WrVtHYGAggwYNOuNxbTYbgYGBjR5yZveNCmLO2B4A/Pqjb3jqX99QfR53Se/PKuWhd3eT+Jt1/PTvu3h501H+/U0Oa/dl8/oXJ7j3b8mM/91/eOOL49R24fUAWouuRG9FCxYs4Nprr2XixIk8+eSTTe7ndDpZsWIFCQkJ7X42LiW9mN3pxXhbzMy8OL5djy3g42UhwG6lrLKG3FIXcaG+7i5JpEubMTqWv249xvr9ueSVuYgIsLm7JJFmSz5RyKK3UjAM+PHF8Txx/WBMJjXQRUTOpH9UANuPFXKisJzyqhp8vfVRWFru8ccf54knnmi0rX///hw4cIDjx4+f1rQ85e233+bWW29ttO2d5Az+czAPL4uJu0YE8c82q7prCvfveneFL1iwgDfffJM1a9YQEBDQMId5UFAQPj4+BAUFMX/+fJYsWUJoaCiBgYH87Gc/Y+zYsVxyySUATJo0iUGDBnHnnXfyv//7v2RnZ/M///M/LFiwAJtNn51a6uCBA1w/YADVQwJ4c28Zr2w+xuf7Mrh7ZBC9Q868fmFNnUHSSRefHHGyJ/e77+dofwsjom10D7BiMkFGaQ07T1aSV+biV2v28c6Xh1l8cTDBdgvh4eHEx6sneL70l0MrWbVqFbt27WLnzp1N7vOXv/yFhx56CKfTSf/+/Vm3bh3e3t7tWCWs3HYcgGnDuzX8EpH2FRVgp6zSQW6Zmugi7jYgOpDhsUHszihh9VcZ3D2+t7tLEmmWY/lOfrIyiaqaOiYOjOQ304eogS4ichYhft5EBdrIKXVxKMfBRXHB7i5JPMTgwYP57LPPGr62WuvbLHFxcWRlZTXa9+WXX+Z3v/sdU6ZMabQ9Nc/BY2v2AbB4Yj+6B2ohxtbWsD6ZowrDMLrE303Lly8H4Morr2y0fcWKFcydOxeAP/7xj5jNZm6++WZcLheTJ0/mL3/5S8O+FouFjz76iPvuu4+xY8fi5+fHnDlz+PWvf91ew/BIpYV5ANxxxx0N23z7jSN0yv0cLvTnwXX5lB/ZQfnBLVTnp2PU1WINisQeNwTfAZdjDaifk8ioq6X80DbKktZwIvMA2394ILOVgIt+RPAVc/k6B2a//jU5q36JV3UZB/bvVyP9PKmJ3grS09NZtGgR69atw263N7nfrFmzuOaaa8jKyuL3v/89M2bMYOvWrWd9zbksX76c5cuXN0wLM3jwYB599NGGX8rZ2dk8+OCDrFu3jrKyMmoDuhEwdgZzFz50wceUlokMtHEkz0FOaaW7SxERYMboOHZnlPDWznT+a1wPnnjiCf72t7+RnZ1NTEwMc+fO5X/+538a/tDOycnh4Ycf5t///jfFxcWMHz+eP//5z/Tt29fNI5GuoryqhnveSKKovJrhsUE8N3OEpmcTEWmGAdGB5JTmcSC7VE10aTVWq/WMc0NbLJbTtq9evZoZM2bg7+/fsK24vIq7X0+iorqWcb3DuPeK3uzW2iatLtjXG4vJRFVtHaWVNQ0LjXqys82vfYrdbueFF17ghRdeaHKfHj168PHHH7dmaV1ehaP+RNm19/yS/sNGNmwvr4G9xbWkl5vx7TMG3z5jzvh6m9mgh38dvfxr8et5MUy6+KzHK62GbXkGzuBoEu59kWMv3kt+fr6a6OdJTfRWkJycTG5uLomJiQ3bamtr2bRpE88//zwulwuLxdKwMnHfvn255JJLCAkJYfXq1cycOfOCjx0bG8uyZcvo27cvhmGwcuVKpk+fzldffcXgwYOZPXs2xcXFfPjhh3x4sIznX3mN/DVPU/vorRA7ojWGL+cpKrD+pEluWdeZi02kI7t+eAxPfrSf1Dwni37xOG/99UVWrlzJ4MGDSUpKYt68eQQFBXH//fdjGAY33HADXl5erFmzhsDAQJ555hkmTpzIN998g5+fn7uHI53M2U6Gn+028PDp/03P0RN4ZfYoTUkgItJM/aL82XQ4j5xSF4XOqoY5kkVa4vDhw8TExGC32xk7dixLly49Y2MqOTmZlJSURs3Kiqpa7no9idQ8J92C7Dx720U6Md5GLGYTIX5e5DuqKHC4ukQTXTq+sJgexPYd3GhbP6DQWcXBnDLSC8spq6yhzjDw87YSFWijR5gfCeF+5/2zIt5Vw+pdmRSWQ+Stj1Pmav7c61JPC4u2ggkTJrBnzx5SUlIaHqNGjWLWrFmkpKRgsVhOe41hGBiGgcvVskbqddddx9SpU+nbty/9+vXjqaeewt/fny+//BKAbdu28bOf/YxBwxP56FgtweNuJyAwkOTk5BYdVy5c5LdzLpdUVFNZrcVFRdwtwO7FtcO6AbB2/SamT5/OtddeS8+ePbnllluYNGlSw4r0hw8f5ssvv2T58uWMHj2a/v37s3z5cioqKvjHP/7hzmFIJ3XqZHhycjJJSUlcffXVTJ8+nX379jXcBv79x43zH8Dk7YN/n1G88ONEIgMv/G42EZGuxtfbSkJY/QnvrzOK3VuMtJlly5ZhMplYvHhxw7bU1FRuvPFGIiIiCAwMZMaMGeTk5LT4WBdffDGvvfYaa9euZfny5Rw7dozLL7+csrLTF7B99dVXGThwIOPGjQPqPw/e+ep2dh4vIsBu5bV5Y/R7vY2dmtI239F15kWXzinUz5uxvcKYMSqO+ZclcNflvfjxxfFMGBhFn0j/CzrZ5m+zclNid3wsBl5hcfzvtiJcNepJnQ810VtBQEAAQ4YMafTw8/MjLCyMIUOGcPToUZYuXUpycjJpaWls27aNW2+9FR8fH6ZOndpqddTW1rJq1SqcTmfDSsrjxo3jrbfe4sVPd1PkdOGXsZ3a6qrT5sSS9mP3sjSc9daULiIdw+2j6xd5Lg3sxWefrefQoUMA7N69my1btjRMkXXqxOf3p+Eym83YbDa2bNnSzlWLJzjbyfBTt4GfemS6bPzrozX49r+MX04fwZiEUHeXLyLS6Qz/dhqXb7JK1TzwQDt37uSll15i2LBhDducTieTJk3CZDKxYcMGtm7dSlVVFddddx11dS27EnPKlCnceuutDBs2jMmTJ/Pxxx9TXFzM22+/3Wi/iooK3nzzTebPnw/Akdwybl6+jaQTRQR+20DvHx3Qolrk3ML8T82LrrvCpWvys1m5NKKGOlc5+/Kq+MX7e9m4cSPXXXcdMTExmEwmPvjgg0avef/995k0aRJhYWGYTCZSUlKafH/DMJgyZcoZ38cTqIneDux2O5s3b2bq1Kn06dOH2267jYCAALZt20ZkZGSL33/Pnj34+/tjs9m49957Wb16NYMGDQLqV/2udFXx4PRRpP3+Ro5/8CyrV6+mT58+LT6uXLiowPoz4Dma0kWkQxjZI4TeEX74jrmZ4VdMZcCAAXh5eTFixAgWL17MrFmzABgwYADx8fE88sgjFBUVUVVVxdNPP01GRsZpC0dJ57F8+XKGDRtGYGAggYGBjB07lk8++aTh+XvuuYfevXvj4+NDREQE06dP58CBA61ex5lOhp+S73Ax939XUZVzlEk3zWT+ZWee5kVERM4uLsSHEF8vqmsN9medfrWwdF4Oh4NZs2bxyiuvEBIS0rB969atHD9+nNdee42hQ4cydOhQVq5cSVJSEhs2bGjVGoKDg+nXrx9HjhxptP3dd9+lvLyc2bNnsyYlk+uf38qRXAdRgTZW3T2WkT1CmnhHaU3hft9eie7UlejSdQV5G+R9sBSzCd7blcEHO48yfPjwJufFdzqdXHbZZTz99NPnfO9nn33Woxft1SSabeTzzz9v+HdMTEybLsLQv39/UlJSKCkp4d1332XOnDls3LiRQYMG8atf/YrD6TlE3vYk3aOjmBaUwYwZM9i8eTNDhw5ts5rk7KID7RzKcZBVXOHuUkQEMJlM3D46nl/8/kXWbX6PN998k8GDB5OSksLixYuJiYlhzpw5eHl58f777zN//nxCQ0OxWCxMnDiRKVOmNGvhHumYzrW+yMiRI5k1axbx8fEUFhby+OOPM2nSJI4dO3bGKdvO1549exg7diyVlZX4+/s3OhkOUFNbx8/e/IrjX3yEb2QPXn/kTo/+41REpC2ZTCaGxwbz+aE8vkorYmj3IM1B7SEWLFjAtddey8SJE3nyyScbtrtcLkwmEzabrWGb3W7HbDazZcsWJk6c2Go1OBwOUlNTufPOOxttf/XVV5k85Vp+tTaNtfuyARjXO4znZo5omGJE2l74t1OrFjmrqK6tw8ui60qla6o8/hVzhgWwYncZHxZG8bf51zO2d9gZ9z318+zUGk5NSUlJ4Q9/+ANJSUl069attUvuEPQTwwN4e3vTp08fRo4cydKlSxk+fDh/+tOfSE1N5fnnn8dy5U/x6XkRT86/ll8/8TijRo0668rL0va6B/sAcLK4kjo13kQ6hBsTu1P8+Qp8R9/EsPFTGTp0KHfeeScPPPAAS5cubdhv5MiRpKSkUFxcTFZWFmvXrqWgoIBevXq5sXppiXOtL3L33Xczfvx4evbsSWJiIk8++STp6enn/EOyuU6dDN++fTv33Xcfc+bM4Ztvvml4/vf/PsTWgycp/2Yj9//0bvxtugZCRKQlBsUE4uttobSyhv1Zpe4uR1rBqlWr2LVrV6O/2U655JJL8PPz4+GHH6a8vByn08nPf/5zamtrW3wn4c9//nM2btzI8ePH2bZtGzfeeCMWi4WZM2c27HP48GE2bdrE3oBRrN2XjdVsYtGEvrwx/2I10NuZv82Kv82KAeSW6q5w6dqm9fPjxhHdqa0zWPDmLjKKyi/4vcrLy/nxj3/MCy+8QHR0dCtW2bHoU1gzpKWlkZ+f75Zjh4eHn3Fl77Opq6vD5XJRXl4fAFeNwdgeIUwZUv+NbLFYWjz3m7RMeIANb6uZqpo68jSli0iHEO5vw2JUg8nM20npPH59/SrpTf3MDAoKAuo/GCUlJfGb3/ymXeuVtlFbW8s777xzxilVoP52xhUrVpCQkEBcXFyrHPPUyXCoP0mzc+dO/vSnP/HSSy/x8Z4sXtyYSvnBrZhrq1jy07ta5ZgiIl2Zl8XMqB4hbDqcz/ZjhQzoFoDVrOvLOqv09HQWLVrEunXrGq1bc0pERATvvPMO9913H8899xxms5mZM2eSmJiIuYX/7xkZGcycOZOCggIiIiK47LLL+PLLL4mIiADgRIGTGxc9hdk/nLruwxjWPYinbx7GoJjAFh1XLlxUoA1HXg3ZpZV0D/FxdzkibmMymVh601AO55axN7OUe95IvuD3euCBBxg3bhzTp09vxQo7HjXRzyEtLY0BAwdSUX7hZ2RawsfXlwP79zfZSH/kkUeYMmUK8fHxlJWV8eabb/L555/z6aefkkUI1pBuFHz6PDdM/xNHjx7lgw8+YN26dXz00UftPBL5PrPJREyQneMF5WQWV9DymfFFpDVcec2P+GzdW7wWFsXMgXa+2fs1zzzzDP/1X//VsM8777xDREQE8fHx7Nmzh0WLFnHDDTcwadIkN1YuLXWuKVX+8pe/8NBDD+F0Ounfvz/r1q3D29u7TWo5dTL8YHYZP39nNwABJzZz5fTrGz6Ui4hIywztHkRyWhEOVw1fpRUzuqcWa+6skpOTyc3NJTExsWFbbW0tmzZt4vnnn8flcjFp0iRSU1PJz8/HarUSHBxMdHR0i+8kXLVq1Rm3V9XU8crmozy3/jCuYbfSO/E2llzTj/mXJWDVFCJu1S3Ih9Q8J1klFYDmopeuze5l4aU7R3H9n7ew72T9nVnnO03phx9+yIYNG/jqq6/aosQORU30c8jPz6eivJxZD/+OqPje7XrsnLRU/v70g+Tn5zfZRM/NzWX27NlkZWURFBTEsGHD+PTTTxl96RX86NnNRN7yOMH73uH//eTHOBwO+vTpw8qVK5k6dWq7jkVOFxviW99EL6og0tfd1YgIwKoVLzNo6jwy/vU8w97/LbHdu3PPPffw6KOPNuyTlZXFkiVLyMnJoVu3bsyePZtf/epXbqxaWsPZ1hcBmDVrFtdccw1ZWVn8/ve/Z8aMGWzduvWMV7ydj6ZOhr+/5l/c/UYS5VW1DAss56N9SSz/3a9bY6giIgJYLWYu7R3Ov7/JYcexQvpFBRDk4+XusuQCTJgwgT179jTaNm/ePAYMGMDDDz/caP2S8PBwADZs2EBubi7XX399q9eTfKKQR97fw6EcBwCX9gnjqRuG0jPcr9WPJecvOrD+b7fs0ko3VyLSMXQP9uGFWYnM+r/tAHy2P4cbb2z+6zds2EBqairBwcGNtt98881cfvnljdaM7OzURG+mqPjexPatv7W/srqWnNJKCp1VGAZ4W82E+HkTGWBr94UpXn311dO21dYZzHttJ9mllfTr149PXliL3avlC59J6zo1L3pmcQUX6S4ykQ4hOCiQh59Yxh8/O8TIHiG8d9+40/a5//77uf/++91QnbSls02pAvXT9wQFBdG3b18uueQSQkJCWL16daM5Ty/EmU6G/+vjT/jHyRBOFOQRG+JDn/xNxMbG6m4HEZFWNiA6gG+ySskoqmDDgVxuuChGCzd3QgEBAQwZMqTRNj8/P8LCwhq2r1ixgoEDBxIREcEXX3zBokWLeOCBB+jfv/9Z3/t8pnZ1VtXxtz1lfJpafxd7oM3MvIsCGB/vRWHaQQrTmj+m/fv3N39nOS+RgTZMJnC6aimrrCbArpNnIpf0CuPRaYOYuxTeTc5g5uF8Lusb3qzX/vd//zc/+clPGm0bOnQof/zjH7nuuuvaoly3URP9PJRVVrP9WCEHssuorTv99gaL2URMsJ2EMD/6RQXg54aFvwzD4Om1B9h0KA+7l5kXfpyoBnoHFRlgw9tixlVTR1GV/lgX6ShmXhzH8/85TPKJIvZmljCke5C7SxI3ODWlypkYhoFhGE0+fz5+eDLcMAwefPdrNh3KwO5l5qU7RzI45mqe+d3TLT6WiIg0ZjKZuLp/JH/fkUZaYTnJaUWM6qFpXTzRwYMHeeSRRygsLKRnz5788pe/5IEHHjjra5o9tavJjP/QCQRfPhuLf/30II6v15H+n7+ypLKsRXU7HI4WvV5O52UxE+5nI8/hIrukUk106fIcDgdHjhxhmE99n7O6OIf5z7zDyvuu5pJh/SksLCQtLY2TJ08C9T9PAaKjoxs9fig+Pp6EhIT2G0g7UBO9mU6Wm/hoexqumvrF5YJ8vIgIsGE1m6ioqiXf6cLpqiW9sIL0wgo2H84nNtSH/lEB9In0x2a98Eb2+ZyFXrW3jLe/qf9Fe9/IQCqzj7Aru22PKRfGbDYRH+rLkTwH2RWaF0+kPZ3rZ9wl3W1sTqvkmX8ms3BMcKsc80IWipb2cbb1RY4ePcpbb73FpEmTiIiIICMjg2XLluHj49MmU6MtW3uAd5MzsJhNPD8zkcExOokjItKWQvy8ubJfBOsP5LIttYCoADtxoZprsbP74fQBy5YtY9myZef1Huea2tUwILPCxIESCyXV9Z/n/K0GiaE1REy7AqZdccH179+xkU9W/onKSk050haig+zkOVycLK6kb1SAu8sRcaukpCSuuuqqhq+LNvwfRRvg5uQfcXjLP/nwww+ZN29ew/O33347AI899hiPP/54e5frVmqiN4PfkAl8ke8F1BEZYGN8vwhiguyNbvUzDIOi8mpOFDg5nOsgq6SyoaH+n4N59A73Y0C3QHqE+mI2N++q49LCPADuuOOOc+9sthA64S4CEqcBULj+FRY/vea8x/pDOvPdthLC/TiS5yCrUleii7SH5v5c9Y4ZQLc7f8/6IyWsfOAG6lp4FRGce6FocZ+m1he55pprOHnyJJs3b+bZZ5+lqKiIqKgoxo8fz7Zt24iMPPey0M29DdwwDFbtc/DOtyfC7x0ZSGhlJrt2ZV7QmHQyXESk+QbHBJJRXMHB7DI++jqLW0bGEhFgc3dZ0kF8f2pXwzAorqgmNdfB3pOllFRUA2CzmhmTEMrw2GAszfy8fzY5aaktfg9pWlyID3syS0gvOsddBiJdwJVXXtloMdGskgqu+/NW8h0u7nkjmVdm38ncuXPP6z3Pd3HSzkJN9HPYklZB2JT6uW+HdA/kyn6RZ/ylaDKZCPXzJtTPmxHxIZRUVHMwu4yD2WUUlldxKNfBoVwHPl4W+kcHMLBbABH+trPOuVfhqF8Z99p7fkn/YSOb3K+0GpILrBRWmQGDocG19Js3B+bNueBx68x3++gRVn+VS3GVGYu/bh0VaWvN/blqGLAhu45ivJny2Bv0D6xr0XGbs1C0uM+Z1hc5JSYmho8//viC3rfZt4H/4ER40X9e5aGnV1/QMX9IJ8NFRM7NZDIxcUAkjsoaMosrWJOSyYxRcQRqodEO4XzmJT8fhmGQUVrD0eIa8py1FFbUUl1nYBhgMkFpSTGh19xLSqGFvfuycbpqKHRWUV5V2/AedquZYbHBXBQfjI+mUe00Yr+926TAWYXTVePmakQ6lm5BPrw8eyR3/N92Nh/O5543knl59sgWzbDhKdREP4ua2jre2+/AZLaQ4F/L1f0jm73QTJCPF2MSQhndM4TcMhcHvm2oV1TXkpJeTEp6MWF+3gyIDqB3pD8hvt5NvldYTI+GM9/fV1pRTdKJIvZll1BngLfFzOQhUfQK97/gMZ+iM9/tw89mJTrQTnZpJT69Rrm7HJEuo6mfq9832r+UdftzOF5h58oRPVvlqiLpWs51GzhAeQ3sLLCS76q/DfyikBp6z7kT5tzZomPrZLiIyPmxWsxcN6wb7yRnUOCs4v2vMrklMRZ/uz4yu1OzT0ifB6+IBPyHTsB34HisZ72QyUZA4jRSHYDju7sSzSboHuJDv8gA+kcH4GXR1JydjY+XhcgAG7llLtILy2l5B0Wk8znXnauPXBrEk5uK2Hgoj9ue/w8Pjg3Gx6tlP++aM8VpZmYmDz/8MJ988gnl5eX06dOHFStWMGpUfc9s7ty5rFy5stFrJk+ezNq1a1tUW3PoL4KzsFrMPHZFKDc99EdGzLz1glZqN5lMRAXaiQq0c1mfcNIKy9mfVcrRfCcFziq2phawNbWAIB8veob50i3Ih8hAG0FnuOqhuraOImcVmcUVHM13klFU0fBcQrgfV/WP0KIYnVBCuF99E73vJe4uRUS+p1+UP1tT83G4ajiYXcagmEB3lyQXqK2uYDuXU3+Yfv828FNcNbXsyShhR2Yh1bUG3hYzkwZH0TuidT7G6WS4iMj5s3lZuOGi7ryTnE5JRTXvfZXBLYmx7i6rS2vOCenmMAzIc5nYX2JpOHENYDEZhHgb+FkNfCz1X5+Sm3Gcw1/vYNgV1xHfMwE/bwuBPl5EBtiwqnHe6cWF+pJb5iKtsJxBTV/TKOJxzmfqaHv8MCJueZSUbLhl+Vby3n2CWmfRBR/7XFOcFhUVcemll3LVVVfxySefEBERweHDhwkJCWm0349+9CNWrFjR8LXN1j5TsKmJfg7BdgslW/+B6ce3tvi9LGYTCeF+JIT74aqu5XCug0M5ZWQWV1BSUc3ujBJ2Z5QAYAKs9CXmJ8vZXhHJzs1HG902dkpcqA9jeoYSG6LFbzqr3hF+fHG0AJ+EETiqWjZlhIi0HqvFzIj4YLYeKSDpRCEDuwVc0MlUca/WvoLNGhaLrVt/bN36Yg2OxuwbjNnmC3W1GDVV1DqLqCnNp7Y0j5qyPOy9RpJZXIF3WSXVNQZFFVVkFlVwNM9JVW39z/xuQXauGRhFiJ8+wYmIuJu/3crNibG8uyuD4vJq3v8qk7HB7q5KznRCujkMwyCtsJztxwrJKqm/O8tsgl4R/gzsFkB8qC9W85kb4sklh0na8iYJ11zJRT1CzriPdF7xob4knygiraicgede5kbEYzR3itNTCl0mtuUZEN2Hvote5+LwGsJs5z/neXOmOH366aeJi4tr1CBPSEg4bT+bzUZ0dPR519BSaqK7ic3LwpDuQQzpHkRVTR3pReWkFZaTW+oi3+Gips6gGiteYXFUGsC3DXQfLwvhAd70CPWjb6S/5unzAGH+NgK96ijFix2ZlYx3d0Ei0mBo9yCSjhdRVF5Nap6TPpG62bOzaekVbIYBBS4TJyvMnKww46w5/xMpX5bClzvST9se4uvFqB6hOkEjItLBBPp4cdOI7ry3K5NCZxWbq6yY7QHuLkvOQ51hkJrrIOlEEbllLqD+orYhMYGM7BGiO7iFmCA7VrMJp6uW4mr9HSZdT3OmOAWIBeLLq1iz+yTF5dVszPVibK8wRvYIwdzKn2E+/PBDJk+ezK233srGjRvp3r07P/3pT7nrrrsa7ff5558TGRlJSEgIV199NU8++SRhYWGtWsuZqIneAXhbzfSO8G+4hbvOMKioqiVpy3rWvvkKP5q3hIHDEwmwe2mxEg8V61vHnqwyXDWaLkKkI7FZLQyLDWLn8SJ2Hi+kd4Sfmp2d1PlcweaqriW9qIJj+U6O5TupqP7uTjCL2UR0oJ2oQBuhft74eluxWc3UGQY1tQbOqhrKKusfJ7NOkpOdTWC3BKxe3lgtZoJ8vIgIsJEQ5kdMsF3fTyIiHVSwrzc3JXbnveQMSqsg8rbf6K7RDqyurv53cL6jivSicg7nOHB8u2CkxWxiaPcgRvYIwd+mFojUs1rM9AjzJTXPSWa5pucROZtgX29uHx3HhgO5HMpxsC21gCO5Dq7qH0l0kL3VjnP06FGWL1/OkiVL+MUvfsHOnTu5//778fb2Zs6cOUD9VC433XQTCQkJpKam8otf/IIpU6bwxRdfYLG0bc9Uv0E6ILPJhJ/Nij8uXOl7CLJUExnQet+U0vH0Dajjk1/eyZS5O91dioj8wEVxwXyVVkxumYtj+U56tdKc1dJx1NUZZJdWklZYf1dYdmklxvfuULRZzSSE+9E7wp/4UF+8rc37oJWctZ3dKx9k0hMvc9HYK9qoehERaSshvt7clBjL2zuOQ3Qf3tpXxngtY+QWpdWw9Ug+aYXlFJdXN0yJdjZ2q5lhscEMjwvC11utDzldn0h/UvOcnFQTXeScbFYLPxocTVxoKZsP5ZNb5uKtpHT6RfkzskdIq/Qt6+rqGDVqFL/97W8BGDFiBHv37uXFF19saKLffvvtDfsPHTqUYcOG0bt3bz7//HMmTJjQ4hrORr9JRDoAqxkwdGWLSEfk621leFwwySeK2JpaQM8wP8xmXT3c2TldNRzLd3K8wEl6YcVpH8ZDfL2ID/WlV4Q/3YN9sOj/XESkSwr18+byyBrWrN/KHTfdfu4XSKtyVtURMvFe1mV5AWdfzM5sgiAfL7oF+ZAQ7kfP8KbnOxcBSAj3w2IyUVYDXmFx7i5HpMMzmUwMiQkiIcyPrUfy2Z9dxqEcB4dyHHQP9qFvZP0sG/72C2s3d+vWjUGDBjXaNnDgQN57770mX9OrVy/Cw8M5cuSImugiIiLuNrpHCPsySyh0VvFNVilDuge5uyS5ALV1Bql5Dr7OKCGzuKLRc3armbhQX+LDfIkP9SVQc6WKiMi3grwN8j/6PbYnZrq7lC6lsrqWJf/OJ3DkNKC+4dk/KoCIABt2r8bNcZPJhN1q1jRpcl5sVgtxoT4cLyjHt/+l7i5HpNPws1mZNDiai+LrLzY7nOsgs7iCzOIKPj+UR6DdSnSQncgAO+H+3oT725r1vpdeeikHDx5stO3QoUP06NGjyddkZGRQUFBAt27dWjSm5lATXURE5BxsXhbGJISy6XA+Xx4toH90AF4WXdnUmWRVmNiw/QRF5dUN26ICbSSE+9EjzI/IAFurL4wjIiIiF87uZWF8Dzurth7i6gGRJA6NcXdJ4oH6RgVwvKAcv8FXYXx/Pj8ROafIADtThnTj0spqjuQ4OJLnIKukktLKGkor669QP8Vm9iJyxq9ZubuUAnsOl/cNx/6DdR8feOABxo0bx29/+1tmzJjBjh07ePnll3n55ZcBcDgcPPHEE9x8881ER0eTmprKQw89RJ8+fZg8eXKbj1dNdBERkWYYGhtESnoxpZU1JB0vYmzvtl/9W1quorqOsKmL2ZbnBVTj41W/WOzgmEACdLW5iIhIh3broACemb+QyOfecncp4qH6RPizwZQNod05WFDNSHcXJNIJBdq9SOwRQmKPEFw1teSUusgurSS/zEWew0VxeTWuOhM+CYmsOehkzcEkfL0tTBgYxdxxPRjZIxSA0aNHs3r1ah555BF+/etfk5CQwLPPPsusWbMAsFgsfP3116xcuZLi4mJiYmKYNGkSv/nNb7DZmne1e0uoiS4iItIMVrOZy/tG8K89WSSdKKRflD9hzbwtTdyjqqaOhz7Lx3/oRMAgMT6EMQmh2Kxtu2q7iIiItA5viwlqq8+9o8gF8raa6e5bx4kyOFKo7zWRlrJZLcSH1k+ReUp1bR379x/g3ZUv8uMFD7O3wCCzuIJ/7j7JP3ef5KK4YB64ph9X9Itg2rRpTJs27Yzv7ePjw6efftpeQzmN7kUXERFppt4RfvQK96POgM/251JXp1s+OzJvq5mrevpSU5LDFZE1XN43Qg10EREREWlkUFAtmcvnMa2fn7tLEfFIXhYzoTYDx+5PuWdkEFsevoo1Cy7ltlFxeFvMpKQXM+evO5j91x0czilzd7lN0pXoIiIizWQymbiyfwQZRRVkl1ay43ghl/TStC4d2fT+fvz2vxYS/se/u7sUEREREemA/KxQ6yh0dxkiXcL+/fsb/n1bL5gcE87qA04+OeJk06E8phzJ4+aB/tw0wB8vS+utWRUeHk58fHyL3kNNdBERkfMQYPfiqgERfLovhx3HCokN8SE2xPfcLxS3sJhNGFUV7i5DRERERESkyyotzAPgjjvuOOPz1uBuhFz9E3z7Xsxb+xy88Z89FHzyJ6qyj7TK8X18fTmwf3+LGulqoouIiJynAdGBpBWWsz+rjI/3ZHPb6DiCfLRIpYiIiIiIiMgPVThKAbj2nl/Sf9iZl/A1DMgoryGlyAKRCcTM+SP9AusYGFRLSy5Kz0lL5e9PP0h+fr6a6CIiIu3tqv6RFDiqyC1z8WHKSW4ZGYuPt+bbFhERERERETmTsJgexPYd3OTzccDwqho2HsrjUI6Dg6UW8mp9uGZQFNGB9vYr9Ay0sKiIiMgF8LKYuW54DP42K4XlVaz+KpPK6lp3lyUiIiIiIiLSafl6W5kypBvXDu2Gj5eFQmcVbyels/VIPjV1dW6rS010ERGRC+Rvs3LjiO74eFnIc7h4NzmD0opqd5clIiIiIiIi0qn1ifTnzrE96Bflj2FA0oki/rEjnfTCcrfUoya6iIhIC4T6eXNzYnf8bBYKnFWs2plOVokWshQRERERERFpCR8vy2lXpb//VSb/3H2SAoerXWtRE11ERKSFwvxt3DYqjgh/GxXVtbybnEHS8ULqDMPdpYmIiIiIiIh0aqeuSh8WG4TJBEfznfxtexof7j5JemE5Rjt89tbCoiIiIq0gwO7FLSNjWfdNDkfyHGxNLeB4QTlXD4h0d2kiIiIiIiIinZqPl4Wr+kcyPDaYban5pOY5OZZf//C3WekfHUCvcD+iA+2YzaZWP76a6CIiIq3E22pm6tBovskqZeOhPDKLK/j79hP09rdg8vZxd3kiIiIiIiIinVqonzfThsVQVF7FV2nFHMwpw+GqIflEEcknirBZzcSH+tIjzJceYX6tdlw10UVERFqRyWRicEwQsSG+bDyUx7F8J4fLLHS/62W2pFWQmOjuCkVEREREREQ6txBfb64eEMn4vuEcy3dyJNdBWmE5lTV1HM51cDjXAUCQl5XgK+ZworialnwcVxNdRESkDQT5eHH98BiO5ztZvy8Th38Izuo6d5clIiIiIiIi4jGsFjN9owLoGxVAnWGQU1rJ8YJyThQ4ySl1UVJtJuiSWzlSVN2i43jMwqIvvPACPXv2xG63c/HFF7Njxw53lyQirUgZl86qZ7gf13SrpuCTPzExwdfd5XRYyriIZ1PGRTybMi7i2ZRx6SzMJhPdgnwY2yuM20fHc9flCYwOq8GxdwMjom0te+9WqtGt3nrrLZYsWcJjjz3Grl27GD58OJMnTyY3N9fdpYlIK1DGpbMzm8Dx9TosbbC4iSdQxkU8mzIu4tmUcRHPpoxLZ+brbSXer46Cfz1DqI+lRe/lEU30Z555hrvuuot58+YxaNAgXnzxRXx9ffnrX//q7tJEpBUo4yKeTRkX8WzKuIhnU8ZFPJsyLlKv0zfRq6qqSE5OZuLEiQ3bzGYzEydO5IsvvnBjZSLSGpRxEc+mjIt4NmVcxLMp4yKeTRkX+U6nX1g0Pz+f2tpaoqKiGm2PioriwIEDZ3yNy+XC5XI1fF1SUgJAaWnpafs6HPUruWYc3oerory1ym6WnLRUALKPHyLVr33n0dWx2/fYeRnHgPrvtzN9H57aZhhGu9XUUSjjOrYnHFsZb5oyrmN7wrGV8aYp4zq2JxxbGW+aMq5je8KxlfGmKeM6dmc/LrRixo1OLjMz0wCMbdu2Ndr+4IMPGmPGjDnjax577DED0EOPTvdIT09vj1h1KMq4Hl3poYx/RxnXwxMfyvh3lHE9PPGhjH9HGdfDEx/K+HeUcT088XGujHf6K9HDw8OxWCzk5OQ02p6Tk0N0dPQZX/PII4+wZMmShq/r6uooLCwkLCwMk6nxom+lpaXExcWRnp5OYGBg6w+gg9K4O9a4DcOgrKyMmJgYd5fS7pTxtqFxd6xxK+PKeGvTuDvWuJVxZby1adwda9zKuDLe2jTujjVuZVwZb21dcdwdeczNzXinb6J7e3szcuRI1q9fzw033ADUB3T9+vUsXLjwjK+x2WzYbLZG24KDg896nMDAwA73n9weNO6OIygoyN0luIUy3rY07o5DGVfG24LG3XEo48p4W9C4Ow5lXBlvCxp3x6GMK+NtoSuOu6OOuTkZ7/RNdIAlS5YwZ84cRo0axZgxY3j22WdxOp3MmzfP3aWJSCtQxkU8mzIu4tmUcRHPpoyLeDZlXKSeRzTRb7vtNvLy8nj00UfJzs7moosuYu3atactfCAinZMyLuLZlHERz6aMi3g2ZVzEsynjIvU8ookOsHDhwiZvJWkJm83GY489dtqtKJ5O4+5a4+4MlPHWpXF3rXF3Bsp469K4u9a4OwNlvHVp3F1r3J2BMt66NO6uNe7OQBlvXV1x3J4wZpNhGIa7ixARERERERERERER6YjM7i5ARERERERERERERKSjUhNdRERERERERERERKQJaqKLiIiIiIiIiIiIiDRBTfRzeOGFF+jZsyd2u52LL76YHTt2uLukNrV06VJGjx5NQEAAkZGR3HDDDRw8eNDdZbWrZcuWYTKZWLx4sbtLkXagjCvj4tmUcWVcPJsyroyLZ1PGlXHxbF0p48p3vc6ccTXRz+Ktt95iyZIlPPbYY+zatYvhw4czefJkcnNz3V1am9m4cSMLFizgyy+/ZN26dVRXVzNp0iScTqe7S2sXO3fu5KWXXmLYsGHuLkXagTKujItnU8aVcfFsyrgyLp5NGVfGxbN1tYx39XyDB2TckCaNGTPGWLBgQcPXtbW1RkxMjLF06VI3VtW+cnNzDcDYuHGju0tpc2VlZUbfvn2NdevWGVdccYWxaNEid5ckbUwZV8bFsynjyrh4NmVcGRfPpowr4+LZunrGu1K+DcMzMq4r0ZtQVVVFcnIyEydObNhmNpuZOHEiX3zxhRsra18lJSUAhIaGurmStrdgwQKuvfbaRv/n4rmU8XrKuHgqZbyeMi6eShmvp4yLp1LG6ynj4qmU8a6Vb/CMjFvdXUBHlZ+fT21tLVFRUY22R0VFceDAATdV1b7q6upYvHgxl156KUOGDHF3OW1q1apV7Nq1i507d7q7FGknyrgyLp5NGVfGxbMp48q4eDZlXBkXz9bVM96V8g2ek3E10aVJCxYsYO/evWzZssXdpbSp9PR0Fi1axLp167Db7e4uR6TdKOMink0ZF/FsyriIZ1PGRTxXV8k3eFbG1URvQnh4OBaLhZycnEbbc3JyiI6OdlNV7WfhwoV89NFHbNq0idjYWHeX06aSk5PJzc0lMTGxYVttbS2bNm3i+eefx+VyYbFY3FihtAVlXBlXxj2bMq6MK+OeTRlXxpVxz6aMK+PKuGfryhnvSvkGz8q45kRvgre3NyNHjmT9+vUN2+rq6li/fj1jx451Y2VtyzAMFi5cyOrVq9mwYQMJCQnuLqnNTZgwgT179pCSktLwGDVqFLNmzSIlJaXThFnOjzKujCvjnk0ZV8aVcc+mjCvjyrhnU8aVcWXcs3XFjHfFfINnZVxXop/FkiVLmDNnDqNGjWLMmDE8++yzOJ1O5s2b5+7S2syCBQt48803WbNmDQEBAWRnZwMQFBSEj4+Pm6trGwEBAafNQeXn50dYWFiXmJuqK1PGlXFl3LMp48q4Mu7ZlHFlXBn3bMq4Mq6Me7aulvGumG/wrIyriX4Wt912G3l5eTz66KNkZ2dz0UUXsXbt2tMWPvAky5cvB+DKK69stH3FihXMnTu3/QsSaUPK+HeUcfFEyvh3lHHxRMr4d5Rx8UTK+HeUcfFEXS3jynfnZzIMw3B3ESIiIiIiIiIiIiIiHZHmRBcRERERERERERERaYKa6CIiIiIiIiIiIiIiTVATXURERERERERERESkCWqii4iIiIiIiIiIiIg0QU10EREREREREREREZEmqIkuIiIiIiIiIiIiItIENdFFRERERERERERERJqgJrqIiIiIiIiIiIiISBPURJdW9dprrxEcHNzi9zGZTHzwwQctfh8RaV3KuIhnU8ZFPJsyLuLZlHERz6aMu5ea6HKauXPncsMNN7i7DBFpI8q4iGdTxkU8mzIu4tmUcRHPpox3Xmqii4iIiIiIiIiIiIg0QU10OS/PPPMMQ4cOxc/Pj7i4OH7605/icDhO2++DDz6gb9++2O12Jk+eTHp6eqPn16xZQ2JiIna7nV69evHEE09QU1PTXsMQkSYo4yKeTRkX8WzKuIhnU8ZFPJsy3rGpiS7nxWw289xzz7Fv3z5WrlzJhg0beOihhxrtU15ezlNPPcXrr7/O1q1bKS4u5vbbb294fvPmzcyePZtFixbxzTff8NJLL/Haa6/x1FNPtfdwROQHlHERz6aMi3g2ZVzEsynjIp5NGe/gDJEfmDNnjjF9+vRm7fvOO+8YYWFhDV+vWLHCAIwvv/yyYdv+/fsNwNi+fbthGIYxYcIE47e//W2j93njjTeMbt26NXwNGKtXr77wQYhIk5RxEc+mjIt4NmVcxLMp4yKeTRnvvKzt3bSXzu2zzz5j6dKlHDhwgNLSUmpqaqisrKS8vBxfX18ArFYro0ePbnjNgAEDCA4OZv/+/YwZM4bdu3ezdevWRmfBamtrT3sfEWl/yriIZ1PGRTybMi7i2ZRxEc+mjHdsaqJLsx0/fpxp06Zx33338dRTTxEaGsqWLVuYP38+VVVVzQ6iw+HgiSee4KabbjrtObvd3tpli0gzKeMink0ZF/FsyriIZ1PGRTybMt7xqYkuzZacnExdXR1/+MMfMJvrp9N/++23T9uvpqaGpKQkxowZA8DBgwcpLi5m4MCBACQmJnLw4EH69OnTfsWLyDkp4yKeTRkX8WzKuIhnU8ZFPJsy3vGpiS5nVFJSQkpKSqNt4eHhVFdX8+c//5nrrruOrVu38uKLL572Wi8vL372s5/x3HPPYbVaWbhwIZdccklDwB999FGmTZtGfHw8t9xyC2azmd27d7N3716efPLJ9hieSJenjIt4NmVcxLMp4yKeTRkX8WzKeCfl7knZpeOZM2eOAZz2mD9/vvHMM88Y3bp1M3x8fIzJkycbr7/+ugEYRUVFhmHUL3IQFBRkvPfee0avXr0Mm81mTJw40Thx4kSjY6xdu9YYN26c4ePjYwQGBhpjxowxXn755Ybn0SIHIm1GGRfxbMq4iGdTxkU8mzIu4tmU8c7LZBiG0VYNehERERERERERERGRzszs7gJERERERERERERERDoqNdFFRERERERERERERJqgJrqIiIiIiIiIiIiISBPURBcRERERERERERERaYKa6CIiIiIiIiIiIiIiTVATXURERERERERERESkCWqii4iIiIiIiIiIiIg0QU10EREREREREREREZEmqIkuIiIiIiIiIiIiItIENdFFRERERERERERERJqgJrqIiIiIiIiIiIiISBPURBcRERERERERERERacL/B3tGRqJzjFayAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# train\n", + "sources = sorted(train[\"source\"].unique())\n", + "\n", + "# 서브플롯 생성\n", + "fig, axes = plt.subplots(1, len(sources), figsize=(15, 5))\n", + "\n", + "# 각 source별로 히스토그램 그리기\n", + "for ax, source in zip(axes, sources):\n", + " # 히스토그램 데이터\n", + " hist_data = train[train[\"source\"] == source]\n", + " hist = sns.histplot(hist_data, x=\"label\", bins=5, kde=True, ax=ax)\n", + "\n", + " # 막대 위에 숫자 추가\n", + " for p in hist.patches:\n", + " ax.annotate(\n", + " f\"{int(p.get_height())}\",\n", + " (p.get_x() + p.get_width() / 2.0, p.get_height()),\n", + " ha=\"center\",\n", + " va=\"bottom\",\n", + " )\n", + "\n", + " ax.set_title(f\"{source}\")\n", + " ax.set_xlabel(\"Label\")\n", + " ax.set_ylabel(\"Count\")\n", + "\n", + "# 레이아웃 조정\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAHqCAYAAADrpwd3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXhU9dk//vcsmSWZZLJvJIGwhc2gRsS4RAoYxA2UFutSwcfHpQ20QFstdlGsPtFqq7ZfRNtSsCI/LBZqtQpFgbhAECPIjiQQEgjZMzPJZPY5vz9mzkAggUBm5szyfl3XXBczc+bMPWHOMve5P/dHJgiCACIiIiIiIiIiIiIiOodc6gCIiIiIiIiIiIiIiEIVk+hERERERERERERERH1gEp2IiIiIiIiIiIiIqA9MohMRERERERERERER9YFJdCIiIiIiIiIiIiKiPjCJTkRERERERERERETUBybRiYiIiIiIiIiIiIj6wCQ6EREREREREREREVEfmEQnIiIiIiIiIiIiIuoDk+hERBS2tm7dCplMhq1bt/ptnU8//TRkMpnf1kcUDLW1tZDJZFi5cmW/lpfJZHj66acDGhNRJOM2F1g8vlOkmDt3LoYMGRKw9Q8ZMgS33XZbwNZPFI643flfII6hkyZNwqRJk/y6zkBjEp3CSnd3N55++uleT6g//PBD/jghIqKItnr1arzyyiv9Wjbcjos8xlMoiuRtjoioLwcOHMDTTz+N2trac5577bXX+n0BkYgokjCJTmGlu7sbS5Ys6fMH9pIlS4IfFBERUZD0ldAbPHgwLBYLfvCDH/geO99x0WKx4Fe/+lWgwrwkPMZTKIrkbY6IqC8HDhzAkiVLmEQnIjqDUuoAiPrD7XbDbrdLHQYREVFIkslk0Gg0/V7+YpYNNB7jKRyF8zZHRNQXq9UKlUoldRhERCGJlegRRuxTVF1djblz5yIxMRF6vR4PPvgguru7fctt2rQJ119/PRITE6HT6VBQUIAnn3zS97zYh/Af//gHlixZgkGDBiE+Ph7f/e53YTQaYbPZsGDBAqSnp0On0+HBBx+EzWY7J55Vq1bh6quvRmxsLJKSklBSUoL//ve/F/wcMpkM8+bNw9tvv42xY8dCrVbj9ddfR1paGgBgyZIlkMlkvv6Sc+fOxdKlS32vFW9EwRAp292F4rPb7fjNb36DoqIi6PV6xMXF4YYbbsCWLVt6rEfsE/vSSy9h6dKlGDp0KGJjY1FaWor6+noIgoDf/va3yMnJgVarxYwZM9De3t5jHWKfuf/+97+4/PLLodFoMGbMGKxbt65f/yc7duzAzTffDL1ej9jYWNx444344osvzlnu888/x4QJE6DRaDBs2DC88cYb/Vo/UX+J+4dDhw5h9uzZSEhIQEpKCn7yk5/AarX2WHbVqlUoKiqCVqtFcnIyvv/976O+vt73/KRJk/Cf//wHx48f9x3nxH6PZ/dnvtBxsbf+zLt27cL06dORkJAAnU6HKVOmoLKysscyK1euhEwmwxdffIFFixYhLS0NcXFxuPPOO9HS0tKvvwmP8RRI3ObOxeM7j+8UOJ2dnViwYAGGDBkCtVqN9PR03HTTTfj666/7fM1LL72Ea6+9FikpKdBqtSgqKsK7777b67KXcl7/5ptvQqlU4uc///l5lxN/e6xZswa/+tWvMGjQIMTGxuKPf/wjvve97wEAvvOd7/j2Z1u3bsWQIUOwf/9+VFRU+B4Pt57GFP7CebsDgD/96U8YO3asb/1XXXUVVq9e7Xv++PHj+NGPfoSCggJotVqkpKTge9/73jkjQ8RzhM8//xw//vGPkZaWhsTERDz66KOw2+0wGAx44IEHkJSUhKSkJDz++OMQBMH3+jOP6y+//DIGDx4MrVaLG2+8Efv27bvg5xD/Vuc7lxL9+c9/xrBhw6DVanH11Vfjs88+69f6Qw0r0SPU7NmzkZ+fj/Lycnz99df461//ivT0dLzwwgvYv38/brvtNhQWFuKZZ56BWq1GdXV1ryeg5eXl0Gq1+MUvfoHq6mr86U9/QkxMDORyOTo6OvD000+jsrISK1euRH5+Pn7zm9/4XrtkyRI8/fTTuPbaa/HMM89ApVJhx44d2Lx5M0pLSy/4GTZv3ox//OMfmDdvHlJTUzF+/HgsW7YMP/zhD3HnnXfirrvuAgAUFhbCbDajoaEBmzZtwltvveW/PyTRRQjn7a4/8ZlMJvz1r3/FPffcg4cffhidnZ1Yvnw5pk2bhi+//BKXX355j3W+/fbbsNvtmD9/Ptrb2/G73/0Os2fPxuTJk7F161Y88cQTvs/3s5/9DH/72996vP7IkSO4++678dhjj2HOnDlYsWIFvve972HDhg246aab+vwsmzdvxvTp01FUVISnnnoKcrkcK1aswOTJk/HZZ5/h6quvBgDs3bsXpaWlSEtLw9NPPw2n04mnnnoKGRkZ5/1/JroUs2fPxpAhQ1BeXo7Kykr88Y9/REdHB/7+978DAJ577jn8+te/xuzZs/G///u/aGlpwZ/+9CeUlJRg165dSExMxC9/+UsYjUacOHECL7/8MgBAp9P1+n6PPvroRR0X9+/fjxtuuAEJCQl4/PHHERMTgzfeeAOTJk1CRUUFJk6c2GP5+fPnIykpCU899RRqa2vxyiuvYN68eXjnnXf69ffgMZ4Cjdvc6ffh8Z3Hdwqcxx57DO+++y7mzZuHMWPGoK2tDZ9//jkOHjyIK6+8stfXvPrqq7jjjjtw3333wW63Y82aNfje976HDz74ALfeeqtvuUs5r//zn/+Mxx57DE8++SSeffbZfn2G3/72t1CpVPjZz34Gm82G0tJS/PjHP8Yf//hHPPnkkxg9ejQAYPTo0XjllVcwf/586HQ6/PKXvwQAblsUdOG83f3lL3/Bj3/8Y3z3u9/1XeDfs2cPduzYgXvvvRcAsHPnTmzbtg3f//73kZOTg9raWixbtgyTJk3CgQMHEBsb22Od8+fPR2ZmJpYsWYLKykr8+c9/RmJiIrZt24a8vDz83//9Hz788EO8+OKLGDduHB544IEer//73/+Ozs5OlJWVwWq14tVXX8XkyZOxd+/e827f/TmXAoDly5fj0UcfxbXXXosFCxbg6NGjuOOOO5CcnIzc3Nzz/r1CjkAR5amnnhIACP/zP//T4/E777xTSElJEQRBEF5++WUBgNDS0tLnerZs2SIAEMaNGyfY7Xbf4/fcc48gk8mE6dOn91i+uLhYGDx4sO/+kSNHBLlcLtx5552Cy+Xqsazb7b7g5wAgyOVyYf/+/T0eb2lpEQAITz311DmvKSsrE/iVJilEwnbXn/icTqdgs9l6PNbR0SFkZGT0+OzHjh0TAAhpaWmCwWDwPb548WIBgDB+/HjB4XD0+HwqlUqwWq2+xwYPHiwAEP75z3/6HjMajUJWVpZwxRVX+B4T/2Zbtmzxfc4RI0YI06ZN6/GZu7u7hfz8fOGmm27yPTZz5kxBo9EIx48f9z124MABQaFQcF9CfiPuH+64444ej//oRz8SAAjffPONUFtbKygUCuG5557rsczevXsFpVLZ4/Fbb721x3YvEre7FStW+B4733Hx7GPpzJkzBZVKJdTU1Pgea2hoEOLj44WSkhLfYytWrBAACFOnTu2xjS1cuFBQKBQ9tvm+8BhPgcRtrice3z14fKdA0ev1QllZWZ/Pz5kz55x9SHd3d4/7drtdGDdunDB58mTfY/09rx88eLBw6623CoIgCK+++qogk8mE3/72t/2KXdzOhg4dek5Ma9eu7bENnmns2LHCjTfe2K/3IAqEcN7uZsyYIYwdO/a8y5wdqyAIwvbt2wUAwt///nffY+I5wtnHxuLiYkEmkwmPPfaY7zGn0ynk5OT02HbF47pWqxVOnDjhe3zHjh0CAGHhwoW+x8TzK1F/z6XsdruQnp4uXH755T3ONf785z8LAMJuX8J2LhHqscce63H/hhtuQFtbG0wmk+9q0HvvvQe3233e9TzwwAOIiYnx3Z84cSIEQcD//M//9Fhu4sSJqK+vh9PpBAD861//gtvtxm9+8xvI5T2/Zv0dgn3jjTdizJgx/VqWKBSE83bXn/gUCoWvR6Lb7UZ7ezucTieuuuqqXofOfe9734Ner+8RLwDcf//9UCqVPR632+04efJkj9dnZ2fjzjvv9N1PSEjAAw88gF27dqGxsbHXGHfv3o0jR47g3nvvRVtbG1pbW9Ha2gqz2YwpU6bg008/hdvthsvlwsaNGzFz5kzk5eX5Xj969GhMmzbtfH8qoktSVlbW4/78+fMBeCYiXLduHdxuN2bPnu37zra2tiIzMxMjRow4p6WCv7lcLvz3v//FzJkzMXToUN/jWVlZuPfee/H555/DZDL1eM0jjzzSY79yww03wOVy4fjx4/16Tx7jKdC4zXnw+O7B4zsFSmJiInbs2IGGhoZ+v0ar1fr+3dHRAaPRiBtuuKHH9nax5/W/+93v8JOf/AQvvPDCRU9iPGfOnB4xEYW6cN7uEhMTceLECezcubNfsTocDrS1tWH48OFITEzs9bj80EMP9YhPzB889NBDvscUCgWuuuoqHD169JzXz5w5E4MGDfLdv/rqqzFx4kR8+OGHfcbY33Opr776Cs3NzXjsscd6zLcwd+7cHucS4YJJ9Ah15kkjACQlJQHw7CzuvvtuXHfddfjf//1fZGRk4Pvf/z7+8Y9/9HpiffZ6xC/52UMu9Ho93G43jEYjAKCmpgZyufy8P5CNRiMaGxt9t7N7Jubn5/fz0xKFhnDe7vob35tvvonCwkJoNBqkpKQgLS0N//nPf3wxXOrnEP9OZxo+fPg5JysjR44EgHP6wYmOHDkCwPNjIC0trcftr3/9K2w2G4xGI1paWmCxWDBixIhz1lFQUNDruokG4uzv2rBhwyCXy1FbW4sjR45AEASMGDHinO/twYMH0dzcHNDYWlpa0N3d3et3f/To0XC73ef0Njzf/g7gMZ6kx22Ox/ez8fhOgfC73/0O+/btQ25uLq6++mo8/fTTvSapzvTBBx/gmmuugUajQXJyMtLS0rBs2bIe21t/zutFFRUVeOKJJ/DEE0/02o+5paWlx/6hq6urx/M8JlO4Ceft7oknnoBOp8PVV1+NESNGoKys7JwWrxaLBb/5zW+Qm5sLtVqN1NRUpKWlwWAwDPi4fPYxGTj3nAnwHJf7OiYD6Pe5lHix/+z3iImJ6VFIEC7YEz1CKRSKXh8XBAFarRaffvoptmzZgv/85z/YsGED3nnnHUyePBn//e9/e7y2r/Wcb/399ZOf/ARvvvmm7/6NN96IrVu3+u7zajiFm3De7voT36pVqzB37lzMnDkTP//5z5Geng6FQoHy8nLU1NT0O15/fI6+iEmBF1988ZweriKdTtfrhKxEwXRmAsntdkMmk+Gjjz7qdfvoqwezlC60HfMYT6EmWrc5Ht+JAmv27Nm44YYbsH79evz3v//Fiy++iBdeeAHr1q3D9OnTz1n+s88+wx133IGSkhK89tpryMrKQkxMDFasWNFjYsGLMXbsWBgMBrz11lt49NFHz0mKT5gwoceolaeeeqrHRMc8JlO4CeftbvTo0Th8+DA++OADbNiwAf/85z/x2muv4Te/+Q2WLFkCwDN6bsWKFViwYAGKi4uh1+shk8nw/e9/v9civIs5LvvjmAyE57mUPzCJHqXkcjmmTJmCKVOm4A9/+AP+7//+D7/85S+xZcsWTJ06dcDrHzZsGNxuNw4cONDnie7jjz+O+++/33dfrKg5n/O1pOhvmxgiqYT6dneh+N59910MHToU69at67G9PfXUUwOOvTfV1dUQBKHHe3377bcAgCFDhvT6mmHDhgHwDA0/3980LS0NWq3WV9l2psOHDw8gaqLeHTlypMfJdXV1NdxuN4YMGQKFQgFBEJCfn++rxuzLxRzr+rtsWloaYmNje/3uHzp0CHK5/KIn/eExnqTGbY7H97Px+E6BkpWVhR/96Ef40Y9+hObmZlx55ZV47rnnek3m/fOf/4RGo8HGjRuhVqt9j69YsaLHcv05rxelpqbi3XffxfXXX48pU6bg888/R3Z2tu/5t99+GxaLxXe/P9WfPCZTqAvn7S4uLg5333037r77btjtdtx111147rnnsHjxYmg0Grz77ruYM2cOfv/73/teY7VaYTAY+vvnuSi9HTO//fbbPo/JgOdv1Z9zqcGDB/veY/Lkyb7HHQ4Hjh07hvHjx1964BJgO5codPaQagC+HYS/qjdmzpwJuVyOZ5555pwrZeKVrzFjxmDq1Km+W1FR0QXXK85C3NvOIy4urs/niKQW6ttdf+ITrzCfefV6x44d2L59u1/iP1tDQwPWr1/vu28ymfD3v/8dl19+OTIzM3t9TVFREYYNG4aXXnrpnKGqgGdYHeD5LNOmTcO//vUv1NXV+Z4/ePAgNm7c6OdPQgQsXbq0x/0//elPAIDp06fjrrvugkKhwJIlS86pDhEEAW1tbb77cXFxvQ7j7E1/j4sKhQKlpaV47733egzbbGpqwurVq3H99dcjISGhX+8p4jGepMZtjsd3Ht8p0Fwu1zn7h/T0dGRnZ/d5fq9QKCCTyeByuXyP1dbW4l//+leP5fpzXn+mnJwcfPzxx7BYLLjpppt67Meuu+66HvuH/iTRz7c/i4uL4/GYJBPu292ZywCASqXCmDFjIAgCHA6HL96z3+9Pf/pTj/j96V//+leP+Uu+/PJL7Nixo9cLEqL+nktdddVVSEtLw+uvvw673e5bZuXKlWG5H2ElehR65pln8Omnn+LWW2/F4MGD0dzcjNdeew05OTm4/vrr/fIew4cPxy9/+Uv89re/xQ033IC77roLarUaO3fuRHZ2NsrLyy9pvVqtFmPGjME777yDkSNHIjk5GePGjcO4ceN8PxZ+/OMfY9q0aVAoFPj+97/vl89DNFChvt31J77bbrsN69atw5133olbb70Vx44dw+uvv44xY8b0+oN2oEaOHImHHnoIO3fuREZGBv72t7+hqanpnIqBM8nlcvz1r3/F9OnTMXbsWDz44IMYNGgQTp48iS1btiAhIQHvv/8+AGDJkiXYsGEDbrjhBvzoRz+C0+nEn/70J4wdOxZ79uzx++eh6Hbs2DHccccduPnmm7F9+3asWrUK9957r6/64tlnn8XixYtRW1uLmTNnIj4+HseOHcP69evxyCOP4Gc/+xkATyLpnXfewaJFizBhwgTodDrcfvvtvb7nxRwXn332WWzatAnXX389fvSjH0GpVOKNN96AzWbD7373uwD8Rc7FYzz5E7c5Dx7feXynwOns7EROTg6++93vYvz48dDpdPj444+xc+fOHhWkZ7r11lvxhz/8ATfffDPuvfdeNDc3Y+nSpRg+fHiP7+elnNcPHz4c//3vfzFp0iRMmzYNmzdvvugLcqLLL78cCoUCL7zwAoxGI9RqNSZPnoz09HQUFRVh2bJlePbZZzF8+HCkp6f3qDAlCqRw3+5KS0uRmZmJ6667DhkZGTh48CD+3//7f7j11lsRHx8PwHNcfuutt6DX6zFmzBhs374dH3/8MVJSUgb41+vd8OHDcf311+OHP/whbDYbXnnlFaSkpODxxx/v8zXDhg3r17lUTEwMnn32WTz66KOYPHky7r77bhw7dgwrVqwIy57oECiiPPXUUwIAoaWlpcfjK1asEAAIx44dEz755BNhxowZQnZ2tqBSqYTs7GzhnnvuEb799lvf8lu2bBEACGvXru11PTt37uzX+/7tb38TrrjiCkGtVgtJSUnCjTfeKGzatOmCnwOAUFZW1utz27ZtE4qKigSVSiUAEJ566ilBEATB6XQK8+fPF9LS0gSZTCbw603BEgnbXX/ic7vdwv/93/8JgwcPFtRqtXDFFVcIH3zwgTBnzhxh8ODBvuWOHTsmABBefPHFHu9xMZ9v8ODBwq233ips3LhRKCwsFNRqtTBq1KhzXiuuc8uWLT0e37Vrl3DXXXcJKSkpglqtFgYPHizMnj1b+OSTT3osV1FR4dufDB06VHj99dd9f1cifxC/TwcOHBC++93vCvHx8UJSUpIwb948wWKx9Fj2n//8p3D99dcLcXFxQlxcnDBq1CihrKxMOHz4sG+Zrq4u4d577xUSExMFAL5tT9zuVqxY4Vv2fMfFM4+foq+//lqYNm2aoNPphNjYWOE73/mOsG3bth7L9LU/6mtb7A2P8RRI3OZ64vGdx3cKHJvNJvz85z8Xxo8fL8THxwtxcXHC+PHjhddee823zNnbkSAIwvLly4URI0b4vv8rVqzo8/t5ofN6cZs6044dO4T4+HihpKRE6O7u7jP+vrZd0V/+8hdh6NChgkKh6LE9NjY2CrfeeqsQHx8vABBuvPHGC/yliPwn3Le7N954QygpKfEdx4YNGyb8/Oc/F4xGo2+Zjo4O4cEHHxRSU1MFnU4nTJs2TTh06JAwePBgYc6cOb7lLjZPMGfOHCEuLs53/8zj+u9//3shNzdXUKvVwg033CB88803va7zbP05lxIEQXjttdeE/Px8Qa1WC1dddZXw6aefCjfeeGPY7T9kguCnrvJERER+MmTIEIwbNw4ffPCB1KEQDcjTTz+NJUuWoKWlBampqVKHQxTxuM2FNh7fiYiIQkNtbS3y8/Px4osv+kbg0fmxJzoRERERERERERERUR+YRCciIiIiIiIiIiIi6gOT6EREREREREREREREfWBPdCIiIiIiIiIiIiKiPrASnYiIiIiIiIiIiIioD0yiExERERERERERERH1QSl1AIHmdrvR0NCA+Ph4yGQyqcMh8jtBENDZ2Yns7GzI5aFxXezpp5/GkiVLejxWUFCAQ4cOAQCsVit++tOfYs2aNbDZbJg2bRpee+01ZGRk9Ps9uG1TNAjF7TsYuH1TpOO2zW2bIhe3b27fFJm4bXPbpsjV3+074pPoDQ0NyM3NlToMooCrr69HTk6O1GH4jB07Fh9//LHvvlJ5enezcOFC/Oc//8HatWuh1+sxb9483HXXXfjiiy/6vX5u2xRNQm37DjRu3xQtuG0TRS5u30SRids2UeS60PYd8Un0+Ph4AJ4/REJCgsTREPmfyWRCbm6u77seKpRKJTIzM8953Gg0Yvny5Vi9ejUmT54MAFixYgVGjx6NyspKXHPNNf1aP7dtigahun0HGrdvinTctrltU+Ti9s3tmyITt21u2xS5+rt9R3wSXRxukpCQwA2eIlqoDa06cuQIsrOzodFoUFxcjPLycuTl5aGqqgoOhwNTp071LTtq1Cjk5eVh+/bt/U6ic9umaBJq23egcfumaMFtmyhycfsmikzctoki14W274hPohNR8E2cOBErV65EQUEBTp06hSVLluCGG27Avn370NjYCJVKhcTExB6vycjIQGNjY5/rtNlssNlsvvsmkylQ4RMREREREREREfkwiU5Efjd9+nTfvwsLCzFx4kQMHjwY//jHP6DVai9pneXl5edMVkpERERERERERBRo0TOlMBFJJjExESNHjkR1dTUyMzNht9thMBh6LNPU1NRrD3XR4sWLYTQafbf6+voAR01ERERERERERMQkOhEFQVdXF2pqapCVlYWioiLExMTgk08+8T1/+PBh1NXVobi4uM91qNVqXx829mMjIiIiIiIiIqJgYRKdaIDKy8sxYcIExMfHIz09HTNnzsThw4d7LPPoo49i2LBh0Gq1SEtLw4wZM3Do0CGJIg68n/3sZ6ioqEBtbS22bduGO++8EwqFAvfccw/0ej0eeughLFq0CFu2bEFVVRUefPBBFBcX93tSUQqe559/HjKZDAsWLPA91tjYiB/84AfIzMxEXFwcrrzySvzzn/+ULkgiokuwbNkyFBYW+i7MFhcX46OPPgIAtLe3Y/78+SgoKIBWq0VeXh5+/OMfw2g0Shw1ic73/1dbWwuZTNbrbe3atRJHTkQUfnjMpEhyvu8zwN+71Df2RCcaoIqKCpSVlWHChAlwOp148sknUVpaigMHDiAuLg4AUFRUhPvuuw95eXlob2/H008/jdLSUhw7dgwKhULiT+B/J06cwD333IO2tjakpaXh+uuvR2VlJdLS0gAAL7/8MuRyOWbNmgWbzYZp06bhtddekzhqOtvOnTvxxhtvoLCwsMfjDzzwAAwGA/79738jNTUVq1evxuzZs/HVV1/hiiuukChaIqKLk5OTg+effx4jRoyAIAh48803MWPGDOzatQuCIKChoQEvvfQSxowZg+PHj+Oxxx5DQ0MD3n33XalDJ5z//2/UqFE4depUj+X//Oc/48UXX+wxbwsREfUPj5kUSc73fR47dix/71KfZIIgCFIHEUgmkwl6vR5Go5HtHygoWlpakJ6ejoqKCpSUlPS6zJ49ezB+/HhUV1dj2LBhA3q/aP2OR+vnDpauri5ceeWVeO211/Dss8/i8ssvxyuvvAIA0Ol0WLZsGX7wgx/4lk9JScELL7yA//3f/5Uo4sgUrd/zaP3cJL3k5GS8+OKLeOihh855bu3atbj//vthNpuhVA6sDiVav+OB/tzn+/+74oorcOWVV2L58uV+f1+iM3H7jq7PHc2CdcwMFdH6HY+Wz33m95m/d6NPf7/nbOdC5GfisLXk5ORenzebzVixYgXy8/ORm5sbzNCI+q2srAy33norpk6des5z1157Ld555x20t7fD7XZjzZo1sFqtmDRpUvADJSLyA5fLhTVr1sBsNvc5P4d4Uh0pyYBIcqH/v6qqKuzevbvXRA8REV0cHjMpkvT2febvXeoL92hEfuR2u7FgwQJcd911GDduXI/nXnvtNTz++OMwm80oKCjApk2boFKpJIqUqG9r1qzB119/jZ07d/b6/D/+8Q/cfffdSElJgVKpRGxsLNavX4/hw4cHOVIiooHZu3cviouLYbVaodPpsH79eowZM+ac5VpbW/Hb3/4WjzzyiARRUl/6+/+3fPlyjB49Gtdee60EURIRRQYeMymSnO/7zN+71BdWohP5UVlZGfbt24c1a9ac89x9992HXbt2oaKiAiNHjsTs2bNhtVoliJKob/X19fjJT36Ct99+GxqNptdlfv3rX8NgMODjjz/GV199hUWLFmH27NnYu3dvkKMlIhqYgoIC7N69Gzt27MAPf/hDzJkzBwcOHOixjMlkwq233ooxY8bg6aefliZQ6lV//v8sFgtWr17NKnQiogHiMZMiyfm+z/y9S31hT3QiP5k3bx7ee+89fPrpp8jPzz/vsna7HUlJSfjrX/+Ke+65Z0DvG63f8Wj93IH2r3/9C3feeWePCW9dLhdkMhnkcjkOHz6M4cOHY9++fRg7dqxvmalTp2L48OF4/fXXpQg7YkXr9zxaPzdJb+rUqRg2bBjeeOMNAEBnZyemTZuG2NhYfPDBB31eXLxY0fodD/TnPvv/DwDeeustPPTQQzh58qRvgnOiQOL2HV2fO5oF65gZKqL1Ox4tn1v8Pj/++OP8vRuF+vs9ZzsXogESBAHz58/H+vXrsXXr1gsm0MXXCIIAm80WhAiJ+m/KlCnnXGF/8MEHMWrUKDzxxBPo7u4GAMjlPQcyKRQKuN3uoMVJRBQIbrfbd2w2mUyYNm0a1Go1/v3vf0dcMiASnfn/J1q+fDnuuOMOJtCJiPyMx0yKJOL3mb936XyYRCcaoLKyMqxevRrvvfce4uPj0djYCADQ6/XQarU4evQo3nnnHZSWliItLQ0nTpzA888/D61Wi1tuuUXi6Il6io+PP6eff1xcHFJSUjBu3Dg4HA4MHz4cjz76KF566SWkpKTgX//6FzZt2oQPPvhAoqiJiC7e4sWLMX36dOTl5aGzsxOrV6/G1q1bsXHjRphMJpSWlqK7uxurVq2CyWSCyWQCAKSlpfUYrUPSON//n6i6uhqffvopPvzwQwkjJSIKfzxmUiQ53/d51KhR/L1LfWISnWiAli1bBgDnzNS8YsUKzJ07FxqNBp999hleeeUVdHR0ICMjAyUlJdi2bRvS09MliJjo0sXExODDDz/EL37xC9x+++3o6urC8OHD8eabb/KiEBGFlebmZjzwwAM4deoU9Ho9CgsLsXHjRtx0003YunUrduzYAQDnTCJ17NgxDBkyRIKI6Uzn+/8T/e1vf0NOTg5KS0sljJSIKPzxmEmR5ELnEPy9S31hT3SiMBet3/Fo/dwUXaL1ex6tn5uiR7R+x6P1c1N0idbvebR+booe0fodj9bPTdGlv99zeZ/PEBERERERERERERFFObZzITqPuro6tLa2Sh0GUlNTkZeXJ3UYFOb4fSaiaMB9Xfjj/yERUfCEwj6X+1vyF36fKZCYRCfqQ11dHUaNHg2Ld3ZmKWljY3Ho4EHuiOmS8ftMRNGA+7rwx/9DIqLgCZV9Lve35A/8PlOgMYlO1IfW1lZYurtx3xMvIiNvmGRxNNXV4O0Xfo7W1lbuhOmS8ftMRNGA+7rwx/9DIqLgCYV9Lve35C/8PlOgMYlOdAEZecOQM2Ks1GEQ+QW/z0QUDbivC3/8PyQiCh7ucymS8PtMgcKJRYmIiIiIiIiIiIiI+sAkOhERERERERERERFRH5hEJyIiIiIiIiIiIiLqA5PoRERERERERERERER9YBKdiIiIiIiIiIiIiKgPTKITEREREREREREREfWBSXQiIiIiIiIiIiIioj4wiU5ERERERERERERE1Acm0YmIiIiIiIiIiIiI+sAkOhERERERERERERFRH5hEJyIiIiIiIiIiIiLqA5PoREREREREREQEALA6XHC43FKHQUQUUpRSB0BERERERERERNJq6bRhy+FmnDJaIZcBI9LjcWNBGrQxCqlDIyKSHCvRiYiIiIii3LJly1BYWIiEhAQkJCSguLgYH330ke/5SZMmQSaT9bg99thjEkZMRET+1Nplwz+/PoFTRisAwC0Ah5s68W7VCVgcLomjIyKSHivRiYiIiIiiXE5ODp5//nmMGDECgiDgzTffxIwZM7Br1y6MHTsWAPDwww/jmWee8b0mNjZWqnCJiMiPXALw0b5G2JxuZOk1uOWyLHRZnfjP3lNoN9uxcX8jZozPhkwmkzpUIiLJMIlORERERBTlbr/99h73n3vuOSxbtgyVlZW+JHpsbCwyMzOlCI+IiAKo2iRHu9mOWJUCtxdmQ6tSQKdWYsbl2Vizsx7H27px4JQJY7P1UodKRCQZtnMhIiKifrtQywer1YqysjKkpKRAp9Nh1qxZaGpqkjBiIrpYLpcLa9asgdlsRnFxse/xt99+G6mpqRg3bhwWL16M7u7u867HZrPBZDL1uBFR8PHYTecjU2nxbaen5/n1w1OhVZ3uf56qU6N4aAoAYFtNG+xOTjZKRNGLSXQiIiLqN7HlQ1VVFb766itMnjwZM2bMwP79+wEACxcuxPvvv4+1a9eioqICDQ0NuOuuuySOmoj6Y+/evdDpdFCr1Xjsscewfv16jBkzBgBw7733YtWqVdiyZQsWL16Mt956C/fff/9511deXg69Xu+75ebmBuNjENFZeOym89GNmwK7W4bE2BgUZMaf8/zluYnQa2PQbXdhX4NRggiJiEID27kQERFRv52v5UNOTg6WL1+O1atXY/LkyQCAFStWYPTo0aisrMQ111wjRchE1E8FBQXYvXs3jEYj3n33XcyZMwcVFRUYM2YMHnnkEd9yl112GbKysjBlyhTU1NRg2LBhva5v8eLFWLRoke++yWRiIp1IAjx2U18EQYDuilsAAJfnJELeS89zhVyGqwYn4ZNDzdhdb/AsJ2dvdCKKPqxEJyIioktydsuHqqoqOBwOTJ061bfMqFGjkJeXh+3bt0sYKRH1h0qlwvDhw1FUVITy8nKMHz8er776aq/LTpw4EQBQXV3d5/rUarWvfYR4IyJp8dhNZzrS7oAqNQ8KmYBRWedWoYtGZcZDG6NAp9WJ6pauIEZIRBQ6WIlOREREF2Xv3r0oLi6G1WqFTqfztXzYvXs3VCoVEhMTeyyfkZGBxsbGPtdns9lgs9l899k3mSg0uN3uHtvmmXbv3g0AyMrKCmJERHSpeOym3nxeZwUAZGvdUCsVfS6nVMhRmKPHjmPt+LquAyMz+k64ExFFKibRiYiI6KL01fLhUpWXl2PJkiV+jJCILtbixYsxffp05OXlobOzE6tXr8bWrVuxceNG1NTUYPXq1bjllluQkpKCPXv2YOHChSgpKUFhYaHUoRNRP/DYTWdzuwVsO2EBAOTEXnjC0MIcPXbWtqPJZENrlw2pOnWgQyQiCils50JEREQXpa+WD5mZmbDb7TAYDD2Wb2pqQmZmZp/rW7x4MYxGo+9WX18f4E9ARGdrbm7GAw88gIKCAkyZMgU7d+7Exo0bcdNNN0GlUuHjjz9GaWkpRo0ahZ/+9KeYNWsW3n//fanDJqJ+4rGbzra/wYR2ixtuuwUZWuGCy8eqlMhPjQMAHGrsDHR41A/Lli1DYWGhr2VacXExPvroI9/zkyZNgkwm63F77LHHJIyYKLyxEp2IiIgGRGz5UFRUhJiYGHzyySeYNWsWAODw4cOoq6tDcXFxn69Xq9VQq1nNRCSl5cuX9/lcbm7ugCpWiSj08NhNmw81AwCsx3ZBMfyqfr2mIDMeNS1mHG7sxHXDUiDrZSJSCp6cnBw8//zzGDFiBARBwJtvvokZM2Zg165dGDt2LADg4YcfxjPPPON7TWxsrFThEoU9JtGJiMhHEDxVKDwhpr6cr+WDXq/HQw89hEWLFiE5ORkJCQmYP38+iouLcc0110gdOhERUVTisZt6s+WwJ4luOboTQP+S6PkpcVAr5eiyOXGiw4LcZCZkpXT77bf3uP/cc89h2bJlqKys9CXRY2NjzzuqhIj6j0l0IiKCzenCtpo2HG7shCAAIzJ0uH54KjQxfU8wRNFJbPlw6tQp6PV6FBYW+lo+AMDLL78MuVyOWbNmwWazYdq0aXjttdckjpqIiCh68dhNZ+uyObH3pBEAYDm2u9+vUyrkGJGuw74GEw41djKJHkJcLhfWrl0Ls9ncYxTJ22+/jVWrViEzMxO33347fv3rX7ManegSMYlORBTlbE4X1n19Es2dNt9j+xtMaDRa8d2iHCbSqYfztXwAAI1Gg6VLl2Lp0qVBioiIiIjOh8duOtvXxzvgcgtIj1PgeGfLRb12ZEY89jWYcLS1C253OuRyjmCV0t69e1FcXAyr1QqdTof169djzJgxAIB7770XgwcPRnZ2Nvbs2YMnnngChw8fxrp16/pcn81mg812+nehyWQK+GcgChdMohMRRblPDjajudMGbYwCN43JgEIuw3/3N6LNbMfHB5twW2G21CESEQ2YIAgwWZ3QKOVQ8+IgERFFsR3H2gAAY9NU2HmRrx2UqIVaKYfV4cYpoxWDkrT+D5D6raCgALt374bRaMS7776LOXPmoKKiAmPGjMEjjzziW+6yyy5DVlYWpkyZgpqaGgwbNqzX9ZWXl2PJkiXBCp8orMilDoCIiKRT09KFI81dkMmAO8ZnIz81DnnJsbhjfDbkMqCmxYyjrV1Sh0lENCCNRiv+vv04Vm6rxRufHsXmQ81wutxSh0VERCSJHUfbAQBjUlUX/Vq5XIahqXEAPL8lSFoqlQrDhw9HUVERysvLMX78eLz66qu9Ljtx4kQAQHV1dZ/rW7x4MYxGo+9WX18fkLiJwhGT6EREUcrtFvBFdSsAoCgvCZl6je+59AQNrshNAgBU1rT7JhwlIgo3LZ02rNt1AgaLAwAgANh70oiNB5q4byMioqhjsbvwzQkDAGBs+sUn0QFgaJoOgCeJzmNpaHG73T3asZxp9+7dAICsrKw+X69Wq5GQkNDjRkQebOdCRBSlvm3uREe3A9oYBa4aknTO80VDkrDnpAEtXTbUtnUj31txQkQULpxuNz7cdwoOl4CcJC1uuywLDUYrPtjTgOrmLuxrMOGyQXqpwyQiIgqaXfUdcLgEZCZokBF3ae3NBqfEQiGXwWR1orXLjrR4tZ+jpP5YvHgxpk+fjry8PHR2dmL16tXYunUrNm7ciJqaGqxevRq33HILUlJSsGfPHixcuBAlJSUoLCyUOnTJdZjtqGnpgsstICc5Ftl6DWQy9ven82MSnYgoCgmCgF11BgDA5bmJUCvPPYHWxigwLluPXfUG7D1pZBKdiMLO7joDDN0OxKoUuPWyLKhjFMhPjcN1w1Px2ZFWbK9pw8gMXa/7QCIioki081gHAODq/GTIZJdWRR6jkCMvORbHWs041mZmEl0izc3NeOCBB3Dq1Cno9XoUFhZi48aNuOmmm1BfX4+PP/4Yr7zyCsxmM3JzczFr1iz86le/kjpsSQmCgO1H27CztuP0g8faMTQ1DqVjM3hOSOfFJDoRURRqMtnQ3GmDQi47bxXmZYM8SfRjrWZ0Wh2I18QEMUoiokvncLlRVef5gXTd8FRozphMdHxOIvadNKKj24F9J00oGnzuaBwiIqJItPekAQBwZV4igI7zLXpeQ1I8SfS6tm5cPSTZL7HRxVm+fHmfz+Xm5qKioiKI0YSHL6rbfOeHg5NjoY6Ro7q5C0dbzVi/6yRmXZmDGAU7X1Pv+M0gIopCBxtNAIDh6TpoVX1fbU+KUyHL2yv9SDMnDiKi8LG/wQSrww29NgajMuJ7PKeQy3yJ8931Brjd7OdKRETRYc8JIwDgspyBtTMbnOIZpXrKaIHN6RpwXESBdrSly5dAnzIqHTOvGITp47Iw+6pcaGLkaDLZ8MmhZomjpFDGJDoRUZRxuQV829QJABidGX+BpYECb/LpcGNnQOMiIvIXQQD2nfQkCa7ITYRcfm6Py4LMeGhjFOiyOXG8vTvYIRIREQVdk8mK5k4b5DJgTNbAkuh6bQz02hi4BeBEh8VPERIFhsPlxpbDLQCAK/ISMe6M0dgZCRrcdlk2ZDLPb95qFo9RH5hEJyKKMrVtZlgdbsSqFMhNir3g8sPTdQCA5k4bumzOQIdHRDRgHXYZ2sx2KOQyjOrjYqFSLkeB97mDp0zBDI+IiEgSe71V6CPS4887GrW/Bqd4fkscb+PFaAptu+oM6LI5kaBR4tqhKec8PyhJi6u8oxQ/PdICp9sd7BApDDCJTkQUZQ55K8pHZcb3Wp15tji1EhkJnsmCjreZAxobEZE/1Hd7TnGHp+mgjuk7SSCOxjnaaobDxR9LREQU2fZ6R2mNO8+cSBdjcLIniV7HEV0UwhwuN3Z527hcOywVyj56nl89JBlxagU6rU7sP8kCCzoXk+hERFHE5QZqWz2J8IKMC7dyEYk9D1llQkShT4aT3iT6yAzdeZdMi1cjQaOEyy1w/0ZERBFPTKIXDrAfuignKRZyGWC0OGDotvtlnUT+tr/BBKvTM0/OiPOcGyoVct8kuV/WtrPAgs7BJDoRURRptsngdAvQqZVIi1f3+3VDUk5XmXACPiIKZarskbC4ZFAp5MhLOX/LKplMhmHellU1Lex/SUREkUsQBL9XoquUcmTrtQBYbEOh6czv/RW5iZDLzj8Se2y2HgkaJbrtLt/riERMohMRRZFTFs9uPz81DrILnECcKSNBA41SDpvTjUaTNVDhERENmDa/CICnT6tSfuFT3aGpnpE2de3dEAReJCQiosjUZLKhpdMGhVyGMVkJfluveMGak3RTKDpltKLdbIdSLsOorAuPxFbIZbhqsKcafc8JI88NqQcm0YmIokjjGUn0iyGXyXwnyLXsi05EIUybfyUAXLAKXZSp10Apl6Hb7kK7mUPRiYgoMomTaA9Li/PLpKIicXLREx3dcHHEKoWYb5s884GNyNBBrezf974gMx4qpRxGi4MXh6gHJtGJiKJETPpQWFwyKOUy5CZpL/r1g5M9ifcTHRZ/h0ZE5BedNjdUWSMAnJ7s7EKUcjmyEjUAuH8jIqLIddibTCzI9F8VOgCk6dTQKOVwuAQ0d3LEKoUOQRBQ3exp1zcivf/zgamUct9ojT0n2NKFTpM0iV5eXo4JEyYgPj4e6enpmDlzJg4fPtxjGavVirKyMqSkpECn02HWrFloamqSKGIiovAVO2wCACAvObbPGcnPJ9ubZGrutMHp5iQrRBR69jTbIJMrkBDjRrwmpt+vy03yJNzrO1htREREkenbRm8S/QKTbl8smUyGQd4CHV6MplDSYLDCbHdBpZQjr5/FFSJx8t1jrWaYLI5AhEdhSNIkekVFBcrKylBZWYlNmzbB4XCgtLQUZvPpVgELFy7E+++/j7Vr16KiogINDQ246667JIyaiCg8aYZcDuD0kMuLpdfGQBujgMstoNlk82NkRET+seuUZ9+Uobm44eRiEv1EhwVu9r4kIqIIJFaij8zof0Vuf+WccRwlChVHmj3f+WGpcVDI+z8fGAAkxaqQ4704JG47REop33zDhg097q9cuRLp6emoqqpCSUkJjEYjli9fjtWrV2Py5MkAgBUrVmD06NGorKzENddcI0XYRERhx+p0Qz1oFAAg9yKvwotkMhmyEzWoaTHjlNGK7MSLbwlDRBQogiDgmyYxiX5xo2XS49VQKTyTJ7d22pCeoAlEiERERJJwuQUc8ba1KMgMRBLd87ugwWCByy1cdMKSyN8EQUB1i+c7P/wSR1+MyozHiQ4LDjV24qrBSZDJ+L2OdiHVE91o9PQaSk72zIRbVVUFh8OBqVOn+pYZNWoU8vLysH37dkliJCIKRwdbHZApYhCrEJCo7X+Lg7Nl6U+fIBMRhZKTBgvaLG4ILidS1BdXTS6Xcyg6ERFFrto2M+xON7QxCt/oK39KiVNBG6OA0y2gycS+6CS9li4bzDYXYhSyi27lIhqeroNCLkO72Y7WLk4+TyGURHe73ViwYAGuu+46jBs3DgDQ2NgIlUqFxMTEHstmZGSgsbGx1/XYbDaYTKYeNyKiaLfHW52ZpnEP6Aq62Bf9lNEKgS0PiCiEfFXbAQCwNx2F8hLOcLP0nv1bI3/8ExFRhBH7oY/M0EEegCpxmUyGQYm8GE2ho67NM89NTlIslPJLS32qlQrkp8YBAA41MrdIIZRELysrw759+7BmzZoBrae8vBx6vd53y83N9VOEREThS0yip19kn+CzpcWroZDLYHG4YOAEK0QUQr463g4AsJ08cEmvz/C2cGEFXfQQBAGGbjvazXa43LwwTESRK5D90EViS5cTBk7STdKra/d8Dy+1Cl00ytv+6NumLhaRUWgk0efNm4cPPvgAW7ZsQU5Oju/xzMxM2O12GAyGHss3NTUhMzOz13UtXrwYRqPRd6uvrw9k6EREIa/DbEetwQnAU4k+EEq5HOnxagCeanQiolAhVqLbTlxqEt2zbzNZnei2O/0WF4WmQ40mrNhWize3H8dblcfx18+O4stj7UymE1FE+tabRA9EP3SRmEQ/ZbDC6R7Ybw6igXC6gQaD57fqQJPog5NjoVLI0WVzoslk80d4FMYkTaILgoB58+Zh/fr12Lx5M/Lz83s8X1RUhJiYGHzyySe+xw4fPoy6ujoUFxf3uk61Wo2EhIQeNyKiaPZlbTsEAPbWOmgVA1+fWK3ZwpMIIgoRRovDV2VnvcRKdLVSgaRYz5wR/JEUuQRBwKfftmDj/iZ0Wp1QyGWIUchgdbqx/Wgb1u86CZvTJXWYRER+dbgx8JXoyWf2RTfyOErSabXJ4BIE6NRK37ndpVIq5BiS6knEixOVUvSSNIleVlaGVatWYfXq1YiPj0djYyMaGxthsXh6aOn1ejz00ENYtGgRtmzZgqqqKjz44IMoLi7GNddcI2XoRERh46tab4uD+v1+WZ9Yid7UyUp0IgoNX9d1QBCATJ0CbrPhktfDli6Rb+fxDuyqNwAAJuYn47GSoXjsxmGYNjYDKoUcJw0WvP/NKbAgnYgihcPlxnFvf+gRGbqAvY9MJmNLFwoJzVZPqjMvOXZA84GJhqd5tpvqZrZ0iXaSJtGXLVsGo9GISZMmISsry3d75513fMu8/PLLuO222zBr1iyUlJQgMzMT69atkzBqIqLwstPX4sC/SfTWLhvcPIkgohBQ5d3PjUpRDWg9mUyiR7QGgwWVNW0AgEkFabhmaAqUCjnkMhlGZSZgVtEgXyJ9r8EPQ7eIiEJAXXs3nG4BsSqF7zgXKL4kOicXJQm1WD2J84G2chENTomDQi6D0eJAm9nul3VSeFJK+eb9uYKj0WiwdOlSLF26NAgRERFFFovdhX0njQAA6yX2CT5bUpwKSrkMDpcAQ7cDyXEDS1oREQ3UNycMAICRKQMbsnu6Et0GQRD8Ur1EocHlFvDJoWYI8EwSNj4n8Zxl0uM1mDY2A+/vOYXqTgVU2aOCHicRkb/VNHtaUAxNiwv4cS03yZO0PGW0wulyQ6kIiWn4KIrIVFoYHJ7veXaify4aqZRyDE6OxdFWM6qbu5CqU/tlvRR+uEcjIopgu+sNcLoFJGvlcJma/bJOuUyGNG81ejNbuhCRxARBwF7vxcLhyQNLoqfqVJDLAIvDhU4rJxeNJAcaTGg326GNUeDGkWl9Ljc0TYfRWZ6ewSmlP+REo0QU9o62mgEAQ1MD18pFlBgbg1iVAi63gEaO6iIJqLMLAMgQr1EiXjOw88Iz5afFAQBq28x+WyeFHybRiYgimNgPfXSqf6vFxSR6SycnDSIiaZ3osMDQ7UCMQobB+oFPHiWOrmnt4v4tUrjcAr467jkeThiSBE3M+Vu1XD88FTFyAaqMYdhYw76+RBTejracrkQPtDP7op80sKULBZ960BgAQHai1q/rzU/xbD9NJhu67Sy0iFZMohMRRbAvA5REF/uiN5uYZCIiaYlV6AWZ8YhRDHyYujhEt7WLPS8jxbdNnTBZndDGKDBukP6Cy8eqlBirdwEA3j3YBavDFegQiYgCpqbFUzk7LC3wlejA6eRlg4GV6BR86hxvEl3v3/7/cWql7zdwbRsvsEcrJtGJKOCef/55yGQyLFiwwPeY1WpFWVkZUlJSoNPpMGvWLDQ1NUkXZARyutz4+rhnsj3/J9E9JyXNnTbOUE5EktpzwpNEv2xQol/WdzqJzouEkUAQBHzlnXj2yrxExPSzP2++zg2nqRkGqxtrv6oPZIhERAEVzEp0ABjkTaKfMlrgZkssCiKXW/C2c/F/JToADPFWo9e2sqVLtGISnYgCaufOnXjjjTdQWFjY4/GFCxfi/fffx9q1a1FRUYGGhgbcddddEkUZmQ41dsJsd0GnViJP7995pJPjPH2D7S43TOwbTEQSEidPLsy5cIVxf6Tq2M4lkjQYrGjvtiNGIcNlF/EdkcsAY+U/AQCvVxyF3ekOVIhERAHTbrajo9sBAMhPDU4SPSVOBbVSDodLQDOPpRREtQYn5CotYmQCUuL8W0QGAENSPRPnHm/v5pwpUYpJdCIKmK6uLtx33334y1/+gqSkJN/jRqMRy5cvxx/+8AdMnjwZRUVFWLFiBbZt24bKykoJI44sYj/0KwcnQSEfeIuDMynkMiR5T0zaeHJMRBI5c1LRy/rRpqM/xEp0Q7cDThcTp+HuwCkTAGBkRjzUyvP3Qj+bee8mJGrkOGmw4IM9DYEIj4gooMQq9Gy9BrEq/xbV9EUmk53R0oV90Sl4DrV5WvElqwXIZP79/QsAGQkaaGMUsDvdaDSyXVE0YhKdiAKmrKwMt956K6ZOndrj8aqqKjgcjh6Pjxo1Cnl5edi+fXuww4xYO72tXCYMTrrAkpcmNc6TaGozs28wEUmjvt0Co8UBlUKOkRnxfllnrEoBbYwCArh/C3d2pxtHmjsBAGOyEi769YLTjunDPVVnqyqP+zU2IqJgOCr2Q08PTj90kdjS5WQHk+gUPNXtnlEXyerAFEHIZTIMTvGcFxxrY0uXaMQkOhEFxJo1a/D111+jvLz8nOcaGxuhUqmQmJjY4/GMjAw0Njb2uj6bzQaTydTjRn3z9ID1VKJPyE8OyHuk6MRKdCaZiEga+xpOTyqqUvrntFYmk/n2b2zpEt6qW7rgcAnQa2OQdYkTjE3Nj4VSLsPXdQYcaOC5BxGFl5pWbz/0ILVyEYlJ9AajhfMnUdBUt3t+lyapAvedY1/06MYkOhH5XX19PX7yk5/g7bffhkbjn1mxy8vLodfrfbfc3Fy/rDdSneiwoMlkQ4xChvE5iQF5D7HPXJuZSSYiksZBb6uOS6kyPh+xpQsvEoa3w42nq9AvdVh3klaBaWMzAQBv72A1OhGFFzHRNyTISfS0eDWUchmsDjfaOaqLgqDT6kBDpwtAYJPog1NiIYNntGKn1RGw96HQxCQ6EfldVVUVmpubceWVV0KpVEKpVKKiogJ//OMfoVQqkZGRAbvdDoPB0ON1TU1NyMzM7HWdixcvhtFo9N3q6+uD8EnC105vFfq4QXpoVRfXA7a/xCRTu9nOiVWISBIHT3mSpKOz/NPKRcTJRcOfzeHCiY5uAMCIjIG1MbjvmjwAwL92nUS3nZNpE1H4ON7m2Q+K1bPBopDLfCOATrIvOgXBvpMmCACcxmZoAvPzFwCgiVEgI8Hz3a5r7w7cG1FIYhKdiPxuypQp2Lt3L3bv3u27XXXVVbjvvvt8/46JicEnn3zie83hw4dRV1eH4uLiXtepVquRkJDQ40Z921nr6Yd+VYD6oQNAvEaJGIUMbgEwdLPChIiCT6xEH+XnSvQUzvkQ9mrbuuEWgOQ4FZJiVQNaV/HQFAxOiYXZ7sKmA01+ipCIKLAEQfAl+fK8fZyD6fTkopyAkQJv70kDAMDWeCTg75WX7NmemESPPsGZnpmIokp8fDzGjRvX47G4uDikpKT4Hn/ooYewaNEiJCcnIyEhAfPnz0dxcTGuueYaKUKOOF97JxW9akhg+qED3r7BcWo0mqxoM9uR4q1MJyIKBpPV4atuG53p3yR6UlwMAKDb7oLN4YI6JoAlTRQQR1v81wdYJpNhxuWD8MdPjmD9rpOYcfmgAa+TiCjQWrps6La7IJcBOUnaoL+/b3JRg6cv+qW21SLqj29OeObJsZ86AmBCQN8rLzkWX9a2o76d3+1ow0p0IpLEyy+/jNtuuw2zZs1CSUkJMjMzsW7dOqnDighGiwPfNntaHFyZF7hKdICTixKRdA55W7lk6zXQx8b4dd1qpQJxak/ivKM7OvpdLlu2DIWFhb7RXsXFxfjoo498z1utVpSVlSElJQU6nQ6zZs1CU1NoVmU73W7UelsYDEsbWCsX0czLswEAnx1pRUsn2/wQUeir8+4Hs/RaqJXBvxicqddALgO6bE50WtkKiwJrr5hED0IleqZegxiFDBaHC638HRxVmEQnoqDYunUrXnnlFd99jUaDpUuXor29HWazGevWreuzHzpdnN31BgiCZ9KTtPjAVoeLk4uybzARBduhxsC0chEle1uARMuEaDk5OXj++edRVVWFr776CpMnT8aMGTOwf/9+AMDChQvx/vvvY+3ataioqEBDQwPuuusuiaPu3ckOC+wuN+JUCmQk+Oc4ODRNh/G5iXC5BXywp8Ev6yQiCiTxYuKQ1OC3cgGAGIUc6fHsi06BZ+i2+1qr2BurA/5+CrnMN9KCLV2iC5PoREQRpsrbyqUowFXogKfXLAB0sCc6EQWZ2A/d35OKipK8+7f2KNm/3X777bjlllswYsQIjBw5Es899xx0Oh0qKythNBqxfPly/OEPf8DkyZNRVFSEFStWYNu2baisrJQ69HP4JtJLjfPrEOs7vdXo//7mdBK9vLwcEyZMQHx8PNLT0zFz5kwcPny4x+tqampw5513Ii0tDQkJCZg9e3bIVvETUeSoazMDAPKSgzup6JkGJZ1u6UIUKAcaPOeEGXEKuG3moLwn+6JHJybRiYgijNgP/coATioqEpPoRosDLrcQ8PcjIhId9LZzGeXnfugisRK9I0oq0c/kcrmwZs0amM1mFBcXo6qqCg6HA1OnTvUtM2rUKOTl5WH79u19rsdms8FkMvW4BUN9h3civWT/Vl9OvywLALCrzoAmk2eivIqKCpSVlaGyshKbNm2Cw+FAaWkpzGbPj3iz2YzS0lLIZDJs3rwZX3zxBex2O26//Xa43W6/xkdEdKbj3uTeYAkmFRVlJ3oq0RuYRKcAOuAtrBiSGLxpH8VzjJMGC5wuHs+jBScWJSKKIC63gF113kr0ICTRdWollHIZnG4BJovDV7lJRBRIbreAb5s8SXRWovvP3r17UVxcDKvVCp1Oh/Xr12PMmDHYvXs3VCoVEhMTeyyfkZGBxsbGPtdXXl6OJUuWBDjqnsw2p68/qb8n0stI0ODKvER8XWfAf/c34gfFQ7Bhw4Yey6xcuRLp6emoqqpCSUkJvvjiC9TW1mLXrl1ISPBc8HnzzTeRlJSEzZs397gwQUTkT752LlIm0fWe/XBHtwNmmxNxaqagyP/Ewoohif6dI+d8kuNUiFMrYLa50GC0+v3CPYUmVqITEUWQw42dMNtd0KmVGJkRmMTSmWQymS/RxJYuRBQsJw0WdNtdUCnkGJISmGHqYiV6NI20KSgowO7du7Fjxw788Ic/xJw5c3DgwIFLXt/ixYthNBp9t/r6ej9G27sTHZ5qxzSdGrEq/ydrpo31zN+ycX/v7ViMRs/EZsnJyQA81fgymQxq9ene7BqNBnK5HJ9//rnf4yMiEoVCOxdNjAKpOs/xtMHIanQKjIO+SvTgJdFlMhlbukQhJtGJiCJIlbcK/Yq8RCjk/usDez5JsZ6TlY5uR1Dej4joSLOn4mhoWhyUisCczsapFVAp5BAETyI9GqhUKgwfPhxFRUUoLy/H+PHj8eqrryIzMxN2ux0Gg6HH8k1NTeedFFytViMhIaHHLdDEVi65yf6tQheJSfTtR9tgOOvisdvtxoIFC3Dddddh3LhxAIBrrrkGcXFxeOKJJ9Dd3Q2z2Yyf/exncLlcOHXqVEBiJCIyWhy+c/M8CSvRASDbOwFjg8EqaRwUmRwuN6qbuwAAg/XBHekgJtHrmUSPGkyiExFFEF8/9CBMKipK8lZrtkdh32AiksaRJs+PpeHpuoC9h2ekjeciYbTu39xuN2w2G4qKihATE4NPPvnE99zhw4dRV1eH4uJiCSPsSRAEXzVYboCGVQ9JjcOozHi43AI+Odjc47mysjLs27cPa9as8T2WlpaGtWvX4v3334dOp4Ner4fBYMCVV14JuZw/xYgoMOq8rVxSdWroJG6hMiiRk4tS4NS0dMHuckOnViI9ThHU985N8pxrNHfaYLG7gvreJA2euRERRZCq48Hrhy4Sk+hs50JEwXLEW3E0Ij2wbat8FwmjYP+2ePFifPrpp6itrcXevXuxePFibN26Fffddx/0ej0eeughLFq0CFu2bEFVVRUefPBBFBcX45prrpE6dB+T1YlOqxNy2emkTSCUeqvRN+w/3Q9+3rx5+OCDD7Blyxbk5OT0XL60FDU1NWhubkZrayveeustnDx5EkOHDg1YjEQU3Y63e1q5SDmpqEjcH7d22mBzMtHoT8uWLUNhYaFvtFdxcTE++ugj3/NWqxVlZWVISUmBTqfDrFmz0NTUezuycCW2chmVGQ+5LDgjsUVxaqWvXZE4Eo4iG5PoREQRornTirr2bshkwOV5iUF7X7FS08B2LkQUJEe8k4qOzAhcJTpwOol+dtuOSNTc3IwHHngABQUFmDJlCnbu3ImNGzfipptuAgC8/PLLuO222zBr1iyUlJQgMzMT69atkzjqnhq8VY7p8RrEBKjNDwDc7E2if/ptC8w2B+bNm4f169dj8+bNyM/P7/N1qampSExMxObNm9Hc3Iw77rgjYDESUXQ77q1EHxwCkx3GqZXQa2MgADjFli5+lZOTg+effx5VVVX46quvMHnyZMyYMQP79+8HACxcuBDvv/8+1q5di4qKCjQ0NOCuu+6SOGr/OnRKnGg+8C3jepPLvuhRhVMjExFFiK+PGwAABRnxSNAEb1IVMclkcbhgcbigjQnuMDoiii6CIJyuRA9wEj0xNnouEi5fvvy8z2s0GixduhRLly4NUkQXT5y0LitRE9D3GZ0Vj9xkLerbLbh7zsP4fMO/8N577yE+Ph6NjZ7qdL1eD63WU325YsUKjB49Gmlpadi+fTt+8pOfYOHChSgoKAhonEQUvY63iZXo0k0qeqZBiVoYLQ6cNFgwJDU0YooEt99+e4/7zz33HJYtW4bKykrk5ORg+fLlWL16NSZPngzg9PGosrIypEaSDcQBbyW6J4neGvT3z0uKxa46A/uiRwlWohMRRYivvZOKXhnEVi4AEKOQ+3otdkRp3+BoUl5ejgkTJiA+Ph7p6emYOXMmDh8+3GOZSZMmQSaT9bg99thjEkVMkabBaEW33QWlXBbw5IBe60miR8vEouFOrHDM1geulQvg6Zc/ZVQGAOA/77wJo9GISZMmISsry3d75513fMsfPnwYM2fOxOjRo/HMM8/gl7/8JV566aWAxkh0Jh67o4+vEj0E2rkAQLb34mYD+6IHjMvlwpo1a2A2m1FcXIyqqio4HA5MnTrVt8yoUaOQl5eH7du3Sxipfx30VaIHtsVfX7ITtZDLPC3leL4Y+ZhEJyKKEL5+6EGcVFQktnRhX/TIV1FRgbKyMlRWVmLTpk1wOBwoLS2F2WzusdzDDz+MU6dO+W6/+93vJIqYIo3YyiU/NS6gLTuA05Xo3XYX7E53QN+LBsbmcKHNeyE3Sx/YSnQAmFSQBgCY+NzHcLvdEAShx23u3Lm+ZZ9//nk0NjbCbrfj22+/xaJFiyALct9Wim48dkefUEuii33Rm0w2OF08nvrT3r17odPpoFar8dhjj2H9+vUYM2YMGhsboVKpkJiY2GP5jIwM36ip3thsNphMph63UNXSaUNrlw0yGVCQKU0SXaWUIzPBc97BavTIx3YuREQRwOZ0Ye8JI4DgTioqSo5Vob7dgo4oaHkQ7TZs2NDj/sqVK5Geno6qqiqUlJT4Ho+NjUVmZmaww6MocKTJ08plZEbgfyyplQpoYxSwOFwwWOxIjw98cpYuzSmjpwpdr41BnDrwP3GuGZoCtVKORpMVh5s6MSpTml6sRP3BY3d0sTpcaDR59omh0s5Fr41BnEoBs92FJpMNg5ICO2IomhQUFGD37t0wGo149913MWfOHFRUVFzy+srLy7FkyRI/Rhg44qSi+SlxiFVJl97MTY5Fg9GK+vZuBLijHEmMSXQiogiw76QJdpcbKXEqSSpOxL7obOcSfYxGz8Wb5OTkHo+//fbbWLVqFTIzM3H77bfj17/+NWJjQ6MaisLbkWZPJfrw9MD2QxclxsbAYnTB2O1gEj2Eif3Qs/386/XgwYN9Pjc2LQZfn7Lh7c27ceeowHwfU1NTkZeXF5B1U/TisTuynejwVMPGq5VIig3ePEnnI5PJkJ2oxZHmLpw0WJhE9yOVSoXhw4cDAIqKirBz5068+uqruPvuu2G322EwGHpUozc1NZ33YtnixYuxaNEi332TyYTc3NyAxT8QB3v0Q5dObnIsdhxrR32HBeN4HTKiMYlORBQBvj5+uh+6FEPEk+K8SXS2c4kqbrcbCxYswHXXXYdx48b5Hr/33nsxePBgZGdnY8+ePXjiiSdw+PBhrFu3rtf12Gw22Gw23/1QHjZK0gvWpKKiRG0MThmt6GCfy5Dm737opvYWAMD999/f5zLxV96G5Jsew18+2IZn71vsl/c9mzY2FocOHmQinfyGx+7IV9/huag4KEkbUq2jBp2RRKfAcbvdsNlsKCoqQkxMDD755BPMmjULgGeOjrq6OhQXF/f5erVaDbVaHaxwB+RQo6ewYpRErVxEmQkaxChksDhcMDpCZ5sj/2MSnYgoAvj6oUvQygWAr8rFaHHA5RagkPPkIRqUlZVh3759+Pzzz3s8/sgjj/j+fdlllyErKwtTpkxBTU0Nhg0bds56wmnYKElLEARUe9u5jEgPzg8mvbh/Y7uqkOUWBDR1epLomX7qh27p8iQEb330lygoLOp1mS4nsLEB0OaNw/w/rUOMn1v0N9XV4O0Xfo7W1lYm0clveOyOfCe8SfScpNAaRZDt7Yt+ymiB2y1Azt8LA7Z48WJMnz4deXl56OzsxOrVq7F161Zs3LgRer0eDz30EBYtWoTk5GQkJCRg/vz5KC4uxjXXXCN16H4hjk4cKXESXSGXYVCiFrVt3Wi28nsdyZhEJyIKc4Ig4CuJk+g6tRJKuQxOtwCT1eFr70KRa968efjggw/w6aefIicn57zLTpw4EQBQXV3d6w/xcBo2StJqNFnRaXNCIZchPzU4fV4TtZ79mcHCkTahqsNsh8MlQCmXITnOv8eflOzByBkxts/nvzTUoqPbAWdSHvKDdGGH6FLx2B0dxHYuOSHWMiVVp4JaKYfN6UZLlw0ZCWyRNlDNzc144IEHcOrUKej1ehQWFmLjxo246aabAAAvv/wy5HI5Zs2aBZvNhmnTpuG1116TOGr/cLsF1DR7JkcOVou/88lNjvUm0QM76T1Ji0l0IqIwV9NiRmuXDWqlHIU5eklikMlkSIpToaXThg6znUn0CCYIAubPn4/169dj69atyM/Pv+Brdu/eDQDIysrq9flwGjZK0hInFR2SEguVMjg/UsRKdAMr0UNWU6enpUR6vBryILcuGJwSh45uA463dQdtdATRxeKxO7qcrkQPrSS6TCZDll6D2rZuNBgsTKL7wfLly8/7vEajwdKlS7F06dIgRRQ8DUYLLA4XYhQy5CVLP+oi1zvyo9UmA+RMtUYq/s8SEYW5HcfaAABX5CVCrVRIFkeiNgYtnTYY2Tc4opWVlWH16tV47733EB8fj8bGRgCAXq+HVqtFTU0NVq9ejVtuuQUpKSnYs2cPFi5ciJKSEhQWFkocPYU7Xz/0ICYrE7WeJHq33QW70x205D31X7PJ08pFioTMkJRY7K73JNEFQQip/sNEIh67o0uotnMB4Gt5cdJgwRV50oygpchQ0+KpQh+cEocYhfTnZqk6FbQxClgcLqizC6QOhwJE+m8aERENyI6j7QCAifkpksah9yaaDEyiR7Rly5bBaDRi0qRJyMrK8t3eeecdAIBKpcLHH3+M0tJSjBo1Cj/96U8xa9YsvP/++xJHTpGg2ptED+awXU2MAhpvs2teJAxNTSZPJboUSfRBiVoo5DJ02Zzo4GgFClE8dkeXkyHazgU43Re9wWCFIAgSR0PhzHdOmCZ9KxfAM9Ii17vNaQaPlzgaChRWohP1Q4fZji9r21Hf0Q232zNpVdHgJAxKDL0TE4ougiD4KtEnDk2WNJZETr4XFS70gyc3NxcVFRVBioaizdEWzw+moWnB6Ycu0mtjYHV4RtqkxbN9QShxuQW0dIlJ9OD/3ygVcmTrNajvsKC+vdvvPdmJ/IHH7uhhsbvQ2uWZwyM3BCvRMxI0UMhlsDhcMHQ7kMR9Jl0iKQorLiQ3ORbfNncxiR7BWIlOdAHHzXK8vaMOhxo7Yba5YHG4cKzVjHerTmDHsTZeQSdJHW/rRpPJBpVCjislHhLJSnQiCrSjrZ6hu0ODXHWk13j2bybu30JOW5cNLrcAtVLuOw4FW663F2tde7ck709EJDpp8OyH4tVKJGhDr2ZSIZch0ztq6KTBInE0FM5qWkIziQ4A6uwCWBxuiaOhQGASneg8YkffiK/alHAJAgYnx2LWlYPw/Qm5GJOVAACoPNqOnbUdEkdJ0ezLY55WLuNz9dDESNcPHQAStZ5Kkk6rAy43Ly4RkX91Wh1o8U4gGexK9ARvctZoZRI91JzZykWqfuTihGYnOixw8/hHRBKq9/ZDH5SkDdk5Ggb5WrowiU6XrsZbiT4sRNq5AJ6isliFAJlCiQOtdqnDoQBgEp2oD8c6HEi9ZQEAoDBHjxmXZyMnKRYZCRrcNCYDJSNSAQDbj7bheJtZwkgpmlWKrVwk7ocOAHFqBZRyGdyCJ9lFRORPR70TSKXq1EjQBLfiOIGV6CGrucszqWi6hG120uLV0CjlsLvcaOq0ShYHEdHJEJ5UVJSdyEp0GpgOsx1tZk+Selh6cAsrLiRd46lA39PEJHokYhKdqBdOlxuv7DBApoxBpsaNSSPTzrmSf0VeEsYN8lSkf3KoGXYnh+tQ8ImTil6dL20/dMAzmYo4lJ6T7xGRvx1tlaYfOgDfkHiT1Rn096bza+30/EhN1UmXRJfLZMhhSxciCgEnfEn00J27K1OvgQyeY2oXj6t0CcRWLoMStYhVhVbbonSNZ0TaniabxJFQIDCJTtSLt3fUod7khKvbiKtSnH0OhSsZkYYEjRKdVie+Ot4e5Cgp2p3o6MZJgwUKuQxFg6Xthy5iX3QiChSxEn2YJEn005XonAsldAiCgDaz50eq1BO+5nmrPuvbWVlJRNI50eG5kBfKSXS1UuHbZ7ManS6FOKmoFIUVFyJWoh83OtHaxUR6pGESnegshm47Xv74W8+/P1sF9XnaTMco5CgZmQYA2FVngNnGK+kUPGIV+mWD9IhTh8YV+MRYbyV6N5PoRORfvklFU4Pf+zJe49nHOt0Cuu2uoL8/9c5gccDhEqCQy5Ao0aSiotxkT8LqlNHC0YlEJJlwqEQHgGz2RacBEJPooTSpqEitAOxNRwEA22raJI6G/I1JdKKzvLa1BoZuB/L0SnR9s/GCyw9NjUNmggZOt4BvThgCHyCR1+fVrQCAa4dJ3w9dxEp0IgoUsRJdiqojpVwOnVps6cL9W6ho9U40m6pTQS6XdgK9xFgVEjRKuAVWVhKRdE6EQU904Iy+6EbuL+niVbeEbhIdAKzHvwEAbPP+XqfIwSQ60RmMFgferjwOALj/snhAuHAlkUx2upXG3hNGOFysPqLAc7sFfHbEc1AWR0OEAl9PdFaiE5Efud0Cjvl6okvzg8nXF93CUWehorVL+n7oZ8pLFlu6sC86EQWf1eHytY8I+Up0vSe+ti477Pz5TBdJ7Ik+TKJzwguxeJPoX9QwiR5pmEQnOsOaL+tgtrswMkOHoqz+/yAbmhaHBI0SVqcbB0+ZAhghkcehxk60dtkQq1LgyrzQ6IcOeCrxAMBoZd9gIvKfUyYrrA43YhQy5EqUGNBrvBcJWYkeMlq8yaK0EEmi53JyUSKSkFiFrlMrfYUtoSpOrfS1gWyzSTuSiMKL1eHyfddDtRLdVr8PCplnnpS6Np4TRBIm0Ym87E43VnxRCwB4+IahfU4m2hu5TIbLcxMBALvrDUweUsB9dqQFAFA8NAUqZejsyuPVSshlgMstoItzBBCRnxz1VhzlJcdCqZBmn3fm5KIUGsSKy1CpRM/1tk9oM9s5Tw4RBd2Zk4pezG9ZqQzy9kVvtYXObxkKfTUtXRAEz1xcKXEqqcPpleCwYmSK57yR1eiRhXsrIq+N+xvRaLIiPV6NOy7PvujXj8lOgFIuQ0e3A02dnIWZAkts5XLDiFSJI+lJLpchwVutaWBLFyLyk9P90KWrOGISPbRYHS50Wj2J6tT40PgRrVUpkBbvSejXd7DyjIiCK1wmFRWJk4u2WUM/4U+ho8Z7TjgsTRfSF4sKMzznA1+wL3pEYRKdyGtt1QkAwPcn5EKtVFz069VKhW+ys8ONnX6NjehMFrsLX9a2AwCuHxE6/dBFeu/QTCMTTUTkJ2IluhSTiorEdi4mKyuMQ4FYhZ6gUV7SeVugiO2G6ts5WR4RBVe4TCoqEivR2+0yyJShcTGUQl91s3dS0RDthy4qTPck0bfVtMHtZqeCSMEkOhGABoPF1x7ju0W5l7yeUZkJADxJdO4oKVA+O9ICu9ONQYlaDJMwodSXRG+1poFJdCLyk6Ot3qqjVCkr0T0Ti3ZaHXCzbZvkWjpDq5WLSOyLXt/RzfZ+RBRUJw3hVYmeoFEiTq2AABlUWSOlDofCRI2YRA/Rfuii4ckxiFUp0G624xCLLCMGk+hEANZ9fQKCAEzMT0ZeyqVfuc9LjoU2RgGLw4U6DuOlAPn4YBMA4KYxGSE5hE2cyMjIdi5E5Cen27lId+Ewzjvng1sAuliNLrnWLjsAIDU+tJLogxK1kMuATquTI7KIKKjO7IkeDmQyGbL1nlg1OWMljobCRU1LeCTRYxQyTMxPBsCWLpGESXSKeoIg4F1vK5fZV116FToAKOQyjMzw7My/beLVRvI/l1vAJwebAQClYzIkjqZ3YjsXg8UucSREFAksdpevuk7KnuhymQzxvpYuTI5KTWznkhZilegxCjky9RoAQH0HW7oQUfCEWzsX4HRLF3Uuk+h0YS63cHp0Yoi3cwGA64Z75i/j5KKRg0l0inr7TppQ29YNbYwC0y/LHPD6xCuita3dHO5NfrerrgNtZjsSNEpM8F7ZDjWJWk9PQ5PFyaHsRDRgx7w/lhJjY5AcJ23PVN9IG1YYS8rtFtBm9lai60Kvj26uN4FV385RiUQUHFaHy9fmSkxMhwNxclF19ii42A6VLqC+vRt2pxtqpRyDwmDExbXDPEn0L4+1w+50SxwN+QOT6BT1Ptx3CgAweVQ6YlXKAa8vS6+FWimHxeFCo9E64PURnWmTt5XLd0alI0YRmrvwBI1nO7K73LDyZIGIBuhoq3dS0VTp54AQ928mC9u5SMloccDlFqCUy3wXNkKJmEQ/0WHhxWQiCgpxxFacSoHE2NDbL/YlRadCjEyAXB2LWgOPrXR+Nb6J5nVQyEOvrenZRmXGIyVOhW67C7vrDVKHQ34QmhkYoiARBAEf7vUk0f1RhQ54WroM9vZVF6vniPxBEARs2NcIwNMPPVQpFXLEqhQAABOrNYnoLOXl5ZgwYQLi4+ORnp6OmTNn4vDhw77n29vbMX/+fBQUFECr1eIHU69C+8dvYFCc9MnIBC3buYQCsQo9OU4VknODZOo1UMplsDhcvt7tRESBdGYrl1DcL/ZFLpMhRe05vh9o5f6Szq/aO6noMAnnyLkYcrkMxcNSALAveqRgEp2i2v4GE463dUMTI8d3CtL9tt58b7Uck+jkT7vrDTjubT00eZT/vq+BIFYGMolORGerqKhAWVkZKisrsWnTJjgcDpSWlsJs9hwzGxoa0NDQgJdeegn79u3D5EeeguVoFT7/27MSR852LqGi3ZtET5G4vU9fFHKZb5h5PSeaJ6IgCLdJRc+UqvaMXD3YwiQ6nZ+YRA/1SUXPJPZF38a+6BFh4L0riMLYR95WLpNGpiNO7b/NYUhKHGQyT6WU0eIIyaHGFH7e290AACgdm+GX1kOBlKCNwSmjlYkmIjrHhg0betxfuXIl0tPTUVVVhZKSEowbNw7//Oc/fc87M08hseQB7PvwD3A6nVAqpdv/JXgnFu20csi5lNrPqEQPVblJsTje1o369m5cmZckdThEFOFOV6KHXxI9RSMARuBgqx2CIIRVJT0Fl9jOJZyS6Nd7k+i76gww25x+zTtR8LESnaLapgOe/tL+auUi0sQokK33nMAcb2M1Og2cw+XG+994kugzLx8kcTQXpvcmmoxseUBEF2A0GgEAycnnTpYsCAKOtpjhtpkRHx8vaQIdAOK9PdHNNifcnABNMm1mz+R5IZ1ET/acB540WDhZHhEF3JntXMJNkkqA4LTDaHNzJDf1SRCEM9q5hE8SPTc5FrnJWjjdAr481i51ODRATKJT1Kpv78a3TV1QyGWYNNL/rTHEH0/13hMaooH4vLoVbWY7kuNUuH5EqtThXFCClpPvEdGFud1uLFiwANdddx3GjRt3zvNtZjsMHW0wbluDhx95WIIIe4pVKaCQySAA6LJz/yYFtyCgo9tzgTaUk+hpOjU0MXI4XAKaTJxonogCK5zbuShkgK3BMzfKzlomGal3LV02mKxOyGWn2+eGi+uGeX6/f86+6GGPSXSKWpsPNQMAigYnQR+AGcxzvVUAJzq6IQisQKKB+f921AEAbi/MQowi9Hfd7IlORP1RVlaGffv2Yc2aNb0+v/fYKTS/uwTxmUPw7DPPBDm6c8lkMui81eidvEgoCZPFAZdbgFIu8030GopkMpmvIpR90Yko0E6GcSU6ANhO7AcAfHmsQ+JIKFTVNHtGKeQmx0ITo5A4mosj9kXn5KLhL/QzMUQBIibRpwRogsaMBA1iFDJYHW60dnGSFLp09e3d+Pigp/XQ/dcMljia/hH7BpusDrh5EYmIejFv3jx88MEH2LJlC3Jycs55vrOzE4/d913IVVpMX/gSYmJCI2EqtnTptPEioRTEfuhJcSrIQ7xvbq44uWg7RyUSUeBYHS40d3raXIVjJToAWE8cAMBKdOpbtdgPPYxauYiuHZYCADjU2InWLpvE0dBAMIlOUclsc2J7TRsAYMrowCTRFXIZBiWKP55YgUSXblXlcbgFz6QkIzLipQ6nX3QaJeQywC14tjciIpEgCJg3bx7Wr1+PzZs3Iz8//5xlTCYTSktL4YAcabN+jRFZ5/ZLl4ovic7JRSXRFgaTiopykz0VoY1GKxwut8TREFGkajB4LtTFqRRIDMAI62CwnTwIuQyoa+9mCyzqVY3YDz2MJhUVpejUGJ2VAADY5s1DUXhiEp2i0raaNthdbuQmawM6KYX446mOw3jpElnsLqzZWQ8AmHPtEGmDuQhymQzxYjU6Wx4Q0RnKysqwatUqrF69GvHx8WhsbERjYyMsFk8SQEygm81mTHzglxBsFiTJutHY2AiXyyVx9Di9b+PEyZJoD6MkeqI2Bjq1Ei5B8CW5iIj87cxJRWUhPkKnL4LdgsF6z0VqTr5IvREnFQ3HSnQAuM5bjb6NLV3CGpPoFJU+P9ICAJg0Mj2gJxpiX/QGgwVuN1ta0MVbua0WRosDecmxmByg1kOBIk4uamSiiYjOsGzZMhiNRkyaNAlZWVm+2zvvvAMA+Prrr7Fjxw7s3bsXa34+EyeW/gALZ0xEVlYW6uvrJY6elehSE5PoKWGQRJfJZJxonogCTkyiDwrTVi6iMWme/TpbulBvalrCtxIdOKMveg2T6OFMKXUARFIQZ0W+fkRqQN8nVaeCWimHzelGS5cNGQmagL4fRRZjtwPLtlYDABZMHQGFPLwqS/SaGNTDAiMnFyWiM1xosu1JkyZBEAS43QJG/WYD7E43Pv35d5CXEhqTpcWrPafPXUyiB50gCGFViQ54CioOnupkaz8iCpgT3lHP4doPXTQ6VYX/HOlmJTqdo8vmxCmjp81PuFaiX52fDKVchvp2C+raukPmvJYuDivRKeqcMlpQ02KGXAZcMzQloO8lk8mQqdd435e93ejiLKuogcnqREFGPGZcPkjqcC5aglZs58IkOhFdvAajBXanGzEKGbITQ+citG/fZnVc8IIA+ZfJ6oTTLUAhl0GvCY++v2Jrv+ZOG6wO6dsREVHkOd3OJbyT6GIl+uGmThbhUA9iP/RUnRr6MO37H6dW4oq8RACsRg9nrESnqPP5Ec8OqzAnEXpt4HfA2Xotjrd1o8FgweW5iQF/P4oMBxpMWP75UQDAz6YVhF0VOgDf9sUkOlH0qKurQ2urf34YfNNkAwCkx8qx55vd/XrNwYMH/fLe5yNWojtcAmxONzQxioC/J3m0mT3fiaTYGMjD5LioUyuRFBuDjm4HTnRYMDxMh6ETUeg6XYke3pWtiRoF8lPjcKzVjKrj7Zg8KkPqkChEiK1chqfHSRzJwFw7LBU7azvwRXUr7rk6T+pw6BIwiU5R5wuxlcvwwLZyEYnVcw1GCwRBCNvJXih4bE4XFv1jNxwuATeNycDU0eHVC12U4Jt8jy0PiKJBXV0dRo0eDUu3f9pW6K64BSmlP8KRr79A0a+evajXdnV1+SWG3igVcmhjFLA4XOi0OiMmiV5eXo5169bh0KFD0Gq1uPbaa/HCCy+goKDAt8ykSZNQUVHR43WPPvooXn/99aDEGG6tXES5ybHo6Daivr2bSXQi8rtIqUQHgAlDknCs1Ywvj3UwiU4+4qSiw8K0lYvo+hGpePWTI9hW0wa3WwibggA6jUl0iiqCIODz6jYApyd2CLSMBA3kMsBs8/zYTghC9TuFL0EQ8NR7+3GosRMpcSqU33VZ2F54ESvRu2xOOF1uKBXsIEYUyVpbW2Hp7sZ9T7yIjLxhA17fNx0KVHcC46+cgMIp6/r1moNfVuCjN1+F1RrYFmrxGqU3ie5AWrw6oO8VLBUVFSgrK8OECRPgdDrx5JNPorS0FAcOHEBc3OnKr4cffhjPPPOM735sbPAqH31J9NgwS6InxWLPCSPqO9gXnYj8y+pwobnTM0on3CvRAWDCkGT846sT+IqTi9IZxCR6uF+IHp+TiFiVAu1mOw41dmJMdoLUIdFFYhKdosq3TV1o7bJBEyPHlYMTg/KeMQo50uLVaDLZ0GC0MIlOfRIEAeUfHcKanfWQy4DffbcQqbrwTc5oYuSIUcjgcAnotDqRFGaVg0R0aTLyhiFnxNgBr6dq90kA3cgdlIWcQfp+vaaprmbA79sf8Rolmjtt6IygkTYbNmzocX/lypVIT09HVVUVSkpKfI/HxsYiMzMz2OEBAAzdnvZg4XY8yUnSQgago9uBLqsTOg1/ggVSf0ZViARBwC233IINGzZg/fr1mDlzZvADJhoAcd6tWJUCSWHaK/pMV+cnAwD2nDDC6nBFzGgvGpjT7VzCO4muUspxdX4yth5uwRfVrUyihyGWBVJU+dzbyuXq/BSolcE7IGfpPUPrGgycXJR6Z+x2oOTBJ/H03FtQ9/L30Pin7+NX/zMTH330kW+ZP//5z5g0aRISEhIgk8lgMBikC7gfZDKZ76KR0cq+6ER0cTrEhGkIJgXiNacnF41URqMRAJCcnNzj8bfffhupqakYN24cFi9ejO7ztO+x2WwwmUw9bgPR0e2pRE8Ks0p0TYzCN2KB1eiBJ46qqKysxKZNm+BwOFBaWgqz2XzOsq+88krYjvgjAs7sh66NiO9yXnIs0uPVsLvc+KbeIHU4FAIcLjeOt3m+5+HezgU43VaYk4uGJybRKaqc7oeeEtT3zdZ7+qI3mZhEp9NcbgHfNnXij58cwXd+vxWHu2KQ+p25+N2qD7H76ypMnjwZM2bMwP79+wEA3d3duPnmm/Hkk09KHHn/6b2JJiMnFyWii+ByC74EdWIIJkzjvZXEkVSJfia3240FCxbguuuuw7hx43yP33vvvVi1ahW2bNmCxYsX46233sL999/f53rKy8uh1+t9t9zc3EuOyeJwwepwAwASQ/DCyoXkJnvaLDCJHngbNmzA3LlzMXbsWIwfPx4rV65EXV0dqqqqeiy3e/du/P73v8ff/vY3iSIlGrjT/dDDv5UL4CnCmTDEc/F2J1u6EIDjbWY43QLiVApkefMq4ezaYZ4k+pfH2mF3uiWOhi4WxxJS1HC63Nhx1NMPXdxxBUtGgmdn39plY2/oKCUIAmrburHnhAF7Thix94QR+xqM6La7fMuMK56MV+6+HIU5iQCA5557DsuWLUNlZSXGjh2LBQsWAAC2bt0a/A9wicRKdBOT6ER0EUwWBwQBiFHIEKcKvaHc4sTJkZpELysrw759+/D555/3ePyRRx7x/fuyyy5DVlYWpkyZgpqaGgwbdm4f/MWLF2PRokW++yaT6ZIT6QZvFbpOrURMGJ5H5SZpUXW8A/XtnGg+2HobVdHd3Y17770XS5culaw9EZE/nFmJHikmDEnCf/aewpe1HVKHQiGgutkzimhYui4ijp2jMuOREqdCm9mOXXUdmDg0uAWeNDBMolPUOHDKBLPdhQSNEqOzgtt7Kl6jhDZGAYvDhZYum6+9C0W+/Q1GrKo8ji2HWtDYy0iEWJUClw3S496Jebj1sizfBRaXy4W1a9fCbDajuLg42GH7jd6XRI/MRBMRBUaHxZMwTdSqQvIH0+lK9Mi7QDhv3jx88MEH+PTTT5GTk3PeZSdOnAgAqK6u7jWJrlaroVb7Z24Psb1POFahA0B2ohYKmQxdNicMFkfYtaQJV32Nqli4cCGuvfZazJgxQ8LoiAbudCV65Py+nODti/718Q643AIU8tA7D6Dg8fVDj4BWLgAgl8tw3fBU/PubBnxe3cokephhEp2ixo6jnuFgE4YkB/1ALJPJkJGgRm1bN5pMTKJHg0ajFU+u34vNh5p9j6mUcozNTkDhID0uy0lEYY4ew9J0Pb6Pe/fuRXFxMaxWK3Q6HdavX48xY8ZI8RH8IsGbaIrkvsFE5H+GEE+Yikl0s90Fp9sNpTz8KqPPJggC5s+fj/Xr12Pr1q3Iz8+/4Gt2794NAMjKygpwdECHOTz7oYtiFHJk6jU4abCgvr07bD9HuOltVMW///1vbN68Gbt27ZIwMiL/EJPogxIjo50LAIzKTEC8WolOmxMHT5kwrp+Ti0ej/kykPGnSJFRUVPR43aOPPorXX3892OFekupmTxJ9WJhPKnqmG0Z4kuifHmnFT0vPnfSaQheT6BQ1dhzzJNEnDk2+wJKBkZGg8SbR2Rc90m0+1IQFa3bDZHVCIZfh1suy8N2iHFydn3zBGeYLCgqwe/duGI1GvPvuu5gzZw4qKirCNpEuVqKzJzoRXQxxAslQTaJrYxRQyGVwuQWYbS7oteGfRC8rK8Pq1avx3nvvIT4+Ho2NjQAAvV4PrVaLmpoarF69GrfccgtSUlKwZ88eLFy4ECUlJSgsLAx4fIYQnmi2v3KTtd4kusXXuo0Cp69RFZs3b0ZNTQ0SExN7LD9r1izccMMNYdU2jygS27ko5DIUDUnC1sMt+PJYO5Po5yFOpDxhwgQ4nU48+eSTKC0txYEDBxAXF+db7uGHH8Yzzzzjux8bGz4XXcRK9EiYVFR0w4g0AMCeEwYYuu0hOf8P9U7SM/5PP/0Ut99+O7KzsyGTyfCvf/2rx/Nz586FTCbrcbv55pulCZbCmtst+CYmuTpfmuEyYl90JtEj23/3N+LRt6pgsjpRmKPHxgUl+OM9V6BkZNoFE+gAoFKpMHz4cBQVFaG8vBzjx4/Hq6++GoTIA0PsiW5zumFzuC6wNBGRx+mEaWj+qJDJZL5q9EiZ82HZsmUwGo2YNGkSsrKyfLd33nkHgOf49PHHH6O0tBSjRo3CT3/6U8yaNQvvv/9+UOITL6yE6neiP3K9E/+d6OiGIAgSRxO5BEHAvHnzsH79emzevPmcURW/+MUvsGfPHuzevdt3A4CXX34ZK1askCBioktjc7rQZLIBiKwkOgBOLtpP/Z1IOTY2FpmZmb5bQkJw29teKkEQUOOtRB8eQZXomXoNRmboIAjAF9VtUodDF0HSSnSz2Yzx48fjf/7nf3DXXXf1uszNN9/c42TGX30VKbp829wJo8WBWJUCY7OlOWBkJHi+ux3dDticLqiVoTdRGg3M9po2lK3+Gg6XgNvHZ+MPs8cPePIzt9sNm83mpwiDL0Yh980HYGRLFyLqp1Bv5wJ4WroYuh3otEXGnA8XSurm5uaeMxw8WARBgMES+t+JC8lI0CBGIYPV6UZLpw3p3gIL8q8LjaoQk0hny8vL61cbI6JQ0WDwFGdpYxRIjgvfC4y9uTr/dBKdkzH3X28TKQPA22+/jVWrViEzMxO33347fv3rX/dZjW6z2Xr8/jSZTIEL+AJOGa0w211QymUYnBI+1fP9ccOINHzb1IXPjrTg1sLAt8Uj/5C0En369Ol49tlnceedd/a5jFqt7nHFLCkpKYgRUqT40tvKpWhw0oCTmpcqVqX0Va01m8I3KUq9azfbseCdXXC4BNxyWSZevoQE+uLFi/Hpp5+itrYWe/fuxeLFi7F161bcd999AIDGxkbs3r0b1dXVADz903fv3o329tCu0ODkokR0MRwuN7q8ielQrjrWqT3H9C4r922B1ml1wuUWIJcBCZrwTaIr5DIMSvRUi9Z7+xiT/11oVAVRpDizlUukJZkLc/RQKeVo7bLjWKsZgKf/94QJExAfH4/09HTMnDkThw8f7vE6q9WKsrIypKSkQKfTYdasWWhqapLiIwRdXxMp33vvvVi1ahW2bNmCxYsX46233sL999/f53rKy8uh1+t9t9zc3GCE3yuxlcvglFjJ8jiBcv2IVADAZ0daOTotjIT8t3Dr1q1IT09HQUEBfvjDH6KtjUMd6OKJ/dCvHiJNP3SR2NKluZNJ9EgiCAIef/cbNJlsGJYWh5e+Nx7KSzjINzc344EHHkBBQQGmTJmCnTt3YuPGjbjpppsAAK+//jquuOIKPPzwwwCAkpISXHHFFfj3v//t18/jbwlaT6KJfdGJqD/EKnSNUt6vNlhSiVd7krldEVKJHsp8PfK1KsiDPDm8v+Umeyrp6tu7JY4kcgmC0Ott7ty5533NzJkzgxYjkT+c9F6Mi7RWLgCgVipwuXfuiK9qOwCc7v9dWVmJTZs2weFwoLS0FGaz2fe6hQsX4v3338fatWtRUVGBhoaGPrseRBpxIuU1a9b0ePyRRx7BtGnTcNlll+G+++7D3//+d6xfvx41NTW9rmfx4sUwGo2+W319fTDC71V1BLZyEU3MT4ZKIcdJg8V3oYhCX0hPLHrzzTfjrrvuQn5+PmpqavDkk09i+vTp2L59OxSK3n9UhdLQEwoNgiD4KtHFYWFSSYtXo7q5Cy1dTKJHkk0HmvDxwWaoFHL86Z4rEau6tF3r8uXLz/v8008/jaeffvqS1i2l05XoDmSEbj6MiEKEwTepaOhWoQOAzju6rJOtqgIuHNr79JfYF/2kwQKXW4AizC8KEJF0TviS6JHV5kI0IT8JX9a248vadsyekIsNGzb0eH7lypVIT09HVVUVSkpKYDQasXz5cqxevRqTJ08GAKxYsQKjR49GZWUlrrnmGik+RlD0NZFybyZOnAgAqK6uxrBhw855Xq1Wh0wbZTGJHkmTiopiVUpcNSQJ22ra8NmRVgyNwM8YiUI6if7973/f9+/LLrsMhYWFGDZsGLZu3YopU6b0+pry8nIsWbIkWCFSGDjWakZLpw0qpRzjcxMljSVN5zkYtbISPWI4XG48/9EhAMD/3pCPMRL13A9l4uSiRqsDiLvAwkQU9Tos4qSioZ0wjRfbubASPeB8k4pGQM/fVJ3KN1dIo9GKQRFYQRpIdXV1aG1tlToMpKamIi8vT+owKMqd2c4lEnkmF63pc3LRs/t/V1VVweFwYOrUqb5lRo0ahby8PGzfvj0ik+iCIGD+/PlYv349tm7d2q95HcTJlLOyQr8Pt9jOJRIr0QFPX3RPEr0Fc64dInU41A8hnUQ/29ChQ5Gamorq6uo+k+iLFy/GokWLfPdNJpOkPZxIemIV+uW5iZIPCxeT6O3ddjhd7ktq+UGh5e3K4zjaakaqToUfTjr3Sr5I6h99Bw8elOy99ZrTlehMohPRhYRbJTp7ogdeRwRVostkMuQmafFtcxfqOrqZRL8IdXV1GDV6NCzd0rfC0cbG4tDBg0ykk6QivRL9ysFJkMmA423daDZZe0zG3Fv/78bGRqhUKiQmJvZYT0ZGhm+C4UhzoYmUa2pqsHr1atxyyy1ISUnBnj17sHDhQpSUlKCwsFDi6C+sutnT5iRyk+ipeGEDsL2mDXanGyol80OhLqyS6CdOnEBbW9t5r5iF0tATCg1fHff0UJswRPpJaePUCl/1UZvZ7uuRTuHJ7nTjta2eXnILpo5EfB+TnYXSj76urq6gv6dYiW6yOsE5U4joQsKldYdYiW51uuFwuSNuwqtQ4qtED/ELK/2VkxyLb5u7cKK9GxiaInU4YaO1tRWW7m7c98SLyMjru3Ah0JrqavD2Cz9Ha2srk+gkKTGJHqkX4xI0MRidmYADp0z4srYdtxVm+54T+39//vnnEkYovWXLlgEAJk2a1OPxFStWYO7cuVCpVPj444/xyiuvwGw2Izc3F7NmzcKvfvUrCaK9OMZuB1q9bXAjsZ0LAIzJSkBKnAptZjt21XVgIs8JQp6kSfSuri5UV1f77h87dgy7d+9GcnIykpOTsWTJEsyaNQuZmZmoqanB448/juHDh2PatGkSRk3h5mtvEv2qwdL2Qwc81Uep8SrUt1vQ0mljEj3M/WdvA5o7bUiPV2P2VX2PeAmFH30Hv6zAR2++CqvVGvT3jlcrIZMBLrcAqyvob09EYUZMood6wlSllCNGIYPDJaDL5gz5eMOV0+VGp7faP9Rb/PRXrjfh1WiysvLsEmTkDUPOiLFSh0EkKZvThaZOz3l9boQm0QHPnGYHTpmw89jpJHpf/b8zMzNht9thMBh6VKM3NTUhMzMz2KEHhXCBCqXc3FxUVFQEKRr/qm7pBABk6TWIU4dV/W+/yeUyXD8iFe/tbsBnR1qZRA8Dkn4Tv/rqK3znO9/x3RfbsMyZMwfLli3Dnj178Oabb8JgMCA7OxulpaX47W9/y0pz6rd2sx1HvTMdX5GXKG0wXmk6tSeJzslFw5ogCPjrZ8cAAHOuHdKvH8BS/uhrqut99vVgkMtliFcrYbI6YXZxAjUi6pvV4YLF4bnaJk5KHKpkMhl0aiU6uh3osjKJHigGb498tVIOrcRt+fxFr41BvEaJTqsTJw0W5Key1xkRXZyTHRYIAqCNUSA5AuaL6MuEIclYua0WX9Z2XLD/d1FREWJiYvDJJ59g1qxZAIDDhw+jrq4OxcXFUoRPA1AT4a1cRDeMSPMm0Vvws2kFUodDFyBpEn3SpEnnvXK2cePGIEZDkUisQh+erguZ3qpp8Z6LQC2cXDSsVR5tx/4GEzQxctx7NYfyXkiCNgYmqxPdTibRiahvYhV6nFoRFtW5Oo03ic7JRQOmw9cjPwYyWWQcQ2QyGfKSY7G/wYS6tm4m0YnooomtXHKTtRGzb+zNhHxPS9ZDjSY8/OgP8e4/1vTZ/1uv1+Ohhx7CokWLkJycjISEBMyfPx/FxcUROalopKv2Tioaqa1cysvLsW7dOhw8dAgWtwLNg0bjy+v+jKuvuMy3zKOPPoqPP/4YDQ0N0Ol0uPbaa/HCCy9g1KhREkYe3UL/1wnRAFTVeZLoRXnS90MXiZOLtnbZLjj8KlwtW7YMhYWFSEhIQEJCAoqLi/HRRx/5nrdarSgrK0NKSgp0Oh1mzZqFpqYmCSO+eO/srAMA3HlFDpIiuPrDX8SKUjPzTGGvvLwcEyZMQHx8PNLT0zFz5kwcPny4xzKRsI2TNHy9r7XhsV+NV3v2bZ2cXDRgOsKkvc/FGpLiSZwfazNLHAlFAx67I099h2eupdwInVRUlB6vwZCUWAgCsPwvb8BoNGLSpEnIysry3d555x3f8i+//DJuu+02zJo1CyUlJcjMzMS6desk/AR0qaqbvUn0CK1Er6ioQFlZGXZUVuLqH/4ecDlx263TYTafPi8oKirCihUrcPDgQWzcuBGCIKC0tBQuF3ukSoVJdIpoVd5K9KLBoZNET4pVQSH39FA1eocoR5qcnBw8//zzqKqqwldffYXJkydjxowZ2L9/PwBg4cKFeP/997F27VpUVFSgoaEBd911l8RR91+XzYmN+z0/KmZflXOBpQnwTAwEAGZWooc98YSvsrISmzZtgsPhQGlpaY8TvnDfxkk64TKpqEjn7dHJSvTAMUTYpKKi3GQt5DLAaHH4Lh4RBQqP3ZGnvt1TiZ4Twf3QRROGeOY2e/6jgxAE4Zzb3LlzfctqNBosXboU7e3tMJvNWLduXcT2Q490Nd5K9OERWom+YcMGzJ07F2PHjsUtk4qRcutCtJw6iaqqKt8yjzzyCEpKSjBkyBBceeWVePbZZ1FfX4/a2lrpAo9ykdmdnwiAw+XGN/UGAEDRkNBJosvlMqTEqdDcaUNLly1k2sz40+23397j/nPPPYdly5ahsrISOTk5WL58OVavXo3JkycD8MwePnr0aFRWVobFULsN+xphcbiQnxqHy3MTpQ4nLCRoPYcbJtHD34YNG3rcX7lyJdLT01FVVYWSkhIYjcaw38ZJOgZf647wODbGazz7tk5rZF4UDwXhdmGlv9RKBbITtTjRYUFtqxlJeeHxnafwxGN35DkhVqInR3YlOgBMyE/G2qoT2HmsXepQKEisDhfq2z3f8UjviQ4AN4xIxevvey5qJiX1nrsym81YsWIF8vPzkZubG8zw6AxMolPE2t9ggs3pRmJsDIaGWK/JtHg1mjttaO20Y0S61NEElsvlwtq1a2E2m1FcXIyqqio4HA5MnTrVt8yoUaOQl5eH7du393mSbrPZYLOd7iNvMpkCHntf1u86AQC464pBEd2D0J/Edi7siR55jEYjACA52VMldCnbeCht3yStDovYuiM8EqasRA+8DnNkVqIDnpYuJzosON7WjStCqPUgRT4eu8NffYdYiR45SfSDBw/2+nictx/k7voOVO6sgkoRuN8TqampyMvjfFdSO9ZqhlsAEjRKpOoi7/h/tgmDk2DY/BeoB41BbGbPCXNfe+01PP744zCbzSgoKMCmTZugUkX+3yRUMYlOEcvXyiUvKeQSnWJf9JauyJ1cdO/evSguLobVaoVOp8P69esxZswY7N69GyqVComJiT2Wz8jI8E0O05vy8nIsWbIkwFFfWJPJim01bQCAmVcMkjia8CG2c+l2AZArpA2G/MbtdmPBggW47rrrMG7cOABAY2PjRW/jobJ9k7QEQQi7SnSdtxK9iz3RA8LqcMHqdAOIvEp0ABiSEovPq4ETBgscLjdiFOy0SYHHY3dkOOmtRI+Edi6m9hYAwP3339/nMoPK/g7okjHprjmwndgfsFi0sbE4dPAgE+kS87VySdeFXC4nEH628MeQddQjdfbz+Ozblh6Tqd5333246aabcOrUKbz00kuYPXs2vvjiC2g0Ggkjjl5MolPE+tqbRL8yhPqhi9LivUn0zshNohcUFGD37t0wGo149913MWfOHFRUVFzy+hYvXoxFixb57ptMJkmGMW060ARBAK7IS4yK4ZP+EqtSQCmXwekGlAlpUodDflJWVoZ9+/bh888/H9B6QmX7Jml1211wuATIcHr0SqiL91aiW51uJkEDwOAdmRCnUkTk3zY5ToV4jRKdVifqO7oxNDXyh6yT9HjsDn/ddidauzwXnSPh94ilyzOK4dZHf4mCwqJel6lsVeBkNzDlR89hlN4dkDia6mrw9gs/R2trK5PoEhMnFY2GVi7z5s3DBx98gF/8v/8Pf91txmdHWjH3utPV6Hq9Hnq9HiNGjMA111yDpKQkrF+/Hvfcc4+EUUcvJtEpIgmCgK+Oe3qmhdKkoqIU75CkLpsTNocL6pjIq8xVqVQYPnw4AM+s0jt37sSrr76Ku+++G3a7HQaDoUe1S1NT03knfVGr1VCr1YEO+4I2HfBMKFo6hhPUXAyZTIYETQzau+1Q6jOkDof8QDzh+/TTT5GTc3qC3czMzIvexkNl+yZpiZMrJmhjoJCHR9WRSilHjMIzWXiXzRmRLUekZPT2Qw+XiyoXSyaTYUhKHPaeNKK2lUl0CjweuyPDCW8rlwSNMqL2jynZg5EzYmyvzw3XGHDy2xZ0KROQM4KjgSOdmEQfFqGTigKenNX8+fOxfv16bN26Ffa4dPx19+fYfrQNdqcbKuW5xQPiZLpnttKi4Iq8kg4iAA1GK5pMNijkMozPSZQ6nHOolQpfH9U2b6/PSOd2u2Gz2VBUVISYmBh88sknvucOHz6Muro6FBcXSxjhhXXZnNjubeVy05gIb2YfAOLkospEXoAIZ4IgYN68eVi/fj02b96M/PyeffvCeRsnaYXjBJIymex0X3S2dPE7o7cSXR9G34mLNSTVU0Va22aGIAgSR0ORisfuyHLC18ol/KvQ+ys70dO64pTBCjf3lRGvpsUzyWYkV6KXlZVh1apVWL16NeLj45GEbuiFLnSZu/F1XQeOHj2K8vJyVFVVoa6uDtu2bcP3vvc9aLVa3HLLLVKHH7VYiU4RSeyHPjY7AVpVaFZ5p+hU6LI50Wa2Izsx/HvZnWnx4sWYPn068vLy0NnZidWrV2Pr1q3YuHEj9Ho9HnroISxatAjJyclISEjA/PnzUVxc3OekoqHi029bYHe5MSQlNqKvigdKgrdShpXo4a2srAyrV6/Ge++9h/j4eF+vVL1eD61WG9bbOEnLl0QPs6q6eE0MOrod6OTkon5nsHh75Gsjt8I/NykWSrkMnVZPewax5R+RP/HYHVnq2z2V6LnJkfUb8nxSdWqoFHLYXW60dtmQHs9+0JHK5RZ69ESPVMuWLQMATJo0qcfjKbcswGdHxuC+yxLw2Wef4ZVXXkFHRwcyMjJQUlKCbdu2IT2dBX1SYRKdIpLYDz0UW7mIUuJUON7WjbYInFy0ubkZDzzwAE6dOgW9Xo/CwkJs3LgRN910EwDg5Zdfhlwux6xZs2Cz2TBt2jS89tprEkd9YR97W7ncNCYjKiY48Te9hkn0SNDXCd+KFSswd+5cAOG7jZO0xHYu4dYShZXogRPp7VwAIEYhR15yLI62mlHT0sUkOgUEj92Rpb7dU4meG0WV6HKZDFmJGhxv60aDwcokegQ70dENu9MNtVIe0aMteht99m7VCfxs7Tf47Egrfj5tFD788EMJIqPzYRKdIlIo90MXpcR5fiRFYjuX5cuXn/d5jUaDpUuXYunSpUGKaODcbgFbv/XMHD9lNJPAl8JXiZ7Iv18460+7gXDcxkl64djOBQB0Gs/pdKfNIXEkkUecWDTcvhMXa1i6zpdEv2ZoitThUATisTuyiD3Rc5KipxIdALITtTje1o2TBgsuz02UOhwKkCNNnir0oWm6sJkjx19uGJEKANh70ogOsx1JceFVWBINmESniGO2OXHwVCeA0E6iJ3snF22PwCR6JDrYaEK72Y44lSKkv1ehzNcTXc+e6ETUk1sQfP2vw60SPZ6V6AHhdAPddheAyK5EB4D81DjIALR22WG0OCL+8xLRwNR7e6LnJkdulW5vBuk9Fw0aDBYIgsCRwRGq2tvKZUSYt3I5ePDgJb0uT69EndGJVR/vxHW5A7tQlpqairy8vAGtg3piEp0izjcnDHC5BWTrNcjSh+7V+WRvkqDb7oLF7grZ3u3k8UV1KwBg4tAUxCg4J/OlEJMCirhEWBxuiaMholDSaXXCJQhQyGS+yu5w4Wvnwp7ofmV2epIjGqUcmpjIPkfSxigwKFGLEwYLjrZ04Yo8Xqwnor752rlEWRI9I0ENhUyGbrsLBosj7C66U/+Ilejh2g/d1O4ZvX7//fdf0uuTvvMQEq6+E0+//g7aN/xpQLFoY2Nx6OBBJtL9KLx+pRD1g9gP/coQrxZWKeVI0ChhsjrRZrYhRxVdJ0Hh5ovqNgDAtcM4zPpSqZUKxMgFONwyNHe7pA6HiEKIwdsPXR8bA3mYVZaJSX9WovtXl/fPqY/wVi6ioWlxOGGwoKbFHLZJ9PLycqxbtw6HDh2CVqvFtddeixdeeAEFBQW+Zf785z9j9erV+Prrr9HZ2YmOjg4kJiZKFzRRmDFaHDB5jzfR1s5FqZAjI0GNBqMVDQYLk+gRKtwr0S1dJgDArY/+EgWFRRf9+kaLDF+0AOlXlmLObd/BpZ4WN9XV4O0Xfo7W1lYm0f2ISXSKOFViEj0MfoCk6NTeJLo9oifNCHc2pwtfHvP02b/e26eMLk2cQoDBLUOzmUl0Ijqto1ts5RJ+CVOxnYvV6YbD5eZoJT/p8laiJ2qjI0kyLE2HT4+0osFgCdsRihUVFSgrK8OECRPgdDrx5JNPorS0FAcOHEBcXBwAoLu7GzfffDNuvvlmLF68WOKIicLPCW8rl5Q4FWJV0ZfOyU7UosFoxUmDBWOz9VKHQ34mCAJqmsO7El2Ukj0YOSPGXvTrMlxuVH56FBYXEDdoBJLZFz2k8CyfIorbLeDrOgMA4KohYZBE9+4Q27rYF11K5eXlmDBhAuLj45Geno6ZM2fi8OHDvuc/3LYHh56djuMv3IbRWXrIZDLfbe3atRJGHn7ivOf6zV1MohPRaWIlejgmTFVKOWIUnoQvW7r4j9jOJVr6gydoY5AWr4YA4Ghrl9ThXJINGzZg7ty5GDt2LMaPH4+VK1eirq4OVVVVvmUWLFiAX/ziF7jmmmskjJQofNW3eycVjbJWLqJBiWJfdKvEkVAgNJqs6LI5oZTLMDglTupwJBGjkCM7UQMAqPO2bqLQwSQ6RZSjrWYYLQ5oYuQYnZUgdTgXJCbRObmotMTKqcrKSmzatAkOhwOlpaUwm80AgJpuDXLK3sL/vPZfnDp1CqdOncKSJUug0+kwffp0iaMPL7FKAQDQxEp0IjqDWImeGIaV6DKZ7HRfdLZ08Zsuh7cSPQy/E5dqeJqn6u7bpvBMop/NaDQCAJKTkyWOhChyiJXouVHWykWUpfckF40WB8y8cB1xxH7og1NioVJGb7oyz3uR7HibWeJI6GzRN/6HIprYD70wJzEshlMn67yV6GYbZxiX0IYNG3rcX7lyJdLT01FVVYWSkhJU1Rmh0CVh8pUjkZmZCQBYv349Zs+eDZ0uvIeZBVucN4nebOZJLxGd1uGtRA/X/qbxmhh0dDvQyR/0fhNtlegAMDJDh+1H21Df0Y1ue3h/l9xuNxYsWIDrrrsO48aNkzocoohxosNbiR6lrUDVMQqk6lRo7bKjwWDBiIx4qUMiP6puFvuhR/f/6+DkOHyBNpz4/9m78/io6nN/4J8z+2QymeyTPYQl7LuIKCooBdEqil30aqvV1t4WrUpre7Fq1WuL2vtrbSvVtteKXqVoq6KiYgUFXACBGAUJW0gy2Sb7ZDL7dn5/TGYgEpYkM3Nm+bxfr3m9zMxk5lHznTPnOc/3eXqc8AUCUMjiP7eVKvh/gpJKlSlx+qEDQHaaCgIAlzcAh4eVufHixMoprz+AzxqDf1dzRgUrqfbu3Yvq6mrceuutksWYqHSsRCeir/D6A+jrr+DO0iVmwpSV6BEmVyA0fzqVkuiZaSrk69UQxePVeIlqxYoV2L9/P9avXy91KERJpbG/vUNpdmpWogPHW7o0W5wSR0KRdiRJ+qGPVG66ClqlHL6ACHMvWxfFEybRKakcHyqaKW0gZ0khl4VPDrvY0iUufLVy6kCLFS5vAAatMrzN+plnnsHEiRNx/vnnSxxt4kkLV6L7IYqixNEQUTyw9Ldy0Shk0CoTb5giAKRrgkn0PrdX4kiSg8JQAECAUi4gLQEHbI7E+IJg9d3htj6JIxm+22+/HRs3bsQHH3yAkpISqcMhSiqhSvTSFK1EB4LDRQH2RU9EZ5pFVttuQ1/1Jqz95c3IyMiAIAiwWCzSBSwRQRBQlhNq6cK+6PGESXRKGr1Ob/jK5azyxKhEB4CcUEsXm1viSAg4uXJqd303AGB2eRZkMgFOpxPr1q1jFfowhQaLOn1iuAcyEaW2cCsXnSph25rpWYkeUcrMYOu0TG3i/k0MV2X/FvaWXhccCfbnJIoibr/9drz22mt4//33UVFRIXVIRElFFEU09vdEL0nRnujA8Ur0Dpsbbh93tyaSM80iO9LeB9HrxqKvLcG9994rcbTSKu/vi87hovGFPdEpaXzW38qlPCcNuelqiaM5e9k6FWo77EwoxoFQ5dT27dvDlVOh3Q3njApemPnXv/4Fh8OB7373u5LFmcjkAuDr64JCn4PGbgeydYnZ/5iIIqfHntj90IHjleg29kSPCEVWEYDUauUSkq5RoDhTi2aLE42OxKp3WrFiBdatW4fXX38der0eZrMZAGAwGKDVBpNeZrMZZrMZR48eBQDs27cPer0eZWVlHEBKdAbddg8cHj8EAShO4SS6Tq2AQatEr9OLVosLo3J1UodEZ+l0s8gmz5qLHocXhnOXYfVDl2HXJx9KFGV8CA0Xbe9zw+nxQ5tiO/PiVWJ9MyM6jSqTBQAwO0H6oYeEkgY9bOcimVNVTomiiN31/Un08uCJ3TPPPIOrrroKeXl5ksWb6Hy9bQAQrqQhotTWHR4qmrgJU/ZEjyxFViEAwJDAfxMjMb5/UF6TPbFO1Z566in09vZiwYIFKCwsDN9eeuml8HOefvppzJw5Ez/4wQ8AABdddBFmzpyJN954Q6qwiRJGqJWLUa+BWpHaCbWiTA0A9kVPdCfOIgt1FSjJ0jJhjODFolDXAp43x4/E+mZGdBqhSvSZCdTKBQhuXweOb2en2FuxYgVeeOEFrFu3Llw5ZTabcbi5C502N1RyGaaVGHD06FFs374d3//+96UOOaGFk+jd/NJLRMd7omcl8M4UfX8lussXgNcfkDiaxKfMDCbRM1OwEh0AxhrTIRMAi1cGZd4oqcM5a6IoDnq7+eabw8958MEHz/gcIhpcqK1DKrdyCQm1dGnp5flEovrqLLKj/Un0cf1tzeh4Sxf2RY8fw0qijx49Gl1dXSfdb7FYMHr06BEHRTRU/oCIzxK2Ej14gmj3+CXv6Zaqa/tUlVNrnvk/AMCkogxolHL8/e9/R0lJCRYvXixxxImNlejSSNX1TfFNFMXwReTsBG7nopLLoJQHe3fHuqVLMq7tcCV6iibRtUo5RvcPM0+fvkTiaEhKybi+afhCSfTyHLYvKTQEk+jtVjcCAVHiaIaOa/vkWWShJPrY/HQpw4orZSf0RRfFxPs7T0bD6oleX18Pv//kZJ/b7UZzc/OIgyIaqiPtfbC5fdCp5BhfkFhXLtUKOXRqOexuP3rsXhQYpNu6lKpr+1QHpIfe/BL4uB4zSjMBAL/5zW/wm9/8JoaRJSefJVSJziR6LKXq+qb4ZnP74PWLkAlARgInTAVBgF6tRLfDgz6XL6ZbPZNtbfsDIhQGIwAgM0XbuQDAlKIMHG23QTd5Idw+6U+cTSYTOjs7JY2hpqZG0veXQrKtbxqZhq7g8MXynDSJI5FeVpoSKoUMHl8AnXY38vUaqUMaklRf24PNImMS/WTFmVrIZQJsbh96HF7OE4sDQ0qin9ir7t1334XBYAj/7Pf7sWXLFowaNSpiwRGdrdDwx+mlmZDLBImjGbqsNBXsbid6HB4UGGL/BYBre3BfNAV7tE0rMZzhmTQUPktw0FioryNFF9c3xbPQUG2DVpmQx+8TpWsU6HZ4YHP7kBGD90vWtd3p8EOQKyCDGO41n4rKstOQJhfh0KRjR5MT886VLhaTyYQJEyfC6YiPi982m03qEKIuWdc3jUx9V6gSnUl0QRBQkKGBqdsBc68rYZLoqb62RVHEHXfcgddeew1bt24NzyIDgoWRAJPoJ1LIZSjK1KCx24mGLjuT6HFgSN9Mr776agDBD6ybbrppwGNKpRKjRo3C//t//y9iwRGdraoGCwBgdoL1Qw/JSlOhqceJbomGiybz2h5u5ZQ/IGJfU/DijNLagqqq9mHHkIqVU6fj6w0m0Zt7nAgERMgSPHEW75J5fVPiCw3VzkrgVi4hJw4XjUUSPVnXdqstWJmnUwT/3VKVIAgYle7HgV4FNh9zYqWEsXR2dsLpcOCGX/wWxrIxksVR8+k2vPPcH+ByuSSLIVaSdX3TyJi62M7lROEkutWFaVIHc5ZSfW2vWLEC69atw+uvvx6eRQYAgjoNbVY3AEAfsKG6ugFHjx4FAOzbtw96vR5lZWXIzs6WLHaplGfr0NjthKnbgZkJ1ro4GQ0piR4IBAclVVRUYPfu3cjNzY1KUERDVdU/VHRWgn6oZEs8XDRZ1/ZIKqeUeRUouuVPCLjtuGrhlQBGvpU6FSqnzoa/rwtyAfD4A2jrc4V7GlJ0JOv6puQQOu4l8lDRkPT+4aJ9Lu8wGyYOTbKubbMt2FM+XSl9CxOpjdIF8GWPHwc6PTjabpO8Os9YNgYl4yZL9v5tplrJ3jvWknV90/C5vH6YrcELSKFhg6kutIPb3Js4F9ZSfW0/9dRTAIAFCxYMuP9X//MkgFEwZqjx4tpn8NBDD4Ufu+iiiwAAzz77bEoOoQ71RW/qccIXCEAhi2XTQPqqYX3Fr6uri3QcRMPWbfegrjPYH25mWaa0wQxTaLhoj90raRzJtrZHUjlVZ5OhqhswZmjxzTWvjCiOVKqcOitiALlpcrTZ/WjsdjKJHiPJtr4pOXSHkuhJ0PtaH6pEd/tikkQPSba1bQ5XojOJrlUAzto9SBs3Fy/uasCvrpQugU3SSLb1TcMXGiqaoVGk9LyIExkz1ACCreHcXj/USulmiw1Vqq7tU80iW/+pCXh1HyqNejx464N48MEHYxtYHMtNVyFNJYfD40erxYVSXkST1LC/4m/ZsgVbtmxBe3t7+GpayN///vcRB0Z0tqr6+6GPydMhM0G3g4cq8CxOj+TtLZJxbQ+ncupQTRsAK8oKclAydmQVAqlUOXW2jLpgEt3U7cC5Fam3LU8qybi+KbGFLh4nUzsXu9sPxHinfTKt7XAlOpPoAIC+z95C2ri5eHl3I+5aVAlDAg/gpeFJpvVNw1ffGRoqqkvpVlcnSlMpYNAq0ev0wmx1JVybG67t4w61BfuhjzfqJY4k/giCgLLsNBw098HU7WASXWLDSqI/9NBDePjhh3HOOeegsLCQH+Ikme3bt+Mn9/wKTQe+QIOtGxvGvBbuM+b1enHffffh7bffxrFjx2AwGLBo0SI8+uijKCoqkjbwr9CrFVDIBPgCInpdXsmSCVzbx7X1BXuyhSocKLLydcFKkcbu+BhSlgq4vineeP2BYNU2kqudS+jfKVaSbW23shJ9AFddFUozFGi0+vDSbhNuu0i6nuQUe8m2vmn4QpXoZRwqOkBBhiYhk+jJuLaHO4sMAPYc6QIAqN3dqKqqGnYMyTqL7MQk+gVSB5PihpVEf/rpp7F27Vp85zvfiXQ8RENit9uBnHJkf+18dLz2mwGPORwOVFVV4f7778f06dPR09ODO++8E1dddRX27NkjUcSDEwQBWWkqdNjc6LF7JEuic20H+QIBdNn6k+gJMuk90eTrgoefxh4m0WOF65viTagfulYphzaBtmCfSqgS3en1wx/D/G+k1vbq1avx6quv4uDBg9BqtTj//PPx2GOPYfz48eHnuFwu/PSnP8X69evhdruxZMkS/PnPf4bRaBzpvwYAIBAQ0WZnJfpXXVWpw5o9vXj243p874IKKOXsh5oqeOymkPquYCX6KCbRBygwaHCorS+h+qIDybe2RzKLDABKbv8/yHVZuO/2W/Bz85ERx5Nss8hCfdHb+9xweHxIU8WwbyANMKz/8h6PB+eff36kYyEasq8tXgLxEwFpXv9JjxkMBrz33nsD7nvyySdx7rnnwmQyoaysLFZhnpUsnTKYRHdI1xedazuox+5FQATUChn0Gh6gosGYHkyYNXU7JY4kdXB9U7w53solOdpTqBWy8K4yZwyL0SO1trdt24YVK1Zgzpw58Pl8uPfee7F48WIcOHAAOl2wuu/uu+/GW2+9hX/+858wGAy4/fbbsXz5cnz88ccjfn8geHLo8QNiwI80Hn7DLizX4qWDLrT2urDhs2Z885xSqUOiGOGxm0IauoLJyfLsxKm2joWCjP7holYXRFFMmIruZFvbI5lF5vIDbzWrAIj4z18+BsUIrhMn6ywynVqBnHQVumweNHY7Mb6AbW+kMqyvp9///vexbt063H///ZGOh2hIDpr74PT6zzrR2dvbC0EQkJmZGd3AhiFUfd5t90gWA9d2UEd/K5e8dHXCfBFLNOF2LqxEjxmub4o3oUr0ZGjlAgR3laVrFLA4vHD6Y3fsiNTa3rRp04Cf165di/z8fOzduxcXXXQRent78cwzz2DdunW45JJLAADPPvssJk6ciJ07d+K8884b0fsDxystfb1tkAkjm0eSTFRyAT+4sAKr3zmIP71/FFfPLGY1eorgsZtCQu1cylmJPkCuXgW5IMDlDaDX6U2YGWnJuraHM4ussdsBNDfDoFVh1PjKEb1/Ms8iK89OQ5fNA1O3g0l0CQ0rie5yufDXv/4VmzdvxrRp06BUDqwg+t3vfheR4IjOZG//UNGZZVnYf4bnulwu/OIXv8D111+PjIyM6Ac3RNn9SYRQUkEKXNtBHf2tXHL17IceLcb+JLrZ6oLb54dakfitHOId1zfFm57+i8bJMFQ0JF0d+yR6tNZ2b28vACA7Ozj8ee/evfB6vVi0aFH4ORMmTEBZWRl27NgRkST6xIIM3Ds/C3et/DUw/Z4Rv14y+c68cvztw2MwdTvwWlUzvjWH1eipgMduAoIzRJp6grs3E6nvdywoZDLk6dUwW10wW10Jk0Tn2j6uq//7YG56Yvy/k0pZdhqqTBaYuh0Jtesi2Qwrif7FF19gxowZAID9+wemLvk/kmKpyhRMos8uy8L/neZ5Xq8X3/rWtyCKIp566qnYBDdEJ1aiS/WhyLUd1Gk7XolO0WFQy6BVyuH0+tFicaEilycE0cb1TfEm1L4sS5cc7VyAE/qin9xlLmqisbYDgQDuuusuXHDBBZgyZQoAwGw2Q6VSnbSbz2g0wmw2D/o6brcbbrc7/LPVaj3t+xrSlDinSAPnkR3DijuZpakU+OFFY/Drt2vwx/eP4KoZRdAkwSwBOj0euwkAWixO+AMi1AoZ8lnkc5ICgyaYRO91YUJB/BXLDYZr+7jQuXeOjn/bp1OcqYVcJsDm9qHb7kEOcxWSGFYS/YMPPoh0HETDsqc+mESfVZ55yueEEugNDQ14//3347IKHQAy+3vCun0BOL1+SYZFcG0DoiiG27nk6nk1PFoEQUBJlhZH2m1o7HYwiR4DXN8UT0RRPN7OJUGqxs5GOInui90JcDTW9ooVK7B//3589NFHI3qd1atX46GHHopQVHTjeeX434+OoanHib9/XIcfLxgrdUgUZTx2EwDUdx1v5SKTpVaC9Wyc2Bc9UXBtH9dlC34fzGEl+mkp5DIUZ2ph6nbA1O1gEl0ibKZHCavZ4kSzxQm5TMCssqxBnxNKoB85cgSbN29GTk5OjKM8e0r58SGWUg4XTXU2tw9uXwAy4XiLHYqO0v4p4+yLTpR6+lw++AIiZAJg0CRRJbomVImeuEmO22+/HRs3bsQHH3yAkpKS8P0FBQXweDywWCwDnt/W1oaCgoJBX2vVqlXo7e0N3xobG6MZetLTquT4r6UTAABPvn8U7QmUMCKi4TP1z4so41DRQRUYgkn0zj4PfIGAxNHE1urVqzFnzhzo9Xrk5+fj6quvxqFDhwY8x+VyYcWKFcjJyUF6ejquvfZatLW1SRTxQKIoosseqkTnufeZlPWfPzd08/xZKsMqdV24cOFpt5i8//77ww6I6GztrutGwONEuaoPR2qCW6Dq6upQXV2N7OxsFBYW4hvf+AaqqqqwceNG+P3+8Hbj7OxsqFTx9yGdnaZCn8uHHrsHxZnamL8/1/bxfuhZOhUUMl5njKbQlwATvwTEBNc3xZOuE/qhJ1NVnV6Cdi6RWtuiKOKOO+7Aa6+9hq1bt6KiomLA47Nnz4ZSqcSWLVtw7bXXAgAOHToEk8mEefPmDfqaarUaajUrpSJp2fRiPPdJA6obLfj12zX4w3UzpQ6JoojHbtq+fTse+dkDaKrZh2ds3fi64TVcffXVA55TU1ODX/ziF9i2bRt8Ph8mTZqEV155BWVlZdIEHWMZGkW4TWRnnyecVI9nkVrb27Ztw4oVKzBnzhz4fD7ce++9WLx4MQ4cOACdLnjR5e6778Zbb72Ff/7znzAYDLj99tuxfPlyfPzxxxH5dxmJPpcPXn+wqCJR+tlLKXT+3NzjhC8QYL5CAsNKood6N4V4vV5UV1dj//79uOmmmyIRF9EZ7a7vhsd8BNv/cS9mPha8b+XKlQCAm266CQ8++CDeeOMNACf/zX7wwQdYsGBBDKM9O1k6FRq6HZINF+XaDlYwAOyHHgslWcELRU3dTokjSQ1c3xRPuvuT6MlWdXS8J3rsLgxEam2vWLEC69atw+uvvw69Xh8uPDAYDNBqtTAYDLj11luxcuVKZGdnIyMjA3fccQfmzZsXkaGidHZkMgEPL5uMq9d8jNerW3DF1EIsnjz4TgBKfDx2k91uh7ZgDLJLLkDHa7856fHa2lrMnz8ft956Kx566CFkZGTgyy+/hEYT/4nkSBEEAfkZajR0OdDW50qIJHqk1vamTZsG/Lx27Vrk5+dj7969uOiii9Db24tnnnkG69atwyWXXAIAePbZZzFx4kTs3LlT8uN3p/14AZs8iYoqoiU3XYU0lRwOjx+tFld4ZzfFzrCS6L///e8Hvf/BBx+EzWYbUUBEZ2t3fTc0ZdPwzr5WXDZl8JMHURRjHNXIZPX3RQ8lF2KNa/t4JXouk+hRx3YuscX1TfEkdJxLtrZZoXYuLj8AWWyGPkZqbYcGr3+1yODZZ5/FzTffHH4vmUyGa6+9Fm63G0uWLMGf//znYcVNwzetJBM/vHgMntpai3tf249zRmUn3VqiIB67aenSpfhdTRos7YP///7lL3+Jyy+/HI8//nj4vjFjxsQqvLhh1GvQ0OVAu9V95ifHgWit7d7eXgDBnfcAsHfvXni9XixatCj8nAkTJqCsrAw7duwYNIk+1KHgIxHqh57LoaJnRRAElGWn4aC5D409DibRJRDR2v8bb7wRf//73yP5kkSD6rF7cLgteHCZM2rwfuiJKDRcLd56oqfS2u7sHyqax8n3UVea1Z9EZzsXSaXS+qb4Eep/mWyJP61SDrkgABAg12VLGstQ17YoioPeQgl0ANBoNFizZg26u7tht9vx6quvnrIfOkXXnZeOw7j8dHTa3Lhz/WfwBxKrcIRGhsfu1OEPiGjoGvy7ciAQwFtvvYXKykosWbIE+fn5mDt3LjZs2BDbIONAfkbw3K29L7FnRYxkbQcCAdx111244IILMGXKFACA2WyGSqVCZmbmgOcajcbwjrOvWr16NQwGQ/hWWlo6rHjOBoeKDl14N3cPd3NLYViV6KeyY8eOlNo2RNFlMpnQ2dk56GOfNgcPjsV6ORoOf4mGKLx/TU1NFF719EJJdKvTC39AjJstTamytj2+ACzO4AWMXB7Io640O/gFoMfhRZ/LC30SDRdMJKmyvil+iKJ4vJ1Lku36EQQBOrUcVpcPigxph5lzbSc3jVKOJ/9jFq5e8zE+PNKJx989iFVLJ0odFsUI13fqaOpxwOMPQK04uf6xvb0dNpsNjz76KB555BE89thj2LRpE5YvX44PPvgAF198sQQRS8OoD66HLrsHXn8ASnli9ooeydpesWIF9u/fj48++mhEMaxatSrcJhcIVqJHK5EeHirKc++zFpqd12Z1JfTfeqIaVhJ9+fLlA34WRRGtra3Ys2cP7r///ogERqnNZDJhwsSJcDoGv+qeueB7MMy9Fgc/fAuz73syqrHEcqukTi2HQibAFxBhdXqRFeMKvVRf26GDuE4lR5oqotcYaRB6jRI5OhW67B40dDkwpdggdUhJLdXXN8WPPvfxIVIGbfJdPEvXKGB1+SDX58bk/bi2U9f4Aj0e/8Y03PGPz/CXbceQl67G9y8cLXVYFEFc33Ssww4AqMjV4fBXHgsEAgCAZcuW4e677wYQ7LX9ySef4Omnn06pJLpOLQ/3iu60uVFo0Eod0mlFem3ffvvt2LhxI7Zv346SkpLw/QUFBfB4PLBYLAOq0dva2k65kyxWQ8H9geNFFWzncvYMWiXS1QrY3D609rrCw0YpNoaVJTIYBiY6ZDIZxo8fj4cffhiLFy+OSGCU2jo7O+F0OHDDL34LY9nJPd0+MCvQ7QEWXroI5VddEpUYaj7dhnee+wNcrthtCRMEAZlpSnTaPOhxemKeRE/1td3R38oll61cYqY8J41J9BhJ9fVN8SN0wpSVlpxDpELDRWOVROfaTm1XTi/CsQ47fr/5MB55qwaCIOCWC0ZBEJJvbaUirm+q7QgWdI3O0530WG5uLhQKBSZNmjTg/okTJ464GjnRCIIAY4YGdZ12tFnjP4keqbUtiiLuuOMOvPbaa9i6dSsqKioGPD579mwolUps2bIF1157LQDg0KFDMJlMmDdv3sj/RUbA4vAgIAJKuQC9hgVsZ0sQBJRkaXHQ3IfmHieT6DE2rL/UZ599NtJxEA3KWDYGJeMmD7jP6w/A0lgLAJg6fiwyolTF1maqjcrrnklWmgqdNg8sEvRFT/W13RW6Ep5k7QXiWXmODlUmCxq67VKHkvRSfX1T/EjWoaIhoSS6IkZJdK5t+smlY+Hy+fHU1lr898YDONZhwwNXToJaEZvhthQ9XN9U21+JPiYv/aTHVCoV5syZg0OHDg24//DhwygvL49JfPEkX69GXacd7db474seqbW9YsUKrFu3Dq+//jr0en24z7nBYIBWq4XBYMCtt96KlStXIjs7GxkZGbjjjjswb968QYeKxlLo3DtHp+aF3yEqzgwm0Zt6HACkbR+YakZ0uWfv3r3hvtGTJ0/GzJkzIxIU0emYe10IiMGT1GS8YpmZFrwoIEUSPSRV13Z3aLBJkiZ24lF5TvDKeUMnh4vGSqqub4ofoSFSyZ5El+tje1LDtZ26BEHAz5eMh0GrxGObDuLFXSbsquvGr6+egrmjh/936PT4cbitD1vqHDCcfx0+65Zj375WiABEAGqFLPx93JihQY5OxURIlHB9p65Dje3wtB2D0B08ttTV1aG6uhrZ2dkoKyvDPffcg29/+9u46KKLsHDhQmzatAlvvvkmtm7dKm3gEggNF23r312cCEa6tp966ikAwIIFCwbc/+yzz4YHg//+97+HTCbDtddeC7fbjSVLluDPf/7ziGMfKQ4VHb7QcNE2q5t90WNsWBnI9vZ2XHfdddi6dWu4r5LFYsHChQuxfv165OXlRTJGogGaLcEpxEWZmqT8op6pDR5EehyemL93qq/triSvjoxHo3KCW1Pru1iJHm2pvr4pfoSHiibpZ226JrbtXLi2CQgm0v/z4jGoNKbj5//ah6PtNnz7rztx7qhsXD+3FAsq80/ZJtDrD6Chy4Gj7TYcMvfhUJsVB1v7UNdlhygGn5N54Y04ZgNwmllBKrkMpdlaVBr1qMjV8aQ+Ari+6csvqtG69mf46drgz6GBjzfddBPWrl2La665Bk8//TRWr16Nn/zkJxg/fjxeeeUVzJ8/X7qgJRIaLtpj98DjC0A1yDDWeBGptS2GPqRPQ6PRYM2aNVizZs1IQo64Tlv/UNEk/T4YTSf2RTf3ulDKli4xM6wk+h133IG+vj58+eWXmDgxOAX+wIEDuOmmm/CTn/wE//jHPyIaJNGJWvqT6KGpxMlGykr0VF7bTo8fTq8fAJPosVTWX4lu6mYlerSl8vqm+CGKYtK3c9Grg8dxRXpsKtG5tulEl0wwYsvKbDz27kH8c08jPq3vxqf13RAEoDQrDWXZaUhXK+D1B2B1edFl88DU7YAvMHgiJkenQpEO+OS9NzHnwkXINxoh6y9icXn9sLl9sDi9aLO64PEHUNthR22HHSq5DJOLMjCzLBN6TfINEI4Vru/U1uv0wp03AeW/2Ih9Dy4+5Vq65ZZbcMstt8Q4uvijUyvCicUOmzuu8wVc20BHfxI9j/PIhkwQBBRnanGorQ9NPU4m0WNoWEn0TZs2YfPmzeHFDgCTJk3CmjVrOOCEosofENHaG+xxVhTHB8WRCCXRbW4ffP5ATN87ldd2KKmToVGwciqGQpXorb0uuLx+aJTs3xotqby+KX7Y3D54/AHIBCAzLTmT6OF2LunZ8J8iMRlJXNv0VYY0JX5zzVT85JJxeHFXA9470IaD5j6Yuh2nvGidppJjTF46Ko16TCjQY0KhHhMKMpCnV6Oqqgqzf/onTL5yIUrKsgb9/UBARIfNHaxmb+tDn8uHzxot+LzJgkmFGThvdA506uRrwxhtXN+p7Vj/UNF8vZoXo85Svl4Nm9uHdqsrrpPoqb62XV4/+lw+AEAe55ENS0lWMIke6tRAsTGsbzKBQABK5ckf4kqlEoFAbJN+lFo6+tzwBUSoFbKk3fajVcqhVsjg9gVgcca2Gj2V13aXPXglPFkrI+NVVpoSeo0CfS4fGrsdGGfUSx1S0krl9U3xI3TBMlOrglyWfC3ZACBNLYcAEZAr0OuO/tri2qZTKTBo8NPF4/HTxePRaXPjSJsNrb1O2D1+KGUCMrRKZGqVqMjToSBjZG0SZTIBxgwNjBkanD8mBw3dDuyt70GTxYn9LVYcbrNhzqgszCjLhELGYoWzxfWd3EwmEzo7O0/5+Af1wYte+VoRVVVVUYkh1I87WRgzNDjWaY/7vuipvrZDrVwyNAqoWUQ1LMX9fdHNvS74/AEoWAgYE8NKol9yySW488478Y9//ANFRUUAgObmZtx999249NJLIxog0Ykae4JfJEqytEnZDx0Ibs3JTFOizeqGxeGFJobvncpru/uE6eAUO4IgoDwnDfubrajvYhI9mlJ5fVP8CM+eSOIhUjJBQKkugC8/ehe48uaovx/XNp2N3HQ1cmNU7ScIAkbl6DAqR4cWixPbj3SgzerGx7VdOGjuw9cmGWHMiOU33MTF9Z28TCYTJkycCKfj1C0NMy/6LgzzvoUd727A7J9GdxCk7TTzDhJJfn9rkHarS+JITi/V13ZHH1u5jFSmVgmdSg67xw+z1YWSLLZ0iYVhJdGffPJJXHXVVRg1ahRKS0sBAI2NjZgyZQpeeOGFiAZIdKKmnuBWldIk/4DITFOhzepGj8ODwhi+byqv7VRI7MSr8hwd9jdb0cDholGVyuub4key90MPmZPjx4f//jOyV98a9ffi2qZ4VpSpxbfPKcVBcx8+PNKJLrsHL+1pxDnlWZhbkZO0O1Iihes7eXV2dsLpcOCGX/wWxrIxgz5nR4cCLU7ggoWLMW7ZoqjEUfPpNrzz3B/gcsV30vls5WcEk7I9Di/cPj/Uivisck71tR3qhx6ri7vJSBAEFGdpcbjNhqYeJ5PoMTKsJHppaSmqqqqwefNmHDx4EAAwceJELFoUnQ92IgDwBQLhoaIlWfHb3ywSMrXHh4sWxrD9XSqv7VRJ7MSjUf3DRRu6OFw0mlJ5fVP8OL7rh5+1kcK1TfFOEARMLMzAqBwdth5qx+F2G3bX96Cpx4nLphQgg72eT4nrO/kZy8agZNzkQR9zdzUA8KBiVBlK+ucIRVqbqTYqryuVNJUi3Cqyo88dt4nFVF/bnX3B74OsRB+Zkqw0HG6zobmHfdFjZUhNc95//31MmjQJVqsVgiDga1/7Gu644w7ccccdmDNnDiZPnowPP/wwWrFSimvrDfZDT1PJkz7RGRouanF6YvJ+qb62nV4/HB4/ACA7SQfdxbPy7OBJQT0r0aMi1dc3xQ9RFI/v+kny43gscG1TotGq5Fg6tRBLpxRAJZehtdeFdbtM4eGJdBzXNwVEERZHcD5WFs9PhiTU0qXNGn990bm2AX9ADM8j41DRkSnpH57bag32RafoG1IS/YknnsAPfvADZGRknPSYwWDAD3/4Q/zud7+LWHBEJ0qFfughoS9KoS9O0Zbqa7vbFkzq6DUKqBQcyBFr5axEj6pUX98UP+wePzy+AATh+MViGj6ubUpUlUY9/mNuGYwZarh9Abz5RSs+PNIBf0CUOrS4wfVNVqcXflGEXCZArxlWA4GUld8/c6EjDoeLcm0HdyUGRECtkPFve4Qy05RIU8nhD4gwx/kcgGQxpGzR559/jssuu+yUjy9evBh79+4dcVBEgwkl0ZO9HzpwPLng8PjhjcEFxVRf26Er4WwvII1RucFK9GaLE15eQY+4VF/fFD+6+vtfZmqVUMh4wXKkuLYpkRm0SnxzdilmlmYCAKpMFrz6WRPsbp+0gcUJrm/q6S+mykxTQpbkBWSRFqpuDvXdjidc2wP7oSd7cWS0CYIQbnXMli6xMaQzmLa2NiiVp64cUigU6OjoGHFQRF/l9Qdg7g1eWSvNTv4kulohh1YZHIJi80X/wJLqa5v90KWVr1dDo5TBHxB58I+CVF/fFD/4WRtZXNuU6OQyARdV5uGKqYVQyWVosbiw7lMTvwuA65tOOGaylcuQhfps99g9cdfigmv7+A4B9kOPjOL+li5NFh47Y2FISfTi4mLs37//lI9/8cUXKCwsHHFQRF/VYnEiIAbbbWSkyJafUDW6zRv9JHqqr+2u8KA7HsilIAhCuC96QzdbukRaqq9vih/8rI0srm1KFmPz03HduaXI0ang8PjxymdN2NvQA1FM3fYuXN/EnbLDp1MFC9JEAJ322MwYO1tc20BnH/uhR1Ioid5mdbEtWgwMKYl++eWX4/7774fLdXKvHafTiV/96lf4+te/HrHgiEIa+ytSSrPSUmbLTziJHoNdram+tlkdKb3jfdE5XDTSIr2+t2/fjiuvvBJFRUUQBAEbNmwY8PjNN98MQRAG3E63bZVSR2d4+y4/ayMh1Y/dlFyy0lT49pxSTCjQQxSBj4524q19rXD7/FKHJgkeu6mrf2ZTDhONQyYIQrjKOd76oqf6sVsUxXA7F1aiR0a2TgW1QgavXwx/16boGVJJ73333YdXX30VlZWVuP322zF+/HgAwMGDB7FmzRr4/X788pe/jEqglNoau48PFU0VoeGisahET+W17fL64fAET9CYRJdOKIle38lK9EiL9Pq22+2YPn06brnlFixfvnzQ51x22WV49tlnwz+r1fySnOoCohhOCOTypCkiUvnYTclJKZdh8SQjCg0abD/cidoOO7o+bcQV0wqRm2KJRB67U5soiuEinxxeeB6WPL0apm5H3CXRU/3Y3ef2we0LQCbw3DtSBEFAoUGD+i4HWixOGPsH61J0DCmJbjQa8cknn+BHP/oRVq1aFd5iJwgClixZgjVr1sBoNEYlUEpddrcP7f0Hv7IU6IcekqkNVaJHP4meymvb0j+0R6eWQ6XgoDuplOcE27mYulmJHmmRXt9Lly7F0qVLT/sctVqNgoKCEcVNyaXX6YUvIEIhE2DQnroXKJ29VD52U/ISBAHTSjKRr9fg7f2tsDi9eGl3Iy6ZkC91aDHFY3dqCx0z5TxmDluoVUi8Veam+rE71MolW6eCXJYaHQZioShT259Ed2FmmdTRJLchN5cuLy/H22+/jZ6eHhw9ehSiKGLcuHHIysqKRnxEMPVXoefr1dCpU6MfOgBk9lei98UgiQ6k7tq2OIJVHllaXgmX0qj+JHp9FyvRoyHW63vr1q3Iz89HVlYWLrnkEjzyyCPIyck55fPdbjfc7uMnOVarNSpxkXRCJ7HZOhVkKdKWLRZS9dhNya/AoMH1c8qw6UszTN0O/PtAGwpQAMhT51yAx+7U1XVCq0keM4fnxHYuAVGMq/+OqXzs5lDR6Cjq74ve0uuEKIop0wJZCsP+FpKVlYU5c+ZEMhaiQTX0J9VC7R5SRagnujcgQKbRx+x9U21t9/RXoof+e5M0Quvb1O1AICBCxsqEqIjF+r7sssuwfPlyVFRUoLa2Fvfeey+WLl2KHTt2QC6XD/o7q1evxkMPPRTVuEhanaFWLinWkiFWUu3YTalBq5Jj2YwifFrXjV113TAjCwX/8ThcgcGPJcmKx+7UE+6HznYXw5aZpoRCJsAXENHr8CIrDv9bpuKxO9wPnd8HI8qoV0MuCHB4/Oh1esMFmRR57F1AcU0UgYb+9g7l2TqJo4ktpVyG9P7Ke0V2kcTRJK9QJToPNNIqNGiglAvw+AIwW08etEOJ47rrrsNVV12FqVOn4uqrr8bGjRuxe/dubN269ZS/s2rVKvT29oZvjY2NsQuYYqKLQ0WJoupMgyMBoKamBldddRUMBgN0Oh3mzJkDk8kU+2CHQCYIOG90DpbNKIICPqiLKrHXlcdB5BHGY3d86bIHj5nshz58MkEIX7jviLOWLqmMlejRoZDLkJ8R/G/a0stz6WhiEp3iWo9HgMsbgEouQ4Eh9QYkhKqjlVnFEkeSvCzOYCV6FivRJaWQy1Ca1T9clCfGSWX06NHIzc3F0aNHT/kctVqNjIyMATdKLqxEJ4qu0ODINWvWDPp4bW0t5s+fjwkTJmDr1q344osvcP/990OjSYzv16NydJiBOrhbD8MHGTZUt2DnsS4EAqLUoSUlHruldbwSncfMkcjVBy9CtMfZcNFU5fb6YXX5APD7YDSEW7pYnBJHktxSp6kcJaQ2V7ClQ2m2NiUHT2RqlWjqcbISPUpEUUQPK9HjRnlOGo512tHQ5cD5Y6SOhiKlqakJXV1dKCwslDoUkojHF0Bv/wVLVtURRceZBkf+8pe/xOWXX47HH388fN+YMYl1sNXAB/OLq3Def72IVp8Ou+q6Ud9lx+JJBciOw1YNiYzHbun4A8fPT3jMHJn8dA0Aa3iYJUkrdDEjQ6OARplabbliocigwV4wiR5trESnuGZ2Bv9EQ0MHU01Wf2JXmcUkejQ4PH54/SIEgJPv48Co3OA6r+tkJXo8s9lsqK6uRnV1NQCgrq4O1dXVMJlMsNlsuOeee7Bz507U19djy5YtWLZsGcaOHYslS5ZIGzhJJrQtPU0lR5qK9RtEsRYIBPDWW2+hsrISS5YsQX5+PubOnTtoy5e45/ehUtWLJZONUCtkaLO6se5TE6pMPRBFVqWfCo/diaPb7kFABFRyGfRqHjNHIjxclO1c4kIoiZ6fkRg7oBJNYX8leo/DC4fHJ3E0yYtJdIpbMk06uj3B6vNUGyoaEmrnomASPSpCVR4ZWmVK7nSIN6Pz0gEAxzpsEkdCp7Nnzx7MnDkTM2fOBACsXLkSM2fOxAMPPAC5XI4vvvgCV111FSorK3Hrrbdi9uzZ+PDDD6FWc9tmqupiKxciSbW3t8Nms+HRRx/FZZddhn//+9+45pprsHz5cmzbtk3q8IZlQkEGbpxbjvKcNPgDIj480olXqprDu15oIB67E0d48KJeDUHg+clI5KSrICBYOGV3M6kotfb+uVf57IceFVqlPLwrq5V90aOGlzYpbmkqZgEQkKNTQa9JzSrhzBMq0VldE3kWR/BEK5P90OPCmP5K9GMdrESPZwsWLDjt59G7774bw2goEXRyqCiRpAKBAABg2bJluPvuuwEAM2bMwCeffIKnn34aF198sZThDVu6RoFl04vwZYsV2490oNnixIu7GnDh2DxMKc5gAvIEPHYnDg5ejBylXIbMNCV6HF509LmhY2W/pNr6/7aNrESPmiKDBt12D1otLoySOpgkxUp0iltp484DAIzOS81WLkCoxYgImToNPa6A1OEknVAlepaWiZ14UNG/1k3dDnj9/HsnShYcKkokrdzcXCgUCkyaNGnA/RMnToTJZJIoqsgQBAFTig24YW45ijO18PpFvH+oHW9+0crt7JSQmESPLLZ0iQ9urz+8U4iV6NETHi7ay77o0cIkOsUlj1+EdvQ5AI63eEhFcpmAYq0I277NCLAQPeJYiR5fCjI0SFPJ4QuIMHU7pA6HiCJAFMUTKtF50kQkBZVKhTlz5uDQoUMD7j98+DDKy8sliiqyDFolrp1VjAvH5UIuE1DXaccLO0041skWcZQ4RFE8nkTnMTMiwkl0DheVFIeKxkYoid5mdYE1adEhaRJ9+/btuPLKK1FUVARBEE4abiOKIh544AEUFhZCq9Vi0aJFOHLkiDTBUkzta3dDpk6DVi7CmOJXKs/L86Hr7SeQm8aDTaQxiR5fBEFARWi4KFu6ECWFPrcPbl8AMgHI4mctUdScbnAkANxzzz146aWX8Le//Q1Hjx7Fk08+iTfffBM//vGPJYw6sgRBwKyyLFw3pxQ56So4vX68+Xkr3j/YDh+zCZQAep1eePwByAUh3NuYRiZ0MYJJdGm19fX3Q2crl6jK0CigU8kREBGeL0iRJWkS3W63Y/r06VizZs2gjz/++OP44x//iKeffhq7du2CTqfDkiVL4HKxSX6y+7Q5+P+4UBtgP0OKioAowuLsb+eSxi+p8SKURGflGFFyCJ20ZutUUMi5AZIoWk43OBIArrnmGjz99NN4/PHHMXXqVPzv//4vXnnlFcyfP1/KsKMiN12N684pxayyTADAvuZe/HNvE/pcHDpK8S10zMxJV0Eu4zlwJIR2wVmcXraLlFC7tb8feooXSEabIAjhavQuNz9DokHSyQpLly7F0qVLB31MFEU88cQTuO+++7Bs2TIAwPPPPw+j0YgNGzbguuuui2WoFEP+gIhPm4MfskVaHugoOvpcPgTEYMscvYZDZuJFqH0Th4sSJQf2diWKjTMNjgSAW265BbfcckuMIpKWQi7DhePyUJ6jwzv7W9He58Y/Pm3EFVMLUZyllTo8okGF+nbzmBk5OrUCWqUcTq8fXTYPCgyshJZCqJ0LK9GjryhTiyPtNnS6WbwSDXH7X7Wurg5msxmLFi0K32cwGDB37lzs2LHjlL/ndrthtVoH3CixfGbqQa87gIDLhjwNG4FTdISGimZqldztEEfG9A8XZRKdKDmwtysRSaksOw3XzylDXroaTq8fr1U341gHd7tRfOIxMzpy04O7jjvtbOkiBReHisZUYf+Fom63AIB5jkiL2/JLs9kMADAajQPuNxqN4ccGs3r1ajz00ENRjY2i698H2gAAjtrdkFVeIHE0lKzYDz0+jc7tr0RnOxeipBCuPNKz8ohouGpqalL6/UcqQ6vEN88pwab9ZhzrtGPjvlYsnmTEhIIMqUMjChNFEW3WULUuE42RlJuuRmOPE102j9ShpCQOFY2tvHQ1FDIB3gCgzCmROpykE7dJ9OFatWoVVq5cGf7ZarWitLRUwohoKERRxDv7WwEAziM7gaVMolN0WEKV6OyHHldG5aYBADptHvQ6vTBoeZGDKFE5vX7Y3D4AQK6en7VEQ2Xt7gAA3HjjjRJHEmSzJe4FbqVchsunFmJzTRsOmvvw7pdtgAhMKGQineKD1eWD0+uHTGAleqTlhCrRbaxEl0J7/1BRI1u5xIRMJsCYoUGzxQl18QSpw0k6cZtELygoAAC0tbWhsLAwfH9bWxtmzJhxyt9Tq9VQq3nQSVSfNVrQ2O2ERiHAWbtH6nAoifX0V6JnsRI9rug1SuTr1Wjvc6Ou044ZpZlSh0REwxTalm7QKqFWsPKIaKictmBbyit++EuMnzZbsjhqPt2Gd577A1wul2QxRIJcJmDxJCOUchn2Nffi3zVtUCvl4aHmRFIy9wbXV55ezUHcERYaLtppc0MURbbyjLHQUFG2comdQkMwia4qYhI90uI2iV5RUYGCggJs2bIlnDS3Wq3YtWsXfvSjH0kbHEXNG9UtAIC5xRoc8vFKcaJavXo1Xn31VRw8eBBarRbnn38+HnvsMYwfPz78HJfLhZ/+9KdYv3493G43lixZgj//+c8ntXCKlnAlupbVkfFmdJ4O7X1uHOuwMYlOlMDY25UoMnKKylEybrJk799mqpXsvSNNEAQsHJ8Hrz+Ag+Y+vL2vFd88p4Qtp0hyZmswiV7Aat2Iy9apIABweQNwePzQqeM2DZaUOFQ09kJ90VmJHnmSXuK02Wyorq5GdXU1gOAw0erqaphMJgiCgLvuuguPPPII3njjDezbtw/f/e53UVRUhKuvvlrKsClKfP4ANn4RTKJfWMYP2ES2bds2rFixAjt37sR7770Hr9eLxYsXw24/Pizy7rvvxptvvol//vOf2LZtG1paWrB8+fKYxOfzB2B1BVsMsCd6/Bmd198XncNFiRJaaPtuHiuPiCiOCIKARRONKM9Ogy8gYuMXrXB4fFKHRSkuVInOJHrkKeUyGPrP+djSJbY4VFQaBf1JdFVuOeyegMTRJBdJL8Ht2bMHCxcuDP8c6mV+0003Ye3atfj5z38Ou92O2267DRaLBfPnz8emTZug0fDAkow+qe1Cp82DbJ0K04z8gE1kmzZtGvDz2rVrkZ+fj7179+Kiiy5Cb28vnnnmGaxbtw6XXHIJAODZZ5/FxIkTsXPnTpx33nlRjS90IFfJZUhTscVAvBndv626rpNJdKJE1tkX3PHDJDoRxRu5TMBlUwrw0u5GWJxevLPfjOUzi9nmgSThD4jo6E/uGg3MdURDbroaFocXXTYPynPYwilW2k9o7cehorGTplJApxBh9wk43O3FhVIHlEQkrURfsGABRFE86bZ27VoAwSqBhx9+GGazGS6XC5s3b0ZlZaWUIVMUvd7fyuWKqYVQyPgFNpn09vYCALKzswEAe/fuhdfrxaJFi8LPmTBhAsrKyrBjx45BX8PtdsNqtQ64DZelP4memabkyVIcGp0X/GJb25G4A8yIUp3XH0BPf9ssVh4RUTzSKOW4cnoRFDIBTT1OVJksUodEKarD5oY/IEKjkCFTy12y0ZCr43BRKbT3tynid8HYy1YFK9APdXokjiS5cGIFxQWX1493vzQDAJbNKJI4GoqkQCCAu+66CxdccAGmTJkCADCbzVCpVMjMzBzwXKPRCLPZPOjrrF69GgaDIXwrLS0ddkyhxE5WGvuhx6PRucF2LnWddvgDosTRENFwdNrcEAGkqeTsPZpAtm/fjiuvvBJFRUUQBAEbNmwY8PjNN98MQRAG3C677DJpgiWKgGydChdX5gEAPqntDLehIoqltv5WLkaDhgU+UZITGi5qZ0IxlkK9/o1sUxRzOergefThLv7NRxKT6BQX3jvQBpvbh+JMLWaVZUkdDkXQihUrsH//fqxfv35Er7Nq1Sr09vaGb42NjcN+LYvjeCU6xZ/S7DSoFDK4fQE09TikDoeIhiE8VJSVRwnFbrdj+vTpWLNmzSmfc9lll6G1tTV8+8c//hHDCIkib3JRBsbk6RAQgS017QjwAj7FWLPFCQAoZKIxanLTg8VT3XYP13gMtVmD3wfZ6z/2skNJ9G4v/+YjiKVBFBde2h1MiC6fVQwZW7kkjdtvvx0bN27E9u3bUVJSEr6/oKAAHo8HFotlQDV6W1sbCgoKBn0ttVoNtToyyZhQJTqT6PFJLhMwJi8dNa1WHGmzsW8hUQIK9cDMS2cSPZEsXboUS5cuPe1z1Gr1KY/VRIlIEAQsHJ+Ppp4GtPe5Ud1kYVEPxYwoHk+iF2dpJY4meRm0SijlArx+ERanF9k67kiONpvbB5vbBwEsqpCCQSki4HHBAQ2OdthQadRLHVJSYCU6Sa6hy46PjnZCEIBvnTP8Fh0UP0RRxO23347XXnsN77//PioqKgY8Pnv2bCiVSmzZsiV836FDh2AymTBv3ryoxxeqRGc7l/hVaQy2dDnc3idxJEQ0HG3cvpu0tm7divz8fIwfPx4/+tGP0NXVJXVIRCOmUyswf2wuAGBHbRf6XF6JI6JUYfMBDo8fcpnAat0oEgQBObr+li7six4Toe+COekqqBRMPcaaTAA85iMAgKqGHomjSR78SybJharQLxyXh9LsNImjoUhYsWIFXnjhBaxbtw56vR5msxlmsxlOZ7DKwmAw4NZbb8XKlSvxwQcfYO/evfje976HefPm4bzzzotqbG6fHw6PHwAr0ePZuPxgEv1oG4eLEiUafwDo6u85asxg5VEyueyyy/D8889jy5YteOyxx7Bt2zYsXboUfr9/0OdHcig4UbRNLspAoUEDX0DEjmO8OESx0ekOpmQKMjRQyJmeiaac9OQcLhqv80zMvSyokJq7+SAAoMrEJHqksJ0LScrrD+DlPU0AgOvnsAo9WTz11FMAgAULFgy4/9lnn8XNN98MAPj9738PmUyGa6+9Fm63G0uWLMGf//znqMcWqkJPU8mhVsij/n40PGPzg9vNWIlOlHgsXgGiGPycTedQ0aRy3XXXhf956tSpmDZtGsaMGYOtW7fi0ksvPen5q1evxkMPPRTLEImGTRAEXDQuDy/taURNax9mlGYiX8/kD0VXhyvYyrQ4k61coi23v8Vcly25Bi2G5pnccsstWL58+aDPueyyy/Dss8+Gf45Um9TTCVWic4eFdNwtNQCAKpNF2kCSCM9sSFJbatrRaXMjN12NRZOMUodDESKKZx5codFosGbNmtMOL4sGDhVNDKF2LkfbbQgERM5KIEogPZ7gejVmaCAIXLvJbPTo0cjNzcXRo0cHTaKvWrUKK1euDP9stVpRWsqiCYpfBQYNKo3pONxmw0dHOrF8VsmZf4loBEKV6OyHHn25SVqJHo/zTERRDA8VZSW6dNwthwAEz6l7HV4YmAMZMe4XIkn941MTAOAbs0ug5PY1ioHwUFEt+6HHs7LsNKjkMri8gfCwJSJKDD3uYOI8n0Okkl5TUxO6urpQWFg46ONqtRoZGRkDbkTx7oIxuZAJQGOPE809/A5C0aMwGOH0C5AJQKGBicZoy+mvRLe6fPD4AhJHE1uxnmfS4/DC4w9AIROQwyGukgk4elGQHtx9/1kjW7pEArOWJJnaDhu2He6AIADXsZULxcjxoaK8ChvPFHIZRufpAACH29jShSiR9HiCXy9ZeZR4bDYbqqurUV1dDQCoq6tDdXU1TCYTbDYb7rnnHuzcuRP19fXYsmULli1bhrFjx2LJkiXSBk4UQRlaJSYVBS/47Kpjb3SKHk3FLADBdhcsKIs+rVIOnTqYUEy2avTTkWKeSaiVS75ezR3FEhufE7yIwZYukcFPapLM3z+qAwBcOsGIUbk6iaOhVBGuRE/jFfF4N84Y7It+pJ3DRYkShaDSos8X/GcOFU08e/bswcyZMzFz5kwAwMqVKzFz5kw88MADkMvl+OKLL3DVVVehsrISt956K2bPno0PP/wwJr1ViWJpTnn28Wp07oijKNGOPgcAUM5z4ZjJ1fX3RbcnV1/007nuuutw1VVXYerUqbj66quxceNG7N69G1u3bh30+atXr4bBYAjfhtOGzdyfRDdyh4XkKnOCxYOfcbhoRLAnOkmix+7BK1XBgaK3zq+QOBpKFaIowuJkJXqiGJcf7IvOSnSixKEyjgUgQK9RIE3Fr5mJZsGCBaeda/Luu+/GMBoi6WRolZhUmIH9LVbsqe9G8YxiqUOiJOP1i9CUTwMAjMpJkzia1JGdrkJDtwPdSTZcdChiMc/E3MuhovEiVIlebbJw1lgEsBKdJLHuUxNc3gAmF2XgvNHZUodDKcLp9Yf73xm0TKLHO3fjfrT/6yH8+QeLIAgCNmzYMOBxQRAGvf32t7+VJmAigrpwHADAqOdJExEltlnlWQCA+i4HulOoapVio6bTA5lKC41MRF46d/PESqg/d5c9ddq5fFW055n4/IFwuxwm0aVXblAgTSVHn9vHHd4RwCQ6xZzHF8Bzn9QDAL5/YQUEgVfCKDZ6+vuh6zUKKNh3MO5lq0Uo80cjd8mPBn28tbV1wO3vf/87BEHAtddeG+NIiShE1Z9Ez2crFyJKcFlpKozub7PBbfAUaZ+Zg0lGozbA8+EYyknCdi7xNs+k0+ZBQAz2oNdruCtRanKZgGklBgBAFY9lI8YsEsXcm5+3oL3PjXy9GldMLZI6HEohlv5+6Fnsh54Qvvutq5G/8LtQjD5v0McLCgoG3F5//XUsXLgQo0ePjnGkRBSiKuivRGflERElgVllwWr0GnMfHB6fxNFQMqlq7U+ia07dQosiL7u/Et3h8cPpHXywZqKJt3km4X7oGWpeIIoToWNZVQOT6CPFy0IUEX6/Hw8++CBeeOEFmM1mFBUV4eabb8Z999034IPTHxCxZutRAMD3LqiASsHrOBQ7oUr0TPZDTwhKuQyjc9Nx6Cx6ore1teGtt97Cc889F4PIiGgwVncAyswCAIBRz0p0Ikp8RZka5OvVaO9zo6a1D7P7W7wQjcTR9j40Wn0Q/V4YtUyix5JKIYNeo0Cfy4dumwfFWVqpQxqxeJtn0mZlP/R4E06isxJ9xJjBpIh47LHH8NRTT+HJJ59ETU0NHnvsMTz++OP405/+NOB5b+9rxbEOOwxaJb4zr1yiaClVsRI98Yw1pp/V85577jno9XosX748yhER0akc7gp+xqYrRKiVcomjISIaOUEQMLU4uA1+f3PvaRNVlHy2b9+OK6+8EkVFRYPO53n11VexePFi5OTkQBCEcDuNM3nrCzMAwFlfDRUzMjHHvujRFa5ENzCJHi9mlmUCAGo77OGcCA0PP7IpIj755BMsW7YMV1xxBUaNGoVvfOMbWLx4MT799NPwcwIBEU++H6xCv+WCCqSruRGCYsvCSvSEM8GoP6vn/f3vf8cNN9wAjYZf1oikcrgr+Bmbow5IHAkRUeRUGvVQygVYnF40W5xSh0MxZLfbMX36dKxZs+aUj8+fPx+PPfbYkF737X2tAADHwY9GHCMNXTL2RY8XnsDxc25WosePnHQ1RuWkAQA+a7RIG0yCYxaTIuL888/HX//6Vxw+fBiVlZX4/PPP8dFHH+F3v/td+Dn/PtCGQ2190KsVuPmCUdIFSylJFEVYnP1JdC2T6IliQuGZp8F/+OGHOHToEF566aUYREREpxKqRM9WsVKTiJKHSiHDeKMe+1us2N9sxRR2q0oZS5cuxdKlS0/5+He+8x0AQH19/Vm/5tH2Phxq64NCBjiP7ASwYoRR0lBlpwcr0bttTKJHWo872MrXoFVCw12JcWVWWRbquxz4rKEHC8fnSx1OwmISnSLiv/7rv2C1WjFhwgTI5XL4/X78+te/xg033AAgmMB88oMjAICbzh8FA5OYFGN9Lh/8AREyAcjQ8O8vUUwsPF6J7vUPXt36zDPPYPbs2Zg+fXqswiKir/AHRBzuDlWiM4lORMllSrEB+1usONpuw7giqaOhRLbxi2AV+rR8NWrddomjSU3H27kwiR5p3Z5gEp1V6PFnZnkWXv2sGVUmi9ShJDS2c6GIePnll/Hiiy9i3bp1qKqqwnPPPYf/+Z//CQ/527TfjP3NVuhUctwyv0LiaCkV9fT3/jJolZDJOCU8EdhsNnTUH4LS0gAA2LPvEKqrq2EymcLPsVqt+Oc//4nvf//7UoVJRACOtPfB5RMRcDuQoWQSnYiSizEjOGDUL4ow2XkKTcMTCIj4554mAMD8MiYZpZLdn0R3ev1weHwSR5NcejzBz0djBrfsxJtZ/X3Rqxst8Af4XX24+A2AIuKee+7Bf/3Xf+G6667D1KlT8Z3vfAd33303Vq9eDZ8/gN/++xAA4NYLR4cPWkSxFGrlwqGiiWPPnj2YNWsWjv4luM318YfuxcyZM/HAAw+En7N+/XqIoojrr79eqjCJCEBVgwUA4G49AoHXKYkoCU0pCg4YrWcSnYbpw6OdaLY4kaFRYF6JVupwUpZSLgvvjO9iS5eI6u5v51LAoaJxZ7xRjzSVHDa3D0fa+6QOJ2HxGwBFhMPhgEw28M9JLpcjEAjglaomHOuwIytNiR9cyCp0kgaHiiaeBQsWQBRFPLBhH8p/sRH//eaXEEURa9euDT/ntttug8PhgMFgkC5QIkKVqQcA4GmpkTgSIqLoqDSmQy4TYPXKoMwfLXU4lIDWfxrcTXnNzGKoFbziLKVQYV83W7pEjFyfB3dAgEwA8tJZiR5vFHIZppdkAjhe/EJDxyQ6RcSVV16JX//613jrrbdQX1+P1157Db/73e9w5VXL8MTmYC/0FQvHQs9e1CSRUDsXVqInnon9w0UPmnnFnChefdafRHe3HJI4EiKi6FAr5RidqwMApE+5ROJoKNF09Lnx3oE2AMB155ZJHA2xL3rkqYsqAQC56Woo5Ew1xqPZ5VkAjhe/0NBxsChFxJ/+9Cfcf//9+PGPf4z29nYUFRXhhz/8IUouuRGv/LsWhQYNbjyvXOowKYWxEj2+1NScfbWqYA1+uf2isRt79+6FEKFeEbm5uSgr40kM0UhZHB7UdgSHozGJTkTJbEKhHg2dfQi4HVKHQjFgs9lw9OjR8M91dXWorq5GdnY2ysrK0N3dDZPJhJaWFgDAoUPBY2BBQQEKCgoGvNZzn9TDFxAxozQTEwszUNUau38POllOen8S3eaWOJLkoSoMJtGNHCoat2aVZwIAqhqYRB8uJtEpIvR6PZ544gk88cQT4fv6XF5c9PgHAIC7F1VCo5RLFB2luoAIWJ2hJDor0aVk7e4AANx4441n/TuCQo3Su1+G1Q3Mvfhr8Nsjc9DXpqXhYE0NE+lEI1TdaAEAFKbL0eC0ShsMEVEUjcrW4YpiL574eB2An0odDkXZnj17sHDhwvDPK1euBADcdNNNWLt2Ld544w1873vfCz9+3XXXAQB+9atf4cEHHwzf3+fy4rkd9QCA/7x4TPQDpzPK0QXbjXTZPRBFMWJFOqlM3Z9EL2ASPW7NLA1Woh/rtKPH7kEW5xUOGZPoFDV/+7AOPQ4vxuTpsHxWsdThUAqz+QARgFIuQKfixRwpOW3BBNsVP/wlxk+bfda/926LDDYf8O2H/o4C7cinibeZavHiY/egs7OTSXSiEaoyWQAAlTkq7JQ2FCKiqJLJgv1+KTWE5vOcys0334ybb775jK/zwk4T+lw+jM1Px+JJxghGSMOVlaaEAMDtC8Dh8UOnZmpsJPwBEaqCcQAAYwb7ocerLJ0Ko/N0ONZhx2eNPbhkAj+PhoqfFHQSk8mEzs7OEb2GxeXHX7cFK06Xj1Pii8+rh/T7Q2n1QHQmNm/wbCczTcUqgziRU1SOknGTz/r5ha5WHGm3AYYClJRnRzEyIhqq0JbQyhy2yyIiIjpRn8uL//3wGADgRxePgYxXYeKCQi6DQauExelFl93DJPoINVl9kKk0UAgiq5vj3KyyLBzrsGNvA5Pow8FPChrAZDJhwsSJcDpG1ucv69IfIOOcZXC3Hsbty1YO+3VsNtuI4iACAJsv+GU1S8sET6LK1atxpN2Gzj4O/yGKJz5/IDycaFIuT5qIiCj+RaJo7Gw9/7kVXXYPCtPlKBXbUFXVDoBFY/EgJ10VTKLb3CjLTpM6nIR2pDvYOjVLJULGorW4NqssC//a24SqBovUoSQkJtFpgM7OTjgdDtzwi9/CWDa8fm12H/DvFiUCAC6dXgHjmleH/Bo1n27DO8/9AS6Xa1gxEJ0olERnP/TElZce3BbYyeE/RHHlyxYrHB4/MjQKlBr4tZKIiOJbpIrGzoYisxBF3/8zBLkSn699AHPv333Sc1g0Jp0cnRq1HXZ02VmkM1KhJHq2euRtNym6ZpcH+6J/3mSBzx+AQi6TOKLEwrMdGpSxbMyQWi2c6N8HzAigDyVZWsyeOm5Yr9Fmqh3W7xEN5ng7F1aiJ6rc9OAFkG6Hhwd7ojiyu74bAHDOqGxWHhERUdyLRNHY2RBF4KMOBdpdMhg1ASy/exVOPEyyaEx62f1tR7qZRB+xo93B/4ZZqoDEkdCZjMtPh16tQJ/bh0NtfZhcZJA6pITCJDpFVJfNjYOtfQCAC8bkShwNUVBfqJ0LK9ETVrpaAa1SDqfXj06bBwUGTn0nigehJPqcUdkAeqUNhoiI6CyNpGjsbFQ3WtDu6oBCJmDJjIqT+kSzaEx6Of1FOl02z2kHyNLpOT1+NPT6AADZKv53jHcymYAZZZn48Egnqhp6mEQfIpbyUUTtPNYNEcCYPB2TXBQXBKUGLj8r0ROdIAjI75/03tbHih2ieCCKIvbUB/uhn1uRJXE0RERE8aGjz42PjgZ7rs8fm8tBi3EqM00JQQA8/gBsbp/U4SSs/S29CIiAr68LWpbpJoSZZcHv7VUmi7SBJCAm0Sli2qwuHO0I9nSbNzpH4miIghRZhQAArVIOjVIucTQ0EkZ98MJcu5V90YniwbHOYB9RlUKGKcWsYiEiIrK7fXjzixb4AyLKc9IwrYTHx3ilkMmQpe2vRmdLl2ErytTixql69O19Q+pQ6CyF+qJXmXokjiTxMIlOEfNJbRcAYEKBHjn9QwCJpKbMLgbAKvRkEKpEb2clOlFc2F0XbOUyozQTagUvUhIRUWpz+/x484sW9Ll8yExT4rLJBRA4LySuZYfmLtmYRB+u4kwtlk9Mh3XXK1KHQmdpRmkmAKChy4FOGwvUhoJJdIqIph4HTN0OyATgPFahUxxRZjGJnizy9cEkepfdA6+fQ2uIpPZpfz/0c0dlSxwJERGRtNw+P16vbkGb1Q2NQoarphdxF2wCyNGxEp1Sj0GrxLj8dABAVQOr0YeCSXQaMVEUw1Xok4sMMGiZrKT4oQhXorMXYaJLVyuQppJDFMEr5kRxINQP/ZxR7IdORESpq8/lxStVzWjtdUGtkOGamcXI4rlHQjieROe5BaWW4y1dLNIGkmCYRKcRq+9yoLXXBYVMwNwKVqNRfFFmFwEAsnhxJ+EJghCuRm9jX3TJbN++HVdeeSWKioogCAI2bNgw4HFRFPHAAw+gsLAQWq0WixYtwpEjR6QJlqKmzeoK70ALfQknIqL4xGN39Jh7XVi/uxEdfW5olXIsn1mM/AyN1GHRWQq1oe22eyCKEgdDFEOzQsNFWYk+JEyi04gEq9CDk8enl2ZCp+Y4ZooviqxgEp2V6MnBmBEaLsq+6FKx2+2YPn061qxZM+jjjz/+OP74xz/i6aefxq5du6DT6bBkyRK4XPx/lkx2HgvuQJtYmAG9hhcpiYjiGY/d0XHI3Id/VTXB4fEjR6fCdXNKmUBPMAatEjIB8PpFOPxSR0MUO7PKMwEAXzRb2Cp1CJjxpBE52mFDp80DlVzGSjSKO33uAOTaDADsiZ4sjg8XZSW6VJYuXYqlS5cO+pgoinjiiSdw3333YdmyZQCA559/HkajERs2bMB1110Xy1Apinb0t3GbxzkoRERxj8fuyBJFETvruvFp/4DtilwdLptcAJWCNYqJRi4TkJWmQpfdA6uXQ2ApdYzOTYdBq0Sv04uaViumlWRKHVJC4Kc8DZsoiuEvDjNKM6Hl4BSKMy19PgCAVi5CKefHXTIw6oPVPd12Dzw+XjGPN3V1dTCbzVi0aFH4PoPBgLlz52LHjh2n/D232w2r1TrgRvFtR38l+rwxTKITESUyHruHxhcIYNOX5vB58KyyTHx9WiET6Aks1BedSXRKJTKZgJllmQDY0mUo+ElPw1bXaUenzQOl/PjiI4onLbZgEj1dwQZ3yUKnVkCnlkME0MHhonHHbDYDAIxG44D7jUZj+LHBrF69GgaDIXwrLS2Napw0Mi0WJxq6gv3Q53AWChFRQuOx++y5fX68/lkLDrfZIBOARRPzceG4PMgEJl8TWXY6k+iUmkJ90fdyuOhZYxKdhkUURezqv/o+vSQTGlahUxwKVaKnK5lETyahanT2RU8eq1atQm9vb/jW2NgodUh0GqFWLlOLDchgP3QiopSUasduu9uHf+5tQpPFCZVchmUzijG5yCB1WBQBObpgu0gm0SnVcLjo0DGJTsPS0OVAe58bChmr0Cl+tfYFp8PoWYmeVEJ90c1MosedgoICAEBbW9uA+9va2sKPDUatViMjI2PAjeJXaKjoeWzlQkSU8HjsPjOnx4/XPmtGl82DNJUc35hdgrLsNKnDogjJ6a9E7/MKAJhIp9QxvdQAmQA0W5xo47n1WWESnYbsxCr0aSUGpKk4n5biU7idCyvRk0qhQQsAMPfyQB9vKioqUFBQgC1btoTvs1qt2LVrF+bNmydhZBRJ4X7oHCpKRJTweOw+PY8vgNeqm9Fl9yBdrcA3Z5cgT6+WOiyKIINWCblMgF8UoMg0nvkXiJKEXqNEpVEPgNXoZ4vZTxoyU7cDZqsLcpkQ3v5BFG8CATFcic6e6MnF2F+JbnX5YHf7oFPzUBZLNpsNR48eDf9cV1eH6upqZGdno6ysDHfddRceeeQRjBs3DhUVFbj//vtRVFSEq6++WrqgKWIaux1o6nFCIRMwZxT7oRMRJQIeu4dHFEW8+6UZHX1uaJVyLJ9ZjMw0ldRhUYTJBAFZacrgvLfcMqnDIYqpWeVZOGjuQ5WpB0unFkodTtxj5oGGbE//FaqpRQYmryhutfW54PaLEAN+6PhnmlTUCjly01XotHnQ2uvC2Px0qUNKKXv27MHChQvDP69cuRIAcNNNN2Ht2rX4+c9/Drvdjttuuw0WiwXz58/Hpk2boNFopAqZIihUhT6thN8BiIgSBY/dw7PjWBeOddohlwm4anoRsnRMoCerHJ26P4leLnUoRDE1uywL63aZsJeV6GeF7VxoSNqsLjT1OCEIwMzyTKnDITqlug47AMBnMUPG1nZJp8AQPKlr7XVKHEnqWbBgAURRPOm2du1aAIAgCHj44YdhNpvhcrmwefNmVFZWShs0RczO/qGi89gPnYgoYfDYPXSN3Q7srg8mlRZNyA9/96TkFOqLzkp0SjXnjMqCq3E/3v39ShQWFUEQBGzYsGHAc0RRxAMPPIDCwkJotVosWrQIR44ckSZgiTGJTkMS6pM03qhHhkYpcTREpza9NBO/viQH3e89JXUoFAVF/X3RW9kXnShmRFHER0c7AQDnj8mVOBoiIqLocHn9+PeB4KDVKUUZmFCYvENTKSinf5eBikl0SjFl2WnIUPihyKvAnfc/OuhzHn/8cfzxj3/E008/jV27dkGn02HJkiVwuVLvXJxJdDprvU4vjrTbAIC90Cnu6dQKTMxVwVVfLXUoFAWhaqD2Pjd8gYDE0RClhsNtNrT3uaFRyjC7nN8DiIgoOW0/0gGb24esNCUuqsyTOhyKgez+JLoiuwT+AOdpUeoQBAFfW3IZsi76DtIqTx4mLYoinnjiCdx3331YtmwZpk2bhueffx4tLS0nVaynAibR6ax9ZuqBCKA8O40TyYlIUplaJbRKOfwBER19bqnDIUoJHx7pAADMrciBRimXOBoiIqLIa+pxoKa1DwCweFIBlHKmTFKBQauEXBAhU6rRZvdLHQ5RTJ07KhsAsLu++6TH6urqYDabsWjRovB9BoMBc+fOxY4dO2IWY7zgEYHOitPjx5ctVgDB6b1ERFISBOGEvuipt42MSArbjwRbuVw4jq1ciIgo+fgDIt4/2A4AmFpsYB/0FCIIAqZl+tGxYTUMaqbJKLWcWxFMolcNMlzUbDYDAIxG44D7jUZj+LFUwk8HOitfNFngC4jI16tRmqWVOhwiIhT2n9iYmUQnijqX149dx4JDRbm1nYiIktG+5l70OLxIU8lxAQdop5zR+gAchz6GTsU0GaWW4MxDBewe7sI4E3460Bn5/AF83tQLINgLXRAEiSMiIjqeRGclOlH07anvgdsXgDFDjXH56VKHQ1Gyfft2XHnllSgqKoIgCCf1uhRFEQ888AAKCwuh1WqxaNEiHDlyRJpgiYgiyO3z49O6YCuD8ypyoGbbMiJKETKZgHP6W7p8VUFBAQCgra1twP1tbW3hx1IJk+h0RofbbXB6/UhXK3jiTERxw5ihgSAANrcPVqdX6nCIklqoH/qF4/J4MT2J2e12TJ8+HWvWrBn08ccffxx//OMf8fTTT2PXrl3Q6XRYsmQJXC5ezCSixLa3oQdOrx9ZaUpMLsqQOhwiopiac4okekVFBQoKCrBly5bwfVarFbt27cK8eScPIk12CqkDoPgmiiI+b7QAAKaVGCCT8cSZiOKDUi5Dvl6NNqsbzRYnMrRKqUMiSlrsh54ali5diqVLlw76mCiKeOKJJ3Dfffdh2bJlAIDnn38eRqMRGzZswHXXXRfLUImIIsbp9aO6/5z3/DG5POclopRis9lgcDTB03YMAHDs2DFUV1cjOzsbZWVluOuuu/DII49g3LhxqKiowP3334+ioiJcffXV0gYuAVai02mZrS6097khlwmYUmSQOhwiogFKMtMAAM0Wp8SRECWv9j4XalqDw8Xnj2USPVXV1dXBbDZj0aJF4fsMBgPmzp2LHTt2SBgZEdHIVJss8PpF5KWrMSZPJ3U4REPCVmw0Unv27MENVyxA69qfAAB++tOfYubMmXjggQcAAD//+c9xxx134LbbbsOcOXNgs9mwadMmaDSpN3yZSXQ6rdAV+fFGPbQq9oUjovhS3D/ouKmHSXSiaPmovwp9SnEGctLVEkdDUjGbzQAAo9E44H6j0Rh+7KvcbjesVuuAGxFRPHH7/KhusgAA5lRw/hclHrZio5FasGABRFHEt//yCcp/sREv7myAKIpYu3YtAEAQBDz88MMwm81wuVzYvHkzKisrpQ1aIkyi0ynZ3T4cbbcBAKaXsgqdiOJPUaYGAoBepxc2t0/qcIiS0ofhVi55EkdCiWb16tUwGAzhW2lpqdQhEREN8EVTLzy+ALLTVBibx/lflHiWLl2KRx55BNdcc81Jj321Fdu0adPw/PPPo6Wl5aSKdaJz+/uif1rXJXEk8Ys90emU9jX3IiAChQYN8vWpt02DiOKfWiFHnl6N9j43mnucGF+glzokoqQSCIgnJNHZyiWVFRQUAADa2tpQWFgYvr+trQ0zZswY9HdWrVqFlStXhn+2Wq1MpBNR3AgERHzR1AsAmD2KVeiUfM7Uim2weSZutxtutzv8M3eRJbaampqzfm6mL/j//aPDbaiqqopYDLm5uSgrK4vY60mJSXQaVEAMJtEBYEZpprTBEBGdRnGmFu19bjRZHEyiE0XYgVYrOm1uaJVyzC7PkjocklBFRQUKCgqwZcuWcNLcarVi165d+NGPfjTo76jVaqjVbAFERPGptsMGm9sHrVKOSiOr0Cn5DKcV2+rVq/HQQw9FPTaKLmt3BwDgxhtvPOvfEZQalN71EjodwLkLL4Pf2hGRWLRpaThYU5MUiXQm0WlQTQ4ZHB4/dGo5xnBbGxHFseIsLT5rtKCZfdGJIu79g+0AgPnjcqFWcDZKsrPZbDh69Gj457q6OlRXVyM7OxtlZWW466678Mgjj2DcuHGoqKjA/fffj6KiIlx99dXSBU1ENEyhXuhTiw1QyNjplgjgLrJk4bQFdxBc8cNfYvy02Wf9e++bBfR4gKt/+TeUpwdGHEebqRYvPnYPOjs7mUSn5FXbF/wSMbXYALmM29qIKH4VZwaHi/Y4vLC7fdCpeWgjipQt/Un0SyfkSxwJxcKePXuwcOHC8M+hk+ibbroJa9euxc9//nPY7XbcdtttsFgsmD9/PjZt2gSNhm3/iCixWDwCWiwuyITgOS9RMhpOKzbuIksuOUXlKBk3+ayfP0boxJ6GHthVWSgZVxDFyBITL7fSSVQF49DtkUEuCJhSxC8URBTfNEo5ctNVAIAWC6vRiSKlo8+NzxstAICFTKKnhAULFkAUxZNua9euBQAIgoCHH34YZrMZLpcLmzdvRmVlpbRBExENQ6hobGxeOtI1LMCg5HRiK7aQUCu2efPmSRgZxavS7DQAQGOPE6IoShxN/OHRgk6in30lAGCcMZ0VnUSUEIoztei0edDU48Q4I/uiE0XCB4eCVehTiw0wZrDSmIiIkoNMkw6TI5hEn875X5Tg2IqNIqnQoIFcEGBz+2BxepGVppI6pLjCDCkNYHH5oZtwIQB+oSCixFGSlYbPm3rR2OOQOhSipPF+TTCJfgmr0ImIKImkTbwYAVFAbroKhQZeJKbExlZsFElKuQwFBg2aLU40dTuZRP8KJtFpgPeOOSAolMhWBVDAqjMiShClWVoICPZF73N5odcopQ6JKKG5fX58eKQDAHDpRCbRiYgoeaRP+xoAYHKRAYLA+V+U2EKt2E4l1Irt4YcfjmFUlMhKs7RotjjR2OPA1BK2eD4Re6JTmNcfwLu1wSrOMfqRT+ElIooVtVIebjdh6mY1OtFIfVrXDbvHjzy9mvNRiIgoadT1eKEuGAsZRIwvYAtAIqKvKunvi97EvugnYRKdwt790oxuZwB+Ww9K0phEJ6LEUpqtBQA0dnO4KNFIbQm1chmfD5mMVXpERJQc3q8PFlsUpgWgVcoljoaIKP4UZGigkAlwev3osnukDieuMIlOYc99Ug8A6Pv8HfB8mYgSTVn/FXNTt4NXzIlGQBRFbDnYBgC4hK1ciIgoSbh9fmxrCBZbjNKxaIyIaDBymYDizFCBGnd5n4hJdAIAfNnSi931PZALgK16k9ThEBENWaFBG75i3mnjFXOi4artsKGx2wmVQob5Y3OlDoeIiCgiNh9oh80jwtfXCaOGBRdERKdSEtrl3cNd3idiEp0AHK9Cn1eigd/WLW0wRETDIJcJKM7iFXOikQq1cpk3Ogc6NWfQExFRcnilqgkAYN+3BZwnSkR0amXhvugO+AO86BjCJDqh2+7BhuoWAMDl43QSR0NENHwntnQhouHZ9KUZALCIrVyIiChJ9Ng92H64AwBgO/CBxNEQEcW3vHQ10lRyeP0iWiysRg+J6yT6gw8+CEEQBtwmTJggdVhJZ/1uEzy+AKYUZ2B8jlLqcIiIhi2URG+2OOHzs9cl0VC19jrxmckCQQCWTC6QOhwiIqKIeGe/Gb6AiIpMBXxdTVKHQ0QU1wRBQHn/uXUDC9TC4jqJDgCTJ09Ga2tr+PbRRx9JHVJS8fkDeGFHAwDgpnmjIHBfGxElsBydCmkqOXwBES29LqnDIUo47+4PVqHPLstCfoZG4miIiIgi443PmwEA88u0EkdCRJQYynOCnSoauuwSRxI/4j6JrlAoUFBQEL7l5nLAVSS9d6ANLb0u5OhUuHJ6kdThEBGNiCAIKM/pv2LOgz3RkIVauVw2hVXoRESUHMy9LuyqC879ml/KJDoR0dkI7fLutHlgc/skjiY+xH0S/ciRIygqKsLo0aNxww03wGQySR1SUnm2f6Dof8wtg0YplzYYIqIIqOi/Yl7fyW1nREPRZXPj0/4kA1u5EBFRstj4RQtEETinPAt5Op7zEhGdDa1KDmOGGgAL1ELiOok+d+5crF27Fps2bcJTTz2Furo6XHjhhejr6zvl77jdblit1gE3GtyXLb34tK4bCpmAG+aWSx0OJZnt27fjyiuvRFFREQRBwIYNGwY8LooiHnjgARQWFkKr1WLRokU4cuSINMFSUinLToMgAN0OD3qdXqnDIUoY/z7QhoAITC02oLS/8oSIiCjRvfF5CwBg2QzuvCYiGorjLV1YoAbEeRJ96dKl+OY3v4lp06ZhyZIlePvtt2GxWPDyyy+f8ndWr14Ng8EQvpWWlsYw4sTyXH8V+tKphSgwsO8pRZbdbsf06dOxZs2aQR9//PHH8cc//hFPP/00du3aBZ1OhyVLlsDlYh9rGhm1Uo4iQ3Crbj2vmBOdtU372cqFiIiSS12nHV809UIuE3D51EKpwyEiSiij+lulmrodCATE2L3vqODMxq/eVqxYEbMYBhPXSfSvyszMRGVlJY4ePXrK56xatQq9vb3hW2NjYwwjTBzddg82VAevyN98/ihpg6GktHTpUjzyyCO45pprTnpMFEU88cQTuO+++7Bs2TJMmzYNzz//PFpaWk6qWCcajtDBvr6TSXSis9Hr9OKT2k4ATKITEVHyeLO/Cv2CsbnISVdLHA0RUWIx6jVQK2Rw+wIwW2NX8Lh79260traGb++99x4A4Jvf/GbMYhhMQiXRbTYbamtrUVh46ivIarUaGRkZA250svW7TfD4AphWYsCsskypw6EUU1dXB7PZjEWLFoXvMxgMmDt3Lnbs2DHo77BVEw1FaNtZU48TPn9A4miI4t+WmjZ4/SLG5adjTF661OEQERGNmCiKeL26GQBw1XS2ciEiGiqZTEB5f4HasRgWqOXl5aGgoCB827hxI8aMGYOLL744ZjEMJq6T6D/72c+wbds21NfX45NPPsE111wDuVyO66+/XurQEprPH8D/7WgAANw0L7hFgiiWzOZgywCj0TjgfqPRGH7sq9iqiYYiN12FdLUCvoCIJotT6nCI4t47/a1clrIKnYiIksSBVitqO+xQKWRYMtl45l8gIqKThApsjnXYJHl/j8eDF154Abfccovk+cu4TqI3NTXh+uuvx/jx4/Gtb30LOTk52LlzJ/Ly8qQOLaH9+0AbWntdyE1X4evT2ReOEgNbNdFQCILAli5EZ6nP5cW2wx0AgMum8HsBERElh9BA0Usn5EOvUUocDRFRYirPSYNcENDj8KLb7on5+2/YsAEWiwU333xzzN/7qxRSB3A669evlzqEpPS/Hx4DAFx/bhnUCrnE0VAqKigIVjq2tbUNaM/U1taGGTNmDPo7arUaajX7GNLZG5Wrw/4WK+o67bi4UpT8qjVRvHr3yzZ4fAGMydNhYqFe6nCIiIhGLBAQsfHzVgBs5UJENBJqhRwl2Vo0dDlQ22FDti47pu//zDPPYOnSpSgqkv6zPK4r0Sny9jZ0o8pkgUouw3fmlUsdDqWoiooKFBQUYMuWLeH7rFYrdu3ahXnz5kkYGSWTsuw0KGQCrC4fOm2xv2JOlChClXpXTS/mxSYiIkoKVaYeNFucSFcrsHBCvtThEBEltOMtXWK7y7uhoQGbN2/G97///Zi+76kwiZ5i/rItWIW+fFYx8vUaiaOhZGaz2VBdXY3q6moAwWGi1dXVMJlMEAQBd911Fx555BG88cYb2LdvH7773e+iqKgIV199taRxU/JQymUoyw62dKmVqH8bUbzrtLnx8dFOAMBVM6Sv7iAiIoqE0AXixZON0Ci5+5qIaCRG5+oAAGarCza3L2bv++yzzyI/Px9XXHFFzN7zdJhETyHHOmx4r6YNAPD9C0dLHA0luz179mDmzJmYOXMmAGDlypWYOXMmHnjgAQDAz3/+c9xxxx247bbbMGfOHNhsNmzatAkaDS/uUOSErpgziU40uLf3tcIfEDGtxICK/i/HREREicznD+DtfWzlQkQUKTq1AoWGYK4mVgNGA4EAnn32Wdx0001QKOKjG3l8REEx8bcP6yCKwKKJ+Ribny51OJTkFixYAFEUT/m4IAh4+OGH8fDDD8cwKko1FXk6CDVAp82DXqcXBi2HShGd6I3qUCsXJhmIiCg5fFLbhU6bB9k6FS4Ymyt1OERESWF0rg6tvS7UdtgxrSQz6u+3efNmmEwm3HLLLVF/r7PFSvQU0dHnxitVTQCA2y4aI3E0RESxoVXKUZypBRC7K+ZEiaKpx4E9DT0QBODr05hEJyKi5BBq5XL51AIo5Ux5EBFFwpj+YtzGHgccnui3dFm8eDFEUURlZWXU3+ts8YiSIp7fUQ+PL4AZpZmYMypL6nCIiGImdLCvjfEQFKJ4d9td/4WGx76O+ke/jsJMLQRBwIQJE6QOi4iIaIAHH3wQgiAMuJ3qeOXy+vHufjOA4MBsIiKKjKw0FYwZaogicLgtNQvU2M4lBdjdPvzfzgYAwA8vGg1BECSOiIgodkbn6rDtcAdaLE44PD6kqXjoIxJFETWtVihzy/Cn51/BspklABA3/QaJiIhONHnyZGzevDn886mOV9sOd6DP7UOhQYNzylk8RkQUSeONerRZ3Thk7sOM0syz/r2amproBXWWcnNzUVZWNqLX4JlSCnhhZwMsDi8qcnVYPLlA6nCIiGIqQ6tEnl6Njj436jrtmFxkkDokIslVmSzocXggkytwwyUzkK7mV0IiIopfCoUCBQVnPpcNtXL5+rRCyGQsHiMiiqRKox4fHumE2eqCxeFBZprqtM+3dncAAG688cZYhHda2rQ0HKypGVEinWdMSc7p8eOv248BAFYsHAs5v0gQUQoak6dDR58bxzqYRCcCgH/tDc5J8VtaUFlRBo1Gg3nz5mH16tUjrtAgIiKKtCNHjqCoqOi0xyu724ctNW0A2MqFiCgadGoFSrPTYOp24FBbH+ZW5Jz2+U6bFQBwxQ9/ifHTZscixEG1mWrx4mP3oLOzk0l0OrUXdzWgy+5BWXYals3g0DAiSk1j8tKx81g3Grod8PgCUodDJCmX14+Nn7dAXTgeP/vtk7jq4jlobW3FQw89hAsvvBD79++HXq+XOkwiIiIAwNy5c7F27VqMHz/+tMer9w60weUNoCJXhynFGRJGTESUvCYU6INJdHMfzh2VfVYto3OKylEybnIMoosuJtGTmMvrx1/CVehjOJmciFJWjk4Fg1aJXqcX9V12pEkdEJGE3v3SjD63D+POuRD3rlgImUzAtGnTMHfuXJSXl+Pll1/GrbfeKnWYREREAIClS5eG//l0x6tQK5crpxdxDhgRUZSMztNBLhPQ4/Civc8NY4ZG6pBihlnVJPaPT03o6HOjOFOLa/oHhhERpSJBEFBpTAcAHG7rkzgaImmFWrlcO6tkQL/YzMxMVFZW4ujRo1KFRkREdEaDHa967B5sPxzsvXvV9EKpQiMiSnpqhRxj8nQAgC9brBJHE1tMoicpm9uHJ98Pfqn48cIxUCn4v5qIUlulMbjdt77LAS87ulCKaux24KOjnQCAb8weeIHdZrOhtrYWhYVMPhARUfwa7Hi16UszfAEREwszMDafLcmIiKJpSv+csUPmvpRql8rMapJ65sM6dNk9qMjV4VvnlEodDhGR5HJ0KmSnqeAPiGhx8PAXLQ8++CAEQRhwmzBhgtRhUb8Xd5kgisCF43Lxh988gG3btqG+vh6ffPIJrrnmGsjlclx//fVSh0lERDEU78fun/3sZ2c8Xr1RHWzlctV0zgEjIoq2kiwtDFolPP4ADrenzk5v9kRPAk899RSeeuop1NfXAwDGT5iEtrFXQFY2Cz9dXMle6EREON7SZWddN5qYRI+qyZMnY/PmzeGfFQp+3YgHbp8fL+9pBADceF45nn2vCddffz26urqQl5eH+fPnY+fOncjLy5M4UiIiirV4PnY3NZ3+eNVicWJnXRcA4OvTuJuKiCjaBEHA1GIDPjraif3NveHK9GQXP0dGGraSkhI8+uijGDduHERRxPfv+x80vvQwLv7F33H5FH6JICIKqTTqsbOuG20uATINt/pGi0KhQEFBgdRh0Fds2m9Gt92DQoMGl07Ix5L166UOiYiI4kQ8H7vXn+F49dpnzRBFYG5FNkqzOT6eiCgWJhbq8UltJ9qsbph7XSgwJP+AUZbiJYErr7wSl19+OcaNGwd1TjHM466BTKXBeeldAwaGERGluiydCnnpaogQkFY5T+pwktaRI0dQVFSE0aNH44YbboDJZJI6JALwws4GAMB1c8qg4C41IiI6QaIeu0VRxCv9A7O/OuuDiIiiJ02lwPiCYGHaZ6YeiaOJDVaiJ5kHX9+Hnn0fAD43vnv1YqnDISKKO+OM6eiwuaGbtEDqUJLS3LlzsXbtWowfPx6tra146KGHcOGFF2L//v3Q6wev/ne73XC73eGfrdbYTXl/9NFHsWrVKtx555144oknYva+kWYymdDZ2XnKxxssXuyu74FcACZrLaiqqop4DDU1NRF/TSIiir5YHbvPdKwajkOdHhzrtEMtF1Dkb0NVVcdpn89jFRFR5MwszUJNax+OdNhwgdOLDK1S6pCiikn0JLFv3z6ce955cDldkKm0+Mtz/8CkSZOkDouIKO6MLwhuO9OUT0O73Sd1OEln6dKl4X+eNm0a5s6di/Lycrz88su49dZbB/2d1atX46GHHopViGG7d+/GX/7yF0ybNi3m7x1JJpMJEyZOhNPhOOVzshevgH7mUlhrPsLXHn00qvHYbLaovj4REUVWLI7dZ3OsGo7Q8a2rejPm/+b3Z/17PFYREY1cnl6N0iwtGnucqG604KLK5J6txCR6khg1Ziym3f4XmNq6MN6xH6vu/E+cP2MiE+lERF+RoVEiXyOi3SVga70Tl10odUTJLTMzE5WVlTh69Ogpn7Nq1SqsXLky/LPVakVpaWlU47LZbLjhhhvwt7/9DY888khU3yvaOjs74XQ4cMMvfgtj2ZiTHnf5gXealQgAuPyiuchd/GpU4qj5dBveee4PcLlcUXl9IiKKjWgcu890rBoOfwB4q1kJrwgsvfQi5F9x5i91PFYREUXWrPIsNPY4sa+5F+eMykKaKnlTzcn7b5Zint/VjDYhC6XjCrDxZytw9RV1+MMf/oC//OUvUodGRBR3ynUBtLtk+KDeiUBA5PyIKLLZbKitrcV3vvOdUz5HrVZDgbecRwAAJZJJREFUrVbHMCpgxYoVuOKKK7Bo0aKET6KHGMvGoGTc5JPu33GsCwF0oyBDg+lTxkIQovP33maqjcrrEhFRbEXz2H2qY9VwHG7rg7fJDL1GgZlneXzjsYqIKLLKs9NgzFCjzerG3oYeXDgueavROVUqCRxt78MfNh8BANx7+USkqxUIBAIDetQREdFxRdoAAm4H2ux+7K7vljqcpPKzn/0M27ZtQ319PT755BNcc801kMvluP7666UOLWz9+vWoqqrC6tWrpQ4l6rz+AL5osgAAZpVlRi2BTqnhwQcfhCAIA24TJkyQOiwiGqFEOHYPZl9zLwBgYkEGj29ERBIRBAFzK3IAAF809cLhSd6WqaxET3D+gIjLb/wxrHlTMH/GeIyWd2HVqiexdetWvPvuu1KHR0QUlxQywH7wQ+inL8ErVU2YOzpH6pCSRlNTE66//np0dXUhLy8P8+fPx86dO5GXFx8VCY2Njbjzzjvx3nvvQaPRSB1O1B1otcLlDSBDo8CY/HSpw6EkMHnyZGzevDn8s0LB0wmiRBfvx+7BdNs9aOpxQgAwpThD6nCIiFLaqJzj1ei76rqxcHy+1CFFBb/1JrhnPjqGFnMbPJ/+G2/+y4LtvzVg2rRpePfdd/G1r31N6vCIiOKWfd8W6KcvwVtftOLBqyYnde+2WFq/fr3UIZzW3r170d7ejlmzZoXv8/v92L59O5588km43W7I5XIJI4ycQEDEZyYLAGBWWRZkrNKjCFAoFCgoKJA6DCKKoHg/dg9mX1OwCr0iVwe9RilxNETx68EHHzxpCPD48eNx8OBBiSKiZCQIAi4Yk4tXP2vGvuZeTCs2ICc9tu06Y4EZgwR2yNyH//n3YeReficeu3Yqvj2nTOqQiIgShrv5AArT5Wi1+fFGdQuuO5efoang0ksvxb59+wbc973vfQ8TJkzAL37xi6RJoAPAobY+9Dq90ChkmFTEKj2KjCNHjqCoqAgajQbz5s3D6tWrUVbGz08iih2vP4ADZisAYFqJQeJoiOIfd5FRLJRmp2FMng61HXZsP9KJq2cUSR1SxHHlJCi724cfv7gXHl8AF1fm4VvnnHoSOhERDe5ro9Pw/Bd9eH5HA749p5T9NFOAXq/HlClTBtyn0+mQk5Nz0v2JzB8Qsasu2O9/dnkWlHKOwaGRmzt3LtauXYvx48ejtbUVDz30EC688ELs378fer3+pOe73e4BM3qsVmsswyWiJHXI3AePLwCDVomy7DSpwyGKe9xFRrEyf2wu6jsdMHU7cLjNJnU4EcckehwxmUzo7Ow84/NEUcQfP+1FbYcT2VoZbp4g4LPPPotIDDU1NRF5HSKiRHBpRRpeOmDHgVYrqkw9mF2eLXVIRBFR02pFr9MLrVKO6aWZUodDSWLp0qXhf542bRrmzp2L8vJyvPzyy7j11ltPev7q1atP2kJORDQSoiiGB4pOLTawAILoLAxlFxkvgNNIZKapMGdUFnbWdWPr4XZMQ/Ls8gWYRI8bJpMJEyZOhNPhOONz06ctRs7Sn0AM+HHgf3+BSx78MuLx2GzJd8WIiOir9GoZls0owst7mvD8jgYm0VPU1q1bpQ4honyBQLgK/ZxRrEKn6MnMzERlZSWOHj066OOrVq3CypUrwz9brVaUlnL3JBENX4vFhfY+N+QyAZMK2aqM6EyGuouMF8BppM4ZlY3aDjs6bG4cRaHU4UQUk+hxorOzE06HAzf84rcwlo055fPaXQI+aldABDAlS8Q3Vv13ROOo+XQb3nnuD3C5XBF9XSKiePXdeaPw8p4mvL2vFfddMQl5+uQbgEKp5ctmK2xuH3RqOaYVs1csRY/NZkNtbS2+853vDPq4Wq2GWs3PVCKKnL2mHgDAxAI9tKrkqnAkioah7iLjBXAaKblMwNcmGfHS7kZ0i3pknHut1CFFDJPoccZYNgYl4yYP+li33YNdexohIoBx+em4dEpBxLevtZlqI/p6RETxbkqxATPLMvGZyYL1n5pwx6XjpA6JzsLZtkCLttzc3Lgaqujy+rGzrgsAcO6obChYhU4R9LOf/QxXXnklysvL0dLSgl/96leQy+W4/vrrpQ6NiFJAl82Nuk47AGBWeZbE0RAlpjPtIuMFcIqEPL0aF1fm4f1D7ci8+Lvo9lukDikimERPEDa3D69XN8PjC6DQoMHiSUb2fyMiipCb5o3CZ6ZqPL+zAT+4aDQ0SlY2xbOhtECLNm1aGg7W1MRNIn1XXTdc3gCydSpMLmIVOkVWU1MTrr/+enR1dSEvLw/z58/Hzp07kZeXJ3VoRJQCqkwWAMCYPB2y0lTSBkOUoM60i4woUqYUZ2D/ocNol2XiS3cWxlucKM7USh3WiDCJPgKrV6/Gq6++ioMHD0Kr1eL888/HY489hvHjx0f0fWxuH16paoLV5YNBq8SV04pYWUZEFEGXTy3E45sOoqXXhVermvEfc+MjIUqDO9sWaNHWZqrFi4/dg87OzrhIols9Aj5vswAALhqXC7mMF9spstavXy91CESUoiwOD2rMwQGHs1mFTnTWuIuMpCIIAsaiFQ3HjkI7+hy8Ud2CK6YVoiw7LSKvb3V6Yep2oMPmRp/LB48vAIVcgE6lQEGGBmU5aTBolRF5rxAm0Udg27ZtWLFiBebMmQOfz4d7770XixcvxoEDB6DT6SLyHjZXMIFucXqh1yhwzcxi9n4jIoowlUKG7184Gg9vPIC/bK/Ft84p4cXKBHC6FmgpR5Bhb7ccogiMztWhPCcy30OIiIjiwaf13RBFoDwnDYWGxK5kJIol7iIjKckAdLy2GlPvWYdevxobqptx0bg8TC8xDKu7Rrfdg6PtNtR22NDe5z7l8w60Bi+6lmen4ZxRkbvwyiT6CGzatGnAz2vXrkV+fj727t2Liy66aMSv32Vz443PW2B1+aDXKPCNWSXIiPBVFCIiCrru3FL86f0jaOhy4K19rVg2o/iMv/Poo49i1apVuPPOO/HEE09EP0iiU9DPugLdHhlUchkWjOdJERERJY8ehwcHW/sAAOdV5EgcDVFi4S4ykproc2OaugsdhvE4aO7DtsMdONzWhwvH5Z7xoqgoiuiwuVHbbsfRdhu6HZ7wYwKAokwtjBlqZKapoFbI4POL6HV50dzjRLPFiYZuBxq6HShLk0OWNvJWl0yiR1Bvby8AIDs7e8Sv1dBlx9v7zPD4AzBolVg+s5gJdCKiKEpTKXDr/Ar8z78P44nNR3D51EIoT1ONvnv3bvzlL3/BtGnTYhgl0cmarT5kXnQTAOCCsTnQa/h9gYiIksfHRzshAhiVk4YCg0bqcIiIaIhkArB4khEFGRp8XNuJ1l4XXt7TBGOGGqNz02HMUEOnVkAUAZfXjx6HBy29LjR2O+Dw+Ae8Tml2Gsbmp2N0rg5pqlOntXudXuxp6Mb+ZitMDjnyl98/4n8PJtEjJBAI4K677sIFF1yAKVOmDPt1RBHY09CNT2q7IIpAkUGDr08rYgsXIqIYuPmCCjz7cT3qOu34194mXH/u4H2ubTYbbrjhBvztb3/DI488EuMoiY5z+/z43c4eyFQa5KkDmFrMYaJERJQ8mnocqO2wQwAwf2yu1OEQEdEwCYKA6aWZqMjTYeexLhwy96HN6kab9dRtWQBAIRNQnhNMnFfk6qBWnF1+1KBV4tIJRkwuNODdzxtwcPtzwN0LR/TvwCR6hKxYsQL79+/HRx99NOzXkOuy8FGHAu2uLgDAhAI9Lp2YD4WMfXmJiGIhXa3AjxeOxX9vPIA/bD6Ca2YWQ6M8+SC9YsUKXHHFFVi0aBGT6CSp/954AHUWH/yOXswp0g6rtyAREVE8Cogith/uBABMKTYgJ10tcURERDRSGRolFk8qwAVjcnG0w4ambid6HB44PH4IAqCSy5CZpkSeXo2y7OAOpJHkRQsMGlxS4MPnpn0jjp1J9Ai4/fbbsXHjRmzfvh0lJSVD/v1AQMR7tQ4U3vpntLtkUMgEXFyZh8lFGTwZJiKKsRvmluHvH9Wh2eLEn7fWYuXXKgc8vn79elRVVWH37t0SRUgU9PyOeryw0wQA6Hrr99D+9F6JIyIiIoqczxst6LC5oVLIcN7okbdMJSKi+KFTKzC9JBPTSzKj/l6RSq2yxHkERFHE7bffjtdeew3vv/8+KioqhvwaXzRZ8K2/7MBTe3sh1+qRqQzg+nPLMKV4eJNqiYhoZDRKOX55xUQAwNPbalHfaQ8/1tjYiDvvvBMvvvgiNBr25CTpvHegDQ+9eQAAcONUPZzH9kgcERERUeT0Or34pDa4Q3v+mNzT9r0lIiKKBSbRR2DFihV44YUXsG7dOuj1epjNZpjNZjidzjP+7tF2G3784l5c9eTH2NPQA41CQPeWv2FhgQ/ZOlUMoiciolNZOqUAF47LhccXwANvfAlRFAEAe/fuRXt7O2bNmgWFQgGFQoFt27bhj3/8IxQKBfx+/xlemWjkNh9ow49f3At/QMQ3Zpfgmgk6qUMiIiKKGFEUsaWmDb6AiOJMLaYUZ0gdEhEREZPoI/HUU0+ht7cXCxYsQGFhYfj20ksvnfJ39jZ047bn9+Brv9+Gt/eZIQjA8lnF+ONleejb8zpkLD4nIpKcIAh48KrJUClk2H64A//4tBEAcOmll2Lfvn2orq4O38455xzccMMNqK6uhlzOIdDJwu3zw+LwoN3qQnOPEy0WJ8xWF3rsHrh9/vCFlVh7abcJ//nCXnj9Iq6YVohHl0/lzjUiIkoqexp60NjjhEIm4NKJ+TzOERFRXOCeqBE42xNol9ePd/a34v92NKDKZAnf/7VJRvxs8XiML9CjqqoqSlESEdFwjMlLx8+XjMcjb9XgvzcewLwxOajI1WPKlCkDnqfT6ZCTk3PS/ZQYRFFEl92DVosLZqsLnTY3ep1euH2B0/6eQiZALVMi79oH8PznVtSJTZhSbMC4/HTIzuKK+OrVq/Hqq6/i4MGD0Gq1OP/88/HYY49h/Pjxgz7f4fHh0XcO4vkdDQCAq6YX4Xffmg6FnPUQRESUPFosTuw4FmzjsmB8HrLSuEubiIjiA5PoUXTI3Id/fGrCa581o9fpBRCcMnvNzGL84KIKjM3XSxwhERGdzi0XVGBLTTt2HOvCf/7fXrzy4/ORruahM9GJooimHieOtNtQ12mHze0b9HlKuQCVQgalTAYRgD8gwuMLwOMPwBcQ4QsISBt7LjYcsmPDoc8BAHq1AjPKMjGzLAszyzIxqzQLhjTlSa+9bds2rFixAnPmzIHP58O9996LxYsX48CBA9DpjrdnEUUR7x1ow6/frkFDlwMAcNeicbjz0nGszCMioqRidXqx8YtWiCJQaUzHpEK2cSEiovjBTAAAk8mEzs7OiLyW0xvAx40ubK5z4HCXN3x/bpociyq0WDQ6DdlaH6xNR1DVdPz3ampqIvL+REQUOTKZgN9/ewauevIjHGrrw8qXqvH0jbMHVBpv3bpVugBpSBweH/Y19+JAixVW1/HEuUImoNCgQYFBg3y9BplpShi0SihPUeXt9Qfg8Phx7OgRvPbC33DDj36G7oAG+5t70ef24cMjnfjwyPHvFWPydOGk+szSLFQa07Fp06YBr7l27Vrk5+dj7969uOiii9Blc+Od/Was323C/mYrAKDQoMGj107DxZV5UfivQ0REJB23z483v2iB0+tHXroal04w8mIxERHFlZRPoptMJkyYOBFOh2NEr6MqGo/0aYuhm3AhZOo0AIDo98FxdBdsn7+Lhvpq7BUDeOwMr2Oz2UYUBxERRVaBQYO/fGc2vv3Xnfj3gTasenUfVi+felYtOyg+WF1e7G3owYEWK3yBYCs2lVyGSmM6RuelozRLO6S2KEq5DAatDHkaEbbP3sZts/8bs2bNgs8fwKG2PlSZLPisoQdVph7UdzlQ22FHbYcd/9rbFH7vspw0VOTqkKNTIUOrhMVsAgCs+bgVD+/ZhqPtx78PpKnkuPn8UfjPBWOQoTm5qp2IiCiRef0BvF7dgk6bB2kqOa6cXgiVgu3KiIgovqR8Er2zsxNOhwM3/OK3MJaNGdLvegJAg02GOrsMfd7jB/l0hYhR6X6U6wLQVMwBvjbnjK9V8+k2vPPcH+ByuYb870BERMMzlF1Ad8zJwO93WvDSnkZ0dnXiP2cbII9AIj03NxdlZWUjfh06mcvrx+76bnze2At//xyTfL0aM0szMSY//ZSV5sOlkMswuciAyUUGfOe8cgBAt92D6sYefGayoMrUg88be2Fz+3C03RZOlItiAB2v/DfUxZOwqzcdQPD+SYUZWD6rGNfMLEZOujqisRIREcUDjy+AN79oQWuvCyqFDMtmFEHPC8ZERBSHUj6JHmIsG4OScZPP6rk9Dg+qGy2oabXC6w+elCtkAsblp2NykQFFmZohbz1rM9UOOWYiIhoea3cHAODGG28c0u/pJi1AztdXYkudExvf/xgdrz8G0W0fUSzatDQcrKlhIj2CRFHEl61WfHykE67+AaElmVqcW5GNkixtTLeHZ+tUuGSCEZdMMAIAAgERLb1OHOuwo6HbgV6HB//3P/ejt68ZP/6fFzFudDnKc9IwozQL2ToOUyMiouTl8PjwxuctaLO6oZQLuHpGEfL1GqnDIiIiGhST6EPQbHFib0MP6jqPJ0xy0lWYVmzA+AI91Aq5hNEREdHZctqCPaav+OEvMX7a7CH9brPDj91dArQVszDhp+txTo4PeRpxWHG0mWrx4mP3oLOzk0n0COmxe7DlYDuaLU4AQI5OhQvG5mJUTlpc9FaVyQSUZKWhJCvY+u32229Hy76P8dnOj1BRUSFxdERERLHR6/Ti9epm9Di80ChlWDa9GAUGJtCJiCh+MYl+FlosTuys60JjtzN8X0WuDjNLM2Ne0UZERJGTU1R+1ruQQkoAVPS58PY+M3qdXmxvV2JigR7zxuRw+7GERFHE/mYrth/pgC8gQiETMG9MDmaUZMZl/3pRFHHHHXfgtddew9atW5lAJyKilNHQZcc7+81w+wJIVytwzcxi7r4iIqK4xyT6aXTZ3PjwaCcauoJDR2VCsD/prPIsZKXxIE9ElKry9Rr8x7ll+PBIB/a3WFFj7sORdhtmlGZidnkWNEruTIolp9ePLTVtqO0I7hQry07DpRPykaGN34saK1aswLp16/D6669Dr9fDbDYDAAwGA7RarcTRERERRcehXhn2m1oAAMYMNb4+tQjpGqYliIgo/vFoNQiHx4edx7qxv7kXIoLJ84mFGTh3VHZcn5ATEVHsqBQyXDrRiMnFBnx4uAMtvS7saejBF029mFGaiZllmUymx0BrrxNv7zPD5vZBJgAXjM3FzNLMuN8l9tRTTwEAFixYMOD+Z599FjfffHPsAyIiIooipzeA3GX/hf29wRTE5KIMLKjMgyLCQ76JiIiihUn0E4iiiH3Nvfi4tgue/kFkY/J0mD82F5msPCciokEUZGjwjdklqO2wY1ddFzptHnxa343qRguT6VFWZ5OhurEJARHISlPisikFCTOQTBSH10efiIgo0Xj9Afzygy7oJsyHABELJxgxtdggdVhERERDwiR6P6sX2LG3CS29LgBAXroaF1Xmhgd/ERERnYogCBibn44xeTrUdtixs64LXUymR43XLyJ78QpUdQe/xozNS8fXJhmhUrCajYiIKN4o5TJcOioNf/mwDovGZjCBTkRECSnlk+hevwjDvG9jS6sSAbiglAs4f0wuppUYIIvzreBERBRfTkymH+2wYdexbnTZT0iml2ViZimT6SPh9Qfw4LYu6GcuBSBi3phczCnPkrR9S01NjWTvHQ/vT0REdCaXj0vDgzf/GDm/+z+pQyEiIhqWlE6i+wMi7n2/C5kXfQcBAOU5abhkfHwPIiMiovgnCALG5esxNi8dR9tt2FXXn0yv68bnjRZcXJmHCQV6qcNMSEq5DNOManzZ1IP5pWrMGZUtWSzW7g4AwI033ihZDCey2WxSh0BERDQoQRAQcNulDoOIiGjYUjqJLpcJmFOkxuHmTpxXqsO86UVxP4iMiIgShyAIGGfUY2z+wGT6vw+04Ui7DRPVUkeYmL45KR3/b8XtKHz0r5LG4bRZAQBX/PCXGD9ttmRx1Hy6De889we4XC7JYiAiIiIiIkpmKZ1EB4BrJqTjtz/8Ecr+Zy0T6EREFBWhZPqYvHTsMfVg17Eu1HXa0SJTQjNauuRropIJAvx9nVKHEZZTVI6ScZMle/82U61k701ERERERJQKUn4Cl1IuIOC0Sh0GERGlAJlMwLmjsnH9uWXIS1fDHRCQMfsqiKIodWhEREREREREdAopn0QnIiKKtdx0Nb51TgnGZ/jR+dbvuROKiIiIiIiIKI4xiU5ERCQBhVyGKZl+BBwWqUMhIiIiIiIiotNgEp3o/7d3byFW1u8ewB9H01HxgEoeyDD5CxaV4mGMuihwyIuMJAK7SkW6qBlRBiq6UYTMbhKxJO0izSCyCBW6EMxIyzRNSbLUvfmza/sPHJXyvPMwvvtCtvNfzKy24xze9f7W5wPvxXpnremZ36zv88CTMwMAAAAAUIYlOgAAAAAAlGGJDgAAAAAAZViiAwAAAABAGZboAAAAAABQhiU6AAAAAACUYYkOAAAAAABlWKIDAAAAAEAZlugAAAAAAFCGJToAAAAAAJRhiQ4AAAAAAGVYogMAAAAAQBmW6AAAAAAAUEYhluhr166NcePGRW1tbcyYMSP279+fd0lAF5FvSJNsQ7rkG9Ik25Au+YbOq/gl+ubNm6OpqSmWLVsWhw4dikmTJsWsWbPi1KlTeZcGdJJ8Q5pkG9Il35Am2YZ0yTd0jYpfoq9atSpefPHFWLBgQTzwwAOxbt26GDBgQHzwwQd5lwZ0knxDmmQb0iXfkCbZhnTJN3SNil6iX716NQ4ePBj19fW37tXU1ER9fX3s3bs3x8qAzpJvSJNsQ7rkG9Ik25Au+Yau0yfvAv7OmTNnoqWlJUaOHFlyf+TIkXHs2LF2X3PlypW4cuXKrcfnzp2LiIjz58+3+/yLFy9GRMS//vPnuPI/l7ui7DvS/N//jIiIk7/+R/xz4AB1VEAdlVBDRMTpf/1XRNx8r7b3Pv6/e1mW9WhdndXRfHc02xHyXWk1qKOtFPNtdqtDr0sz2xFmdzXWoI62Usy32a0OvS7NbEeY3dVYgzra6rJ8ZxXs999/zyIi++6770ruv/LKK1ldXV27r1m2bFkWES5X1V0nTpzoiVh2mY7mW7Zd1XwVKd9mt8t1+1eRsp1lZrfL1ZGrSPk2u12u27+KlO0sM7tdro5c/1++K/pfoo8YMSJ69+4dzc3NJfebm5tj1KhR7b7m9ddfj6ampluPb9y4EX/88UcMHz48evXq1a315u38+fMxduzYOHHiRAwePDjvcgqvKOeZZVlcuHAhxowZk3cpHdLRfN9JtovyPewJzqJUUc6jiPmuxtldlPdTkaV2xkXMdoTZ3dOcRaminEcR812Ns/tOFOU9WKmKfn5FzHaE2d3TnEWpopzH7ea7opfoffv2jalTp8bOnTtjzpw5EXEzwDt37ozGxsZ2X9OvX7/o169fyb2hQ4d2c6WVZfDgwRX95iyaIpznkCFD8i6hwzqa785kuwjfw57iLEoV4TyKlu9qnt1FeD8VXUpnXLRsR5jdeXEWpYpwHkXLdzXP7jtRhPdgJSvy+RUt2xFmd16cRakinMft5Luil+gREU1NTTFv3ryYNm1a1NXVxerVq+PSpUuxYMGCvEsDOkm+IU2yDemSb0iTbEO65Bu6RsUv0efOnRunT5+OpUuXxsmTJ2Py5Mmxffv2Nn8UASge+YY0yTakS74hTbIN6ZJv6BoVv0SPiGhsbCz7Y2S06tevXyxbtqzNj95wZ5xnz+jOfPsetnIWpZxH96um2e391P2ccWUxu3uGsyjlPLpfNc3uO+E92DnOL19md89wFqVSO49eWZZleRcBAAAAAACVqCbvAgAAAAAAoFJZogMAAAAAQBmW6AAAAAAAUIYlegJWrlwZ06dPj0GDBsXdd98dc+bMiePHj+ddVjLeeuut6NWrVyxZsiTvUuiAtWvXxrhx46K2tjZmzJgR+/fvz7ukXOgP5ck2nSFbPU9m02d236S/lKcP0NPksWvJcHrM7pv0ivJSyr0legJ27doVDQ0NsW/fvtixY0dcu3Ytnnzyybh06VLepRXegQMHYv369fHwww/nXQodsHnz5mhqaoply5bFoUOHYtKkSTFr1qw4depU3qX1OP2hfbJNZ8lWz5LZ9JndrfSX9ukD5EEeu44Mp8fsbqVXtC+53Gck59SpU1lEZLt27cq7lEK7cOFCNmHChGzHjh3Z448/ni1evDjvkrhNdXV1WUNDw63HLS0t2ZgxY7KVK1fmWFVl0B9km+4hW91HZquD2V2e/qIPUDnk8c7IcJrM7vL0ijRz71+iJ+jcuXMRETFs2LCcKym2hoaGeOqpp6K+vj7vUuiAq1evxsGDB0u+bzU1NVFfXx979+7NsbLKoD/INt1DtrqPzKbP7P57+os+QOWQxzsjw+kxu/+eXpFm7vvkXQBd68aNG7FkyZJ47LHH4sEHH8y7nML65JNP4tChQ3HgwIG8S6GDzpw5Ey0tLTFy5MiS+yNHjoxjx47lVFVl0B9km+4hW91HZquD2V2e/qIPUDnk8c7IcJrM7vL0inRzb4memIaGhjhy5Eh8++23eZdSWCdOnIjFixfHjh07ora2Nu9yoMtUe3+QbbpLtWeru8gs6C/6AJWk2vN4J2SYalTtvSLl3FuiJ6SxsTG++OKL2L17d9xzzz15l1NYBw8ejFOnTsWUKVNu3WtpaYndu3fHu+++G1euXInevXvnWCF/Z8SIEdG7d+9obm4uud/c3ByjRo3Kqar86Q+yTfeQre4js9XD7G6f/qIPUDnk8c7IcLrM7vbpFWnn3hI9AVmWxaJFi2LLli3x9ddfx3333Zd3SYU2c+bM+Omnn0ruLViwICZOnBivvfZaYcNeLfr27RtTp06NnTt3xpw5cyLi5o9T7dy5MxobG/MtLgf6QyvZpivJVveT2ephdpfSX1rpA+RNHjtHhtNldpfSK1qlnHtL9AQ0NDTExx9/HNu2bYtBgwbFyZMnIyJiyJAh0b9//5yrK55Bgwa1+b1VAwcOjOHDh1ft77Mqmqamppg3b15MmzYt6urqYvXq1XHp0qVYsGBB3qX1OP2hlWzTlWSr+8lsdTG7W+kvrfQB8iaPnSPDaTO7W+kVrVLOvSV6At57772IiHjiiSdK7m/YsCHmz5/f8wVBzubOnRunT5+OpUuXxsmTJ2Py5Mmxffv2Nn/0pBroD9A9ZAu6ltndSn+ByiGPUJ7Z3UqvqA69sizL8i4CAAAAAAAqUU3eBQAAAAAAQKWyRAcAAAAAgDIs0QEAAAAAoAxLdAAAAAAAKMMSHQAAAAAAyrBEBwAAAACAMizRAQAAAACgDEt0AAAAAAAowxKdLrNx48YYOnRopz9Pr169YuvWrZ3+PEDXkW9Ik2xDuuQb0iTbkC75rmyW6JSYP39+zJkzJ+8ygG4g35Am2YZ0yTekSbYhXfKdLkt0AAAAAAAowxKd27Zq1ap46KGHYuDAgTF27Nh4+eWX4+LFi22et3Xr1pgwYULU1tbGrFmz4sSJEyUf37ZtW0yZMiVqa2tj/PjxsXz58rh+/XpPfRlAO+Qb0iTbkC75hjTJNqRLvovNEp3bVlNTE2vWrImff/45Pvzww/jqq6/i1VdfLXnO5cuXY8WKFbFp06bYs2dPnD17Np5//vlbH//mm2/ihRdeiMWLF8cvv/wS69evj40bN8aKFSt6+ssB/o18Q5pkG9Il35Am2YZ0yXfBZfBv5s2blz3zzDO39dzPPvssGz58+K3HGzZsyCIi27dv3617R48ezSIi+/7777Msy7KZM2dmb775Zsnn+eijj7LRo0ffehwR2ZYtW+78iwDaJd+QJtmGdMk3pEm2IV3yna4+Pb20p7i+/PLLWLlyZRw7dizOnz8f169fj7/++isuX74cAwYMiIiIPn36xPTp02+9ZuLEiTF06NA4evRo1NXVxeHDh2PPnj0l/4espaWlzecBepZ8Q5pkG9Il35Am2YZ0yXexWaJzW3799deYPXt2vPTSS7FixYoYNmxYfPvtt7Fw4cK4evXqbYf04sWLsXz58nj22WfbfKy2trarywZug3xDmmQb0iXfkCbZhnTJd/FZonNbDh48GDdu3Ii33347ampu/ir9Tz/9tM3zrl+/Hj/88EPU1dVFRMTx48fj7Nmzcf/990dExJQpU+L48ePxj3/8o+eKB/6WfEOaZBvSJd+QJtmGdMl38Vmi08a5c+fixx9/LLk3YsSIuHbtWrzzzjvx9NNPx549e2LdunVtXnvXXXfFokWLYs2aNdGnT59obGyMRx555Fb4ly5dGrNnz4577703nnvuuaipqYnDhw/HkSNH4o033uiJLw+qmnxDmmQb0iXfkCbZhnTJd6Ly/qXsVJZ58+ZlEdHmWrhwYbZq1aps9OjRWf/+/bNZs2ZlmzZtyiIi+/PPP7Msu/kHEIYMGZJ9/vnn2fjx47N+/fpl9fX12W+//Vby39i+fXv26KOPZv37988GDx6c1dXVZe+///6tj4c/gADdQr4hTbIN6ZJvSJNsQ7rkO129sizLumtBDwAAAAAARVaTdwEAAAAAAFCpLNEBAAAAAKAMS3QAAAAAACjDEh0AAAAAAMqwRAcAAAAAgDIs0QEAAAAAoAxLdAAAAAAAKMMSHQAAAAAAyrBEBwAAAACAMizRAQAAAACgDEt0AAAAAAAowxIdAAAAAADK+F9IDdK2FlHhOQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# dev\n", + "sources = sorted(dev[\"source\"].unique())\n", + "\n", + "# 서브플롯 생성\n", + "fig, axes = plt.subplots(1, len(sources), figsize=(15, 5))\n", + "\n", + "# 각 source별로 히스토그램 그리기\n", + "for ax, source in zip(axes, sources):\n", + " # 히스토그램 데이터\n", + " hist_data = dev[dev[\"source\"] == source]\n", + " hist = sns.histplot(hist_data, x=\"label\", bins=5, kde=True, ax=ax)\n", + "\n", + " # 막대 위에 숫자 추가\n", + " for p in hist.patches:\n", + " ax.annotate(\n", + " f\"{int(p.get_height())}\",\n", + " (p.get_x() + p.get_width() / 2.0, p.get_height()),\n", + " ha=\"center\",\n", + " va=\"bottom\",\n", + " )\n", + "\n", + " ax.set_title(f\"{source}\")\n", + " ax.set_xlabel(\"Label\")\n", + " ax.set_ylabel(\"Count\")\n", + "\n", + "# 레이아웃 조정\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 텍스트" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 텍스트 길이" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "train[\"s1_len\"] = train[\"sentence_1\"].str.len() # 문장1 길이\n", + "train[\"s2_len\"] = train[\"sentence_2\"].str.len() # 문장2 길이\n", + "train[\"len_diff\"] = (train[\"s1_len\"] - train[\"s2_len\"]).map(abs) # 문장 1,2 길이 차이\n", + "\n", + "dev[\"s1_len\"] = dev[\"sentence_1\"].str.len() # 문장1 길이\n", + "dev[\"s2_len\"] = dev[\"sentence_2\"].str.len() # 문장2 길이\n", + "dev[\"len_diff\"] = (dev[\"s1_len\"] - dev[\"s2_len\"]).map(abs) # 문장 1,2 길이 차이\n", + "\n", + "test[\"s1_len\"] = test[\"sentence_1\"].str.len() # 문장1 길이\n", + "test[\"s2_len\"] = test[\"sentence_2\"].str.len() # 문장2 길이\n", + "test[\"len_diff\"] = (test[\"s1_len\"] - test[\"s2_len\"]).map(abs) # 문장 1,2 길이 차이" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACimElEQVR4nOzdeXhU5d3/8fdkIQmBJAQhIbJqURBxqSii1MeFivsCVmmxtWq1teD6PLblqVq1WtSnrdalam1/LlVqa1FLbYsVxFoVqYC7yCJhEUyQLSFAQpb5/XHISJQlhMmcmeT9uq65zpkzZ858Bm05fue+v3ckGo1GkSRJkiRJkhIoLewAkiRJkiRJan8sSkmSJEmSJCnhLEpJkiRJkiQp4SxKSZIkSZIkKeEsSkmSJEmSJCnhLEpJkiRJkiQp4SxKSZIkSZIkKeEsSkmSJEmSJCnhLEpJkiRJkiQp4SxKSUoqN954I5FIJOwYzRaJRLjxxhtb/XNeeuklIpEIL730UuzYsccey4EHHtjqnw2wZMkSIpEIjzzySEI+T5IktZz3U9vn/ZSUfCxKSUnqtdde48Ybb2T9+vWt+jk/+9nPePbZZ+N2vaqqKn7yk59w0kknUVhYmFJ/8fbt25dIJEIkEiEtLY2CggIGDx7MpZdeyqxZs+L2OZMmTeKuu+6K2/XiKZmzSZK0u1L1fuqNN95g/PjxDBo0iNzcXHr37s25557LggUL4vYZrcX7qeTOJiWbSDQajYYdQtIX/fznP+faa6+ltLSUvn37ttrndOrUiXPOOSduhaMlS5bQr18/evfuzT777MNLL73Eww8/zLe//e1mvf/GG2/kpptuIoz/a+rbty9dunThv//7vwHYsGED8+bN46mnnqKsrIyrr76aX/7yl03eU11dTUZGBhkZGc3+nNNOO4333nuPJUuWNPs9DQ0NbNmyhQ4dOpCWFvyecOyxx7J69Wree++9Zl+npdmi0Sg1NTVkZmaSnp4et8+TJKk1per91DnnnMOrr77K1772NQ466CDKysq49957qaqq4vXXX9/lyB7vp7bP+ykp+TT/f/WS1Aw9evTgk08+obi4mNmzZ3P44YeHHWm37L333px//vlNjt1+++184xvf4M4776R///5cdtllsdeys7NbNU91dXXsxqm1P2tnIpFIqJ8vSVJ7cs011zBp0iQ6dOgQO3beeecxePBgbrvtNh5//PEQ0+2a91Pb5/2U9EVO35OS0I033si1114LQL9+/WJDoLf9teXxxx/nsMMOIycnh8LCQsaMGcPy5cubXGfhwoWMHj2a4uJisrOz6dmzJ2PGjKGiogII/mLcuHEjjz76aOwzdjWi6Z577mHQoEF07NiRLl26MGTIECZNmhR7PSsri+Li4vj8QWyjOd+3sSfABx98wHHHHUfHjh3Ze++9ueOOO/bos3Nycvj9739PYWEht956a5NfHT/fA2HDhg1cddVV9O3bl6ysLLp3785Xv/pV5s6dG8v4t7/9jaVLl8b+zBt/uW3sc/Dkk09y3XXXsffee9OxY0cqKyu32wOh0Zw5czjqqKPIycmhX79+PPDAA01ef+SRR77w78+2n9d4zZ1l21EPhBdffJGvfOUr5ObmUlBQwJlnnsm8efOanNPY12LRokV8+9vfpqCggPz8fC688EI2bdrUvH8IkiTtplS+nzrqqKOaFKQA+vfvz6BBg77w9+zu8H7K+ykp2ThSSkpCo0aNYsGCBfzhD3/gzjvvZK+99gKgW7duANx6661cf/31nHvuuXznO9/h008/5Z577uGYY47hzTffpKCggC1btjBy5Ehqamq4/PLLKS4uZsWKFTz33HOsX7+e/Px8fv/73/Od73yHI444gksvvRSAfffdd4e5HnroIa644grOOeccrrzySqqrq3nnnXeYNWsW3/jGN1rtz6M537fRunXrOOmkkxg1ahTnnnsuf/7zn/nhD3/I4MGDOfnkk1ucoVOnTpx99tn87ne/44MPPmDQoEHbPe973/sef/7znxk/fjwHHHAAa9as4ZVXXmHevHl8+ctf5sc//jEVFRV8/PHH3HnnnbFrb+unP/0pHTp04H/+53+oqan5wk3pttatW8cpp5zCueeey9e//nX+9Kc/cdlll9GhQwcuuuii3fqOzcm2rWnTpnHyySezzz77cOONN7J582buuecejj76aObOnfuFaRLnnnsu/fr1Y+LEicydO5ff/va3dO/endtvv323ckqS1Bxt7X4qGo1SXl6+w3uQXfF+yvspKSlFJSWl//u//4sC0dLS0ibHlyxZEk1PT4/eeuutTY6/++670YyMjNjxN998MwpEn3rqqZ1+Tm5ubvSCCy5oVqYzzzwzOmjQoGZ/hzfeeCMKRB9++OFmv+cnP/lJdNv/a2ru941Go9H/+q//igLRxx57LHaspqYmWlxcHB09evQuP7tPnz7RU089dYev33nnnVEg+pe//CV2DIj+5Cc/iT3Pz8+Pjhs3bqefc+qpp0b79OnzheMzZsyIAtF99tknumnTpu2+NmPGjNixxu/7i1/8InaspqYmesghh0S7d+8e3bJlSzQajUYffvjh7f67tL1r7ihbaWnpF/5ZNn7OmjVrYsfefvvtaFpaWvRb3/pW7FjjP9OLLrqoyTXPPvvsaNeuXb/wWZIkxUtbuJ9q9Pvf/z4KRH/3u9/t8lzvp7yfklKF0/ekFPP000/T0NDAueeey+rVq2OP4uJi+vfvz4wZMwDIz88H4Pnnn4/bkN6CggI+/vhj3njjjbhcrzma+30bderUqUkPgw4dOnDEEUewePHiPc7S+CvXhg0bdnhOQUEBs2bNYuXKlS3+nAsuuICcnJxmnZuRkcF3v/vd2PMOHTrw3e9+l1WrVjFnzpwWZ9iVTz75hLfeeotvf/vbFBYWxo4fdNBBfPWrX+Xvf//7F97zve99r8nzr3zlK6xZs4bKyspWyylJ0vak2v3Uhx9+yLhx4xg2bBgXXHDBbn+m91M75/2UFB6LUlKKWbhwIdFolP79+9OtW7cmj3nz5rFq1Sog6J1wzTXX8Nvf/pa99tqLkSNHct9998X6H7TED3/4Qzp16sQRRxxB//79GTduHK+++mq8vtp2Nff7NurZsyeRSKTJsS5durBu3bo9zlJVVQVA586dd3jOHXfcwXvvvUevXr044ogjuPHGG3f7Bq5fv37NPrekpITc3Nwmx/bbbz+A3VqNZnctXboUgP333/8Lrw0cOJDVq1ezcePGJsd79+7d5HmXLl0A4vLPRpKk3ZFK91NlZWWceuqp5Ofn8+c//7lFq7Z5P7Vz3k9J4bGnlJRiGhoaiEQi/OMf/9juTcm2c9Z/8Ytf8O1vf5u//OUv/POf/+SKK65g4sSJvP766/Ts2XO3P3vgwIHMnz+f5557jqlTpzJ58mR+/etfc8MNN3DTTTft0ffakd35vsAOb9SicVgSuXGp4C996Us7POfcc8/lK1/5Cs888wz//Oc/+b//+z9uv/12nn766Wb3YGjur3rN9fmbykb19fVx/Zxdac1/NpIk7Y5UuZ+qqKjg5JNPZv369fz73/+mpKRk978s3k/Fg/dTUuuwKCUlqR39xbfvvvsSjUbp169f7BecnRk8eDCDBw/muuuu47XXXuPoo4/mgQce4JZbbtnp5+xIbm4u5513Hueddx5btmxh1KhR3HrrrUyYMKFVlrjd3e/bWqqqqnjmmWfo1asXAwcO3Om5PXr04Pvf/z7f//73WbVqFV/+8pe59dZbYzdRu/tnvjMrV65k48aNTX7dW7BgAUCsMWbjL2jr169v8t7GX+e21dxsffr0AWD+/PlfeO3DDz9kr732+sIvjpIkJVoq309VV1dz+umns2DBAqZNm8YBBxywW5+xLe+nds77KSk8Tt+TklTjX0Cf/4tv1KhRpKenc9NNN33hF5FoNMqaNWsAqKyspK6ursnrgwcPJi0tjZqamiaf8/nP2JHGazfq0KEDBxxwANFolNra2mZdY3c19/u2ps2bN/PNb36TtWvX8uMf/3inv5R9fjh/9+7dKSkp+cKf+Z4M+99WXV0dDz74YOz5li1bePDBB+nWrRuHHXYY8NkKQC+//HKTrL/5zW++cL3mZuvRoweHHHIIjz76aJN/f9577z3++c9/csopp7T0K0mSFDepej9VX1/Peeedx8yZM3nqqacYNmxYs669I95P7Zz3U1J4HCklJanGvwB//OMfM2bMGDIzMzn99NPZd999ueWWW5gwYQJLlizhrLPOonPnzpSWlvLMM89w6aWX8j//8z+8+OKLjB8/nq997Wvst99+1NXV8fvf/5709HRGjx7d5HOmTZvGL3/5S0pKSujXrx9Dhw7dbqYTTzyR4uJijj76aIqKipg3bx733nsvp556apO+APfeey/r16+PNaf861//yscffwzA5ZdfHmsa2hzN/b7xsmLFCh5//HEg+DXvgw8+4KmnnqKsrIz//u//btIE8/M2bNhAz549Oeecczj44IPp1KkT06ZN44033uAXv/hF7LzDDjuMP/7xj1xzzTUcfvjhdOrUidNPP71FeUtKSrj99ttZsmQJ++23H3/84x956623+M1vfkNmZiYAgwYN4sgjj2TChAmsXbuWwsJCnnzyyS/cZO9utv/7v//j5JNPZtiwYVx88cWxJYzz8/O58cYbW/R9JEmKp1S9n/rv//5vpkyZwumnn87atWtj9yaNtm1C3hzeT+2c91NSiBK51J+k3fPTn/40uvfee0fT0tK+sATt5MmTo8OHD4/m5uZGc3NzowMGDIiOGzcuOn/+/Gg0Go0uXrw4etFFF0X33XffaHZ2drSwsDB63HHHRadNm9bkMz788MPoMcccE83JyYkCO13O+MEHH4wec8wx0a5du0azsrKi++67b/Taa6+NVlRUNDmvT58+UWC7j88vo/t5n1/CuLnfNxoNlvTd3hLLF1xwwXaX5f28bXNHIpFoXl5edNCgQdFLLrkkOmvWrO2+h22WMK6pqYlee+210YMPPjjauXPnaG5ubvTggw+O/vrXv27ynqqqqug3vvGNaEFBQRSIZWtcUnh7y07vaAnjQYMGRWfPnh0dNmxYNDs7O9qnT5/ovffe+4X3f/TRR9ERI0ZEs7KyokVFRdH//d//jb7wwgtfuOaOsm1vCeNoNBqdNm1a9Oijj47m5ORE8/Lyoqeffnr0gw8+aHJO4z/TTz/9tMnxHS2tLElSPKXi/dR//dd/7fBeqjn/Cef9lPdTUqqIRKN2RJMkSZIkSVJi2VNKkiRJkiRJCWdRSpIkSZIkSQlnUUqSJEmSJEkJZ1FKkiRJkiRJCWdRSpIkSZIkSQkXalHq5Zdf5vTTT6ekpIRIJMKzzz77hXPmzZvHGWecQX5+Prm5uRx++OEsW7Ys9np1dTXjxo2ja9eudOrUidGjR1NeXp7AbyFJkiRJkqTdlRHmh2/cuJGDDz6Yiy66iFGjRn3h9Y8++ojhw4dz8cUXc9NNN5GXl8f7779PdnZ27Jyrr76av/3tbzz11FPk5+czfvx4Ro0axauvvtrsHA0NDaxcuZLOnTsTiUTi8t0kSVJqikajbNiwgZKSEtLSHFTeXN5PSZKkRs29n4pEo9FoAnPtUCQS4ZlnnuGss86KHRszZgyZmZn8/ve/3+57Kioq6NatG5MmTeKcc84B4MMPP2TgwIHMnDmTI488slmf/fHHH9OrV689/g6SJKntWL58OT179gw7RsrwfkqSJH3eru6nQh0ptTMNDQ387W9/4wc/+AEjR47kzTffpF+/fkyYMCFWuJozZw61tbWMGDEi9r4BAwbQu3fvnRalampqqKmpiT1vrMstX76cvLy81vtSkiQp6VVWVtKrVy86d+4cdpSU0vjn5f2UJElq7v1U0halVq1aRVVVFbfddhu33HILt99+O1OnTmXUqFHMmDGD//qv/6KsrIwOHTpQUFDQ5L1FRUWUlZXt8NoTJ07kpptu+sLxvLw8b6IkSRKAU9B2U+Ofl/dTkiSp0a7up5K2UUJDQwMAZ555JldffTWHHHIIP/rRjzjttNN44IEH9ujaEyZMoKKiIvZYvnx5PCJLkiRJkiSpmZJ2pNRee+1FRkYGBxxwQJPjAwcO5JVXXgGguLiYLVu2sH79+iajpcrLyykuLt7htbOyssjKymqV3JIkSZIkSdq1pB0p1aFDBw4//HDmz5/f5PiCBQvo06cPAIcddhiZmZlMnz499vr8+fNZtmwZw4YNS2heSZIkSZIkNV+oI6WqqqpYtGhR7HlpaSlvvfUWhYWF9O7dm2uvvZbzzjuPY445huOOO46pU6fy17/+lZdeegmA/Px8Lr74Yq655hoKCwvJy8vj8ssvZ9iwYc1eeU+SJEmSJEmJF2pRavbs2Rx33HGx59dccw0AF1xwAY888ghnn302DzzwABMnTuSKK65g//33Z/LkyQwfPjz2njvvvJO0tDRGjx5NTU0NI0eO5Ne//nXCv4skSZIkSZKaLxKNRqNhhwhbZWUl+fn5VFRUuFqMJEntnPcFLeOfmyRJatTc+4Kk7SklSZIkSZKktsuilCRJkiRJkhLOopQkSZIkSZISzqKUJEmSJEmSEs6ilCRJkiRJkhLOopQkSZIkSZISzqKUJEmSJEmSEs6ilCRJkiRJkhLOopQkSZIkSZISzqKUJEmSJEmSEs6ilCRJkiRJkhLOopQkSZIkSZISzqKUJEmSJEmSEs6ilCRJkiRJkhLOopQkSZIkSZISLiPsAO3BiBFnUF6+dpfnFRUVMm3alAQkkiRJUjycccoI1q4p3+k5hV2LmPL3aQlKJElS6rAolQDl5WsZPfqVXZ43efLwBKSRJElSvKxdU84rD43e6TnDL5mcoDSSJKUWp+9JkiRJkiQp4SxKSZIkSZIkKeEsSkmSJEmSJCnhLEpJkiRJkiQp4SxKSZIkSZIkKeEsSkmSJEmSJCnhLEpJkiRJkiQp4SxKSZIkSZIkKeEsSkmSJEmSJCnhLEpJkiRJkiQp4SxKSZIkSZIkKeEsSkmSJEmSJCnhLEpJkiRJkiQp4SxKSZIkSZIkKeEsSkmSJEmSJCnhLEpJkiRJkiQp4SxKSZIkSZIkKeEsSkmSJEmSJCnhLEpJkiRJkiQp4SxKSZIkSZIkKeEsSkmSJKWwl19+mdNPP52SkhIikQjPPvts7LXa2lp++MMfMnjwYHJzcykpKeFb3/oWK1eubHKNtWvXMnbsWPLy8igoKODiiy+mqqoqwd9EkiS1NxlhB5AkSVLLbdy4kYMPPpiLLrqIUaNGNXlt06ZNzJ07l+uvv56DDz6YdevWceWVV3LGGWcwe/bs2Hljx47lk08+4YUXXqC2tpYLL7yQSy+9lEmTJiX667RJixeXMnzo4F2eV9i1iCl/n5aARJIkJQeLUpIkSSns5JNP5uSTT97ua/n5+bzwwgtNjt17770cccQRLFu2jN69ezNv3jymTp3KG2+8wZAhQwC45557OOWUU/j5z39OSUlJq3+HNq+hjlceGr3L04ZfMjkBYSRJSh5O35MkSWpHKioqiEQiFBQUADBz5kwKCgpiBSmAESNGkJaWxqxZs0JKKUmS2gNHSkmSJLUT1dXV/PCHP+TrX/86eXl5AJSVldG9e/cm52VkZFBYWEhZWdkOr1VTU0NNTU3seWVlZeuEliRJbZYjpSRJktqB2tpazj33XKLRKPfff/8eX2/ixInk5+fHHr169YpDSkmS1J5YlJIkSWrjGgtSS5cu5YUXXoiNkgIoLi5m1apVTc6vq6tj7dq1FBcX7/CaEyZMoKKiIvZYvnx5q+WXJEltk9P3JEmS2rDGgtTChQuZMWMGXbt2bfL6sGHDWL9+PXPmzOGwww4D4MUXX6ShoYGhQ4fu8LpZWVlkZWW1anZJktS2WZSSJElKYVVVVSxatCj2vLS0lLfeeovCwkJ69OjBOeecw9y5c3nuueeor6+P9YkqLCykQ4cODBw4kJNOOolLLrmEBx54gNraWsaPH8+YMWNceU+SJLUqi1KSJEkpbPbs2Rx33HGx59dccw0AF1xwATfeeCNTpkwB4JBDDmnyvhkzZnDssccC8MQTTzB+/HhOOOEE0tLSGD16NHfffXdC8kuSpPbLopQkSVIKO/bYY4lGozt8fWevNSosLGTSpEnxjCVJkrRLNjqXJEmSJElSwlmUkiRJkiRJUsJZlJIkSZIkSVLCWZSSJEmSJElSwoValHr55Zc5/fTTKSkpIRKJ8Oyzz+7w3O9973tEIhHuuuuuJsfXrl3L2LFjycvLo6CggIsvvpiqqqrWDS5JkiRJkqQ9EmpRauPGjRx88MHcd999Oz3vmWee4fXXX6ekpOQLr40dO5b333+fF154geeee46XX36ZSy+9tLUiS5IkSZIkKQ4ywvzwk08+mZNPPnmn56xYsYLLL7+c559/nlNPPbXJa/PmzWPq1Km88cYbDBkyBIB77rmHU045hZ///OfbLWJJkiRJkiQpfEndU6qhoYFvfvObXHvttQwaNOgLr8+cOZOCgoJYQQpgxIgRpKWlMWvWrB1et6amhsrKyiYPSZIkSZIkJU5SF6Vuv/12MjIyuOKKK7b7ellZGd27d29yLCMjg8LCQsrKynZ43YkTJ5Kfnx979OrVK665JUmSJEmStHNJW5SaM2cOv/rVr3jkkUeIRCJxvfaECROoqKiIPZYvXx7X60uSJEmSJGnnkrYo9e9//5tVq1bRu3dvMjIyyMjIYOnSpfz3f/83ffv2BaC4uJhVq1Y1eV9dXR1r166luLh4h9fOysoiLy+vyUOSJEmSJEmJE2qj85355je/yYgRI5ocGzlyJN/85je58MILARg2bBjr169nzpw5HHbYYQC8+OKLNDQ0MHTo0IRnliRJkiRJUvOEWpSqqqpi0aJFseelpaW89dZbFBYW0rt3b7p27drk/MzMTIqLi9l///0BGDhwICeddBKXXHIJDzzwALW1tYwfP54xY8a48p4kSZIkSVISC3X63uzZszn00EM59NBDAbjmmms49NBDueGGG5p9jSeeeIIBAwZwwgkncMoppzB8+HB+85vftFZkSZIkSZIkxUGoI6WOPfZYotFos89fsmTJF44VFhYyadKkOKaSJEmSJElSa0vaRueSJEmSJElquyxKSZIkSZIkKeEsSkmSJEmSJCnhLEpJkiRJkiQp4SxKSZIkSZIkKeEsSkmSJEmSJCnhLEpJkiRJkiQp4SxKSZIkSZIkKeEsSkmSJEmSJCnhLEpJkiRJkiQp4SxKSZIkSZIkKeEsSkmSJEmSJCnhMsIOoM+Uli5m8ODhOz2nqKiQadOmJCiRJEmSJElS67AolUTq6mD06Fd2es7kyTsvWkmSJEmSJKUCp+9JkiRJkiQp4SxKSZIkSZIkKeEsSkmSJEmSJCnhLEpJkiRJkiQp4SxKSZIkSZIkKeEsSkmSJEmSJCnhLEpJkiRJkiQp4SxKSZIkSZIkKeEsSkmSJEmSJCnhLEpJkiRJkiQp4SxKSZIkSZIkKeEsSkmSJEmSJCnhLEpJkiRJkiQp4SxKSZIkSZIkKeEsSkmSJEmSJCnhLEpJkiRJkiQp4SxKSZIkSZIkKeEywg6g3VNaupjBg4fv8ryiokKmTZuSgESSJEmSJEm7z6JUiqmrg9GjX9nleZMn77pwJUmSJEmSFBan70mSJEmSJCnhLEpJkiRJkiQp4SxKSZIkSZIkKeEsSkmSJEmSJCnhLEpJkiRJkiQp4SxKSZIkSZIkKeEsSkmSJEmSJCnhLEpJkiRJkiQp4SxKSZIkSZIkKeEsSkmSJEmSJCnhMsIOIEmSJAkWLy5l+NDBOz2nsGsRU/4+LUGJJElqXRalJEmSpGTQUMcrD43e6SnDL5mcoDCSJLU+p+9JkiRJkiQp4SxKSZIkSZIkKeGcvidJkiSFIdoAGxYAEcjtF3YaSZISzqKUJEmSlGiby2DFFKj+JHgeSef/XRKFuk2Q0THcbJIkJYjT9yRJkqREWv8ufPSboCCVlgWZBRCt56SDGmDpH6BhS9gJJUlKCItSkiRJKezll1/m9NNPp6SkhEgkwrPPPtvk9Wg0yg033ECPHj3IyclhxIgRLFy4sMk5a9euZezYseTl5VFQUMDFF19MVVVVAr9FO1K3CT75BxCFvAHQfzzsdwXs8x3WbQQ2fwzLnoKG+rCTSpLU6kItSu3sJqq2tpYf/vCHDB48mNzcXEpKSvjWt77FypUrm1zDmyhJktSebdy4kYMPPpj77rtvu6/fcccd3H333TzwwAPMmjWL3NxcRo4cSXV1deycsWPH8v777/PCCy/w3HPP8fLLL3PppZcm6iu0L+XToX4zZBdBr69BZieIRKDj3nzrgUyIZELVouC87Vi8uJThQwfv8nHGKSMS/MUkSdp9ofaUaryJuuiiixg1alST1zZt2sTcuXO5/vrrOfjgg1m3bh1XXnklZ5xxBrNnz46dN3bsWD755BNeeOEFamtrufDCC7n00kuZNGlSor+OJElSwp188smcfPLJ230tGo1y1113cd1113HmmWcC8Nhjj1FUVMSzzz7LmDFjmDdvHlOnTuWNN95gyJAhANxzzz2ccsop/PznP6ekpCRh36XN27wS1s0N9nucDJGmvw/PWZIGvc6CZX+EtbOg8DDI6tr0Gg11vPLQ6F1+1PBLJscptCRJrSfUotTObqLy8/N54YUXmhy79957OeKII1i2bBm9e/f2JkqSJGknSktLKSsrY8SIz0bN5OfnM3ToUGbOnMmYMWOYOXMmBQUFsXspgBEjRpCWlsasWbM4++yzt3vtmpoaampqYs8rKytb74u0FSv/EWzzB0Nun+2fkzcAOn1p62ipadD7vMTlkyQpwVKqp1RFRQWRSISCggKAXd5ESZIktWdlZWUAFBUVNTleVFQUe62srIzu3bs3eT0jI4PCwsLYOdszceJE8vPzY49evXrFOX0bU10e9IuKpEHxV3d+bvGJQAQqP4SNSxKRTpKkUKRMUaq6upof/vCHfP3rXycvLw9o+U1UTU0NlZWVTR6SJElqvgkTJlBRURF7LF++POxIyW39u8G2U3/I7Lzzc7O7BVP3AD75J0SjrZtNkqSQpERRqra2lnPPPZdoNMr999+/x9fzlz1JktQeFBcXA1BeXt7keHl5eey14uJiVq1a1eT1uro61q5dGztne7KyssjLy2vy0PZFIlGo2FqUKjioeW/qfmzQ9Lz6E9i0rNWySZIUpqQvSjUWpJYuXcoLL7zQ5IanpTdR/rInSZLag379+lFcXMz06Z+t5FZZWcmsWbMYNmwYAMOGDWP9+vXMmTMnds6LL75IQ0MDQ4cOTXjmtuiIfaJQWwlpWdB5v+a9KSMXCgYH+2v+03rhJEkKUaiNznelsSC1cOFCZsyYQdeuTVcf2fYm6rDDgiHOzbmJysrKIisrq1WzS5IkJUJVVRWLFi2KPS8tLeWtt96isLCQ3r17c9VVV3HLLbfQv39/+vXrx/XXX09JSQlnnXUWAAMHDuSkk07ikksu4YEHHqC2tpbx48czZswYF42Jk1FD6oOdvIGQthu3312PCFbrq5wXFLUyHY0mSWpbQi1K7ewmqkePHpxzzjnMnTuX5557jvr6+lifqMLCQjp06OBNlCRJavdmz57NcccdF3t+zTXXAHDBBRfwyCOP8IMf/ICNGzdy6aWXsn79eoYPH87UqVPJzs6OveeJJ55g/PjxnHDCCaSlpTF69GjuvvvuhH+XNqmhntMObQj2G0c+NVd2EXTsA5uWwtrZUHR8/PNJkhSiUItSO7uJuvHGG5kyZQoAhxxySJP3zZgxg2OPPRbwJkqSJLVvxx57LNGdNMKORCLcfPPN3HzzzTs8p7CwkEmTJrVGPG1cTJdcIKMT5Pbd/fd3PWJrUWoudDsm3ukkSQpVqEWpXd1E7ey1Rt5ESZIkKWlVlQbbzvtBpAXtXPP2h4zOULcBNnwY32ySJIUs6RudS5IkSSlr45Jg25JRUgCRdOhycLC//r14JJIkKWlYlJIkSZJaQ301VAc9Ucnt0/Lr5G/tRVW1kIKOu55JIElSqrAoJUmSJLWGTcuAKB+tiuzZynnZ3YOm59EGTjm4IW7xJEkKm0UpSZIkqTVsnbr3+qLInl8r/0AAzhpSv+fXkiQpSViUkiRJklrDxqUAvLYwDrfcW4tSR30pCrWVe349SZKSgEUpSZIkKd7qq2HzJwC8vigOt9wdCqBjL9LSgIr39/x6kiQlAYtSkiRJUrxtWg5EoUMhn6yPw/Q9iI2WouKD+FxPkqSQWZSSJEmS4m1rP6k9WnXv8/IGBNvNH0NtVfyuK0lSSCxKSZIkSfG26eNg27F3/K6ZmcdbS7eOutqwIH7XlSQpJBalJEmSpHiKRqG6LNjPKYnrpf/57tbbd4tSkqQ2wKKUJEmSFE9b1kHDFoikQ9Zecb30P9/bevte9RE01Mb12pIkJZpFKUmSJCmeqoNV98gugkh8b7c/WBGBzHyI1kHV4rheW5KkRLMoJUmSJMXT5q1T97KLW+HiEei8f7C7YX4rXF+SpMSxKCVJkiTFU3VrFqWAvMai1IKgf5UkSSnKopQkSZIUT7Em5z1a5/od+0BaB6jb+NlUQUmSUpBFKUmSJCleaqugrgqIBD2lWkNaOuT2C/Y3fNQ6nyFJUgJYlJIkSZLipXHkUlZXSMtsvc/ptG+wrbIoJUlKXRalJEmSpHhp1Sbn22gsSm1aDvU1rftZkiS1EotSkiRJUry0dpPzRlmFkNkFaICNS1r3syRJaiUWpSRJkqR4ae0m59vq7BQ+SVJqsyglSZIkxUP9FtiyNthv7ZFSYF8pSVLKsyglSZIkxcOW1cE2IxcyOrb+5+X2AyJBIWzLutb/PEmS4syilCRJkhQPNVuLUh32SsznpWdBx17BvqOlJEkpyKKUJEmSFA81a4JtVtfEfWanfsG2akniPlOSpDixKCVJkiTFQ+NIqawEjZSCrVP4CFbgi0YT97mSJMWBRSlJkiQpHsIoSuXsDZEMqN8INZ8m7nMlSYoDi1KSJEnSnoo2wJbG6XsJLEqlZXzWV2rjksR9riRJcWBRSpIkSdpTtRUQrYdIOmTmJ/azc/sGW4tSkqQUY1FKkiRJ2lOxlfe6QiTBt9id7CslSUpNFqUkSZKkPRVGP6lGOSWQlgn1m6FmVeI/X5KkFrIoJUmSJO2pmsZ+Ul0T/9mRdOjYO9ivKk3850uS1EIWpSRJkqQ9FeZIKbCvlCQpJVmUkiRJkvbUliQpSm1aZl8pSVLKsCglSZIk7Yn6aqjbGOx3CGH6HkBOD4g09pX6NJwMkiTtJotSkiRJ0p5onLqX0RnSs8LJEEmHjj2D/U3LwskgSdJusiglSZIk7Ymw+0k1amx2vtGilCQpNViUkiRJkvbElnXBtkOXcHPkbi1KbVoabg5JkprJopQkSZK0J5KlKJXTE4hAbSVFnbeEm0WSpGbICDuAJEmSlNJq1wfbsItS6R2ChuebV1KcsZThQwfv9PTCrkVM+fu0BIWTJOmLLEpJkiRJeyJZRkpB0Fdq80qG7lPLfd8bvdNTh18yOUGhJEnaPqfvSZIkSS2UldEAdVXBk2QoSuX2AWDovtGQg0iStGsWpSRJkqQW6pG3tXdTWhak54QbBqBjLwD27xGFuk0hh5EkaecsSkmSJEktVJK/tSiVDKOkADJyoUPXYH/zx+FmkSRpFyxKSZIkSS1Uklcb7CRLUQpio6XYZFFKkpTcLEpJkiRJLdQjNlKqINQcTXTsGWwtSkmSkpxFKUmSJKmFShp7SmUm00iprUWpzSsg2hBuFkmSdsKilCRJktRCSddTCiCrG1XVQMMWqPk07DSSJO2QRSlJkiSpJaJReiRjT6lIGm8ujQT7TuGTJCUxi1KSJElSS9R8SscOW6fHZeaHm+Vz5i7ZeptvUUqSlMQsSkmSJEktUbU42GbmQVpGuFk+Z07p1pFSmy1KSZKSl0UpSZIkqSWqSoNtMjU532ru0q23+TWroX5zuGEkSdoBi1KSJElSSzSOlEqmflJbra2KQIfC4MmmFeGGkSRpB0ItSr388sucfvrplJSUEIlEePbZZ5u8Ho1GueGGG+jRowc5OTmMGDGChQsXNjln7dq1jB07lry8PAoKCrj44oupqqpK4LeQJElSuxQrShWEGmOHcnoGW/tKSZKSVKiT3zdu3MjBBx/MRRddxKhRo77w+h133MHdd9/No48+Sr9+/bj++usZOXIkH3zwAdnZ2QCMHTuWTz75hBdeeIHa2louvPBCLr30UiZNmpToryNJkqQ25IxTRrB2TfkOX//VqFIO60VSjpQCoGNPqHjHvlKSpKQValHq5JNP5uSTT97ua9FolLvuuovrrruOM888E4DHHnuMoqIinn32WcaMGcO8efOYOnUqb7zxBkOGDAHgnnvu4ZRTTuHnP/85JSUlCfsukiRJalvWrinnlYdG7/iE+XdD7cakW3kvpuM2I6WiUYhEws0jSdLnJG1PqdLSUsrKyhgxYkTsWH5+PkOHDmXmzJkAzJw5k4KCglhBCmDEiBGkpaUxa9ashGeWJElSOxGNQl1FsJ9ZEGqUHcruDpEMaKgJGp5LkpRkkmvt2m2UlZUBUFRU1OR4UVFR7LWysjK6d+/e5PWMjAwKCwtj52xPTU0NNTU1seeVlZXxii1JkqT2oK4Kog3UN0B6Zuew02xfJB1y9oZNS4MpfNndwk4kSVITSTtSqjVNnDiR/Pz82KNXr15hR5IkSVIqqQ1+1CyvACJJfEvdce9ga7NzSVISStq/QYuLiwEoL2/aXLK8vDz2WnFxMatWrWryel1dHWvXro2dsz0TJkygoqIi9li+fHmc00uSJKlNqw2m7q1Yl+R9mjpu/fHVopQkKQklbVGqX79+FBcXM3369NixyspKZs2axbBhwwAYNmwY69evZ86cObFzXnzxRRoaGhg6dOgOr52VlUVeXl6ThyRJktRsqVKUytna7LxmFdTX7PxcSZISLNSeUlVVVSxatCj2vLS0lLfeeovCwkJ69+7NVVddxS233EL//v3p168f119/PSUlJZx11lkADBw4kJNOOolLLrmEBx54gNraWsaPH8+YMWNceU+SJEmtp7EotTbJi1KZnYJG7LXrYfMK6LRP2IkkSYoJtSg1e/ZsjjvuuNjza665BoALLriARx55hB/84Ads3LiRSy+9lPXr1zN8+HCmTp1KdnZ27D1PPPEE48eP54QTTiAtLY3Ro0dz9913J/y7SJIkqR1JlZFSAB17QsX6YAqfRSlJUhIJtSh17LHHEo1Gd/h6JBLh5ptv5uabb97hOYWFhUyaNKk14kmSJEnbt7XR+cp1Iedojo49oeI9+0pJkpJO0vaUkiRJkpLWlhQaKdXYV2rzx7CTH4QlSUo0i1KSJEltWH19Pddffz39+vUjJyeHfffdl5/+9KdNRqtHo1FuuOEGevToQU5ODiNGjGDhwoUhpk5yDbVQvxFIkaJUdhFE0qB+c9BbSpKkJGFRSpIkqQ27/fbbuf/++7n33nuZN28et99+O3fccQf33HNP7Jw77riDu+++mwceeIBZs2aRm5vLyJEjqa6uDjF5Ets6dY+0TNZvCjdKs6RlQHZxsL95RbhZJEnahkUpSZKkNuy1117jzDPP5NRTT6Vv376cc845nHjiifznP/8BglFSd911F9dddx1nnnkmBx10EI899hgrV67k2WefDTd8smosSmXmAykwUgogZ+vK1JtWhptDkqRtWJSSJElqw4466iimT5/OggULAHj77bd55ZVXOPnkkwEoLS2lrKyMESNGxN6Tn5/P0KFDmTlz5g6vW1NTQ2VlZZNHu7F15b2gKJUiGotSmy1KSZKSR6ir70mSJKl1/ehHP6KyspIBAwaQnp5OfX09t956K2PHjgWgrKwMgKKioibvKyoqir22PRMnTuSmm25qveDJLFaUygs3x+7I2TvYVq+EaEPQY0qSpJD5t5EkSVIb9qc//YknnniCSZMmMXfuXB599FF+/vOf8+ijj+7RdSdMmEBFRUXssXz58jglTgGpOFIqay9IywyatNesDjuNJEmAI6UkSZLatGuvvZYf/ehHjBkzBoDBgwezdOlSJk6cyAUXXEBxcdAAu7y8nB49esTeV15eziGHHLLD62ZlZZGVldWq2ZNWk55SKSKSBtk9YNOyYApfdvewE0mS5EgpSZKktmzTpk2kpTW95UtPT6ehoQGAfv36UVxczPTp02OvV1ZWMmvWLIYNG5bQrCkjFUdKwTZ9pVyBT5KUHBwpJUmS1Iadfvrp3HrrrfTu3ZtBgwbx5ptv8stf/pKLLroIgEgkwlVXXcUtt9xC//796devH9dffz0lJSWcddZZ4YZPRtEobEnVotTWvlI2O5ckJQmLUpIkSW3YPffcw/XXX8/3v/99Vq1aRUlJCd/97ne54YYbYuf84Ac/YOPGjVx66aWsX7+e4cOHM3XqVLKzs0NMnqTqN0O0NthPpUbn8NlIqepyaKgPN4skSViUkiRJatM6d+7MXXfdxV133bXDcyKRCDfffDM333xz4oKlqsZ+UukdIS3FbqU7dIH0nKCwVlMedhpJkuwpJUmSJDVbXWOT8xQbJQUQiXw2WmqTfaUkSeGzKCVJkiQ1V+2GYJuKRSnYptm5faUkSeGzKCVJkiQ1V+P0vYzO4eZoKZudS5KSSIpNhBcEi74sXgwrVsCqVdCxIxx5JBQWhp1MkiSpjatrHCmVqkWprSOlaj4lO2OvcLNIkto9i1IpJhrN4Nln4Z13mh6fPRsOOghGjoScnFCiSZIktX2pPn0vs3MwyqtuA/t13xx2GklSO+f0vRSyZQvU1T3MO+8EfSoHD4YRI6B//2D01Ntvw6RJUFsbdlJJkqQ2KtWn70FsCt/AIotSkqRwOVIqRUSjMHkyNDScQEYGnHtuUIwCOPpoWL48KEh9/DE89RR06JAebmBJkqS2KJVX32uUUwIbPrQoJUkKnSOlUsSCBcEDtvCtb31WkGrUqxd8/euQkQELF8Inn1wVQkpJkqQ2rKEW6quD/VTtKQXQMegrNcCilCQpZBalUkBtLUydGuynpz9Ir17bP693b/ja14L9tWvP5t//Tkw+SZKkdqGxn1QkA9Kyw82yJ7Y2O+9ZsAVq1oYcRpLUnlmUSgGvvQbr10PnzpCe/qudnrvffvDlLwf7l11mfylJkqS42XbqXiQSbpY9kZ4DHbYu27x2drhZJEntmkWpJFdVBa+8EuyfeCJEIpt2+Z4RIyA9fR3vvw933tnKASVJktqLVF95b1tbR0ux5o1wc0iS2jWLUknuzTehrg5KSmDQoOa9JycHiovvA+DGG+GTT1ovnyRJUrvRFlbea9RYlFprUUqSFB6LUkksGoW5c4P9IUN2b5R4QcFUjjwSNm+GX/yidfJJkiS1K3WNI6XaQlFq72C7xul7kqTwWJRKYosXB72ksrLgwAN3772RCFx/fbD/wAOwZk3c40mSJLUvbWn6XnYx9Q3A5hWw2WH1kqRwWJRKYnPmBNuDDoLMzN1//8knw6GHwsaN8Kud90eXJEnSrrSl6XvpHVi6NivYd7SUJCkkFqWS1IYN8OGHwf5hh7XsGpEI/PjHwf7dd0NFRXyySZIktUvbrr7XBsxblRPsuAKfJCkkGWEH0Pa9807QU6pnTygqavl1zj4bBg6EefPgwQfhBz/47LURI86gvHztTt9fVFTItGlTWh5AkiSpLYhGobYq2G8LI6WA+eU5nHrAelfgkySFxqJUkmocJXXQQXt2nbQ0uPZauOiioLfU//xPcAygvHwto0e/stP3T548fM8CSJIktQV1G4GGYD+zU6hR4mVe+TYjpaLR3VtVR5KkOHD6XhKqqoKPPw72999/z6933nlQUAClpfDPf+759SRJktqdxql7GZ0gkh5uljj5aHU2RDKg5lPYtDzsOJKkdsiiVBJauDDY9ugBeXFoWdCxI1xwQbB///17fj1JkqR2p3HlvTYydQ9gS30aFAwOnjiFT5IUAqfvJaH584NtPEZJNfre94IV+J57DpYvh1694ndtSZKkNq+2bTU5B1i8uJS/vNyBMwfD7+/8Hg++duN2zyvsWsSUv09LbDhJUrtgUSrJ1NbC4sXB/n77xe+6AwbAscfCSy/BQw/BzTfH79qSJEltXt3WkVKZbWekFA11nDnyOFj5HN88No9vXjh6u6cNv2RygoNJktoLp+8lmdLSoDCVlwfFxfG99ve+F2x/9zuor4/vtSVJktq0Njh9D4CckmC7eWXQ7FySpASyKJVkGqfu7bdf/BdAOess6NIFVq6EGTPie21JkqQ2ra4q2LalkVIA2d2Dxu0N1bBlXdhpJEntjEWpJBKNwqJFwX48+0k1ysoKVuID+P3v4399SZKkNqtx+l5Gp3BzxFskHbK3Ds/fvDLcLJKkdqdFRal99tmHNWvWfOH4+vXr2WefffY4VPvVh8pKSEuDPn1a5xO++c1gO3kyNDRkt86HSJKkXfJ+KsW01el7sM0UvhXh5pAktTstKkotWbKE+u00JaqpqWHFCv8ya6mGhiMB2HtvyMxsnc8YNgz23Rc2boTKyq+0zodIkqRd8n4qhUTroX5TsN/Wpu/BNkWpT8LNIUlqd3Zr9b0pU6bE9p9//nny8/Njz+vr65k+fTp9+/aNW7j2prEo1VqjpCDoU3X++XDTTbB+/Umt90GSJGm7vJ9KQbVb+0mRBukdQ43SKhqLUtUrIdoAETt8SJISY7eKUmeddRYAkUiECy64oMlrmZmZ9O3bl1/84hdxC9feNDQMA1q3KAWfFaWqqoawYQN0boM/+EmSlKy8n0pBjU3OMzrFfyWaZJC1F6RlQkMt1KyB7G5hJ5IktRO7VZRqaGgAoF+/frzxxhvstdderRKqPaqoAOhNJAK9erXuZ33pS3DkkfD66+nMmwdHHLHjc0tLFzN48PBdXrOoqJBp06bs8jxJkto776dSUGOT87Y4dQ+CkVHZPWDTsqDZuUUpSVKC7FZRqlFpaWm8c7R7S5cG2x49glXyWtt558Hrr8P77++8KFVXB6NHv7LL602evOvClSRJ+oz3Uymkto2uvLetnJKtRakV0OXgsNNIktqJFhWlAKZPn8706dNZtWpV7Be/Rv/v//2/PQ7W3ixZEmxbe+peo3POgauvhmXLcAqfJEkh8X4qRTRO32urI6XAZueSpFC0qIvhTTfdxIknnsj06dNZvXo169ata/LQ7lu2LNgmqq9pz57QseM7AHzwQWI+U5Ikfcb7qRRS105GSgFUlwWrDUqSlAAtGin1wAMP8Mgjj/DNb34z3nnapQ0bYM0agAZ6907caid5eTPYtOkgPvgAhg5N2MdKkiS8n0opjavvZbThkVIdCiEtCxpqoPpTyCkOO5EkqR1oUQVky5YtHHXUUfHO0m59/HGwjUTmkZ2duM/Nz38JCEZpVVYm7nMlSZL3UymlrTc6h2BVwdgUvpXhZpEktRstKkp95zvfYdKkSfHO0m6tWBFsI5E3E/q5mZmfxlb6cwqfJEmJ5f1UCmkP0/fAopQkKeFaNH2vurqa3/zmN0ybNo2DDjqIzMzMJq//8pe/jEu49mLl1r/309LeAs5P6GcfcAAsXw4ffghHHpnQj5YkqV3zfipFRBugbmOw35ZHSoFFKUlSwrWoKPXOO+9wyCGHAPDee+81eS0SiexxqPYkGv2sKBWJvJ3wzx8wAJ5/PpjCt2kTdOyY8AiSJLVL3k+liMaV94hAem6oUVpdY1Gqphwa6iCtxQt1S5LULC36m2bGjBnxztFurVkDNTWQkQGRyPyEf35BARQVQXk5LFgAW++NJUlSK/N+KkXUbjN1r60XCzPzIb0j1G+C6nLouHfYiSRJbVzilnrTdjWOkiouhkikLpQMAwYE2/mJr4lJkiQlt8aRUm196h7Y7FySlHAtGil13HHH7XRY+YsvvtjiQNuqr6/nxhtv5PHHH6esrIySkhK+/e1vc91118U+PxqN8pOf/ISHHnqI9evXc/TRR3P//ffTv3//uGRobY1NzktK4NNPw8mw//7wr3/BRx9BbS18rqWFJElqBYm6n9IeijU5bwdFKYCcHlC1yKKUJCkhWlSUOuRzc7xqa2t56623eO+997jgggvikQuA22+/nfvvv59HH32UQYMGMXv2bC688ELy8/O54oorALjjjju4++67efTRR+nXrx/XX389I0eO5IMPPiA7OztuWVpL40ipvfeGtxPfUgoIRmnl50NFBSxeHBSpJElS60rU/ZT2UG07WXmvUc7WKXsWpSRJCdCiotSdd9653eM33ngjVVVV232tJV577TXOPPNMTj31VAD69u3LH/7wB/7zn/8AwSipu+66i+uuu44zzzwTgMcee4yioiKeffZZxowZE7csraG+HsrKgv2SkvByRCKw337wxhvBFD6LUpIktb5E3U9pD7Wn6XuwTbPzT6FhC6R1CDePJKlNi2tPqfPPP5//9//+X9yud9RRRzF9+nQWLFgAwNtvv80rr7zCySefDEBpaSllZWWMGDEi9p78/HyGDh3KzJkz45ajtXz6KdTVQVYWdO0abpZt+0o1NISbRZKk9ize91PaQ3XtbKRUZuetUxWjsLks7DSSpDYuruu8zpw5M65T5n70ox9RWVnJgAEDSE9Pp76+nltvvZWxY8cCULZ1mFFRUVGT9xUVFcVe256amhpqampizysrK+OWeXds208q7MVc+vSB7GzYtAk+/hh69w43jyRJ7VW876e0h2rb2UgpCEZLbZgfTOHL9aZQktR6WlSUGjVqVJPn0WiUTz75hNmzZ3P99dfHJRjAn/70J5544gkmTZrEoEGDeOutt7jqqqsoKSnZo14LEydO5KabbopbzpZq7CcV5tS9Runp0L8/vPtuMFrKopQkSa0rUfdT2kPtrdE5BM3OG4tSkiS1ohYVpfLz85s8T0tLY//99+fmm2/mxBNPjEswgGuvvZYf/ehHsd5QgwcPZunSpUycOJELLriA4uJiAMrLy+nRo0fsfeXl5V9oHrqtCRMmcM0118SeV1ZW0qtXr7jlbq7y8mC79WuEbv/9g6LUhx/CiBHhj96SJKktS9T9lFouLRKFuo3Bk/YyfQ+2aXa+ItwckqQ2r0VFqYcffjjeObZr06ZNpKU1bXuVnp5Ow9amR/369aO4uJjp06fHilCVlZXMmjWLyy67bIfXzcrKIisrq9VyN0dDA6xaFewnS1HqS18KRkytXQurV0O3bmEnkiSp7UrU/ZRaLj+nHogGTzJyQ82SUI1FqS1roW5TuFkkSW3aHvWUmjNnDvPmzQNg0KBBHHrooXEJ1ej000/n1ltvpXfv3gwaNIg333yTX/7yl1x00UUARCIRrrrqKm655Rb69+9Pv379uP766ykpKeGss86Ka5Z4W7cOamshIwMKC8NOE8jKgn79YNGiYAqfRSlJklpfa99PqeW6dqwNdtJzIRLX9YGSW0YOdCgMilKOlpIktaIWFaVWrVrFmDFjeOmllygoKABg/fr1HHfccTz55JN0i1M145577uH666/n+9//PqtWraKkpITvfve73HDDDbFzfvCDH7Bx40YuvfRS1q9fz/Dhw5k6dWrSNwhtnLrXvTukJdE9zv77B0WpDz+E4cPDTiNJUtuVqPsptVzX3LpgJ7MdTd1rlNMzKEptsiglSWo9LSqHXH755WzYsIH333+ftWvXsnbtWt577z0qKyu54oor4hauc+fO3HXXXSxdupTNmzfz0Ucfccstt9ChQ4fYOZFIhJtvvpmysjKqq6uZNm0a++23X9wytJbGxQE/t3Bg6PbfP9iuWAEbNoSbRZKktixR91NqucKOW4tS7amfVKOO9pWSJLW+Fo2Umjp1KtOmTWPgwIGxYwcccAD33XefjTmbqXGkVLIVpTp3hr33DopSCxaEnUaSpLbL+6nkFxsp1Z5W3mvUsWew3fwxsG+oUSRJbVeLRko1NDSQmZn5heOZmZmxJuTauWQtSgE0DjRbuDDcHJIktWXeTyW/rrGRUu2oyXmjrCKIpEN9Nb0KtoSdRpLURrWoKHX88cdz5ZVXsnLlytixFStWcPXVV3PCCSfELVxbVV0NFRXBfjIXpRYvhmg0uXtzSZKUqryfSn5dc7c2Om+P0/fS0iG7BwAHFLsCnySpdbSoKHXvvfdSWVlJ37592Xfffdl3333p168flZWV3HPPPfHO2OY0jpLKy4OcnHCzbE9RUTCNr7YWGhqGhR1HkqQ2yfup5FcYa3TeDqfvQWwK3wHFm0MOIklqq1rUU6pXr17MnTuXadOm8eGHHwIwcOBARowYEddwbVVjUaq4ONwcOxKJBKOl5syBhoavhh1HkqQ2yfup5PdZT6l2OFIKgmbnayxKSZJaz26NlHrxxRc54IADqKysJBKJ8NWvfpXLL7+cyy+/nMMPP5xBgwbx73//u7WythnJuvLethqn8DU0jCAaDTeLJEltifdTqaNre159DyAnGCnVf6/NUGdhSpIUf7tVlLrrrru45JJLyMvL+8Jr+fn5fPe73+WXv/xl3MK1VatWBdtkLkr16wcZGQA9Y3klSdKe834qRdRW0bHD1obz7bUolZkP6blkpAPr3gw7jSSpDdqtotTbb7/NSSedtMPXTzzxRObMmbPHodqyaDQ1ilKZmUFhCmDBgnCzSJLUlng/lSKqtw5tj2RCWodws4QlEgmm8AGsmRVuFklSm7RbRany8vLtLl3cKCMjg08//XSPQ7Vl69cHDcTT06GwMOw0O9c4hW/hwnBzSJLUlng/lSI2by1KZXYKijPt1dYpfKy2KCVJir/dKkrtvffevPfeezt8/Z133qFHjx57HKota7zH3GsvSGvR2oeJ079/sF2+HDa5ErAkSXHh/VSKqP4k2LbXqXuNHCklSWpFu1UWOeWUU7j++uuprq7+wmubN2/mJz/5CaeddlrcwrVFjUWpbt3CzdEc+fkQibwPOFpKkqR48X4qRTSOlMroHG6OsOXsTUMU2LgENpeHnUaS1MZk7M7J1113HU8//TT77bcf48ePZ//99wfgww8/5L777qO+vp4f//jHrRK0rdh2pFQqSEt7gfr6QSxcCAcfHHYaSZJSn/dTKaKxp1RGbrg5wpaexdK1WfTrWhOMlup5RtiJJEltyG4VpYqKinjttde47LLLmDBhAtFoFIBIJMLIkSO57777KErm7t1JIJVGSgGkpU2jvv4qFi2C+vqgF5YkSWo576dSxGan7zX6oCzHopQkqVXsdlejPn368Pe//53Vq1cza9YsXn/9dVavXs3f//53+jUu16btikZTrygVibxFx45QUwPLloWdRpKktiHR91MrVqzg/PPPp2vXruTk5DB48GBmz54dez0ajXLDDTfQo0cPcnJyGDFiBAvb+9z9WKPzdj59D3i/rGOwY7NzSVKc7dZIqW116dKFww8/PJ5Z2ryKimDlvbS05F95r1Ek0kD//vD227BgAVh3lCQpfhJxP7Vu3TqOPvpojjvuOP7xj3/QrVs3Fi5cSJcuXWLn3HHHHdx99908+uij9OvXj+uvv56RI0fywQcfkJ2d3ar5kpaNzmM+KMsJdtb8BxrqIc2h85Kk+GhxUUq7r3GUVNeuqTUNbr/9gqLUwoUwcmTYaSRJ0u64/fbb6dWrFw8//HDs2LajsaLRKHfddRfXXXcdZ555JgCPPfYYRUVFPPvss4wZMybhmZNCrNG5RanSNdmQ3hHqNkDlh1AwKOxIkqQ2Yren76nlUm3qXqN99w1Gd61ZEzwkSVLqmDJlCkOGDOFrX/sa3bt359BDD+Whhx6KvV5aWkpZWRkjRoyIHcvPz2fo0KHMnDkzjMjha6iHmlXBvkUp6qMR6DokeLLGKXySpPixKJVAqVqUysqCPn2C/QULws0iSZJ2z+LFi7n//vvp378/zz//PJdddhlXXHEFjz76KABlZcGIoM83Vy8qKoq9tj01NTVUVlY2ebQZNZ9CtIH6Blx9r1HXI4Pt6tfCzSFJalMsSiXQ6tXBNtWKUhBM4YNgCp8kSUodDQ0NfPnLX+ZnP/sZhx56KJdeeimXXHIJDzzwwB5dd+LEieTn58cevXr1ilPiJFAdFOPWb86AiLfLAHQ7Oth+alFKkhQ//i2bIKm48t62GotSS5dCdXW4WSRJUvP16NGDAw44oMmxgQMHsmzrsrrFxcUAlJeXNzmnvLw89tr2TJgwgYqKithj+fLlcU4eos1Bk/O1m2y/GrPXUcG2ch7UrA03iySpzbAolSAbNkBNDUQiQaPzVFNYGORuaICPPgo7jSRJaq6jjz6a+fPnNzm2YMEC+mydm9+vXz+Ki4uZPn167PXKykpmzZrFsGHDdnjdrKws8vLymjzajK1NztdstCgVk70X5O0f7DuFT5IUJxalEiRVV97bllP4JElKPVdffTWvv/46P/vZz1i0aBGTJk3iN7/5DePGjQMgEolw1VVXccsttzBlyhTeffddvvWtb1FSUsJZZ50VbviwbJ2+t8aRUk3t1TiF79Vwc0iS2gyLUgnSWJTaa69wc+yJbYtSDQ3hZpEkSc1z+OGH88wzz/CHP/yBAw88kJ/+9KfcddddjB07NnbOD37wAy6//HIuvfRSDj/8cKqqqpg6dSrZ2dkhJg/R1ul7jpT6nG5bp/BZlJIkxYl/0ybImjXBNhWn7jXq1StYiW/TJlixInguSZKS32mnncZpp522w9cjkQg333wzN998cwJTJbGtI6XWbswMOUiSaRwptfYNqN8C6R3CzSNJSnmOlEqQxqJUKo+USk+H/v2D/QULws0iSZLUamx0vn15+0NWV6ivhnVvhp1GktQGWJRKkNWrg20qj5SCz4pS9pWSJElt1tZG56udvtdUJPLZKnxO4ZMkxYFFqQSor89hw4ZgP5VHSgF86UvB/Uh5OVRUhJ1GkiSpFTRO33Ok1Bd12zqFb7VFKUnSnrMolQBbtgTNlzp2hJyckMPsoY4dP+sl5RQ+SZLU5tRWQV0VYKPz7YqtwPcKRKPhZpEkpTyLUglQU9MbSP2pe42cwidJktqsraOkyMhlc216uFmSUdfDIS0LqlfBBn+hlCTtGYtSCdBYlEr1qXuN9tsv2C5eDFu2hJtFkiQprrY2OSe7ONwcySo9C/Y6Mthf9XK4WSRJKc+iVAJs2dK2Rkp16wYFBVBfD6WlYaeRJEmKo8aRUjk9ws2RzLofE2wtSkmS9pBFqQSoqQmaMLWVkVKRyGdT+OwrJUmS2hRHSu2aRSlJUpxYlGpl0ehnjc7bykgp+GwK38KF9riUJEltyGZHSu3SXsMgkgGblsHGpWGnkSSlMItSrWzFCmho6EhaGnTpEnaa+OnbFzIzYcMGKCsLO40kSVKcxKbvOVJqhzJyoXBIsO9oKUnSHrAo1crmzw+2XbpAehtawCUjA/bdN9h3Cp8kSWoznL7XPE7hkyTFgUWpVtZYlGpLU/caNfaVWrgw3BySJElxY6Pz5rEoJUmKA4tSraw9FKVWrIC6ujY0N1GSJLVfjpRqnm5HAxHYsOCzPzNJknaTRalW9uGHwbatrLy3rc6doaQk2N+wYVi4YSRJkvZUQz3UfBrsO1Jq5zoUQJdDgv3yf4WZRJKUwixKtbJzzoGCgudixZu2pnG01IYNR4UbRJIkaU/VfArRBoikQVa3sNMkv6Ljg235i+HmkCSlLItSreySS6Bnz9sobqMjwPfbL9hWVR1BTU24WSRJkvZI4zS0rO6Q1oZWqGktFqUkSXvIopT2SI8e0KkTNDR05GX7XEqSpFQWa3LeRn9NjLfuX4FIOlR9BBuXhp1GkpSCLEppj0Qin03he+65cLNIkiTtEZuc757MztD1iGC/fEa4WSRJKcmilPZY4xS+v/4VotFws0iSJLVYbKSUTc6brXEKX5lT+CRJu8+ilPbYPvtAJFJDaelnqw1KkiSlnM1bi1KOlGq+bftK+eukJGk3ZYQdQKmvQwfIzX2Tqqojee45GDgw7ESSJEkt0Dh9z55SzbfXMEjLgs0r+PpJ+7N8fdYOTy3sWsSUv09LYDhJUrKzKKW46Nz5tVhR6tprw04jSZLUAtWNRSmn7zVbRg50OwrKZ/CHCftB4ZAdnjr8kskJDCZJSgVO31NcdO78GgCvvgpr14YcRpIkqSViI6VKws2Rahqn8FUtDjeHJCnlOFJKcbFixWtkZX1ETc2+HHzwjRQUfHFodlFRIdOmTQkhnSRJ0i5Eo7B5ZbDvSKndU3wivHN9UJSKNkDE370lSc1jUUpxUVcHQ4bsy6uvQpcuNzJq1I1fOGfy5OEJzyVJktQstRVQXx3sZ1uU2i2Fh1GxOZ38nBrYvAI69go7kSQpRfgzhuJmv/2C7cKF0NAQbhZJkqTd0jh1LzM/6JOk5ktLZ/by3GB/w6Jws0iSUopFKcVNz56QkwPV1bB8edhpJEmSdsNmm5zvif8s7Rzs2FdKkrQbLEopbtLSoH//YH/BgnCzSJIk7RaLUnvkP8s6BTubV0D95nDDSJJSRtIXpVasWMH5559P165dycnJYfDgwcyePTv2ejQa5YYbbqBHjx7k5OQwYsQIFi5cGGLi9q2xKOU/AkmSlFKqtxal7CfVIp9WZUJWNyAKVaVhx5EkpYikLkqtW7eOo48+mszMTP7xj3/wwQcf8Itf/IIuXbrEzrnjjju4++67eeCBB5g1axa5ubmMHDmS6urqEJO3X1/6EkQi8OmnsG5d2GkkSZKayZFSe67TPsG2yr5SkqTmSerV926//XZ69erFww8/HDvWr1+/2H40GuWuu+7iuuuu48wzzwTgscceo6ioiGeffZYxY8YkPHN7l50NffrAkiXBFL6hQ8NOJEmS1AwWpfZcpy/BmllQ9RFEo8EvlZIk7URSj5SaMmUKQ4YM4Wtf+xrdu3fn0EMP5aGHHoq9XlpaSllZGSNGjIgdy8/PZ+jQocycOXOH162pqaGysrLJQ/FjXylJkpRyLErtudw+EMmA2kqo+TTsNJKkFJDURanFixdz//33079/f55//nkuu+wyrrjiCh599FEAysrKACgqKmryvqKiothr2zNx4kTy8/Njj169erXel2iH9tsv2C5ZEqzEJ0mSlPSqLUrtsbRMyN06q2GDv05KknYtqYtSDQ0NfPnLX+ZnP/sZhx56KJdeeimXXHIJDzzwwB5dd8KECVRUVMQey5cvj1NiAey1V/BoaLDhuSRJShGbbXQeF523Dpm3KCVJaoakLkr16NGDAw44oMmxgQMHsmzZMgCKi4sBKC8vb3JOeXl57LXtycrKIi8vr8lD8TVwYLCdNy/cHJIkSbtUtymYcgaOlNpTnbcOmd/0cfDnKknSTiR1Ueroo49m/vz5TY4tWLCAPn36AEHT8+LiYqZPnx57vbKyklmzZjFs2LCEZlVTjUWpRYugtjbcLJIkSTvVOEoqPQcy/bFyj3TIh6zuQNRV+CRJu5TURamrr76a119/nZ/97GcsWrSISZMm8Zvf/IZx48YBEIlEuOqqq7jllluYMmUK7777Lt/61rcoKSnhrLPOCjd8O1dcDPn5QUHqo4/CTiNJkrQT2zY5d8W4PRebwmcfB0nSziV1Uerwww/nmWee4Q9/+AMHHnggP/3pT7nrrrsYO3Zs7Jwf/OAHXH755Vx66aUcfvjhVFVVMXXqVLKzs0NMrkjEKXySJClF2OQ8vhqn8G1YBNGGcLNIkpJaRtgBduW0007jtNNO2+HrkUiEm2++mZtvvjmBqdQcAwfC66/DggVQXx92GkmSpB2wyXl8dewZTIWs3wyblkNun7ATSZKSVFKPlFJq69kTcnOhuhqWLAk7jSRJ0g5sdqRUXEXSPpvCV/lhuFkkSUnNopRaTVoaDBgQ7DuFT5IkJS2LUvGXt/UmsPJDiEbDzSJJSloWpdSqGvtKffghRKP+6yZJkpKQRan46/QliGRA7XqoLg87jSQpSVklUKvq2xeys2HjRti06cCw40iSJH1RtT2l4i4tMyhMAVQ6ZF6StH0WpdSq0tNhv60LsFRWHhNuGEmSpO3ZvDLYOlIqvradwidJ0nZYlFKra5zCV1n5X7YUkCRJyaV+C9SsCfYtSsVX5/2ACNSsgpq1YaeRJCUhi1JqdfvuC5mZUFvbgzffDDuNJEnSNqrLgm1aJmR1DTdLW5ORA7l9g32n8EmStsOilFpdZiZ8aWtLgcmTw80iSZLURGOT8+xiiHhrHHd5jUPmLUpJkr4oI+wAah8GDoR58+BPf4JbboFIJOxEkiRJuPJeMyxeXMrwoYN3es7SJaXbfyFvIHzyD9i8guLOua2QTpKUyixKKSH23x8ikWoWLcpm7lw47LCwE0mSJPHZynsWpXasoY5XHhq901NKjrtt+y9kdoLcPrBxCcfvV9EK4SRJqcwxykqIDh2gc+dXAXjyyZDDSJIkNYpN37Mo1WryBwFwQn+LUpKkpixKKWEKCqYD8Mc/QkNDyGEkSZLA6XuJkHcAEGH/omrYsCjsNJKkJOL0vTaqtHQxgwcP38U5SxOUJtCp0+t07gzLl8PMmXD00Qn9eEmSpC+yKNX6MjpCp32g6iNY+kc48MdhJ5IkJQmLUm1UXR2MHv3KTs+57baSBKUJpKVt4eyz4bHHgil8FqUkSVLoLEolRv6goCi1zKKUJOkzTt9TQo0ZE2z/9KegcCZJkhQqG50nRt4AausjsP5dWP9e2GkkSUnCkVJKqBEjoLAQVq2Cf/0LTjhhe+ecQXn52p1ep6iokGnTprRSSkmS1C401EN1ebBvo/PWlZ7DzCWdOGbfDbDkcThkB6v1SZLaFYtSSqjMTDjnHPjNb4IpfNsrSpWXr93l1MPJk3feL0uSJGmXaj6FaAMQgezuYadp857/sGBrUeoJOPhnEHHShiS1d/5NoIRrnMI3eTJs2RJuFkmS1I419pPK7g5p/lbb2l4r7QyZBbDpYyh/Kew4kqQkYFFKCXfMMVBcDOvWwQsvhJ1GkiS1WzY5T6ja+jToc27wZMnvww0jSUoKFqWUcOnpcO7W+5Ennww3iyRJascam5zbTypx+p4fbJf9Geo2hZtFkhQ6i1IKReMUvmefhc2bQ40iSZLaK0dKJV63oyG3L9RVwcfPhp1GkhQyi1IKxZFHQp8+UFUFzz0XdhpJktQuWZRKvEga9PtWsP/R/ws3iyQpdBalFIpIBL7+9WD/97YUkCRJYbAoFY59vh1sy6dD1ZIwk0iSQmZRSqH55jeD7T/+AatWhZtFkiS1QxalwtGpHxSdEOwvfjjcLJKkUFmUUmgOOACGDIG6OhueS5KkENjoPDz7XhxsFz8MDfXhZpEkhcailEJ1wQXB9tFHw80hSZLamWjUkVJh6nU2dOgCm5ZD2bSw00iSQmJRSqEaMwYyMmDuXHjvvbDTSJLU9t12221EIhGuuuqq2LHq6mrGjRtH165d6dSpE6NHj6a8vDy8kImwZS00bAn2c4rDzdIepWdD37HB/ke/DTeLJCk0FqUUqr32glNPDfYfeyzcLJIktXVvvPEGDz74IAcddFCT41dffTV//etfeeqpp/jXv/7FypUrGTVqVEgpE6RxlFSHLkGBRK1u8eJShg8dHHt8+yf/AKBuyZ8547gBseNnnDIi5KSSpETJCDuAdMEF8Je/BKvw/exnYaeRJKltqqqqYuzYsTz00EPccsstseMVFRX87ne/Y9KkSRx//PEAPPzwwwwcOJDXX3+dI488MqzIrcupe4nXUMcrD41ueuyj35Gx+WOm/LgEuh8DwPBLJocQTpIUBkdKKXSnngrdukFZGfz972GnkSSpbRo3bhynnnoqI0Y0HYUyZ84camtrmxwfMGAAvXv3ZubMmTu8Xk1NDZWVlU0eKWWzTc6TQuGQYLtuLkQbws0iSUo4i1IKXYcOnzU8/93vws0iSVJb9OSTTzJ37lwmTpz4hdfKysro0KEDBQUFTY4XFRVRVla2w2tOnDiR/Pz82KNXr17xjt26Nq8Ith33DjdHe5c/CNJzoLYCNiwMO40kKcEsSikpXLx1VeC//Q1qa7uGG0aSpDZk+fLlXHnllTzxxBNkZ8evd9KECROoqKiIPZYvXx63ayfEpq1FqRyLUqFKy4CCQ4L9tbNDjSJJSjyLUkoKAwbAUUdBfT2sX39y2HEkSWoz5syZw6pVq/jyl79MRkYGGRkZ/Otf/+Luu+8mIyODoqIitmzZwvr165u8r7y8nOLiHa9Kl5WVRV5eXpNHSomNlOoZbg5B4WHBtmoR1KwNN4skKaEsSilpfOc7wXbdulOJRsPNIklSW3HCCSfw7rvv8tZbb8UeQ4YMYezYsbH9zMxMpk+fHnvP/PnzWbZsGcOGDQsxeSvb5PS9pJHVFTp9KdhfMyvcLJKkhHL1PSWNr30NrrwSNmzoxZIl0K9f2IkkSUp9nTt35sADD2xyLDc3l65du8aOX3zxxVxzzTUUFhaSl5fH5ZdfzrBhw9ruynvw2Ugpp+8lh65HBiOl1r9Jpw5fCjuNJClBHCmlpNGpE5x/frA/25YCkiQlzJ133slpp53G6NGjOeaYYyguLubpp58OO1braaiD6q1N3B0plRw67QNZ3aChltMPXBd2GklSgjhSSknlssvg/vth3jzYsAE6dw47kSRJbc9LL73U5Hl2djb33Xcf9913XziBEq26HKINEEmHrO5hpxFAJBKMllr5V845ZE1QOEzzP1Ukqa1zpJSSyuDB0LHj20SjMHdu2GkkSVKbFFt5rwekpYebRZ8pOAjSO1LUuRaWTw47jSQpASxKKekUFj4LwJw50NAQbhZJktQG2U8qOaVlQOHhwf6Hd4abRZKUEBallHTy8l6iY8dg+t78+WGnkSRJbc6mj4Ot/aSST9chbKmLBKvwfToz7DSSpFZmUUpJJy2tli9/Odif5arAkiQp3hwplbwyOvHP+fnB/oe/DDeLJKnVWZRSUjr8cEhLg6VL4ZNPwk4jSZLalMaeUo6USkp/enOvYOfjp6FqSahZJEmty6KUklJeHhxwQLDvaClJkhRXjpRKaovXZEPxiGCFxAX3hB1HktSKLEopaR15ZLB9912oqgo3iyRJakMcKZX8BlwTbBf9BmrWhptFktRqLEopae29N/TqFazA98YbYaeRJEltQjS6zUipnuFm0Y71OAkKDoK6KkdLSVIbZlFKSa1xtNQbb8CWLeFmkSRJbUBtJdRtDPYdKZW8IhEY9ONgf/6voHZDuHkkSa3CopSS2oAB0KULbN4Mc+eGnUaSJKW8xlFSmQWQ0THUKNqFXqMhb3/Ysg4W3h92GklSK7AopaSWlgZHHRXsz5wJ9fXh5pEkSSnOflKpIy0dDpgQ7H/4C6jbFG4eSVLcWZRS0jvkEOjUCSorg6bnkiRJLebKe6ml7zcgty9Ur4KPfht2GklSnFmUUtLLyPist9Srrwb9SSVJklrEkVKpJS0TDvhRsD/v/6C+Jtw8kqS4siillDBkCGRnw+rV8MEHYaeRJEkpy5FSqWefb0NOCWz6GEofCzuNJCmOLEopJWRlwdChwf5LL0E06r+6kiSpBRwplXrSs2DgtcH+B7dBQ124eSRJcZNS/2V/2223EYlEuOqqq2LHqqurGTduHF27dqVTp06MHj2a8vLy8EKq1Rx55GejpSoqTgg7jiRJSkWblgfbjj3DzaHd86VLIKsbVC2GpX8IO40kKU5Spij1xhtv8OCDD3LQQQc1OX711Vfz17/+laeeeop//etfrFy5klGjRoWUUq0pO/uzlfhWrbqIOn8kkyRJuytWlOodbg7tnoxcGHBNsP/uzY6WkqQ2IiWKUlVVVYwdO5aHHnqILl26xI5XVFTwu9/9jl/+8pccf/zxHHbYYTz88MO89tprvP766yEmVms54gjIyYEtW3rx+ONhp5EkSSmlbjPUrA72c3uFm0W7b7/xkLUXVC2C0kfDTiNJioOUKEqNGzeOU089lREjRjQ5PmfOHGpra5scHzBgAL1792bmzJk7vF5NTQ2VlZVNHkoNWVkwfHiwf8MNsHlzuHkkSVIKaRwllZELmQWhRlELZHaCAyYE++/e7Ep8ktQGJH1R6sknn2Tu3LlMnDjxC6+VlZXRoUMHCgoKmhwvKiqirKxsh9ecOHEi+fn5sUevXv5SlkoOPxwyM8tZvhx+9auw00iSpJSx7dS9SCTcLGqZ/pdtXYlvGXz027DTSJL2UEbYAXZm+fLlXHnllbzwwgtkZ2fH7boTJkzgmmuuiT2vrKy0MJVCMjOhqOhBPv74Bn72M7j4YujWLexUkiQp6cWKUt73payMHDjwOnjj+6z+11Wcd+Gvqanb8e/shV2LmPL3aQkMKEnaHUldlJozZw6rVq3iy1/+cuxYfX09L7/8Mvfeey/PP/88W7ZsYf369U1GS5WXl1NcXLzD62ZlZZGVldWa0dXK8vNfoHv3G5g7F266Ce69N+xEkiQp6W3cWpSyn1Rq2+diPpl+JT3yapn+071hr6N2eOrwSyYnMJgkaXcl9fS9E044gXfffZe33nor9hgyZAhjx46N7WdmZjJ9+vTYe+bPn8+yZcsYNmxYiMnV2iKRKP/3f8H+Aw/Au++Gm0eSJKWATcuCrSvvpbb0Djw8q3uw/+kr9paSpBSW1COlOnfuzIEHHtjkWG5uLl27do0dv/jii7nmmmsoLCwkLy+Pyy+/nGHDhnHkkUeGEVkJdPzxMGoUPP00jB8PL71kewhJkrQTTt9rM56fV8D/nloNW9bAmteh+3+FHUmS1AJJPVKqOe68805OO+00Ro8ezTHHHENxcTFPP/102LGUIHfeCTk58PLLMGlS2GkkSVJS2+T0vbaiPhqB7scGT1bPhDqXZJakVJRyRamXXnqJu+66K/Y8Ozub++67j7Vr17Jx40aefvrpnfaTUtvSuzdcf32w/z//AxUV4eaRJElJKhqFjY3T9yxKtQn5gyC7CBpqYPUrYaeRJLVAyhWlpM+75hrYbz8oK4Mf/jDsNJIkKSnVVkBdVbBvUaptiESg6IRgf80s2LI+1DiSpN2X1D2lpObIyoIHH4Tjjgu2554b9JuSJEmKaZy6l9UVMjqGm0U7tXhxKcOHDt7pOUuXlAY7nb4EuX1h4xJYNQN6nt3q+SRJ8WNRSm3CscfC974XrMT3ne8Eq/Hl5oadSpIkJY2NNjlPGQ11vPLQ6J2eUnLcbcFOJALFX4WPHoL170DXIyGnRwJCSpLiwel7ajNuvx169YLSUvjRj8JOI0mSksqmxn5SvcPNofjLKYH8rSt2l00LN4skabdYlFKbkZcHDz0U7N97L/zjH+HmkSRJSWSTI6XatKLjIZIGGxfDho/CTiNJaiaLUmpTRo6E8eOD/QsvhFWrws0jSZKSROP0vVyLUm1Shy5QeESwX/4CRBvCzSNJahZ7SqnNueMOmDED3n8fDjjgDYqLryESie7w/KKiQqZNm5LAhJIkKeGcvtf2dfsKrHsTqsth/bvQ5eCwE0mSdsGilNqcnByYNAmOOALWrDmcQw75N8OH7/j8yZN38qIkSWobnL7X9mV0DApT5dOg/EXIPyDsRJKkXXD6ntqkgw6Cu+8O9l98MWh+LkmS2qloA2z6ONh3+l7b1vUIyMyHukpY/VrYaSRJu2BRSm3WJZdAQcHfiUZh8mSorAw7kSRJCkX1KmjYEjTCzikJO41aU1omFI8I9j99he6dtoSbR5K0Uxal1GZFIlBS8guKimDjRvjDH2CL9yWSJLU/G5cE25y9g6KF2ra8QUHvsGgd3zu6POw0kqSdsCilNi0trYbzzoOOHaGsDJ5+GhpcjEWSpPalakmw7dQv1BhKkEgEepwEwIkDKuDTV0MOJEnaERudq83r0gXGjIFHH4X58+GFF2DkyN27xogRZ1BevnaX57mSnyRJSWjj1uaSuX1DjaEEyukBXQ4NVuObcyWM/E8wfVOSlFQsSqld6NULzjor6C31+uvQtSsMGdL895eXr2X06Fd2eZ4r+UmSlIQap+/lOlKqXSk6nqqyt+m0dg4sfhT2vTDsRJKkz/HnArUbBx4Ixx0X7P/977BoUbh5JElSglRtHSnVqW+oMZRgGZ14ZFb3YP/tCVDrqjeSlGwsSqld+cpX4OCDIRqFp56CTz4JO5EkSWp1jpRqt/78diF07g/V5fDerWHHkSR9jkUptSuRCJx+OvTtG6zE9/jjUFPTO+xYkiSptUQbYOPSYN+RUu1OXUMafPmXwZMPfwnr3w83kCSpCYtSanfS04PG5yUlsGkTlJbeydKlYaeSJEmtYvMn0LAFIumQs3fYaRSGvU+Dvc+AaB3M/n4wZF6SlBQsSqldysqCsWNhr72grq6Ir34VysvDTiVJkuKusZ9Ux96Q5ho/7daQuyG9I6x6GUofCzuNJGkri1Jqtzp2hG9+EzIzP2HhQhg5EtavDzuVJEmKq8Z+Uk7da99y+8DgG4P9N/8HataEGkeSFPDnIrVreXnQt+/VVFY+ydtvw2mnwfPPQ25u2MkkSVJcNI6Ussl5u7R4cSnDhw4GID0tyv/7ehb77rWaKTf1547pwXTOwq5FTPn7tDBjSlK7ZVFK7V5W1sc8/zwceyy8+iqcfTZMmQLZ2WEnkyRJeyy28l7fMFMoLA11vPLQ6M+eb1wGpQ9zxoHrOOOMs6FjL4ZfMjm8fJLUzjl9TwIOPhj+8Y9ghNQLLwSN0Gtrw04lSZL22MatI6U6OVJKQG5v6HJosL/iOYjWh5tHkto5i1LSVkceGYyQysqCv/wFLrwQGhrCTiVJkvZI1ZJg60gpNSoaAek5ULMKVs8MO40ktWsWpaRtHH88/PnPkJEBTzwB33fVYEmSUldDHWxaFuzb6FyNMjpC8YnB/qqX6NOlOtw8ktSO2VNK+pzTToPHH4dvfAMefBA6d25+Yaq0dDGDBw/f6TlFRYVMmzYlDkklSdJObV4RTM9Ky4SckrDTKJkUHAwVH0DVQn584oqggJnmfxpJUqL5/7zSdpx3HmzcCBdfDD//OXTvfkGz3ldXB6NHv7LTcyZP3nnRSpIkxUnjynsd+0DECQLaRiQCe58GC3/NAcWbYd7PYdCPwk4lSe2OfztLO3DRRXDXXcH+qlWX8PrrocaRJEm7q3HlPZuca3sy86DHScH+uz+B9e+Hm0eS2iGLUtJOXHkl/PSnwf7zz8M774SbR5Ik7YaqxcHWJufakYKDeXVxZ2jYAq9/O5jGJ0lKGItS0i78+MfQteuTQLAq30cfhRxIkiQ1z4aFwbZz/3BzKHlFItzxYglkFsDa2TDvjrATSVK7YlFK2oVIBIqL72PwYGhogD/+EVauDDuVJEnaJYtSaoY1GzNhyN3Bk3dvhHVvhRlHktoVG50rJTVnlbvgvKVx+bxIJMqZZwbNzxcvhieeCJqgFxbG5fKSJCneolHYsCjY7/ylcLMo+fU9H5ZPho//Aq+cByfNgcxOYaeSpDbPopRSUnNWuQO47bb4Lf+cng7nnguPPgqffAKPPx40Q+/k/YokScmnZjXUVgT7nfYNN4uSXyQCQ38Ha+fAhgXwxvfhqMfCTiVJbZ7T96TdkJUF3/gGdOkC69bBH/4AtbVhp5IkSV/QOHWvYy/IyAk3i1JDVlc4ahJE0mDJ72Hxo2EnkqQ2z5FSSphET7lrLZ06wfnnw29/G/SWeuYZ+NrXgh/YJElSkohN3bOflHZD96/A4JvhneuC0VJdh0L+gLBTSVKbZVFKCRPGlLvWUlgIY8bAY4/BvHkwfTqMGBF2KkmSFBNrcm4/Ke2mA34E5TOgfDq8ei6cOMvRdpLUSpy+J7VQ795wxhnB/quvwty54eaRJEnbqHKklFooLR2Oehyyu8P6d2Hu1WEnkqQ2y6KUtAcOOgiOOSbY/9vfoKHhqHADSZKkQGyklEUptUBOMQx7HIjAogdh0W/DTiRJbZJFKWkPHXssHHggNDRAbe1vWb067ESSJLVz0ehnRalOTt9TC/X4Khx0c7A/+/uwatdtKCRJu8eilLSHIhE480zo2ROggCefhM2bw04lSdJnJk6cyOGHH07nzp3p3r07Z511FvPnz29yTnV1NePGjaNr16506tSJ0aNHU15eHlLiPVSzGmorgQh03jfsNEplg34Mvb8GDbWsf+54Ro/Yn+FDB+/wccYpNhmVpN1ho3MpDjIygsbnP//5x6xZ05M//xnGjoU0y76SpCTwr3/9i3HjxnH44YdTV1fH//7v/3LiiSfywQcfkJubC8DVV1/N3/72N5566iny8/MZP348o0aN4tVXXw05fQs0jpLq2AvSs8PNotQWicCRD8OGRRSse5PJ36+AfS6CtA7bPX34JZMTHFCSUptFKSlOcnMhM/NC4AUWL4Z//hNOOinsVJIkwdSpU5s8f+SRR+jevTtz5szhmGOOoaKigt/97ndMmjSJ448/HoCHH36YgQMH8vrrr3PkkUeGEbvlXHlP8ZSRC8c8y9o/7EMh5fDxs9Dra0HBSpK0RxzHIcVRWtr7nH12sD9rlivySZKSU0VFBQCFhYUAzJkzh9raWkaM+Gzq0YABA+jduzczZ87c7jVqamqorKxs8kgaG1x5T3GW25v/fa4PRNKgch6seinsRJLUJliUkuJs4MCg+TkEK/ItXRpqHEmSmmhoaOCqq67i6KOP5sADDwSgrKyMDh06UFBQ0OTcoqIiysrKtnudiRMnkp+fH3v06tWrtaM3nyvvqRW890lHKDktePLpy7B2TriBJKkNsCgltYJjjoFBg4IV+f70J1i/PuxEkiQFxo0bx3vvvceTTz65R9eZMGECFRUVscfy5cvjlDAOnL6n1tLlUOh2TLC/8m9Q+WG4eSQpxVmUklpB44p8PXrApk3w5JOwZUvYqSRJ7d348eN57rnnmDFjBj2DZWMBKC4uZsuWLaz/3K8o5eXlFBcXb/daWVlZ5OXlNXkkhWjDZ4WCvAHhZlHb1P3YoDhFFJZPho3Lwk4kSSnLopTUSjIz4bzzggbo5eXwzDMQjYadSpLUHkWjUcaPH88zzzzDiy++SL9+/Zq8fthhh5GZmcn06dNjx+bPn8+yZcsYNmxYouPumY3LoH5TsDpap33DTqO2KBIJpvF13h+idbD0D1C9KuxUkpSSXH1P7V5p6WIGDx6+i3Na1hgqPx/GjIFHHoEPP4QZM1p0GUmS9si4ceOYNGkSf/nLX+jcuXOsT1R+fj45OTnk5+dz8cUXc80111BYWEheXh6XX345w4YNS72V9yreD7Z5+0Oat7ratcWLSxk+dPAuz1u6pPSzJ5E06DUalvweNi2HJU/APhe1YkpJapv8m1rtXl0djB79yk7Pue22khZfv2dPOP10ePZZ+Pe/oWfPE1p8LUmSWuL+++8H4NjGlTi2evjhh/n2t78NwJ133klaWhqjR4+mpqaGkSNH8utf/zrBSeOg4oNgm3dAuDmUOhrqeOWh0bs8reS425oeSMuE3l+H0v8HNathyWMUduzWSiElqW2yKCUlwMEHw6pV8NprsGLF/zJ7NgwZEnYqSVJ7EW3G/PHs7Gzuu+8+7rvvvgQkakWVW4tS+RallAAZOdDnfCh9GLas5a6zN0L1asjeK+xkkpQS7CklJcgJJ0D//hCNZnHWWfDJJ2EnkiSpDWocKZU/KNwcaj865EO/CyCjM/vsVQMzToQt68NOJUkpIemLUhMnTuTwww+nc+fOdO/enbPOOov58+c3Oae6uppx48bRtWtXOnXqxOjRoykvLw8psbR9aWkwejRkZZWyYgWcdRZs3hx2KkmS2pBodJuilCOllEAdukC/b7FuUzqsexNmnAy1G7Z76hmnjGD40MG7fJxxyogEfwlJSrykn773r3/9i3HjxnH44YdTV1fH//7v/3LiiSfywQcfkJubC8DVV1/N3/72N5566iny8/MZP348o0aN4tVXXw05vdRUVhb07v1D1qz5E//5D1xyCfz+98EiLpIkaQ9tWg51VRDJgM5fCjuN2pusvbjqmX48euEaWPM6/Ot0OPbvkNGxyWlr15Q3q4fV8Esmt1ZSSUoaSV+Umjp1apPnjzzyCN27d2fOnDkcc8wxVFRU8Lvf/Y5JkyZx/PHHA0HTzoEDB/L666+n3ooxavOyslby1FNw4onwxBMweDD88Idhp5IkqQ2INTnfL2hCLSXYR6uz4bh/wosnwKp/wctnw39NgfSssKNJUlJK+ul7n1dRUQFAYWEhAHPmzKG2tpYRIz4b3jpgwAB69+7NzJkzQ8ko7crxx8M99wT7EybAX/8abh5JktoE+0kpGXQdEoyQSu8IZf+EV86FhtqwU0lSUkqpolRDQwNXXXUVRx99NAceeCAAZWVldOjQgYKCgibnFhUVUVZWtt3r1NTUUFlZ2eQhJdpllwWPaBS+8Q14772wE0mSlOIq3g+2efaTUsi6HR2MkErLghVT4NVvWJiSpO1IqaLUuHHjeO+993jyySf36DoTJ04kPz8/9ujVq1ecEkq751e/guOOg6oqOOMMWL067ESSJKUwm5wrmRSfAF95OphKuvzP8NpYaKgLO5UkJZWUKUqNHz+e5557jhkzZtCzZ8/Y8eLiYrZs2cL69eubnF9eXk5xcfF2rzVhwgQqKipij+XLl7dmdGmHMjPhqadgn32gtBS+9jWo9Uc0SZJ2XzQKlRallGT2PgWGTw4KU8uegtfOJz0SDTuVJCWNpC9KRaNRxo8fzzPPPMOLL75Iv379mrx+2GGHkZmZyfTp02PH5s+fz7Jlyxg2bNh2r5mVlUVeXl6ThxSWrl1hyhTo3Bleegkuvzy4r5YkSbth80qorYRIOnTeL+w00md6ng7D/7y1MPVHrh/5MUQbwk4lSUkh6YtS48aN4/HHH2fSpEl07tyZsrIyysrK2Lx5MwD5+flcfPHFXHPNNcyYMYM5c+Zw4YUXMmzYMFfeU8oYNAj+8AeIRODBB+GnPw07kSRJKWbd28G2836Q3iHcLNLn9TwDhj8FkQxG7F8BHz9jYUqSSIGi1P33309FRQXHHnssPXr0iD3++Mc/xs658847Oe200xg9ejTHHHMMxcXFPP300yGmlnbfqad+tiLfT37y2b4kSWqGdW8G28Ivh5tD2pGeZ8Lwp6irByreg4+ftTAlqd3LCDvArkSbMY8pOzub++67j/vuuy8BiaTWM24crFkTFKWuuAIKC2Hs2LBTSZKUAtbNDbZdLEopifU6ixv+0ZufnfYxVLwLRIJiVSTpxwpIUqtI+qKU1NaUli5m8ODhO3w9GoWuXa9kzZqvccEFUFAQjKKSJEk7sXZrUarw0HBzqF1bvLiU4UMH7/ScpUvW8LPLzoHlT0HFOxAB9rYwJal9siglJVhdHYwe/cpOz4lG4Ve/mkpFxUmccw48/zwcc0yCAkqSlGq2rIONS4L9LhalFKKGOl55aPROTyk57jbIHwicA8v/DOvfASKw9xkWpiS1O/6/npSEIhHo2XMip58O1dVwyikwY0bYqSRJSlJrt/aT6rQPdCgINYrUbPkHQK/RQATWvw0rpthjSlK7Y1FKSlKRSD1//COceCJs3BgUpqZODTuVJElJKNZPylFSSjH5g5oWppY/DQ31YaeSpISxKCUlsZwc+MtfiI2YOvPM4LkkSdrGWlfeUwrLHwS9zgmm7lW+D8uehIbasFNJUkJYlJKSXHY2/PnPcM45sGVLsP3Tn8JOJUlSEnHlPaW6/AOg99chkgFVi2DJE3Ts4IgpSW2fRSkpBXToAH/4A5x/ftAo/etfh9/8JuxUkiQlgbqNUDk/2Hf6nlJZ5y9B3/MhLQs2LeVXo5ZAzZqwU0lSq7IoJaWIjAx45BH4znegoQG++1245hqo90c0SVJ7tu5tIAo5JZBTFHYaac/k9oF+34L0HAYWbYYXjoYNi8JOJUmtxqKUlELS04MRUj/9afD8zjvhrLNgw4ZQY0mSFJ61Tt1TG5NTAv0upHxDRjAK8J9Hwqp/h51KklqFRSkpxUQicN118Mc/Bv2mnnsOhg+HZcvCTiZJUgjWvhFsbXKutiS7G5c+uS8UDgmm8L04AkofDzuVJMVdRtgBJLXMuedC375wxhnwzjtwxBHwxBNwwgktu96IEWdQXr52p+cUFRUybdqUln2AJEmt4dNXgu1eR4WbQ4qzNZsyYcS/YOY3YfnTwbZyPhx0U7BSnyS1ARalpBR2xBHwn//A6acHhamvfhUmTIAbb4TMzN27Vnn5WkaPfmWn50yePLzlYSVJirfNn0DV4uA/0LsNCzuNFH8ZHWH4U/D2j+GD2+D9W2D9OzDsEejQhTNOGcHaNeW7vExh1yKm/H1a6+eVpN1kUUpKcb17w8yZcNVV8NBD8LOfwYwZMGlSMJJKkqQ269NXg23+YMjMCzeL1FoiaXDIROi8H7zxPVgxBf5xGAz/E2vXlPPKQ6N3eYnhl0xOQFBJ2n2O+5TagI4dgwbof/oT5OcHRapDDgn6TkWjYaeTJKmVNBaluh0dbg4pEfa9EE58DXL7wcZS+Ocwzh/yKUQbwk4mSS1mUUpqQ772NXjrLTjySKiogDFjgtX5li8PO5kkSa2gsZ9UN6eXq50oPAxOngu9RkO0ju8dXQ6lj0D1p2Enk6QWsSgltTF9+8LLL8MNNwR9paZMgQMOgHvvhfr6sNNJkhQndRth3ZvBviOl1J50KAj6TB35CBtr0mDTcvjoASh/ERpqw04nSbvFnlJSCtvVinl9+vSjtPRKqqqGcPnl8IMfvE9Jyf+Rk7PoC+eWli5tzaiSJMXX6lkQrYeOPSG3d9hppMSKRGCfC/jWpT9j8pXAhgXw6b9h/btQcgp07h92QklqFotSUgprzop5EyfuzciRK5g+HTZvHsRHHz3CIYfAccdB3jY9YW+7raR1w0qSFE+xflJO3VP7Vb6hA/QeBRvmwyf/gNr1sHQSdB4ARcdDdrewI0rSTlmUktq4SCTK4YfD/vvDCy/Ae+8Ffafeew+GDYOjj4asrLBTSpK0m1ZvLUrt5dQ9tXORCOQNgNx94NOXYPXrsOHDoFBVcDB0PzbshJK0QxalpHYiLw9Gjw6aoP/zn7BsGfz73zB3blCYikZzwo4oSVLz1G9x5T3p89I7QPGJUHAorHoRKj+E9W9BxbtcfkwBVK+C7O5hp5SkJmx0LrUze+8N3/42nHsuFBbCxo1BkWrLlpm89hps2RJ2QkmSdmH1TKirgqxu0OXgsNNIySW7G/Q+D/a5GHL7QrSe8w5dA3/pA7OvgI3Lwk4oSTEWpaR2KBKBgQPh+9+H00+HggKA7rzwAvzqV/DKK1BdHXJISZJ25JN/BNseIyHi7ay0XR17Qt9vQZ/z+aAsB+qrYcE9MGVfeP0iqJwfdkJJsigltWfp6fDlL8P48ZCRcQ1dusCmTTB9Otx5J0ydCuvWhZ1SkqTPWTk12PY4KdwcUrKLRKDzvlz6x33g+BeC5ufROlj8MDw3EF45F9a+GXZKSe2YPaUkkZ4O6elPMn78L3n3XXjtNVi1CmbNgv/8JxhVNXQoRKNhJ5UktXubVsL6t4EI9DixRZc445QRrF1Tvsvzli4pbdH1pWSzePEShp95NQCDivfh/CGf8pV9N8Cyp2DZU8xa2om7p8LS6j5AZIfXKexaxJS/T0tQakntgUUpSTFpaXDwwXDQQbB4McycCR99BB98EDyysh7h17+G888PGqdLkpRwnzwfbAuHtHi5+7VrynnlodG7PK/kuNtadH0p6TTUffHf+eryYMGAivcY2qeKJ74LZK+GrkdC/mBIS//CZYZfMjkxeSW1GxalJH1BJAL77hs8Vq0KilPvvQc1NV9i3Dj44Q9h7Fi4+GIYMiQ4f3eNGHEG5eVrd3leUVEh06ZNacG3kCS1SZ9snbpX4tQ9aY9kF0GvUVB0HKx5nY0r/0Mu5bDiL1A+HboeERR/012hWVLrsSglaae6d4czz4QTT4THHvsVBQVX8uGH8OCDwWPgQPjWt4IiVa9ezb9ueflaRo9+ZZfnTZ48fA/SS5LalIY6+OSfwX6Pk8PNIrUVHbpAj5MZcvFbzHv0K7DmP1C3AcpfhE//DQWHwl5HBudJUpzZ6FxSs+TkwF57PcUHH8CMGfD1rwfH5s2DCROgTx8YMQIeewyqqsJOK0lqk1a/DrXrg/847npE2GmkNqVicwS6DYf9roS9zwpGUjXUwtr/BKv2LfsTh+5dZZNRSXHlSCkpSZWWLmbw4J2PEiotXZqgNJ+JRODYY4NHZSX8+c9BIepf/wpW7Zs+HS67DM44A0aPhpNPhtzchMeUJLVFy/4UbEtO3W6/G0lxkJYOXQ6GgoNgYymsfg2qPoLKedxzDvD3wdD/+9Dvm5DZOey0klKcRSkpSdXVscvpbbfdVpKgNNuXlwcXXRQ8liyBxx8PClQLF8KTTwaPnBw46aSgQHXaaZCfH2pkSVKqaqiDZX8M9vt8PdwsUnsQiUCnfYJH9SpY8x82r5pLTsX7MHscvPVD6Hs+7HtR0HuqJU1GJbV7Tt+TFBd9+8J118H8+fD663DttdCvH2zeDM88E6zY1707nHoqPPQQ1NbuFXZkSVIqKX8x+A/jrK7Q46thp5Hal+zusPdpnPXbAXDY3ZA3AOqqYNED8PwRweipeb+AzeVhJ5WUYixKSYqrSASGDoU77oCPPoK5/7+9O4+Oosz/Pf7u7uwJSYBAQtgiiwICyiJMAAEhCuoI/OQ6IzJeZBxhHBhAjut4ES9zR3Dff6Le+xOPy+ggCshPVAQEAoqALMOOEPYkkISQhazdz/2jkk4aQtIgdHfC53XOc6q76qmqb9dzwMcvVd/6GZ58Ejp1gtJS+OormDAB9uxZyNy51uN+hw+Dy+XvyEVEJKAd+qe1bPM7sAf7NxaRK1RhqQOu+SvcvhOGLIekseAIg9M7YPPDsLAlrLwNDrwPpaf9Ha6I1AN6fE9ELrmUlBFkZuZ4rAsKgg4dksjLG0R+fjJFRV3IzLSTmQmpqdZjfu3bQ4cO0K4dNFKJAg81XdOzxcc34bvvFvsoIhERHyovgsMLrM9t7/FvLCJi/StkwhCrlb4Bhz6FA+9B9npIX2o1ewi0GG4lklveDiGx/o5aRAKQklIicsllZubUWQ9r9uyu3H77dvbtg19+sR7z277dagDNmlnJqfz8ZPLzlaTy5pouWFB7YXwRkXrr+FfWK+ojWkOzfv6ORkSqC4mFjhOtdnq3Vfvt0KeQtwuOLbaaLQiaD4JWI6HlHRCV5O+oRSRAKCklIn5hs+XQvTt07249unf0qFUgff9+SE+HkyetBs/TpAkkJ0NKCtx8M9xwg3XnlYiIXCEOfWwt244Bm6pPyJXhwIE0BvTtVmufQwfTfBSNl2I6QbeZjHhsNTGUMbTjaQZ3zCOpSQlkLrfapin8cjKMTRkJ/P7hf0GTXrX+uR5xWwo52bXXqmrSNJ7FX313qX+NiPiA/rdORPzOboc2baw2dCicOQNpaXDgAGzefIjy8rasWQNr1sDMmWC3FxAZ+TNRURuJitpI69YFLF+ux9ZERBqshBQoPAJJeuueXEFc5aS+O7rWLok3zfFRMBcmJ/sEi98dW7WiJBvy90LeHjhzmA7NiunQ7KBVJD28hXX3VMsRkDDUqlHlcazMOq/DgAcWXIZfISK+oKSUiASciAi49lqr7diRzMSJx9m/vypRVVwcRX7+QPLzBwKQlpbF2LEwZAjcdJP11j+9lVhEpAHp+KDVRKR+Cm0KockQlwzlZ6DgF1asWM6QLi4oSodf3rFaUKRVh6rVSEi8HUKb+DtyEbnMlJQSkYDXuDH07m01lwsyMnAnqQ4fhvLyOD7+GD6ufLqjrZWcqkxStWrl3/hFREREpEJQBMR256ml+xgyYyOcWAVHF1mt6BgcWWA1mwOaD+Su67OgNFeF0kUaKCWlRKResdshMdFqN94I5eXw0Ud/5d57X2fFCli/Hg4dgnnzrAbQsWNVguqmm6B5c3/+AhERERE5cCCNAf16V1sTyzXNw7ixXR4D2ufRIa4EMlcydRCw91UIi4dGnSC6k/XZj7fFe1PnClTrSsQbSkqJSL0WFARRUZuZNQtmzYKCAli7FlasgJUrYdMmq4D6vn3w9tvWPl27Vt1JNWiQdSeWiIiIiPhQXTWzSk9B3m7WrVlGv45AcabVTq6C4FiIvsZKUEW08VXEbt7UuQLVuhLxhpJSItKgREXBsGFWA8jNhdWrrQTVihWwbRts326111+3/pGtSxfo3x/69bOW7durJpWIiIiIX4U0hrhk/sdrqzi+bEpVofSCX6AsF7LXW80RzhMpoXB0MSTcDEHh/o5cRC6AklIi0qDFxsKIEfDaayNwuXLo1CmWwsLrKSzsRUFBT0pL27JjB+zYAe+8Y+3TrJmVoOrXD3r1gh49oInqbIqIiIj4R1AENL7eaq4yKNgPebutRJWziNuvLYLVI8ERAS2GQcvfWgmqyNb+jlxE6qCklIhcETIzcxg9OvWc9QUFcPSoVTD96FE4erSUkydDWLQIFi2q6te2rZWcuu466NwZOnWyalVFRPjwR4iISJ28qfVy6GCaj6IRkUvOHmw9thfdCYwLCg8z/4sl3NU/Es4chqNfWA2sR/wSbrZas/7WWwADjLf1qY4cOUbr1i1r7aMaVlIfKSklIle0qCgrwdSpk/V9/vxhvPvuStatgx9/hM2b4cABq3j6oUOwcKHn/m3bQrt20LKl9Za/Vq2sz02aQEwMREdby0aNwOGwCrVXMgbKyqCo6Nx25gzk51tJs/x8yMq6i9WroaQESkurmstV1TIzX2XwYAgNtVpYmLWMioK4OM+WmGjFHh3tqystIuIb3tR6Sbxpjo+iEZHLymaHqCReXd2Cu57bBqe2wNGFkP4t5PxkPe6Xtwf2vmH1j+oATftUtBsgprP1mKAfeVufKvGmOXX2Uw0rqY+UlBIRr6WlHaBbtwFe9Dvkg2iqn6/uuLyN6dChPUycWHWsiAjo3DmKoqKOFBdfTXFxO4xph8PRmZycqmTVhXFis7kwxob3fw1PJSOjrj69WLXqwiKJjbWSU0lJcPXVVXeBPf74GHJyjtS6b3x8E777bvGFndAHUlJGkJmZU2ufQI1dRERELpLNBk16WK37/4bSXMhcCRnLIHNFVT2qgl/g0MdV+4XGQaOrrbuqIq+C8ATr7X5hCRAebxVVD4oEu/7XWeRy0J8sEfFaeTk1PgJ3tjlzEn0QTRVv4vI2Jm+OtWDBAP7971SysmD3bispdeyY9fjfsWNWy82F/fuzgDjKy88+ggNjHB5rbDYID7fubgoPt5JhjRpZLSoKUlO/o127FEJDISSkqlXefWW3w5dfPsjIkW/hdFq/o3JZUlJ199XBgxvp0KE3R49CdrYVZ24ubN16doz/JDLSqq/VtKm1bN7cWkZGWvEuWFB3gtIfzveoZnWBGruIiEggO3AgjQF9u9XZz9ePyNYdVzCNQjtzQ8dQZk27E7J/glOboegYlGRZLWtd7Sexh1rJqaBI/nVfBux5FbBVeztOxWdjAAPGxWfjC2FhazBO61HDGpbLJxXBjp1gc4AtGOwh1iOK9hCrllZQFAQ14n8OcFqJtdCm1t1dNkctwYrUH0pKiYhcpLg4GDDAajXp1m0Uo0en4nRaj9oZYzWXy1rabLB06XA2b/6akJDa3/jXrdvTjBiRUms8X321iK5d36q1z4IF09iyxUrYFBRU3emVlmYl2Hbvhl27rMRaYaHVDh70PEZ4uJWcys9/mNdeg2uvtd5gmJCgtxaKiIg0aK5yrx818ykv4xrwwAJmdZtRtaKsAPL3Vb3Z78xhKMqE4kwozrCWrtKKc5RAaQmU5pAYg/UGwDokRANnjtbaJzSIikmiCygD55ka+835PXD4E+uLzQ4hTay7vEKbQ3hLiPDtPwqLXCpKSomIXGYOh5XIqXlbAaGhvovFm0cdGzeGU6eyueeeXWRlwcmTkJUFJ07AqVPWXVeHDwOMYurUqv3s9nxCQo4TEnKUkJBjFS2T+Pgyvv76TWJifl3SypvH8qzfeOkeHw3ERwG9vQ56RFFERKQOwVFVj/zVxBgrGVVeCOUFFctCJoy/m3f+NriqD6bqs82GddeUnQeeWcm78/4F2CvuhHJYCaVqn0ePGs6CZ2+37p5ylVlJsMpleYG7LV35M7f2bQ4l2WDKqu7wYrc73M/GB8OauyDuN9BsADTuAY6Qy3f9RC4BJaVERK4gF/IIZsuWVtH26srKcCeqFi9+jQ4dpnDyJOTkgMvViOLiayguvsZjn4MHrURXRAS0aGE9Dti4sVXPKjbWKgRfWZS9skB7UFDVHWWVbefOIXTvPs3jbrPqhd4rW3HxO3z1VdX3mvodPz6LP/yh6jHI6o9FRkRYBeCjo2Hfvq4MGvSMR2zh4VaisZKvHwX05vFE0COKIiIiv5rNBo4wq1V7c9/OzAiIaF3n7rsyI6BJr1r7ZOaHQHDdb565///+m+NjJ1a8KScPSk5aSaniDPdjiAnRZXDkM6uBFXfTPhDX33r7YLN+fi/sLnI2JaVERMRrwcFWYqlFC/jqqzncffcUwEpWnTplJaeqL/PyICcnD6czmjNnYP9+q12caaSne9NvAhs21NVnCB995M2xnuGDD85dGxpaVfsrL+8F7r3XSrY1bWo91lm5rGxNm+LTO+JERETkXN7UxDpy5BitW7estY+va2Z5sNkgJMZqjTpUrXeW8Nf/8wmvz5po1cfKWmfdVXVitdUqxXTh6425bDxgY1t6BMdPhwDn3srepGk8i7/67vL/ngs04rYUcrIza+0TqLFLzZSUEhG5QIH6FkJ/Cg62CqE3b37utgULbuOnn1JJT4fjx62EVW6ulbTKzYXTp61i7MXFVcvy8qoC7raKuqHffvsdrVunYLNVra/sU72tX/86/fr9tcZtlftt3vwSDz88ndJSPFpJiVVHKz/fSqitXr2NqKjulJRUxQa4v+fmAvyGDz+s+xo5HGdo0yaixqRVTa1JE+u6XokC8bFJERFpALyoPZV40xyv+gQcRyibj0bBtY9b342x6mRlrYWTFS1/L5zeyfCOMLxjxX5BkRDRxrrzK6I1hLUAu4MBDyzw20+pTU52Zp3jE6ixS82UlBIRuUCB+hbCQBYeDu3aWe1idev2NKNH117sHWDTptkMGfLXWvscPvw506dP9+Kcf/EYa+vxwKq3GZ45A5999hA33fSy+3v1bZWfjQGnM4K0NKuovLdiY89NVmVk/IXUVOsurbNbWJiVeKvv9AZFERGRX8lmg5hOVmt/v7Wu+AScXMfHrzzAPQPCoPi4VScrb5fVAGxBEJ7I9MEFsPc/IeZaq4XF+e+3SIPWYJJSb775Js8//zwZGRlcd911vP766/Tp08ffYYmISANit1clgJpWlJZwOD6lX7+Xz7uPMVYi64sv7ub99z8hO9uqy1Vby8mx9svNtdovv1Q/4j0sX37+GCsfLSwu/n8MHWrV76qs4VX5ubLFxEBkJERFWS0y0tpXb1G8cmk+JSLSgIU1h9aj+M/UGdwzbjS4yqHouPXWwTNHrOYsgjOHufM6YOOkqn1Dm0JkEkS2hYi2EJUEYQkVbwBsai1Dmlh1rH7NRMLltIq8mzJwVixdpe7PHeKKrJgrisljc2AVkre7v4cGVXvVtQS8BpGU+vTTT5k+fTpz586lb9++vPLKKwwbNow9e/bQvKZnSURERHzEZrMSPaGhR0lO9m4fp9N6vLEySVU9kfXCCx/TqtU97ruxKtvZjxbCNaxYcXHxViaoKpeVhd4ri8GfXRz+7O/BwVbz5nNN24qLk8jOtgrKOxxWMjA42CqA3xDuBAtUgT6f8qaOCPi51ouISDXe1LC6lH9neXM+j3PagyCyjdXASuSUZEHRcT5alMrYEX3h9A4oPGjVpyrJhpxNdRzdBo7wigLx4eAIJSP9OMY4sQE2m8EG2CvKMwTZDcEOQ5ADQhzV3mR4HvPGUmeB0uWToPwjO2dKHRSW2iksrfpcUOIgv9hBuT2a3/3PSVbh97NbcKxVfP4SJ7V8XQ+rvtTfahBJqZdeeokHHniA8ePHAzB37lz++7//m//6r//i8ccf93N0IiLndyXUp/LmNx47doSWLWt/i82lvAb+uO6X6joUFR1i5Mh7zlnvdFY9WlhcDN999zCzZ7/AqVOct+XlWTW0CgqsxBZY89H8fKv5z4e88UbNWyoTVE7nQt5+GyZO9G1kDVmgz6e8qSMCAVrrRUSuTF7WsPLl+Wo9p80GYc0grBlvrf2FsS8tsdaXFUDBASs5VXioall8AkqzrURWSTYYJ2DAecZqFRIa/YrfZHOAPRjsIWAPISs7l7jGERWvZ3YBLuu8xlX1HQiyQ3SYk+gw53kOnAObH6nlvHYrOeVOVDWqSrbZwyAovNoyBI+7tTzu3Kr6ntJmB1Mevu6sZJfNY/nCR5th31zru83mud39vWJd9e819O3ZdA9PP963Wh1721lL+NtbP8Lp3dZjnn5S75NSpaWlbNq0iSeeeMK9zm63k5KSwg8//ODHyERE6nYl1Kfy5jfOmZPoVR9fxuSPc/6a6+BwWHc1RUZa3xs1+pExY7yPz+WyElMFBVarTFYVFMCECY/Rt++zOJ2c08rLrWVq6qv06TPVvd7l8lxWfk5P30ivXr0pLbXe2lhWxjmfT57MJSgo1r2fMZ5xWneCxVFa6v3vk9ppPiUiIucVHAWNu1vtfIyBsjzr8T93KwZXKRP+OJZ3/jakWjKmeiLFeuTuzse/4fMlqyqST8FVS5vnLdKj+narPfFmDB2Gz+GXJZPBVQLOkmrLYismZzHzl23nrlG3QempqlaWay2dxVaCqzTHapfIlIFARkatfR4eAmx48JKc7+lbgaNHa+3zzG+Bw/Oh24xLcs6LUe+TUllZWTidTuLj4z3Wx8fHs3v37hr3KSkpocSa0QJw+vRpAPLy8i5LjE5nOSUldR/bGFed/bzpcymP5evzBeqxFHv9P1Z9jv1SHkux1/9jeXs+p7P8ov67Vlkzq7rIyFW0b1/7sX74YTaDBo2v8/iLFk3myy+/rbXPb34znJEjq/oYYyW/KhNXTicsW/ZnbrttLpfjP92V182Y2h8haEjqw3yq3Okkr6Ckzn4uY+rs502fS3ksX58vUI9Vn2O/lMdS7PX/WPU5dm/7lTudF/H3uQ2IsJoNd7Zh2/FQ8ly1F0o/ftpBXlnlBMQAJRWthrjqiL2gBPJKQoAQoOI2LUdFq3iz8YsrTjLsf71Z8wGcxVCaa7WyymWBldxyFUF5sZXgKi+2km+uMitmj7u1XJ7rjIvvvltKSu+WVb/RVP5W3OvWbEnnxhsHVayv2GYqPlcuPdZTbRtV243h580b6Hl1tevu0cey/UA2Xa+N43JMqLyeT5l67tixYwYw69at81j/yCOPmD59+tS4z8yZM6uPppqampqampraOe3IkSO+mMoEBM2n1NTU1NTU1C5Hq2s+Ve/vlIqLi8PhcJCZ6VnAKzMzk4SEhBr3eeKJJzxeBe5yucjJyaFp06bYVKHfK3l5ebRu3ZojR44QHR3t73DECxqz+kXjVb9ovOqf2sbMGEN+fj6JifX3sdkLdTnmU/pz4V+6/v6l6+9/GgP/0vX3r0C4/t7Op+p9UiokJIRevXqxfPlyRo0aBViTouXLlzN58uQa9wkNDSU0NNRjXWxs7GWOtGGKjo7WXzL1jMasftF41S8ar/rnfGMWExPjh2j853LOp/Tnwr90/f1L19//NAb+pevvX/6+/t7Mp+p9Ugpg+vTpjBs3jt69e9OnTx9eeeUVCgsL3W+PEREREZHaaT4lIiIivtYgklK///3vOXnyJE899RQZGRlcf/31fP311+cU6xQRERGRmmk+JSIiIr7WIJJSAJMnTz7v7eVy6YWGhjJz5sxzbtuXwKUxq180XvWLxqv+0ZjV7FLOp3SN/UvX3790/f1PY+Bfuv7+VZ+uv82YK+h9xyIiIiIiIiIiEhDs/g5ARERERERERESuPEpKiYiIiIiIiIiIzykpJSIiIiIiIiIiPqeklNRq9uzZ3HDDDTRq1IjmzZszatQo9uzZ49GnuLiYSZMm0bRpU6Kiohg9ejSZmZl+iliqmzNnDjabjWnTprnXabwCy7Fjx/jDH/5A06ZNCQ8Pp1u3bmzcuNG93RjDU089RYsWLQgPDyclJYV9+/b5MeIrm9PpZMaMGVx11VWEh4fTvn17/v73v1O9PKPGzH9Wr17NHXfcQWJiIjabjYULF3ps92ZscnJyGDt2LNHR0cTGxnL//fdTUFDgw1/RcLz55pskJSURFhZG3759+emnn/wdUoOkuVrg0LzLPzSX8h/Ni3yroc5zlJSSWq1atYpJkybx448/smzZMsrKyrjlllsoLCx093nooYf48ssvmT9/PqtWreL48ePceeedfoxaADZs2MDbb79N9+7dPdZrvALHqVOn6N+/P8HBwSxdupSdO3fy4osv0rhxY3ef5557jtdee425c+eyfv16IiMjGTZsGMXFxX6M/Mr17LPP8tZbb/HGG2+wa9cunn32WZ577jlef/11dx+Nmf8UFhZy3XXX8eabb9a43ZuxGTt2LDt27GDZsmUsWbKE1atXM2HCBF/9hAbj008/Zfr06cycOZOff/6Z6667jmHDhnHixAl/h9bgaK4WGDTv8g/NpfxL8yLfarDzHCNyAU6cOGEAs2rVKmOMMbm5uSY4ONjMnz/f3WfXrl0GMD/88IO/wrzi5efnm44dO5ply5aZQYMGmalTpxpjNF6B5rHHHjMDBgw473aXy2USEhLM888/716Xm5trQkNDzT//+U9fhChnuf32280f//hHj3V33nmnGTt2rDFGYxZIAPPFF1+4v3szNjt37jSA2bBhg7vP0qVLjc1mM8eOHfNZ7A1Bnz59zKRJk9zfnU6nSUxMNLNnz/ZjVFcGzdV8T/Mu/9Fcyr80L/KfhjTP0Z1SckFOnz4NQJMmTQDYtGkTZWVlpKSkuPt06tSJNm3a8MMPP/glRoFJkyZx++23e4wLaLwCzeLFi+nduzd33XUXzZs3p0ePHrz77rvu7WlpaWRkZHiMV0xMDH379tV4+Um/fv1Yvnw5e/fuBWDr1q2kpqZy6623AhqzQObN2Pzwww/ExsbSu3dvd5+UlBTsdjvr16/3ecz1VWlpKZs2bfK41na7nZSUFP058AHN1XxP8y7/0VzKvzQvChz1eZ4T5LczS73jcrmYNm0a/fv3p2vXrgBkZGQQEhJCbGysR9/4+HgyMjL8EKV88skn/Pzzz2zYsOGcbRqvwHLgwAHeeustpk+fzt/+9jc2bNjAlClTCAkJYdy4ce4xiY+P99hP4+U/jz/+OHl5eXTq1AmHw4HT6eQf//gHY8eOBdCYBTBvxiYjI4PmzZt7bA8KCqJJkyYavwuQlZWF0+ms8Vrv3r3bT1FdGTRX8z3Nu/xLcyn/0rwocNTneY6SUuK1SZMmsX37dlJTU/0dipzHkSNHmDp1KsuWLSMsLMzf4UgdXC4XvXv35plnngGgR48ebN++nblz5zJu3Dg/Ryc1+de//sVHH33Exx9/zLXXXsuWLVuYNm0aiYmJGjMR8TvN1XxL8y7/01zKvzQvkktBj++JVyZPnsySJUtYuXIlrVq1cq9PSEigtLSU3Nxcj/6ZmZkkJCT4OErZtGkTJ06coGfPngQFBREUFMSqVat47bXXCAoKIj4+XuMVQFq0aEGXLl081nXu3JnDhw8DuMfk7Lf0aLz855FHHuHxxx/n7rvvplu3btx777089NBDzJ49G9CYBTJvxiYhIeGcQtzl5eXk5ORo/C5AXFwcDodDfw58THM139O8y/80l/IvzYsCR32e5ygpJbUyxjB58mS++OILVqxYwVVXXeWxvVevXgQHB7N8+XL3uj179nD48GGSk5N9He4Vb+jQofz73/9my5Yt7ta7d2/Gjh3r/qzxChz9+/c/57Xde/fupW3btgBcddVVJCQkeIxXXl4e69ev13j5yZkzZ7DbPf/T6XA4cLlcgMYskHkzNsnJyeTm5rJp0yZ3nxUrVuByuejbt6/PY66vQkJC6NWrl8e1drlcLF++XH8OLgPN1fxH8y7/01zKvzQvChz1ep7jtxLrUi88+OCDJiYmxnz//fcmPT3d3c6cOePu8+c//9m0adPGrFixwmzcuNEkJyeb5ORkP0Yt1VV/C4wxGq9A8tNPP5mgoCDzj3/8w+zbt8989NFHJiIiwnz44YfuPnPmzDGxsbFm0aJFZtu2bWbkyJHmqquuMkVFRX6M/Mo1btw407JlS7NkyRKTlpZmPv/8cxMXF2ceffRRdx+Nmf/k5+ebzZs3m82bNxvAvPTSS2bz5s3m0KFDxhjvxmb48OGmR48eZv369SY1NdV07NjRjBkzxl8/qd765JNPTGhoqJk3b57ZuXOnmTBhgomNjTUZGRn+Dq3B0VwtsGje5VuaS/mX5kW+1VDnOUpKSa2AGtt7773n7lNUVGT+8pe/mMaNG5uIiAjzH//xHyY9Pd1/QYuHsydHGq/A8uWXX5quXbua0NBQ06lTJ/POO+94bHe5XGbGjBkmPj7ehIaGmqFDh5o9e/b4KVrJy8szU6dONW3atDFhYWGmXbt25sknnzQlJSXuPhoz/1m5cmWN/80aN26cMca7scnOzjZjxowxUVFRJjo62owfP97k5+f74dfUf6+//rpp06aNCQkJMX369DE//vijv0NqkDRXCyyad/me5lL+o3mRbzXUeY7NGGN8d1+WiIiIiIiIiIiIakqJiIiIiIiIiIgfKCklIiIiIiIiIiI+p6SUiIiIiIiIiIj4nJJSIiIiIiIiIiLic0pKiYiIiIiIiIiIzykpJSIiIiIiIiIiPqeklIiIiIiIiIiI+JySUiIiIiIiIiIi4nNKSomINEDz5s0jNjbW32GIiIiI1FuaT4lcfkpKiYhXTp48yYMPPkibNm0IDQ0lISGBYcOGsXbt2kt6nsGDBzNt2rRLeszLJVAmKklJSbzyyiv+DkNERETqoPnUuTSfErmyBfk7ABGpH0aPHk1paSnvv/8+7dq1IzMzk+XLl5Odne3v0ERERETqBc2nREQ86U4pEalTbm4ua9as4dlnn+Wmm26ibdu29OnThyeeeIIRI0Z49PvTn/5Es2bNiI6OZsiQIWzdutW9/emnn+b666/ngw8+ICkpiZiYGO6++27y8/MBuO+++1i1ahWvvvoqNpsNm83GwYMHAdi+fTu33norUVFRxMfHc++995KVleU+9uDBg5kyZQqPPvooTZo0ISEhgaeffvqc3zFx4kTi4+MJCwuja9euLFmyxL09NTWVG2+8kfDwcFq3bs2UKVMoLCz8Vdft11wPgPz8fMaOHUtkZCQtWrTg5Zdf9vjXz8GDB3Po0CEeeugh9zWr7ptvvqFz585ERUUxfPhw0tPTL/r3iIiIyMXTfOrir5vmUyINl5JSIlKnqKgooqKiWLhwISUlJeftd9ddd3HixAmWLl3Kpk2b6NmzJ0OHDiUnJ8fdZ//+/SxcuJAlS5awZMkSVq1axZw5cwB49dVXSU5O5oEHHiA9PZ309HRat25Nbm4uQ4YMoUePHmzcuJGvv/6azMxMfve733mc//333ycyMpL169fz3HPPMWvWLJYtWwaAy+Xi1ltvZe3atXz44Yfs3LmTOXPm4HA43HENHz6c0aNHs23bNj799FNSU1OZPHnyRV+3X3s9AKZPn87atWtZvHgxy5YtY82aNfz888/u7Z9//jmtWrVi1qxZ7mtW6cyZM7zwwgt88MEHrF69msOHD/Pwww9f9O8RERGRi6f51MXRfEqkgTMiIl747LPPTOPGjU1YWJjp16+feeKJJ8zWrVvd29esWWOio6NNcXGxx37t27c3b7/9tjHGmJkzZ5qIiAiTl5fn3v7II4+Yvn37ur8PGjTITJ061eMYf//7380tt9zise7IkSMGMHv27HHvN2DAAI8+N9xwg3nssceMMcZ88803xm63u/uf7f777zcTJkzwWLdmzRpjt9tNUVFRjfu89957JiYmpsZtl+J65OXlmeDgYDN//nz39tzcXBMREeFxjdq2bWtefvnlc2IDzC+//OJe9+abb5r4+Pga4xUREZHLT/Opc2k+JXJl051SIuKV0aNHc/z4cRYvXszw4cP5/vvv6dmzJ/PmzQNg69atFBQU0LRpU/e/BEZFRZGWlsb+/fvdx0lKSqJRo0bu7y1atODEiRO1nnvr1q2sXLnS47idOnUC8Dh29+7dPfarfuwtW7bQqlUrrr766vOeY968eR7nGDZsGC6Xi7S0NO8vVLXj/drrceDAAcrKyujTp497e0xMDNdcc41XMURERNC+ffsajy0iIiK+p/nUhdF8SqThU6FzEfFaWFgYN998MzfffDMzZszgT3/6EzNnzuS+++6joKCAFi1a8P3335+zX/U3qgQHB3tss9lsuFyuWs9bUFDAHXfcwbPPPnvOthYtWnh17PDw8DrPMXHiRKZMmXLOtjZt2tS67/mOd7muh7dqOrYx5pIcW0RERC6O5lPe03xKpOFTUkpELlqXLl1YuHAhAD179iQjI4OgoCCSkpIu+pghISE4nU6PdT179mTBggUkJSURFHRxf211796do0ePsnfv3hr/da9nz57s3LmTDh06XNTxazrer70e7dq1Izg4mA0bNrgncqdPn2bv3r0MHDjQ3a+mayYiIiL1g+ZT56f5lEjDp8f3RKRO2dnZDBkyhA8//JBt27aRlpbG/Pnzee655xg5ciQAKSkpJCcnM2rUKL799lsOHjzIunXrePLJJ9m4caPX50pKSmL9+vUcPHiQrKwsXC4XkyZNIicnhzFjxrBhwwb279/PN998w/jx472ePAwaNIiBAwcyevRoli1bRlpaGkuXLuXrr78G4LHHHmPdunVMnjyZLVu2sG/fPhYtWlRnYU6n08mWLVs82q5duy7J9WjUqBHjxo3jkUceYeXKlezYsYP7778fu93u8VaYpKQkVq9ezbFjxzzeoCMiIiKBQ/Op89N8SuTKpaSUiNQpKiqKvn378vLLLzNw4EC6du3KjBkzeOCBB3jjjTcA61bmr776ioEDBzJ+/Hiuvvpq7r77bg4dOkR8fLzX53r44YdxOBx06dKFZs2acfjwYRITE1m7di1Op5NbbrmFbt26MW3aNGJjY7Hbvf9rbMGCBdxwww2MGTOGLl268Oijj7onYd27d2fVqlXs3buXG2+8kR49evDUU0+RmJhY6zELCgro0aOHR7vjjjsu2fV46aWXSE5O5re//S0pKSn079+fzp07ExYW5u4za9YsDh48SPv27WnWrJnXxxYRERHf0Xzq/DSfErly2YweiBURqTcKCwtp2bIlL774Ivfff7+/wxERERGpdzSfEgkcqiklIhLANm/ezO7du+nTpw+nT59m1qxZAO7b/EVERESkdppPiQQuJaVERALcCy+8wJ49ewgJCaFXr16sWbOGuLg4f4clIiIiUm9oPiUSmPT4noiIiIiIiIiI+JwKnYuIiIiIiIiIiM8pKSUiIiIiIiIiIj6npJSIiIiIiIiIiPicklIiIiIiIiIiIuJzSkqJiIiIiIiIiIjPKSklIiIiIiIiIiI+p6SUiIiIiIiIiIj4nJJSIiIiIiIiIiLic0pKiYiIiIiIiIiIz/1/ylFQe0DnXNEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# 서브플롯 생성\n", + "fig, axes = plt.subplots(1, 2, figsize=(12, 6))\n", + "\n", + "# 첫 번째 서브플롯: s1_len\n", + "sns.histplot(test[\"s1_len\"], kde=True, bins=50, color=\"blue\", ax=axes[0])\n", + "axes[0].set_title(\"test s1 len Distribution\")\n", + "axes[0].set_xlabel(\"Sentence Length\")\n", + "axes[0].set_ylabel(\"Count\")\n", + "\n", + "# 두 번째 서브플롯: s2_len\n", + "sns.histplot(test[\"s2_len\"], kde=True, bins=50, color=\"orange\", ax=axes[1])\n", + "axes[1].set_title(\"test s2 len Distribution\")\n", + "axes[1].set_xlabel(\"Sentence Length\")\n", + "axes[1].set_ylabel(\"Count\")\n", + "\n", + "# 레이아웃 조정\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXZklEQVR4nO3dd3wUZf4H8M9sT9tNIw1ICD2hGwQiFgSkiCiCgh71VFAuIIhyyu8UEBWQO5HTQxBF8Dw5FRULRw9FpQkBpIXQCSWVkN3U3WT3+f2R7MKSBJKQZJLdz/v1GpOdeXbmO5M1+fDMMzOSEEKAiIiIyEUp5C6AiIiIqDYx7BAREZFLY9ghIiIil8awQ0RERC6NYYeIiIhcGsMOERERuTSGHSIiInJpDDtERETk0hh2iIiIyKUx7BBRrerVqxd69eoldxm3NXv2bEiShMzMzBpd7837f/78eUiShJUrVzq127BhAzp37gydTgdJkpCdnQ0A+OKLL9C2bVuo1Wr4+vrWaG3jxo1Ds2bNanSdFWnWrBnGjRvneL1y5UpIkoT9+/fXyfYbyueQagfDDtULu3btwuzZsx2/4GvL3Llz8cMPP9TqNu7UqlWrsGjRIrnLcFn18TNw9epVDB8+HB4eHli8eDG++OILeHl54cSJExg3bhxatGiBTz75BMuWLatwHfawZp88PT0RHh6OwYMHY8WKFTCbzTVS6/HjxzF79mycP3++RtZXk+pzbSQvldwFEAElYefNN9/EuHHjavxfrzeaO3cunnjiCQwZMqTWtnGnVq1ahaNHj2Lq1Klyl+KS5P4MREREoKCgAGq12jFv3759yMnJwVtvvYW+ffs65m/fvh02mw3//Oc/0bJly0qtf8mSJfD29obZbMbly5exceNGPPPMM1i0aBHWrl2Lpk2bOtp+8sknsNlsVar/+PHjePPNN9GrV68q9QolJSVBoajdf1/fqrZNmzbV6rapfmPYISKqQ5IkQafTOc1LT08HgDJBv6L5t/LEE08gMDDQ8XrmzJn48ssvMWbMGDz55JPYs2ePY9mNgas2CCFQWFgIDw8PaLXaWt3W7Wg0Glm3TzITRDKbNWuWAFBmOnfunKPNF198Ie666y6h0+mEn5+fGDFihEhOTnZaz8mTJ8XQoUNFcHCw0Gq1onHjxmLEiBEiOztbCCHK3cbYsWNvWdsHH3wgoqOjhYeHh/D19RUxMTHiyy+/dGpz6dIl8ec//1kEBQUJjUYjoqOjxfLly53abNu2TQAQX3/9tXj77bdF48aNhVarFb179xanTp1ytHvggQfK1BgREeFYXlhYKGbOnClatGghNBqNaNKkiZg+fbooLCx02h4AERcXJ9asWSPatWvnqGv9+vVl9vHSpUvimWeeEaGhoUKj0YhmzZqJF154QZjNZkeba9euiSlTpogmTZoIjUYjWrRoIebPny+sVustj599nx544AGnebWxH9u2bRMxMTFCq9WK5s2bi6VLlzo+Wzeur6LPgL3tqVOnxNixY4XBYBB6vV6MGzdO5OXl3XY/hRDi448/Fs2bNxc6nU7cfffd4pdffimz/+fOnRMAxIoVKxzHp7yaIiIiysyfNWtWhdu215+RkVHu8gkTJggAYtOmTY559u3c6L///a+46667hLe3t/Dx8RHt27cXixYtEkIIsWLFinKP4bZt24QQQkRERIhBgwaJDRs2OH4W77//vmPZjf+/2de1Y8cOMWHCBOHv7y98fHzE6NGjRVZWllNNFe37jeu8XW3lfQ7T0tLEM888I4KCgoRWqxUdO3YUK1eudGpj/3n9/e9/d/x8NRqN6Nq1q/j999/LPdZU/7Bnh2Q3dOhQnDx5Ev/973/x/vvvO/5V2qhRIwDAO++8gzfeeAPDhw/Hc889h4yMDHz44Ye4//77cfDgQfj6+sJisaB///4wm82YPHkyQkJCcPnyZaxduxbZ2dkwGAz44osv8Nxzz6Fbt26YMGECAKBFixYV1vXJJ5/gxRdfxBNPPIEpU6agsLAQhw8fxt69e/GnP/0JAJCWloYePXpAkiRMmjQJjRo1wvr16/Hss8/CZDKVORU1f/58KBQKvPLKKzAajViwYAFGjhyJvXv3AgD+9re/wWg04tKlS3j//fcBAN7e3gAAm82GRx99FL/99hsmTJiAqKgoHDlyBO+//z5OnjxZZhzKb7/9hu+//x5/+ctf4OPjgw8++ADDhg1DcnIyAgICAABXrlxBt27dkJ2djQkTJqBt27a4fPkyvv32W+Tn50Oj0SA/Px8PPPAALl++jOeffx7h4eHYtWsXZsyYgZSUlCqPL6qN/Th48CAGDBiA0NBQvPnmm7BarZgzZ47jM2RXmc/A8OHDERkZiXnz5uHAgQP49NNPERQUhHffffeW+7V8+XI8//zzuOeeezB16lScPXsWjz76KPz9/Z1OHd3sb3/7G9q0aYNly5Zhzpw5iIyMRIsWLTBkyBD8+9//xpo1axynpjp27FjZw1zG6NGjsWzZMmzatAkPPfRQuW02b96Mp59+Gn369HHsb2JiInbu3IkpU6bg/vvvx4svvogPPvgA//d//4eoqCgAcHwFSk5XPf3003j++ecxfvx4tGnT5pZ1TZo0Cb6+vpg9ezaSkpKwZMkSXLhwAdu3b4ckSZXev8rUdqOCggL06tULp0+fxqRJkxAZGYnVq1dj3LhxyM7OxpQpU5zar1q1Cjk5OXj++echSRIWLFiAoUOH4uzZs7XeQ0Y1QO60RSSEEH//+9/L9OYIIcT58+eFUqkU77zzjtP8I0eOCJVK5Zh/8OBBAUCsXr36ltvx8vK6bW+O3WOPPSbatWt3yzbPPvusCA0NFZmZmU7zn3rqKWEwGER+fr4Q4nrPTlRUlFOPyT//+U8BQBw5csQxb9CgQWX+tS1ESe+WQqEQv/76q9P8pUuXCgBi586djnkAhEajEadPn3bM++OPPwQA8eGHHzrmjRkzRigUCrFv374y27PZbEIIId566y3h5eUlTp486bT8tddeE0qlskwP281u/hd1bezH4MGDhaenp7h8+bJj3qlTp4RKpRI3/5qr6DNg7xl55plnnOY//vjjIiAg4Jb7aLFYRFBQkOjcubPTz3fZsmUCwC17doS43itx88/hdr01VWl77do1AUA8/vjjjnk39+xMmTJF6PV6UVxcXOF2Vq9e7dRjciN7b9SGDRvKXVZez05MTIywWCyO+QsWLBAAxI8//uiYh0r07Nyutps/h4sWLRIAxH/+8x/HPIvFImJjY4W3t7cwmUxCiOs/r4CAAKcepx9//FEAED///HOZbVH9w6uxqF77/vvvYbPZMHz4cGRmZjqmkJAQtGrVCtu2bQMAGAwGAMDGjRuRn59fI9v29fXFpUuXsG/fvnKXCyHw3XffYfDgwRBCONXXv39/GI1GHDhwwOk9f/7zn53GDtx3330AgLNnz962ntWrVyMqKgpt27Z12lbv3r0BwHEs7Pr27evUa9GxY0fo9XrHtmw2G3744QcMHjwYXbt2LbM9+7+qV69ejfvuuw9+fn5O2+3bty+sVit++eWX29Zem/thtVqxZcsWDBkyBGFhYY52LVu2xMCBA6tUGwC88MILTq/vu+8+XL16FSaTqcL37N+/H+np6XjhhRecfr7jxo1zfDblZu8hzMnJqbCNr68v8vLysHnz5mpvJzIyEv379690+wkTJjj1jEycOBEqlQrr1q2rdg2VsW7dOoSEhODpp592zFOr1XjxxReRm5uLHTt2OLUfMWIE/Pz8HK+r8v8uyY+nsaheO3XqFIQQaNWqVbnL7b8kIyMjMW3aNCxcuBBffvkl7rvvPjz66KMYNWpUtf/YvPrqq9iyZQu6deuGli1bol+/fvjTn/6Enj17AgAyMjKQnZ2NZcuWVXhJsH2AqV14eLjTa/svz2vXrt22nlOnTiExMbHMqZnKbsu+Pfu2MjIyYDKZ0L59+9tu9/Dhw5Xe7u3U9H6kp6ejoKCg3KuVKnsF0622d+PPSK/Xl/ueCxcuAECZz6larUbz5s2rXENtyM3NBQD4+PhU2OYvf/kLvvnmGwwcOBCNGzdGv379MHz4cAwYMKDS24mMjKxSXTcfM29vb4SGhtb65eMXLlxAq1atylwhZj/tZf+Z2t3J/7skP4YdqtdsNhskScL69euhVCrLLLf/axUA3nvvPYwbNw4//vgjNm3ahBdffBHz5s3Dnj170KRJkypvOyoqCklJSVi7di02bNiA7777Dh999BFmzpyJN99803HJ7qhRozB27Nhy13HzGIvy9gEo6SW6HZvNhg4dOmDhwoXlLr95XMidbOvm7T700EP461//Wu7y1q1bV3l9cuxHZdX19urK0aNHAdw6AAYFBeHQoUPYuHEj1q9fj/Xr12PFihUYM2YMPv/880ptx8PDo0bqrQyr1Vpn23LVz4W7YNiheqGigYgtWrSAEAKRkZGV+qPaoUMHdOjQAa+//jp27dqFnj17YunSpXj77bdvuZ2KeHl5YcSIERgxYgQsFguGDh2Kd955BzNmzECjRo3g4+MDq9XqdG+UO3WrY/HHH3+gT58+Vd6P8jRq1Ah6vd7xR7AiLVq0QG5ubo3tY03vR1BQEHQ6HU6fPl1mWXnzamKbN4uIiABQ0mtlPx0HAEVFRTh37hw6depU49usqi+++AIAbnuKSaPRYPDgwRg8eDBsNhv+8pe/4OOPP8Ybb7yBli1b1vjxO3XqFB588EHH69zcXKSkpODhhx92zPPz8ytzw1GLxYKUlBSneVWpLSIiAocPH4bNZnPq3Tlx4oRjObkOjtmhesHLywsAyvxCGzp0KJRKJd58880y/4ISQuDq1asAAJPJhOLiYqflHTp0gEKhcLpzrJeXV6Xv0mxft51Go0F0dDSEECgqKoJSqcSwYcPw3XfflRsYMjIyKrWdm3l5ecFoNJaZP3z4cFy+fBmffPJJmWUFBQXIy8ur0nYUCgWGDBmCn3/+udxb9tuP9/Dhw7F7925s3LixTJvs7Owyx/12ano/lEol+vbtix9++AFXrlxxzD99+jTWr19fpn1VPgOV1bVrVzRq1AhLly6FxWJxzF+5cmWt3xW8MlatWoVPP/0UsbGx6NOnT4Xtbv7MKxQKR++k/f+jiv5fra5ly5ahqKjI8XrJkiUoLi52Gm/VokWLMmPDli1bVqZnpyq1Pfzww0hNTcXXX3/tmFdcXIwPP/wQ3t7eeOCBB6qzO1RPsWeH6oWYmBgAJZfhPvXUU1Cr1Rg8eDBatGiBt99+GzNmzMD58+cxZMgQ+Pj44Ny5c1izZg0mTJiAV155BVu3bsWkSZPw5JNPonXr1iguLsYXX3zhCCQ3bmfLli1YuHAhwsLCEBkZie7du5dbU79+/RASEoKePXsiODgYiYmJ+Ne//oVBgwY5xj3Mnz8f27ZtQ/fu3TF+/HhER0cjKysLBw4cwJYtW5CVlVWtY/H1119j2rRpuPvuu+Ht7Y3Bgwdj9OjR+Oabb/DCCy9g27Zt6NmzJ6xWK06cOIFvvvkGGzduLHeg8a3MnTsXmzZtwgMPPOC4DDwlJQWrV6/Gb7/9Bl9fX0yfPh0//fQTHnnkEYwbNw4xMTHIy8vDkSNH8O233+L8+fNON7G7ndrYj9mzZ2PTpk3o2bMnJk6cCKvVin/9619o3749Dh065NS2Kp+BylKr1Xj77bfx/PPPo3fv3hgxYgTOnTuHFStW1PmYnW+//Rbe3t6wWCyOOyjv3LkTnTp1wurVq2/53ueeew5ZWVno3bs3mjRpggsXLuDDDz9E586dHWNZOnfuDKVSiXfffRdGoxFarRa9e/dGUFBQteq1WCzo06cPhg8fjqSkJHz00Ue499578eijjzrV9cILL2DYsGF46KGH8Mcff2Djxo1lPndVqW3ChAn4+OOPMW7cOCQkJKBZs2b49ttvsXPnTixatOiWY5uoAZLlGjCicrz11luicePGQqFQlLkM/bvvvhP33nuv8PLyEl5eXqJt27YiLi5OJCUlCSGEOHv2rHjmmWdEixYthE6nE/7+/uLBBx8UW7ZscdrGiRMnxP333y88PDxue1PBjz/+WNx///0iICBAaLVa0aJFCzF9+nRhNBqd2qWlpYm4uDjRtGlToVarRUhIiOjTp49YtmyZo4390vObL40v7zLk3Nxc8ac//Un4+vqWuamgxWIR7777rmjXrp3QarXCz89PxMTEiDfffNOpLpTejO9mN1+qK4QQFy5cEGPGjBGNGjVy3JAvLi7O6RLqnJwcMWPGDNGyZUuh0WhEYGCguOeee8Q//vEPp8uGy1PezdxqYz/i4+NFly5dHDc9/PTTT8XLL78sdDqdU7uKPgMVXbptv0T65tsilOejjz4SkZGRQqvViq5du1bqpoI3bqMmLj23TzqdTjRp0kQ88sgj4rPPPitzw0Yhyl56/u2334p+/fo5bpAZHh4unn/+eZGSkuL0vk8++UQ0b95cKJXKcm8qWJ7b3VTQz89PeHt7i5EjR4qrV686vddqtYpXX31VBAYGCk9PT9G/f39x+vTpcj8HFdVW0U0F//znP4vAwECh0WhEhw4dnH4uQjjfVPBmuM2NHqn+kITg6Coick1DhgzBsWPHcOrUKblLISIZccwOEbmEgoICp9enTp3CunXr0KtXL3kKIqJ6gz07ROQSQkNDMW7cODRv3hwXLlzAkiVLYDabcfDgwQrv00RE7oEDlInIJQwYMAD//e9/kZqaCq1Wi9jYWMydO5dBh4jYs0NERESuTfYxO5cvX8aoUaMQEBAADw8PdOjQwemeH0IIzJw5E6GhofDw8EDfvn3LDDbMysrCyJEjodfr4evri2effdZxa3QiIiJyb7KGnWvXrqFnz55Qq9VYv349jh8/jvfee8/pYWsLFizABx98gKVLl2Lv3r3w8vJC//79UVhY6GgzcuRIHDt2DJs3b8batWvxyy+/YMKECXLsEhEREdUzsp7Geu2117Bz5078+uuv5S4XQiAsLAwvv/wyXnnlFQCA0WhEcHAwVq5ciaeeegqJiYmIjo7Gvn37HDci27BhAx5++GFcunTJ6SnIFbHZbLhy5Qp8fHxq5VbyREREVPOEEMjJyUFYWFiZh7re3FA2UVFRYurUqeKJJ54QjRo1Ep07d3a6EduZM2cEAHHw4EGn991///3ixRdfFEIIsXz5cuHr6+u0vKioSCiVSvH999+Xu93CwkJhNBod0/Hjx51uxsWJEydOnDhxajjTxYsXb5k3ZL0a6+zZs1iyZAmmTZuG//u//8O+ffvw4osvQqPRYOzYsUhNTQUABAcHO70vODjYsSw1NbXMrcBVKhX8/f0dbW42b948vPnmm2XmX7x4EXq9viZ2jYiIiGqZyWRC06ZNb/t4D1nDjs1mQ9euXTF37lwAQJcuXXD06FEsXboUY8eOrbXtzpgxA9OmTXO8th8svV7PsENERNTA3G4IiqwDlENDQxEdHe00LyoqCsnJyQCAkJAQAEBaWppTm7S0NMeykJAQpKenOy0vLi5GVlaWo83NtFqtI9gw4BAREbk2WcNOz549kZSU5DTv5MmTiIiIAABERkYiJCQE8fHxjuUmkwl79+5FbGwsACA2NhbZ2dlISEhwtNm6dStsNtsdP8mYiIiIGj5ZT2O99NJLuOeeezB37lwMHz4cv//+O5YtW4Zly5YBKOmWmjp1Kt5++220atUKkZGReOONNxAWFoYhQ4YAKOkJGjBgAMaPH4+lS5eiqKgIkyZNwlNPPVWpK7GIiIjItcl+B+W1a9dixowZOHXqFCIjIzFt2jSMHz/esVwIgVmzZmHZsmXIzs7Gvffei48++gitW7d2tMnKysKkSZPw888/Q6FQYNiwYfjggw/g7e1dqRpMJhMMBgOMRiNPaRERETUQlf37LXvYqQ8YdoiIiBqeyv79lv1xEURERES1iWGHiIiIXBrDDhEREbk0hh0iIiJyaQw7RERE5NIYdoiIiMilMewQERGRS2PYISIiIpfGsENEREQuTdZnY7mD5ORkZGZm1sq6AwMDER4eXivrJiIichUMO7UoOTkZbaOiUJCfXyvr9/D0xInERAYeIiKiW2DYqUWZmZkoyM/HyFf/juDwFjW67rTkM/jy3enIzMxk2CEiIroFhp06EBzeAk1atZO7DCIiIrfEAcpERETk0hh2iIiIyKUx7BAREZFLY9ghIiIil8awQ0RERC6NYYeIiIhcGsMOERERuTSGHSIiInJpDDtERETk0hh2iIiIyKUx7BAREZFLY9ghIiIil8awQ0RERC6NYYeIiIhcGsMOERERuTSGHSIiInJpDDtERETk0hh2iIiIyKUx7BAREZFLY9ghIiIil8awQ0RERC6NYYeIiIhcGsMOERERuTSGHSIiInJpDDtERETk0hh2iIiIyKUx7BAREZFLY9ghIiIil8awQ0RERC6NYYeIiIhcGsMOERERuTSGHSIiInJpDDtERETk0hh2iIiIyKUx7BAREZFLY9ghIiIil8awQ0RERC5N1rAze/ZsSJLkNLVt29axvLCwEHFxcQgICIC3tzeGDRuGtLQ0p3UkJydj0KBB8PT0RFBQEKZPn47i4uK63hUiIiKqp1RyF9CuXTts2bLF8Vqlul7SSy+9hP/9739YvXo1DAYDJk2ahKFDh2Lnzp0AAKvVikGDBiEkJAS7du1CSkoKxowZA7Vajblz59b5vhAREVH9I3vYUalUCAkJKTPfaDRi+fLlWLVqFXr37g0AWLFiBaKiorBnzx706NEDmzZtwvHjx7FlyxYEBwejc+fOeOutt/Dqq69i9uzZ0Gg0db07REREVM/IPmbn1KlTCAsLQ/PmzTFy5EgkJycDABISElBUVIS+ffs62rZt2xbh4eHYvXs3AGD37t3o0KEDgoODHW369+8Pk8mEY8eOVbhNs9kMk8nkNBEREZFrkjXsdO/eHStXrsSGDRuwZMkSnDt3Dvfddx9ycnKQmpoKjUYDX19fp/cEBwcjNTUVAJCamuoUdOzL7csqMm/ePBgMBsfUtGnTmt0xIiIiqjdkPY01cOBAx/cdO3ZE9+7dERERgW+++QYeHh61tt0ZM2Zg2rRpjtcmk4mBh4iIyEXJfhrrRr6+vmjdujVOnz6NkJAQWCwWZGdnO7VJS0tzjPEJCQkpc3WW/XV544DstFot9Hq900RERESuqV6FndzcXJw5cwahoaGIiYmBWq1GfHy8Y3lSUhKSk5MRGxsLAIiNjcWRI0eQnp7uaLN582bo9XpER0fXef1ERERU/8h6GuuVV17B4MGDERERgStXrmDWrFlQKpV4+umnYTAY8Oyzz2LatGnw9/eHXq/H5MmTERsbix49egAA+vXrh+joaIwePRoLFixAamoqXn/9dcTFxUGr1cq5a0RERFRPyBp2Ll26hKeffhpXr15Fo0aNcO+992LPnj1o1KgRAOD999+HQqHAsGHDYDab0b9/f3z00UeO9yuVSqxduxYTJ05EbGwsvLy8MHbsWMyZM0euXSIiIqJ6Rtaw89VXX91yuU6nw+LFi7F48eIK20RERGDdunU1XRoRERG5iHo1ZoeIiIiopjHsEBERkUtj2CEiIiKXxrBDRERELo1hh4iIiFwaww4RERG5NIYdIiIicmkMO0REROTSGHaIiIjIpTHsEBERkUtj2CEiIiKXxrBDRERELo1hh4iIiFwaww4RERG5NIYdIiIicmkMO0REROTSGHaIiIjIpTHsEBERkUtj2CEiIiKXxrBDRERELo1hh4iIiFwaww4RERG5NIYdIiIicmkMO0REROTSGHaIiIjIpTHsEBERkUtj2CEiIiKXxrBDRERELo1hh4iIiFwaww4RERG5NIYdIiIicmkMO0REROTSGHaIiIjIpTHsEBERkUtj2CEiIiKXxrBDRERELo1hh4iIiFwaww4RERG5NIadeqiwyAqbEHKXQURE5BJUchdAzs5m5GLd0VT4eqjxWOcw+OjUcpdERETUoLFnpx65kl2AdUdTYbUJXM2zYHXCJVzLs8hdFhERUYPGsFNPXMu34Kc/rsBqEwj394Svpxo5hcX49sAlWIptcpdHRETUYDHs1BMHLlyDudiGEL0Oj3QMxZMxTaDXqZBvseJUeo7c5RERETVYDDv1gBAC5zLzAAA9mvtDrVTAU6NC+8YGAMDxKyY5yyMiImrQGHbqgfQcM/IsVqiVEhr7eTjmR4XqIQG4YizEtXyO3SEiIqoOhp164Gxpr064vydUius/Em+tCuEBngDYu0NERFRdDDv1gP0UVvNA7zLL2oXqAQCJqSbee4eIiKgaGHZkllNYhIwcMwCgWaBnmeWRjbygUymQZ7biYlZ+XZdHRETU4DHsyMzeqxNq0MFTU/YejyqFAi2CSnp8khl2iIiIqoxhR2bnr5YEmMhArwrbNCkdtHzpWkGd1ERERORKGHZklmYqBAA09St7CsuuiW/JsowcM8xF1jqpi4iIyFXUm7Azf/58SJKEqVOnOuYVFhYiLi4OAQEB8Pb2xrBhw5CWlub0vuTkZAwaNAienp4ICgrC9OnTUVxcXMfVV0++pRj5lpLwEuCtqbCdt04FXw81BIDL2ezdISIiqop6EXb27duHjz/+GB07dnSa/9JLL+Hnn3/G6tWrsWPHDly5cgVDhw51LLdarRg0aBAsFgt27dqFzz//HCtXrsTMmTPreheqJTO35N45Bg811Mpb/ygcp7IYdoiIiKpE9rCTm5uLkSNH4pNPPoGfn59jvtFoxPLly7Fw4UL07t0bMTExWLFiBXbt2oU9e/YAADZt2oTjx4/jP//5Dzp37oyBAwfirbfewuLFi2Gx1P+b8GXmllyFFXiLXh27JqWnuS5z3A4REVGVyB524uLiMGjQIPTt29dpfkJCAoqKipzmt23bFuHh4di9ezcAYPfu3ejQoQOCg4Mdbfr37w+TyYRjx45VuE2z2QyTyeQ0yeF62NHetq29Zyc9x4xCjtshIiKqtLLXOtehr776CgcOHMC+ffvKLEtNTYVGo4Gvr6/T/ODgYKSmpjra3Bh07Mvtyyoyb948vPnmm3dY/Z27WnoaqzJhx0urgp+nGtfyi3AluwC37wsiIiIiQMaenYsXL2LKlCn48ssvodPp6nTbM2bMgNFodEwXL16s0+0DgM0mcDXPHnYqF10a8xJ0IiKiKpMt7CQkJCA9PR133XUXVCoVVCoVduzYgQ8++AAqlQrBwcGwWCzIzs52el9aWhpCQkIAACEhIWWuzrK/trcpj1arhV6vd5rqWnZBEaw2AbVSgsFDXan3NDaUhJ3U0svViYiI6PZkCzt9+vTBkSNHcOjQIcfUtWtXjBw50vG9Wq1GfHy84z1JSUlITk5GbGwsACA2NhZHjhxBenq6o83mzZuh1+sRHR1d5/tUFfbxOgFeWkiSVKn3BOlLesAycsyw8TFZRERElSLbmB0fHx+0b9/eaZ6XlxcCAgIc85999llMmzYN/v7+0Ov1mDx5MmJjY9GjRw8AQL9+/RAdHY3Ro0djwYIFSE1Nxeuvv464uDhotbcfByOnqlyJZefnqYZaKaHIKpBTVLmARERE5O5kHaB8O++//z4UCgWGDRsGs9mM/v3746OPPnIsVyqVWLt2LSZOnIjY2Fh4eXlh7NixmDNnjoxVV05mFQYn20mShCAfHS5nF+CahWGHiIioMupV2Nm+fbvTa51Oh8WLF2Px4sUVviciIgLr1q2r5cpqXlUuO79RsF7LsENERFQFst9nxx1Zim3IKSx5pMWtHhNRniCfknE72Qw7RERElcKwIwNjQREAQKdWQKdWVum9wfqSnqBsiwQoqvZeIiIid8SwIwNTYUnY0esqd8n5jQweamhUCtggQR0YXtOlERERuRyGHRnYe3Yqe3+dG0mShGCfkt4dbUirGq2LiIjIFTHsyMBUGnb01Qg7wPX77WgYdoiIiG6LYUcGjp6dapzGAuDo2dGEtKyxmoiIiFwVw44MTAUlV2LpPap35X8je9hp1AxW3kqZiIjolhh26pgQwjFAuTpjduzvU0kCkkqNyznFNVkeERGRy2HYqWP5FiuKS3tjfKp5GkuSJBjUJeu4YGTYISIiuhWGnTpmH6/jo1NBqaj+jQH1mtKwk11UI3URERG5KoadOnYn99i5kb1n53w2e3aIiIhuhWGnjt3p4GQ739KenfNG9uwQERHdCsNOHbuTGwreSF/as5NVYMO1PMsd10VEROSqGHbqmOkO77Fjp1YARddSAACJqaY7rouIiMhVMezUMWPhnd09+UZFGecBACdScu54XURERK6KYacOWW0CuYUlY3bu9DQWAFgyzgEAElPYs0NERFQRhp06lFNYBAFAqZDgqVHe8fos6SVh50Qqe3aIiIgqwrBTh0z2Xh2dGpJU/Xvs2BWlnwcAnEzLQbHVdsfrIyIickUMO3Uop/D6DQVrQnF2KnQqCeZiG85fzauRdRIREbkahp06lGsu6dnx0tZM2AEEmupL1pWUmltD6yQiInItDDt1yB52vGuoZwcAwg2lYSeN43aIiIjKw7BTh/LMVgCAd4317ADhhpKruk5ykDIREVG5GHbqkKNnp0bDTsm6TrJnh4iIqFwMO3XIfo+dGg07pWN2zl/NQ2GRtcbWS0RE5CoYdupIsc2GgtIw4qW983vs2PnqFPD30sAmgNPpHKRMRER0M4adOpJfOl5HKUnwUNdc2JEkCa2DvQEASRy3Q0REVAbDTh25ftm5skZuKHijNsE+AHhFFhERUXkYdupIbQxOtmsdUhp22LNDRERUBsNOHanNsNO2NOzwiiwiIqKyGHbqiOM0Vg3eUNCuVelprBRjIYwFRTW+fiIiooaMYaeO5NXCZed2ep0aYQYdAPbuEBER3Yxhp47U5mksAGjDcTtERETlYtipI7Uddlpz3A4REVG5GHbqgBBAnqXmn4t1I/vl5yfYs0NEROSEYacOWGyA1SYAAF611bMTfL1nRwhRK9sgIiJqiBh26kCBteQmgh5qJZSKmr2hoF3LIG8oJCA7vwgZOeZa2QYREVFDVK2w07x5c1y9erXM/OzsbDRv3vyOi3I1BaXP56ytU1gAoFMr0SzQCwDvpExERHSjaoWd8+fPw2ot+4Rts9mMy5cv33FRrsbes1OTDwAtj+OxERy3Q0RE5FClroaffvrJ8f3GjRthMBgcr61WK+Lj49GsWbMaK85VFBaXhB3vWrih4I1aB/tg/dFUhh0iIqIbVOmv75AhQwCUPGl77NixTsvUajWaNWuG9957r8aKcxWO01ia2g07fGwEERFRWVX662uz2QAAkZGR2LdvHwIDA2ulKFdT6DiNVcs9O46wkwubTUBRS4OhiYiIGpJqjdk5d+4cg04VmEsyIjw1tTtmJ8LfExqVAgVFVly8ll+r2yIiImooqt3VEB8fj/j4eKSnpzt6fOw+++yzOy7Mldh7djxruWdHpVSgVZA3jl0xISk1BxEBXrW6PSIiooagWj07b775Jvr164f4+HhkZmbi2rVrThPdSEJh6Zgdr1ru2QGuX5HFcTtEREQlqtXVsHTpUqxcuRKjR4+u6XpcjkLnDYHSmwrWQdixj9vhYyOIiIhKVKtnx2Kx4J577qnpWlyS0tsPAKBTKaBS1P4Nq9mzQ0RE5Kxaf32fe+45rFq1qqZrcUlKr5KwU9vjdezalPbsnM3Ig6XYdpvWRERErq9af4ELCwuxbNkybNmyBR07doRarXZavnDhwhopzhU4wk4dnMICgFCDDj5aFXLMxTiXmecIP0RERO6qWmHn8OHD6Ny5MwDg6NGjTsskifd2uZGiNOx41fINBe0kSULrEB8kXLiGE6kmhh0iInJ71foLvG3btpquw2UpvXwBAJ61/FysG7UOLgk7HLdDRERUzTE7NWXJkiXo2LEj9Ho99Ho9YmNjsX79esfywsJCxMXFISAgAN7e3hg2bBjS0tKc1pGcnIxBgwbB09MTQUFBmD59OoqLi+t6VyqkrOOeHeD6YyOSUnPrbJtERET1VbX+Aj/44IO3PF21devWSq2nSZMmmD9/Plq1agUhBD7//HM89thjOHjwINq1a4eXXnoJ//vf/7B69WoYDAZMmjQJQ4cOxc6dOwGUPHx00KBBCAkJwa5du5CSkoIxY8ZArVZj7ty51dm1Gme/GquuxuwAJT07AK/IIiIiAqoZduzjdeyKiopw6NAhHD16tMwDQm9l8ODBTq/feecdLFmyBHv27EGTJk2wfPlyrFq1Cr179wYArFixAlFRUdizZw969OiBTZs24fjx49iyZQuCg4PRuXNnvPXWW3j11Vcxe/ZsaDSa6uxejVJ6+gKo67DjDQBIzspHnrm41p/JRUREVJ9V66/g+++/X+782bNnIze3eqdOrFYrVq9ejby8PMTGxiIhIQFFRUXo27evo03btm0RHh6O3bt3o0ePHti9ezc6dOiA4OBgR5v+/ftj4sSJOHbsGLp06VLutsxmM8xms+O1yWSqVs2V4TiNVYeBI8Bbi0BvLTJzzTiVnovOTX3rbNtERET1TY2O2Rk1alSVn4t15MgReHt7Q6vV4oUXXsCaNWsQHR2N1NRUaDQa+Pr6OrUPDg5GamoqACA1NdUp6NiX25dVZN68eTAYDI6padOmVaq5soptAgpPPYC67dkBro/bOck7KRMRkZur0bCze/du6HS6Kr2nTZs2OHToEPbu3YuJEydi7NixOH78eE2WVcaMGTNgNBod08WLF2tlOyazDZKkgAQBD3Xdhh37uB0+NoKIiNxdtc6tDB061Om1EAIpKSnYv38/3njjjSqtS6PRoGXLlgCAmJgY7Nu3D//85z8xYsQIWCwWZGdnO/XupKWlISQkBAAQEhKC33//3Wl99qu17G3Ko9VqodVqq1RndVwrLLmDsVZZ9/cfahNSMm6Hg5SJiMjdVatn58ZTQAaDAf7+/ujVqxfWrVuHWbNm3VFBNpsNZrMZMTExUKvViI+PdyxLSkpCcnIyYmNjAQCxsbE4cuQI0tPTHW02b94MvV6P6OjoO6qjJmSXPu5cpxB1vu02ISWnz9izQ0RE7q5aPTsrVqyokY3PmDEDAwcORHh4OHJycrBq1Sps374dGzduhMFgwLPPPotp06bB398fer0ekydPRmxsLHr06AEA6NevH6KjozF69GgsWLAAqampeP311xEXF1cnPTe3k11Q0rOjq9szWABKrsiSJCAz14zMXDMCveU/HkRERHK4o0uEEhISkJiYCABo165dhVc/VSQ9PR1jxoxBSkoKDAYDOnbsiI0bN+Khhx4CUHLVl0KhwLBhw2A2m9G/f3989NFHjvcrlUqsXbsWEydORGxsLLy8vDB27FjMmTPnTnarxthPY+mUdd+z46lRoVmAF85l5iExxYT7WjWq8xqIiIjqg2qFnfT0dDz11FPYvn27YzxNdnY2HnzwQXz11Vdo1Khyf1iXL19+y+U6nQ6LFy/G4sWLK2wTERGBdevWVbr2umQ/jVWHT4pwEhXqw7BDRERur1pjdiZPnoycnBwcO3YMWVlZyMrKwtGjR2EymfDiiy/WdI0NVraMPTsAEFU6bicxheN2iIjIfVWrZ2fDhg3YsmULoqKiHPOio6OxePFi9OvXr8aKa+gcYUemJ5BFh5WEneNXau+miURERPVdtf4M22w2qNXqMvPVajVsNtsdF+UqrjlOY8nUsxNaEnbOZOTCXGyVpQYiIiK5VSvs9O7dG1OmTMGVK1cc8y5fvoyXXnoJffr0qbHiGroBLTxh2v8TvFXyhJ1Qgw4GDzWKbQKn0vgEdCIick/VCjv/+te/YDKZ0KxZM7Ro0QItWrRAZGQkTCYTPvzww5quscEa3MYb1+KXwUOm53BKkoSo0JI7KSem8FQWERG5p2r9GW7atCkOHDiALVu24MSJEwCAqKgop4d2Uv0QFarHnrNZOM6wQ0REbqpKPTtbt25FdHQ0TCYTJEnCQw89hMmTJ2Py5Mm4++670a5dO/z666+1VStVQ3So/Yoshh0iInJPVQo7ixYtwvjx46HX68ssMxgMeP7557Fw4cIaK47uXFTo9cvPhZBn7BAREZGcqhR2/vjjDwwYMKDC5f369UNCQsIdF0U1p1WwN1QKCcaCIqQYC+Uuh4iIqM5VKeykpaWVe8m5nUqlQkZGxh0XRTVHq1KiZVDJE9CP8X47RETkhqoUdho3boyjR49WuPzw4cMIDQ2946KoZrULMwAAjl42ylwJERFR3atS2Hn44YfxxhtvoLCw7OmQgoICzJo1C4888kiNFUc1o33jknE7x64w7BARkfup0qXnr7/+Or7//nu0bt0akyZNQps2bQAAJ06cwOLFi2G1WvG3v/2tVgql6mvf2N6zw9NYRETkfqoUdoKDg7Fr1y5MnDgRM2bMcFzdI0kS+vfvj8WLFyM4OLhWCqXqiw7VQ5KAVFMhMnLMaOSjlbskIiKiOlPlmwpGRERg3bp1uHbtGk6fPg0hBFq1agU/P7/aqI9qgJdWheaBXjiTkYejV4x4sE2Q3CURERHVmWo/yMDPzw933313TdZCtah9YwPOZOTh2GWGHSIici/VejYWNTztwzhuh4iI3BPDjpuwD1I+wsvPiYjIzTDsuInosJLLzy9nF+BankXmaoiIiOoOw46bMHioERHgCYB3UiYiIvfCsONG7ON2eCqLiIjcCcOOG+nYpCTsHL6ULW8hREREdYhhx410auoLADh0MVvWOoiIiOoSw44b6dDYAIUEpBgLkWYq+3wzIiIiV8Sw40a8tCq0DvYBAPzB3h0iInITDDtuplMTXwDAHxy3Q0REboJhx81w3A4REbkbhh0306lp6RVZF42w2YTM1RAREdU+hh030ybYBzq1AjnmYpzNzJO7HCIiolrHsONmVEoFOpQ+J4uDlImIyB0w7LghDlImIiJ3wrDjhuyDlA8kX5O3ECIiojrAsOOGYiL8AACJKTnIMxfLXA0REVHtYthxQ2G+Hggz6GC1CY7bISIil6eSuwC6M4mJidV6X6QeuGIEftp9DDqTj9OywMBAhIeH10R5REREsmPYaaBMWRkAgFGjRlXr/T53PQL/h17Aip+3490xs52WeXh64kRiIgMPERG5BIadBqog1wQAGPT839CmY0yV33/NImFrKqBvEYOR//oeklQyPy35DL58dzoyMzMZdoiIyCUw7DRwAWERaNKqXZXfF2YT+DXjDIqsgEdYSwR6a2uhOiIiIvlxgLKbUigkhOh1AIAr2QUyV0NERFR7GHbcWKivBwAgxVgocyVERES1h2HHjYUZSnp2GHaIiMiVMey4sRCDDhIAY0ERcgt5c0EiInJNDDtuTKtSopFPycDkS9n5MldDRERUOxh23FwTv5JxO5evcZAyERG5JoYdN9e4NOxc4hVZRETkohh23FxjgwckANn5RcjlQ0GJiMgFMey4Oa36+rgdnsoiIiJXxLBD109lXeMgZSIicj0MO4Qmvhy3Q0RErothh9C4NOxk5xehwCpzMURERDWMYYegVSsRVDpuJ6OQHwkiInItsv5lmzdvHu6++274+PggKCgIQ4YMQVJSklObwsJCxMXFISAgAN7e3hg2bBjS0tKc2iQnJ2PQoEHw9PREUFAQpk+fjuJiXllUFU39PQEA6YWSzJUQERHVLFnDzo4dOxAXF4c9e/Zg8+bNKCoqQr9+/ZCXl+do89JLL+Hnn3/G6tWrsWPHDly5cgVDhw51LLdarRg0aBAsFgt27dqFzz//HCtXrsTMmTPl2KUGK7w07KSxZ4eIiFyMSs6Nb9iwwen1ypUrERQUhISEBNx///0wGo1Yvnw5Vq1ahd69ewMAVqxYgaioKOzZswc9evTApk2bcPz4cWzZsgXBwcHo3Lkz3nrrLbz66quYPXs2NBqNHLvW4IQZdFAqJBRaAXVAU7nLISIiqjH16p/xRqMRAODv7w8ASEhIQFFREfr27eto07ZtW4SHh2P37t0AgN27d6NDhw4IDg52tOnfvz9MJhOOHTtW7nbMZjNMJpPT5O5USoVjoLIusovM1RAREdWcehN2bDYbpk6dip49e6J9+/YAgNTUVGg0Gvj6+jq1DQ4ORmpqqqPNjUHHvty+rDzz5s2DwWBwTE2bsicDuH4qS9eMYYeIiFxHvQk7cXFxOHr0KL766qta39aMGTNgNBod08WLF2t9mw2BI+w07YAiq5C5GiIioppRL8LOpEmTsHbtWmzbtg1NmjRxzA8JCYHFYkF2drZT+7S0NISEhDja3Hx1lv21vc3NtFot9Hq900RAoLcGWoWAQqND0lWL3OUQERHVCFnDjhACkyZNwpo1a7B161ZERkY6LY+JiYFarUZ8fLxjXlJSEpKTkxEbGwsAiI2NxZEjR5Cenu5os3nzZuj1ekRHR9fNjrgISZIQpLMBAA6lmmWuhoiIqGbIejVWXFwcVq1ahR9//BE+Pj6OMTYGgwEeHh4wGAx49tlnMW3aNPj7+0Ov12Py5MmIjY1Fjx49AAD9+vVDdHQ0Ro8ejQULFiA1NRWvv/464uLioNVq5dy9BinYQ+BiPnCAYYeIiFyErGFnyZIlAIBevXo5zV+xYgXGjRsHAHj//fehUCgwbNgwmM1m9O/fHx999JGjrVKpxNq1azFx4kTExsbCy8sLY8eOxZw5c+pqN1xKiM4GIWw4n12MFGMBQg0ecpdERER0R2QNO0LcfhCsTqfD4sWLsXjx4grbREREYN26dTVZmtvSKgFLyklow9pie1IGnu4WLndJREREd6ReDFCm+qXgzH4AwNYT6bdpSUREVP8x7FAZBWf2AQB2ns6EuZiPQSciooaNYYfKsKSdgZ9OgXyLFXvPZsldDhER0R1h2KFy3RVaciUbT2UREVFDx7BD5eoapgMAxJ9Iq9RAciIiovqKYYfK1SlYA61KgYtZBTiRmiN3OURERNXGsEPl0qkUuK9VIwDAxmPlP1CViIioIWDYoQr1b1fy9PiNx9Ju05KIiKj+YtihCvWNCoZSISExxYSLWflyl0NERFQtDDtUIT8vDbo18wfAU1lERNRwMezQLfVznMpi2CEiooaJYYduqV+7EADA/gvXkJ5TKHM1REREVcewQ7fU2NcDnZr6Qghgw1H27hARUcPDsEO3NbhjKABg7R8pMldCRERUdQw7dFsPdygJO/suZCHVyFNZRETUsDDs0G2F+XogJsIPQgDrjrB3h4iIGhaGHaqUR+ynsg5fkbkSIiKiqmHYoUp5uEMoJAk4kJyNy9kFcpdDRERUaQw7VCnBep3jBoM/HWLvDhERNRwMO1Rpj3dpDABYc/AShBAyV0NERFQ5DDtUaQM7hEKjUuBkWi6OXTHJXQ4REVGlMOxQpRk81HgoquTxEWsOXpa5GiIiosph2KEqsZ/K+vHQFRRbbTJXQ0REdHsMO1QlD7RpBH8vDTJzzfj1dKbc5RAREd0Www5ViVqpwKOdwgAA3yVckrkaIiKi22PYoSp7IqYJAGDTsTRcy7PIXA0REdGtMexQlbVvbED7xnpYrDYOVCYionqPYYeqZcTd4QCAr/dd5D13iIioXmPYoWp5tFMYdGoFktJycOhittzlEBERVYhhh6rF4KHGwx1KHg769b6LMldDRERUMYYdqranSk9l/XjoCowFRTJXQ0REVD6GHaq2u5v5oXWwNwqKrLwMnYiI6i2GHao2SZIwJrYZAOA/ey7AZuNAZSIiqn8YduiOPN6lMXy0KpzNzMNvvKMyERHVQww7dEe8tCoMK73J4L93n5e3GCIionIw7NAdGx0bAQCIP5GO5Kv5MldDRETkTCV3AVQ/JSYmVql95xAtDqWaMX/NXjx3l6HCdoGBgQgPD7/T8oiIiCqNYYecmLIyAACjRo2q0vt0EZ0Q/NQ7WHs8Cx9PfhS2wtxy23l4euJEYiIDDxER1RmGHXJSkGsCAAx6/m9o0zGm0u8TAohPtcEIHQbM/A/aGmxl2qQln8GX705HZmYmww4REdUZhh0qV0BYBJq0alel93T3MWHT8TScK9Ci113NoFJwSBgREcmPf42oxrQO9oG3VoV8ixUnUnPkLoeIiAgAww7VIKVCQpemvgCA/eev8SaDRERULzDsUI3q0MQAD7USxoIinExj7w4REcmPYYdqlFqpQJdwXwDA7+ezIAR7d4iISF4MO1TjOjYxQKtS4Fp+EU6nl38JOhERUV1h2KEap1Up0bl07M6ec1mwsXeHiIhkxLBDtaJLU19oVQpk5VmQxCuziIhIRgw7VCu0aiW6RvgBAPacvQorr8wiIiKZMOxQrenU1BeeGiVMhcU4etkodzlEROSmGHao1qiVCnSL9AdQcmVWUdknSBAREdU6WcPOL7/8gsGDByMsLAySJOGHH35wWi6EwMyZMxEaGgoPDw/07dsXp06dcmqTlZWFkSNHQq/Xw9fXF88++yxyc3kFUH3RPswAg4ca+RYrkkxKucshIiI3JGvYycvLQ6dOnbB48eJyly9YsAAffPABli5dir1798LLywv9+/dHYWGho83IkSNx7NgxbN68GWvXrsUvv/yCCRMm1NUu0G0oFRLuaxUIADhlUkCpbyRzRURE5G5kfRDowIEDMXDgwHKXCSGwaNEivP7663jssccAAP/+978RHByMH374AU899RQSExOxYcMG7Nu3D127dgUAfPjhh3j44Yfxj3/8A2FhYXW2L1Sx5oFeaOLrgUvZBfB7YJzc5RARkZupt2N2zp07h9TUVPTt29cxz2AwoHv37ti9ezcAYPfu3fD19XUEHQDo27cvFAoF9u7dW+G6zWYzTCaT00S1R5Ik3N+6EQABr+gHkJhhkbskIiJyI/U27KSmpgIAgoODneYHBwc7lqWmpiIoKMhpuUqlgr+/v6NNeebNmweDweCYmjZtWsPV080a+WjRzKtkhPLHB4wosnK0MhER1Y16G3Zq04wZM2A0Gh3TxYsX5S7JLbT3tcKab0SysRif7zovdzlEROQm6m3YCQkJAQCkpaU5zU9LS3MsCwkJQXp6utPy4uJiZGVlOdqUR6vVQq/XO01U+7RKIHvHSgDA+5tPIsVYIG9BRETkFupt2ImMjERISAji4+Md80wmE/bu3YvY2FgAQGxsLLKzs5GQkOBos3XrVthsNnTv3r3Oa6bbyz28BW0C1MizWPH6mqN8KjoREdU6WcNObm4uDh06hEOHDgEoGZR86NAhJCcnQ5IkTJ06FW+//TZ++uknHDlyBGPGjEFYWBiGDBkCAIiKisKAAQMwfvx4/P7779i5cycmTZqEp556ildi1VsCL3Q1QKNUIP5EOr4/cFnugoiIyMXJGnb279+PLl26oEuXLgCAadOmoUuXLpg5cyYA4K9//SsmT56MCRMm4O6770Zubi42bNgAnU7nWMeXX36Jtm3bok+fPnj44Ydx7733YtmyZbLsD1VOhEGNKX1bAQBm/3wMqcbC27yDiIio+mS9z06vXr1ueRpDkiTMmTMHc+bMqbCNv78/Vq1aVRvlUS16/v7m2HQsFX9cMmLG94fx2bi7IUmS3GUREZELqrdjdsi1qZQK/OPJTtAoFdiWlIHVCZfkLomIiFwUww7JplWwD156qDUA4K2fj/PqLCIiqhUMOySr8fdFonNTX+SYi/Hqd0d4dRYREdU4hh2Slf10llalwC8nM7D8t3Nyl0RERC6GYYdk1zLIG288Eg0AmL/+BA4mX5O5IiIiciUMO1QvjOwejkEdQlFsE5i06iCM+UVyl0RERC6CYYfqBUmSMG9YB4T7e+JydgFe/e4wx+8QEVGNYNihekOvU+Nff+oCtVLChmOp+GLPBblLIiIiF8CwQ/VKxya+mDEwCgDw9tpEHL1slLkiIiJq6Bh2qN75c89meCg6GBarDc9/kYCsPIvcJRERUQMm6+MiyD0lJibets3o1sCRZCUuZxdg3Mc78Mb9/lAqKn6cRGBgIMLDw2uyTCIichEMO1RnTFkZAIBRo0ZVqr06MAIho/+Bw+lAv79+hOxtn1XY1sPTEycSExl4iIioDIYdqjMFuSYAwKDn/4Y2HWMq9Z5L+RL2ZgKGbkPx0MBH0dTLVqZNWvIZfPnudGRmZjLsEBFRGQw7VOcCwiLQpFW7SrVtAsB6OhP7L1zDgWtqtGzRFI18tLVbIBERuRQOUKZ6L7ZFACL8PVFsE1h7+AryLcVyl0RERA0Iww7VewpJwoD2ITB4qGEqLMbawykotpY9nUVERFQehh1qEHRqJR7tFAaNSoEUYyHiT6TzDstERFQpDDvUYPh7aTCoQygkCTiRmoPfz2fJXRIRETUADDvUoIT7e+LBNkEAgD1ns3AyLUfmioiIqL5j2KEGp0NjA7o09QUAbDqehqvmim82SERExLBDDdK9rQIRGegFq01gV4YKKv/GcpdERET1FMMONUgKScKAdiEI1mthsUkIHv4WruZb5S6LiIjqIYYdarA0KgUe7RQGb5WAyhCEt37NgrGgSO6yiIionmHYoQbNU6PCvUFFKM65imRjMZ77fB8Ki9jDQ0RE1zHsUIPnpQLSV8+Cp1rCvvPXMGnVQRTxpoNERFSKYYdcQlHGecy41w8alQJbEtPw4n8ZeIiIqATDDrmMdo20+HhUDDRKBdYfTcWkVQdgKWbgISJydww75FIebBuEj8fEQKNSYOOxNAYeIiJi2CHX82CbICwbXRJ4Nh1PQxwDDxGRW2PYIZfUq00QPhnTFRqVApuPp2H8v/cjz1wsd1lERCQDhh1yWQ+0boTlY7vCQ63EjpMZePqTPcjMNctdFhER1TGGHXJp97VqhFXju8PPU43Dl4x4/KOdfHgoEZGbYdghl9cl3A/fTbwH4f6euJhVgMcX78SW42lyl0VERHVEJXcBRDUlMTHxlsvn3OeDf+wqxtEMC8b/ez+GRXljRDtvKBW3fmp6YGAgwsPDa7JUIiKqQww71OCZsjIAAKNGjbp9Y4US/n3Gw+euR/BtYi7+s3E3Mtf+A9acqxW+xcPTEycSExl4iIgaKIYdavAKck0AgEHP/w1tOsZU6j0X84pxIEsJXXgHNItbiY5+VjTzskG6qZMnLfkMvnx3OjIzMxl2iIgaKIYdchkBYRFo0qpdpdo2AdA234JNx9KQairEgSwVMuGJPm2DoPdQ126hRERUpzhAmdyWn6cGT3ZtgvtaBkKpkJCclY//7L2APy5mw2YTcpdHREQ1hD075NYUkoS7IvwQ2cgLW46n4YqxENtPZuCPS9m4t1Ug1Mw8REQNHnt2iFDSy/NETBP0atMIOrUC1/KL8PMfKfg1XQVNcAu5yyMiojvAsENUSpIkdGrii3H3NENMhB+UCgkZZgVCx/0TC3Zew+FL2XKXSERE1cCwQ3QTrUqJe1sGYkyPCDT1tAIA9lwuxKP/2olRn+7FrjOZEILnt4iIGgqGHaIK6D3U6BZoxZXlf8EDER5QKiT8djoTf/pkLx5bvBNf/Z7Mh4sSETUAHKBMdBtFmcnop0/B0wNb4YcTeYg/l4/Dl4w4fOkIZv90FPeF69C3uSda+qkh3XyjnlvgnZmJiOoGww7RLZR3d2aFpwHe7fvAu1N/wL8xNp8twOazBSi6egn5STuRf+Z3WFJOAcJ2y3XzzsxERHWDYYfoFm51d2YhgExzEc7lKnA5XwF1QBMY7hkBwz0joJYEAnUCfhob/DQC3moBTyVgfwyX/c7Mv/76K6KiogAAVptAfpFAjsUGY6ENRrMNRrMVJnPJ61yLDcUCsNkAmxCwCkCpALzUCniqJXiqFfBSS/DRKtC0kR+iIpvA31uDAC8NdGplnR43IqL6hGGHqBIqujtzUwBdAFiKbTiXmYfTGbm4mJUPc7ENKQUSUgquD4uTJECnUkKnVqBY0QIhYxdhevw1KH77AwqdFxRarxqs2AjgvOOVl0ZZGny0CPDSwN9LgwBvLfQeKnhrVfDSqOClLf1eq4SPruS1V+my2z0slYioPmPYIaoBGpUCbUJ80CbEBzYhkG4y44qxAGmmQmTmWGAsLILVJlBQZEVBkRWABtqQluWuSyUJaJWAVuH8VaMQUEiAhJLgJAGwCaDYBhQJCUU2oMgG5OQXID0tDQGNI1FgU6DYBuRZrMjLKsDFrIJq7Z9WKcFDLcFDJcFbp4afjye8tSoE+WgRavBAmK8OjX09EOrrgVCDjj1JRFSvMOwQ1TCFJCHEoEOIQeeYJ4RAnrkk6BQWWZF0cDe2rl6OvqNeRHTHztCqFNCqFNCoFFAp7uwiyeN7t+PTd6cgpfS1pPGE0ssXSk89FB4GKL18ofDQQ+lpgELnBUnjCYXGA5LGA4rSqeR7T0jKkl8RZquA2SqQDQC5ViCz8JY1GLQKBHkpEeKtRLCXCsHe17/391BAUc5Abg7YJqLawrBDVAckSYK3TgVvXcn/cunIQ+HZBPgrzQjR627z7qqpzlPgyyOEDTZYSnuOgGKbhOQzJ/Dbum9LQ5EnlN7+UOobQVU6KX0aQaHRlY43suFUVlHZ9RZbUGxMQ1F2KoqzU1GcnYLi7FQoC41I2L4BrVs0q3bNRETlcZmws3jxYvz9739HamoqOnXqhA8//BDdunWTuywi2VTlKfCVZU49jcKzCRUGKSGAIpsF+VYJecVAbrGEvBum/GIAKg3UAU2hDmha5v39PjmGRj6nEe7viQh/TzT19yz5PsATob4eCPTWQKviKTIiqhqXCDtff/01pk2bhqVLl6J79+5YtGgR+vfvj6SkJAQFBcldHpHLqW6QstkEcszFMBYUwVRQhOzSrxnZJlw15UOp80ZGjhkZOWYkXLhW7jp8dCo08tEi0FuLRt5aBHproPdQw1OjgrdWCU9NySBr+1etSgnNDacJNUoFtGolNEoF1EqpSvdGIqKGySXCzsKFCzF+/Hj8+c9/BgAsXboU//vf//DZZ5/htddek7k6IrJTKCQYPNQweKid5l86lYWFbz2FTz7/EoawFkjNK0ZarhVpecVIzbUiNdeKa4VWFNuAnMJi5BQW42xG3h3XIwFQKwGVQoJaIUGtlKBWoPSrBLUSzvMd35cs8/PxQnCAH3RqJXQaJTzUpZNGUXLl3Q3zdPavmpLAdbuQlZycjMzMTAAlY76KbYCldOyUuVg4xlFZSl/bl1mKr8+3iZLbHSgkCQoJUEqAj483AgP8S0OfAlqV0hEE7d/fOF9byXFkAtcfoXLz01RufrjKjY9bKe/BK0pJgkIhQamQoFJIUEgl3yskMJxStTT4sGOxWJCQkIAZM2Y45ikUCvTt2xe7d++WsTIiqiz7zRvHjx15y3YKrRcUXn5QevmVDLr28oXS0xeS1hMKja5ksLVaB0mjKxlgrdZBUqkhKTWQlKrS768HLQHAYi0JEeX/2b2dfAAZVX6XQgI0Sql0uj7fngGsVhuuXs0EJCUktbZkUtTU6bscwDF8veEpCW8lAVWlKPmqvPl16VeVVDJPqbj+Va0oCVP21z5eHvD3NUCtlKBSKKBUSLg5TpWXryobusp9b5ktlBAQZYOiuD5PADd8L0qX3/DJLV14u3ZOy25YNwAYjSbkFxTAVhqwi20CVhtgFQJFtpL7gVlL5xeLkteOdqJ0vs0+//o8qwC2vtwLEQE1eYuNymvwYSczMxNWqxXBwcFO84ODg3HixIly32M2m2E2mx2vjUYjAMBkMtVobbm5uQCAS6eOwVyQX6PrTks+AwBIPX8SZ7w86/16a3PdrLnhr/v88YMAgLsHjkCTyFZ3uLai0ikHAJB88ggStvzoWHdJrJFggwI2SI7vhSSVvlaUzitdJpXMu7GtDRJyTNlIuXAGkkoLKNWQ1Foo1BpIKi0kpRaSWlMyT6WFpNI4BRYbgGKURKWKSJrrx1cUmZ3+oClggxK2kmqEDYrSCh2TsO+FKP0vAEgwmwuQdvEcYrreDQ8vbxTZBIqsKP1a0htUXHoLA/u84lvfCLzO2cux1OhaL9bo2qh8iSeS4Neh/FtuVJf97/ZtH84sGrjLly8LAGLXrl1O86dPny66detW7ntmzZpl/2ccJ06cOHHixKmBTxcvXrxlVmjwPTuBgYFQKpVIS0tzmp+WloaQkJBy3zNjxgxMmzbN8dpmsyErKwsBAQE1ej7YZDKhadOmuHjxIvR6fY2t1xXw2JSPx6ViPDbl43EpH49LxVzp2AghkJOTg7CwsFu2a/BhR6PRICYmBvHx8RgyZAiAkvASHx+PSZMmlfserVYLrVbrNM/X17fWatTr9Q3+A1VbeGzKx+NSMR6b8vG4lI/HpWKucmwMBsNt2zT4sAMA06ZNw9ixY9G1a1d069YNixYtQl5enuPqLCIiInJfLhF2RowYgYyMDMycOROpqano3LkzNmzYUGbQMhEREbkflwg7ADBp0qQKT1vJRavVYtasWWVOmRGPTUV4XCrGY1M+Hpfy8bhUzB2PjSTE7a7XIiIiImq47uzxykRERET1HMMOERERuTSGHSIiInJpDDtERETk0hh2atHixYvRrFkz6HQ6dO/eHb///rvcJdWpX375BYMHD0ZYWBgkScIPP/zgtFwIgZkzZyI0NBQeHh7o27cvTp06JU+xdWjevHm4++674ePjg6CgIAwZMgRJSUlObQoLCxEXF4eAgAB4e3tj2LBhZe4S7oqWLFmCjh07Om52Fhsbi/Xr1zuWu+txudn8+fMhSRKmTp3qmOeux2b27NmQJMlpatu2rWO5ux4XALh8+TJGjRqFgIAAeHh4oEOHDti/f79juTv9DmbYqSVff/01pk2bhlmzZuHAgQPo1KkT+vfvj/T0dLlLqzN5eXno1KkTFi9eXO7yBQsW4IMPPsDSpUuxd+9eeHl5oX///igsLKzjSuvWjh07EBcXhz179mDz5s0oKipCv379kJeX52jz0ksv4eeff8bq1auxY8cOXLlyBUOHDpWx6rrRpEkTzJ8/HwkJCdi/fz969+6Nxx57DMeOHQPgvsflRvv27cPHH3+Mjh07Os1352PTrl07pKSkOKbffvvNscxdj8u1a9fQs2dPqNVqrF+/HsePH8d7770HPz8/Rxu3+h1cEw/jpLK6desm4uLiHK+tVqsICwsT8+bNk7Eq+QAQa9ascby22WwiJCRE/P3vf3fMy87OFlqtVvz3v/+VoUL5pKenCwBix44dQoiS46BWq8Xq1asdbRITEwUAsXv3brnKlI2fn5/49NNPeVyEEDk5OaJVq1Zi8+bN4oEHHhBTpkwRQrj3Z2bWrFmiU6dO5S5z5+Py6quvinvvvbfC5e72O5g9O7XAYrEgISEBffv2dcxTKBTo27cvdu/eLWNl9ce5c+eQmprqdIwMBgO6d+/udsfIaDQCAPz9/QEACQkJKCoqcjo2bdu2RXh4uFsdG6vViq+++gp5eXmIjY3lcQEQFxeHQYMGOR0DgJ+ZU6dOISwsDM2bN8fIkSORnJwMwL2Py08//YSuXbviySefRFBQELp06YJPPvnEsdzdfgcz7NSCzMxMWK3WMo+rCA4ORmpqqkxV1S/24+Dux8hms2Hq1Kno2bMn2rdvD6Dk2Gg0mjIPp3WXY3PkyBF4e3tDq9XihRdewJo1axAdHe32x+Wrr77CgQMHMG/evDLL3PnYdO/eHStXrsSGDRuwZMkSnDt3Dvfddx9ycnLc+ricPXsWS5YsQatWrbBx40ZMnDgRL774Ij7//HMA7vc72GUeF0HUEMXFxeHo0aNOYwzcXZs2bXDo0CEYjUZ8++23GDt2LHbs2CF3WbK6ePEipkyZgs2bN0On08ldTr0ycOBAx/cdO3ZE9+7dERERgW+++QYeHh4yViYvm82Grl27Yu7cuQCALl264OjRo1i6dCnGjh0rc3V1jz07tSAwMBBKpbLMiP+0tDSEhITIVFX9Yj8O7nyMJk2ahLVr12Lbtm1o0qSJY35ISAgsFguys7Od2rvLsdFoNGjZsiViYmIwb948dOrUCf/85z/d+rgkJCQgPT0dd911F1QqFVQqFXbs2IEPPvgAKpUKwcHBbntsbubr64vWrVvj9OnTbv2ZCQ0NRXR0tNO8qKgoxyk+d/sdzLBTCzQaDWJiYhAfH++YZ7PZEB8fj9jYWBkrqz8iIyMREhLidIxMJhP27t3r8sdICIFJkyZhzZo12Lp1KyIjI52Wx8TEQK1WOx2bpKQkJCcnu/yxKY/NZoPZbHbr49KnTx8cOXIEhw4dckxdu3bFyJEjHd+767G5WW5uLs6cOYPQ0FC3/sz07NmzzC0tTp48iYiICABu+DtY7hHSruqrr74SWq1WrFy5Uhw/flxMmDBB+Pr6itTUVLlLqzM5OTni4MGD4uDBgwKAWLhwoTh48KC4cOGCEEKI+fPnC19fX/Hjjz+Kw4cPi8cee0xERkaKgoICmSuvXRMnThQGg0Fs375dpKSkOKb8/HxHmxdeeEGEh4eLrVu3iv3794vY2FgRGxsrY9V147XXXhM7duwQ586dE4cPHxavvfaakCRJbNq0SQjhvselPDdejSWE+x6bl19+WWzfvl2cO3dO7Ny5U/Tt21cEBgaK9PR0IYT7Hpfff/9dqFQq8c4774hTp06JL7/8Unh6eor//Oc/jjbu9DuYYacWffjhhyI8PFxoNBrRrVs3sWfPHrlLqlPbtm0TAMpMY8eOFUKUXPr4xhtviODgYKHVakWfPn1EUlKSvEXXgfKOCQCxYsUKR5uCggLxl7/8Rfj5+QlPT0/x+OOPi5SUFPmKriPPPPOMiIiIEBqNRjRq1Ej06dPHEXSEcN/jUp6bw467HpsRI0aI0NBQodFoROPGjcWIESPE6dOnHcvd9bgIIcTPP/8s2rdvL7RarWjbtq1YtmyZ03J3+h0sCSGEPH1KRERERLWPY3aIiIjIpTHsEBERkUtj2CEiIiKXxrBDRERELo1hh4iIiFwaww4RERG5NIYdIiIicmkMO0Qkq169emHq1KmybX/cuHEYMmRIhfXk5+dj2LBh0Ov1kCQJ2dnZ5c4jovqLTz0nIrrB999/D7Va7Xj9+eef49dff8WuXbsQGBgIg8GApUuXlplHRPUXww4R0Q38/f2dXp85cwZRUVFo3779LecRUf3F01hEVG+YzWa88soraNy4Mby8vNC9e3ds377dsXzlypXw9fXFxo0bERUVBW9vbwwYMAApKSmVWr/VasW0adPg6+uLgIAA/PWvf8XNT8y58TRWr1698N577+GXX36BJEno1atXufOIqH5j2CGiemPSpEnYvXs3vvrqKxw+fBhPPvkkBgwYgFOnTjna5Ofn4x//+Ae++OIL/PLLL0hOTsYrr7xSqfW/9957WLlyJT777DP89ttvyMrKwpo1ayps//3332P8+PGIjY1FSkoKvv/++3LnEVH9xtNYRFQvJCcnY8WKFUhOTkZYWBgA4JVXXsGGDRuwYsUKzJ07FwBQVFSEpUuXokWLFgBKAtKcOXMqtY1FixZhxowZGDp0KABg6dKl2LhxY4Xt/f394enpCY1Gg5CQEMf88uYRUf3FsENE9cKRI0dgtVrRunVrp/lmsxkBAQGO156eno6gAwChoaFIT0+/7fqNRiNSUlLQvXt3xzyVSoWuXbuWOZVFRK6FYYeI6oXc3FwolUokJCRAqVQ6LfP29nZ8f+OVUgAgSRLDChHdEsfsEFG90KVLF1itVqSnp6Nly5ZOU02cLjIYDAgNDcXevXsd84qLi5GQkHDH6yai+o09O0RUL7Ru3RojR47EmDFj8N5776FLly7IyMhAfHw8OnbsiEGDBt3xNqZMmYL58+ejVatWaNu2LRYuXMgbAhK5AYYdIqo3VqxYgbfffhsvv/wyLl++jMDAQPTo0QOPPPJIjaz/5ZdfRkpKCsaOHQuFQoFnnnkGjz/+OIxGY42sn4jqJ0nwZDcRERG5MI7ZISIiIpfGsENELsPb27vC6ddff5W7PCKSCU9jEZHLOH36dIXLGjduDA8PjzqshojqC4YdIiIicmk8jUVEREQujWGHiIiIXBrDDhEREbk0hh0iIiJyaQw7RERE5NIYdoiIiMilMewQERGRS2PYISIiIpf2/0qdeFWjn9sJAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.histplot(test[\"len_diff\"], kde=True, bins=20)\n", + "plt.title(\"test sentence length diff Distribution\")\n", + "plt.xlabel(\"len_diff\")\n", + "plt.ylabel(\"Count\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACZs0lEQVR4nOzdeXxV5YH/8c/NHggJhCUB2RcFFVxQgYobUhn3JXUb27qgtg7aCnU6Zbq4VMV26tIFtTIWtY4/K6IWrEIFlxYFVKwKLoiyCiQgkIQt+/39cUg0sofknnuTz/v1Oq9zcu/Jud+A1dNvnuc5kWg0GkWSJEmSJEmKoaSwA0iSJEmSJKnlsZSSJEmSJElSzFlKSZIkSZIkKeYspSRJkiRJkhRzllKSJEmSJEmKOUspSZIkSZIkxZyllCRJkiRJkmLOUkqSJEmSJEkxZyklSZIkSZKkmLOUkuLcLbfcQiQSCTtGk+jZsydXXHFF2DH2ySOPPEIkEmH58uVN/llXXHEFPXv2rPt6+fLlRCIRfvOb3zT5Z0Pz/mdOktQyNef/tnk/tWveT0mJwVJKUoO9+eab/Md//AeDBw8mNTU1Yf7D++qrrxKJROq29PR08vLyOPnkk7nzzjtZv359o3zOtm3buOWWW3j11Vcb5XqNKZ6zSZLUUtTU1PDII49wzjnn0K1bN1q3bs3hhx/O7bffTllZWdjx9sj7qfjOJiUKSylJDfbCCy/wv//7v0QiEXr37h12nP32gx/8gD//+c889NBD/Od//ie5ubncfPPNDBgwgJdffrneud/5znfYvn07PXr02Ofrb9u2jVtvvXW/b1QmTZrE4sWL9+t79teesv3sZz9j+/btTfr5kiQp+O/xlVdeyfr16/n+97/Pfffdx3HHHcfNN9/M6aefTjQaDTviXnk/5f2UdCBSwg4gKXFdd911/Nd//ReZmZlcf/31fPLJJ2FH2i8nnHAC3/rWt+q99t5773HaaadRUFDAhx9+SOfOnQFITk4mOTm5SfNs3bqV1q1bk5qa2qSfszcpKSmkpPifB0mSmlpaWhqvv/463/jGN+peu+aaa+jZsyc333wzs2fPZuTIkSEm3Dvvp3bN+ylp3zhSSoojc+bM4dhjjyUjI4M+ffrwxz/+cbfnPv744wwePJjMzExyc3O55JJLWLVqVd37119/PVlZWWzbtm2n77300kvJz8+nurp6t9cvLCzkyiuvpGvXrqSnp9O5c2fOPffcemsA5OXlkZmZ2bAfdjeKi4u58cYb6datG+np6fTt25df/epX1NTU1J3z1TUBHnroIfr06UN6ejrHHnssb7311gF9/hFHHMF9991HcXExf/jDH+pe39UaCG+//TajRo2iQ4cOZGZm0qtXL6666qq6jB07dgTg1ltvrRvafssttwDBOgdZWVl89tlnnHHGGbRp04bLLrus7r2vroHwVffeey89evQgMzOTk046iUWLFtV7/+STT+bkk0/e6fu+es29ZdvVGghVVVX88pe/rPuz7tmzJ//93/9NeXl5vfN69uzJWWedxZw5czjuuOPIyMigd+/ePPbYY7v+A5ckqZEl0v1UWlpavUKq1vnnnw/ARx99tK8/dj3eT3k/JSUKq1spTixcuJDTTjuNjh07csstt1BVVcXNN99MXl7eTufecccd/PznP+eiiy7i6quvZv369fz+97/nxBNP5F//+hdt27bl4osvZuLEifztb3/jwgsvrPvebdu2MX36dK644oo9/qaqoKCADz74gBtuuIGePXuybt06XnrpJVauXLnb/8AfqG3btnHSSSexevVqvve979G9e3feeOMNxo8fz9q1a7nvvvvqnf/EE0+wefNmvve97xGJRPj1r3/NBRdcwNKlSw/ot2Pf+ta3GD16NH//+9+54447dnnOunXr6v6+fvKTn9C2bVuWL1/OM888A0DHjh154IEHuO666zj//PO54IILABg0aFDdNaqqqhg1ahTDhw/nN7/5Da1atdpjrscee4zNmzczZswYysrK+O1vf8uIESNYuHDhLv852Z19yfZ1V199NY8++ijf+ta3+NGPfsT8+fOZMGECH330Ec8++2y9cz/99NO6P8PLL7+cP/3pT1xxxRUMHjyYww47bJ9zSpK0v5rL/VRhYSEAHTp02O8/A++nvJ+SEkpUUlw477zzohkZGdEVK1bUvfbhhx9Gk5OTo1/9n+ry5cujycnJ0TvuuKPe9y9cuDCakpJS93pNTU30oIMOihYUFNQ776mnnooC0X/84x+7zbJp06YoEP2f//mffc4/ZsyY6P7+K6VHjx7Ryy+/vO7rX/7yl9HWrVtHP/nkk3rn/eQnP4kmJydHV65cGY1Go9Fly5ZFgWj79u2jGzdurDvvr3/9axSITp8+fY+f+8orr0SB6JQpU3Z7zhFHHBFt165d3deTJ0+OAtFly5ZFo9Fo9Nlnn40C0bfeemu311i/fn0UiN588807vXf55ZdHgehPfvKTXb7Xo0ePuq9rf97MzMzo559/Xvf6/Pnzo0B07Nixda+ddNJJ0ZNOOmmv19xTtptvvrne3+W7774bBaJXX311vfNuuummKBB9+eWX617r0aPHTv98rVu3Lpqenh790Y9+tNNnSZLUmBL9fqrWyJEjo9nZ2dFNmzbt9Vzvp7yfkhKZ0/ekOFBdXc3MmTM577zz6N69e93rAwYMYNSoUfXOfeaZZ6ipqeGiiy7iiy++qNvy8/Pp168fr7zyCgCRSIQLL7yQF154gS1bttR9/1/+8hcOOugghg8fvts8mZmZpKWl8eqrr7Jp06ZG/ml3b8qUKZxwwgm0a9eu3s82cuRIqqur+cc//lHv/Isvvph27drVfX3CCScAsHTp0gPOkpWVxebNm3f7ftu2bQF4/vnnqaysbPDnXHfddft87nnnncdBBx1U9/Vxxx3HkCFDeOGFFxr8+fui9vrjxo2r9/qPfvQjAP72t7/Ve/3QQw+t+7uA4DeJhxxySKP8vUiStDvN5X7qzjvvZNasWdx111119xv7w/upPfN+SoovllJSHFi/fj3bt2+nX79+O713yCGH1Pt6yZIlRKNR+vXrR8eOHettH330EevWras79+KLL2b79u1MmzYNgC1btvDCCy9w4YUX7jTH/avS09P51a9+xYsvvkheXh4nnngiv/71r+uGkjeVJUuWMGPGjJ1+rtoFPr/6swH1bjiBuhuqxijStmzZQps2bXb7/kknnURBQQG33norHTp04Nxzz2Xy5Mk7rQmwJykpKXTt2nWfz9/VPx8HH3xwvXUZmsKKFStISkqib9++9V7Pz8+nbdu2rFixot7rX/97geDvJpYFpySp5WkO91N/+ctf+NnPfsbo0aP3q2j5+s/m/dTueT8lxRfXlJISTE1NDZFIhBdffHGXaxhkZWXVHQ8dOpSePXvy1FNP8e///u9Mnz6d7du3c/HFF+/1c2688UbOPvtsnnvuOWbOnMnPf/5zJkyYwMsvv8xRRx3VqD9TrZqaGr75zW/y4x//eJfvH3zwwfW+3t0aDtEDfHxyZWUln3zyCYcffvhuz4lEIjz99NPMmzeP6dOnM3PmTK666iruvvtu5s2bV+/vYXfS09NJSmrc3w1EIpFd/vx7WoR1f669L5rq70WSpMYSj/dTL730Et/97nc588wzefDBBw/oZ/N+6sB4PyXFjqWUFAc6duxIZmYmS5Ys2em9xYsX1/u6T58+RKNRevXqtdNNxa5cdNFF/Pa3v6W0tJS//OUv9OzZk6FDh+5Trj59+vCjH/2IH/3oRyxZsoQjjzySu+++m8cff3zffrD91KdPH7Zs2RL6o4+ffvpptm/fvtNQ/10ZOnQoQ4cO5Y477uCJJ57gsssu48knn+Tqq6/e55uOfbWrfz4++eSTegultmvXbpfDur/+27f9ydajRw9qampYsmQJAwYMqHu9qKiI4uJievTosc/XkiSpqSTy/dT8+fM5//zzOeaYY3jqqadISWn4/03zfmrPvJ+S4ovT96Q4kJyczKhRo3juuedYuXJl3esfffQRM2fOrHfuBRdcQHJyMrfeeutOvymJRqNs2LCh3msXX3wx5eXlPProo8yYMYOLLrpor3m2bdtGWVlZvdf69OlDmzZt9ms49f666KKLmDt37k4/MwSPNq6qqmqyz6713nvvceONN9KuXTvGjBmz2/M2bdq005//kUceCVD3Z1T79Jfi4uJGyfbcc8+xevXquq/ffPNN5s+fz+mnn173Wp8+ffj4449Zv3593Wvvvfcer7/+er1r7U+2M844A2Cnp/Xcc889AJx55pn79XNIktQUEvV+6qOPPuLMM8+kZ8+ePP/882RmZu7zz7wr3k/tmfdTUnxxpJQUJ2699VZmzJjBCSecwH/8x39QVVXF73//ew477DDef//9uvP69OnD7bffzvjx41m+fDnnnXcebdq0YdmyZTz77LNce+213HTTTXXnH3300fTt25ef/vSnlJeX79NQ808++YRTTz2Viy66iEMPPZSUlBSeffZZioqKuOSSS+rOW7FiBX/+858BePvttwG4/fbbgeC3Qd/5znf268/gP//zP5k2bRpnnXVW3SNvt27dysKFC3n66adZvnx5gx6NvDv//Oc/KSsro7q6mg0bNvD6668zbdo0cnJyePbZZ8nPz9/t9z766KPcf//9nH/++fTp04fNmzczadIksrOz6246MjMzOfTQQ/nLX/7CwQcfTG5uLocffvgeh7HvSd++fRk+fDjXXXcd5eXl3HfffbRv377e8PyrrrqKe+65h1GjRjF69GjWrVvHgw8+yGGHHUZpaWndefuT7YgjjuDyyy/noYceori4mJNOOok333yTRx99lPPOO49TTjmlQT+PJEmNLdHupzZv3syoUaPYtGkT//mf/7nTYtd9+vRh2LBh+/Vn4P3Unnk/JcWZ2D/wT9LuvPbaa9HBgwdH09LSor17944++OCDOz1OttbUqVOjw4cPj7Zu3TraunXraP/+/aNjxoyJLl68eKdzf/rTn0aBaN++ffcpxxdffBEdM2ZMtH///tHWrVtHc3JyokOGDIk+9dRT9c6rfRTwrrZdPUb3677+CONoNBrdvHlzdPz48dG+fftG09LSoh06dIh+4xvfiP7mN7+JVlRURKPRLx/pu6tHLLObx/LuKXdqamq0Y8eO0RNPPDF6xx13RNetW7fT93z9EcbvvPNO9NJLL4127949mp6eHu3UqVP0rLPOir799tv1vu+NN96o+zv9arbLL7882rp1613m290jjP/nf/4nevfdd0e7desWTU9Pj55wwgnR9957b6fvf/zxx6O9e/eOpqWlRY888sjozJkzd7rmnrLt6p+5ysrK6K233hrt1atXNDU1NdqtW7fo+PHjo2VlZfXO69GjR/TMM8/cKdPuHq0sSVJjS6T7qdr/xu9u+/p90q54P+X9lJTIItGoK6VJkiRJkiQptlxTSpIkSZIkSTFnKSVJkiRJkqSYs5SSJEmSJElSzFlKSZIkSZIkKeYspSRJkiRJkhRzllKSJEmSJEmKuZSwAzS1mpoa1qxZQ5s2bYhEImHHkSRJcS4ajbJ582a6dOlCUpK/vwPvpyRJ0v7Z1/upZl9KrVmzhm7duoUdQ5IkJZhVq1bRtWvXsGPEBe+nJElSQ+ztfqrZl1Jt2rQBgj+I7OzskNNIkqR4V1paSrdu3eruIeT9lCRJ2j/7ej/V7Eup2iHm2dnZ3kRJkqR95jS1L3k/JUmSGmJv91MulCBJkiRJkqSYs5SSJEmSJElSzFlKSZIkSZIkKeYspSRJkhJYz549iUQiO21jxowBoKysjDFjxtC+fXuysrIoKCigqKgo5NSSJEmWUpIkSQntrbfeYu3atXXbSy+9BMCFF14IwNixY5k+fTpTpkzhtddeY82aNVxwwQVhRpYkSQJawNP3JEmSmrOOHTvW+/quu+6iT58+nHTSSZSUlPDwww/zxBNPMGLECAAmT57MgAEDmDdvHkOHDg0jsiRJEuBIKUmSpGajoqKCxx9/nKuuuopIJMKCBQuorKxk5MiRdef079+f7t27M3fu3N1ep7y8nNLS0nqbJElSY7OUkiRJaiaee+45iouLueKKKwAoLCwkLS2Ntm3b1jsvLy+PwsLC3V5nwoQJ5OTk1G3dunVrwtSSJKmlspSSJElqJh5++GFOP/10unTpckDXGT9+PCUlJXXbqlWrGimhJEnSl1xTSpIkqRlYsWIFs2bN4plnnql7LT8/n4qKCoqLi+uNlioqKiI/P3+310pPTyc9Pb0p40qSJDlSSpIkqTmYPHkynTp14swzz6x7bfDgwaSmpjJ79uy61xYvXszKlSsZNmxYGDElSZLqOFJKkiQpwdXU1DB58mQuv/xyUlK+vL3Lyclh9OjRjBs3jtzcXLKzs7nhhhsYNmyYT96TJEmhs5SSJElKcLNmzWLlypVcddVVO7137733kpSUREFBAeXl5YwaNYr7778/hJSSJEn1RaLRaDTsEE2ptLSUnJwcSkpKyM7ODjuOJEmKc9477Mw/E0mStD/29d7BNaUkSZIkSZIUc5ZSkiRJkiRJijlLKUmSJEmSJMWcpZQkSZIkSZJizlJKkiRJkiRJMWcpJUmSJEmSpJizlJIkSZIkSVLMpYQdoDkYOfIcioo27vGcvLxcZs2aFqNEkiRJagznnDGSjRuK9npebvs8pr0wKwaJJElqPiylGkFR0UYKCubs8ZypU4fHKI0kSZIay8YNRcyZVLDX84ZfMzUGaSRJal6cvidJkiRJkqSYs5SSJEmSJElSzFlKSZIkSZIkKeYspSRJkiRJkhRzllKSJEmSJEmKOUspSZIkSZIkxZyllCRJkiRJkmLOUkqSJEmSJEkxZyklSZIkSZKkmLOUkiRJkiRJUsxZSkmSJEmSJCnmLKUkSZIkSZIUc5ZSkiRJkiRJijlLKUmSJEmSJMWcpZQkSZIkSZJizlJKkiRJkiRJMWcpJUmSJEmSpJizlJIkSZIkSVLMWUpJkiRJkiQp5iylJEmSJEmSFHOhllI9e/YkEonstI0ZMwaAsrIyxowZQ/v27cnKyqKgoICioqIwI0uSJEmSJKkRhFpKvfXWW6xdu7Zue+mllwC48MILARg7dizTp09nypQpvPbaa6xZs4YLLrggzMiSJEmSJElqBClhfnjHjh3rfX3XXXfRp08fTjrpJEpKSnj44Yd54oknGDFiBACTJ09mwIABzJs3j6FDh4YRWZIkSZIkSY0gbtaUqqio4PHHH+eqq64iEomwYMECKisrGTlyZN05/fv3p3v37sydO3e31ykvL6e0tLTeJkmSJEmSpPgSN6XUc889R3FxMVdccQUAhYWFpKWl0bZt23rn5eXlUVhYuNvrTJgwgZycnLqtW7duTZhakiRJkiRJDRE3pdTDDz/M6aefTpcuXQ7oOuPHj6ekpKRuW7VqVSMllCRJkiRJUmMJdU2pWitWrGDWrFk888wzda/l5+dTUVFBcXFxvdFSRUVF5Ofn7/Za6enppKenN2VcSZIkSZIkHaC4GCk1efJkOnXqxJlnnln32uDBg0lNTWX27Nl1ry1evJiVK1cybNiwMGJKkiRJkiSpkYQ+UqqmpobJkydz+eWXk5LyZZycnBxGjx7NuHHjyM3NJTs7mxtuuIFhw4b55D1JkiRJkqQEF3opNWvWLFauXMlVV12103v33nsvSUlJFBQUUF5ezqhRo7j//vtDSClJkiRJkqTGFHopddpppxGNRnf5XkZGBhMnTmTixIkxTiVJkiRJkqSmFBdrSkmSJEmSJKllsZSSJEmSJElSzFlKSZIkSZIkKeYspSRJkiRJkhRzllKSJEmSJEmKOUspSZIkSZIkxZyllCRJkiRJkmLOUkqSJEmSJEkxZyklSZIkSZKkmLOUkiRJkiRJUsxZSkmSJEmSJCnmLKUkSZIkSZIUc5ZSkiRJkiRJirmUsAO0FMuWLWXgwOF7PS8vL5dZs6bFIJEkSZIkSVJ4LKVipKoKCgrm7PW8qVP3XlxJkiRJkiQlOqfvSZIkSZIkKeYspSRJkiRJkhRzllKSJEmSJEmKOUspSZIkSZIkxZyllCRJUoJbvXo13/72t2nfvj2ZmZkMHDiQt99+u+79aDTKL37xCzp37kxmZiYjR45kyZIlISaWJEmylJIkSUpomzZt4vjjjyc1NZUXX3yRDz/8kLvvvpt27drVnfPrX/+a3/3udzz44IPMnz+f1q1bM2rUKMrKykJMLkmSWrqUsANIkiSp4X71q1/RrVs3Jk+eXPdar1696o6j0Sj33XcfP/vZzzj33HMBeOyxx8jLy+O5557jkksuiXlmSZIkcKSUJElSQps2bRrHHHMMF154IZ06deKoo45i0qRJde8vW7aMwsJCRo4cWfdaTk4OQ4YMYe7cuWFEliRJAiylJEmSEtrSpUt54IEH6NevHzNnzuS6667jBz/4AY8++igAhYWFAOTl5dX7vry8vLr3vq68vJzS0tJ6myRJUmNz+p4kSVICq6mp4ZhjjuHOO+8E4KijjmLRokU8+OCDXH755Q265oQJE7j11lsbM6YkSdJOHCklSZKUwDp37syhhx5a77UBAwawcuVKAPLz8wEoKiqqd05RUVHde183fvx4SkpK6rZVq1Y1QXJJktTSWUpJkiQlsOOPP57FixfXe+2TTz6hR48eQLDoeX5+PrNnz657v7S0lPnz5zNs2LBdXjM9PZ3s7Ox6myRJUmNz+p4kSVICGzt2LN/4xje48847ueiii3jzzTd56KGHeOihhwCIRCLceOON3H777fTr149evXrx85//nC5dunDeeeeFG16SJLVollKSJEkJ7Nhjj+XZZ59l/Pjx3HbbbfTq1Yv77ruPyy67rO6cH//4x2zdupVrr72W4uJihg8fzowZM8jIyAgxuSRJaukspSRJkhLcWWedxVlnnbXb9yORCLfddhu33XZbDFNJkiTtmWtKSZIkSZIkKeYspSRJkiRJkhRzllKSJEmSJEmKOUspSZIkSZIkxZyllCRJkiRJkmLOUkqSJEmSJEkxZyklSZIkSZKkmLOUkiRJkiRJUsxZSkmSJEmSJCnmUsIOoPqWLVvKwIHD93peXl4us2ZNi0EiSZIkSZKkxmcpFWeqqqCgYM5ez5s6de/FlSRJkiRJUrxy+p4kSZIkSZJizlJKkiRJkiRJMWcpJUmSJEmSpJizlJIkSZIkSVLMWUpJkiRJkiQp5iylJEmSJEmSFHOWUpIkSZIkSYo5SylJkiRJkiTFnKWUJEmSJEmSYs5SSpIkSZIkSTFnKSVJkiRJkqSYs5SSJEmSJElSzFlKSZIkSZIkKeZCL6VWr17Nt7/9bdq3b09mZiYDBw7k7bffrns/Go3yi1/8gs6dO5OZmcnIkSNZsmRJiIklSZIkSZJ0oEItpTZt2sTxxx9PamoqL774Ih9++CF333037dq1qzvn17/+Nb/73e948MEHmT9/Pq1bt2bUqFGUlZWFmFySJEmSJEkHIiXMD//Vr35Ft27dmDx5ct1rvXr1qjuORqPcd999/OxnP+Pcc88F4LHHHiMvL4/nnnuOSy65JOaZJUmSJEmSdOBCHSk1bdo0jjnmGC688EI6derEUUcdxaRJk+reX7ZsGYWFhYwcObLutZycHIYMGcLcuXN3ec3y8nJKS0vrbZIkSZIkSYovoZZSS5cu5YEHHqBfv37MnDmT6667jh/84Ac8+uijABQWFgKQl5dX7/vy8vLq3vu6CRMmkJOTU7d169ataX8ISZIkSZIk7bdQp+/V1NRwzDHHcOeddwJw1FFHsWjRIh588EEuv/zyBl1z/PjxjBs3ru7r0tJSiylJkiTt5JwzRrJxQ9Eez1mxfFmM0kiS1PKEWkp17tyZQw89tN5rAwYMYOrUqQDk5+cDUFRUROfOnevOKSoq4sgjj9zlNdPT00lPT2+awJIkSWo2Nm4oYs6kgj2e0+WUu2KURpKklifU6XvHH388ixcvrvfaJ598Qo8ePYBg0fP8/Hxmz55d935paSnz589n2LBhMc0qSZIkSZKkxhPqSKmxY8fyjW98gzvvvJOLLrqIN998k4ceeoiHHnoIgEgkwo033sjtt99Ov3796NWrFz//+c/p0qUL5513XpjRJUmSJEmSdABCLaWOPfZYnn32WcaPH89tt91Gr169uO+++7jsssvqzvnxj3/M1q1bufbaaykuLmb48OHMmDGDjIyMEJNLkiRJkiTpQIRaSgGcddZZnHXWWbt9PxKJcNttt3HbbbfFMJUkSZIkSZKaUuillJrOyJHnUFS0ca/n5eXlMmvWtBgkkiRJkiRJClhKNWNFRRspKJiz1/OmTh0egzSSJEnN19Klyxg+ZOAez8ltn8e0F2bFKJEkSfHPUkqSJEk6UDVVzJlUsMdThl8zNUZhJElKDElhB5AkSZIkSVLLYyklSZIkSZKkmLOUkiRJkiRJUsxZSkmSJEmSJCnmLKUkSZIkSZIUc5ZSkiRJkiRJijlLKUmSJEmSJMWcpZQkSZIkSZJizlJKkiRJkiRJMWcpJUmSJEmSpJizlJIkSZIkSVLMWUpJkiRJkiQp5iylJEmSJEmSFHOWUpIkSZIkSYo5SylJkiRJkiTFnKWUJEmSJEmSYs5SSpIkSZIkSTFnKSVJkiRJkqSYs5SSJEmSJElSzFlKSZIkSZIkKeYspSRJkiRJkhRzllKSJEmSJEmKOUspSZKkBHbLLbcQiUTqbf379697v6ysjDFjxtC+fXuysrIoKCigqKgoxMSSJEkBSylJkqQEd9hhh7F27dq6bc6cOXXvjR07lunTpzNlyhRee+011qxZwwUXXBBiWkmSpEBK2AEkSZJ0YFJSUsjPz9/p9ZKSEh5++GGeeOIJRowYAcDkyZMZMGAA8+bNY+jQobGOKkmSVMeRUpIkSQluyZIldOnShd69e3PZZZexcuVKABYsWEBlZSUjR46sO7d///50796duXPnhhVXkiQJcKSUJElSQhsyZAiPPPIIhxxyCGvXruXWW2/lhBNOYNGiRRQWFpKWlkbbtm3rfU9eXh6FhYW7vWZ5eTnl5eV1X5eWljZVfEmS1IJZSkmSJCWw008/ve540KBBDBkyhB49evDUU0+RmZnZoGtOmDCBW2+9tbEiSpIk7ZLT9yRJkpqRtm3bcvDBB/Ppp5+Sn59PRUUFxcXF9c4pKira5RpUtcaPH09JSUndtmrVqiZOLUmSWiJLKUmSpGZky5YtfPbZZ3Tu3JnBgweTmprK7Nmz695fvHgxK1euZNiwYbu9Rnp6OtnZ2fU2SZKkxub0PUmSpAR20003cfbZZ9OjRw/WrFnDzTffTHJyMpdeeik5OTmMHj2acePGkZubS3Z2NjfccAPDhg3zyXuSJCl0llKSJEkJ7PPPP+fSSy9lw4YNdOzYkeHDhzNv3jw6duwIwL333ktSUhIFBQWUl5czatQo7r///pBTS5IkWUpJkiQltCeffHKP72dkZDBx4kQmTpwYo0SSJEn7xjWlJEmSJEmSFHOWUpIkSZIkSYo5SylJkiRJkiTFnKWUJEmSJEmSYs5SSpIkSZIkSTFnKSVJkiRJkqSYs5SSJEmSJElSzFlKSZIkSZIkKeYspSRJkiRJkhRzllKSJEmSJEmKOUspSZIkSZIkxZyllCRJkiRJkmLOUkqSJEmSJEkxZyklSZIkSZKkmEsJO4AkSZKUkKLVsGUplHzIH6+qhOJFkH0IJKWGnUySpIRgKSVJkiTtr22rYeWTULUFgLOPAj6fCknp0OUMaDso3HySJCUAp+9JkiRJ+6P8C1jxf0Ehldwaco/lvhnJkNoWasrh82eh+P2wU0qSFPcspSRJkqR9VVkKyx+H6u2Q2QUOvgG6nMGv/5YCB/8A2g0Ozvv8OSheGGpUSZLiXail1C233EIkEqm39e/fv+79srIyxowZQ/v27cnKyqKgoICioqIQE0uSJKnFikaDUVCVJZDWHnr8OySnf/l+JAJdzoR2RwFRWP1XKN8QWlxJkuJd6COlDjvsMNauXVu3zZkzp+69sWPHMn36dKZMmcJrr73GmjVruOCCC0JMK0mSpBZry2ewdTlEkqHnZZDSeudzIhHocjZk9QkWQl/zfFBmSZKknYS+0HlKSgr5+fk7vV5SUsLDDz/ME088wYgRIwCYPHkyAwYMYN68eQwdOjTWUSVJktRSRaNQNDs4zj0O0trt/tzaEVNL7g9KrOL3oN2RsUgpSVJCCX2k1JIlS+jSpQu9e/fmsssuY+XKlQAsWLCAyspKRo4cWXdu//796d69O3Pnzt3t9crLyyktLa23SZIkSQek5AMoKwyertdx+N7PT2sHnU4Kjgv/DlXbmjafJEkJKNRSasiQITzyyCPMmDGDBx54gGXLlnHCCSewefNmCgsLSUtLo23btvW+Jy8vj8LCwt1ec8KECeTk5NRt3bp1a+KfQpIkSc1atBrWvRwcd/gGpLTat+/rMAwy8oJF0b94venySZKUoEKdvnf66afXHQ8aNIghQ4bQo0cPnnrqKTIzMxt0zfHjxzNu3Li6r0tLSy2mJEmS1HCbP4WKTZDcCtrvxxISkWToNAJW/j/Y+DZt0vs0XUZJkhJQ6NP3vqpt27YcfPDBfPrpp+Tn51NRUUFxcXG9c4qKina5BlWt9PR0srOz622SJElSgxW/F+zbDoLktP373jb9gtFSNRVccIRP4pMk6aviqpTasmULn332GZ07d2bw4MGkpqYye/bsuvcXL17MypUrGTZsWIgpJUmS1FK0axWFzYt3fHHk/l8gEoEOwRpUFx25ASq3NF44SZISXKil1E033cRrr73G8uXLeeONNzj//PNJTk7m0ksvJScnh9GjRzNu3DheeeUVFixYwJVXXsmwYcN88p4kSZJi4rxjaiBaAxn5wYinhsg5FNJyycmshs8mNW5ASZISWKhrSn3++edceumlbNiwgY4dOzJ8+HDmzZtHx44dAbj33ntJSkqioKCA8vJyRo0axf333x9mZEmSJLUgFw2pDg4aMkqqViQJOhwPa6bD4t/CIT8MXpMkqYULtZR68skn9/h+RkYGEydOZOLEiTFKJEmSJO1Qto4jukeBJMg5/MCu1XYgm5f+jTasgLUvQZdRjRJRkqREFmopJUmSJDW2c84YycYNRXs9b8XyZXs+oXhhsG9zMKS0PrBQSak8NT+J0SfV8Mqki/j5C913e2pu+zymvTDrwD5PkqQEYCklSZKkZmXjhiLmTCrY63ldTrlrzyds/iTY5xzaCKng/16PMPokOKXfFuY8MApSsnZ53vBrpjbK50mSFO+czC5JkiR9XWUplK+jpgbI6tMol/x4bRJkHgTUwKZ3G+WakiQlMkspSZIk6es2LwHgnRURSGnVeNdtd3Sw3/QviEYb77qSJCUgSylJkiTp6zZ/CsDLHzTy7XLO4ZCUBhUbYdvKxr22JEkJxlJKkiRJ+qqaati6FICXP2zk2+XkNMgeEByXLGrca0uSlGAspSRJkqSv2rYSaioguTULP480/vVzDg/2JR9CtLrxry9JUoKwlJIkSZK+akuwnhRt+hKNNkEpldUbkltB9TbYsqzxry9JUoKwlJIkSZK+asd6UrTp2zTXjyRBzqHBsVP4JEktmKWUJEmSVKtqC5SvD45b92m6z6mdwlf6MdRUNd3nSJIUxyylJEmSpFpbVwX79E6Qktl0n9OqO6RkQ035l9MFJUlqYSylJEmSpFrbVgb71t2a9nMiEWh7WHBc8mHTfpYkSXHKUkqSJEmqVVtKterR9J+VvWNdqc2fOIVPktQiWUpJkiRJADUVsH1tcNyqe9N/XuZBkNIm+NytPoVPktTyWEpJkiRJANs+B6KQmg1pOU3/eZEIZB8SHJd+3PSfJ0lSnLGUkiRJkuArU/diMEqqVnb/YF+6GKI1sftcSZLigKWUJEmSBF8+eS+WpVTrnpCUAdVbd4zUkiSp5bCUkiRJkqI1sH1HKdU6hqVUJBnaHBwcl34Uu8+VJCkOWEpJkiRJZYVQUwlJ6ZDeKbafXTeF72OIRmP72ZIkhchSSpIkSaqdOteqW7AAeSy16ROMmKoshvIvYvvZkiSFyFJKkiRJ2r4m2Gd2if1nJ6VB617B8ZYlsf98SZJCYiklSZIkbV8b7MMopQDa9A32my2lJEkth6WUJEmSWraaCihfHxyHVUpl9Qv2W1fSKq06nAySJMWYpZQkSZJatrIiIAopWZDaJpwM6bmQ1h6o4ZhuW8LJIElSjFlKSZIkqWULcz2pr9oxhW9YT0spSVLLkBJ2AO2bzz+HlSuhTRto1w6i0eSwI0mSJDUPdetJdQ43R5t+sGE+w3puhmg09k8BlCQpxiyl4tzSpfDaa0Eh9VXp6Y+yYAEMHhxOLkmSpGajdqRURsgjpVr1gKRUOmRVwqZ3IfeocPNIktTEnL4Xx957D/7856CQSkqCgw+GHj0gIwPKy3sydChMmBD8Ik2SJEkNUF0B5V8Ex2GPlEpKgda9g+M1L4SbRZKkGHCkVJz6+GP461+D4yOOgBEjIDs7+HrbNvjjH1+htPQU/vu/IS0NfvSj8LJKkiQlrLJCgkXO24S3yPlXtekHmxcHpdThPw07jSRJTcqRUnFo5Up4+ulgBNSRR8K5535ZSAG0agXduv2cX/86+PrHP4a//z2UqJIkSYktXhY5r5UVLHbOhnlQviHcLJIkNTFLqTgTjaYyfTpUV8OAAXD22bte4zISgZtugiuvhJoauOQS+Oyz2OeVJElKaPGyyHmttBw+/SIdojWw1t86SpKaN0upOFNdfTVffAGtW8M55wRrSe1OJAIPPABDhsCmTXD11a4vJUlSS3bXXXcRiUS48cYb614rKytjzJgxtG/fnqysLAoKCigqKgovZLwpi7NSCpi3fMc0QteVkiQ1c64pFUdKS6G6ehwAI0cGC5rvTXo6/OUv0L8/vPoqPPssXHDB/n3usmVLGThw+B7PycvLZdasaft3YUmSFDNvvfUWf/zjHxk0aFC918eOHcvf/vY3pkyZQk5ODtdffz0XXHABr7/+ekhJ40daSvTLKXLpeeGG+Yq5y9rw7WO+gLUvQk01JCWHHUmSpCZhKRVHXnoJoDVduwaLm++rHj2CdaVuuy1Y8PyMM/at0KpVVQUFBXP2eM7UqXsurSRJUni2bNnCZZddxqRJk7j99tvrXi8pKeHhhx/miSeeYMSIEQBMnjyZAQMGMG/ePIYOHRpW5LjQNy8K1EBSBqRm7/X8WFm0thWk5gSF2ca3oEPL/nuSJDVfTt+LExs2wKJFwfEZZ+x6Hak9+fGPoWtXWL4c7rmn0eNJkqQ4NmbMGM4880xGjhxZ7/UFCxZQWVlZ7/X+/fvTvXt35s6du9vrlZeXU1paWm9rjvp33rHuQUan/b/5akLV0Qh0HhV84RQ+SVIzZikVJ+bPD/ZJSS/RuQFLGrRuDb/6VXB8552wcWPjZZMkSfHrySef5J133mHChAk7vVdYWEhaWhpt27at93peXh6FhYW7veaECRPIycmp27p169bYsePCoQfVllLxM3WvTpczgr2llCSpGbOUigNlZfDuu8FxcvL/Nvg6l14KRx4JW7cGC6BLkqTmbdWqVfzwhz/k//7v/8jYn7n7ezF+/HhKSkrqtlWrVjXateNJ/y41wUFGp3CD7ErtSKmN70DZ+nCzSJLURCyl4sA770BlJXTsCJHIPxt8nUgEbropOP7976GmJq2REkqSpHi0YMEC1q1bx9FHH01KSgopKSm89tpr/O53vyMlJYW8vDwqKiooLi6u931FRUXk5+fv9rrp6elkZ2fX25qjAV3ieKRUZj60PQKIQuFLYaeRJKlJWEqFrKYG3nwzOB469MCXM7joIujWDYqKoLh41IEHlCRJcevUU09l4cKFvPvuu3XbMcccw2WXXVZ3nJqayuzZs+u+Z/HixaxcuZJhw4aFmDwOVG2jc9sdx+lxOFIKvhwttXZmuDkkSWoiPn0vZEuWQEkJZGbCwIHw978f2PVSU2HsWBg3Dr744lKi0bhat1OSJDWiNm3acPjhh9d7rXXr1rRv377u9dGjRzNu3Dhyc3PJzs7mhhtuYNiwYS3+yXuUrQv2qW0hOT3UKLvVeRR89GtY+3e8qZMkNUeOlArZwoXB/ogjgkKpMVx9NeTkQEVFdz75pHGuKUmSEtO9997LWWedRUFBASeeeCL5+fk888wzYccKX3lRsI/HqXu1Oh4Pya2grBCK3w87jSRJjc5SKkQVFbB4cXA8cGDjXbdNG7j22uB4wYLGu64kSYp/r776Kvfdd1/d1xkZGUycOJGNGzeydetWnnnmmT2uJ9Vi1I6UisdFzmslp0PeKcGxU/gkSc2QpVSIPv4YqqogNxc6d27ca48eHew//RRKSxv32pIkSQmvLAFGSoHrSkmSmjVLqRAtWhTsDz+88ZcIOOQQaNXqPaJReO+9xr22JElSQotGoXzHSKl4XeS8VufTgv36OVC1NdwskiQ1MkupkGzbBp99Fhw35tS9r2rX7nkA/vWv4N5LkiRJQMUmqKmkrBJIbx92mj1rczC07gE1FVD0WthpJElqVJZSIfnwQ6ipgfx86NChaT4jJ+cV0tJg0yZYsaJpPkOSJCnhlK8H4LOiCETi/HY4EnEKnySp2Yrz/wo3Xx9+GOy/9hTnRpWUVFZ3/X/9q+k+R5IkKaGUfwHAkqJGXj+hqdSWUoWWUpKk5qVBpVTv3r3ZsGHDTq8XFxfTu3fvAw7V3JWXfzlyacCApv2so44K9h99BJWVTftZkiRp33k/FaLaUqowQUqpvFMhkgyli2Grw98lSc1Hg0qp5cuXU11dvdPr5eXlrF69+oBDNXeffRZM3WvfPnjyXlM66CBo2zYopD75pGk/S5Ik7Tvvp0K0Y/reJ4lSSqXlQIehwbFT+CRJzUjK/pw8bdq0uuOZM2eSk5NT93V1dTWzZ8+mZ8+ejRauuVqyJNj37dv0nxWJwGGHweuvwwcfBMeSJCk83k+FLBqtK6USZqQUQP4oWP96UEr1vTbsNJIkNYr9KqXOO+88ACKRCJdffnm991JTU+nZsyd33313o4VrjqJR+PTT4Pjgg2PzmbWl1JIlwdTB9PTYfK4kSdqZ91Mhq9ocPMmOCMvWJ1Ap1XkULPwFFM6GmipI2q/beEmS4tJ+/despqYGgF69evHWW2/RoakeG9eMrV0LW7ZAaip07x6bz8zPD6YJbtwYTOEbODA2nytJknbm/VTIdqwnRVouldVbws2yP3IHQ1ouVGyEDfOh4/FhJ5Ik6YA1aE2pZcuWeQPVQLVT9/r0gZQY/YKrdgofBFP4JElS+LyfCsmOqXukdww3x/5KSob8bwbHa/8ebhZJkhpJg2uR2bNnM3v2bNatW1f3G79af/rTnw44WHNVW0r16xfbzz38cPjnP4Opg2VlkJER28+XJEk7834qBHWlVAdgWahR9lvn02DlX4J1pQbdGnYaSZIOWINGSt16662cdtppzJ49my+++IJNmzbV2xrirrvuIhKJcOONN9a9VlZWxpgxY2jfvj1ZWVkUFBRQVFTUoOvHg23boPZhOrFY5PyrOnWCjh2huvrLYkySJIWnKe6ntA/KdkzfS0/AUWqdTwv2G9+C8o3hZpEkqRE0aKTUgw8+yCOPPMJ3vvOdRgnx1ltv8cc//pFBgwbVe33s2LH87W9/Y8qUKeTk5HD99ddzwQUX8PrrrzfK58bash2/jOvUCbKzY//5hxwC69fDxx+7rpQkSWFr7Psp7aPaNaUyEmz6HkCrrpBzGJR8AIWzoMdFYSeSJOmANGikVEVFBd/4xjcaJcCWLVu47LLLmDRpEu3atat7vaSkhIcffph77rmHESNGMHjwYCZPnswbb7zBvHnzGuWzY2358mAf1lOe+/cP9p9+ClVV4WSQJEmBxryf0j6q2gbVW4PjtAQcKQXBU/ggmMInSVKCa1ApdfXVV/PEE080SoAxY8Zw5plnMnLkyHqvL1iwgMrKynqv9+/fn+7duzN37tzdXq+8vJzS0tJ6W7wIu5Tq0gWysqCi4ssskiQpHI15P6V9VDtKKjUHktPCzdJQXy2lotFws0iSdIAaNH2vrKyMhx56iFmzZjFo0CBSU1PrvX/PPffs03WefPJJ3nnnHd56662d3issLCQtLY22bdvWez0vL4/CwsLdXnPChAncemv8LfwYjXbgix33QWGVUpFIMIVvwYJgCl+s17WSJElfaqz7Ke2HeoucJ6iOJ0ByBmxfDSUfQtvDwk4kSVKDNaiUev/99znyyCMBWLRoUb33IpHIPl1j1apV/PCHP+Sll14ioxEfBTd+/HjGjRtX93VpaSndunVrtOs3VE1NMDw/Lw8yM8PLUVtKLV4MZ54ZFFWSJCn2GuN+SvupPIEXOa+VkgmdTgpGSq2daSklSUpoDSqlXnnllQP+4AULFrBu3TqOPvrouteqq6v5xz/+wR/+8AdmzpxJRUUFxcXF9UZLFRUVkZ+fv9vrpqenk56efsD5GlttKRXWKKlavXpBWhps2QJr1sBBB4WbR5Kklqox7qe0n8o3BPtELqUgmMJXW0oNGLf38yVJilMNWlOqMZx66qksXLiQd999t2475phjuOyyy+qOU1NTmT17dt33LF68mJUrVzJs2LCwYjdYNBofpVRKypfT9j7+ONwskiRJMVWxo5RK1EXOa9WuK7X+H1C1PdwskiQdgAaNlDrllFP2OKz85Zdf3us12rRpw+GHH17vtdatW9O+ffu610ePHs24cePIzc0lOzubG264gWHDhjF06NCGxA7N5s0QjQZNUI8eIYchmML34YewZAmcemrYaSRJapka435K+6GmGio2Bcfp7cPNcqCyB0CrrrDtc1j/T+h8WtiJJElqkAaVUrXrH9SqrKzk3XffZdGiRVx++eWNkQuAe++9l6SkJAoKCigvL2fUqFHcf//9jXb9WKl90l3nzuGuJ1WrT59gX1QEcfRwQkmSWpRY3U9ph8pNQBSS0iAlK+w0e7R06TKGDxm4x3N+MnILZx1GMIXPUkqSlKAaVErde++9u3z9lltuYcuWLQ0O8+qrr9b7OiMjg4kTJzJx4sQGXzMerFgR7ONhlBRA69bBWlKrV8Onn4adRpKklqmp7qe0G7XrSaW1j/8nvdRUMWdSwZ7PKfkAVj0dlFLcHZNYkiQ1tkZdU+rb3/42f/rTnxrzks3CqlXBvnv3cHN8Ve26UpZSkiTFF++nmkjtelKJPnWvVuveVNcQlFPbPg87jSRJDdKopdTcuXPJyMhozEsmvPJyWLcuOO7WLdwsX9WvX7D/7DOIRlPDDSNJkup4P9VEyr8I9mm54eZoLCmZfFy0Y12ItX8PN4skSQ3UoOl7F1xwQb2vo9Eoa9eu5e233+bnP/95owRrLj6v+8XVCrKy4mT+HtClC7RqBdu2QWrqMWHHkSSpxfF+KsbKNwb79AR/8t5XzF+ZxWGdtwdT+PpcFXYcSZL2W4NKqZycnHpfJyUlccghh3Dbbbdx2mkutPhVtVP3kpLeBuKnlIpEgil8778PNTU+gk+SpFjzfirGmtv0PeDNFW24ash6KHwpeLpgUnLYkSRJ2i8NKqUmT57c2DmardqRUklJC4C9LFgZY/361ZZSI8KOIklSi+P9VAxVl0PVjsXjm8v0PeCjwkxIzYGKTbDxbegwJOxIkiTtlwaVUrUWLFjARx99BMBhhx3GUUcd1Sihmoto9MtSKhJ5O9wwu9CnTzBiKhrtT0kJfO0XtpIkKQa8n4qB2lFSKa0hufms17Xks+W88mEyp/SD/731HB55s9NO5+S2z2PaC7NCSCdJ0t41qJRat24dl1xyCa+++ipt27YFoLi4mFNOOYUnn3ySjh07NmbGhLV+fbDQeWoqRCIfhR1nJ5mZwdpSq1fD0qXgPbAkSbHj/VQMle8opdKaz3pSANRUccpJp8Ca57n61HSuvmbnUfnDr5kaQjBJkvZNg56+d8MNN7B582Y++OADNm7cyMaNG1m0aBGlpaX84Ac/aOyMCat2PamDDoJIpDrcMLvRu3ewX7Ys3BySJLU03k/FUO2T99Kbz9S9Oll9gv22z6G6LNwskiTtpwaVUjNmzOD+++9nwIABda8deuihTJw4kRdffLHRwiW62ql73bqFm2NPakuppUuD6YaSJCk2vJ+KoYodT95Laz6LnNdJa7vj54rCFn/LKElKLA0qpWpqakhNTd3p9dTUVGpqag44VHNRO1IqnkupINs2tm6FoqKw00iS1HJ4PxVDtdP30pvZ9L1abXaMltryabg5JEnaTw0qpUaMGMEPf/hD1qxZU/fa6tWrGTt2LKeeemqjhUtk27fDhh33PwcdFG6WPUlOhqSkuUAwWkqSJMWG91MxEo1+udB5ejMcKQWQ1TfYb/nMoe+SpITSoFLqD3/4A6WlpfTs2ZM+ffrQp08fevXqRWlpKb///e8bO2NCWrs22LdrB61ahZtlbyKRfwCWUpIkxZL3UzFStRVqKoLj1LahRmkyrXtAJBkqS74s4CRJSgANevpet27deOedd5g1axYff/wxAAMGDGDkyJGNGi6RrV4d7Lt0CTfHvkhK+gfV1bBiBVRVQUqD/qmQJEn7w/upGKldTyo1B5Ka6U1OUhq06g5blwWjpZrrNEVJUrOzXyOlXn75ZQ499FBKS0uJRCJ885vf5IYbbuCGG27g2GOP5bDDDuOf//xnU2VNKLUj8ROhlIpEFpOVFRRStetgSZKkpuH9VIxVbAr2ac3wyXtfVfsUvs2fhZtDkqT9sF+l1H333cc111xDdnb2Tu/l5OTwve99j3vuuafRwiWy2lIqnteTqhWJfPkUvs+8j5EkqUl5PxVjdU/eaxdujqbWZse6UluXQ01VqFEkSdpX+1VKvffee/zbv/3bbt8/7bTTWLBgwQGHSnRbtkBpaXCcnx9uln1VW0q5rpQkSU3L+6kYqxsp1cxLqfROkJIF0UrY5tB3SVJi2K9SqqioaJePLq6VkpLC+vXrDzhUoqsdJdWxI6Snh5tlX9WWUmvXwrZt4WaRJKk5834qxlrK9L1I5MspfFs+DTeLJEn7aL9KqYMOOohFixbt9v3333+fzp07H3CoRJdIi5zXatMmKNEAli0LN4skSc2Z91Mx1lKm78FXSinXY5AkJYb9KqXOOOMMfv7zn1NWVrbTe9u3b+fmm2/mrLPOarRwiSqRFjn/KqfwSZLU9LyfiqHqcqjeMQS8uY+UAsjacTNXVgSVW8LNIknSPtiv5+L+7Gc/45lnnuHggw/m+uuv55BDDgHg448/ZuLEiVRXV/PTn/60SYImimg0cUupPn1g/vyglIpGg1HgkiSpcXk/FUO1U/eSW0FygqypcCBSWkNGZyhbG4yWandE2IkkSdqj/Sql8vLyeOONN7juuusYP3480WgUgEgkwqhRo5g4cSJ5eXlNEjRRlJQEazIlJSXOIue1evQIchcXw6ZNkNsCfqEoSVKseT8VQy1p6l6tNn0spSRJCWO/SimAHj168MILL7Bp0yY+/fRTotEo/fr1o127FvQf+z2oHSWVlwcp+/2nG660NOjWDVasgM8+s5SSJKmpeD8VIy1lkfOvyuoL6+cEpdSOwlOSpHjV4NqkXbt2HHvssY2ZpVlYuzbYJ+r6pL17B6XUsmXgX68kSU3L+6km1hJHSrXqCklpwVpaZWvDTiNJ0h7t10Ln2rvCwmCfaFP3atUudr5sGdTUhJtFkiTpgNSNlGpBpVQkGVr3Co43+xQ+SVJ8s5RqZIk+UqpLF0hPh7KyLws2SZKkhNQSp+8BZPUJ9lsspSRJ8c1SqhFt3gxbtwZPrUvU9UmTkoIFzyF4Cp8kSVJCqqmGypLguCWNlAJo0zfYb1tFZmp1uFkkSdoDS6lGVDuyqH17SE0NN8uB6LVjxPeyZeHmkCRJarDKYiAKkVRIyQo7TWyltdsxOqyGo7tuDTuNJEm7ZSnViBJ96l6t2nWlVq6Eqqpws0iSJDXIV9eTikTCzRKGHVP4hvTYEnIQSZJ2z1KqESX6Iue1OnaE1q2DQurzz8NOI0mS1AAt8cl7X7WjlDrOUkqSFMcspRpR7UipRC+lIhGn8EmSpATXEp+891WtewJJdG1b4VP4JElxy1KqkZSVQXFxcJzo0/fAUkqSJCW4lvrkvVrJ6dCqW3C8dma4WSRJ2g1LqUZSO3UvJwcyM8PN0hhq15VavRrKy8PNIkmStN9a+vQ9gDbBFD7Wzgg3hyRJu2Ep1Uiay9S9Wm3bBltNDaxYEXYaSZKkfRch6kgpgDYHB/vCWVC1PdwskiTtgqVUI6kdKdUcpu7VcgqfJElKRO1bV0G0CohAWk7YccKT3omizalQvR2KXgk7jSRJO7GUaiTN5cl7X1U7hc9SSpIkJZKDciqCg9QciCSHGyZMkQhvLGsTHK95PtwskiTtgqVUI6ipSeWLL4Lj5lRK1Y6UKiqCqqq2oWaRJEnaVwe13VFKteSpezu8XltKrX4eotFww0iS9DWWUo2gvLwHNTWQkQHZ2WGnaTytW0OnTsHx1q1HhxtGkiTt0gMPPMCgQYPIzs4mOzubYcOG8eKLL9a9X1ZWxpgxY2jfvj1ZWVkUFBRQVFQUYuKmVzdSqiUvcr7DO6taQ3ImbFsFxQvDjiNJUj2WUo2grKwvAHl5EImEHKaR1Y6W2rJlcLhBJEnSLnXt2pW77rqLBQsW8PbbbzNixAjOPfdcPvjgAwDGjh3L9OnTmTJlCq+99hpr1qzhggsuCDl107KU+lJFdRLkjwy+WD093DCSJH2NpVQjqC2lakcVNSe1pdTWrZZSkiTFo7PPPpszzjiDfv36cfDBB3PHHXeQlZXFvHnzKCkp4eGHH+aee+5hxIgRDB48mMmTJ/PGG28wb968sKM3mS45Tt+r56Czg/1q15WSJMWXlLADNAdlZX2A2K4ntWzZUgYOHL6Xc1Yc8Of07BmM/qqo6MqKFdCjxwFfUpIkNZHq6mqmTJnC1q1bGTZsGAsWLKCyspKRI0fWndO/f3+6d+/O3LlzGTp0aIhpm44jpb6myxnBfsN8KFsHGc3wN6mSpIRkKXWAotH60/dipaoKCgrm7PGcu+7qcsCfk54OBx0En38Os2fDVVcd8CUlSVIjW7hwIcOGDaOsrIysrCyeffZZDj30UN59913S0tJo27ZtvfPz8vIorH108C6Ul5dTXl5e93VpaWlTRW98FcXkZFYHx5ZSgVYHQbujYdM7sOZF6H152IkkSQKcvnfAioqgurodkUjznL4HX07hmz073BySJGnXDjnkEN59913mz5/Pddddx+WXX86HH37Y4OtNmDCBnJycuq1bt26NmLaJbfks2Ce3huT0cLPEk4POCvZO4ZMkxRFLqQP03nvBPjcXUlPDzdJUakupl1/2ScKSJMWjtLQ0+vbty+DBg5kwYQJHHHEEv/3tb8nPz6eiooLi4uJ65xcVFZG/h3UHxo8fT0lJSd22atWqJv4JGtHmHaWUo6Tqqy2l1s6E6opws0iStIOl1AF6//1gH8upe7HWrRtEIuUUFsJHH4WdRpIk7U1NTQ3l5eUMHjyY1NRUZn9luPPixYtZuXIlw4YN2+33p6enk52dXW9LGLUjpVzkvL7cwZCRB1WbYf0/wk4jSRLgmlIHrHakVHMupVJSoFWrhWzdegyzZ8Ohh4adSJIk1Ro/fjynn3463bt3Z/PmzTzxxBO8+uqrzJw5k5ycHEaPHs24cePIzc0lOzubG264gWHDhjXbRc6/LKUcKVVPJAm6nAlL/xRM4csfuffvkSSpiTlS6gC1hJFSAFlZbwOuKyVJUrxZt24d3/3udznkkEM49dRTeeutt5g5cybf/OY3Abj33ns566yzKCgo4MQTTyQ/P59nnnkm5NRNyOl7u1e3rtR012SQJMUFR0odgPLyL6ez7WFZhmahdesFALz6avDkvxT/yZEkKS48/PDDe3w/IyODiRMnMnHixBglClntSKl0p+/tJP+bkJQGW5ZC6WLI6R92IklSC+dIqQPw0UdBQZOUtJlEWmqhITIzF5OTAyUl8M47YaeRJEnahepy2PZ5cOxIqZ2lZkHeKcHx6unhZpEkCUdKHZCMDLj6anjmmVlEIueHHadJRSI1nHwy/PWvwVP4jjsu7ESSJElfs2UZEGVbRRKtkluHnSYuLF26jOFDBtZ9ff6gDfzoFHj/hVv4jysfq3t91arVdOt20B6vlds+j2kvzGqyrJKklsdS6gD07w+TJsG8eXcDzbuUAjj11KCUmj0bfvKTsNNIkiR9zY6pe2tK0ugbiYQcJk7UVDFnUsGXX1eWwuJ7GdRlG3PuHxWMngK6nHJX/fN2Yfg1U5syqSSpBXL6nvbZqacG+zlzoKws3CySJEk72VFKfV6SFnKQOJaaDZldguPNi8PNIklq8SyltM8GDAgWdC8rg7lzw04jSZL0NTuevLe62FJqj9rsWOC89ONwc0iSWjxLKe2zSARGjAiOZ88ON4skSdJOvjJ9T3uQvaOU2rosWBxekqSQhFpKPfDAAwwaNIjs7Gyys7MZNmwYL774Yt37ZWVljBkzhvbt25OVlUVBQQFFRUUhJlbtFD5LKUmSFHd2lFKrLaX2LL0DpLWHaDVs+TTsNJKkFizUUqpr167cddddLFiwgLfffpsRI0Zw7rnn8sEHHwAwduxYpk+fzpQpU3jttddYs2YNF1xwQZiRW7zaUuqtt6C0NNwskiRJdaI1O56+Zym1V5EIZB8SHDuFT5IUolBLqbPPPpszzjiDfv36cfDBB3PHHXeQlZXFvHnzKCkp4eGHH+aee+5hxIgRDB48mMmTJ/PGG28wb968MGO3aD16QJ8+UF0N//hH2GkkSZJ22LYaasohksK6zalhp4l/2QOC/eZPoKYq3CySpBYrbtaUqq6u5sknn2Tr1q0MGzaMBQsWUFlZyciRI+vO6d+/P927d2euq2yHyil8kiQp7uyYukfrnlRHI+FmSQSZB0FKFtRUwNblYaeRJLVQoZdSCxcuJCsri/T0dL7//e/z7LPPcuihh1JYWEhaWhpt27atd35eXh6FhYW7vV55eTmlpaX1NjUuFzuXJElxp7aUatMn3ByJIhKBNk7hkySFK/RS6pBDDuHdd99l/vz5XHfddVx++eV8+OGHDb7ehAkTyMnJqdu6devWiGkFX5ZSCxfCunXhZpEkSQJg844Fu7MspfZZ7VP4Ni8mEomGm0WS1CKFXkqlpaXRt29fBg8ezIQJEzjiiCP47W9/S35+PhUVFRQXF9c7v6ioiPz8/N1eb/z48ZSUlNRtq1atauKfoOXp2BEGDQqOX3453CySJEnAlyOlLKX2XetekJQOVVs4qoellCQp9kIvpb6upqaG8vJyBg8eTGpqKrO/Mkds8eLFrFy5kmHDhu32+9PT08nOzq63qfG5rpQkSYorm52+t9+SkqFNPwBOH1QTchhJUkuUEuaHjx8/ntNPP53u3buzefNmnnjiCV599VVmzpxJTk4Oo0ePZty4ceTm5pKdnc0NN9zAsGHDGDp0aJixRVBK3XuvI6UkSVIciEYdKdVQ2YdAySL+7Yia4M8x4iLxkqTYCbWUWrduHd/97ndZu3YtOTk5DBo0iJkzZ/LNb34TgHvvvZekpCQKCgooLy9n1KhR3H///WFG1g4nngjJybB0KSxfDj17hp1IkiS1WBUbobIkOM7qHW6WRJPVDyLJ9OlUDeVfQEbHsBNJklqQUEuphx9+eI/vZ2RkMHHiRCZOnBijRNpXbdrAccfB3LnBFL7Ro8NOJEmSWqzaqXuZnSGlVbhZEk1yOrTuDVuWQOmHkHFS2IkkSS1I3K0ppcThulKSJCkuOHXvwOQMCPYlDX8CtiRJDWEppQarLaVefjlYgkCSJCkUllIHpk1/KquB8nXBFD5JkmLEUkoNNmwYZGZCURF88EHYaSRJUotlKXVgUjKZs3jHAueOlpIkxZCllBosPR2GDw+OfQqfJEkKTe2aUm0spRrq+X8lBwelllKSpNixlNIBcV0pSZIUOkdKHbAZ7ycBESgrgvINYceRJLUQllI6ILWl1CuvQGVluFkkSVILVLUdtq8Jji2lGmzTtghk9Q6+cAqfJClGLKV0QI4+Gjp0gM2b4Y03wk4jSZJanC1Lg31qNqS3DzdLosve8RQ+p/BJkmLEUkoHJCkJRo0Kjl98MdwskiSpBfrq1L1IJNwsiS57AMEUvkIo3xh2GklSC2AppQN2+unB/oUXws0hSZJaINeTajwpraB1r+DY0VKSpBiwlNIBGzUq+MXkwoXw+edhp5EkSS2KT95rXDmHBnvXlZIkxYCllA5Yhw5w7LHB8YwZ4WaRJEktjCOlGld2f4IpfGuhYlPYaSRJzZyllBpF7RQ+15WSJEkxZSnVuFJaQ+uewbGjpSRJTcxSSo2itpSaNQsqK8PNIkmSWoiaati6PDh2+l7jqZ3C57pSkqQmZimlRnHMMcE0vtJSeOONsNNIkqQWYdsqqKmEpFTI7Bp2muaj9il829c4hU+S1KQspdQokpODBc/BKXySJClGaqfute4FScnhZmlOUlp/+RS+4kXhZpEkNWuWUmo0rislSZJiyvWkmk7bw4N9yUKIRsPNIklqtiyl1GhGjYJIBN5/H1avDjuNJElq9jbvKKVcT6rxZQ+ASDKUr4fydWGnkSQ1U5ZSajQdOsCxxwbHM2aEm0WSJLUAjpRqOskZ0KZfcFy8MNwskqRmy1JKjcopfJIkKWYspZpWTu0UvkVO4ZMkNQlLKTWq2lLqpZegsjLcLJIkqRmLRp2+19TaHAxJaVBZEjzpUJKkRmYppUZ1zDHQvj2UlsLcuWGnkSRJzVb5eqjaHBzXPilOjSspNVhbCoIFzyVJamSWUmpUycnBgufgFD5JktSEakdJZR4EKZnhZmnO6qbwfUhyklP4JEmNy1JKje6MM4L988+Hm0OSJDVjW5y6FxNZvSG5FVRv45huW8JOI0lqZiyl1OhOPz0YMbVoESxdGnYaSZLULNUtct433BzNXSQJcg4D4JuHlIQcRpLU3FhKqdHl5sIJJwTHf/1ruFkkSVIz5SLnsdN2IAAn9imFqu0hh5EkNSeWUmoS554b7KdNCzeHJElqpupGSllKNbnMrpCaQ6u0Gljj+gySpMaTEnYAJYZly5YycODwvZ6Xl5fLrFnTOPdcGDsW/vlP2LgxGD0lSZLUaCylYicSCRY8/+J1WP4EdL8w7ESSpGbCUkr7pKoKCgrm7PW8qVOD4qpXLxg4EBYuhL/9Db7znaZOKEmSWozKLVBWFBw7fS822g4MSqk1f4PyDZDePuxEkqRmwOl7ajLnnBPsXVdKkiQ1qi07nqSS1i7Y1PQy8liyPgNqKmHFk2GnkSQ1E5ZSajK160rNmAFlZeFmkSRJzYhT90Lxwodtg4Olj4aaQ5LUfFhKqckMHgwHHQRbt8JLL4WdRpIkNRuWUqF4aXFbiKTAxreg5KOw40iSmgFLKTWZpCS44ILgeOrUcLNIkqRmZPOOUsr1pGKqeHsKdDk9+GKZo6UkSQfOUkpN6lvfCvZ//StUVISbRZIkNROOlApPr8uD/bI/Q011uFkkSQnPUkpN6vjjIS8PiovhlVfCTiNJkpoFS6nwHHRWsLj89jVQNDvsNJKkBGcppSaVnAznnx8cP/10uFkkSVIzUFMJW1cEx07fi73kdOhxaXDsgueSpANkKaUmVzuF79lnoaoq3CySJCnBbV0B0WpIzoDMLmGnaZl6XxHsP38GKkpCjSJJSmyWUmpyJ50E7dvDhg3wj3+EnUaSJCW0zUuCfVZfiHgrG4rcYyB7AFSXwcopYaeRJCUw/0uuJpeS8uUUvqeeCjeLJElKcLWlVJu+4eZoySIR6F274LlT+CRJDWcppZi4+OJgP2WKT+GTJEkHoK6U6hdujpau57eDkWrr58Dmz8JOI0lKUClhB1DLcMopwVP4iorgpZfgzDMb79ojR55DUdHGPZ6Tl5fLrFnTGu9DJUlSOCyl4kOrgyBvJBT+HZY9BoNuDTuRJCkBWUopJpKTg9FSv/sdPPFE45ZSRUUbKSiYs8dzpk4d3ngfKEmSwrP502BvKRW+3lcEpdTSR+DwX0BSctiJJEkJxul7ipl///dg/9e/wtat4WaRJEkJqKYSti4Pji2lwtftfEhrB9tWBuWUJEn7yVJKMXPccdC7d1BITZ8edhpJkpRwtiyDaDUkZ0Jml7DTKDkDen03OP50UrhZJEkJyVJKMROJwKWXBsdPPBFuFkmSmosJEyZw7LHH0qZNGzp16sR5553H4sWL651TVlbGmDFjaN++PVlZWRQUFFBUVBRS4gPw1SfvRSLhZlGgzzXBfvV02F4YbhZJUsKxlFJM1U7he/FFWL8+3CySJDUHr732GmPGjGHevHm89NJLVFZWctppp7H1K3Plx44dy/Tp05kyZQqvvfYaa9as4YILLggxdQO5yHn8aXsYdBgG0apgbSlJkvaDpZRi6tBDYfBgqKpytJQkSY1hxowZXHHFFRx22GEcccQRPPLII6xcuZIFCxYAUFJSwsMPP8w999zDiBEjGDx4MJMnT+aNN95g3rx5IaffTy5yHp/6XhvsP5sE0Zpws0iSEoqllGLuyiuD/SOPhBpDkqRmqaSkBIDc3FwAFixYQGVlJSNHjqw7p3///nTv3p25c+fu8hrl5eWUlpbW2+KCI6XiU/cLITUbtiyFolfCTiNJSiApYQdQy3PppTBuHLz7brAdeWTIgSRJaiZqamq48cYbOf744zn88MMBKCwsJC0tjbZt29Y7Ny8vj8LCXa8BNGHCBG699damjrv/LKXiU0pr6HkZLHkAPp3EOVdNYOOGva9Zlts+j2kvzIpBQElSvLKUUszl5sK558KUKcFoqfvuCzuRJEnNw5gxY1i0aBFz5sw5oOuMHz+ecePG1X1dWlpKt27dDjTegamugG0rguOsvuFm0c76XBOUUp8/S/XW3syZdPFev2X4NVNjEEySFM+cvqdQXHFFsP+//4OKilCjSJLULFx//fU8//zzvPLKK3Tt2rXu9fz8fCoqKiguLq53flFREfn5+bu8Vnp6OtnZ2fW20G1ZGqxXlNIaMjuHnUZfl3sU5B4DNRX824DisNNIkhKEpZRCcdpp0LkzfPEFTJ8edhpJkhJXNBrl+uuv59lnn+Xll1+mV69e9d4fPHgwqampzJ49u+61xYsXs3LlSoYNGxbruA1XO3Uvqy9EIuFm0a71vQaAcw7fCNFoyGEkSYnAUkqhSEn5crTUH/8YahRJkhLamDFjePzxx3niiSdo06YNhYWFFBYWsn37dgBycnIYPXo048aN45VXXmHBggVceeWVDBs2jKFDh4acfj9s8cl7ca/HpZDSmh65FbBtZdhpJEkJwFJKobn22uAXnS+9BEuWhJ1GkqTE9MADD1BSUsLJJ59M586d67a//OUvdefce++9nHXWWRQUFHDiiSeSn5/PM888E2LqBnCR8/iX2gZ6XBIcb1wQbhZJUkKwlFJoevaE008Pjh96KNQokiQlrGg0usvtitohyUBGRgYTJ05k48aNbN26lWeeeWa360nFLUupxNDvP4J96QdQuSXcLJKkuBdqKTVhwgSOPfZY2rRpQ6dOnTjvvPNYvHhxvXPKysoYM2YM7du3Jysri4KCAoqK9v6IWSWG738/2E+eDGVl4WaRJElxrK6U8sl7cS33aBauyQwWpd/kaClJ0p6FWkq99tprjBkzhnnz5vHSSy9RWVnJaaedxtatW+vOGTt2LNOnT2fKlCm89tprrFmzhgsuuCDE1GpMZ5wB3brBhg3w9NNhp5EkSXGpugy27lijyJFSce+Z99sHBxsXQLQ63DCSpLgWaik1Y8YMrrjiCg477DCOOOIIHnnkEVauXMmCBcFvVUpKSnj44Ye55557GDFiBIMHD2by5Mm88cYbzJs3L8zoaiTJycHaUgATJ4abRZIkxakty4AopGRBRl7YabQXryzJhpTWULUZSj8OO44kKY7F1ZpSJSUlAOTm5gKwYMECKisrGTlyZN05/fv3p3v37sydOzeUjGp811wDaWkwbx741ypJknby1fWkIpFws2ivqmqSoN3g4IsNb4YbRpIU1+KmlKqpqeHGG2/k+OOP5/DDDwegsLCQtLQ02rZtW+/cvLw8CgsLd3md8vJySktL622Kb3l5cNllwfG994abRZIkxSEXOU88uccASbBtJWzf9X27JElxU0qNGTOGRYsW8eSTTx7QdSZMmEBOTk7d1q1bt0ZKqKY0dmywnzoVli8PNYokSYo3llKJJ7UNZA8Ijje+FW4WSVLciotS6vrrr+f555/nlVdeoWvXrnWv5+fnU1FRQXFxcb3zi4qKdvsY4/Hjx1NSUlK3rVq1qimjq5EMHAgjR0JNDfz+92GnkSRJccUn7yWm9scF++L3oXp7uFkkSXEp1FIqGo1y/fXX8+yzz/Lyyy/Tq1eveu8PHjyY1NRUZs+eXffa4sWLWblyJcOGDdvlNdPT08nOzq63KTGMGxfs//d/wVmXkiSpzuZPg70jpRJLq27BwvTRKtj0r7DTSJLiUKil1JgxY3j88cd54oknaNOmDYWFhRQWFrJ9e/CblJycHEaPHs24ceN45ZVXWLBgAVdeeSXDhg1j6NChYUZXExg1Cg49NCik7r8/7DSSJCkuVJfBth0j3y2lEkskArk7RktteBuiNeHmkSTFnVBLqQceeICSkhJOPvlkOnfuXLf95S9/qTvn3nvv5ayzzqKgoIATTzyR/Px8nnnmmRBTq6kkJcH48cHx3XfD1q3h5pEkSXFg82dAFFKzIb1j2Gm0v9oOhOQMqNz05TRMSZJ2CH363q62K664ou6cjIwMJk6cyMaNG9m6dSvPPPPMbteTUuK75BLo3Ru++AImTQo7jSRJCt1XFzmPRMLNov2XlArtjg6Ov5gbbhZJUtyJi4XOpVopKfCTnwTH//M/UF4ebh5JkhSy2lIqy0XOE1b7IUASbFsB21aHnUaSFEcspRR3vvtd6NoV1qyByZPDTiNJkkK1xUXOE15qdjCNDxwtJUmqx1JKcSc9Hf7rv4LjX/4StvsEYUmSWq6vTt9T4uqw48nZpR9CxaZws0iS4oallOLSNddAjx7BaKk//CHsNJIkKTSlnwR7S6nElpEHWX2AKHwxL+w0kqQ4YSmluJSeDrfcEhzfdReUlIQaR5IkhaFyM2zfsQZR9iHhZtGB6/CNYL/pX1C1LdwskqS4YCmluPWd78CAAbBxI/zmN2GnkSRJMVe6ONhndIL03HCz6MC17gUZ+RCthI1vh51GkhQHLKUUt5KT4Y47guN77oHVPqxFkqSWpfTjYJ/dP9wcahyRyJejpTa8SVpyTbh5JEmhs5RSXDvvPPjGN2DbNvjJT8JOI0mSYspSqvnJOTR4Gl/1Vkb1Lw47jSQpZJZSimuRCPz2t8Hx44/DPNfFlCSp5aidvmcp1XxEkqH9UAAuOfoLiDpaSpJaMkspxb1jjoErrwyOf/hDqPHeRZKklsGRUs1Tu6MhKZ0euRWw6tmw00iSQmQppYRw552QlQVvvgmPPBJ2GkmS1ORqqmHzJ8GxpVTzkpwO7Y8Ljhf90tFSktSCWUopIeTnw803B8f/+Z+wfn24eSRJUhPbuhxqKiA5A1p1DzuNGlv7YWyrSILi92D19LDTSJJCYimlhPHDH8IRR8DGjTBuXNhpJElSk6qdutfmYEhKDjeLGl9KJk+/lxscL7wVotFw80iSQpESdgC1TCNHnkNR0cY9npOXl8usWdPqvk5NhYcegqFDg0XPL78cRo5s6qSSJCkUrifV7P3lnQ58d9h22PQvWPM3OOissCNJkmLMUkqhKCraSEHBnD2eM3Xq8J1eO+44uP56+P3v4dpr4b33miqhJEkKlaVUs1dSlgL9xsBHv4aFt0GXM4NHL0uSWgyn7ynh3HEH9OwJy5bBTTeFnUaSJDUJS6mWYcCPILkVbHwL1s4IO40kKcYspZRw2rSByZOD44cegs2bh4YbSJIkNT5LqZYhoxP0uy44dm0pSWpxLKWUkE4+GW68MThevfonbNsWZhpJktSoyr6A8i+C4+yDw82ipjfgpuApixvmQ+FLYaeRJMWQpZQS1p13Qv/+UFXVgb/+1V+sSZLUbGxeHOxbdYOU1uFmUZNZunQZw4cMZPjJ3+Qvbwd/z+//3/kMH3J48PqQgZxzhk+1kaTmzIXOlbAyM+H//T84+uhyPvkknfnzgyfzSZKkBFfyQbDPOTTcHGpaNVXMmVQQHFduhk9+x6Au25hz96C6EXLDr5kaYkBJUlOzlFJCO/JIyM+fyNq143jpJejeHbp0afj1Ro48h6KijXs8Jy8vl1mzpjX8QyRJ0p4V15ZSh4WbQ7GT2gbaHwdfvAFFs6BNX4g4qUOSmjtLKSW83NxnyMkZx8cfw1NPwbXXQqtWDbtWUdFGCgrm7PGcqVOHN+zikiRp35RYSrVIHYfDpnegfD0Uvwftjgo7kSSpifnrByW8SATOPRdyc6GkBJ5+Gmpqwk4lSZIazFKqZUrOhI4nBMdFr0JNZahxJElNz1JKzUJGBlx8MaSmwrJlMHt22IkkSVKDlG+EssLg2DWlWp7c4yA1B6pKg6fxSZKaNUspNRudOgUjpgDeeAP+9a9w80iSpAYo+TDYt+oerDOkliUpBTqdEhyvn0Ob9Kpw80iSmpRrSqlZOewwKCqCf/4Tnn8ecnKgd++wU0mSpH3m1L24tXTpMoYPGbjX81YsX3ZgH9R2IGyYC2VFfPfY9Qd2LUlSXLOUUrNzyilQXAwLFwYLn191VdiJJEnSPqstpdpaSsWdmirmTCrY62ldTrnrwD4nkgR5p8KKJyg4YiNsXQGtexzYNSVJccnpe2p2IhE45xzo0QPKy+H//g8qK9uHHUuSJO0LR0oJIKsvtO5JWkoU3vtZ2GkkSU3EUkrNUkpKsPB5+/ZQWgorVvyaLVvCTiVJkvaqtpTKdpHzFi0SgfxvBsfLH4cv5oWbR5LUJCyl1GxlZsJll0GrVlBWdggXXQQVFWGnkiRJu1W+AcqKgmOfvKfMLvztg7bB8ds3QLQm1DiSpMZnKaVmrV07uPRSiETKePFF+Pa3ocqHuEiSFJ9qR0m17gGpWeFmUVx48I18SM2GjW/D0kfCjiNJamSWUmr2unaF7t3/m7Q0mDIFrrkGavxFmyRJ8cf1pPQ1m7alwOE3B1+8+xOoKA41jySpcfn0PbUIbdq8yb33woUXwiOPQOvW8PvfB8sVSJKkOFFsKaVdOPh6+GwSlH4M7/0Ujp240ynnnDGSjRuK9niZ3PZ5THthVlOllCQ1gKWU4tayZUsZOHD4Ppy3Yp+ud/758Oij8J3vwMSJkJUFEyZYTEmSFDdKFgb7nMPDzaH4kpwGx94Ps0fAkgeg1+XQ4bh6p2zcUMScSQV7vMzwa6Y2ZUpJUgNYSiluVVVBQcGcvZ53111d9vmal10GW7fC974Hv/pVsBj6zTcfSEpJktQoolHY9F5w3O6IcLMo/uSdAj2/A8v/DG99H0a9CUn+XxlJSnSuKaUW59pr4e67g+NbboFf/CK4D5YkSSHatgoqSyApFbIHhJ1G8ejo30BqW9j0L/jk92GnkSQ1AksptUjjxsH//E9w/Mtfws9+ZjElSVKoakdJZQ8IpmtJX5fRCY76VXD83s9gy9Jw80iSDpillFqsm26Ce+8Nju+8E37yE4spSZJCU7yjlGo7KNwcim99roZOJ0P1Nph/tTdvkpTgLKXUot14Y/AUPoBf/xoKC6/33kaSpDC4npT2RSQJhvwvJGdC0SvBU/kkSQnLUkot3vXXw/33B8cbNlzCCy/4SzdJkmKubqSUpZT2ok0fOOLO4Pidm2DL8lDjSJIazlJKAq67DiZNAqjh7bfhmWegujrsVJIktRBVW2Hzp8GxI6W0Lw6+AToeD1WbYe53SYr4G0VJSkSWUtIOV18N3brdQlISLFoETz4JlZVhp5IkqQUoXgREISM/WMxa2pukZBj2GKRkwfp/csnRX4SdSJLUAJZS0lfk5LzMpZdCSgp8+ik8/jiUlYWdSpKkZq7Y9aTUAFm9YfBvAbhm2DrYXhhyIEnS/rKUkr6mb1/4zncgPR1WroRHH4UtW8JOJUlSM7bJ9aTUQL2vhK7nkZochVVPQ3V52IkkSfvBUkrahe7d4YoroHVrKCyEyZOhuDjsVJIkNVN1i5wPCjeHEk8kAkP+l6LNKVCxAdb8zSfWSFICsZSSdiM/H668EnJyYONG+NOfYP36sFNJktTMRGtg0/vBsdP31BDp7bl1RjcgAiULofjdsBNJkvZRStgBpHjWvj1cdRX8+c/wxRdBMdW58779FnfkyHMoKtq41/Py8nKZNWvagUaVJCkxbV0ePEEtKQ2yDwk7jRLU+2taQ94pUPQyrHkBMvIgs0vYsSRJe2EpJe1FdnYwYur//T/4/HNYvvw+nnoKLrpoz99XVLSRgoI5e73+1KnDGympJEkJKKMzjJgF21ZDUmrYaZTIOgyHbZ/D5k9g5VPQ5xpIaR12KknSHjh9T9oHrVrBd78LhxwC0WgaF18Md9/tkgWSJB2wlEzIPxV6fzfsJEp0kQh0PR/ScqGyJFj4PFoddipJ0h5YSkn7KDU1GB2Vm/s0ADfdBD/8IVR7ryNJCtE//vEPzj77bLp06UIkEuG5556r9340GuUXv/gFnTt3JjMzk5EjR7JkyZJwwkpNLTkDul8STAfduhzWvOhvESUpjllKSfshKQk6d76P//mf4Ovf/x4uvBC2bw83lySp5dq6dStHHHEEEydO3OX7v/71r/nd737Hgw8+yPz582ndujWjRo2irKwsxkmlGMnoCF0vCI43LYANc8PNI0naLdeUkvZTJBKMkurWLZjS9+yzMGIETJ8OHTqEnU6S1NKcfvrpnH766bt8LxqNct999/Gzn/2Mc889F4DHHnuMvLw8nnvuOS655JJYRpViJ/sQyB8FhTOh8CVIbRt2IknSLjhSSmqgiy+Gl16Ctm1h3jwYOhQ++ijsVJIkfWnZsmUUFhYycuTIutdycnIYMmQIc+fufvRIeXk5paWl9TYp4bQfArnHBsefP8PRXbeEm0eStBNLKekAnHgivPEG9OwJn30WFFMvvhh2KkmSAoWFhQDk5eXVez0vL6/uvV2ZMGECOTk5dVu3bt2aNKfUJCIR6PxvkD0AotXcdfZK2PBW2KkkSV8RainlwpxqDgYMgDffhBNOgNJSOOssuPde19SUJCWu8ePHU1JSUretWrUq7EhSw0SSgvWlWveiVVoNvPJvsOm9sFNJknYItZRyYU41Fx07wqxZMHo01NTAuHGwevVPqKoKO5kkqSXLz88HoKioqN7rRUVFde/tSnp6OtnZ2fU2KWElpUD3i/lgbSZUbITZI2DTu2GnkiQRcil1+umnc/vtt3P++efv9N7XF+YcNGgQjz32GGvWrNlpRJUUD9LSYNIkuO++4Cl9xcVn8ec/w9atYSeTJLVUvXr1Ij8/n9mzZ9e9Vlpayvz58xk2bFiIyaQYS05n3HM9g3WmaoupjQvCTiVJLV7crinV0IU5pTBFIvDDH8ILL0BS0mZWrgyKqq/9glqSpEazZcsW3n33Xd59910guId69913WblyJZFIhBtvvJHbb7+dadOmsXDhQr773e/SpUsXzjvvvFBzS7G2tSIZTpkJ7YdCxSaYdTIUzt7r90mSmk7cllINXZjTp8UoHowaBX36fI/cXCgpgYcfhkWLwk4lSWqO3n77bY466iiOOuooAMaNG8dRRx3FL37xCwB+/OMfc8MNN3Dttddy7LHHsmXLFmbMmEFGRkaYsaVwpOXAiJmQNwKqtsCrZ8CKp8JOJUktVkrYARrbhAkTuPXWW8OOIZGevpKrr4ann4alS2HqVPj8c/jmNyE5ef+uNXLkORQVbdzreXl5ucyaNa2BiSVJiejkk08muoena0QiEW677TZuu+22GKaS4lhqNpz8ArzxbVj1NLx+MWz+BA77aTDsXZIUM3FbSn11Yc7OnTvXvV5UVMSRRx652+8bP34848aNq/u6tLTUxxgrNJmZcNll8MorMGcOzJ8Pa9bAhRdCmzb7fp2ioo0UFMzZ63lTpw4/gLSSJEnxZenSZQwfMnCv561Yvmz/LpycDsc/Cf/6ESz+Lbz/cyj5CIZMgpRWDUy7s3POGMnGDXtfxyG3fR7TXpjVaJ8rSYkibkupry7MWVtC1S7Med111+32+9LT00lPT49RSmnvkpLg1FOha1d49llYtQr++Ef41regZ8+w00mSJMWxmirmTCrY62ldTrlr/6+dlAyD74OcQ+GtMbDiCShZCMOnQPYh+3+9Xdi4oWif8g+/ZmqjfJ4kJZpQ15RyYU61JIccAtdeC3l5wRP5HnsMXn8d9jDjQpIkSU2t77UwYhZk5EHxQphxDCz7P2/SJCkGQi2lXJhTLU1uLoweDYMGBfc5s2bBqlW3U1ISdjJJkqQWLO8kOP1f0OmkYAH0ud8O1poq3xB2Mklq1kItpWoX5vz69sgjjwBfLsxZWFhIWVkZs2bN4uCDDw4zsnTAUlPhvPPgzDODqX2lpSdz5JHBelOSJEkKSWbnYMTUwFshkgwrp8DfDoNljztqSpKaSNyuKaXEtGzZUgYO3Pti28uWrYhBmqbRGD9jJALHHAOdO8Ojj65h+fIuDB8Od9wBN90UlFWSJEmKsaQUGPgL6HIGzP0OlH4c7D+bBMdMhLaHh51QkpoVSyk1qqoq9ukpcXfd1SUGaZpGY/6MBx0EffteycCBM3nqKfiv/4LZs4P1pvLyGiOtJEmS9lv7Y+D0d+Hju2HR7bDuH/DikXDID2HgzZCaHXZCSWoWLKWkkCUnb+XJJ+Gb34Qf/AD+/nc44gj485+D1yRJknTgli5dxvAhA/d6Xm77PKa9MAuS0+Gw/4ael8E742DVM/DxPbDsz3Dof0G/6yClVcyy1eWSpGbEUkqKA5EIXH01fOMbcPHFsGgRjBoFP/4x/PKXYaeTJElqBmqqmDOpYK+nDb9mav0XWveAE6bCmhmw4Iew+RP4103w0W+C0qrvNZB8gA9i2odsO+WSpGbAlWukOHLoofDmm/D97wfraf7qV0FRVV7eLexokiRJLVuXf4MzP4AhDwdFVVkhLPgBTO8Hn0yEqu1hJ5SkhGMpJcWZzEx44AF4+mlo1w7efhs+/XQyb77pg18kSZJClZQCfa6Csz6BYx+AzINg2+fw9vUwrSd8MAEqSsJOKUkJw1JKilMFBbBwYbCuVDSawYsvwv/9H2zeHHYySZKkFi45Dfp9H875FI75w46RU+vgvf+Gv3aHd8fD9qKwU0pS3HNNKSmOHXQQzJgBXbvey/r1Y/nss2AU1ZlnwmGH7Xz+smVLGThw+B6vmZeXy6xZ05oosSRJUguSnAEHj4G+18KKJ+HDu6Dkw2C/+D7GndwKKoohrW3YSSUpLllKSXEuKQnat5/K+eeP5dlnYe3aYGrfJ5/A6adDxlfW1ayqgoKCOXu83tSpey6tJEmStJ+SUqHXd4In9a2eHkzj2zCfC44og09+BzkDoePxkNEp7KSSFFcspaQE0bEjjB4Nr70Gc+bA++/DsmVw9tnQr1/Y6SRJklqOc84YycYNe5qeF+Worj258PCVnHhIDZS8H2xtDoGOw6FV15hllaR4ZiklJZDkZBgxIiihnnsONm6EJ56AI46AUaPCTidJktQybNxQxJxJBXs9r8spd7Hmhe/C+jlQ+hFsXhxsrXtCh+GQ1RsikaYPLElxylJKSkDdusH3vw8vvwzz5sF778Fnn0F1tc2UJElSXMnsAt0vgvIvYP3rUPw+bF0ebJldIG9k2AklKTQ+fU9KUKmpweioq66CDh1gyxaoqprM1KmwbVvY6SRJklRPegfoei4c/ANoPwQiqbB9DSx/jEevrYSy9WEnlKSYc6SUlOC6dYPvfQ9efRVef72aRYuSWbYsWAT90EPjY0T4yJHnUFS0ca/n+WRASZLU7KXlQOd/g44nwLrXYOMCvjmwBj59AHKPhk4nQ0pW2CklKSYspaRmICUFRo6EN988i7ZtX2T9+uAJff36BeVUu3bh5isq2rjXpwKCTwaUJEktSEpr6HIGtD+OF59+gNOPqIGNC6B4EeSdCrmDIeLEFknNm/+Wk5qRpKT3uPZaOPFESEqCJUvg/vvhn/+E6uqw00mSJGkn6R0Y/b+p0OsKyOgMNeWw9gVY+ifYvjbsdJLUpCylpGYmJQVOOQWuuw569oSqqmBB9AcfhOXLw04nSZKkXWrdA/pcDZ1Ph6R02L4aPpsEa2dAdXnY6SSpSTh9T2qmOnSA734XFi6EmTPhiy/g0Uehbdv/Zv166Ngx7ISSJEmqJ5IE7Y+D7AFQOBNKPoAN86H0Y47uGvJ6DJLUBBwpJTVjkQgMGgTXXw+DBwevFRefwSGHwO9/D5WV4eaTJEnSLqS2gW7fgh6XQWpbqCzhdwXL4a3roWpr2OkkqdFYSkktQGYmnHUWjB4NGRlL2LQJfvADOOIImDEj7HSSJEnapTZ9oe91waLnAEsmwgtHwLq9P0BGkhKBpZTUgnTtCn36XM0DDwTT+z76KHg63xlnBMeSJEmKM8lp0OUsbny2J7TqBls+g1knwjs/gqrtYaeTpANiKSW1MJFINd//fvBkvh/9CFJT4cUX4fDD4eqrYdWqsBNKkiTp695emQVnLITeVwFR+PgemHE0fDE/7GiS1GCWUlIL1bYt/OY38MEHcN55UFMDDz8M/foFZdUXX4SdUJIkSfWk5cDQh+Gk5yGzM5R+DC99A979b5/QJykh+fQ9qYXr1w+efRbmzoXx4+G11+Cee2DSJLjxxmDLzQ07pSRJUmwsXbqM4UMG7vGcFcuXxSjNl76eq016DjeevI1R/Uvgwwl89o97uOPvXfmipifTXpi1x2udc8ZINm4o2utn5rbP2+u1JOlAWEpJAmDYMHjlFfj734Ny6l//gl/+Eu69F8aMgXHjoFOnsFNKkiQ1sZoq5kwq2OMpXU65K0ZhvmJ3uUo/gtXP06fDNv7078v407xSqKmEpNTdXmrjhqK9/owAw6+ZeiCJJWmvnL4nqU4kAqNGwdtvw5QpwdP5tmyBX/0KevYMRk255pQkSVIcyR4A/f4Dsg8Farhq6HqYOQSKF4adTJL2ypFSahGWLVvKwIHD9+G8FTFI8/XP3Hu2xsy1r38WeXm5/Otf03j+ebj9dnjzTfjtb+EPf4ALL4SxY+G44xotliRJkhoqpTV0+xaUfkDJJ8+Rw79gxmAYeAsM+M89jpqSpDBZSqlFqKqCgoI5ez3vrru6xCBNffuSrTFz7eufxdSpw4lE4Oyz4ayzYNYsmDAhmOL35JPB9o1vBOXUeedBiv82kSRJCk8kAjmH853HFzHtlkNg9TR476ew/P/BsQ9Ap73/UlKSYs3pe5L2KhKBb34TXn45WGvq8sshNRXeeCMYNdWjB/ziF7ByZdhJJUmSWraN21LhxOdg2GOQ3gFKFsGsE2DeVVC2Pux4klSPpZSk/XLkkfDII0EB9fOfQ8eOsGZNsCh6r17ByKrp06GyMuykkiRJLVQkAr2+A2d9DH2uCV5bOhme7w9L/khyJBpuPknawQk3khokPx9uuw1+9jN47jl48MFgat/zzwdbp05w6aXwne9A1PseSVIj2ZdH2a9YvixGaaQ4l94ehjwEva+Et66D4vfgre/z2LfToOTDYJH0SOSAP2Zf/neZ2z6PaS/MOuDPUn378mcP/vkrfllKSTogaWlw0UXB9skn8Mc/wp//DOvWBQuj//a3kJ7+Z/75Txg0CHJywk4sSUpk+/Io+y6n3BWjNFKC6DgM/u1t+GQifPBLeuRugFVTILML5I2ErF4HdPl9+d/l8GumHtBnaNf25c8e/PNX/HL6nqRGc/DBcPfdsHp1MFrq4oshIwPKy3vx8stw333w6KPw9tuwdWvYaSVJklqQpBTo/0M4ZymT53cMnsi3fQ0sfwyWPgKliyFaE3ZKSS2MI6UkNdjIkedQVLRxj+f06tWazz4bSOfOv2HFCli+PNheeCFYIP3QQ6F/f2jTBpYtW8rAgXt+MkxeXi6zZk1rvB+iEe3Ln0c855ckSS1AajYPz8vjysu/C+v+AZsWwLYVsHIFpLWD9kOg7ZGQnB52UkktgKWUpAYrKtpIQcGcvZ53111duOKK31BcDIsWwUcfBYujf7Wg6t4dyspGM3LkL/c4xW/q1Ph9nPG+/HnEc35JktSCpGRBlzOgw/Gw8U3Y+A5UbIK1M6DoFWh7OIO6bA1GT0WcYCOpaVhKSYqZtm1h+PBgKy6GDz8MCqrPPw+e5ge/5L77gkXSDz442A46CJK8D5IkSWoaaTmQ/03odBJseg82zIeKDbBxAfdfCPy1J/S4FHpeCm2PaJSF0SWplqWUpFC0bQvf+EawlZQE5dTf/z4fGMK6dcFC6XPmQKtW0K9fsPXpE3ZqSZKkZiopDdofC7nHwNalULyILUXvk8Uq+OjXwdaqK+SfBp1HQf5ISM8NO7WkBGcpJSl0OTkwdCi8+ur5/OAHa/j0U1iyJNi2bYP33gu2SAQyMh7iv/8bTj0Vjj8+WEhdkiRJjSQSgaw+kNWHc26v4OW//BKWPwFr/gbbPoelfwo2IkGB1fF4TulbApWlkJoddnpJCcZSSlJcadUKBg0KtupqWLUKPvkk2DZsgO3bD2XCBJgwAdLTg2Lq1FPhlFPg6KOD1yRJieecM0aycUPRXs9bsXxZDNJIAqioToJuFwRb1XZY/09YOxPW/h1KFsHGt2DjW/zyTGDxvUEpldkVMvIhMx8yOkNqFgBLly5j+JCBe/3M3PZ5THth1h7P2dd/X+zLtfZVGJ8ptQSWUpLiVnIy9OwZbKedFkzzmzLlDkaM+CmzZweLpb/8crABpKUFxdSwYfDSS7+iouJNUlOLdrv0QRhPwtuXJwxC42ZrCU8F3JefERL/55Sas40bipgzqWCv53U55a4YpJG0k5RM6HxasAFsWw1Fr8IXc1n8+sMc0qk8GC1V+SGUfviV72sNGZ35yZll/GB0/6CwSsvd7dpUw6+Zutco+/rvi3251r4K4zOllsBSSlLCyMmBdu1e5LHHfko0CosXw+zZwfbPf8IXX8C8ecEG/wUE0/vy8oItPx86dID27SEzE555JvZPwquqYp+eWNiYT+lrCU8F3NcnQSb6zylJUtxodRD0ugx6Xcbo619jzoNnw/bVsH0NlBUGW/kXULUVtnzKD04DVj0dfG9SWlBOZeRBZmfI7ALpHX3Kn9QCWUpJSkiRCPTvH2xjxkA0CkuXwty5wfanPy2mouIQyspgxYpg+6qMDIhEJvHv/w7dukGXLl9u+fmQmxuUYD75T5IkaR8kp0FWr2CrVVMBZetg+1oef3oG3x6ZD2VFwevbVgZbrUgKZOQz9uRtsPQRyB0M2QMgyf/LKjVn/i9cUrMQiQRP5+vTB779bfjHP0Zz3nlzWL8eioqgsDDYb9gApaVQVgYwgP/3//Z8zexsaNcuKKjS04Mya1f7lBRYs2YcL74YFFmRSLCv3Wq/rqr6D954Y+fXv/51ScnJPP988Llt2365z8qyKJMkSQkiKS14Yl+rrvz4ydl8+3vXQLQmGEG1fW0wmmr7WihbGxRV2z+n4Ahg3pXB9ydnQrsjg4Iq95gdRVX/MH8iSY3MUkpSs5WcHIx6ys+HI4748vXKSti0Cf72t/HccMME1qyB1auDNarWrIH/3969x0VV7X8D/8yNYQABRbl5A61EEwvyckhTU/JSaSavTvrj9JCZ3eDnhSc181F79FeimVrWyU7Pr8uTXT2aGic18oKgHkNTvFBoCkrIRUXuw21m/f5YMMNwHQ1mhvi8X6/12jN7r1mz9l6g39eXtffKyQH0ejn7qqhIFutMx08/tVbn/yAhwZq2/gtTpjTeq1DU3cYI+PmZZ3f17Gk52ysggCsTEhERkQNSKAFnb1lQG6AJAVTdAPQ5+GpXImZMuhso+BmoKQWuH5WljkqH958AcPV7edufzo+3/hF1YExKEVGno9EA3t6Au3sSXn656TqVlUBhoUxe3bwpZ1dVVspSUdH4tcEAbNr0EYKCnoHRCFMRwvJ1aurXGDz4ySaP13+fn38Kgwbdi6Ii2Y/CQplME8L8PqOFBagUCpmouuMOIDt7EZKT5S2J3brJZ2ppNG1+WYmIiIhuj0IBaLsD2u54N+k8ZqxLlDOqSi4AN44DBSeAmydMiapgf8iV/0yfV1s+n8q5NlFFRA6PSSkioiZoteYHpFvrm28+wrhxz7RYJy1tAR5//MlW29q2LQYpKeYHdwshE2B1SaobN+SMrrrZXfXL778DJSVy+/vvADAV+/ZZtt+1q0zMeXsDPXoAFRX9UFUlVzAkIiIisjuFEnAfIEtgpNxnNAAlF/B///MhrIjs1eDWv2xZzA1gy1NOQFIE4D4I8Kgt7gMAFaeTEzkKJqWIiBxQRsYlBAe3vFJcdnYWevbsbbFPpQL69AEMBk9UVfVEVVVP5OW5ISgoFjdvymSWXm+eAZaeXvfJ/w+ttgZabRa02gw4O1+CVnsJzs4ZcHLKhkJhbPY7m+Lj0w0//rjrdk6dbCQ8fCry8gparcexJCIih6FUAR5BSEj3xAq/iXKfEEBVQe2qfzkyUaXPAYyVCOhWCWRtB7Dd3IZCCbj0BdwCANdAwDVAvnbpJVcE1PkCGk85e8tRCAEYKgCD3lxqygFDBQZ46wF9LqBQyXNTqGTSTal1rHMgagaTUkREDqimBoiISG6xTlycf6t16upNnx5rel9WBuTnm8u1a0BWVhEAD1RWBqKyMhDFxeNM9dVqOZvK2xsoLl6Fhx9eBm9voEuX5mOdbdtaTqiR/eXlFVj188OxJCIih6ZQAFovWRAs9wkB1JRgQdx2bFg1HyhKA4rTgMJzQHUhUJYhCw403abSSSaonLoCGndA444Vk7KA7HhApZUJH6UagKL2WVa1q9VAickDb8rVA43VcgaXxbYaMFbWSyzpAUN5g0RTw8RT7etm/PdMABcvNnMezjJBpXbBG4+UAMfnAi69ZXELlA+Nd/K4vetO1EaYlCIi6mRcXYHAQFnqrF49ENHRVy0SVXWva2rkrYI5OQCwDJ9/Lj/j7Gy+/c/bWz6rqls3+SB2IiIiIrtRKACNO1KudAGC5pv3CyFX/Cu5KJNSpZlAWaZ8rb8K6PNk0spYBZRfkaXWQwMgn2vViqUTYF49sD0oVIDKBVDrAKUz8vKuwqerVj6DSxgBUQMIg6xrrJCluhCj7wBwflPj9nR+gPtAmaDyDJYrHHoG8xZHshkmpYiICAoF4O4uyx13mPcbjfIZVnUJqsTEXfDymorr1+Uzrq5ckaU+pRJQq7/EpEmyrf79gd695WqBvr5y6+Ji09MjIiIikgGPzk8WNDMT2FABVOTJW+Kqi4DqYqC6GG+vXYp5TwQBhkqZ6BEGmeQSRgC1q9XAiKNnriIs7AFA5QQoNIBSI2de1d+qXACVTiaWVLqm35teN3ivtFytJmJEMJI/jLA8B2ON+XY/YwVQU4b1nx5CbPT/AsqygPIsoPQ3862O+hwgb3+966QGPO4GuoUCXUNloqrrPYCaARy1PSaliIioWUqledW+oCDgyJEX8NJLU1FTI59PlZ8P5OXJmVU3bwIFBXIlwqqq3ti7F9i7t+l23d1lcsrPT86wcneXtwM23Lq6ytsHNRpzqXuvVstnaCmVQEVFX1y/LmPNhkWpNL+uqfFAQYHc11ohIiKiTkjlDLj2laWerac2YF70mFY/vvC/tiH51e/bq3fWUaoBpRugcTPt2n76HGLvjbOsV1UEFP8qS1EaUJgqVzqsvC5fF6YC+FjWVShrE1XDAK+hcus5RCbfiP4AJqWIiOiWqdXm1QmDg837hZAr/3377X9i6dJNuHhRPuYgO9t8C2BFBVBcLIv5Qet/1Of47Tdr6v0LXl7WtahSATqdLC4u5mLt+7rPNixNHXNy4rNIiYiIyMacPIDuI2SpIwRQ/jtw82eg4GeZpCo4IW97LDwjy6WPZF2lk0xMeQ0zJ6vcB9Y+b4vIOvxpIaImWbP6W0bGZRv1pn1Yc46A9SvOdfTr0RbqbgN0czuJZ59tfFwImYyqS1Dl5MgZViUlcn/DbXm5fKZVdbW51H8vhLzFsKCgEBqNp5xF30K5FQYDUFoqS/szwsVFCZ3OciZYw+1vv6WjpqYSgAEKRQ0UCvNW7jNAry+Ci4tz7TGDxTH5Wta/efNRHD5sOTus/qy0utd6/QCkpTVOpmk0LZ9RU6xZ8Y8rPBIR/TGXLmVg1IjgFutczsywUW9uXVv235q2unn5YNf3P1rdv7b4zqysbPTu3bPVtqyp15bXovnv6w4vVw8M9NEjyFuPAI+bCOkr4KGrAgqOy4L3AQD6agUuXNMhPU+H/MoeiF72/+QMKydPq/rZnKkPh6PgRl6Lddp6LG3NmnMErDvPtmyrvTEpRURNsnb1t47MmnMEbm2VO2qZQiEfhO7hIW8HbCvBwY9aNUarV/tj8eKrrSav3n47GDExZxolxOqX+PhFGDdubZN16vbV1ACZmcfh7T3UYl/d1pwoU6K8XCbhWjbAqutRVWVVNfxoVQzy37j77sZ71Wp5i6WHh0xE1t82t+/SpV6YPHmXKbGlUjVu19rfN64KSETUDGNN42cMNeD/YFyLx+2qLftvRVuj5myztmdt9p3+D8a1Wsfaem15LW6lX1f3L5YPhddfBfTZQPlVoCIHOk0VhviXY4h/OYAbQELt/9c6f5mc8rgb8BgEuPUDXAPkSoBW3AJYcCPP9mNpY9acI2DdebZlW+2tQySl3nvvPbz55pvIzc3FPffcg02bNmH48OH27hYREXUwdc+Yar3eDXTp0nKd3bu3ICxsbattxcVNxQsvXG20v26WV3U1sGPHY/j++52oqLBMWjVMZL3wwmL85S9rYDTKzxoMML2uKz/+uBJjxy5vtL9hOXnyCwQH/4fFvvoJtrrXxcX5cHf3hl4P6OutSF1TI2e53bzZ+vU0+zv+/nfzOyenxrc0Vle/gf37W74Nks/8uj2Mp4iIqM0oFIBTV1k8av96JYxA5Q2ZqKrIxbETZzFikKe8HVB/VZbchIYNAS49ZYLKNVA+y0vnBzj7mIvOB8AtTnmnDsPhk1Jff/01YmNjsXnzZowYMQIbN27ExIkTkZ6eDm9vb3t3j4iI6LYoFHKmkEoFaDQ30K9f659xdz+MgQNbrnPw4GaMGrW81bbOnn0Z06b9R6v1tm2bjjNn5MwlIeQzwfR6OaurpAQoKpK3Wja1bfg6NTULSmVvVFTItquqZCkqqv+NTyMpqeU+OTsDRuOXqK6+vdsIOyPGU0RE1O4USsC5hyy4B/97ZymSXz0jH6helAYUnZOl+FegLFMWQ4VMWpX/Dlxrfqb0vmgFkL6xdqVCZ3NRml8/NKAQyP5e3iqodgPUrrXFTa4cqHCwv2oJo1whsUYPGPTo7VkpV30U1XIFxbqtsRoQ5m3UsHzgzCrIVR+NAESj7Ysjc+WKigo1oFA1Lkq5/y8BJXIMVM52uwwOn5Rav3495syZg1mzZgEANm/ejH/961/46KOP8Morr9i5d0RERJ2HQmGerdSt261/Pjh4JiIikmE0mpNb9Ut5OfDjj+sRGhrbaL9eD1RWynYqKgCl0osJqVvAeIqIiOzGyQPoESZLfUIAFfnmBFVZJlB2WSZmKvLMpaYUWrUAqotkacaKSQASH2m+HypdE8mq2tdKDaDQyK1SXe+1RiZ2lBqZ1BJ1iaDarTDUbmsAQ6VM8Bgr5LZ+Me3TAzXlcmu0fN7Cl1EALl5o9XLOuR/AmZb/ABk5FMC1Vv7KB2DdYwCqCgGdb6t124tDJ6Wqqqpw4sQJLFmyxLRPqVQiPDwcR48etWPPiIiI6HYplebVChs6eHAdHn44tsnPGY3mJNWePfMAfNi+Hf2TYDxFREQOSaGQt+bpfCxXAGyophxPTA7B1lUPyGROXXKnQcLn+LkrGDrkLplkMZQBNbWljkHOSELltXY/tVumdEKJvgZdXF3MSTCLhJh5uyvpMqY+/lcACpkoUyjNr2u3X33xKWaE97NMmgmDZTHW4NfM6whS6ex66g6dlLp+/ToMBgN8fHws9vv4+ODXX39t8jOVlZWorPtTKoCi2nsCiouL262fBkMNKitbbl8IY6t12rqeo7Zlj+901Lbs8Z2O2pa19QyGGqt+n/l7ab+2AOvHqa1YM96A414zR/65bsuxbIv+q9Xy4ela7Zl2+xmra1fc6pKNDqqjxFM1BgOKSytbrWcUotV61tTp6G3Z4zvZ//Zpyx7faW1bNQaDVb/31vz+Ouq1aMtztPY7HfVatPXPtbXX1hpZN1UoNvYAFJBZjCYyGTFbd+KHFw9a7jTdIldem6Qqr5ewqrcPTdwq1+jWOaM5CaRQ1SaB6r1XaWtvJdQCCud67+tuNax7rzNv1Tp5C6JShQnj/oIf3nms1WvxRsJOjF3S8nNNNx7cjYenj2+1radf34kfZiuAirb//93qeEo4sOzsbAFAHDlyxGL/woULxfDhw5v8zIoVKwTkU9BYWFhYWFhYWG67ZGVl2SLcaXeMp1hYWFhYWFjsVVqLpxx6plT37t2hUqmQl5dnsT8vLw++vk3f87hkyRLExpqn/RuNRhQUFMDLywsKhaJd+/tnU1xcjN69eyMrKwvu7u727g5ZiePWMXHcOiaOW8fU2rgJIVBSUgJ/f3879K7tMZ7qePhvi2PgODgGjoNj4DjYX0cbA2vjKYdOSjk5OeG+++7Dvn37MG3aNAAyKNq3bx9iYmKa/IxWq4VWq7XY5+np2c49/XNzd3fvED/0ZInj1jFx3DomjlvH1NK4eXh42Lg37YfxVMfFf1scA8fBMXAcHAPHwf460hhYE085dFIKAGJjYxEVFYWhQ4di+PDh2LhxI8rKykyrxxARERFRyxhPERERkSNy+KTUk08+iWvXrmH58uXIzc3Fvffeiz179jR6WCcRERERNY3xFBERETkih09KAUBMTEyz08up/Wi1WqxYsaLR9H1ybBy3jonj1jFx3DqmzjpujKc6js76M+poOA6OgePgGDgO9vdnHQOFEH+S9Y6JiIiIiIiIiKjDUNq7A0RERERERERE1PkwKUVERERERERERDbHpBQREREREREREdkck1Kd3OrVqzFs2DB06dIF3t7emDZtGtLT0y3qVFRUIDo6Gl5eXnBzc0NERATy8vLs1GNqSlxcHBQKBebPn2/ax3FzTNnZ2fjb3/4GLy8v6HQ6BAcH4/jx46bjQggsX74cfn5+0Ol0CA8Px4ULF+zYYwIAg8GAZcuWITAwEDqdDv3798eqVatQ/7GMHDv7O3ToEKZMmQJ/f38oFArs2LHD4rg1Y1RQUIDIyEi4u7vD09MTs2fPRmlpqQ3PgjoTxmGOhzGV/TBGsj/GO/bR2eMXJqU6ucTERERHR+Pf//43EhISUF1djQkTJqCsrMxUZ8GCBfjuu++wdetWJCYm4urVq5g+fbode031paSk4IMPPsCQIUMs9nPcHM/NmzcxcuRIaDQa7N69G2lpaXjrrbfQtWtXU521a9finXfewebNm3Hs2DG4urpi4sSJqKiosGPPac2aNXj//ffx7rvv4pdffsGaNWuwdu1abNq0yVSHY2d/ZWVluOeee/Dee+81edyaMYqMjMS5c+eQkJCA+Ph4HDp0CM8995ytToE6GcZhjoUxlf0wRnIMjHfso9PHL4Konvz8fAFAJCYmCiGEKCwsFBqNRmzdutVU55dffhEAxNGjR+3VTapVUlIi7rzzTpGQkCDGjBkj5s2bJ4TguDmqxYsXi1GjRjV73Gg0Cl9fX/Hmm2+a9hUWFgqtViu+/PJLW3SRmvHII4+IZ555xmLf9OnTRWRkpBCCY+eIAIhvv/3W9N6aMUpLSxMAREpKiqnO7t27hUKhENnZ2TbrO3VejMPshzGVfTFGcgyMd+yvM8YvnClFFoqKigAA3bp1AwCcOHEC1dXVCA8PN9UJCgpCnz59cPToUbv0kcyio6PxyCOPWIwPwHFzVLt27cLQoUPxxBNPwNvbGyEhIfjwww9NxzMyMpCbm2sxbh4eHhgxYgTHzc7uv/9+7Nu3D+fPnwcApKamIjk5GZMnTwbAsesIrBmjo0ePwtPTE0OHDjXVCQ8Ph1KpxLFjx2zeZ+p8GIfZD2Mq+2KM5BgY7ziezhC/qO3dAXIcRqMR8+fPx8iRIzF48GAAQG5uLpycnODp6WlR18fHB7m5uXboJdX56quv8PPPPyMlJaXRMY6bY7p06RLef/99xMbG4tVXX0VKSgrmzp0LJycnREVFmcbGx8fH4nMcN/t75ZVXUFxcjKCgIKhUKhgMBrz++uuIjIwEAI5dB2DNGOXm5sLb29viuFqtRrdu3TiO1O4Yh9kPYyr7Y4zkGBjvOJ7OEL8wKUUm0dHROHv2LJKTk+3dFWpFVlYW5s2bh4SEBDg7O9u7O2Qlo9GIoUOH4o033gAAhISE4OzZs9i8eTOioqLs3DtqyTfffIPPP/8cX3zxBe6++26cOnUK8+fPh7+/P8eOiNoE4zD7YEzlGBgjOQbGO2QPvH2PAAAxMTGIj4/HgQMH0KtXL9N+X19fVFVVobCw0KJ+Xl4efH19bdxLqnPixAnk5+cjNDQUarUaarUaiYmJeOedd6BWq+Hj48Nxc0B+fn4YNGiQxb6BAwfiypUrAGAam4Yr+nDc7G/hwoV45ZVXMGPGDAQHB+Opp57CggULsHr1agAcu47AmjHy9fVFfn6+xfGamhoUFBRwHKldMQ6zH8ZUjoExkmNgvON4OkP8wqRUJyeEQExMDL799lvs378fgYGBFsfvu+8+aDQa7Nu3z7QvPT0dV65cQVhYmK27S7XGjx+PM2fO4NSpU6YydOhQREZGml5z3BzPyJEjGy31ff78efTt2xcAEBgYCF9fX4txKy4uxrFjxzhudlZeXg6l0vK/TJVKBaPRCIBj1xFYM0ZhYWEoLCzEiRMnTHX2798Po9GIESNG2LzP9OfHOMz+GFM5BsZIjoHxjuPpFPGLvZ+0Tvb14osvCg8PD3Hw4EGRk5NjKuXl5aY6L7zwgujTp4/Yv3+/OH78uAgLCxNhYWF27DU1pf5KMUJw3BzRTz/9JNRqtXj99dfFhQsXxOeffy5cXFzEli1bTHXi4uKEp6en2Llzpzh9+rR47LHHRGBgoNDr9XbsOUVFRYmePXuK+Ph4kZGRIbZv3y66d+8uFi1aZKrDsbO/kpIScfLkSXHy5EkBQKxfv16cPHlSXL58WQhh3RhNmjRJhISEiGPHjonk5GRx5513ipkzZ9rrlOhPjnGYY2JMZXuMkRwD4x376OzxC5NSnRyAJsvHH39sqqPX68VLL70kunbtKlxcXMTjjz8ucnJy7NdpalLDAIrj5pi+++47MXjwYKHVakVQUJD4xz/+YXHcaDSKZcuWCR8fH6HVasX48eNFenq6nXpLdYqLi8W8efNEnz59hLOzs+jXr59YunSpqKysNNXh2NnfgQMHmvw/LSoqSghh3RjduHFDzJw5U7i5uQl3d3cxa9YsUVJSYoezoc6AcZhjYkxlH4yR7I/xjn109vhFIYQQtpuXRURERERERERExGdKERERERERERGRHTApRURERERERERENsekFBERERERERER2RyTUkREREREREREZHNMShERERERERERkc0xKUVERERERERERDbHpBQREREREREREdkck1JERERERERERGRzTEoREf0JfPLJJ/D09LR3N4iIiIg6LMZTRLbHpBQRNenatWt48cUX0adPH2i1Wvj6+mLixIk4fPhwm37P2LFjMX/+/DZts704SqASEBCAjRs32rsbRERE1ArGU40xniKi+tT27gAROaaIiAhUVVXh008/Rb9+/ZCXl4d9+/bhxo0b9u4aERERUYfAeIqIqGWcKUVEjRQWFiIpKQlr1qzBgw8+iL59+2L48OFYsmQJpk6dalHv2WefRY8ePeDu7o5x48YhNTXVdPy1117Dvffei88++wwBAQHw8PDAjBkzUFJSAgB4+umnkZiYiLfffhsKhQIKhQKZmZkAgLNnz2Ly5Mlwc3ODj48PnnrqKVy/ft3U9tixYzF37lwsWrQI3bp1g6+vL1577bVG5/H888/Dx8cHzs7OGDx4MOLj403Hk5OT8cADD0Cn06F3796YO3cuysrK/tB1+yPXAwBKSkoQGRkJV1dX+Pn5YcOGDRZ//Rw7diwuX76MBQsWmK5ZfXv37sXAgQPh5uaGSZMmIScn57bPh4iIiG4f46nbv26Mp4g6DyaliKgRNzc3uLm5YceOHaisrGy23hNPPIH8/Hzs3r0bJ06cQGhoKMaPH4+CggJTnYsXL2LHjh2Ij49HfHw8EhMTERcXBwB4++23ERYWhjlz5iAnJwc5OTno3bs3CgsLMW7cOISEhOD48ePYs2cP8vLy8Ne//tXi+z/99FO4urri2LFjWLt2LVauXImEhAQAgNFoxOTJk3H48GFs2bIFaWlpiIuLg0qlMvVr0qRJiIiIwOnTp/H1118jOTkZMTExt33d/uj1AIDY2FgcPnwYu3btQkJCApKSkvDzzz+bjm/fvh29evXCypUrTdesTnl5OdatW4fPPvsMhw4dwpUrV/Dyyy/f9vkQERHR7WM8dXsYTxF1MoKIqAn//Oc/RdeuXYWzs7O4//77xZIlS0RqaqrpeFJSknB3dxcVFRUWn+vfv7/44IMPhBBCrFixQri4uIji4mLT8YULF4oRI0aY3o8ZM0bMmzfPoo1Vq1aJCRMmWOzLysoSAER6errpc6NGjbKoM2zYMLF48WIhhBB79+4VSqXSVL+h2bNni+eee85iX1JSklAqlUKv1zf5mY8//lh4eHg0eawtrkdxcbHQaDRi69atpuOFhYXCxcXF4hr17dtXbNiwoVHfAIjffvvNtO+9994TPj4+TfaXiIiI2h/jqcYYTxFRfZwpRURNioiIwNWrV7Fr1y5MmjQJBw8eRGhoKD755BMAQGpqKkpLS+Hl5WX6S6CbmxsyMjJw8eJFUzsBAQHo0qWL6b2fnx/y8/Nb/O7U1FQcOHDAot2goCAAsGh7yJAhFp+r3/apU6fQq1cv3HXXXc1+xyeffGLxHRMnToTRaERGRob1F6pee3/0ely6dAnV1dUYPny46biHhwcGDBhgVR9cXFzQv3//JtsmIiIi22M8dWsYTxF1PnzQORE1y9nZGQ899BAeeughLFu2DM8++yxWrFiBp59+GqWlpfDz88PBgwcbfa7+iioajcbimEKhgNFobPF7S0tLMWXKFKxZs6bRMT8/P6va1ul0rX7H888/j7lz5zY61qdPnxY/21x77XU9rNVU20KINmmbiIiIbg/jKesxniLqfJiUIiKrDRo0CDt27AAAhIaGIjc3F2q1GgEBAbfdppOTEwwGg8W+0NBQbNu2DQEBAVCrb++fqSFDhuD333/H+fPnm/zrXmhoKNLS0nDHHXfcVvtNtfdHr0e/fv2g0WiQkpJiCuSKiopw/vx5jB492lSvqWtGREREHQPjqeYxniLqfHj7HhE1cuPGDYwbNw5btmzB6dOnkZGRga1bt2Lt2rV47LHHAADh4eEICwvDtGnT8MMPPyAzMxNHjhzB0qVLcfz4cau/KyAgAMeOHUNmZiauX78Oo9GI6OhoFBQUYObMmUhJScHFixexd+9ezJo1y+rgYcyYMRg9ejQiIiKQkJCAjIwM7N69G3v27AEALF68GEeOHEFMTAxOnTqFCxcuYOfOna0+mNNgMODUqVMW5ZdffmmT69GlSxdERUVh4cKFOHDgAM6dO4fZs2dDqVRarAoTEBCAQ4cOITs722IFHSIiInIcjKeax3iKiOowKUVEjbi5uWHEiBHYsGEDRo8ejcGDB2PZsmWYM2cO3n33XQByKvP333+P0aNHY9asWbjrrrswY8YMXL58GT4+PlZ/18svvwyVSoVBgwahR48euHLlCvz9/XH48GEYDAZMmDABwcHBmD9/Pjw9PaFUWv/P1rZt2zBs2DDMnDkTgwYNwqJFi0xB2JAhQ5CYmIjz58/jgQceQEhICJYvXw5/f/8W2ywtLUVISIhFmTJlSptdj/Xr1yMsLAyPPvoowsPDMXLkSAwcOBDOzs6mOitXrkRmZib69++PHj16WN02ERER2Q7jqeYxniKiOgrBG2SJiBxWWVkZevbsibfeeguzZ8+2d3eIiIiIOhzGU0SOi8+UIiJyICdPnsSvv/6K4cOHo6ioCCtXrgQA0zR/IiIiImoZ4ymijoNJKSIiB7Nu3Tqkp6fDyckJ9913H5KSktC9e3d7d4uIiIiow2A8RdQx8PY9IiIiIiIiIiKyOT7onIiIiIiIiIiIbI5JKSIiIiIiIiIisjkmpYiIiIiIiIiIyOaYlCIiIiIiIiIiIptjUoqIiIiIiIiIiGyOSSkiIiIiIiIiIrI5JqWIiIiIiIiIiMjmmJQiIiIiIiIiIiKbY1KKiIiIiIiIiIhs7n8APOt+5ouhTckAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# 서브플롯 생성\n", + "fig, axes = plt.subplots(1, 2, figsize=(12, 6))\n", + "\n", + "# 첫 번째 서브플롯: s1_len\n", + "sns.histplot(dev[\"s1_len\"], kde=True, bins=50, color=\"blue\", ax=axes[0])\n", + "axes[0].set_title(\"dev s1 len Distribution\")\n", + "axes[0].set_xlabel(\"Sentence Length\")\n", + "axes[0].set_ylabel(\"Count\")\n", + "\n", + "# 두 번째 서브플롯: s2_len\n", + "sns.histplot(dev[\"s2_len\"], kde=True, bins=50, color=\"orange\", ax=axes[1])\n", + "axes[1].set_title(\"dev s2 len Distribution\")\n", + "axes[1].set_xlabel(\"Sentence Length\")\n", + "axes[1].set_ylabel(\"Count\")\n", + "\n", + "# 레이아웃 조정\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABR2ElEQVR4nO3deXwTZf4H8M8kadIz6X1CW+6jUMACpYsoAlIOWTkUD1TwFsGDQ1dWEfSnIirqyrKg6wquqwK6gBfCQrk8AKHcUBAQKEfv0qZn2iTP7480gdAW2pJ20unn/XqNNDNPZr4zjeTDM8/MSEIIASIiIiKFUsldABEREVFjYtghIiIiRWPYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CEiIiJFY9ghIiIiRWPYISIiIkVj2CG3NnfuXEiSJHcZ1ACnT5+GJElYtmyZ3KVcU2xsLG677TaXrrOm/a/p82w2m/H888+jdevWUKlUGD16NACguLgYjzzyCMLDwyFJEp599lmX1idJEubOnevSddZky5YtkCQJW7ZsccwbOHAgunXr1ujbBprX55AaD8MOkZsoLS3F3Llznb4UyHWOHDmCuXPn4vTp03KX4uSTTz7B22+/jTvuuAOffvoppk2bBgB44403sGzZMkyePBmfffYZ7r///lrXERsbC0mSIEkSVCoV/P390b17dzz22GPYuXOny2r94osv8P7777tsfa7kzrWR/DRyF0BENqWlpXjllVcA2P7lS6515MgRvPLKKxg4cCBiY2NlqeGll17CCy+84DRv06ZNiIqKwnvvvVdtfr9+/TBnzpw6rbtnz56YMWMGAKCoqAhpaWn46quv8M9//hPTpk3Du+++69S+rKwMGk39vgK++OILHDp0qF69TDfddBPKysqg1Wrrta36qq22mJgYlJWVwcPDo1G3T+6NYYeIqIloNJpqASM7Oxv+/v7V2mZnZ6Nr1651XndUVBTuu+8+p3nz58/Hvffei/feew8dOnTA5MmTHcs8PT3rV3w9lZeXQ6vVQqVSNfq2rkaSJFm3T+6Bp7HIbfz888/o06cPPD090a5dO3z44Ye1tv3Pf/6DhIQEeHl5ITAwEHfffTfOnj3rWD516lT4+vqitLS02nvvuecehIeHw2Kx1Lr+zMxMPPjgg2jVqhV0Oh0iIiJw++23VzsF8uOPP2LAgAHw8fGBn58fRo4cicOHDzu1mTRpEnx9fXH+/HmMHj0avr6+CAkJwcyZMx01nD59GiEhIQCAV155xXFK4vIxFUePHsUdd9yBwMBAeHp6onfv3vj222+dtrVs2TJIkoRffvkF06dPR0hICHx8fDBmzBjk5ORU288ff/wRN998M/z8/KDX69GnTx988cUXTm127tyJYcOGwWAwwNvbGzfffDN++eWXWo/dtbh6P6xWK+bOnYvIyEh4e3vjlltuwZEjRxAbG4tJkyY51nfnnXcCAG655RbH8b3ylOHPP/+Mvn37wtPTE23btsW///3vOu1TQUEBJk2aBIPBAH9/f0ycOBEFBQXV2l0+Zsc+lmTz5s04fPiwU02SJOHUqVP44YcfHPMbcvrNy8sLn332GQIDA/H6669DCOFYduXnq6ioCM8++yxiY2Oh0+kQGhqKW2+9FXv27AFg62384YcfcObMGUdN9h4ye83Lly/HSy+9hKioKHh7e8NoNNY4ZscuNTUVf/rTn+Dl5YU2bdpgyZIlTsvtn4Mr9/3KdV6tttrG7GzatMnx/66/vz9uv/12pKWlObWx/75OnDiBSZMmwd/fHwaDAQ8++GCNf7eQ+2LPDrmFgwcPYujQoQgJCcHcuXNhNpsxZ84chIWFVWv7+uuvY/bs2Rg/fjweeeQR5OTkYOHChbjpppuwd+9e+Pv746677sKiRYvwww8/OL7kANupou+++w6TJk2CWq2utZ5x48bh8OHDeOqppxAbG4vs7Gxs2LAB6enpjr9EP/vsM0ycOBHJycmYP38+SktLsXjxYtx4443Yu3ev06kSi8WC5ORkJCYm4p133sHGjRuxYMECtGvXDpMnT0ZISAgWL16MyZMnY8yYMRg7diwAID4+HgBw+PBh9O/fH1FRUXjhhRfg4+ODlStXYvTo0fjvf/+LMWPGONX/1FNPISAgAHPmzMHp06fx/vvvY+rUqVixYoWjzbJly/DQQw8hLi4Os2bNgr+/P/bu3Yt169bh3nvvBWD7Qhg+fDgSEhIwZ84cqFQqLF26FIMGDcJPP/2Evn371uv33Bj7MWvWLLz11lsYNWoUkpOTsX//fiQnJ6O8vNzR5qabbsLTTz+NDz74AH/961/RpUsXAHD8CQAnTpzAHXfcgYcffhgTJ07EJ598gkmTJiEhIQFxcXG17pMQArfffjt+/vlnPPHEE+jSpQtWr16NiRMnXvVYhISE4LPPPsPrr7+O4uJizJs3z1HTZ599hmnTpqFVq1aOU1P2MFxfvr6+GDNmDP71r3/hyJEjte7LE088ga+//hpTp05F165dkZeXh59//hlpaWm44YYb8OKLL6KwsBDnzp1znHLz9fV1Wsf//d//QavVYubMmTCZTFc9dXXx4kWMGDEC48ePxz333IOVK1di8uTJ0Gq1eOihh+q1j3Wp7XIbN27E8OHD0bZtW8ydOxdlZWVYuHAh+vfvjz179lQ7zTl+/Hi0adMG8+bNw549e/Dxxx8jNDQU8+fPr1edJCNB5AZGjx4tPD09xZkzZxzzjhw5ItRqtbj8Y3r69GmhVqvF66+/7vT+gwcPCo1G45hvtVpFVFSUGDdunFO7lStXCgBi27ZttdZy8eJFAUC8/fbbtbYpKioS/v7+4tFHH3Wan5mZKQwGg9P8iRMnCgDi1VdfdWrbq1cvkZCQ4Hidk5MjAIg5c+ZU297gwYNF9+7dRXl5uWOe1WoVf/rTn0SHDh0c85YuXSoAiCFDhgir1eqYP23aNKFWq0VBQYEQQoiCggLh5+cnEhMTRVlZmdO27O+zWq2iQ4cOIjk52WldpaWlok2bNuLWW2+t9fgIIcSpU6cEALF06dJG24/MzEyh0WjE6NGjnbY9d+5cAUBMnDjRMe+rr74SAMTmzZur1RoTE1Ptc5GdnS10Op2YMWPGVfdzzZo1AoB46623HPPMZrMYMGBAtf2fM2eOuPKv3ZtvvlnExcXVWNPIkSOvuu26tn3vvfcEAPHNN9845l35WTMYDGLKlClX3c7IkSNFTExMtfmbN28WAETbtm1FaWlpjcsuP+4333yzACAWLFjgmGcymUTPnj1FaGioqKioEEJc+hycOnXqmuusrbaaPof27eTl5Tnm7d+/X6hUKvHAAw845tl/Xw899JDTOseMGSOCgoKqbYvcF09jkewsFgvWr1+P0aNHIzo62jG/S5cuSE5Odmq7atUqWK1WjB8/Hrm5uY4pPDwcHTp0wObNmwHYuujvvPNOrF27FsXFxY73r1ixAlFRUbjxxhtrrcfLywtarRZbtmzBxYsXa2yzYcMGFBQU4J577nGqQ61WIzEx0VHH5Z544gmn1wMGDMAff/xxzeOTn5+PTZs2Yfz48SgqKnJsKy8vD8nJyTh+/DjOnz/v9J7HHnvM6RLnAQMGwGKx4MyZM476i4qK8MILL1Qbz2B/3759+3D8+HHce++9yMvLc2y3pKQEgwcPxrZt22C1Wq9Zf2PuR0pKCsxmM5588kmn9z311FN1rsuua9euGDBggON1SEgIOnXqdM3f0dq1a6HRaJzGw6jV6gbV0FjsvRxFRUW1tvH398fOnTtx4cKFBm9n4sSJ8PLyqlNbjUaDxx9/3PFaq9Xi8ccfR3Z2NlJTUxtcw7VkZGRg3759mDRpEgIDAx3z4+Pjceutt2Lt2rXV3lPT/7t5eXkwGo2NVie5Fk9jkexycnJQVlaGDh06VFvWqVMnp798jh8/DiFEjW0BOF1xcdddd+H999/Ht99+i3vvvRfFxcVYu3YtHn/88aveu0en02H+/PmYMWMGwsLC0K9fP9x222144IEHEB4e7qgDAAYNGlTjOvR6vdNrT0/PaqchAgICag1Tlztx4gSEEJg9ezZmz55dY5vs7GxERUU5Xl8eGu3bAuDY3smTJwHgqvc6se/j1U7HFBYWOtZ9LY2xH/bQ0759e6d2gYGBda6rtm3Zt3et39GZM2cQERFR7bRJp06d6rX9xmQP/H5+frW2eeuttzBx4kS0bt0aCQkJGDFiBB544AG0bdu2zttp06ZNndtGRkbCx8fHaV7Hjh0B2MbZ9OvXr87rqg/7Z6am30+XLl2wfv16lJSUONV2tc/hlf+vk3ti2KFmxWq1QpIk/PjjjzWOubn8C6dfv36IjY3FypUrce+99+K7775DWVkZ7rrrrmtu59lnn8WoUaOwZs0arF+/HrNnz8a8efOwadMm9OrVy9Gj8dlnnzkC0OWuvOLmauODrsW+rZkzZ1br6bK78su+tu2Jywao1nW7b7/9Nnr27Fljm6uNi6htfU29H3XVlNtqaocOHQJQ/fhebvz48RgwYABWr16N//3vf3j77bcxf/58rFq1CsOHD6/Tduraq1NXtf2j5GoXFzQGJX82WgqGHZJdSEgIvLy8HD0Jlzt27JjT63bt2kEIgTZt2jj+FXg148ePx9/+9jcYjUasWLECsbGxdf4XY7t27TBjxgzMmDEDx48fR8+ePbFgwQL85z//Qbt27QAAoaGhGDJkSJ3Wdy21/cVu/5e1h4eHy7Zlr//QoUO1fgHa2+j1epdstzH2IyYmBoCt1+jyXoW8vLxqPTKNdSfumJgYpKSkoLi42Cn8XfnZlUtxcTFWr16N1q1bOw3IrklERASefPJJPPnkk8jOzsYNN9yA119/3RF2XHkML1y4UK0H5ffffwcAxwBhew/KlVe22XtnLlfX2uyfmZp+P0ePHkVwcHC1Hidq/jhmh2SnVquRnJyMNWvWID093TE/LS0N69evd2o7duxYqNVqvPLKK9X+VSWEQF5entO8u+66CyaTCZ9++inWrVuH8ePHX7Oe0tJSpyt5ANsXv5+fH0wmEwAgOTkZer0eb7zxBiorK6uto6bLvK/F29sbQPW/2ENDQzFw4EB8+OGHyMjIcMm2hg4dCj8/P8ybN6/avtqPa0JCAtq1a4d33nnHadxTQ7fbGPsxePBgaDQaLF682Gn+3//+92pt7V9gNV0Sfj1GjBgBs9nsVIPFYsHChQtdup2GKCsrw/3334/8/Hy8+OKLV+0pKSwsdJoXGhqKyMhIx2cesB3DK9s1lNlsdrq9REVFBT788EOEhIQgISEBwKXAvW3bNqdaP/roo2rrq2ttERER6NmzJz799FOnz8KhQ4fwv//9DyNGjGjoLpEbY88OuYVXXnkF69atw4ABA/Dkk0/CbDZj4cKFiIuLw4EDBxzt2rVrh9deew2zZs3C6dOnMXr0aPj5+eHUqVNYvXo1HnvsMcycOdPR/oYbbkD79u3x4osvwmQy1ekU1u+//47Bgwdj/Pjx6Nq1KzQaDVavXo2srCzcfffdAGy9HYsXL8b999+PG264AXfffTdCQkKQnp6OH374Af3796/xC/dqvLy80LVrV6xYsQIdO3ZEYGAgunXrhm7dumHRokW48cYb0b17dzz66KNo27YtsrKysH37dpw7dw779++v17b0ej3ee+89PPLII+jTpw/uvfdeBAQEYP/+/SgtLcWnn34KlUqFjz/+GMOHD0dcXBwefPBBREVF4fz589i8eTP0ej2+++67em3X1fsRFhaGZ555BgsWLMCf//xnDBs2DPv378ePP/6I4OBgpy/3nj17Qq1WY/78+SgsLIROp8OgQYMQGhpar21eadSoUejfvz9eeOEFnD59Gl27dsWqVatcFgrq6vz58/jPf/4DwNabc+TIEXz11VfIzMzEjBkznAYDX6moqAitWrXCHXfcgR49esDX1xcbN27Erl27sGDBAke7hIQErFixAtOnT0efPn3g6+uLUaNGNajeyMhIzJ8/H6dPn0bHjh2xYsUK7Nu3Dx999JFj7F1cXBz69euHWbNmIT8/H4GBgVi+fDnMZnO19dWntrfffhvDhw9HUlISHn74Ycel5waDoUmeF0YykOkqMKJqtm7dKhISEoRWqxVt27YVS5YsqfFSXSGE+O9//ytuvPFG4ePjI3x8fETnzp3FlClTxLFjx6q1ffHFFwUA0b59+zrVkZubK6ZMmSI6d+4sfHx8hMFgEImJiWLlypXV2m7evFkkJycLg8EgPD09Rbt27cSkSZPE7t27HW0mTpwofHx8qr23pn379ddfHccAV1wafPLkSfHAAw+I8PBw4eHhIaKiosRtt90mvv76a0cb+6W6u3btqlYnarjs+ttvvxV/+tOfhJeXl9Dr9aJv377iyy+/dGqzd+9eMXbsWBEUFCR0Op2IiYkR48ePFykpKVc9jjVd8tsY+2E2m8Xs2bNFeHi48PLyEoMGDRJpaWkiKChIPPHEE07v/+c//ynatm3ruKWBfT21Xbp98803i5tvvvmq+ymEEHl5eeL+++8Xer1eGAwGcf/994u9e/c26aXnAAQAIUmS0Ov1Ii4uTjz66KNi586dNb7n8s+XyWQSzz33nOjRo4fw8/MTPj4+okePHuIf//iH03uKi4vFvffeK/z9/QUAx6Xe9t/LV199VW07tV16HhcXJ3bv3i2SkpKEp6eniImJEX//+9+rvf/kyZNiyJAhQqfTibCwMPHXv/5VbNiwodo6a6utts/hxo0bRf/+/R2f/VGjRokjR444tbH/vnJycpzm13ZJPLkvSQiOsCIiZSkoKEBAQABee+01vPjii3KXQ0Qy45gdImrWysrKqs2zP/2aD1QlIoBjdoiomVuxYgWWLVuGESNGwNfXFz///DO+/PJLDB06FP3795e7PCJyAww7RNSsxcfHQ6PR4K233oLRaHQMWn7ttdfkLo2I3ATH7BAREZGiccwOERERKRrDDhERESkax+zA9syeCxcuwM/Pr9FuKU9ERESuJYRAUVERIiMjoVLV3n/DsAPbM1pat24tdxlERETUAGfPnkWrVq1qXc6wA8DPzw+A7WDp9XqZqyEiIqK6MBqNaN26teN7vDYMO7j0tFy9Xs+wQ0RE1MxcawgKBygTERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaJp5C5A6dLT05Gbm9so6w4ODkZ0dHSjrJuIiEgpGHYaUXp6Ojp36YKy0tJGWb+XtzeOpqUx8BAREV0Fw04jys3NRVlpKSb85W2ERbdz6bqz0k/i8/nPITc3l2GHiIjoKhh2mkBYdDu06hAndxlEREQtEgcoExERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaIx7BAREZGiMewQERGRojHsEBERkaLJGnbmzZuHPn36wM/PD6GhoRg9ejSOHTvm1Ka8vBxTpkxBUFAQfH19MW7cOGRlZTm1SU9Px8iRI+Ht7Y3Q0FA899xzMJvNTbkrRERE5KZkDTtbt27FlClTsGPHDmzYsAGVlZUYOnQoSkpKHG2mTZuG7777Dl999RW2bt2KCxcuYOzYsY7lFosFI0eOREVFBX799Vd8+umnWLZsGV5++WU5domIiIjcjEbOja9bt87p9bJlyxAaGorU1FTcdNNNKCwsxL/+9S988cUXGDRoEABg6dKl6NKlC3bs2IF+/frhf//7H44cOYKNGzciLCwMPXv2xP/93//hL3/5C+bOnQutVivHrhEREZGbcKsxO4WFhQCAwMBAAEBqaioqKysxZMgQR5vOnTsjOjoa27dvBwBs374d3bt3R1hYmKNNcnIyjEYjDh8+XON2TCYTjEaj00RERETK5DZhx2q14tlnn0X//v3RrVs3AEBmZia0Wi38/f2d2oaFhSEzM9PR5vKgY19uX1aTefPmwWAwOKbWrVu7eG+IiIjIXbhN2JkyZQoOHTqE5cuXN/q2Zs2ahcLCQsd09uzZRt8mERERyUPWMTt2U6dOxffff49t27ahVatWjvnh4eGoqKhAQUGBU+9OVlYWwsPDHW1+++03p/XZr9ayt7mSTqeDTqdz8V4QERGRO5K1Z0cIgalTp2L16tXYtGkT2rRp47Q8ISEBHh4eSElJccw7duwY0tPTkZSUBABISkrCwYMHkZ2d7WizYcMG6PV6dO3atWl2hIiIiNyWrD07U6ZMwRdffIFvvvkGfn5+jjE2BoMBXl5eMBgMePjhhzF9+nQEBgZCr9fjqaeeQlJSEvr16wcAGDp0KLp27Yr7778fb731FjIzM/HSSy9hypQp7L0hIiIiecPO4sWLAQADBw50mr906VJMmjQJAPDee+9BpVJh3LhxMJlMSE5Oxj/+8Q9HW7Vaje+//x6TJ09GUlISfHx8MHHiRLz66qtNtRtERETkxmQNO0KIa7bx9PTEokWLsGjRolrbxMTEYO3ata4sjYiIiBTCba7GIiIiImoMDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaAw7REREpGgMO0RERKRoDDtERESkaBq5C6DaHbpQiLziCgT7ahFp8EKAj1bukoiIiJodhh03lZZhREpatuO1BCA5Lhydwv3kK4qIiKgZ4mksN5RZWI6Uo7agExvkjXC9JwSAzceyUWwyy1scERFRM8Ow42bKKy34/sAFWKwCbYN98OcekbgzoRVC/XQwma1IScuCEELuMomIiJoNhh03cyTDiJIKC/y9PZAcFw5JkqBSSRjaNQxqScLpvFIczSySu0wiIqJmg2HHzaRlGAEAPVv7Q6u59OsJ8tWhb5tAAEBq+kWwc4eIiKhuGHbcSE6RCbnFFVBLEjqFVR+IHN/KALVKQl5xBQoqJBkqJCIian4YdtyIvVenTbAPPD3U1ZZ7eqjRLsQHAHC6hL86IiKiuuA3ppuwWIVjLE6XiNovL+8aoQcAnC1RAWqPJqmNiIioOWPYcRNn8kpQVmmBl4caMUE+tbZrHegNX50GlUKCd8ekJqyQiIioeWLYcROncksAAB3DfKFW1T4eRyVJjt4d3+5DmqQ2IiKi5oxhx02cLygDAEQHel+zrf00l2d0PEoqrI1aFxERUXPHsOMGSkxmXCytBABE+ntds72/txa+GgFJrcHB7IrGLo+IiKhZY9hxAxeqenWCfbU1XoVVkzBPW4/O3kxTo9VFRESkBAw7bsB+CiuqDr06dmFel8IOHx9BRERUO4YdN9CQsBOiExDmCuSWWnAyp6SxSiMiImr2GHZkVl5pQW6xbdxNXcbr2GlUQPnZQwCArb/nNEptRERESsCwI7MLhbZeHX9vD/joNPV6b9mpPQAYdoiIiK6GYUdmFy6WA6jfKSy78qqws+OPPJRVWFxaFxERkVIw7MjM3rPTkLBTmZuOQC8VKsxW7D170dWlERERKQLDjoyEEMgttl06Hqb3bNA6ugZrAQC7TzPsEBER1YRhR0aFZZWotAioVRL8vRr2UM/OVWFn1+l8V5ZGRESkGAw7Msqp6tUJ8tFCdZXnYV1Nl6qwsze9ABYr77dDRER0JYYdGeUW2S45D/bVNXgd0QYNfHUaFJvMOJppdFVpREREisGwIyP7eJ0Qv4aHHbVKQq9ofwBA6hmO2yEiIroSw46M7GEn2Fd7XevpExsIANjFQcpERETVMOzIxGS2wFhuBnB9p7EAoHdsAABgNwcpExERVcOwIxP7eB1fnabOTzqvTc/W/lCrJGQUljues0VEREQ2DDsyccV4HTtvrQbdIvUA2LtDRER0JYYdmbhqvI5dr2jbqay96QUuWR8REZFSyBp2tm3bhlGjRiEyMhKSJGHNmjVOyydNmgRJkpymYcOGObXJz8/HhAkToNfr4e/vj4cffhjFxcVNuBcNk+MIO9ffswMAPVobAAAHzhW4ZH1ERERKIWvYKSkpQY8ePbBo0aJa2wwbNgwZGRmO6csvv3RaPmHCBBw+fBgbNmzA999/j23btuGxxx5r7NKvi1UI5BXbxuyEuCrstPIHABy+YESlxeqSdRIRESmBRs6NDx8+HMOHD79qG51Oh/Dw8BqXpaWlYd26ddi1axd69+4NAFi4cCFGjBiBd955B5GRkS6v2RWKys0wW22PiTB4N+wxEVeKDfKBn6cGReVmHMssQrcog0vWS0RE1Ny5/ZidLVu2IDQ0FJ06dcLkyZORl5fnWLZ9+3b4+/s7gg4ADBkyBCqVCjt37qx1nSaTCUaj0WlqSgWltl4dfy8PqKSGPSbiSiqVhPhW9lNZhS5ZJxERkRK4ddgZNmwY/v3vfyMlJQXz58/H1q1bMXz4cFgsFgBAZmYmQkNDnd6j0WgQGBiIzMzMWtc7b948GAwGx9S6detG3Y8rXSytBAD4u6hXx85+KovjdoiIiC6R9TTWtdx9992On7t37474+Hi0a9cOW7ZsweDBgxu83lmzZmH69OmO10ajsUkDz8Wqnp0Ab9dciWUXXxV29p0tcOl6iYiImjO37tm5Utu2bREcHIwTJ04AAMLDw5Gdne3Uxmw2Iz8/v9ZxPoBtHJBer3eampI97Li8Z6fqiqzj2cUoq7C4dN1ERETNVbMKO+fOnUNeXh4iIiIAAElJSSgoKEBqaqqjzaZNm2C1WpGYmChXmddUUHUay9U9O+F6T4T46WCxChy+wHE7REREgMxhp7i4GPv27cO+ffsAAKdOncK+ffuQnp6O4uJiPPfcc9ixYwdOnz6NlJQU3H777Wjfvj2Sk5MBAF26dMGwYcPw6KOP4rfffsMvv/yCqVOn4u6773bbK7EqLVYUVT0Ty9VhR5Ikx7id/RykTEREBEDmsLN792706tULvXr1AgBMnz4dvXr1wssvvwy1Wo0DBw7gz3/+Mzp27IiHH34YCQkJ+Omnn6DTXbo3zeeff47OnTtj8ODBGDFiBG688UZ89NFHcu3SNdl7dXQaFTw9XH/4e1RdkbWf43aIiIgAyDxAeeDAgRBC1Lp8/fr111xHYGAgvvjiC1eW1agKLhucLLnosvPLda8KO4d4GouIiAhAMxuzowQXHeN1XDs42c5+M8FTuSUoNpkbZRtERETNCcNOE3PcUNDHteN17IJ9dYgweEII4MiFpr1ZIhERkTti2Glijp4dr8bp2QGAuMiqU1nneSqLiIiIYacJCSEu3VCwkXp2AKBblO2+QQw7REREDDtNqqzSApPZ9kRy/0bs2ekexUHKREREdgw7Tch+2bmfpwYadeMdevsg5RO8kzIRERHDTlMqKKt6AGgj9uoAQKifDsG+OlgFcCSDg5SJiKhlY9hpQsaqsGNo5LAjSRK6V43b4WMjiIiopWPYaUKFVWFH38hhB7h0KouDlImIqKVj2GlChU3UswNcfvk5T2MREVHLxrDThIzlTdezY39sxO9ZRSiv5CBlIiJquRh2mojZYkWJyRY6mqJnJ9LgiQBvD5itAr9nFTX69oiIiNwVw04TMZbbnlOlVavgqWn8wy5J0mXjdngqi4iIWi5Zn3reklwanKxx6dPO09LSal0Woi4DAGzefxKdPXLrvM7g4GBER0dfd21ERETugGGnibj6snNjfg4A4L777qu1jXen/ggZPQvf/7IPHz8+vc7r9vL2xtG0NAYeIiJSBIadJlLo4sHJZcW2U1MjH38RneITamxTXAmszwC8Ijrg2b+vgqoOHUpZ6Sfx+fznkJuby7BDRESKwLDTRBw9O56uHZwcFBmDVh3ialwmhMDmnD9QYbbCK6I9Qvx0Lt02ERFRc8AByk2kKW8oaCdJEkKrAk52UXmTbZeIiMidMOw0ASEAY5ntaqymuOz8cpfCjqlJt0tEROQuGhR22rZti7y8vGrzCwoK0LZt2+suSmkqrECFxQoA0Hs27ZnDUD9PAEC2kWGHiIhapgaFndOnT8NiqX5XXpPJhPPnz193UUpTYraNDPbRqaFRN21nmr1nJ7fYBKtVNOm2iYiI3EG9uhm+/fZbx8/r16+HwWBwvLZYLEhJSUFsbKzLilMKe9hx9eDkuvD39oCHWkKlReBiaQWCfDlImYiIWpZ6hZ3Ro0cDsA18nThxotMyDw8PxMbGYsGCBS4rTilKbcN1mnRwsp0kSQjx0+FCQTmyi0wMO0RE1OLUK+xYrbZxJ23atMGuXbsQHBzcKEUpTYnF1rMjR9gBbON27GGnS4QsJRAREcmmQaNlT5065eo6FK206jRWUw9OtuPl50RE1JI1+Ns3JSUFKSkpyM7OdvT42H3yySfXXZiS2MOOnwxjdoBLYSenyAQhhEufzUVEROTuGhR2XnnlFbz66qvo3bs3IiIi+OV5DaVVF67J1bMT4K2FRmUbpFxQWokAH60sdRAREcmhQd++S5YswbJly3D//fe7uh7FUXnpYRG2MOgrU9hRqSQE++qQabSN22HYISKilqRBN32pqKjAn/70J1fXokgafQgAwFurhkYl3w2rQ/Uct0NERC1Tg759H3nkEXzxxReurkWR1IZQAIBepvE6dnxsBBERtVQNOq9SXl6Ojz76CBs3bkR8fDw8PJy/yN99912XFKcEGr0t7PjJdArLzvHYCA5SJiKiFqZB38AHDhxAz549AQCHDh1yWsYvUWf201hy9+wE+mihliRUmK0wlpub/IGkREREcmlQ2Nm8ebOr61Asd+nZUaskBPlqkV1kQraxnGGHiIhaDPlGzLYQ9jE7cocdgON2iIioZWrQN/Att9xy1dNVmzZtanBBSmM/jSXXDQUvF6r3BC4YGXaIiKhFaVDYsY/XsausrMS+fftw6NChag8IbcnKzVaovW1PhpfrhoKXu/yxERykTERELUWDvoHfe++9GufPnTsXxcXF11WQkuRW3TpZIwnoPNQyVwME+WihkoDySiuKTGbZB00TERE1BZeO2bnvvvv4XKzLZJfYwo63RshciY1GrUKQz6XnZBEREbUELg0727dvh6enpytX2azlVPXseMvfqeMQYj+VZWTYISKilqFBp7HGjh3r9FoIgYyMDOzevRuzZ892SWFKYD+N5S49O4Bt3M6RDD42goiIWo4GhR2DweD0WqVSoVOnTnj11VcxdOhQlxSmBDludhoLuPwZWezZISKilqFBYWfp0qWurkOR3PE0VrCvDhKA0goLik1m+Orkv0qMiIioMV3XN11qairS0tIAAHFxcejVq5dLilKKHDc8jeWhViHQR4u8kgpkF5XDV+crd0lERESNqkEDlLOzszFo0CD06dMHTz/9NJ5++mkkJCRg8ODByMnJcXWNzda0xADkfr8Aeg/3CTvApUHKORykTERELUCDws5TTz2FoqIiHD58GPn5+cjPz8ehQ4dgNBrx9NNPu7rGZqtLiBYlhzfDw80eysHHRhARUUvSoNNY69atw8aNG9GlSxfHvK5du2LRokUcoNwMhPrZbg/AsENERC1Bg/ocrFYrPDyq333Xw8MDVqv1uouixmU/jVVsMqO0wixzNURERI2rQWFn0KBBeOaZZ3DhwgXHvPPnz2PatGkYPHiwy4qjxqHVqBDgbQur7N0hIiKla1DY+fvf/w6j0YjY2Fi0a9cO7dq1Q5s2bWA0GrFw4UJX10iNIITjdoiIqIVo0Jid1q1bY8+ePdi4cSOOHj0KAOjSpQuGDBni0uKo8YT6eeL3rGJekUVERIpXr56dTZs2oWvXrjAajZAkCbfeeiueeuopPPXUU+jTpw/i4uLw008/NVat5EKXrsjiYyOIiEjZ6hV23n//fTz66KPQ6/XVlhkMBjz++ON49913XVYcNR572DGWm1FeaZG5GiIiosZTr7Czf/9+DBs2rNblQ4cORWpq6nUXRY1P56GGwYuDlImISPnqFXaysrJqvOTcTqPR8A7KzYi9dyeHYYeIiBSsXmEnKioKhw4dqnX5gQMHEBERcd1FUdNwXJFl5LgdIiJSrnqFnREjRmD27NkoL6/+5VhWVoY5c+bgtttuc1lx1Lj42AgiImoJ6nXp+UsvvYRVq1ahY8eOmDp1Kjp16gQAOHr0KBYtWgSLxYIXX3yxUQol17M/NqKgrBKmSgt0HmqZKyIiInK9eoWdsLAw/Prrr5g8eTJmzZoFIWxP85YkCcnJyVi0aBHCwsIapVByPS+tbZByYVklMo3liAnykbskIiIil6v3TQVjYmKwdu1aXLx4ESdOnIAQAh06dEBAQEBj1EeNLNzgicKySmQUMuwQEZEyNegOygAQEBCAPn36uLIWkkGE3hPHMouQyUHKRESkUA16NhYpR7jBNm4ns7DccVqSiIhISRh2WrhgXx00KgkmsxUXSyvlLoeIiMjlGHZaOLVKQqjedgl6ZiFPZRERkfIw7BAi9F4AgIzCMpkrISIicj2GHbo0boeDlImISIFkDTvbtm3DqFGjEBkZCUmSsGbNGqflQgi8/PLLiIiIgJeXF4YMGYLjx487tcnPz8eECROg1+vh7++Phx9+GMXFxU24F82fPezkFVeg0ipzMURERC4ma9gpKSlBjx49sGjRohqXv/XWW/jggw+wZMkS7Ny5Ez4+PkhOTnZ6XMWECRNw+PBhbNiwAd9//z22bduGxx57rKl2QRF8dRr4eWogAFyskOQuh4iIyKUafJ8dVxg+fDiGDx9e4zIhBN5//3289NJLuP322wEA//73vxEWFoY1a9bg7rvvRlpaGtatW4ddu3ahd+/eAICFCxdixIgReOeddxAZGdlk+9LcRRg8UVRejFwTww4RESmL247ZOXXqFDIzMzFkyBDHPIPBgMTERGzfvh0AsH37dvj7+zuCDgAMGTIEKpUKO3furHXdJpMJRqPRaWrpIv1tg5TzTG77kSAiImoQt/1my8zMBIBqz9oKCwtzLMvMzERoaKjTco1Gg8DAQEebmsybNw8Gg8ExtW7d2sXVNz9RjrAjAZLbfiyIiIjqrUV+q82aNQuFhYWO6ezZs3KXJLsgHy10GhUsQoI2rJ3c5RAREbmM24ad8PBwAEBWVpbT/KysLMey8PBwZGdnOy03m83Iz893tKmJTqeDXq93mlo6SZIQUXVVlq5VV5mrISIich23DTtt2rRBeHg4UlJSHPOMRiN27tyJpKQkAEBSUhIKCgqQmprqaLNp0yZYrVYkJiY2ec3Nnf1UlmerOJkrISIich1Zr8YqLi7GiRMnHK9PnTqFffv2ITAwENHR0Xj22Wfx2muvoUOHDmjTpg1mz56NyMhIjB49GgDQpUsXDBs2DI8++iiWLFmCyspKTJ06FXfffTevxGoA+yBlXauufCgoEREphqxhZ/fu3bjlllscr6dPnw4AmDhxIpYtW4bnn38eJSUleOyxx1BQUIAbb7wR69atg6enp+M9n3/+OaZOnYrBgwdDpVJh3Lhx+OCDD5p8X5QgVK+DCgLw8ceFIgsS5C6IiIjIBWQNOwMHDrxqD4IkSXj11Vfx6quv1tomMDAQX3zxRWOU1+JoVCoE6gRyTRKO5FZglNwFERERuYDbjtkheQTrbOHzSE6FzJUQERG5BsMOOQnxtD0c62C2ieN2iIhIERh2yEmQVkCYK5FfZsWp3BK5yyEiIrpuDDvkRK0CTOfTAAC/nsyTuRoiIqLrx7BD1ZSnHwAAbGfYISIiBWDYoWrKz+wHAOz4Iw9WK8ftEBFR88awQ9WYMo5Dp5aQV1KB37OL5C6HiIjoujDsUHVWM7qEaAEAv57gqSwiImreGHaoRt1Dq8IOx+0QEVEzx7BDNYoP1QGwjduptFhlroaIiKjhGHaoRm0CNAj00aLYZMaeMxflLoeIiKjBGHaoRipJwoAOwQCAbcdzZK6GiIio4Rh2qFY3dwwBAGz9nWGHiIiaL4YdqtWADrawc+i8EbnFJpmrISIiahiGHapViJ8OcZF6AMBPPJVFRETNFMMOXdVNVaeytv2eK3MlREREDcOwQ1d1syPs5PDREURE1Cwx7NBV3RAdAF+dBnklFThwvlDucoiIiOqNYYeuSqtR4eZOtt6djUeyZK6GiIio/hh26Jpu7RIGANjAsENERM0Qww5d08BOIVCrJBzLKkJ6Xqnc5RAREdULww5dk7+3Fn1iAwAAG9PYu0NERM0Lww7VyZCqU1kMO0RE1Nww7FCd3NrVFnZ2nspHYWmlzNUQERHVHcMO1UlMkA86hvnCYhXYdIy9O0RE1Hww7FCdDYsLBwD8cCBT5kqIiIjqjmGH6mxkfCQA292Ui8p5KouIiJoHhh2qs45hvmgX4oMKi5UDlYmIqNlg2KE6kyTJ0bvDU1lERNRcMOxQvdwWHwHAdirLyFNZRETUDDDsUL10DPND+1Bf26ksPj6CiIiaAYYdqreR3W29O9/uvyBzJURERNfGsEP1NrpXFADgp+O5yCkyyVwNERHR1THsUL21CfZBr2h/WKyCvTtEROT2GHaoQcZW9e6s2nNO5kqIiIiujmGHGuS2+Eh4qCUcvmDEscwiucshIiKqFcMONUiAjxa3dAoFAKzay94dIiJyXww71GBjb7Cdylqz9zzMFqvM1RAREdWMYYcabFDnMAT5aJFlNGHT0Wy5yyEiIqqRRu4CyD2lpaXVqd2AVh5Yc6wCSzYeQrDp2ldmBQcHIzo6+nrLIyIiqjOGHXJizM8BANx33311aq8JiETUYx8h9UIZ+t4yDBZjzlXbe3l742haGgMPERE1GYYdclJWbAQAjHz8RXSKT6jTe7ZlWZFjUmHIXz5GnL+l1nZZ6Sfx+fznkJuby7BDRERNhmGHahQUGYNWHeLq1La3vgg/HsrEWZMWt7ZrA5VKauTqiIiI6o4DlOm6tQ3xgZeHGiUmC07mFMtdDhERkROGHbpuGpUK3aMMAIC9ZwvkLYaIiOgKDDvkEt1bGaCSgIzCcmQZy+Uuh4iIyIFhh1zCV6dBhzA/AMA+9u4QEZEbYdghl+nV2h8A8HtWEUpMZnmLISIiqsKwQy4TpvdEhMETVsHeHSIich8MO+RSCTEBAIAD5wphMtd+zx0iIqKmwrBDLtU22AdBPlpUWKw4cK5Q7nKIiIgYdsi1JElC71hb787e9AJU8mnoREQkM4YdcrmOoX7Qe2pQVmnB4QtGucshIqIWjmGHXE6lktA7JhAAsPt0Pszs3SEiIhkx7FCj6Bqph5+nBiUVFuzn2B0iIpIRww41CrVKQmKbqt6dM/m8MouIiGTDsEONpku4HgHeHiivtGJfeoHc5RARUQvFsEONRqWS0K9tEABgT3oBytm5Q0REMmDYoUbVIdQXoX46VFisOFKolrscIiJqgRh2qFFJkoSbOoQAAE4Vq+ARHCNzRURE1NIw7FCjiwrwQvsQXwASAgY/AiGE3CUREVELwrBDTeLGDsFQQcArthd2ni+XuxwiImpBGHaoSRi8PNBRb7u54Md7jSg2mWWuiIiIWgqGHWoynfUWVF7MQH6ZFe9t+F3ucoiIqIVg2KEmo1YB+RsWAwCW/nIKh87zzspERNT43DrszJ07F5IkOU2dO3d2LC8vL8eUKVMQFBQEX19fjBs3DllZWTJWTNdSfmoP+rf2hFUAM7/azzsrExFRo3PrsAMAcXFxyMjIcEw///yzY9m0adPw3Xff4auvvsLWrVtx4cIFjB07VsZqqS4e7qVHkI8WRzOL8EHKcbnLISIihXP7sKPRaBAeHu6YgoODAQCFhYX417/+hXfffReDBg1CQkICli5dil9//RU7duyQuWq6Gn9PNV4f0w0AsHjLSexNvyhzRUREpGRuH3aOHz+OyMhItG3bFhMmTEB6ejoAIDU1FZWVlRgyZIijbefOnREdHY3t27dfdZ0mkwlGo9FpoqY1rFsERveMhFUA01bsQ1F5pdwlERGRQrl12ElMTMSyZcuwbt06LF68GKdOncKAAQNQVFSEzMxMaLVa+Pv7O70nLCwMmZmZV13vvHnzYDAYHFPr1q0bcS+oNq/8uRui/L1wOq8Uf119iDcbJCKiRuHWYWf48OG48847ER8fj+TkZKxduxYFBQVYuXLlda131qxZKCwsdExnz551UcVUHwZvD3xwTy+oVRK+238By3fx90BERK7n1mHnSv7+/ujYsSNOnDiB8PBwVFRUoKCgwKlNVlYWwsPDr7oenU4HvV7vNJE8EmIC8FxyJwDAnG8PY//ZAnkLIiIixWlWYae4uBgnT55EREQEEhIS4OHhgZSUFMfyY8eOIT09HUlJSTJWSfX12IC2GNw5FBVmKx7/LBXZRXycBBERuY5bh52ZM2di69atOH36NH799VeMGTMGarUa99xzDwwGAx5++GFMnz4dmzdvRmpqKh588EEkJSWhX79+cpdO9aBSSXjv7p5oG+KDTGM5Jv9nD++/Q0RELuPWYefcuXO455570KlTJ4wfPx5BQUHYsWMHQkJCAADvvfcebrvtNowbNw433XQTwsPDsWrVKpmrpobQe3rgnw/0hp+nBqlnLuIvXx+A1coBy0REdP00chdwNcuXL7/qck9PTyxatAiLFi1qooqoMbUL8cU/JtyAB5fuwpp9FxDh74W/DOt87TcSERFdhVv37FDLM6BDCOaN7Q7AdsPBpb+ckrkiIiJq7hh2yO3c2bs1ZtzaEQDwyndH8J8dZ2SuiIiImjOGHXJLUwe1x+M3twUAvLTmEJb/li5zRURE1Fwx7JBbkiQJLwzrjIdvbAMAmLX6IL5OPSdzVURE1Bwx7JDbkiQJL43sgolJMRACeO7r/Vi9l4GHiIjqh2GH3JokSZj75zjcmxgNIYDpK/fjS57SIiKiemDYIbcnSRJeu72bI/DMWnUQ/9hygg8OJSKiOmHYoWZBpZLw+uhueHJgOwDAW+uO4Y21aQw8RER0TQw71GxIkoTnh3XGiyO6AAD++dMpPPf1AZgtVpkrIyIid8awQ83Ooze1xdt3xEOtkvB16jlM/nwPyiv5LC0iIqoZww41S3f2bo3FE26AVqPChiNZmLT0NxSVV8pdFhERuSGGHWq2hsaF498P9YWvToMdf+Tjnn/uQF6xSe6yiIjIzbj1g0CJrqVf2yAsf6wf7vt4Ow6dN2LU3zZjzk1BCPFRu2wbwcHBiI6Odtn6iIioaTHsULOntxTi5EdTYfjzi7iAUDz85WFkrZwNc55rbkDo5e2No2lpDDxERM0Uww41e7m5uSi+cBLDDIU4qglBkT4EbR5bjBtDzAjQXd+l6VnpJ/H5/OeQm5vLsENE1Ewx7JBiREfHoFdMO3yz/zyyjCb8lKvFn3tEolWAt9ylERGRjDhAmRTFS6vG2F6t0DrAC5UWgW/2XUB6fqncZRERkYwYdkhxtBoV/twjEjFB3jBbBb7dfwFn8krkLouIiGTCsEOKpFGrcFt8BNoE+8BiFfhufwb+yC2WuywiIpIBww4plkalwsjuEWgX4gOLEPjhQAZO5jDwEBG1NBygTE0uLS2tydanVkkY3i0C6w9n4nh2MdYezMDI7hFoG+Lr0hqIiMh9MexQkzHm5wAA7rvvvkZZf3Fxzb02apWEYXHhkKRM/J5VjLUHM3FbfARig30apQ4iInIvDDvUZMqKjQCAkY+/iE7xCS5bb9pvW/Hjp39DeXl5rW1UKgnJXcNhtWbiRE4xvj+YgVHxEYgJYuAhIlI6hh1qckGRMWjVIc5l68tKP1mndiqVhGHdwrH2YAb+yC3BdwcycHuPSLQO5H14iIiUjAOUqUVRqyQM7x6O2CBvWKouSz9/sUzusoiIqBEx7FCLY79KKzrQdh+eb/afR0YhAw8RkVIx7FCLpFGrMCo+Aq2q7rS8Zu8FZBprH/NDRETNF8MOtVgate1Oy1H+XqiwWLFm73lkFzHwEBEpDcMOtWgeVYEnwuAJk9mK1XvOI6fIJHdZRETkQgw71OJpNSrc3jMSYXodys1WrN57HnnFDDxERErBsEMEQKdRY0zPKIT66VBWacGqvedxsaRC7rKIiMgFGHaIqug81BjTKwrBvlqUVljw373nUFwpd1VERHS9GHaILuNZFXiCfLQoMVmwLdsDGkOY3GUREdF1YNghuoK3VoMxvaIQ4O2BMouEsHveQHaJWe6yiIiogRh2iGrgo9Ng3A2t4KsR0BjC8NdNeTiaaZS7LCIiagCGHaJa+Og0uCm0EhU5Z5BfZsWdS7Zjxx95cpdFRET1xLBDdBVeGiDr8+fRJdgDReVmPPDJb/jxYIbcZRERUT0w7BBdg9VUgpdvCsLQrmGoMFvx5Bd78O/tp+Uui4iI6ohhh6gOdBoJi+9LwL2J0RACePmbw3jhvwdQXmmRuzQiIroGhh2iOlKrJLw+uhueH9YJkgQs33UW4z/cjvMFfGI6EZE7Y9ghqgdJkvDkwPb49MG+8Pf2wIFzhbjtg5/w8/FcuUsjIqJaaOQugKg5SEtLc3rtC+DNW/zx9q8FOHmxEg98shN3dPHFuC6+8FBLdVpncHAwoqOjG6FaIiK6HMMO0VUY83MAAPfdd1/NDdQeCBo6Gb7xQ7HySDE+27QPeT+8h8rcM9dct5e3N46mpTHwEBE1MoYdoqsoK7bdSHDk4y+iU3xCre3Olpix76IaCG+PqIf/jq4GCzrqrVDV0smTlX4Sn89/Drm5uQw7RESNjGGHqA6CImPQqkNcrctbAYg3mbHpaDb+yC3B4UINcoUOgzqFIlTv2XSFEhFRNRygTOQiPjoNbouPwK1dw6BVq5BlNGH5rrPYfCybl6gTEcmIPTtELiRJErpG6BEd6I2fjufg96xiHDhXiONZxbixfTC6RPhBkuo2gJmIiFyDPTtEjcBXp8HwbhEY2ysKgd5alFVasCEtC8t3ncW5i6Vyl0dE1KIw7BA1otaB3rg3MRo3tg+Gh1pCdpEJ/91zHr9ka+ARHCN3eURELQLDDlEjU6skJMQEYNKfYhHfygCVBGSWqxDx4AdYtKsAmYXlcpdIRKRoDDtETcRbq8EtnUJxX78YRHlZIanUSDlVhoHvbMbb64+isKxS7hKJiBSJYYeoiQV4a9EvxIyMz2aiS7AHyiutWLT5JG6cvwnvbfidoYeIyMUYdohkUnHhKF67JQgf3Z+ATmF+KCo3428pxzFg/ib8beNxGMsZeoiIXIFhh0hGkiRhaFw4fnxmABbdewM6hvnCWG7Gext/R/95mzBvbRrH9BARXSeGHSI3oFJJGBkfgXXP3ISF9/RCh1BfFJnM+HDbHxjw1ibMWLkfxzKL5C6TiKhZ4k0FidyISiVhVI9IjOwegU1Hs/HRT3/gt1P5+O+ec/jvnnNIbBOIu/u2xvBuEfD0UMtdLhFRs8CwQ+SGVCoJQ7qGYUjXMOxNv4h//vQH1h3KxM5T+dh5Kh9zvjmMMb2icGfv1oiL1POuzEREV8GwQ+TmekUH4B8TEnChoAxfp57Dil1ncb6gDJ9uP4NPt59BlL8XhnQJxa1dw5HYNhAeap6dJiK6HMMOUTMR6e+Fpwd3wNRb2uPnE7lYsfssNqVlOwUfP08NEmICcEO0berR2gA/Tw+5SycikhXDDpGM0tLSGvQ+XwAPdwbuax+Cg9km/Ha+HLsumFBYbsaWYznYciwHACBJQJsgH8QG+yA2yAexwd6ICfJBmF6HIB8dArw9oGFPEBEpHMMOkQyM+bYwct9997lupZIK2rC20EV2hnd0N7TpcwsyjJX4I7cEf+SW1PwWyXaTQ39vD/h5ekDvqYGfpwZ+Og/42n/29ICfp6ZqmQd8dc7zOVCaiNwdww6RDMqKjQCAkY+/iE7xCS5dd1b6SXw+/zksuKMbwmM74qzRjIwiMzKKLcgoNiOz2IJCkxVFJiuEAPJLKpBfUtHg7WnVqsuCkS0oXR6G7JOvzgPeWjW8tWr46DRVP2scr/OyLsB4Ma9RBlsHBwcjOjra5eslouaBYYdIRkGRMWjVIc6l66xzr5GkgsrLD2pvf6i89FDpvKDS+UCl84Gk84ZK61312vvSPJ031J4+8PEPgckCCAAVFut1ByY7YbVAVJbDWlFe9WcZRKUJorLs0rzyYpiLcmEpzIbZmAOzMQfW0oKrrtfL2xtH09IYeIhaKIYdIoVpzF6jPw7txpp/vFH1SoKk9XKEIZXOG5I9HGlrmucFSesJlYftT8nDEyoPz6p5nrY1qtRV7X3qVZcKAt4awFsj4HPZ5KsBSjL/wIr5M5Cbm8uwQ9RCMewQKVRj9BplpZ8E4PogdeS3DVj/5UcY/9eF6NgzEWaLQIXFikrHJFBptv1cXmlFUXklikxmFJWbUWwywwoJxWag2FzTKbBOaPX0F3h+Yy46H92D6EBvxAR5o3WgN6IDvRFh8IJaxfsUESmZYsLOokWL8PbbbyMzMxM9evTAwoUL0bdvX7nLIlIkVweprPSTEBVl0ElWBHhr6/Vei1Wg2GRGUXkljGVmFJZVorC8EoWllSgsq0RZpQVqLz1O5FfiRH5GtfdrVBKCfXUI8tU6/+mjRaCPFnovD/jpnMcg+XpqoNNwYDZRc6GIsLNixQpMnz4dS5YsQWJiIt5//30kJyfj2LFjCA0Nlbs8ImpEapUEg5cHDF4eQED15aePHcbiV6fjubnz4REQjsxiC7JKLMgqMSO7xAKzVSDTWI5MY/0euOqhAnx1Gvj76BxXqHlrNfDSquHloYK31nalmpeHbVC2p9b2s/21h1oFlQpQSxLUKglS1Z9qSYJKBWRnZqKgsAASYJskAJAu+9nm8tf2nzUqCTq1BK1agkYFp0HfHKxNLZEiws67776LRx99FA8++CAAYMmSJfjhhx/wySef4IUXXpC5OiKSU2lBDipzTuONKXdVXyipoPYNgNonACpvf6i9DbYB2z62P9XeBsfAbJXOp2oskjcAoNIKXCwz42KZuYn3qH6EsEKYKxwTLJXo0DYW/r5e8LnsajinP7UaeOvU11yuVavqdfWcxSqcTk2aLVaYzFbHKcsK82WT5dKfmVk5yC8sglXYAh0kOEIgJEAl2UKjVi1BqwY81BK0Ksn2pxrwUNmX2eZ5XBYAGf6cpaenIzc3t9p8IQTMVqDCIpynqnmVV8y3CsAqACEAqxDw9vXFg4O6QS/TTU6bfdipqKhAamoqZs2a5ZinUqkwZMgQbN++XcbKiMgduHrAthAVqBTAH2kHsWHlJ84DsT10kDw8IXnoIHnobAOwNbrLXusuvVZ7ACoVJEkFVE2S6rKfJRV0Pr5QqS/9NS0c/3H8UePPVgFURQFIkgqShydQNQgcAE7lm4B803UfC41KsvVQSYBKkiBJtp42288SLFZr1ZegFWaLtaou92CtNFWFv8NoHRkOXy8tdBo1PD1UTn/qNCpbj5tKgqqq582+jxq17U91VQ+dqmp+ba4WC6+WGWsLlELYQoXFKi79LASsQsBqtQeOSz9bRFU7q+1nc9UYOJPZApPZCmNJGfYeOAShUkNSayFp7JOH7U/pem5AakTvVr7oH9/hOtbRcM0+7OTm5sJisSAsLMxpflhYGI4ePVrje0wmE0ymS/+jFxYWAgCMRqNLaysuLgYAnDt+GKayUpeu2z5QNPP07zjp4+32623MdbPm5r/upqi5ssLk0v8PKy5moDL3DPoMvwut2tT1L3Bz1VTzTR7t0n8/iNSN32DogzPRIa5nvWsTArACjn9dWwBYBJCbeQEbV3yM6c+/gNCIVig3C5SbrTCZBcotAuVmYfu5an655dJrWxug3GxFpaXqGFRNDaWSALXK1vOiUdl6XDQqW4jSqGw9NJXl5TiadghBoZHQ6nSoKS8JSBCQYIUEARWskGCVVFXzq15DVS1RSCo1oFLjXE7BdeyFsqgN4dVnWq0QFeVOx14lrI4jK0E4XquqfhOqqtYSgEpTObLP/oGcDG8YY8Oqr/862L+3hbhGkhbN3Pnz5wUA8euvvzrNf+6550Tfvn1rfM+cOXMEbP8A4sSJEydOnDg18+ns2bNXzQrNvmcnODgYarUaWVlZTvOzsrIQHl5DQgUwa9YsTJ8+3fHaarUiPz8fQUFBLr17q9FoROvWrXH27Fno9XqXrbel4vF0HR5L1+LxdB0eS9dS+vEUQqCoqAiRkZFXbdfsw45Wq0VCQgJSUlIwevRoALbwkpKSgqlTp9b4Hp1OB51O5zTP39+/0WrU6/WK/JDJhcfTdXgsXYvH03V4LF1LycfTYDBcs02zDzsAMH36dEycOBG9e/dG37598f7776OkpMRxdRYRERG1XIoIO3fddRdycnLw8ssvIzMzEz179sS6deuqDVomIiKilkcRYQcApk6dWutpK7nodDrMmTOn2ikzahgeT9fhsXQtHk/X4bF0LR5PG0mIa12vRURERNR8Xc8dgoiIiIjcHsMOERERKRrDDhERESkaww4REREpGsNOI1q0aBFiY2Ph6emJxMRE/Pbbb3KX5Pa2bduGUaNGITIyEpIkYc2aNU7LhRB4+eWXERERAS8vLwwZMgTHjx+Xp1g3N2/ePPTp0wd+fn4IDQ3F6NGjcezYMac25eXlmDJlCoKCguDr64tx48ZVuxs52SxevBjx8fGOm7MlJSXhxx9/dCznsWy4N998E5Ik4dlnn3XM4/Gsu7lz50KqeviqfercubNjOY8lw06jWbFiBaZPn445c+Zgz5496NGjB5KTk5GdnS13aW6tpKQEPXr0wKJFi2pc/tZbb+GDDz7AkiVLsHPnTvj4+CA5ORnl5eVNXKn727p1K6ZMmYIdO3Zgw4YNqKysxNChQ1FScukhlNOmTcN3332Hr776Clu3bsWFCxcwduxYGat2X61atcKbb76J1NRU7N69G4MGDcLtt9+Ow4cPA+CxbKhdu3bhww8/RHx8vNN8Hs/6iYuLQ0ZGhmP6+eefHct4LIFm/yBQd9W3b18xZcoUx2uLxSIiIyPFvHnzZKyqeQEgVq9e7XhttVpFeHi4ePvttx3zCgoKhE6nE19++aUMFTYv2dnZAoDYunWrEMJ27Dw8PMRXX33laJOWliYAiO3bt8tVZrMSEBAgPv74Yx7LBioqKhIdOnQQGzZsEDfffLN45plnhBD8bNbXnDlzRI8ePWpcxmNpw56dRlBRUYHU1FQMGTLEMU+lUmHIkCHYvn27jJU1b6dOnUJmZqbTcTUYDEhMTORxrYPCwkIAQGBgIAAgNTUVlZWVTsezc+fOiI6O5vG8BovFguXLl6OkpARJSUk8lg00ZcoUjBw50um4AfxsNsTx48cRGRmJtm3bYsKECUhPTwfAY2mnmDsou5Pc3FxYLJZqj6sICwvD0aNHZaqq+cvMzASAGo+rfRnVzGq14tlnn0X//v3RrVs3ALbjqdVqqz0El8ezdgcPHkRSUhLKy8vh6+uL1atXo2vXrti3bx+PZT0tX74ce/bswa5du6ot42ezfhITE7Fs2TJ06tQJGRkZeOWVVzBgwAAcOnSIx7IKww5RCzBlyhQcOnTI6Tw+1V+nTp2wb98+FBYW4uuvv8bEiROxdetWuctqds6ePYtnnnkGGzZsgKenp9zlNHvDhw93/BwfH4/ExETExMRg5cqV8PLykrEy98HTWI0gODgYarW62mj3rKwshIeHy1RV82c/djyu9TN16lR8//332Lx5M1q1auWYHx4ejoqKChQUFDi15/GsnVarRfv27ZGQkIB58+ahR48e+Nvf/sZjWU+pqanIzs7GDTfcAI1GA41Gg61bt+KDDz6ARqNBWFgYj+d18Pf3R8eOHXHixAl+Nqsw7DQCrVaLhIQEpKSkOOZZrVakpKQgKSlJxsqatzZt2iA8PNzpuBqNRuzcuZPHtQZCCEydOhWrV6/Gpk2b0KZNG6flCQkJ8PDwcDqex44dQ3p6Oo9nHVmtVphMJh7Leho8eDAOHjyIffv2OabevXtjwoQJjp95PBuuuLgYJ0+eREREBD+bdnKPkFaq5cuXC51OJ5YtWyaOHDkiHnvsMeHv7y8yMzPlLs2tFRUVib1794q9e/cKAOLdd98Ve/fuFWfOnBFCCPHmm28Kf39/8c0334gDBw6I22+/XbRp00aUlZXJXLn7mTx5sjAYDGLLli0iIyPDMZWWljraPPHEEyI6Olps2rRJ7N69WyQlJYmkpCQZq3ZfL7zwgti6das4deqUOHDggHjhhReEJEnif//7nxCCx/J6XX41lhA8nvUxY8YMsWXLFnHq1Cnxyy+/iCFDhojg4GCRnZ0thOCxFEIIhp1GtHDhQhEdHS20Wq3o27ev2LFjh9wlub3NmzcLANWmiRMnCiFsl5/Pnj1bhIWFCZ1OJwYPHiyOHTsmb9FuqqbjCEAsXbrU0aasrEw8+eSTIiAgQHh7e4sxY8aIjIwM+Yp2Yw899JCIiYkRWq1WhISEiMGDBzuCjhA8ltfryrDD41l3d911l4iIiBBarVZERUWJu+66S5w4ccKxnMdSCEkIIeTpUyIiIiJqfByzQ0RERIrGsENERESKxrBDREREisawQ0RERIrGsENERESKxrBDREREisawQ0RERIrGsENEsho4cCCeffZZ2bY/adIkjB49utZ6SktLMW7cOOj1ekiShIKCghrnEZH74lPPiYgus2rVKnh4eDhef/rpp/jpp5/w66+/Ijg4GAaDAUuWLKk2j4jcF8MOEdFlAgMDnV6fPHkSXbp0Qbdu3a46j4jcF09jEZHbMJlMmDlzJqKiouDj44PExERs2bLFsXzZsmXw9/fH+vXr0aVLF/j6+mLYsGHIyMio0/otFgumT58Of39/BAUF4fnnn8eVT8y5/DTWwIEDsWDBAmzbtg2SJGHgwIE1ziMi98awQ0RuY+rUqdi+fTuWL1+OAwcO4M4778SwYcNw/PhxR5vS0lK88847+Oyzz7Bt2zakp6dj5syZdVr/ggULsGzZMnzyySf4+eefkZ+fj9WrV9faftWqVXj00UeRlJSEjIwMrFq1qsZ5ROTeeBqLiNxCeno6li5divT0dERGRgIAZs6ciXXr1mHp0qV44403AACVlZVYsmQJ2rVrB8AWkF599dU6beP999/HrFmzMHbsWADAkiVLsH79+lrbBwYGwtvbG1qtFuHh4Y75Nc0jIvfFsENEbuHgwYOwWCzo2LGj03yTyYSgoCDHa29vb0fQAYCIiAhkZ2dfc/2FhYXIyMhAYmKiY55Go0Hv3r2rncoiImVh2CEit1BcXAy1Wo3U1FSo1WqnZb6+vo6fL79SCgAkSWJYIaKr4pgdInILvXr1gsViQXZ2Ntq3b+80ueJ0kcFgQEREBHbu3OmYZzabkZqaet3rJiL3xp4dInILHTt2xIQJE/DAAw9gwYIF6NWrF3JycpCSkoL4+HiMHDnyurfxzDPP4M0330SHDh3QuXNnvPvuu7whIFELwLBDRG5j6dKleO211zBjxgycP38ewcHB6NevH2677TaXrH/GjBnIyMjAxIkToVKp8NBDD2HMmDEoLCx0yfqJyD1Jgie7iYiISME4ZoeIiIgUjWGHiBTD19e31umnn36SuzwikglPYxGRYpw4caLWZVFRUfDy8mrCaojIXTDsEBERkaLxNBYREREpGsMOERERKRrDDhERESkaww4REREpGsMOERERKRrDDhERESkaww4REREpGsMOERERKdr/A773F6f5Lv3eAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.histplot(dev[\"len_diff\"], kde=True, bins=20)\n", + "plt.title(\"dev sentence length diff Distribution\")\n", + "plt.xlabel(\"len_diff\")\n", + "plt.ylabel(\"Count\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACoI0lEQVR4nOzdeXxU9b3/8ddkD0sSgpAQZRNXEJeCIoo7FRWrVtr+uKVqW6q9FuxVW1u91xWtVGuVamm92rq10FrrUkq9KOBCFUTE4oKIWFbRJEpIwhayze+PwwxEFlmSOTPJ6/l4zOOczDkz8xm4txzf+Xw/JxKNRqNIkiRJkiRJCZQWdgGSJEmSJElqewylJEmSJEmSlHCGUpIkSZIkSUo4QylJkiRJkiQlnKGUJEmSJEmSEs5QSpIkSZIkSQlnKCVJkiRJkqSEM5SSJEmSJElSwhlKSZIkSZIkKeEMpaQ2rlevXnz7298Ou4w9kko1P/LII0QiEZYvX97in/Xtb3+bXr16xX9evnw5kUiEu+66q8U/G+Dmm28mEokk5LMkSUoGqXRNEpNKNXsdJbV+hlJSkps9ezY333wzlZWVYZfSbF5//XV+8IMfMGDAADIzM1PmH+CXXnqJSCQSf2RnZ1NUVMSpp57K7bffzqefftosn7Nx40ZuvvlmXnrppWZ5v+aUzLVJkvR5re06qrGxkUceeYTzzjuP7t270759e4444ghuu+02ampqwi5vl7yOSu7apLAYSklJbvbs2dxyyy0tdjG1ePFiHnzwwRZ575159tln+d3vfkckEuHAAw9M6Gc3hx/+8If84Q9/4IEHHuCaa66hsLCQm266icMPP5wXXnihybkXXXQRmzZtomfPnrv9/hs3buSWW27Z4wuWBx98kMWLF+/Ra/bUrmq7/vrr2bRpU4t+viRJe6K1XUdt3LiR73znO3z66af853/+JxMmTOC4447jpptu4uyzzyYajSaslr3ldZTXUdK2MsIuQFLzaWxspLa2lpycnN1+TXZ2dgtWtGOXX345P/3pT8nNzWXs2LF88MEHCa9hX5x00kl87Wtfa/LcW2+9xZlnnsmIESN477336NatGwDp6emkp6e3aD0bNmygffv2ZGZmtujnfJGMjAwyMvxnRZKUmlLhOiorK4tXX32VE044If7cpZdeSq9evbjpppuYOXMmQ4cOTWhNe8rrqB3zOkptlZ1SUhK7+eabueaaawDo3bt3vN05tq4+EokwduxYJk2aRL9+/cjOzmbatGkA3HXXXZxwwgl07tyZ3NxcBgwYwF//+tftPuPzcwVia/dfffVVrr76arp06UL79u356le/ultt1aWlpXznO9/hgAMOIDs7m27dunH++ec3mQVQVFREbm7u3v/B7EBlZSVXXnkl3bt3Jzs7m4MOOog77riDxsbG+DnbzgZ44IEH6NOnD9nZ2Rx77LHMmzdvnz7/qKOOYsKECVRWVvLrX/86/vyOZiG88cYbDBs2jP3224/c3Fx69+7Nd7/73XiNXbp0AeCWW26J/53ffPPNQDDvoEOHDvz73//mnHPOoWPHjowaNSp+bNtZCNu655576NmzJ7m5uZxyyim8++67TY6feuqpnHrqqdu9btv3/KLadjQLob6+nltvvTX+Z92rVy/++7//m82bNzc5r1evXpx77rm88sorHHfcceTk5HDggQfy2GOP7fgPXJKkL9Aar6OysrKaBFIxX/3qVwFYtGjRnvwRxXkd5XWUFBajWCmJXXjhhXzwwQf86U9/4p577mG//fYDiP+DBvDCCy/wl7/8hbFjx7LffvvF/+H71a9+xXnnnceoUaOora3lz3/+M1//+teZOnUqw4cP/8LPvuKKK+jUqRM33XQTy5cvZ8KECYwdO5bHH398l68bMWIECxcu5IorrqBXr16Ul5czffp0Vq5cudN/6PfVxo0bOeWUU1i9ejXf//736dGjB7Nnz+a6667jk08+YcKECU3Onzx5MuvWreP73/8+kUiEO++8kwsvvJClS5fu02/Jvva1rzF69Gief/55fvazn+3wnPLycs4880y6dOnCtddeS0FBAcuXL+epp54Cgr/b3/72t1x++eV89atf5cILLwTgyCOPjL9HfX09w4YNY8iQIdx11120a9dul3U99thjrFu3jjFjxlBTU8OvfvUrTj/9dN555x2Kiop2+/vtTm2f973vfY9HH32Ur33ta/zoRz9i7ty5jB8/nkWLFvH00083OffDDz+M/xlecsklPPTQQ3z7299mwIAB9OvXb7frlCQJ2tZ1VGlpKUD8O+4Jr6O8jpJCFZWU1H7xi19EgeiyZcu2OwZE09LSogsXLtzu2MaNG5v8XFtbGz3iiCOip59+epPne/bsGb3kkkviPz/88MNRIDp06NBoY2Nj/Pmrrroqmp6eHq2srNxprWvXro0C0V/84he7+e2i0TFjxkT39H+KPl/zrbfeGm3fvn30gw8+aHLetddeG01PT4+uXLkyGo1Go8uWLYsC0c6dO0crKiri5/3tb3+LAtG///3vu/zcF198MQpEn3jiiZ2ec9RRR0U7deoU/zn25xn7+3v66aejQHTevHk7fY9PP/00CkRvuumm7Y5dcsklUSB67bXX7vBYz5494z/Hvm9ubm70o48+ij8/d+7cKBC96qqr4s+dcsop0VNOOeUL33NXtd10001N/i4XLFgQBaLf+973mpz34x//OApEX3jhhfhzPXv2jALRWbNmxZ8rLy+PZmdnR3/0ox9t91mSJO2O1n4dFTN06NBoXl5edO3atV94rtdRXkdJycTle1KKO+WUU+jbt+92z2+7PG7t2rVUVVVx0kkn8eabb+7W+1522WVNWohPOukkGhoaWLFixU5fk5ubS1ZWFi+99BJr167dg2+xb5544glOOukkOnXqxGeffRZ/DB06lIaGBmbNmtXk/P/3//4fnTp1iv980kknAbB06dJ9rqVDhw6sW7dup8cLCgoAmDp1KnV1dXv9OZdffvlun3vBBRew//77x38+7rjjGDRoEM8+++xef/7uiL3/1Vdf3eT5H/3oRwD84x//aPJ83759438XEPxG8dBDD22WvxdJknakNVxH3X777cyYMYOf//zn8euMPeF11K55HSW1LEMpKcX17t17h89PnTqV448/npycHAoLC+Mtw1VVVbv1vj169Gjyc+ziY1cXSdnZ2dxxxx383//9H0VFRZx88snceeed8ZbylrJkyRKmTZtGly5dmjxigz7Ly8ubnL833213rV+/no4dO+70+CmnnMKIESO45ZZb2G+//Tj//PN5+OGHt5sNsCsZGRkccMABu33+wQcfvN1zhxxySJP5DC1hxYoVpKWlcdBBBzV5vri4mIKCgu0uzD//9wLB300iA05JUtuS6tdRjz/+ONdffz2jR4/eo6BlW15H7ZrXUVLLMpSSUtyOBob/85//5LzzziMnJ4ff/OY3PPvss0yfPp1vfvObu32r4J3d6eSLXn/llVfywQcfMH78eHJycrjhhhs4/PDD+de//rVbn7s3Ghsb+fKXv8z06dN3+BgxYkST8/f2u32Ruro6Pvjgg+0uHrYViUT461//ypw5cxg7diyrV6/mu9/9LgMGDGD9+vW79TnZ2dmkpTXv/3x/frBmTENDQ4u99+e11N+LJEk7k8rXUdOnT+fiiy9m+PDh3H///btV1454HbXvvI6S9p6DzqUkt7v/EG3rySefJCcnh+eee67JrYoffvjh5ixtp/r06cOPfvQjfvSjH7FkyRKOPvpofvnLX/LHP/6xxT5v/fr1od8C+a9//SubNm1i2LBhX3ju8ccfz/HHH8/PfvYzJk+ezKhRo/jzn//M9773vb36O9+VJUuWbPfcBx980GRgaqdOnXbY3v3538LtSW09e/aksbGRJUuWcPjhh8efLysro7Kykp49e+72e0mStDda63XU3Llz+epXv8rAgQP5y1/+QkbG3v9nnddRu+Z1lNSy7JSSklz79u2B4Fa9uys9PZ1IJNLktzPLly/nmWeeaebqmtq4cSM1NTVNnuvTpw8dO3bco7bqPfWNb3yDOXPm8Nxzz213rLKykvr6+hb77Ji33nqLK6+8kk6dOjFmzJidnrd27drtfmN19NFHA8T/jGJ3gdmTv/NdeeaZZ1i9enX859dff525c+dy9tlnx5/r06cP77//fpPbVb/11lu8+uqrTd5rT2o755xzALa7a8/dd98NsFt3L5IkaV+0xuuoRYsWMXz4cHr16sXUqVN32O21J7yO2jWvo6SWZaeUlOQGDBgAwP/8z/8wcuRIMjMz+cpXvhK/yNqR4cOHc/fdd3PWWWfxzW9+k/LyciZOnMhBBx3E22+/3WK1fvDBB5xxxhl84xvfoG/fvmRkZPD0009TVlbGyJEj4+etWLGCP/zhDwC88cYbANx2221A8Fuhiy66aI8+95prrmHKlCmce+658VvfbtiwgXfeeYe//vWvLF++fK9ukbwz//znP6mpqaGhoYE1a9bw6quvMmXKFPLz83n66acpLi7e6WsfffRRfvOb3/DVr36VPn36sG7dOh588EHy8vLiFx+5ubn07duXxx9/nEMOOYTCwkKOOOIIjjjiiL2q96CDDmLIkCFcfvnlbN68mQkTJtC5c2d+8pOfxM/57ne/y913382wYcMYPXo05eXl3H///fTr14/q6ur4eXtS21FHHcUll1zCAw88QGVlJaeccgqvv/46jz76KBdccAGnnXbaXn0fSZJ2V2u7jlq3bh3Dhg1j7dq1XHPNNdsNu+7Tpw+DBw/eo8/1OmrXvI6SWpahlJTkjj32WG699Vbuv/9+pk2bRmNjI8uWLdvlxdTpp5/O73//e37+859z5ZVX0rt3b+644w6WL1/eohdT3bt35z/+4z+YOXMmf/jDH8jIyOCwww7jL3/5S5N5BMuWLeOGG25o8trYz6eccsoeh1Lt2rXj5Zdf5vbbb+eJJ57gscceIy8vj0MOOYRbbrmF/Pz8ff9y27j33nsByMzMpKCggMMPP5xbbrmFSy+9lC5duuzytbELij//+c+UlZWRn5/Pcccdx6RJk5oMW/3d737HFVdcwVVXXUVtbS033XTTXl9MXXzxxaSlpTFhwgTKy8s57rjj+PWvf023bt3i5xx++OE89thj3HjjjVx99dX07duXP/zhD0yePJmXXnqpyfvtSW2/+93vOPDAA3nkkUfiF5rXXXcdN9100159F0mS9kRru45as2YNq1atAuDaa6/d7j0uueSSPQ6lvI7aNa+jpJYViTr5TJIkSZIkSQnmTClJkiRJkiQlnKGUJEmSJEmSEs5QSpIkSZIkSQlnKCVJkiRJkqSEM5SSJEmSJElSwhlKSZIkSZIkKeEywi4gFTQ2NvLxxx/TsWNHIpFI2OVIkqQEiEajrFu3jpKSEtLS/D3e3vI6SpKktmd3r6MMpXbDxx9/TPfu3cMuQ5IkhWDVqlUccMABYZeRsryOkiSp7fqi6yhDqd3QsWNHIPjDzMvLC7kaSZKUCNXV1XTv3j1+HaC943WUJEltz+5eRxlK7YZYq3leXp4XU5IktTEuOds3XkdJktR2fdF1lAMSJEmSJEmSlHCGUpIkSZIkSUo4QylJkiRJkiQlnKGUJEmSJEmSEs5QSpIkSZIkSQlnKCVJkiRJkqSEM5SSJElKQbNmzeIrX/kKJSUlRCIRnnnmmZ2e+5//+Z9EIhEmTJjQ5PmKigpGjRpFXl4eBQUFjB49mvXr1zc55+233+akk04iJyeH7t27c+edd7bAt5EkSW2RoZQkSVIK2rBhA0cddRQTJ07c5XlPP/00r732GiUlJdsdGzVqFAsXLmT69OlMnTqVWbNmcdlll8WPV1dXc+aZZ9KzZ0/mz5/PL37xC26++WYeeOCBZv8+kiSp7ckIuwBJkiTtubPPPpuzzz57l+esXr2aK664gueee47hw4c3ObZo0SKmTZvGvHnzGDhwIAD33Xcf55xzDnfddRclJSVMmjSJ2tpaHnroIbKysujXrx8LFizg7rvvbhJeSZIk7Q07pSRJklqhxsZGLrroIq655hr69eu33fE5c+ZQUFAQD6QAhg4dSlpaGnPnzo2fc/LJJ5OVlRU/Z9iwYSxevJi1a9fu8HM3b95MdXV1k4ckSdKOGEpJkiS1QnfccQcZGRn88Ic/3OHx0tJSunbt2uS5jIwMCgsLKS0tjZ9TVFTU5JzYz7FzPm/8+PHk5+fHH927d9/XryJJklopQylJkqRWZv78+fzqV7/ikUceIRKJJPSzr7vuOqqqquKPVatWJfTzJUlS6jCUkiRJamX++c9/Ul5eTo8ePcjIyCAjI4MVK1bwox/9iF69egFQXFxMeXl5k9fV19dTUVFBcXFx/JyysrIm58R+jp3zednZ2eTl5TV5SJIk7YihlCRJUitz0UUX8fbbb7NgwYL4o6SkhGuuuYbnnnsOgMGDB1NZWcn8+fPjr3vhhRdobGxk0KBB8XNmzZpFXV1d/Jzp06dz6KGH0qlTp8R+KUmS1Op49z1JkqQUtH79ej788MP4z8uWLWPBggUUFhbSo0cPOnfu3OT8zMxMiouLOfTQQwE4/PDDOeuss7j00ku5//77qaurY+zYsYwcOZKSkhIAvvnNb3LLLbcwevRofvrTn/Luu+/yq1/9invuuSdxX1SSJLVahlKSJEkp6I033uC0006L/3z11VcDcMkll/DII4/s1ntMmjSJsWPHcsYZZ5CWlsaIESO4995748fz8/N5/vnnGTNmDAMGDGC//fbjxhtv5LLLLmvW7yJJktqmSDQajYZdRLKrrq4mPz+fqqoq5yJIktRG+O9/8/DPUZKktmd3//13ppQkSZIkSZISzlBKkiRJkiRJCWcoJUmSJEmSpIQzlJIkSZIkSVLCefe9FDJ06HmUlVXs8pyiokJmzJiSoIokSZK0t847ZygVa8p2eU5h5yKmPDsjQRVJkpRYhlIppKysghEjXtnlOU8+OSRB1UiSJGlfVKwp45UHR+zynCGXPpmgaiRJSjyX70mSJEmSJCnhDKUkSZIkSZKUcIZSkiRJkiRJSjhDKUmSJEmSJCWcoZQkSZIkSZISzrvvtTLLli2lf/8vvgNfUVEhM2ZMSUBFkiRJkiRJ2zOUamXq62HEiFe+8Lwnn/zi4EqSJEmSJKmluHxPkiRJkiRJCWcoJUmSJEmSpIQzlJIkSZIkSVLCGUpJkiRJkiQp4QylJEmSJEmSlHCGUpIkSZIkSUo4QylJkiRJkiQlnKGUJEmSJEmSEs5QSpIkSZIkSQlnKCVJkiRJkqSEM5SSJEmSJElSwhlKSZIkSZIkKeEMpSRJkiRJkpRwhlKSJEmSJElKOEMpSZIkSZIkJZyhlCRJkiRJkhLOUEqSJEmSJEkJZyglSZIkSZKkhDOUkiRJkiRJUsIZSkmSJEmSJCnhDKUkSZIkSZKUcIZSkiRJkiRJSjhDKUmSJEmSJCWcoZQkSZIkSZISzlBKkiRJkiRJCWcoJUmSJEmSpIQzlJIkSZIkSVLCGUpJkiRJkiQp4QylJEmSJEmSlHCGUpIkSZIkSUo4QylJkiRJkiQlnKGUJEmSJEmSEs5QSpIkSZIkSQlnKCVJkiRJkqSEM5SSJEmSJElSwhlKSZIkSZIkKeEMpSRJkiRJkpRwhlKSJEmSJElKOEMpSZIkSZIkJZyhlCRJkiRJkhLOUEqSJEmSJEkJF2ooNWvWLL7yla9QUlJCJBLhmWeeaXI8Go1y44030q1bN3Jzcxk6dChLlixpck5FRQWjRo0iLy+PgoICRo8ezfr165uc8/bbb3PSSSeRk5ND9+7dufPOO1v6q0mSJEmSJGkXQg2lNmzYwFFHHcXEiRN3ePzOO+/k3nvv5f7772fu3Lm0b9+eYcOGUVNTEz9n1KhRLFy4kOnTpzN16lRmzZrFZZddFj9eXV3NmWeeSc+ePZk/fz6/+MUvuPnmm3nggQda/PtJkiRJkiRpxzLC/PCzzz6bs88+e4fHotEoEyZM4Prrr+f8888H4LHHHqOoqIhnnnmGkSNHsmjRIqZNm8a8efMYOHAgAPfddx/nnHMOd911FyUlJUyaNIna2loeeughsrKy6NevHwsWLODuu+9uEl5JkiRJkiQpcZJ2ptSyZcsoLS1l6NCh8efy8/MZNGgQc+bMAWDOnDkUFBTEAymAoUOHkpaWxty5c+PnnHzyyWRlZcXPGTZsGIsXL2bt2rU7/OzNmzdTXV3d5CFJkiRJkqTmk7ShVGlpKQBFRUVNni8qKoofKy0tpWvXrk2OZ2RkUFhY2OScHb3Htp/xeePHjyc/Pz/+6N69+75/IUmSJEmSJMUlbSgVpuuuu46qqqr4Y9WqVWGXJEmS1MSubhhTV1fHT3/6U/r370/79u0pKSnh4osv5uOPP27yHt4wRpIkhSlpQ6ni4mIAysrKmjxfVlYWP1ZcXEx5eXmT4/X19VRUVDQ5Z0fvse1nfF52djZ5eXlNHpIkSclkVzeM2bhxI2+++SY33HADb775Jk899RSLFy/mvPPOa3KeN4yRJElhCnXQ+a707t2b4uJiZs6cydFHHw0EF0Zz587l8ssvB2Dw4MFUVlYyf/58BgwYAMALL7xAY2MjgwYNip/zP//zP9TV1ZGZmQnA9OnTOfTQQ+nUqVPiv5gkSVIz2NUNY/Lz85k+fXqT5379619z3HHHsXLlSnr06OENYyRJUuhC7ZRav349CxYsYMGCBUAw3HzBggWsXLmSSCTClVdeyW233caUKVN45513uPjiiykpKeGCCy4A4PDDD+ess87i0ksv5fXXX+fVV19l7NixjBw5kpKSEgC++c1vkpWVxejRo1m4cCGPP/44v/rVr7j66qtD+taSJEmJV1VVRSQSoaCgAPCGMZIkKXyhdkq98cYbnHbaafGfY0HRJZdcwiOPPMJPfvITNmzYwGWXXUZlZSVDhgxh2rRp5OTkxF8zadIkxo4dyxlnnEFaWhojRozg3nvvjR/Pz8/n+eefZ8yYMQwYMID99tuPG2+80d/uSZKkNqOmpoaf/vSn/Md//Ed8LMHu3jCmd+/eTc7Z9oYxO+o6Hz9+PLfccktLfA1JktTKhBpKnXrqqUSj0Z0ej0QijBs3jnHjxu30nMLCQiZPnrzLzznyyCP55z//udd1SpIkpaq6ujq+8Y1vEI1G+e1vf9vin3fdddc16Uivrq72TsaSJGmHknamlCRJkvZNLJBasWIFL7zwQpObt7TkDWOys7Ob82tIkqRWKmnvvidJkqS9FwuklixZwowZM+jcuXOT49veMCZmRzeMmTVrFnV1dfFzvGGMJElqLoZSkiRJKWhXN4ypq6vja1/7Gm+88QaTJk2ioaGB0tJSSktLqa2tBbxhjCRJCp/L9yRJklLQrm4Yc/PNNzNlyhQAjj766Cave/HFFzn11FMBbxgjSZLCZSglSZKUgr7ohjG7OhbjDWMkSVKYXL4nSZIkSZKkhDOUkiRJkiRJUsIZSkmSJEmSJCnhDKUkSZIkSZKUcIZSkiRJkiRJSjhDKUmSJEmSJCWcoZQkSZIkSZISzlBKkiRJkiRJCWcoJUmSJEmSpIQzlJIkSZIkSVLCGUpJkiRJkiQp4QylJEmSJEmSlHCGUpIkSZIkSUo4QylJkiRJkiQlnKGUJEmSJEmSEs5QSpIkSZIkSQlnKCVJkiRJkqSEM5SSJEmSJElSwhlKSZIkSZIkKeEMpSRJkiRJkpRwhlKSJEmSJElKOEMpSZIkSZIkJVxG2AUoHMuWLaV//yG7PKeoqJAZM6YkqCJJkiRJktSWGEq1UfX1MGLEK7s858kndx1aSZIkSZIk7S2X70mSJEmSJCnhDKUkSZIkSZKUcIZSkiRJkiRJSjhDKUmSJEmSJCWcoZQkSZIkSZISzlBKkiRJkiRJCWcoJUmSJEmSpIQzlJIkSZIkSVLCGUpJkiRJkiQp4QylWrnGRmhoCLsKSZIkSZKkpjLCLkAtZ+VKeOopqKuDs86CI46ASCTsqiRJkiRJkgylWqVoFP75T3jppWAfgnBq4UL46lchOzvU8iRJkiRJkly+1xotXAgvvhgEUkceCaecAmlpsHgxzJgRdnWSJEmSJEl2SrVKc+cG2xNOgC9/Odjv3h3++EeYPx+OOy682iRJkiRJksBOqVansfEIPvoo6IwaPHjr8336wKGHBt1T06eHV58kSZIkSRIYSrU6DQ2XANC3L3To0PTYl78chFVLlkBj40khVCdJkiRJkhQwlGpFNm2CxsYLATj22O2Pd+4MAwcG+/X1P05gZZIkSZIkSU0ZSrUib70FkEvXrsEMqR056SSIRCAaPZbPPktkdZIkSZIkSVsZSrUi778fbAcMCIKnHenQAQ4+ONhfsCAhZUmSJEmSJG3HUKqVqK+H1auD/T59dn3u0UcH27fegsbGFi1LkiRJkiRphwylWolPPgmCKfiMwsJdn3vIIQBrWL8e/v3vlq9NkiRJkiTp8wylWomVK4NtWtq8nS7di0lPh/T0pwCX8EmSJEmSpHAYSrUSq1YF20jk9d06Py3tLwAsXhzctU+SJEmSJCmRDKVagWh0206p3Q2lFtKlCzQ0wIcftmBxkiRJkiRJO2Ao1QqsWRN0O2VkQCTy7m6/7tBDg+3ixS1UmCRJkiRJ0k4YSrUCsS6p/feHSKRut18XC6U+/DDomJIkSZIkSUoUQ6lWIBZK9eixZ6/bf39o3x42b4bly5u9LEmSJEmSpJ0ylGoF9jaUikTgkEOCfZfwSZIkSZKkRDKUSnE1NbB2bbB/wAF7/vrDDgu2ixcHA9MlSZLUzBrroXwW1K0PuxJJkpKKoVSK++yzYNuxI+Tk7Pnre/eGzEyoroaysuatTZIkqc3bVAYvnAEzToEpB8KiX0L9xrCrkiQpKRhKpbhPPw22++23d6/PzIQ+fYL9Dz5onpokSZLauvPOGcrorxxE+WMHBF1SAJs/hX/9mMW/7sypg/uxYvmycIuUJClkhlIpLtYptbehFGwNpZYu3fd6JEmSBJUVpfz+4jV07VgP2fvBQZfD/udBei6Hdq3hpVuLaKivD7tMSZJClRF2Ado3zRlKrVoV3IkvO3vf65IkSWrLTuy9DuoqIT0XDhwN6TmQ0xUiGfDRU/DpLHrtlx52mZIkhcpOqRQXC6W6dNn79+jUKXg0NsKKFc1TlyRJUlv2taPXBDudvhQEUjH5R0CHPhBt4I6Rdd5pRpLUphlKpbD6+q133tuXTimAAw8Mtv/+9769jyRJUptX+S4Dum8AIlB4bNNjkQh0OwciGZx0aBTWfxhKiZIkJQNDqRRWURH8ci07Gzp02Lf3cq6UJEmpZdasWXzlK1+hpKSESCTCM8880+R4NBrlxhtvpFu3buTm5jJ06FCWLFnS5JyKigpGjRpFXl4eBQUFjB49mvXr1zc55+233+akk04iJyeH7t27c+edd7b0V0t9H/w62OYdBln52x/PLoTCAcF+xfzE1SVJUpIxlEph286TikT27b169w7e47PPoKpq32uTJEkta8OGDRx11FFMnDhxh8fvvPNO7r33Xu6//37mzp1L+/btGTZsGDU1NfFzRo0axcKFC5k+fTpTp05l1qxZXHbZZfHj1dXVnHnmmfTs2ZP58+fzi1/8gptvvpkHHnigxb9fyqqtgmV/CPY7H7fz8zptCaXWfQB11S1flyRJSchB5yns00+D7b4u3QPIyYGSEli9OuiWOuaYfX9PSZLUcs4++2zOPvvsHR6LRqNMmDCB66+/nvPPPx+Axx57jKKiIp555hlGjhzJokWLmDZtGvPmzWPgwIEA3HfffZxzzjncddddlJSUMGnSJGpra3nooYfIysqiX79+LFiwgLvvvrtJeKVtlL8MDRtZVZlF93Y9d35eThde+zDC8QdFYe2/oOspiatRkqQkYadUCluzZX5mc4RSsHUJn3OlJElKbcuWLaO0tJShQ4fGn8vPz2fQoEHMmTMHgDlz5lBQUBAPpACGDh1KWloac+fOjZ9z8sknk5WVFT9n2LBhLF68mLWxwZZqqnwWAG+uav+Frex/eHXL3ffWvgnRxpauTJKkpGMolcJinVL7cue9bcWGnS9f7o1gJElKZaWlpQAUFRU1eb6oqCh+rLS0lK5duzY5npGRQWFhYZNzdvQe237G523evJnq6uomjzZlSyi1YHX7Lzz12QVpkJ4bLN9b728FJUltj6FUiopGm79Tav/9ISMDNmzY+t6SJEl7Yvz48eTn58cf3bt3D7ukxKlbF3Q9AW+tbveFp2+uj0DBUcEPa99qycokSUpKhlIpqqoK6uogLQ06dWqe98zIgAMOCPaXL2+e95QkSYlXXFwMQFlZWZPny8rK4seKi4spLy9vcry+vp6Kioom5+zoPbb9jM+77rrrqKqqij9WrVq1718oVXw2B6IN0L4X5euzvvh8gPx+wXb9Emisb7naJElKQoZSKSp2573OnYNgqrn03DKPc8WK5ntPSZKUWL1796a4uJiZM2fGn6uurmbu3LkMHjwYgMGDB1NZWcn8+fPj57zwwgs0NjYyaNCg+DmzZs2irq4ufs706dM59NBD6bST34plZ2eTl5fX5NFmbFm6t0dDy3P3h4wO0FgLG5a3SFmSJCUrQ6kUFZstWljYvO/bq1ewda6UJEnJbf369SxYsIAFCxYAwXDzBQsWsHLlSiKRCFdeeSW33XYbU6ZM4Z133uHiiy+mpKSECy64AIDDDz+cs846i0svvZTXX3+dV199lbFjxzJy5EhKSkoA+OY3v0lWVhajR49m4cKFPP744/zqV7/i6quvDulbJ7l4KHXy7r8mEoGOhwT76xY3f02SJCWxjLAL0N6prAy2+fnN+74HHADp6bB+PdTWtqEZEJIkpZg33niD0047Lf5zLCi65JJLeOSRR/jJT37Chg0buOyyy6isrGTIkCFMmzaNnJyc+GsmTZrE2LFjOeOMM0hLS2PEiBHce++98eP5+fk8//zzjBkzhgEDBrDffvtx4403ctlllyXui6aKhhpYE9y1MAil7tn91+YdFsyiql4M3c75wrv2SZLUWiR1p1RDQwM33HADvXv3Jjc3lz59+nDrrbcS3aaFJxqNcuONN9KtWzdyc3MZOnQoS5YsafI+FRUVjBo1iry8PAoKChg9ejTr169P9NdpVrEb2RQUNO/7bjtXasOGY5r3zSVJUrM59dRTiUaj2z0eeeQRACKRCOPGjaO0tJSamhpmzJjBIYcc0uQ9CgsLmTx5MuvWraOqqoqHHnqIDh06NDnnyCOP5J///Cc1NTV89NFH/PSnP03UV0wta14PluDldoMOffbste17Q1om1K+Dmk9apj5JkpJQUodSd9xxB7/97W/59a9/zaJFi7jjjju48847ue++++Ln3Hnnndx7773cf//9zJ07l/bt2zNs2DBqamri54waNYqFCxcyffp0pk6dyqxZs1L+N3wt1SkFW+dKbdhwdPO/uSRJUmv06SvBtstJe97plJYBHQ4O9qvfb966JElKYkkdSs2ePZvzzz+f4cOH06tXL772ta9x5pln8vrrrwNBl9SECRO4/vrrOf/88znyyCN57LHH+Pjjj3nmmWcAWLRoEdOmTeN3v/sdgwYNYsiQIdx33338+c9/5uOPPw7x2+2bqqpg2xKhVGyu1IYNRztXSpIkaXdUvhtsCwfs3evzDg221c6VkiS1HUkdSp1wwgnMnDmTDz74AIC33nqLV155hbPPPhsIBnqWlpYydOjQ+Gvy8/MZNGgQc+bMAWDOnDkUFBQwcODA+DlDhw4lLS2NuXPnJvDbNJ+GBli3Lthv7uV7sHWuVH19V/797+Z/f0mSpFan6r1gm3f43r0+1im1uRzq1jVPTZIkJbmkHnR+7bXXUl1dzWGHHUZ6ejoNDQ387Gc/Y9SoUQCUlpYCUFRU1OR1RUVF8WOlpaV07dq1yfGMjAwKCwvj53ze5s2b2bx5c/zn6tgApyQRKycjA9q1a/73z8yE/feHlSvh5ZfhoIOa/zMkSZJajcaGrcvu8vvu3Xtk5EJOt2Cm1IZlUHBk89UnSVKSSupOqb/85S9MmjSJyZMn8+abb/Loo49y11138eijj7bo544fP578/Pz4o3v35LoL3bbzpFrq5iyxuVIvvdQy7y9JktRqbFgOjZshPQfa99r79+nQO9iuX9YcVUmSlPSSOpS65ppruPbaaxk5ciT9+/fnoosu4qqrrmL8+PEAFBcXA1BWVtbkdWVlZfFjxcXFlJeXNzleX19PRUVF/JzPu+6666iqqoo/Vq1a1dxfbZ+05DypmNhcqZdfxrlSkiRJuxJfuncYpKXv/fu03xJKbVjmBZgkqU1I6lBq48aNpKU1LTE9PZ3GxkYAevfuTXFxMTNnzowfr66uZu7cuQwePBiAwYMHU1lZyfz58+PnvPDCCzQ2NjJo0KAdfm52djZ5eXlNHsmkJe+8F3PAARCJ1LFqFSzzl3WSJEk7Vx0LpfZy6V5M+x4QSYO6Kqhdu+91SZKU5JJ6ptRXvvIVfvazn9GjRw/69evHv/71L+6++26++93vAhCJRLjyyiu57bbbOPjgg+nduzc33HADJSUlXHDBBQAcfvjhnHXWWVx66aXcf//91NXVMXbsWEaOHElJSUmI327vxTqlWmLIeUxWFuTmLmLjxiN5+WU48MCW+yxJkqSUFuuUyt/LIecxaVmQewBsXBl0S2UX7nttkiQlsaQOpe677z5uuOEGfvCDH1BeXk5JSQnf//73ufHGG+Pn/OQnP2HDhg1cdtllVFZWMmTIEKZNm0ZOTk78nEmTJjF27FjOOOMM0tLSGDFiBPfee28YX6lZJGL5HkD79gvYuPFIXnoJvvOdlv0sSZKklBUPpfaxUwqCuVIbVwZzpQoH7Pv7SZKUxJI6lOrYsSMTJkxgwoQJOz0nEokwbtw4xo0bt9NzCgsLmTx5cgtUGI5EhVLt2v0LuJiXX27Zz5EkSUpZ0ShULwr293X5HkD7A4GXnSslSWoTknqmlLYXjSZm+R5Au3bvkpEBK1bA8uUt+1mSJEkpaeMqqN8AaZnQsc++v1/u/sF7NWyEmrIvPl+SpBRmKJViNmyAhgaIRKBjx5b9rPT0TQwcGOzbLSVJkrQDsaV7HQ8JwqR9lZYO7XoE+xtX7vv7SZKUxAylUkzsznsdO0L6PtxxeHedckqwnTWr5T9LkiQp5cRCqbx9HHK+rXbdg62hlCSplTOUSjGJmicVc9JJwfaf/0zM50mSJKWU6mYcch4T65TasBJwrpQkqfUylEoxiZonFXPiicFSwSVLoLQ0MZ8pSZKUMqq2DDlv1lBqfyAC9eso6ljXfO8rSVKSMZRKMbHle3l5ifm8ggI48shg324pSZKkz1n/YbDteHDzvWdaFuR2A+DIko3N976SJCUZQ6kUU10dbBO1fA/g5JODraGUJEnSNuo3QU15sN++V/O+95a5Uv27GUpJklqvjLAL0J5Zty7YJqpTCoK5Uvfd57BzSZKk884ZSsWaMgC6F2zmT5fAxto0zjz5ZCASP2/F8mX79kHtesCauXZKSZJaNUOpFLN+fbDt0CFxnxkbdv7228HywW3nWQ0deh5lZRW7fH1RUSEzZkxpsfokSZISpWJNGa88OCL4Yd2/YcUS2nXszCsPfq3JeSWn/XzfPmjLsPMD96uB2irISmCbvCRJCWIolUKi0Ug8lOrYMXGfW1wMBx8cDDt/9VUYPnzrsbKyCkaMeGWXr3/yySEtXKEkSVII6iqDbWZB8793ZgfI6kRa7Vr4bA6UnNX8nyFJUsicKZVCGhryaWwM9tu3T+xnx7qlnCslSZK0Rd2W2yK3VBfTlm4pPt31LwAlSUpVhlIppL6+MwDt2kF6emI/22HnkiRJn1O7JZTKbKlQ6oBgu2Zuy7y/JEkhM5RKIXV1QSiVyKV7MbFOqXnzYNOmxH++JElS0mnJ5XsAubFQah5EG1vmMyRJCpGhVAqJdUolcsh5TO/eUFICdXUw11/WSZIktfzyvZwu1NRFgs9Zt6RlPkOSpBAZSqWQMEOpSGTrEr5ZsxL/+ZIkSUkl2gh11cF+S3VKRdL54NPcYH/N6y3zGZIkhchQKoXElu+FEUqBw84lSZLi6qqBKETSIaPlLs7eKzWUkiS1XoZSKaS+fj8gnJlSsLVTas6cYBmfJElSmxVbupeZF7SUt5BFZYZSkqTWy1AqhYS5fA+gb1/o1Ak2bIB//SucGiRJkpJCbWWwbamle1vEQ6m1C6ChtkU/S5KkRDOUSiFh3n0PIC0NhgwJ9l3CJ0mS2rR4p1QLDTnf4uOqLMgqhMZaqHy7RT9LkqREM5RKEdFo+J1S4LBzSZIkAOoqg21WQQt/UAQ6HxfsuoRPktTKGEqliOpqiEZzgPA6pWDrsPNXXoHGxvDqkCRJClVtYjqlAEMpSVKrZSiVIj75JNhmZ0NmZnh1fOlL0K4dVFTAokXh1SFJkhSqWKdUC8+UAgylJEmtlqFUioiFUmEu3YMgEBs8ONh3CZ8kSWqTotGtM6WyEtEpdWywrX5/a4eWJEmtgKFUioiFUmEu3YuJLeFz2LkkSWqT6jdAtAGIQGZey39eTldo3wuIQsX8lv88SZISxFAqRSRLpxQ0HXYejYZbiyRJUsLFuqQyOkAkPTGf6RI+SVIrZCiVIpIplBo0KFjGt3o11NV1C7scSZKkxKpfH2wzE9jCbiglSWqFDKVSRGlpsE2G5Xvt2sGAAcH+hg1HhVuMJElSosVCqYwE/rYwFkpVzEvcZ0qS1MIMpVJEMnVKwdYlfBs3GkpJkqQ2pn5dsE1kKFX4JYikwcaPYOPHiftcSZJakKFUikimQeewddi5nVKSJKnNCaNTKqM95PcL9u2WkiS1EoZSKSLZOqVOPBEiEait7cH69WFXI0mSlEB1IcyUAudKSZJaHUOpFFBTA5WVwX6yhFKdOkH//sH+ypXh1iJJkpRQYXRKgaGUJKnVMZRKAZ9+GmwjkTpycsKtZVuxJXwrVoRbhyRJUkKFMVMKtgml5kG0MbGfLUlSCzCUSgHl5cE2Pb2SSCTcWrYVG3Zup5QkSWo7ott0SiV4+V5+P0jPhboqWLcksZ8tSVILMJRKAbFOqYyMteEW8jmxTqnS0mCJoSRJUmuXl9OwtUsp0Z1SaZnBXfjAJXySpFbBUCoFbNsplUy6dYOsrFUArFoVcjGSJEkJ0Ll9fbCTngtp6YkvoHBgsK2Yn/jPliSpmRlKpYBk7ZQCaNfubcC5UpIkqW3o3G5LKJXoLqmYwgHB1lBKktQKGEqlgFinVEZGZah17Ej79m8BzpWSJEltQ+f2dcFOoudJxcQ7pd6ExoZwapAkqZkYSqWA5O6UWgDA6tVQVxduLZIkSS0tvnwvM6ROqY6HBF1aDRuh+v1wapAkqZkYSqWAZJ0pBZCV9TEdOkBjYxBMSZIktWbxUCqs5Xtp6dDpmGDfJXySpBRnKJUCkrlTKhKBnj2DfZfwSZKk1i70mVKwzRK+N8KrQZKkZmAolQKSeaYUQI8ewdZh55IkqbULfaYUQGdDKUlS62AolQJinVLp6cnXKQVbO6VWrQqW8UmSJLVWoc+Ugq134Fu7ABrrw6tDkqR9ZCiV5DZsCB6QvJ1SXbtCTk4w6PyTT8KuRpIkqeUUJsPyvY4HB51aDZugelF4dUiStI8MpZJcrEsqOxvS0jaGW8xORCJbl/A5V0qSJLVa9RvpkL2lLTzM5XuRtK3dUmtcwidJSl2GUkkuFkp16RKEP8nKUEqSJLV6m7a0hEcyIS0r3FpioZR34JMkpTBDqSQXG3LetWu4dXyR2FypFSsgGg23FkmSpBYRC6UyOoT/20LvwCdJagUMpZLctp1SyaxbN8jIgE2b4LPPwq5GkiSpBdSUBtswh5zHxO7At3YBNNaFWookSXvLUCrJpUqnVHo6dO8e7K9YEW4tkiRJLSLeKRXiPKmYDn0gMx8aN0PVe2FXI0nSXjGUSnKp0ikFzpWSJEmtXKxTKqN9uHVAsHwwPlfKJXySpNRkKJXkUqVTCpwrJUlSMmloaOCGG26gd+/e5Obm0qdPH2699Vai2/wjHY1GufHGG+nWrRu5ubkMHTqUJUuWNHmfiooKRo0aRV5eHgUFBYwePZr169cn+uskh5otvy1MhlAKts6V8g58kqQUZSiV5FKpU+qAAyAtDaqroaoq7GokSWrb7rjjDn7729/y61//mkWLFnHHHXdw5513ct9998XPufPOO7n33nu5//77mTt3Lu3bt2fYsGHU1NTEzxk1ahQLFy5k+vTpTJ06lVmzZnHZZZeF8ZXCtznZQinvwCdJSm0ZYRegXUulTqnMzGDg+erVQbdUQUHYFUmS1HbNnj2b888/n+HDhwPQq1cv/vSnP/H6668DQZfUhAkTuP766zn//PMBeOyxxygqKuKZZ55h5MiRLFq0iGnTpjFv3jwGDgy6cu677z7OOecc7rrrLkpKSsL5cmGJhVLp7cKtIyY27LzyLWiohfSscOuRJGkP2SmV5FKpUwqaLuGTJEnhOeGEE5g5cyYffPABAG+99RavvPIKZ599NgDLli2jtLSUoUOHxl+Tn5/PoEGDmDNnDgBz5syhoKAgHkgBDB06lLS0NObOnZvAb5Mk4sv3kiSUat8bsjpBYy1UvRt2NZIk7TE7pZJYNJpanVIQDDufPbvpsPNly5bSv/+QL3xtUVEhM2ZMacHqJElqO6699lqqq6s57LDDSE9Pp6GhgZ/97GeMGjUKgNLSYGh3UVFRk9cVFRXFj5WWltL1cxchGRkZFBYWxs/5vM2bN7N58+b4z9XV1c32nUIX75RKkuV7sWHnpTOCJXyFXwq7IkmS9oihVBLbsAFiIx1SpVMqdge+NWuC+tu3h/p6GDHilS987ZNPfnFwJUmSds9f/vIXJk2axOTJk+nXrx8LFizgyiuvpKSkhEsuuaTFPnf8+PHccsstLfb+oWmsg9q1wX6ydEpBMOy8dMaWO/BdGnY1kiTtEZfvJbFYl1RubhDupILc3K1dXS7hkyQpPNdccw3XXnstI0eOpH///lx00UVcddVVjB8/HoDi4mIAysrKmryurKwsfqy4uJjy2AXJFvX19VRUVMTP+bzrrruOqqqq+GPVqlXN/dXCsXkNAI1RID033Fq25R34JEkpzFAqiW07TyoSCbeWPRHrltp2CZ8kSUqsjRs3kpbW9FIvPT2dxsZGAHr37k1xcTEzZ86MH6+urmbu3LkMHjwYgMGDB1NZWcn8+Vvv7vbCCy/Q2NjIoEGDdvi52dnZ5OXlNXm0CluW7lVtSodIEl1Cx+7AV/UONGze9bmSJCUZl+8lsVSbJxXTsye88YadUpIkhekrX/kKP/vZz+jRowf9+vXjX//6F3fffTff/e53AYhEIlx55ZXcdtttHHzwwfTu3ZsbbriBkpISLrjgAgAOP/xwzjrrLC699FLuv/9+6urqGDt2LCNHjmx7d97bMuS8clMGnUIupYn2PSG7c9DJVfnO1jvySZKUAgylklisU2q//cKtY0/F7sBXVgab/YWdJEmhuO+++7jhhhv4wQ9+QHl5OSUlJXz/+9/nxhtvjJ/zk5/8hA0bNnDZZZdRWVnJkCFDmDZtGjk5OfFzJk2axNixYznjjDNIS0tjxIgR3HvvvWF8pXBtjoVS6SEX8jmRSLCE75PngrlShlKSpBRiKJXE1gSjC1IulOrYETp1grVrobWMkZAkKdV07NiRCRMmMGHChJ2eE4lEGDduHOPGjdvpOYWFhUyePLkFKkwxmz8Dgk6ppLNtKCVJUgpJogXx+rzPgmuflAulYGu3lEv4JElSq7Bl+V5VTZJ1SsHWuVIV83d9niRJScZQKonFOqU6dw63jr3hsHNJktSqxJbvbUzSTimAynehflO4tUiStAcMpZJYa+iUWr0aotHscIuRJEnaV5u3DjpPOu0OgJyuEK2HyrfDrkaSpN1mKJXEUrlTqlMn6NABGhogGj067HIkSZL2TU2SDjqHYNh5J5fwSZJSz16FUgceeCBrYonJNiorKznwwAP3uSgFUrlTKhLZ2i3V2Dgo3GIkSUoiXkelqGTulIKtd91z2LkkKYXsVSi1fPlyGhoatnt+8+bNrF69ep+LUiCVO6Vg61ypxsbjwy1EkqQk4nVUitqcxJ1SsHWulKGUJCmF7NGveqZMmRLff+6558jPz4//3NDQwMyZM+nVq1ezFdeWNTZuDaVSsVMKtoZS0ehAGhshzcWikqQ2zOuoFBZthM3BhdnaZO2Uit2Br+o9qN8IGe3CrUeSpN2wR/+qXnDBBQBEIhEuueSSJscyMzPp1asXv/zlL5utuLasqioIpiB1O6W6doWcHKip6UBpKZSUhF2RJEnh8ToqhdWuhWjQ3VaVrJ1SuSWQUww1pbD2LegyOOyKJEn6QnsUSjVuSUl69+7NvHnz2C9VW3hSQGyeVIcOkJ2iN69LS4Pu3WHJElixwlBKktS2eR2VwrYMOSczj/rGJG39jkSCJXwfTw2W8BlKSZJSwF71Hy9btqy569DnpPo8qZiePYNQauVKGOy1kSRJXkclsfPOGUrFmrLtnj+yZAO/+Tp89GkNK5Yn8d9f4YAtoZR34JMkpYa9XhQ/c+ZMZs6cSXl5efw3fzEPPfTQPhfW1qX6PKmY2FyplSshGg1+iSdJUlvndVRyqlhTxisPjtj+QPUiWLmMA7p1paH+08QXtru8A58kKcXsVSh1yy23MG7cOAYOHEi3bt2ImDQ0u9jyvVTvlAqW7G1i48ZcPvsMunQJuyJJksLldVQKqt8YbJN9eHhs2Hn1IqjfABntw61HkqQvsFeh1P33388jjzzCRRdd1Nz1aIvW0imVng6RyHyi0SGsWGEoJUmS11EpqH5DsE1P8lAqt1sw8HzTx7B2AXQ5MeyKJEnapb0KpWpraznhhBOauxZto7V0SgGkpb1OQ8MQVq6EgQPDrkaSpHB5HZWCGmKdUonvPFq6dBlDBvX/wvMKOxcx5dkZwbDz1VNgzRuGUpKkpLdXtw/53ve+x+TJk5u7lh1avXo13/rWt+jcuTO5ubn079+fN97Yuk4+Go1y44030q1bN3Jzcxk6dChLlixp8h4VFRWMGjWKvLw8CgoKGD16NOvXr09I/XurtXRKAaSlvQYEc6UkSWrrEnkdpWYS5vK9xnpeeXDEFz7iA9oLnSslSUode9UpVVNTwwMPPMCMGTM48sgjyczMbHL87rvvbpbi1q5dy4knnshpp53G//3f/9GlSxeWLFlCp06d4ufceeed3HvvvTz66KP07t2bG264gWHDhvHee++Rk5MDwKhRo/jkk0+YPn06dXV1fOc73+Gyyy5L6gvC1tQpFYnMJy0NqqqgshIKCsKuSJKk8CTqOkrNKL58LwVmNMXmSnkHPklSCtirUOrtt9/m6KOPBuDdd99tcqw5h3XecccddO/enYcffjj+XO/eveP70WiUCRMmcP3113P++ecD8Nhjj1FUVMQzzzzDyJEjWbRoEdOmTWPevHkM3LJ27L777uOcc87hrrvuoiSYxJ10WlOnVCSyiW7dYPXqoFvKUEqS1JYl6jpKzaghRQadwzbDzt+HunWQ2THceiRJ2oW9CqVefPHF5q5jh6ZMmcKwYcP4+te/zssvv8z+++/PD37wAy699FIAli1bRmlpKUOHDo2/Jj8/n0GDBjFnzhxGjhzJnDlzKCgoiAdSAEOHDiUtLY25c+fy1a9+NSHfZU+1pk4pgB49glBqxQo48siwq5EkKTyJuo5SM4ot30v2QecAuUXQrjtsXAVr/wVdTw67IkmSdmqvZkolytKlS/ntb3/LwQcfzHPPPcfll1/OD3/4Qx599FEASktLASgqKmryuqKiovix0tJSunbt2uR4RkYGhYWF8XM+b/PmzVRXVzd5JFpr6pQC6Nkz2DpXSpIkpZyGTcE2FTqlwCV8kqSUsVedUqeddtou28tfeOGFvS5oW42NjQwcOJDbb78dgGOOOYZ3332X+++/n0suuaRZPmNHxo8fzy233NJi7/9FotHW2SkFwffasAHap8BIBkmSWkKirqPUTBrrIVoX7KfnhlvL7iocCB89E9yBT5KkJLZXnVJHH300Rx11VPzRt29famtrefPNN+nf/4tvWbu7unXrRt++fZs8d/jhh7NyS7tNcXExAGVlZU3OKSsrix8rLi6mvLy8yfH6+noqKiri53zeddddR1VVVfyxatWqZvk+u2vdOqivD/ZbSyiVmwuxhrUVK8KtRZKkMCXqOkrNJNYlRQTSskMtZbd5Bz5JUorYq06pe+65Z4fP33zzzaxfv36fCtrWiSeeyOLFi5s898EHH9Bzy1qw3r17U1xczMyZM+MDQ6urq5k7dy6XX345AIMHD6ayspL58+czYEDQyvzCCy/Q2NjIoEGDdvi52dnZZGeHd9ER65LKzYV2KdIlvjt69YLycli+HD6XNUqS1GYk6jpKzSQ25Dw9F1JlEH1s+d66D6CuGjLzwq1HkqSdaNaZUt/61rd46KGHmu39rrrqKl577TVuv/12PvzwQyZPnswDDzzAmDFjgOAONVdeeSW33XYbU6ZM4Z133uHiiy+mpKSECy64AAg6q8466ywuvfRSXn/9dV599VXGjh3LyJEjk+rOe0OHnkf//kPo338IX/7y9wCory+LP9e//xCWLUvtFqNevYKtnVKSJG2vua+j1Ezqt3RKpcrSPYCc/aD9loGeFW+GW4skSbuwV51SOzNnzhxycnKa7f2OPfZYnn76aa677jrGjRtH7969mTBhAqNGjYqf85Of/IQNGzZw2WWXUVlZyZAhQ5g2bVqTOiZNmsTYsWM544wzSEtLY8SIEdx7773NVmdzKCurYMSIVwBYsgSWLoXOnYvizwH8/OfJE6Ltjdiw8/Jy50pJkvR5zX0dpWaSakPOYwoHwoYVwRK+olPDrkaSpB3aq1DqwgsvbPJzNBrlk08+4Y033uCGG25olsJizj33XM4999ydHo9EIowbN45x48bt9JzCwkImT57crHW1pE1brn1a09I9CL5P165BKLVihUv4JEltUyKvo9QMtl2+l0oKB8CqJx12LklKansVSuXn5zf5OS0tjUMPPZRx48Zx5plnNkthbdnGLdc+uSl27bM7evZ0rpQkqW3zOirFNKTg8j3YZtj5/HDrkCRpF/YqlHr44Yebuw5tozWHUr16wbx5zpWSJLVdXkelmJQNpbYMO1//IdSuhaxO4dYjSdIO7NNMqfnz57No0SIA+vXrxzHHHNMsRbV1rXX5HjhXSpKkGK+jUkR9ii7fyy6E9r1hw7Jg2HnxGWFXJEnSdvYqlCovL2fkyJG89NJLFBQUAFBZWclpp53Gn//8Z7p06dKcNbY5sU6p1hhKtW/vXClJUtvmdVSKSdVB5wCdB24JpeYbSkmSklLa3rzoiiuuYN26dSxcuJCKigoqKip49913qa6u5oc//GFz19jmxDqlWuPyPdjaLeUSPklSW+R1VIpJ1eV7sM1cKYedS5KS0151Sk2bNo0ZM2Zw+OGHx5/r27cvEydOdEBnM2jNy/dg61yp5cvDrkSSpMTzOirFpHQotWWulHfgkyQlqb3qlGpsbCQzM3O75zMzM2lsbNznotq61jzoHJrOlYp9V0mS2gqvo1JMQ2ymVAr+tjAWSm1YBjWfhVuLJEk7sFeh1Omnn85//dd/8fHHH8efW716NVdddRVnnOF69X3V2pfvxeZKgUv4JEltj9dRKSQaTe1OqawCyDs02K+YF2opkiTtyF6FUr/+9a+prq6mV69e9OnThz59+tC7d2+qq6u57777mrvGNqW+Hurqgv3WGkrB1m4pl/BJktoar6NSSGMtRLd0r2Wk6IVZ4XHB9rO54dYhSdIO7NVMqe7du/Pmm28yY8YM3n//fQAOP/xwhg4d2qzFtUWxLqlIBHJywq2lJTlXSpLUVnkdlUJiXVKRdIhsv+QymSxduowhg/pv9/yFR67h6tNgztRfMv7aV5jy7IwQqpMkacf2KJR64YUXGDt2LK+99hp5eXl8+ctf5stf/jIAVVVV9OvXj/vvv5+TTjqpRYptC2KhVE5OEEy1Vp+fK9Vah7pLkhTjdVQKii/da5f8F2aN9bzy4Ijtn9+4Gpb+jsF9Gqj4W2ni65IkaRf2aPnehAkTuPTSS8nLy9vuWH5+Pt///ve5++67m624tqi1z5OKad8eunQJ9p0rJUlqC7yOSkHxIecpfGGWUxx0ejVsoiS/NuxqJElqYo9Cqbfeeouzzjprp8fPPPNM5s+fv89FtWWxUKotdA716hVsXcInSWoLvI5KQak85DwmLR1yugHQr3hTyMVIktTUHoVSZWVlO7yFcUxGRgaffvrpPhfVlm3c8gu51t4pBYZSkqS2xeuoFFS/JcTJSPHfFrYrAeDwIkMpSVJy2aNQav/99+fdd9/d6fG3336bbt267XNRbVlbWb4HW0Op8nLYsCHUUiRJanFeR6Wg+PK9FL/7TO4BAPQt3hhyIZIkNbVHodQ555zDDTfcQE1NzXbHNm3axE033cS5557bbMW1RW0plGrXDoqLg/1ly8KtRZKkluZ1VAradtB5KsvdH4CDu9RAg3OlJEnJY4/uvnf99dfz1FNPccghhzB27FgOPfRQAN5//30mTpxIQ0MD//M//9MihbYVbSmUAujdG0pLYenSsCuRJKlleR2VglrDTCmArE6Qnks2m6Dybeg8MOyKJEkC9jCUKioqYvbs2Vx++eVcd911RKNRACKRCMOGDWPixIkUFRW1SKFtRVsMpebMCTqlDjgg7GokSWo5XkeloPpWEkpFIkG31PoPYc1cQylJUtLYo1AKoGfPnjz77LOsXbuWDz/8kGg0ysEHH0ynTp1aor42p62FUj17QloaVFZC164lYZcjSVKL8joqxTS0kkHnsE0o9TowJuxqJEkC9iKUiunUqRPHHntsc9YitoZS7VrBtc/uyMoKOqRWroT16weEXY4kSQnhdVSKiA86bwW/LWwXzJVizdxw65AkaRt7NOhcLa+tdUpBsIQPYMMGQylJkpREWstMKYgPO6d6MdRWhlqKJEkxhlJJZuOWX8i1pVDqwAOD7fr1A2hsDLcWSZIkAKLR1nP3PYCMdqyuzAz218wLtxZJkrYwlEoidXVQXx/st6VQav/9ITMTGho68e67YVcjSZIENNRs3W8NnVLAe2VbwrU1r4dbiCRJWxhKJZHY0r1IBLKzw60lkdLTg4HnADNmhFuLJEkSsLVLKi0L0tLDraWZvFe6JVxzrpQkKUkYSiWRbedJRSLh1pJosblSM2eGW4ckSRLQuoacb/Fe6TadUtFouMVIkoShVFJpi0POY2JzpWbNCpYxSpIkhSq2fK8VhVJLPs2BSAbUlMHGlWGXI0mSoVQyiYVS7VrBLM09VVQE6elrWb8eXnfMgSRJCltruvPeFrUNadDpqOAH50pJkpKAoVQSacudUpEItG//JuASPkmSlATioVROuHU0t86Dgu1nzpWSJIXPUCqJbNwyuqAthlIAHTrMBwylJElSEmiFnVLA1lBqzWvh1iFJEpARdgHaqi13SgGsXfs08BP++c86+vU7m7S0mu3OKSoqZMaMKYkvTpIktS3xmVKtrFOqywnBds0b0LAZ0tvQLZ8lSUnHUCqJtPVQqqFhBfn5UFWVyTHHzOCgg7Y/58knhyS+MEmS1Pa01k6pDn0guwts/hTW/gv2Oz7siiRJbZjL95JIWw+lIpGtd+H797/DrUWSJLVxrTWUikS2dkt9OjvcWiRJbZ6hVBJp66EUQJ8+wdZQSpIkhSq+fK8VXpjttyWU+sxQSpIULkOpJBILpdq1C7eOMPXpE/wC79NPoaoq7GokSVKb1Vo7pQD2GxxsP30VotFwa5EktWmGUknETinIyYEDDgj2lywJtxZJktSGxUOpVjboHKBwIEQyoKYUNqwIuxpJUhtmKJUkolHYuDHYb8uhFBAfcP7hh+HWIUlSqlu9ejXf+ta36Ny5M7m5ufTv35833ngjfjwajXLjjTfSrVs3cnNzGTp0KEs+91uhiooKRo0aRV5eHgUFBYwePZr169cn+qskXmvulMrIhcIvBfsu4ZMkhchQKklEo9k0NAT7bT2UOvjgYLtsGfE/E0mStGfWrl3LiSeeSGZmJv/3f//He++9xy9/+Us6deoUP+fOO+/k3nvv5f7772fu3Lm0b9+eYcOGUVNTEz9n1KhRLFy4kOnTpzN16lRmzZrFZZddFsZXSpzGOohuuQhpjaEUbJ0r5bBzSVKIMsIuQIGGhjwA0tIgKyvkYkJWXAzt28OGDbByJfTuHXZFkiSlnjvuuIPu3bvz8MMPx5/rvc0/qtFolAkTJnD99ddz/vnnA/DYY49RVFTEM888w8iRI1m0aBHTpk1j3rx5DBw4EID77ruPc845h7vuuouSkpLEfqlEiXVJEYG0Vnph1uUEWDzBTilJUqjslEoS9fX5QNAlFYmEXEzIIpGtS/icKyVJ0t6ZMmUKAwcO5Otf/zpdu3blmGOO4cEHH4wfX7ZsGaWlpQwdOjT+XH5+PoMGDWLOnDkAzJkzh4KCgnggBTB06FDS0tKYO3fuDj938+bNVFdXN3mknG3vvNdaL8xinVKVb0HdunBrkSS1WYZSSaKhoSPg0r0Y50pJkrRvli5dym9/+1sOPvhgnnvuOS6//HJ++MMf8uijjwJQWloKQFFRUZPXFRUVxY+VlpbStWvXJsczMjIoLCyMn/N548ePJz8/P/7o3r17c3+1ltea50nFtNsf2veGaCN8NifsaiRJbZShVJJoaAg6pdq1C7mQJNGnT/CLyU8/haqqsKuRJCn1NDY28qUvfYnbb7+dY445hssuu4xLL72U+++/v0U/97rrrqOqqir+WLVqVYt+XotoC6EUQNeTgm35rHDrkCS1WYZSSSI2U8pOqUBuLuy/f7Bvt5QkSXuuW7du9O3bt8lzhx9+OCtXrgSguLgYgLKysibnlJWVxY8VFxdTXl7e5Hh9fT0VFRXxcz4vOzubvLy8Jo+UEw+lcsKto6V1PTnYfvrPcOuQJLVZhlJJwlBqey7hkyRp75144oksXry4yXMffPABPXv2BIKh58XFxcycOTN+vLq6mrlz5zJ48GAABg8eTGVlJfPnz4+f88ILL9DY2MigQYMS8C1C0lY6pbps6ZT6bO7WOVqSJCWQoVSSMJTa3sEHB9ulS6GhIdxaJElKNVdddRWvvfYat99+Ox9++CGTJ0/mgQceYMyYMQBEIhGuvPJKbrvtNqZMmcI777zDxRdfTElJCRdccAEQdFadddZZXHrppbz++uu8+uqrjB07lpEjR7beO+/BNoPOW3mnVMeDIacIGjfDmnlhVyNJaoMMpZJEfb2h1Od16xbM2KqthVQcRyFJUpiOPfZYnn76af70pz9xxBFHcOuttzJhwgRGjRoVP+cnP/kJV1xxBZdddhnHHnss69evZ9q0aeTkbA1jJk2axGGHHcYZZ5zBOeecw5AhQ3jggQfC+EqJ01Y6pSKRrd1SLuGTJIUgI+wCFLBTanuRSLCE7+23YckS6NUr7IokSUot5557Lueee+5Oj0ciEcaNG8e4ceN2ek5hYSGTJ09uifKSV7xTqg1cmHU9GVb9NRh23u+/w65GktTG2CmVJAyldsy5UpIkKeHaSqcUbL0D36ezobE+3FokSW2OoVSSaGjIBwylPq9Pn2BbXg7V1eHWIkmS2oi2FErl94fMfKhfB2sXhF2NJKmNMZRKEg0NHYFghpK2atcODjgg2P/cDYQkSZJaRjyUauWDzgHS0qHLkGC//OVwa5EktTmGUkkgGnX53q4cemiwNZSSJEkJ0ZY6pQCKTg+2ZS+EW4ckqc0xlEoCGzZANJoFGErtSCyUWrYMGhpsJZMkSS0oGm1bg84BireEUuWzoLEu3FokSW2KoVQSqKgItunpkJkZbi3JaL/9oLAQGhth/frjwy5HkiS1Zo01W/fbwvI9gIIjIbsz1K+HNfPCrkaS1IZkhF2AYM2aYJubC5FIuLUko0gk6JaaMwc+/vho+vcfssvzi4oKmTFjSoKqkyRJrUqsSyqSCWlt5FI5kgZdT4NVfw2W8HU5IeyKJEltRBv5lza5xTqlXLq3c4cdFoRSDQ2nc8EFF5KevvNzn3xy16GVJEnSTrW1eVIxxacHoVTpTDji+rCrkSS1ES7fSwLbdkppxw44IHZnwgJWrAi7GkmS1Gq1pTvvbSs27Pyz2VC/KdxaJElthqFUEoh1SrVzhvdOpaXBIYcE+++/H24tkiSpFWurnVIdD4Hc/aGxNgimJElKAEOpJBALpXLa2C/k9tThhwfbRYuCG+NIkiQ1u1iXUEYbC6Uika3dUqUzw61FktRmOFMqCcSW79kptWsHHghQzfr1eaxaBT16hF2RJElqdWKDztNa328Lly5dxpBB/Xd6/KzD13L9mUDpdOD2hNUlSWq7DKWSgIPOd09GBqSlPU9j49dYtMhQSpIktYCGVtwp1VjPKw+O2PnxunWw+G6oeANqyiGna+JqkyS1SS7fSwIOOt99aWn/AOC991zCJ0mSWkAslEprgxdmmR35oHxLh9gn08OtRZLUJhhKJQE7pXZfWtrLZGVBdTV8/HHY1UiSpFYntnyvNXZK7Ya5KzoEO5/8X7iFSJLaBEOpJGAotfsikZr4Xfjeey/cWiRJUisUv/te65sptTvmrugY7HzyHEQbwy1GktTqGUolAQed75nYXfhcwidJkppdPJRqm78tfOeTdpDRETZ/BhVvhl2OJKmVM5QKWTRqp9SeOvhgyMqCykr46KOwq5EkSa1KbPleGw2lGhojUDw0+OGTaeEWI0lq9bz7XsjWrYP6+mA/2UKpZcuW0r//kC84Z0WCqtkqMxMOOwzefhvefRe6d094CZIkqbVq451SAJScBR89DR//HxxxfdjVSJJaMUOpkMW6pCKRzWRmZodbzOfU18OIEa/s8pyf/7wkQdU0dcQRQSi1cCEMGwZp9vxJkqR9lJneCNG64Ie2HEp1OyvYrnkNNq+B7M7h1iNJarX8T/mQxeZJpadXh1tIijnwwKCzbMMGWLYs7GokSVJr0DG7YesPacn1y8KEat8DCvoHg85X/yPsaiRJrZihVMhinVLp6VXhFpJi0tOhb99g/913w61FkiS1Dnk5W0Kp9FyIRMItJmz7nx9sV08Jtw5JUqtmKBWyraHUunALSUH9+wfbRYu2zuWSJEnaW/FOqfSccAtJBgdsCaU+mbZ1+LskSc3MUCpkseV7GRl2Su2pHj0gLw82b4YPPgi7GkmSlOqadEq1dYUDIHd/qN8ApS+EXY0kqZUylArZ6NHw0UfQrduEsEtJOZHI1m6pt94KtxZJkpT6tnZKGUoRicAB5wX7q/8Wbi2SpFbLUCpk2dmw//6QmflZ2KWkpKOPDrZLlsD69aGWIkmSUlxHO6Wais2V+mhKMPRckqRmZiillLbffkGoF43CO++EXY0kSUplW0MpZ0oBUHQqZHSEmlJYMy/saiRJrZChlFLeUUcFW5fwSZKkfZHn8r2m0rOh5Jxgf9WT4dYiSWqVDKWU8o44AtLToawMSkvDrkaSJKUqB53vQI+vBduVTwSt6ZIkNaOUCqV+/vOfE4lEuPLKK+PP1dTUMGbMGDp37kyHDh0YMWIEZWVlTV63cuVKhg8fTrt27ejatSvXXHMN9fX1Ca5eLSU3Fw49NNj/17/CrUWSJKUul+/tQMk5kN4ONiyHivlhVyNJamUywi5gd82bN4///d//5cgjj2zy/FVXXcU//vEPnnjiCfLz8xk7diwXXnghr776KgANDQ0MHz6c4uJiZs+ezSeffMLFF19MZmYmt99+exhfRS3gmGPgvffg7bfhwAOzwi5HkiSlIJfv7UBGO9h/eNAptfIJ6Dxwt1963jlDqVhTtstzCjsXMeXZGftapSQpRaVEKLV+/XpGjRrFgw8+yG233RZ/vqqqit///vdMnjyZ008/HYCHH36Yww8/nNdee43jjz+e559/nvfee48ZM2ZQVFTE0Ucfza233spPf/pTbr75ZrKyDDBagwMPhPx8qKqC6upTwy5HkiSlIO++txM9vrE1lDr65xCJ7NbLKtaU8cqDI3Z5zpBLnVUlSW1ZSizfGzNmDMOHD2fo0KFNnp8/fz51dXVNnj/ssMPo0aMHc+bMAWDOnDn079+foqKi+DnDhg2jurqahQsX7vDzNm/eTHV1dZOHkltaWtAtBVBR8ZVwi5EkSSmpo51SOxZfwrfMJXySpGaV9KHUn//8Z958803Gjx+/3bHS0lKysrIoKCho8nxRURGlWyZel5aWNgmkYsdjx3Zk/Pjx5Ofnxx/du3dvhm+ilnbMMcEv7jZuPIb33w+7GkmSlFKiUWdK7UxsCR8E3VKSJDWTpA6lVq1axX/9138xadIkcnISd3Fw3XXXUVVVFX+sWrUqYZ+tvZeXBwcfHOz/7nfh1iJJklJM/ToyYlfGdkptr8c3gu2KP0O0MdxaJEmtRlKHUvPnz6e8vJwvfelLZGRkkJGRwcsvv8y9995LRkYGRUVF1NbWUllZ2eR1ZWVlFBcXA1BcXLzd3fhiP8fO+bzs7Gzy8vKaPJQavvSlYPvII1BTE2opkiQplWyuCLaRDEjLDLeWZLT/uZCZBxtXQvk/w65GktRKJHUodcYZZ/DOO++wYMGC+GPgwIGMGjUqvp+ZmcnMmTPjr1m8eDErV65k8ODBAAwePJh33nmH8vLy+DnTp08nLy+Pvn37Jvw7qWUdfDBkZpayZg08/njY1UiSpJRRuzbYunRvx9JzoMfXg/3lfwy3FklSq5HUoVTHjh054ogjmjzat29P586dOeKII8jPz2f06NFcffXVvPjii8yfP5/vfOc7DB48mOOPPx6AM888k759+3LRRRfx1ltv8dxzz3H99dczZswYsrOzQ/6Gam5paVBY+AwA990H0Wi49UiSpBRRu6VTyqV7O9frW8F25RPQYEu6JGnfJXUotTvuuecezj33XEaMGMHJJ59McXExTz31VPx4eno6U6dOJT09ncGDB/Otb32Liy++mHHjxoVYtVpSp05TycqC+fPh9dfDrkaSJKWEeKeUodROdT0Z2h0AdVWw+h9hVyNJagUywi5gT7300ktNfs7JyWHixIlMnDhxp6/p2bMnzz77bAtXpmSRkVHJyJHw2GMwcSIMGhR2RZIkKenZKfXFImnQaxS8d0ewhK/HiLArkiSluJTvlJJ2ZMyYYPv447DNODFJkqQdc6bU7ul1UbD9+B+weU24tUiSUp6hlFql444LHrW18JvfhF2NJElKepvtlNotBf2g09HQWBfMlpIkaR8YSqnV+tGPgu3EibBxY7i1SJKkJGen1O6LDTz3LnySpH2UcjOlpN114YXQqxcsXx7Ml/rP/2x6fOjQ8ygrq9jlexQVFTJjxpQWq1GSJCUJZ0rtvp7/AQt+Ap++CuuXQocDw65IkpSiDKXUamVkwFVXwX/9F9x9N1x6KaSnbz1eVlbBiBGv7PI9nnxySAtXKUmSkoKh1O5rVwJFZ0DpdFg+GY64PuyKJEkpyuV7atW++10oKIAlS+Dvfw+7GkmSlLTiy/cMpXbLtkv4otFwa5EkpSxDKbVqHTrA5ZcH+3fdFW4tkiQpicUHnTtTard0/2oQ4FUvhoo3wq5GkpSiDKXU6l1xBWRlwauvwpw5YVcjSZKSUnz5Xrtw60gVmR3hgAuC/WV/CLUUSVLqMpRSq9etG3xrS4f5L38Zbi2SJCkJNdRC/fpgP8Ple7ut98XBdsWfgj9DSZL2kIPO1SZcfTU89BA89RR8+CEcdFDYFUmSpKSxpUuqMQppaW17+d7SpcsYMqj/F55X2LmIKVOnQU4x1JTCJ9PggPMSUKEkqTUxlFKb0K8fnHMOPPtscCe+3/wm7IokSVLS2LwGgHU16eRHIiEXE7LGel55cMQXnjbk0ichLQN6jYL3fwnLHjOUkiTtMZfvqc348Y+D7cMPQ2lpuLVIkqQksqVTqromPeRCUlBsCd/qv28dFi9J0m4ylFKbceqpcPzxUFPjbClJkrQNQ6m91+lI6HQ0NNbCysfDrkaSlGIMpdRmRCJwww3B/m9+A/X1BaHWI0mSksSW5XtVhlJ7J9YttfSxcOuQJKUcQym1KWefDQMGwMaN8Nln3wi7HEmSlAzslNo3Pf8DIumw5jWo/iDsaiRJKcRB52pTYt1SF1wAFRUj2LQJcr3zsyRJbduWTqnqGi+Nd9fn79J353m5nNB7PY/cMITfvVYEwIrly8IqT5KUIvyXV23OeefBkUfC22+357XX4LTTwq5IkiSFyk6pPff5u/RVvQurnuTbQ2r59ncvhEiEktN+Hl59kqSU4PI9tTmRCFx/fbA/d24w+FySJLVh8U4pQ6m91vFQSMuGuirYuCLsaiRJKcJQSm3SiBGQnb2MzZvh9dfDrkaSJIXKTql9l5YJ+X2D/bVvhVuLJCllGEqpTUpLgy5dgjvEvPYabN4cckGSJLWwn//850QiEa688sr4czU1NYwZM4bOnTvToUMHRowYQVlZWZPXrVy5kuHDh9OuXTu6du3KNddcQ319fYKrb2F2SjWPgqOCbfV70FgXbi2SpJRgKKU2Kz9/Jp07w6ZNMG9e2NVIktRy5s2bx//+7/9y5JFHNnn+qquu4u9//ztPPPEEL7/8Mh9//DEXXnhh/HhDQwPDhw+ntraW2bNn8+ijj/LII49w4403JvortKwtnVJVDjrfN+16QGYBNNZC9fthVyNJSgGGUmqzIpFGTjop2J89224pSVLrtH79ekaNGsWDDz5Ip06d4s9XVVXx+9//nrvvvpvTTz+dAQMG8PDDDzN79mxee+01AJ5//nnee+89/vjHP3L00Udz9tlnc+uttzJx4kRqa2vD+krNb3MQSq2zU2rfRCJQsCX4rHQJnyTpixlKqU3r3594t9SW629JklqVMWPGMHz4cIYOHdrk+fnz51NXV9fk+cMOO4wePXowZ84cAObMmUP//v0pKiqKnzNs2DCqq6tZuHDhDj9v8+bNVFdXN3kktYYaaNgIQJWh1L6LLeFbv5SivGi4tUiSkp6hlNq0tDQ49dRgf86cIJySJKm1+POf/8ybb77J+PHjtztWWlpKVlYWBQUFTZ4vKiqitLQ0fs62gVTseOzYjowfP578/Pz4o3v37s3wTVrQli4pIulsqPXSeJ9lF0K77kCUrw5sCLsaSVKS819etXn9+kHXrsHyvdmzw65GkqTmsWrVKv7rv/6LSZMmkZOTk7DPve6666iqqoo/Vq1albDP3iu1wZBzsgqBSKiltBpblvB9fVAjRO2WkiTtnKGU2rxIBE47LdifOxc2bAi3HkmSmsP8+fMpLy/nS1/6EhkZGWRkZPDyyy9z7733kpGRQVFREbW1tVRWVjZ5XVlZGcXFxQAUFxdvdze+2M+xcz4vOzubvLy8Jo+kFuuUyi4Mt47WJL8fRNI5vCQKNWVffL4kqc3yFiMScOih0K0bfPIJvPIKDBsWPL9s2VL69x+yy9cWFRUyY8aUBFQpSdLuO+OMM3jnnXeaPPed73yHww47jJ/+9Kd0796dzMxMZs6cyYgRIwBYvHgxK1euZPDgwQAMHjyYn/3sZ5SXl9O1a1cApk+fTl5eHn379k3sF2opTTql1oVaSquRngsdD4Xq94KB57k7DjAlSTKUkgi6pU4/HSZNgjfegBNOgI4dob4eRox4ZZevffLJXYdWkiSFoWPHjhxxxBFNnmvfvj2dO3eOPz969GiuvvpqCgsLycvL44orrmDw4MEcf/zxAJx55pn07duXiy66iDvvvJPS0lKuv/56xowZQ3Z2dsK/U4uIdUpldcZQqhkVHLUllHoHir8MERdoSJK2578O0hZ9+kD37kEQ9c9/hl2NJEkt75577uHcc89lxIgRnHzyyRQXF/PUU0/Fj6enpzN16lTS09MZPHgw3/rWt7j44osZN25ciFU3s1inlMv3mlfHPny2DmjYAOv/HXY1kqQkZaeUtEVsttRjj8H8+UG3lCRJrclLL73U5OecnBwmTpzIxIkTd/qanj178uyzz7ZwZSFq0imlZhNJ5+k30rn0tIZgCV/Hg8OuSJKUhOyUkrbRu3fwaGyEWbPCrkaSJLW4Wgedt5S/vr7lPzWq34eGmnCLkSQlJUMp6XNid+JbsACi0V5hliJJklra5tjyPTulmts7H0UguwtEG6BqYdjlSJKSkKGU9Dndu8NBB0E0CvX1V4ddjiRJakmxTqksO6WaXyQYeA5Q+Xa4pUiSkpKhlLQDsW6pxsYL+fTTcGuRJEktKNYpZSjVMgr6B9uNK6F2bbi1SJKSjqGUtAMlJXDYYQBpvPhi2NVIkqQWE58p5fK9FpGZB+0PDPbtlpIkfY6hlLQTQbdUI4sWwccfh12NJElqdtGonVKJUHBksK18O/gzlyRpC0MpaSe6doW0tKcAeOGFkIuRJEnNr2ETNG4O9u2Uajl5h0MkM+hK27Q67GokSUnEUErahYyMu0hLg3//G5YvD7saSZLUrGJdUpEMyOgQbi2tWXpWEEwBVL4Vbi2SpKRiKCXtQiSyki99KdifOdOOc0mSWpX4PKlCiETCraW1iy3hq1oIjQ3h1iJJShqGUtIXOPlkyMiAjz6CJUvCrkaSJDWbzZ8F2+z9wq2jLejQO+hGa9gE672gkiQFDKWkL9CxIxx3XLD/wgt2S0mS1GrEQ6ku4dbRFkTSoKB/sO8SPknSFoZS0m448UTIzoayMnj33bCrkSRJzaLm02Brp1RiFBwVbNd9APWbwq1FkpQUDKWk3dCuHZxwQrD/0kvQ4CgESZJSn8v3EiunKHhEG6F6YdjVSJKSgKGUtJsGDQrCqYoKWLAg7GokSdI+2xzrlHL5XsLEBp6vdQmfJMlQStpt2dlw0knB/ssvQ11duPVIkqR9ZKdU4uX3ByKw6SPYXBF2NZKkkBlKSXtg4EDIy4N162DevLCrkSRJ+yQWSuXYKZUwmR2hw4HBfuXb4dYiSQqdoZS0BzIy4NRTg/1XXoHNm0MtR5Ik7YvNDjoPRWwJX+XbgLc1lqS2zFBK2kNHHQWdO8OmTTBnTtjVSJKkvRZfvmenVELlHQZpmVC3lv7dNoZdjSQpRIZS0h5KS4PTTgv258yB+vr8cAuSJEl7Lhp1plRY0rIgry8Aww6vDLcWSVKoDKWkvdC3LxQXQ20tfPrpRWGXI0mS9lRdNTRuuWuJoVTibVnCd8bBVdBQE3IxkqSwGEpJeyESgTPOCPYrKr7KRx+FW48kSdpDsXlSGe0hIzfcWtqi9r0goyMdcxph9T/CrkaSFBJDKWkv9ekDPXpANJrNrbeGXY0kSdojzpMKVyRt68DzZY+GW4skKTSGUtJe2rZb6ve/hyVLwq1HkiTtgRrvvBe6gqOC7cfPwqbScGuRJIXCUEraBz16QIcOs2logJtuCrsaSZK02+yUCl9OF979JBeiDbDsD2FXI0kKgaGUtI+Kih4E4E9/grfeCrkYSZK0e7zzXlL4x8JOwc7Sh4I7IkqS2pSMsAuQUl1p6XPk58+gqmooJ530Kj17/nSH5xUVFTJjxpQEVydJknYoNug8x06pMM1cks9Ph1VC9fvw2WvQZXDYJUmSEshQStpH9fXwne8MZeJEWLfuRI499hV69Nj+vCefHJL44iRJ0o7ZKZUUNtamQ4+vB8POl/7eUEqS2hiX70nNoHNnOOaYYH/6dLvPJUlKeg46Tx59vhtsVzwOdevDrUWSlFCGUlIzOfVUyMiAjz6C998PuxpJkrRLDjpPHl1Ogg4HQf16WPXXsKuRJCWQoZTUTDp2hMFbOs5nzoTGxnDrkSRJu7DZTqmkEYls7Zb690Ph1iJJSihDKakZnXgitGsHa9bAm2+GXY0kSdqpWKeUg86TQ++LIZIGn/4Tqj8IuxpJUoIYSknNKDsbTj452H/5ZaitDbceSZK0Aw21UFcV7NsplRza7Q/dzgr2lz4cbi2SpIQxlJKa2cCB0KkTrF8Pc+aEXY0kSdpO7ZpgG0mDrE7h1qKtDtyyhG/Zo9BYH24tkqSEMJSSmll6Opx+erA/ezZs2BBuPZIk6XNid97L6hwEU0oO+38l6Fzb9Al8Mi3saiRJCeC/wlIL6NcPSkqC5Xsvvxx2NZIkqQnnSSWn9KxgthTAkv8NtxZJUkIYSkktIBKBoUOD/fnzg8HnkiQpScRCKedJJZ+Dvh9sP/4HbFgRbi2SpBZnKCW1kN694aCDoLERXngh7GokSVLc5i3L97LtlEo6eYdA0RlAFD58MOxqJEktzFBKakGxbqn33oONG/uGW4wkSQrYKZXcDv7PYPvv30FjXbi1SJJalKGU1IKKiuDoo4P90tLLiUZDLUeSJAHUlAdbO6WS0wHnQ04x1JTBR8+EXY0kqQUZSkkt7NRTISMDNm48hilTwq5GkiRRUxpsc7uFW4d2LC0T+nwv2P/gN+HWIklqUYZSUgvLz4dBg4L9H/84uCOfJEkK0aZYKFUcbh3auYO/D5F0KH8J1r4ddjWSpBZiKCUlwEknQUbGGj78EO67L+xqJElq42KdUjmGUkmr3QHQfUSw/8G94dYiSWoxhlJSAmRnQ1HRAwCMGwfl5SEXJElSWxWN2imVKg79YbBdPglqPgu3FklSizCUkhKkoOBZvvQlqK6GG28MuxpJktqo+vXQsDHYzykKtxbt2n4nQOEAaKiBfz8QdjWSpBaQ1KHU+PHjOfbYY+nYsSNdu3blggsuYPHixU3OqampYcyYMXTu3JkOHTowYsQIysrKmpyzcuVKhg8fTrt27ejatSvXXHMN9fX1ifwqEpFIlAkTgv0HH4S3HY8gSVLixbqkMjpCRvtwaxFLly5jyKD+O34cfyS3/mnL39cHE6HBwZyS1NpkhF3Arrz88suMGTOGY489lvr6ev77v/+bM888k/fee4/27YOLiKuuuop//OMfPPHEE+Tn5zN27FguvPBCXn31VQAaGhoYPnw4xcXFzJ49m08++YSLL76YzMxMbr/99jC/ntqgk06Cr38dnngCrrwSZs6ESCTsqiRJakNqXLqXVBrreeXBEbs8/tm8O9iPj2HFn+DASxJXmySpxSV1p9S0adP49re/Tb9+/TjqqKN45JFHWLlyJfPnzwegqqqK3//+99x9992cfvrpDBgwgIcffpjZs2fz2muvAfD888/z3nvv8cc//pGjjz6as88+m1tvvZWJEydS623QFII77wxmTL34Ivztb2FXI0lSG+OQ89SSlsFf/tU52H/vDog2hluPJKlZJXUo9XlVVVUAFBYWAjB//nzq6uoYOnRo/JzDDjuMHj16MGfOHADmzJlD//79KSraOjNg2LBhVFdXs3Dhwh1+zubNm6murm7ykJpLr17w4x8H+z/6EWzaFGo5kiS1LQ45Tzl/e6cQMvOgehGsnhp2OZKkZpQyoVRjYyNXXnklJ554IkcccQQApaWlZGVlUVBQ0OTcoqIiSktL4+dsG0jFjseO7cj48ePJz8+PP7p3797M30Zt3bXXQkkJLF0Kd9wRdjWSJLUhdkqlnA216XDwD4IfFo4P7qAoSWoVUiaUGjNmDO+++y5//vOfW/yzrrvuOqqqquKPVatWtfhnqm3p0IH40POf/xyWLAm1HEmS2g47pVLTof8Fadmw5jUofznsaiRJzSQlQqmxY8cydepUXnzxRQ444ID488XFxdTW1lJZWdnk/LKyMoqLi+PnfP5ufLGfY+d8XnZ2Nnl5eU0eUnP72tdg2DDYvBnGjvWXfpIkJYSdUqkptxj6fDfYf+cmL5wkqZVI6lAqGo0yduxYnn76aV544QV69+7d5PiAAQPIzMxk5syZ8ecWL17MypUrGTx4MACDBw/mnXfeoby8PH7O9OnTycvLo2/fvon5ItIORCLw618HQ8+ffx7++tewK5IkqQ3YZCiVsvr9d9AtVT4LSmeEXY0kqRkkdSg1ZswY/vjHPzJ58mQ6duxIaWkppaWlbNoyGTo/P5/Ro0dz9dVX8+KLLzJ//ny+853vMHjwYI4//ngAzjzzTPr27ctFF13EW2+9xXPPPcf111/PmDFjyM7ODvPrSRx0EFx3XbB/5ZWwbl2o5UiS1PrVuHwvZbU7AA7+z2D/7evtlpKkViCpQ6nf/va3VFVVceqpp9KtW7f44/HHH4+fc88993DuuecyYsQITj75ZIqLi3nqqafix9PT05k6dSrp6ekMHjyYb33rW1x88cWMGzcujK8kbeenP4U+feDjj+Gmm8KuRpKkVizaCDVbxjrYKZWa+l4H6e1gzeveiU+SWoGMsAvYlehu/PYjJyeHiRMnMnHixJ2e07NnT5599tnmLE1qNjk5MHEinHUW3HsvXHIJHHVU2FVJktQKbV4D0YZgP6dLuLVo7+QWwaE/hPd+Dm9dByVnQ1pS/yeNJGkXkrpTSmorhg2Dr38dGhrge9+D+vqwK5IkqRWKLd3L3g/SMsOtRXuv708guzNULYQlvw27GknSPvDXCmp1li1bSv/+Q3bjvBUJqGb3TZgA06fDG2/AXXfBtdeGXZEkSa2MQ85bh6xOcORtMO9yePtG6PkfkLNf2FVJkvaCoZRanfp6GDHilS887+c/L0lANbuvpARKSu6hsvIq/vu/a/n970eTk7Nsu/OKigqZMWNKCBVKkpTiHHLeevS5FJbcD5Vvwds3wHF2TElSKjKUkpJIJPIkBx98FUuWZLFx4x/4j/+AtM8tsn3yyS/uApMkSTtgp1TrkZYOA++FGafAvx+AAy+B/Y4PuypJ0h5yppSURCIR+MpXguHnH38Ms2eHXZEkKVWNHz+eY489lo4dO9K1a1cuuOACFi9e3OScmpoaxowZQ+fOnenQoQMjRoygrKysyTkrV65k+PDhtGvXjq5du3LNNddQn6rDD+2Ual26ngy9Lw7uqvjat6F+U9gVSZL2kKGUlGQ6dgwGnwO89BKUl4dajiQpRb388suMGTOG1157jenTp1NXV8eZZ57Jhg0b4udcddVV/P3vf+eJJ57g5Zdf5uOPP+bCCy+MH29oaGD48OHU1tYye/ZsHn30UR555BFuvPHGML7SvrNTqvUZMAFyu0H14mAZnyQppRhKSUnoqKPg4IODu/H97W/Q2Bh2RZKkVDNt2jS+/e1v069fP4466igeeeQRVq5cyfz58wGoqqri97//PXfffTenn346AwYM4OGHH2b27Nm89tprADz//PO89957/PGPf+Too4/m7LPP5tZbb2XixInU1taG+fX2To2hVKuT1QmOezDYf/9uKJ8Vbj2SpD3iTCkpCUUicO658JvfBMv4Xn4ZTjst7KokSamsqqoKgMLCQgDmz59PXV0dQ4cOjZ9z2GGH0aNHD+bMmcPxxx/PnDlz6N+/P0VFRfFzhg0bxuWXX87ChQs55phjtvuczZs3s3nz5vjP1dXVLfWV9pzL91qn/YfDgd+BpQ/DK/8Pzn4z6J7aS+edM5SKNWVfeF5h5yKmPDtjrz9HkmQoJSWtvDwYPhyeegpmzYKePeHAA2HZsqX07//Fw869S58kKaaxsZErr7ySE088kSOOOAKA0tJSsrKyKCgoaHJuUVERpaWl8XO2DaRix2PHdmT8+PHccsstzfwNmsnG1cF2HwILJamB98GaeVD1LrzydTj9BUjP2qu3qlhTxisPjvjC84Zc+uRevb8kaStDKSmJ9e8Py5bBv/4FTz8N3/8+1NfDiBGvfOFrvUufJClmzJgxvPvuu7zyyhf/+7GvrrvuOq6++ur4z9XV1XTv3r3FP/cL1VVDXdAtRrse4dai5pfRHk56Cp4bCJ++CvP/C479TdB+LklKWoZSUpI7+2z46CP49NMgmIpGvbiSJO2+sWPHMnXqVGbNmsUBBxwQf764uJja2loqKyubdEuVlZVRXFwcP+f1119v8n6xu/PFzvm87OxssrOzm/lbNIMNq4JtVifI7BBuLdojS5cuY8ig/l94XmHnIqY88EeYdT58eH+wTLP/TQmoUJK0twylpCSXmQlf/zo88AAsXQrp6WPCLkmSlAKi0ShXXHEFTz/9NC+99BK9e/ducnzAgAFkZmYyc+ZMRowIliotXryYlStXMnjwYAAGDx7Mz372M8rLy+natSsA06dPJy8vj759+yb2C+2rjSuDrV1SqaexfveX0x3wFRj4a3hjDLxzM2QVwqFXtHyNkqS94t33pBTQpQucc06w39DwE1auDLceSVLyGzNmDH/84x+ZPHkyHTt2pLS0lNLSUjZt2gRAfn4+o0eP5uqrr+bFF19k/vz5fOc732Hw4MEcf/zxAJx55pn07duXiy66iLfeeovnnnuO66+/njFjxiRnN9SubNzSKdUuCZYSqmUd8gPov2Wu2fwfwvu/CrceSdJOGUpJKeLoo4MZU5DBX/8K69eHXJAkKan99re/paqqilNPPZVu3brFH48//nj8nHvuuYdzzz2XESNGcPLJJ1NcXMxTTz0VP56ens7UqVNJT09n8ODBfOtb3+Liiy9m3LhxYXylfbNhy2902tsp1SYccQMc/uNg/80r4Z1xEI2GWpIkaXsu35NSRCQS3I3v3XeXsG7dwTz+OFxyCWT4/8WSpB2I7sZ/gOfk5DBx4kQmTpy403N69uzJs88+25ylhcNQqm2JRODoOyEzH96+Ad65KeiWGzhxr+/KJ0lqfnZKSSkkOxsyMr5NTk4w/HzqVH/pJ0nSbnH5XtsTicAR18OA+yCSBv/+HbxwOmwqC7sySdIWhlJSiklLW8bXvx5cZ731FsyeHXZFkiSlAAedt12HjoVT/hF0TX36Kjw3ECrmh12VJAlDKSklHXggnHVWsD9jBnzwQbj1SJKU1KKNWzul2tsp1SaVnAXDXoe8Q2HjRzB9CCz/U9hVSVKbZyglpahjj4UBA4L9J5+E8vJw65EkKWnVlENjXbCEK7ck7GoUlrxD4My5UHIONNTA7G/Cv66BxvqwK5OkNstQSkpRkQicfTb06gW1tTBpElRVhV2VJElJKDbkPLcE0jLDrUXhysqHk6dA3+uCnxfdBS+eBTWfhVuXJLVRhlJSCktPh298A/bbD6qr4Q9/gA0bwq5KkqQkE58n5dI9AWnpcPTtMOQJyGgPZTO3zJn6V9iVSVKbYyglpbjcXLjoIsjPhzVrgo6pzZvDrkqSpCQSv/OeQ861jR5fgzNfgw59YMMKmH4CLJ8cdlWS1KZkhF2ApH2XlxcEUw89BJ98Ao8/Drm5WWGXJUlScogt32tvKNXWnXfOUCrWlDV5rmN2Fjee1YHBvdbD7FF89dBMiEaDWQmSpBZlKCW1Ep07w6hR8OijsGwZ5OXdRH09ZPj/5ZKkts7le23C0qXLGDKo/y7PWbF8Gaum/3j7A9HGYBnfZ7P50Vl18NEzsP9XIM0LKUlqSf6vrNSKlJTAyJHBEr7q6lP41reCOVOZznSVJLVlG7Ys37NTqnVrrOeVB0fs8pSS036+4wORNCj+MmQVUr9qKhlVb0NdJfT4f5DRrvlrlSQBzpSSWp3eveHrX4dIpI7HH4f/+I/g7nySJLVZ8U4pQyl9gcIBfOu3mZCWHfzfzdLfw+Y1YVclSa2WoZTUCh16KHTv/j9kZcGTTwZ36HP4uSSpTWrYDDVbZgi5fE+7YdbiNDjwu5CZD7UVQTAVm0smSWpWhlJSK5WXN5u//Q2ys+Fvf4MRI6CmJuyqJElKsI0fBdv0XMjuHG4tSh05XaHP9yC3BBo2wfLHoOrdsKuSpFbHmVJSgixbtpT+/Yd8wTkrmvXzrrlmCN26DWTFijv4xz+y6dJlLt27X096+iYAiooKmTFjSrN9piRJSWfDsmDbvod3U9OeyegAvb8Nq56Cde/DqiehthL2O9H/W5KkZmIoJSVIfT2MGPHKLs/5+c9LWuTzli2DP/0J1q8fRGXldL75TejQAZ58ctchmSRJKa96cbDteEi4dSg1pWVCj69D6fOwZm5wh77atVByTtiVSVKr4PI9qQ3o3RsuvhjatYNPPoHf/x4++yzsqiRJSoDqD4Jt3qHh1qHUFUmDbmcFD4C1b8KyP1CQWx9uXZLUCtgpJbURBxwA3/0uTJoEa9fCQw9BNFr4hUsKXeInSUpp62KdUoZS2kedB0FmJ/joSdi4ggdHZkLFfCgcEHZlkpSyDKWkNqRzZxg9GiZPho8/Bnicww7LpV+/nb/GJX6SpJQW75Ry+Z6aQd4hcOD3YOWf6ZZXAc+fAMfcBYeMdc6UJO0Fl+9JbUz79nDJJXDIIQC5/PWvMH06NDaGXZkkSc2soQY2LA/27ZRSc8npAn2+x6wPO0JjLcz/Icw6HzZ9EnZlkpRyDKWkNigrC/7f/4P09PsBmD0b/vhH2LAh5MIkSWpO6/4NRCEzD3K6hl2NWpP0XP77Hz1gwL2QlgWr/w7/6AfL/gjRaNjVSVLKMJSS2qi0NMjIGMfXvgaZmcEd+h54AFavDrsySZKaybbzpFxapWYXgUOvgLPegE5fCu7KN+cimHkqrF0QdnGSlBIMpaQ2rl8/+N73gnlT1dXw8MNB55TL+SRJKa96SyjlPCm1pIL+MOw1OPI2SM+F8lkwbQC8/p9Q4+2OJWlXDKUk0bVrEEwddhg0NAQzph55BCoqwq5MkqR9sG7LkHPnSamlpWXCEf8D574PPf4fRBvhw/+Fvx8M70+AhtqwK5SkpGQoJQmAnBz4xjfgK18JZk6tWgX33w9r1lxo15QkKTXZKaVEa98DhvwZhr4MBUdBXSW8eRU8ewR89DfnTUnS5xhKSYqLROBLX4LLL4devaCuDj755GrOOAPeeSfs6iRJ2kOxTqk8O6WUYF1PhrPmw3H/GwzZX7cEZl0AM0+HijfDrk6SkoahlKTtFBTAxRfD2WdDJFLDSy/B0UcHYdWnn4ZcnCRJu2PzmuAB0PHgcGtR25SWznk//Atfvrszj73ehc31ESh/icb/G8Az1xVy1kl9GTKoP+edMzTsSiUpNIZSknYoEoHjjoODD76Ir30tGHx+//1w0EHwy1/C5s1hVyhJ0i5Ub+mSancAZLQPtxa1WRVrypj+m29w8Xd/QHbfH0J+f9IicEH/tUy7YhWv3NWXijVlYZcpSaHJCLsAScktK+sTnngCZs2Cq66CN9+EH/8Y7rkHfvQjuOwyOP/88ygr++Kp6EVFhcyYMSUBVUuS2rx1W+ZJdXSelJJEVgF0vxAKvwSrp0LtGlj1F/77ywVQVw2ZeWFXKEkJZyglabecfDLMmwePPQb/8z+wejVcfTXcdhtkZJzPt789mtzcXb/Hk08OSUyxkiTFh5w7T0pJpn0vOOg/4dOX4dNXOadvJTx7FAx5AjoPDLs6SUool+9J2m1pafDtb8PSpfDAA8FSvoqK/9/enUdHVaX9Hv9WVeaZJJAQpgCCiEwBBBFEhSjQji2vrTbtRcWxoRVpcXi9ii92N4gITrTY3qt4HVpbaRVpURGQSURmRTQgCQTJBISQgYQkVfv+cZIKISFEUqnK8Pus9ayqnLPrnKfOXonbh332gZycScyfD598AhkZvs5SRESEqsWko/r6Ng+R2tj9IG40dL2VjGP+ULQPlg+Hn/+hJ/SJSKuimVIi8qsFBsKdd8Ltt8MHH8Ctt+6hpKQHW7dat/clJMCgQdCnDwQE+DpbERFpdYyB3M3W++gLfJuLtFipqWmMGFp30XP/vrS6DxLamdvfOYfP/tIDDi6Bb++2CqqDX7IKVyIiLZz+0onIWXM44MYb4amnbmPw4HVs2QI//mjNlsrIgM8/h/PPh6Qk6NgR0tJS6du37lv4tO6UiIg0WFEalOaCPUAzpaTxuMpZ9+r4OpskXDb7jIcpLHXAyA9h1xzY8d/w8yvWzKkR/9I6UyLS4qkoJSINZrNBYqIVRUWwYwds2WLd2rdtmxWxsVBSci9jxjxOWNjpj6V1p0REpMGObLJeo/qBI9C3uYicQWpqGiMu7A/AiG6dmDH2AMGZn7P35XY8tKQL2QXWtPPomDiWfPqlL1MVEfE4FaVExKNCQ+Gii2DYMEhPtwpSu3bB4cMAjzNvHvTsCQMGQI8e1mwrERERj6q8dS9Gt+5JM3DqjKviDNj/T7rHFrL4rgzocjMEJzDizsW+y1FEpJGoKCUijcJmgy5drBg3Dn74AZYu3Ywxg0lJgZQUq4DVrx8MHgzR0b7OWEREWozKmVLRepKZNEPBCdDtDtj/DpzIgdTXoVPdtwmKiDRXKkqJSKMLDISBA+GLL65h0qQMtm+3bvErKoING6zo2ROGDIHUVK07JSIiDWBckLvFeq+ZUtJcBURCt9vhwAdQ+DOkv8f4/u19nZWIiMepKCUiXtW2LVx+OYwaBXv2WGtP/fwz7N5thc22hk6dzmHAgNM/uU/rTlmSk68hOzu3zjYq4IlIq5OfAuWF4AiGiPN8nY3I2XMEWrfuZfwHjm7lgUszYcs0SHoG7Fr/QERaBhWlRMQnHA7o1cuKI0fg229h+3YoLT2HZctg1SoYNMiaPRWhB8/UKjs7l/Hj19XZRgU8EWl1KteTih4Idg11pZmz2SHhKghoA9krIGW+9WS+i94CvxBfZyci0mB2XycgIhITY607NW0a+Pn9b6KjoaQE1q+H55+HxYshI8PXWYqISLOg9aSkpbHZoO0InlzWEewB8MuH8OWlUHTA15mJiDSY/vlIRJqMwEBwOF5j8uS/sGePtdbU/v2wc6cVnTvDhReCMaqni4jIabiLUlpPSlqWL3dH8eSzb8Oa30LuJvhsEIx4D+Iu+1XHueY3yeQeya6zTXRMHEs+/bIh6YqI1IuKUiLS5NjtcO65VmRmwjffWEWp9HQr/P3f5fnn4fbbITzc19mKiEiTUVYARysWOY8d6ttcRBpDu5EwdjOsvR6OboeVydD7EegzAxynWYzzFLlHsln3at1P8xtx52IPJCsicmaabiAiTVr79vDb38LUqTBiBAQHQ1lZAlOnQseO8Oc/Wwumi4iIkLUcXGUQ1t0KkZYorCtcvh66TrSeNvnD3+CLCyF3q68zExH51TRTSkSahfBwGD0aRo6ERYueITx8OikpMG+eFYMGwU03wY03QqdOvs5WRER8IuNT6zXhSmsdnpPU55al/fvSGiszEc/yC4Fhi6DDVfDt3XB0G3w2GLr+L+j/Fwjp6OsMRUTqRUUpEWlW/P0hOvpjduyYzrJl8NJLsHw5bNlixfTpMHw4/OY3cPnlkJQEfnX8pUtOvobs7Nw6zxkXF82XXy7x8DcRERGPMqaqKNXhyhq763PLUsJlsxsjMxGPSE1NY8TQvjW2x4S05Y8XOxnT6xikvQH73obON0DPyRA7zHqCn4hIE6WilIg0S3Y7XHmlFYcOwQcfwLvvwtq11lP71q+Hxx6zbvfr39+aSTVwoFWkOuecqrWosrNzGT9+XZ3nWrx4hBe+kYiINMjR7VCcCY4QaHeJr7MR8TxXed2F1eMH2bbmHZI6Hof9/7QiKN4q0sZcCG0GQHgPwHgrYxGRM1JRSkSavbZt4d57rfjlF1iyxJo9tWoVHDtmLZT+zTfVPxMTA127Qnr6TL74AiIjISLCishICA2tuvMjLS2Vvn3PXJhqajOqXC4oL29DSgqUl1cPf38IC7OKc2Fh1ve16x9SRaQ5y/iP9RqfDI5A3+Yi4gshHfjT4m6sW/b/YPcLkL4YSrJg7/+1osKXf7RBynNg8wO7n/Vqc1S82sHmYOa4TFg/wVo83R4AjlAIaFNLREFQnPX+lFtmRUTqQ0UpEWlROnaEP/7RitGjr+XAgRCKi8+lpKRnxWt3nM4ojhyBI0cARrFhQ83j2O1WgSoqCoqLnyYh4RZiY61iVlRU7QUcX82oKi+HrCw4eNB6WmFurhVFRQCf0KtX/Y4THQ1xcbXHSy89QVFRCv7+2djt5ac9RlMrzIlIK3KwoihVy617Iq1KdBJc+Dpc8AocWgOZX1hrTh3dDicOE+RvoOxYnYcY1RPY/079z+kIguAO1lpWwR0gpOJ9aFeI6GUtzm7X/3qKSE36yyAiLVZOzhF+//uPa2w/cQKOHoW8PPjggxkMHvw/5OfjjoICa5ZRXp4VcAtffFH1+YAA66mACQlV0aaNd74TQGEhfPUVZGbex6uvWgUpl+t0rV0EBtpxOKxCWmU4nVBaaoWpmMVfWcz68cfajjMTsP4RNDzc+r5RUVa0bQvt2llFrfnzE844q0yFKxHxuJLDcGSj9T7hN77NRaSpcARYMwfjk6u2lR/nd78ZwL9mjgTjBFMOrvKK91Ux7+0tTPvzdHCVgrMUygugNA9Kj9aMsjxwlkDhXitqYw+A8J5WgSp6IMQMhZjB4B/hjSshIk2YilIiUqf63LqWlrbfS9l4RmAgxMdb4ef3KmPH/k+1/U6nVfjJz7eKV0uWzOfccx/g8GFrdlVpKezfb0WlkBBwOP7GnDnWQuuDBkFQkGfyLS21FnFfscK6LXHDBigrA/hdtfN36GAVyNq2tYpGERHw4oudeeSRX057bGPggw9GsXLlSg4dguxsK3Jyqt5nZcHKlWk4nV0pL68q3u0/pdsdDnC5lmOznU+7dlahKj7eKmKdPKNfa3SJiMftexMw0CZJTx0TqYtfCBnHAs/4ezL3o1X8+7vXznCwUA4cyKN7Ym9iQ8uJDSujbVgZ7cKs9+3CyugQWUqX6FIC/Urh2E4rDnxQ8XmbVaSKHQpxoyBuNIQkeORrikjzoaKUiNSpvJwzLgQ+e3bLGkA4HNa6UpGR0KkTfPrpM9xwwwOANSPp0CHIyKiK7Gw4fhxgJA8/bB3DZisjKCiFkJCdBAenEBT0MwEBB2jfPuKMs4QOH4YdO6xF29essdbDKi6u3qZrV8jL+4hRo66jQwdrxlJtSznYbKedQlWxH+z2Uvdten361N6ub99buP76dRQVVc0yO3rUikOHrCKWVSg7n++/r/7ZkBBrZll8vPW6d6+hT5+LsdlOv9CqZlOJSL25nLD7Jet9j3t8m4tIS3GmRdUrJFw2m5ULb6izzcV3fsDaFUsh/yerKHVkExz5For2Qf6PVqQushpH9LKKU/HJEHeptWaViLRoKkqJiPwKdnvVOktJSda28nJrLac33phJjx5PcOAAFBX5U1zch+LiqiqPzQZ79mRy8cXWrW6RkdY2p9Mq8mRnW7OPDh2qed6YGBg5Eq64Ai6/HLp3h75959Knz3Ve+d6V+YeFWdGpU/V9xljf4e9/v5WRIxe5Z1odPmwV7PbutcKynj17qopUla+xsVZBEDSbSkR+hYxPoTDVWmg5cYKvsxHxqdTUNEYM7Vtnm/370ryUjWVv6j5GjL76lK1htAnpxXlxx+mfcJy+cUfp09GJPf8nq3i1ZwFOF6TkBLPtl1C2/hLKdxkhBEcksOTTL72av4g0LhWlREQayM/PKtL4+S3kxhufwBhrBtGBA9bTACtvgysthbKy9qyre+IZAImJMGyYVYgaORJ69WraT8ez2axbBh2OL7j44qrtZWXWLKrMTCuysiAjo4TS0iDS0yE9vaqtw2EV++LjITf3Wr79Fvr2heBg738fEWlGdr9ovXafBH6hvs1FxNfqMcMp4bLZXkqmQj1zylj+Z2v2VFEqFKbhKD1C7/hiescXM2HwYcDO5rQU3p7Wlt2HgtidE8wveQEYqk8Vj46JU+FKpBlRUUpExMNsNmsmVHQ09O9vbTPGehrehx/ew6xZCzl6FI4dq7x9zpo1FRdnrQt17rkQ2kL+v8rf3/pOHTpUbZs1qye3355OVlZVoSory1qAvvKWSJjO0KFWoapXL+s6du9u3bZYGR07Vs2sEpFW6tguyFpuPca+x2RfZyMiDeEXDJHnWQFQlg+FaRWFqjQoO8bgrjC46+Gqz9gDICgOAqKtRdP9I/nz37+HvO/BPwoCIsEvzPobISJNkopSIiJeUHnrW0jITn73uzO3b8lstnL3LZAnF+2OHq0qUm3f/g0hIReSkwM//GDFqfz8oHNnq0DVqVP16NjReo2MhOTka8jOzq0zJ61hJdJMVa4l1eFqCEv0aSoi4mH+EdCmvxUApUeZNuPvzPtTfyjOgpJs6+mAxw9YUeHZ64BP+510IBv4h4N/pBUBkRUFq6iq14Coin3REJxgLQQf3B7s+t9lkcam3zIREfG5k2eXnX8+5OU9yHffrSMzE7Ztg507IS0NUlOt1/37rVsDU1OtOJ3wcCgtfZ6OHbsSEWEVqSIicL+PirKKW1rDSqSZihlC+qY3mLt4B1unN611dETEwwLa8O43DubNusr62bjgxGGrOFWWB2XHoCyfn9PSOadDGJQeA1MOGGvWVVk+cKCOE5zKBsHxENzBKlKFdITQRAjrBmFdIbSrVeASkQZRUUpEmp20tFT69j1zESEtbb8Xsmn+6nM9fXEtbTZISLDiyiur73M6rdv80tJg3z5r/a5TIy8PCgoAup60yHpNERFQXv4it98O3bpZ0b279RobW/tTDUWkieh2K79/Yy7r/jH+jL+sXl9HR0Qal80OQe2sOMmtf1nMuo3fW9OwnSXuYpX7tTSPF555HFvZUcICnVYEuAgLdBIZ7KRtWBmxoeX4OwwUZ1qRu7n2HALaWMWpsK7Vi1VhXSG0CziCvHAhRJo3FaVEpNkpL4fx48+8Wvjs2QleyMbz6nO7GXiuUFSf6+nta1nfwmNdt90VFloLzY8bN5V+/Z7j2DHIz7fi2DErysqsnyGJ11+veYzw8KpCVWWxKjHRWoy9bVsrAgN//ffTLYUinmRT9VhE3Or3BMJ0Dix/8PQNjAFnEWMmLWDAue1oG1ZGXHgZ7SPKSIgspX1EKW1CnFB61IqjW2s/TnBCRYGqomB1ctEquAPYqy+Oec1vksk9kl1n7lrIXVoaFaVERJqY7OzcFl10q4/6Fh7nzk04Y/Hq0KH9JCU9V2O7MXD8uLWW1VtvTSYycgClpQnuKC+Po6AAduyw4nQiIiAmxlozLDTUej05QkNrxu7dAxgxYiYBAdZi8AEB1lMGg4OrFm/XLYUiIiJnwRNPILTZwC+M79MNn79xW+1tnKVQlsfEh15j4LltaB9RRvuIUtpHlpIQUUZIgAuKM6w4tL7m5+3+ENIJAmMhIAYCY7jl/O3cMKYvOIIrIgjsgdZrxfsR93xSzwsh0jyoKCUiIs1WQ2Z52WxVRSL4kHvvXVDj2Hl5VtGqMn74YS3dul1MTg4cOmS1qZx99evM5J//rH1PYCCEhEBJyT8YN84qeJ0cbdpUrb9V+T4qSk8iFBER8SpHADjasfx7eOOFu6vvMwacx6E0D8qOsvDdddwz8VooTK14ouB+cJVV/Fy1OOYNSUDOV3WedvWfgPfbVCzYflIExkBIh4o1sCpeQ7tYRS/NJpUmrFUVpRYsWMAzzzxDVlYW/fv358UXX2TIkCG+TktEWpGmun6T1OTnZ60pFRtbte3772/E6exGTIxVDHK5wikvj8LpjMDlCsLlCiY8vC1/+tOfKSzEHUVF1WPNmu1ERg6grAxKS60oKbHOceKEFdCbzz6rf76RkVZOkZFWoS0kpH4RHAxBQVZUvj/dqwpfrZvGUSIi9WSzgV+oFXTgrc0p3LPglar9LicUH4SidCg9AieOQGkub/7jaW65ojM4iyviBLhKql6NC4edioXd8+qXi39ExXpX3a0I7171PqRTjVsIRbyt1RSl3nvvPaZNm8bChQsZOnQozz33HGPGjCElJYV27dqd+QAiIh7QFNdvkvqrT//NnZvASy99WGcbm20/d91V/QlALpdVmDp+3Ip33rmV2NieOJ2RlJdH4HRG4nSGV0RERYTjcoUCVetkNSZ///oVsL7+ejUnThRit5/AZis95fUEdnsJbdr4MWvWwzWKZJWz18LCwG5v3O8j9adxlIjI2avPOlcA+/cVc8ttV9e+0xgw5QwYP5/ePToSFuAktGKR9tBAJ1EVi7S3DS0jPOA4HaNttA0rtxZ3P7rdilPZ/SueKNi9qnAV3h2C4q3ZV5WzsRzBmm0ljabVFKXmzZvHnXfeyW23WfcEL1y4kP/85z+89tprPPLIIz7OTkREWoqzLTza7VWFGcsX3HHHojOeb9asztx3XzrFxVBcbBW2ysutRdwr48svZ3HRRY9W21YZ5eVWHD68hy5delBSUnWc4mKrTaXKz1hPNazLJWfM++BBuPo0426wxr7h4dbMr1MjIqLmtt//XkWsxqRxlIhIA9RjnSs4w1pXNhvY/MnJc7F9zu/PeJyMVY+Aq7xqMfbS3GrvS4/nEuBXBgV7rKiLzQ/sfoAdbA7ryYc2h/v9kdw8yp1OXMZm3blobLhc4DI2XAaMsYHdn3N69rYKYXZ/sAeAzf+knyvi1G22irZ1tXHvD6j7vSMIHCFV63Wp0NYktIqiVGlpKVu2bOHRRx91b7Pb7SQnJ7NhwwYfZiYiItIwNlv5SWtj1e6rr15k1KhHT98AmDv3Evz9u+HvbxWDKhljx5gAXK4AjAkkM/MI7dp1weUKrNhuvRoT6G5z+HARI0Y86S54nRyVha3U1K8JDIyquO0xqOLz1ntwYEzVel0HDpw27Ypr4GTCBN1+0Fg0jhIRaabsfhDU1opTJN/1AWtWfAqFe6Fgb8X6VnutOHEYSo9B2THAmqGFs/y0p4kJOe2uk5TAkY1n/VUaRbUiVTD4nfT+1J/9QioKaXas4py95vu69v2adgCYisCaJVf5HlPx85nauKzAVTHLrvK965T9xnpKZNc/NM41rodWUZQ6fPgwTqeTuLi4atvj4uL46aefarQ/ceIEJ6wFPQA4VnE/RP6vX8m23pzOck6cqPv4xrg80saTx2quOel8LT8nna/l59TSz+ftnMrKXFx11adnPN+8eT35r/9aesY2Q4ZMO0Ob67n//t2nbHViTBFOpzVTq7QUXnttPOPHL3avtVUZlftPnICMjPUUFAw/Y+6/VuV/94178Nc6NfVxVLnTSX7hiTO2cxlzxnaeaqPztfycWvr5mmJOOp9n2+zek8aFl4w9zd4QIAQb8Rw9lMk5iW2x2wwOG9hsBrsN7DZropHdBjlZB/nwuZuqCiPuwkdlocTFHU8s5v88eR0YZ0W4rNfKQknFz8+9tZ7Y6Ej87AaH3eBnBz8HOOwGf7vB4TCUlRwnLDTI3cbfYXDYwa/yvc2AKSM4wGG1cVifDfAz+FebVV1SEa3b7iPh9Lz3Go8ft97jKNMKHDx40ADm66+/rrZ9+vTpZsiQITXaz5gxo/K3R6FQKBQKRSuPAwcOeGvI0iRpHKVQKBQKheJs40zjqFYxUyo2NhaHw0F2dna17dnZ2cTHx9do/+ijjzJtWtW/8LpcLnJzc4mJicGm+07PSn5+Pp06deLAgQNERET4Oh2phfqoaVP/NH3qo6btbPrHGENBQQEJCa374QOeGkf5+/vTuXNn/Y54kP7uNA5dV8/TNW0cuq6ep2vqOfUdR7WKolRAQACDBg1ixYoVXHfddYA1QFqxYgVTpkyp0T4wMJDAwMBq26KioryQacsXERGhX+4mTn3UtKl/mj71UdP2a/snMjKyEbNpHjw1jqqcxq/fEc/TNW0cuq6ep2vaOHRdPU/X1DPqM45qFUUpgGnTpjFx4kQGDx7MkCFDeO655ygqKnI/RUZEREREaqdxlIiIiDSGVlOUuvHGGzl06BBPPPEEWVlZDBgwgM8++6zGop0iIiIiUp3GUSIiItIYWk1RCmDKlCm1TjOXxhcYGMiMGTNqTOeXpkN91LSpf5o+9VHTpv5puIaOo9QHnqdr2jh0XT1P17Rx6Lp6nq6p99mMaeXPORYREREREREREa+z+zoBERERERERERFpfVSUEhERERERERERr1NRSkREREREREREvE5FKfGYWbNmccEFFxAeHk67du247rrrSElJqdampKSEyZMnExMTQ1hYGOPHjyc7O9tHGcvs2bOx2WxMnTrVvU195FsHDx7kD3/4AzExMQQHB9O3b182b97s3m+M4YknnqB9+/YEBweTnJzMnj17fJhx6+J0Onn88cfp2rUrwcHBdO/enaeeeoqTl2dUH3nXmjVruPrqq0lISMBms/HRRx9V21+f/sjNzWXChAlEREQQFRXFpEmTKCws9OK3aB0WLFhAYmIiQUFBDB06lG+//dbXKTUbGmM1Po2JPEPjGM/T2KPhNFZo2lSUEo9ZvXo1kydP5ptvvmH58uWUlZVxxRVXUFRU5G7zwAMP8Mknn/D++++zevVqMjIyuP76632Ydeu1adMmXnnlFfr161dtu/rId44ePcrw4cPx9/dn2bJl7Nq1i2effZY2bdq428yZM4cXXniBhQsXsnHjRkJDQxkzZgwlJSU+zLz1ePrpp3n55Zd56aWX+PHHH3n66aeZM2cOL774oruN+si7ioqK6N+/PwsWLKh1f336Y8KECfzwww8sX76cpUuXsmbNGu666y5vfYVW4b333mPatGnMmDGDrVu30r9/f8aMGUNOTo6vU2sWNMZqXBoTeYbGMY1DY4+G01ihiTMijSQnJ8cAZvXq1cYYY/Ly8oy/v795//333W1+/PFHA5gNGzb4Ks1WqaCgwPTo0cMsX77cXHLJJeb+++83xqiPfO3hhx82I0aMOO1+l8tl4uPjzTPPPOPelpeXZwIDA80///lPb6TY6l155ZXm9ttvr7bt+uuvNxMmTDDGqI98DTAffvih++f69MeuXbsMYDZt2uRus2zZMmOz2czBgwe9lntLN2TIEDN58mT3z06n0yQkJJhZs2b5MKvmS2Msz9GYyHM0jmkcGnt4lsYKTY9mSkmjOXbsGADR0dEAbNmyhbKyMpKTk91tevXqRefOndmwYYNPcmytJk+ezJVXXlmtL0B95GtLlixh8ODB3HDDDbRr146kpCReffVV9/60tDSysrKq9U9kZCRDhw5V/3jJRRddxIoVK9i9ezcAO3bsYN26dYwbNw5QHzU19emPDRs2EBUVxeDBg91tkpOTsdvtbNy40es5t0SlpaVs2bKlWj/Y7XaSk5P1e3GWNMbyHI2JPEfjmMahsUfj0ljB9/x8nYC0TC6Xi6lTpzJ8+HD69OkDQFZWFgEBAURFRVVrGxcXR1ZWlg+ybJ3effddtm7dyqZNm2rsUx/5VmpqKi+//DLTpk3jv//7v9m0aRP33XcfAQEBTJw40d0HcXFx1T6n/vGeRx55hPz8fHr16oXD4cDpdPLXv/6VCRMmAKiPmpj69EdWVhbt2rWrtt/Pz4/o6Gj1mYccPnwYp9NZaz/89NNPPsqq+dIYy3M0JvIsjWMah8YejUtjBd9TUUoaxeTJk9m5cyfr1q3zdSpykgMHDnD//fezfPlygoKCfJ2OnMLlcjF48GD+9re/AZCUlMTOnTtZuHAhEydO9HF2AvCvf/2Lt99+m3feeYfzzz+f7du3M3XqVBISEtRHIuIVGmN5hsZEnqdxTOPQ2ENaOt2+Jx43ZcoUli5dyqpVq+jYsaN7e3x8PKWlpeTl5VVrn52dTXx8vJezbJ22bNlCTk4OAwcOxM/PDz8/P1avXs0LL7yAn58fcXFx6iMfat++Pb1796627bzzziM9PR3A3QenPvlH/eM906dP55FHHuGmm26ib9++3HLLLTzwwAPMmjULUB81NfXpj/j4+BqLbZeXl5Obm6s+85DY2FgcDod+LzxAYyzP0ZjI8zSOaRwaezQujRV8T0Up8RhjDFOmTOHDDz9k5cqVdO3atdr+QYMG4e/vz4oVK9zbUlJSSE9PZ9iwYd5Ot1UaPXo033//Pdu3b3fH4MGDmTBhgvu9+sh3hg8fXuMR37t376ZLly4AdO3alfj4+Gr9k5+fz8aNG9U/XnL8+HHs9ur/6XQ4HLhcLkB91NTUpz+GDRtGXl4eW7ZscbdZuXIlLpeLoUOHej3nliggIIBBgwZV6weXy8WKFSv0e1FPGmN5nsZEnqdxTOPQ2KNxaazQBPh6pXVpOe69914TGRlpvvrqK5OZmemO48ePu9vcc889pnPnzmblypVm8+bNZtiwYWbYsGE+zFpOftKMMeojX/r222+Nn5+f+etf/2r27Nlj3n77bRMSEmLeeustd5vZs2ebqKgo8/HHH5vvvvvOXHvttaZr166muLjYh5m3HhMnTjQdOnQwS5cuNWlpaebf//63iY2NNQ899JC7jfrIuwoKCsy2bdvMtm3bDGDmzZtntm3bZvbv32+MqV9/jB071iQlJZmNGzeadevWmR49epibb77ZV1+pRXr33XdNYGCgWbRokdm1a5e56667TFRUlMnKyvJ1as2CxljeoTFRw2gc0zg09mg4jRWaNhWlxGOAWuP11193tykuLjZ//OMfTZs2bUxISIj57W9/azIzM32XtNQYgKmPfOuTTz4xffr0MYGBgaZXr17mH//4R7X9LpfLPP744yYuLs4EBgaa0aNHm5SUFB9l2/rk5+eb+++/33Tu3NkEBQWZbt26mccee8ycOHHC3UZ95F2rVq2q9b89EydONMbUrz+OHDlibr75ZhMWFmYiIiLMbbfdZgoKCnzwbVq2F1980XTu3NkEBASYIUOGmG+++cbXKTUbGmN5h8ZEDadxjOdp7NFwGis0bTZjjPHevCwRERERERERERGtKSUiIiIiIiIiIj6gopSIiIiIiIiIiHidilIiIiIiIiIiIuJ1KkqJiIiIiIiIiIjXqSglIiIiIiIiIiJep6KUiIiIiIiIiIh4nYpSIiIiIiIiIiLidSpKiYiIiIiIiIiI16koJSLSiixatIioqChfpyEiIiLS7GgcJeJ5KkqJSIMcOnSIe++9l86dOxMYGEh8fDxjxoxh/fr1Hj3PpZdeytSpUz16zMbSVAYsiYmJPPfcc75OQ0RERE5D46iaNI4SaV38fJ2AiDRv48ePp7S0lDfeeINu3bqRnZ3NihUrOHLkiK9TExEREWnSNI4SkdZOM6VE5Kzl5eWxdu1ann76aS677DK6dOnCkCFDePTRR7nmmmuqtbvjjjto27YtERERjBo1ih07drj3P/nkkwwYMIA333yTxMREIiMjuemmmygoKADg1ltvZfXq1Tz//PPYbDZsNhv79u0DYOfOnYwbN46wsDDi4uK45ZZbOHz4sPvYl156Kffddx8PPfQQ0dHRxMfH8+STT9b4HnfffTdxcXEEBQXRp08fli5d6t6/bt06Lr74YoKDg+nUqRP33XcfRUVFDbpuDbkeAAUFBUyYMIHQ0FDat2/P/Pnzq/0r6KWXXsr+/ft54IEH3NfsZJ9//jnnnXceYWFhjB07lszMzLP+PiIiIvLraRx19tdN4yiRlkNFKRE5a2FhYYSFhfHRRx9x4sSJ07a74YYbyMnJYdmyZWzZsoWBAwcyevRocnNz3W327t3LRx99xNKlS1m6dCmrV69m9uzZADz//PMMGzaMO++8k8zMTDIzM+nUqRN5eXmMGjWKpKQkNm/ezGeffUZ2dja/+93vqp3/jTfeIDQ0lI0bNzJnzhxmzpzJ8uXLAXC5XIwbN47169fz1ltvsWvXLmbPno3D4XDnNXbsWMaPH893333He++9x7p165gyZcpZX7eGXg+AadOmsX79epYsWcLy5ctZu3YtW7dude//97//TceOHZk5c6b7mlU6fvw4c+fO5c0332TNmjWkp6fz4IMPnvX3ERERkV9P46izo3GUSAtjREQa4IMPPjBt2rQxQUFB5qKLLjKPPvqo2bFjh3v/2rVrTUREhCkpKan2ue7du5tXXnnFGGPMjBkzTEhIiMnPz3fvnz59uhk6dKj750suucTcf//91Y7x1FNPmSuuuKLatgMHDhjApKSkuD83YsSIam0uuOAC8/DDDxtjjPn888+N3W53tz/VpEmTzF133VVt29q1a43dbjfFxcW1fub11183kZGRte7zxPXIz883/v7+5v3333fvz8vLMyEhIdWuUZcuXcz8+fNr5AaYn3/+2b1twYIFJi4urtZ8RUREpPFoHFWTxlEirYtmSolIg4wfP56MjAyWLFnC2LFj+eqrrxg4cCCLFi0CYMeOHRQWFhITE+P+F8GwsDDS0tLYu3ev+ziJiYmEh4e7f27fvj05OTl1nnvHjh2sWrWq2nF79eoFUO3Y/fr1q/a5k4+9fft2OnbsSM+ePU97jkWLFlU7x5gxY3C5XKSlpdX/Qp10vIZej9TUVMrKyhgyZIh7f2RkJOeee269cggJCaF79+61HltERES8R+OoX0fjKJGWRwudi0iDBQUFcfnll3P55Zfz+OOPc8cddzBjxgxuvfVWCgsLad++PV999VWNz538ZBV/f/9q+2w2Gy6Xq87zFhYWcvXVV/P000/X2Ne+fft6HTs4OPiM57j77ru57777auzr3LlznZ893fEa63rUV23HNsZ45NgiIiLy62gcVX8aR4m0PCpKiYjH9e7dm48++giAgQMHkpWVhZ+fH4mJiWd9zICAAJxOZ7VtAwcOZPHixSQmJuLnd3Z/zvr168cvv/zC7t27a/1XvoEDB7Jr1y7OOeecszp+bcdr6PXo1q0b/v7+bNq0yT2gO3bsGLt372bkyJHudrVdMxEREWnaNI46PY2jRFoe3b4nImftyJEjjBo1irfeeovvvvuOtLQ03n//febMmcO1114LQHJyMsOGDeO6667jiy++YN++fXz99dc89thjbN68ud7nSkxMZOPGjezbt4/Dhw/jcrmYPHkyubm53HzzzWzatIm9e/fy+eefc9ttt9V7EHHJJZcwcuRIxo8fz/Lly0lLS2PZsmV89tlnADz88MN8/fXXTJkyhe3bt7Nnzx4+/vjjMy7Q6XQ62b59e7X48ccfPXI9wsPDmThxItOnT2fVqlX88MMPTJo0CbvdXu3pMImJiaxZs4aDBw9We5KOiIiI+J7GUaencZRI66GilIictbCwMIYOHcr8+fMZOXIkffr04fHHH+fOO+/kpZdeAqwpzZ9++ikjR47ktttuo2fPntx0003s37+fuLi4ep/rwQcfxOFw0Lt3b9q2bUt6ejoJCQmsX78ep9PJFVdcQd++fZk6dSpRUVHY7fX/87Z48WIuuOACbr75Znr37s1DDz3kHoz169eP1atXs3v3bi6++GKSkpJ44oknSEhIqPOYhYWFJCUlVYurr77aY9dj3rx5DBs2jKuuuork5GSGDx/OeeedR1BQkLvNzJkz2bdvH927d6dt27b1PraIiIg0Po2jTk/jKJHWw2Z0A6yISLNXVFREhw4dePbZZ5k0aZKv0xERERFpNjSOEvEdrSklItIMbdu2jZ9++okhQ4Zw7NgxZs6cCeCe7i8iIiIitdM4SqTpUFFKRKSZmjt3LikpKQQEBDBo0CDWrl1LbGysr9MSERERafI0jhJpGnT7noiIiIiIiIiIeJ0WOhcREREREREREa9TUUpERERERERERLxORSkREREREREREfE6FaVERERERERERMTrVJQSERERERERERGvU1FKRERERERERES8TkUpERERERERERHxOhWlRERERERERETE61SUEhERERERERERr/v/8YggVadodNMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# 서브플롯 생성\n", + "fig, axes = plt.subplots(1, 2, figsize=(12, 6))\n", + "\n", + "# 첫 번째 서브플롯: s1_len\n", + "sns.histplot(train[\"s1_len\"], kde=True, bins=50, color=\"blue\", ax=axes[0])\n", + "axes[0].set_title(\"train s1 len Distribution\")\n", + "axes[0].set_xlabel(\"Sentence Length\")\n", + "axes[0].set_ylabel(\"Count\")\n", + "\n", + "# 두 번째 서브플롯: s2_len\n", + "sns.histplot(train[\"s2_len\"], kde=True, bins=50, color=\"orange\", ax=axes[1])\n", + "axes[1].set_title(\"train s2 len Distribution\")\n", + "axes[1].set_xlabel(\"Sentence Length\")\n", + "axes[1].set_ylabel(\"Count\")\n", + "\n", + "# 레이아웃 조정\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWsUlEQVR4nO3dd3gU1f4G8He2pm56b4RO6IQWEaVJxMgFwXalxC4YvFLUKz8LiAUBARuClXhVBPGKV0FBOiKIEDoJCAgGQgohJJteds/vj80uWZJAEjaZTfb9PM8+yc6cnfnOZJN9c+bMjCSEECAiIiJyYAq5CyAiIiKSGwMREREROTwGIiIiInJ4DERERETk8BiIiIiIyOExEBEREZHDYyAiIiIih8dARERERA6PgYiIiIgcHgMROaxWrVrhwQcflLsMquLs2bOQJAmJiYlyl3JdrVq1wp133mnTZda0/bNnz4YkSVbtKioq8NxzzyEsLAwKhQKjR48GABQUFODRRx9FYGAgJEnC1KlTbVqfJEmYPXu2TZdZk23btkGSJGzbts0ybdCgQejSpUujrxtoXu9Dsh0GIrJbu3btwuzZs5Gbmyt3KXarqKgIs2fPtvrgINtJTk7G7NmzcfbsWblLsfLZZ59hwYIFuPvuu/H5559j2rRpAIA33ngDiYmJmDx5Mr744gtMmDCh1mW0atUKkiRBkiQoFAp4enqia9euePzxx7Fnzx6b1bpixQq8/fbbNlueLdlzbdT0VHIXQFSbXbt24ZVXXsGDDz4IT09Pmy//xIkTUCia9/8ERUVFeOWVVwCY/oMm20pOTsYrr7yCQYMGoVWrVrLU8OKLL+L555+3mrZlyxaEhIRg8eLF1ab3798fs2bNqtOye/TogRkzZgAA8vPzkZKSgtWrV+Pjjz/GtGnTsGjRIqv2xcXFUKnq97GxYsUKHD16tF69VbfccguKi4uh0Wjqta76qq22iIgIFBcXQ61WN+r6yb4wEFGLYDQaUVZWBicnpzq/RqvVNmJFRLahUqmqhZCsrKwa/0nIyspCVFRUnZcdEhKC8ePHW02bN28eHnjgASxevBjt2rXD5MmTLfPq8/vVECUlJdBoNFAoFI2+rmuRJEnW9ZM8mve/x9RizZ49G88++ywAIDIy0tK1bz50IUkSpkyZgq+++gqdO3eGVqvF+vXrAQBvvfUWbrrpJvj4+MDZ2RnR0dH49ttvq63j6jFEiYmJkCQJv/32G6ZPnw4/Pz+4urrirrvuwsWLF69bc0ZGBh566CGEhoZCq9UiKCgIo0aNqna45eeff8bAgQPh6uoKd3d3xMXF4dixY1ZtHnzwQbi5uSEtLQ2jR4+Gm5sb/Pz88Mwzz8BgMAAwjXPw8/MDALzyyiuWfVR1jMfx48dx9913w9vbG05OTujduzd++OEHq3XVd7t//vln3HrrrXB3d4dOp0OfPn2wYsUKqzZ79uzB7bffDg8PD7i4uODWW2/Fb7/9dt19WBtbb4fRaMTs2bMRHBwMFxcXDB48GMnJyVbvicTERNxzzz0AgMGDB1v279WHJ3fu3Im+ffvCyckJrVu3xn/+8586bVNubi4efPBBeHh4wNPTE/Hx8TUeHq46hsg8tmXr1q04duyYVU2SJOHMmTNYt25dtd+X+nB2dsYXX3wBb29vvP766xBCWOZd/f7Kz8/H1KlT0apVK2i1Wvj7++O2227D/v37AZh6LdetW4e///7bUpO5p81c88qVK/Hiiy8iJCQELi4u0Ov1NY4hMktKSsJNN90EZ2dnREZGYtmyZVbzze+Dq7f96mVeq7baxhBt2bLF8rvr6emJUaNGISUlxaqN+ed16tQpS++2h4cHHnroIRQVFdXth0CyYA8R2aUxY8bgzz//xNdff43FixfD19cXACwBADD9cfrmm28wZcoU+Pr6Wv6YvfPOO/jHP/6BcePGoaysDCtXrsQ999yDtWvXIi4u7rrrfuqpp+Dl5YVZs2bh7NmzePvttzFlyhSsWrXqmq8bO3Ysjh07hqeeegqtWrVCVlYWNm7ciNTUVEttX3zxBeLj4xEbG4t58+ahqKgIS5cuxc0334wDBw5YHZYxGAyIjY1Fv3798NZbb2HTpk1YuHAh2rRpg8mTJ8PPzw9Lly7F5MmTcdddd2HMmDEAgG7dugEAjh07hgEDBiAkJATPP/88XF1d8c0332D06NH473//i7vuuqve252YmIiHH34YnTt3xsyZM+Hp6YkDBw5g/fr1eOCBByw/lxEjRiA6OhqzZs2CQqHA8uXLMWTIEPz666/o27fvdX8GVTXGdsycORPz58/HyJEjERsbi0OHDiE2NhYlJSWWNrfccgv+9a9/4d1338X//d//oVOnTgBg+QoAp06dwt13341HHnkE8fHx+Oyzz/Dggw8iOjoanTt3rnWbhBAYNWoUdu7ciUmTJqFTp05Ys2YN4uPjr7kv/Pz88MUXX+D1119HQUEB5s6da6npiy++wLRp0xAaGmo5DFb196U+3NzccNddd+HTTz9FcnJyrdsyadIkfPvtt5gyZQqioqJw6dIl7Ny5EykpKejVqxdeeOEF5OXl4fz585bDe25ublbLePXVV6HRaPDMM8+gtLT0mofJLl++jDvuuAP33nsv/vnPf+Kbb77B5MmTodFo8PDDD9drG+tSW1WbNm3CiBEj0Lp1a8yePRvFxcV47733MGDAAOzfv7/aIdV7770XkZGRmDt3Lvbv349PPvkE/v7+mDdvXr3qpCYkiOzUggULBABx5syZavMACIVCIY4dO1ZtXlFRkdXzsrIy0aVLFzFkyBCr6RERESI+Pt7yfPny5QKAGDZsmDAajZbp06ZNE0qlUuTm5tZa6+XLlwUAsWDBglrb5OfnC09PT/HYY49ZTc/IyBAeHh5W0+Pj4wUAMWfOHKu2PXv2FNHR0ZbnFy9eFADErFmzqq1v6NChomvXrqKkpMQyzWg0iptuukm0a9eu3tudm5sr3N3dRb9+/URxcbHVusyvMxqNol27diI2NtZqWUVFRSIyMlLcdtttte4fIYQ4c+aMACCWL1/eaNuRkZEhVCqVGD16tNW6Z8+eLQBYvSdWr14tAIitW7dWqzUiIkIAEDt27LBMy8rKElqtVsyYMeOa2/n9998LAGL+/PmWaRUVFWLgwIHVtn/WrFni6j/Vt956q+jcuXONNcXFxV1z3XVtu3jxYgFA/O9//7NMu/q95uHhIRISEq65nri4OBEREVFt+tatWwUA0bp162q/s+Z5Vff7rbfeKgCIhQsXWqaVlpaKHj16CH9/f1FWViaEuPI+uPrvRk3LrK22mt6H5vVcunTJMu3QoUNCoVCIiRMnWqaZf14PP/yw1TLvuusu4ePjU21dZD94yIyarVtvvbXG8RLOzs6W7y9fvoy8vDwMHDjQ0o1/PY8//rjVac4DBw6EwWDA33//XetrnJ2dodFosG3bNly+fLnGNhs3bkRubi7++c9/Ijs72/JQKpXo168ftm7dWu01kyZNsno+cOBA/PXXX9fdhpycHGzZsgX33nsv8vPzLeu6dOkSYmNjcfLkSaSlpdVruzdu3Ij8/Hw8//zz1cZXmF938OBBnDx5Eg888AAuXbpkWW9hYSGGDh2KHTt2wGg0Xrf+xtyOzZs3o6KiAk8++aTV65566qk612UWFRWFgQMHWp77+fmhQ4cO1/0Z/fTTT1CpVFbjc5RKZYNqaCzm3pL8/Pxa23h6emLPnj24cOFCg9cTHx9v9Tt7LSqVCk888YTluUajwRNPPIGsrCwkJSU1uIbrSU9Px8GDB/Hggw/C29vbMr1bt2647bbb8NNPP1V7TU2/u5cuXYJer2+0OunG8JAZNVuRkZE1Tl+7di1ee+01HDx4EKWlpZbpV1/LpTbh4eFWz728vACg1qADmAZoz5s3DzNmzEBAQAD69++PO++8ExMnTkRgYCAA4OTJkwCAIUOG1LgMnU5n9dzJyanaIQ8vL69r1mF26tQpCCHw0ksv4aWXXqqxTVZWFkJCQizPr7fdp0+fBoBrXgvGvI3XOvSTl5dnWfb1NMZ2mINR27Ztrdp5e3vXua7a1mVe3/V+Rn///TeCgoKqHaLp0KFDvdbfmAoKCgAA7u7utbaZP38+4uPjERYWhujoaNxxxx2YOHEiWrduXef11PZ7XJPg4GC4urpaTWvfvj0A07if/v3713lZ9WF+z9T08+nUqRM2bNiAwsJCq9qu9T68+ned7AMDETVbNf1X+euvv+If//gHbrnlFnzwwQcICgqCWq3G8uXLqw38rY1SqaxxuqgyuLQmU6dOxciRI/H9999jw4YNeOmllzB37lxs2bIFPXv2tPSMfPHFF5aQVNXVZxLVVkddmNf1zDPPIDY2tsY2VweChm53TetdsGABevToUWOba43TqG15Tb0dddWU62pqR48eBVB9/1Z17733YuDAgVizZg1++eUXLFiwAPPmzcN3332HESNG1Gk9de0dqqva/vExn4zQVFrye6OlYiAiu1XXHp2q/vvf/8LJyQkbNmywOq1++fLltiytVm3atMGMGTMwY8YMnDx5Ej169MDChQvx5Zdfok2bNgAAf39/DBs2zCbrq20fmf9DV6vVNluXuf6jR4/W+iFpbqPT6Wyy3sbYjoiICACm3qeqvROXLl2q1rPTkPdgXWvYvHkzCgoKrALiiRMnGmV99VVQUIA1a9YgLCzMahB5TYKCgvDkk0/iySefRFZWFnr16oXXX3/dEohsuQ8vXLhQrSfmzz//BADLoGZzT8zVZ+zVdMi7rrWZ3zM1/XyOHz8OX1/faj1X1PxwDBHZLfMfmPpcqVqpVEKSJKv/Bs+ePYvvv//extVZKyoqsjpDCTCFA3d3d8thu9jYWOh0OrzxxhsoLy+vtoy6nNp/NRcXFwDV95G/vz8GDRqEDz/8EOnp6TZZ1/Dhw+Hu7o65c+dW21bzf73R0dFo06YN3nrrLcshlxtZb2Nsx9ChQ6FSqbB06VKr6e+//361tg15D9bFHXfcgYqKCqsaDAYD3nvvPZuupyGKi4sxYcIE5OTk4IUXXrhmj0teXp7VNH9/fwQHB1sdqnZ1da3WrqEqKirw4YcfWp6XlZXhww8/hJ+fH6KjowFcCeU7duywqvWjjz6qtry61hYUFIQePXrg888/t3ovHD16FL/88gvuuOOOhm4S2RH2EJHdMv+Be+GFF3D//fdDrVZj5MiR1/xPLC4uDosWLcLtt9+OBx54AFlZWViyZAnatm2Lw4cPN1qtf/75J4YOHYp7770XUVFRUKlUWLNmDTIzM3H//fcDMPWaLF26FBMmTECvXr1w//33w8/PD6mpqVi3bh0GDBhQ44fytTg7OyMqKgqrVq1C+/bt4e3tjS5duqBLly5YsmQJbr75ZnTt2hWPPfYYWrdujczMTOzevRvnz5/HoUOH6rUunU6HxYsX49FHH0WfPn3wwAMPwMvLC4cOHUJRURE+//xzKBQKfPLJJxgxYgQ6d+6Mhx56CCEhIUhLS8PWrVuh0+nw448/1mu9tt6OgIAAPP3001i4cCH+8Y9/4Pbbb8ehQ4fw888/w9fX1yoA9OjRA0qlEvPmzUNeXh60Wi2GDBkCf3//eq3zaiNHjsSAAQPw/PPP4+zZs4iKisJ3331ns+BQV2lpafjyyy8BmHqFkpOTsXr1amRkZGDGjBlWA5ivlp+fj9DQUNx9993o3r073NzcsGnTJuzduxcLFy60tIuOjsaqVaswffp09OnTB25ubhg5cmSD6g0ODsa8efNw9uxZtG/fHqtWrcLBgwfx0UcfWa4q3blzZ/Tv3x8zZ85ETk4OvL29sXLlSlRUVFRbXn1qW7BgAUaMGIGYmBg88sgjltPuPTw8muT+btQE5DvBjej6Xn31VRESEiIUCoXVqbQAaj3d99NPPxXt2rUTWq1WdOzYUSxfvrzGU5drO+1+7969Vu1qOl33atnZ2SIhIUF07NhRuLq6Cg8PD9GvXz/xzTffVGu7detWERsbKzw8PISTk5No06aNePDBB8W+ffssbeLj44Wrq2u119a0Hbt27RLR0dFCo9FUOy369OnTYuLEiSIwMFCo1WoREhIi7rzzTvHtt982eLt/+OEHcdNNNwlnZ2eh0+lE3759xddff23V5sCBA2LMmDHCx8dHaLVaERERIe69916xefPmWvehEDWf7twY21FRUSFeeuklERgYKJydncWQIUNESkqK8PHxEZMmTbJ6/ccffyxat24tlEql1XJqO2391ltvFbfeeus1t1MIIS5duiQmTJggdDqd8PDwEBMmTBAHDhxo0tPuAQgAQpIkodPpROfOncVjjz0m9uzZU+Nrqr6/SktLxbPPPiu6d+8u3N3dhaurq+jevbv44IMPrF5TUFAgHnjgAeHp6SkAWE5zN/9cVq9eXW09tZ1237lzZ7Fv3z4RExMjnJycREREhHj//fervf706dNi2LBhQqvVioCAAPF///d/YuPGjdWWWVtttb0PN23aJAYMGGB5748cOVIkJydbtTH/vC5evGg1vbbLAZD9kITgCC8iotzcXHh5eeG1117DCy+8IHc5RNTEOIaIiBxOcXFxtWnmu57zJrlEjoljiIjI4axatQqJiYm444474Obmhp07d+Lrr7/G8OHDMWDAALnLIyIZMBARkcPp1q0bVCoV5s+fD71ebxlo/dprr8ldGhHJhGOIiIiIyOFxDBERERE5PAYiIiIicngcQ1QHRqMRFy5cgLu7e6Ndyp+IiIhsSwiB/Px8BAcHQ6G4dh8QA1EdXLhwAWFhYXKXQURERA1w7tw5hIaGXrMNA1EduLu7AzDtUJ1OJ3M1REREVBd6vR5hYWGWz/FrYSCqA/NhMp1Ox0BERETUzNRluAsHVRMREZHDYyAiIiIih8dARERERA6PgYiIiIgcHgMREREROTwGIiIiInJ4DERERETk8BiIiIiIyOExEBEREZHDYyAiIiIih8dARERERA6PgYiIiIgcHgMREREROTwGIiIiInJ4KrkLICA1NRXZ2dk2X66vry/Cw8NtvlwiIqKWhoFIZqmpqejYqROKi4psvmxnFxccT0lhKCIiIroOBiKZZWdno7ioCOP+vQAB4W1sttzM1NP4at6zyM7OZiAiIiK6DgYiOxEQ3gah7TrLXQYREZFD4qBqIiIicngMREREROTwGIiIiIjI4TEQERERkcNjICIiIiKHx0BEREREDo+BiIiIiBweAxERERE5PAYiIiIicngMREREROTwGIiIiIjI4TEQERERkcNjICIiIiKHx0BEREREDo+BiIiIiBweAxERERE5PAYiIiIicngMREREROTwGIiIiIjI4TEQERERkcNjICIiIiKHx0BEREREDo+BiIiIiBweAxERERE5PAYiIiIicngMREREROTwGIiIiIjI4TEQERERkcNjICIiIiKHx0BEREREDs9uAtGbb74JSZIwdepUy7SSkhIkJCTAx8cHbm5uGDt2LDIzM61el5qairi4OLi4uMDf3x/PPvssKioqrNps27YNvXr1glarRdu2bZGYmNgEW0RERETNhV0Eor179+LDDz9Et27drKZPmzYNP/74I1avXo3t27fjwoULGDNmjGW+wWBAXFwcysrKsGvXLnz++edITEzEyy+/bGlz5swZxMXFYfDgwTh48CCmTp2KRx99FBs2bGiy7SMiIiL7JnsgKigowLhx4/Dxxx/Dy8vLMj0vLw+ffvopFi1ahCFDhiA6OhrLly/Hrl278PvvvwMAfvnlFyQnJ+PLL79Ejx49MGLECLz66qtYsmQJysrKAADLli1DZGQkFi5ciE6dOmHKlCm4++67sXjxYlm2l4iIiOyP7IEoISEBcXFxGDZsmNX0pKQklJeXW03v2LEjwsPDsXv3bgDA7t270bVrVwQEBFjaxMbGQq/X49ixY5Y2Vy87NjbWsoyalJaWQq/XWz2IiIio5VLJufKVK1di//792Lt3b7V5GRkZ0Gg08PT0tJoeEBCAjIwMS5uqYcg83zzvWm30ej2Ki4vh7Oxcbd1z587FK6+80uDtIiIiouZFth6ic+fO4emnn8ZXX30FJycnucqo0cyZM5GXl2d5nDt3Tu6SiIiIqBHJFoiSkpKQlZWFXr16QaVSQaVSYfv27Xj33XehUqkQEBCAsrIy5ObmWr0uMzMTgYGBAIDAwMBqZ52Zn1+vjU6nq7F3CAC0Wi10Op3Vg4iIiFou2QLR0KFDceTIERw8eNDy6N27N8aNG2f5Xq1WY/PmzZbXnDhxAqmpqYiJiQEAxMTE4MiRI8jKyrK02bhxI3Q6HaKioixtqi7D3Ma8DCIiIiLZxhC5u7ujS5cuVtNcXV3h4+Njmf7II49g+vTp8Pb2hk6nw1NPPYWYmBj0798fADB8+HBERUVhwoQJmD9/PjIyMvDiiy8iISEBWq0WADBp0iS8//77eO655/Dwww9jy5Yt+Oabb7Bu3bqm3WAiIiKyW7IOqr6exYsXQ6FQYOzYsSgtLUVsbCw++OADy3ylUom1a9di8uTJiImJgaurK+Lj4zFnzhxLm8jISKxbtw7Tpk3DO++8g9DQUHzyySeIjY2VY5OIiIjIDtlVINq2bZvVcycnJyxZsgRLliyp9TURERH46aefrrncQYMG4cCBA7YokYiIiFog2a9DRERERCQ3BiIiIiJyeAxERERE5PAYiIiIiMjhMRARERGRw2MgIiIiIofHQEREREQOj4GIiIiIHB4DERERETk8BiIiIiJyeAxERERE5PAYiIiIiMjhMRARERGRw2MgIiIiIofHQEREREQOj4GIiIiIHB4DERERETk8BiIiIiJyeCq5C6C6E0IgNacIR9LycC6nGIM7+qFjoE7usoiIiJo9BqJmZOepbOxPzbU8/+3UJbTzd4dSIclXFBERUQvAQ2bNhNEocDRNDwDoEqyDi0aJgtIKnMzKl7kyIiKi5o+BqJnIzC9BmcEIrUqBwR390T3UEwCw/+9cCCHkLY6IiKiZYyBqJlIvFQEAwrxdoJAkdA31gEoh4WJBKc5dLpa5OiIiouaNgaiZSM0xBaIIbxcAgLNaic7BpgHVB1Ivy1YXERFRS8BA1AyUVhiQri8BAIRXBiIA6BriAQA4d7kYFQajLLURERG1BAxEzUDa5WIIAXg4q6FzVlume7tq4KJRwmAUyKgMTERERFR/DETNgPlwWdXeIQCQJAmhns4ATKGJiIiIGoaBqBmoLRABQIiXKRCdz2UgIiIiaigGIjtXUm7A5aJyAEBYZfipKtTLFJLS80pQYeQ4IiIiooZgILJzecWmMOSiUUKrVlab7+WihrPaNI4oU1/a1OURERG1CAxEds4ciDyqDKauSpIky2EzjiMiIiJqGAYiO3e9QATAMrD6fG5Rk9RERETU0jAQ2bm6BCJzD1F6bgkMRt7Gg4iIqL4YiOxcXuWAas9rBCIfVw20KgUqjAKXCjiOiIiIqL4YiOxcrrmHyKX2QCRJEvzdtQCArHwGIiIiovpiILJjFUYjCkorAFz7kBkA+Ls7AQAuMhARERHVGwORHdMXm8KQWinBuYZT7qvyYw8RERFRgzEQ2bGqA6olSbpmW/Mhs+yCUhgFB1YTERHVBwORHavLGWZmni5qqJUSKowClwvLGrs0IiKiFoWByI7VJxBJkgRfN1MvEccRERER1Q8DkR2rTyACwDPNiIiIGoiByI6Zr0FU10BkHljNHiIiIqL6YSCyU0II5JVUXpTRRVOn15hPvc/KLwXHVRMREdUdA5GdKiitgMEooJAAd62qTq/xdtVAKUkoMxhRWNHIBRIREbUgDER2ynwNIncnNRSKa59yb6ZUSPBxM/Um5ZbX7TVERETEQGS38ktNh8vq2jtkZh5HlFfGHy0REVFd8VPTThWVGQAALtprX6H6aj6uph4iPXuIiIiI6oyByE5ZApGmfj1EPpXXIspjICIiIqozBiI7VVR5U1dXTf16iHwrxxAVVgCSWmvzuoiIiFoiBiI71dAeIheNqvJGsBLUvhGNUBkREVHLw0BkpwrLTD1E9R1DBFzpJdL4MRARERHVBQORnbrSQ1T/QGQeR6T2a2XLkoiIiFosBiI7ZBQCxZWByLWeh8yAKz1Eat9WtiyLiIioxWIgskMl5QaY77xhGg9UP+YeIh4yIyIiqhsGIjtUWGrqHXJWK+t8leqqTNciElC6eiK3xGDj6oiIiFoeBiI7VGQeUN2A8UMAoFYq4Fp5pO3vPN7UjIiI6HoYiOxQQ69SXZWH2nTQLTW33CY1ERERtWQMRHaoodcgqsociNhDREREdH0MRHbIfMisvleprkqnMQJgICIiIqoLBiI7ZMseonP6chiN4jqtiYiIHBsDkR0qvMFB1QDgqgJERRnKDEBqTpGtSiMiImqRGIjs0I1cpdpMIQFl2akAgOMZ+Tapi4iIqKViILJDRaU3fsgMAMov/g0AOMFAREREdE0MRHbGaBQoLr/xHiIAKM8+CwA4kam/0bKIiIhaNAYiO2MOQxIA5xsMRGWVPUQ8ZEZERHRtDER2xjyg2lmjhEKq/207qiq/eBYAcDa7ECXlvIUHERFRbRiI7IwtBlSbGQpy4KaRYBTAqayCG14eERFRS8VAZGdsNaDaLMJDDYCHzYiIiK5F1kC0dOlSdOvWDTqdDjqdDjExMfj5558t80tKSpCQkAAfHx+4ublh7NixyMzMtFpGamoq4uLi4OLiAn9/fzz77LOoqLC+OvO2bdvQq1cvaLVatG3bFomJiU2xeQ1ii6tUVxXuYQpWJzI4sJqIiKg2sgai0NBQvPnmm0hKSsK+ffswZMgQjBo1CseOHQMATJs2DT/++CNWr16N7du348KFCxgzZozl9QaDAXFxcSgrK8OuXbvw+eefIzExES+//LKlzZkzZxAXF4fBgwfj4MGDmDp1Kh599FFs2LChybe3Lmxxleqq2ENERER0fbb51G2gkSNHWj1//fXXsXTpUvz+++8IDQ3Fp59+ihUrVmDIkCEAgOXLl6NTp074/fff0b9/f/zyyy9ITk7Gpk2bEBAQgB49euDVV1/Fv//9b8yePRsajQbLli1DZGQkFi5cCADo1KkTdu7cicWLFyM2NrbJt/l6zIOfnTS2yaoRlh4iBiIiIqLa2M0YIoPBgJUrV6KwsBAxMTFISkpCeXk5hg0bZmnTsWNHhIeHY/fu3QCA3bt3o2vXrggICLC0iY2NhV6vt/Qy7d6922oZ5jbmZdSktLQUer3e6tFUzKfdO6lse8gsK78UlwvLbLJMIiKilkb2QHTkyBG4ublBq9Vi0qRJWLNmDaKiopCRkQGNRgNPT0+r9gEBAcjIyAAAZGRkWIUh83zzvGu10ev1KC4urrGmuXPnwsPDw/IICwuzxabWSUm56S71TmrbBCJntQKhXs4AgBOZ7CUiIiKqieyBqEOHDjh48CD27NmDyZMnIz4+HsnJybLWNHPmTOTl5Vke586da7J1l1RU9hCpbfej6RjoDoCHzYiIiGoj6xgiANBoNGjbti0AIDo6Gnv37sU777yD++67D2VlZcjNzbXqJcrMzERgYCAAIDAwEH/88YfV8sxnoVVtc/WZaZmZmdDpdHB2dq6xJq1WC61Wa5Ptqy/LGCIb9RABQPsAd2xKyeLAaiIiolrI3kN0NaPRiNLSUkRHR0OtVmPz5s2WeSdOnEBqaipiYmIAADExMThy5AiysrIsbTZu3AidToeoqChLm6rLMLcxL8OeCCFQWnnIzNmGgaiDpYeIp94TERHVRNYeopkzZ2LEiBEIDw9Hfn4+VqxYgW3btmHDhg3w8PDAI488gunTp8Pb2xs6nQ5PPfUUYmJi0L9/fwDA8OHDERUVhQkTJmD+/PnIyMjAiy++iISEBEsPz6RJk/D+++/jueeew8MPP4wtW7bgm2++wbp16+Tc9BqVVhghKr/X2vSQmQ4A8GdmAYQQkG7wliBEREQtjayBKCsrCxMnTkR6ejo8PDzQrVs3bNiwAbfddhsAYPHixVAoFBg7dixKS0sRGxuLDz74wPJ6pVKJtWvXYvLkyYiJiYGrqyvi4+MxZ84cS5vIyEisW7cO06ZNwzvvvIPQ0FB88skndn3KvVopQaWwXSBq7ecKtVJCQWkFzl8uRpi3i82WTURE1BLIGog+/fTTa853cnLCkiVLsGTJklrbRERE4KeffrrmcgYNGoQDBw40qMamZD7DTGujU+7N1EoF2vi54XhGPk5k5DMQERERXcXuxhA5MvMZZrYcP2RmGUfEU++JiIiqYSCyI+ZDZrYcP2RmDkQ804yIiKg6BiI7UtIIZ5iZdeSZZkRERLViILIjjdtDZDrT7K+LhSirMNp8+URERM0ZA5EdMQeixughCvZwgruTChVGgdMXC2y+fCIiouaMgciO2Po+ZlVJkoQOAbyFBxERUU0YiOxIiY3vdH81DqwmIiKqGQORHWmMG7tWZR5Y/SdPvSciIrLCQGRHGvOQGXBlYDUPmREREVljILIjjXGn+6rMY4jScouhLylvlHUQERE1RwxEdsIoTDd3BRrvkJmHixqBOicAwJ/sJSIiIrJgILIT5VUuDdRYg6oBDqwmIiKqCQORnSirDEQapQIKhdRo67lyxWoGIiIiIjMGIjtRZjSFoMY6XGbWgYGIiIioGgYiO2HuIWqsAdVmVw6Z6SGEaNR1ERERNRcMRHaizGDuIWrcQNTW3w1KhQR9SQUy9CWNui4iIqLmgoHITlzpIWrcH4lWpUSkrysADqwmIiIyYyCyE1fGEDVuDxFQ5bBZOgMRERERwEBkN5pqDBEARAWZrlh97EJeo6+LiIioOWAgshOWQKRq/B9JlxAPAEDyBX2jr4uIiKg5YCCyE+ZDZs5N0EPUOdjUQ3TmUiEKSisafX1ERET2joHITpSZbmMGbRMEIl83LQJ0WggBpKSzl4iIiIiByE401YUZzboEmw6bHUvjOCIiIiIGIjthvpeZthHvY1aV+bDZMY4jIiIiYiCyDxLKKy8arW2CQdUAEGXuIWIgIiIiYiCyB5LWBYDpkFlTBaIuIaYeoj8z81FaYWiSdRIREdmrBn36tm7dGpcuXao2PTc3F61bt77hohyNQmu6crRSIUGlbJpAFOLpDA9nNSqMAiczC5pknURERPaqQZ++Z8+ehcFQvVehtLQUaWlpN1yUo1E4uQFommsQmUmSVGUcEQdWExGRY1PVp/EPP/xg+X7Dhg3w8PCwPDcYDNi8eTNatWpls+IchcLJ1EPUVAOqzbqEeGDX6Us4mqbHfX2adNVERER2pV6BaPTo0QBMvQvx8fFW89RqNVq1aoWFCxfarDhHodCaeoi0TXTKvRl7iIiIiEzqFYiMRtO54ZGRkdi7dy98fX0bpShHYz5k1lQDqs3MgSglPR8Go4BSITXp+omIiOxFgz6Bz5w5wzBkQ3IdMov0dYOzWonicgPOZHNgNREROa569RBVtXnzZmzevBlZWVmWniOzzz777IYLcyTms8ya+pCZUiGhU5A79qfm4tgFPdr6uzfp+omIiOxFgz6BX3nlFQwfPhybN29GdnY2Ll++bPWg+pHrkBkAdOYFGomIiBrWQ7Rs2TIkJiZiwoQJtq7HIVl6iJr4kBlw5QKNR3lPMyIicmAN6pIoKyvDTTfdZOtaHJalh6iJD5kB1j1EQogmXz8REZE9aNAn8KOPPooVK1bYuhaHdWVQddMHonYBblApJOQVlyMtt7jJ109ERGQPGnTIrKSkBB999BE2bdqEbt26Qa1WW81ftGiRTYpzFObrEDnJcMhMq1KifYA7ktP1OJqmR6iXS5PXQEREJLcGBaLDhw+jR48eAICjR49azZMkXsumvuQcVA2YrkeUnK5H8oU83N4lUJYaiIiI5NSgQLR161Zb1+HQrpx23/Q9RIApEK1O4plmRETkuOTpkiCLcoOAQuMEQL4eoi4hpoHVR3kLDyIiclAN6iEaPHjwNQ+NbdmypcEFOZrC8isXtdTIFIg6BemgkIBMfSmy9CXw1znJUgcREZFcGhSIzOOHzMrLy3Hw4EEcPXq02k1f6dqKyk2nuqskAYVM469ctSq09XfDn5kFOHQ+D7dFMRAREZFjaVAgWrx4cY3TZ8+ejYIC3hOrPgrLTD1EGpkPXnYL9cSfmQU4fD4Xt0UFyFsMERFRE7Ppx/D48eN5H7N6KqjsIVIr5L0oYvdQ0ziiQ+c5joiIiByPTQPR7t274eTEwy31YU89RABw+Hwur1hNREQOp0GHzMaMGWP1XAiB9PR07Nu3Dy+99JJNCnMU5kHVMty1w0rHIHeolRJyi8pxLqcY4T68QCMRETmOBgUiDw8Pq+cKhQIdOnTAnDlzMHz4cJsU5igKy+zjkJlWpUSnIB0On8/DofO5DERERORQGhSIli9fbus6HJa99BABQLdQDxw+n4fD53Mxsnuw3OUQERE1mQYFIrOkpCSkpKQAADp37oyePXvapChHUlDZQ6SRuYcIALqHeuJLpHJgNREROZwGBaKsrCzcf//92LZtGzw9PQEAubm5GDx4MFauXAk/Pz9b1tii2VMPUfcwTwDA0bQ8GIwCSgXvS0dERI6hQR/DTz31FPLz83Hs2DHk5OQgJycHR48ehV6vx7/+9S9b19iiFZXZTyBq4+cGF40SRWUGnMri9aSIiMhxNOhjeP369fjggw/QqVMny7SoqCgsWbIEP//8s82KcwSW6xBJ8h8yUyokdK28r9mhc7nyFkNERNSEGhSIjEYj1Gp1telqtRpGo7GGV1Bt7OU6RGY9w70AAAfOXZa5EiIioqbToI/hIUOG4Omnn8aFCxcs09LS0jBt2jQMHTrUZsU5gkLLlaplLqRSz3BPAMCB1FxZ6yAiImpKDfoYfv/996HX69GqVSu0adMGbdq0QWRkJPR6Pd577z1b19hiCSEsPURyX4fIrGflwOoTmfkoKK2QtxgiIqIm0qCzzMLCwrB//35s2rQJx48fBwB06tQJw4YNs2lxLV1xuQGGyhxkL4fM/HVOCPF0RlpuMQ6fy8VNbX3lLomIiKjR1etjeMuWLYiKioJer4ckSbjtttvw1FNP4amnnkKfPn3QuXNn/Prrr41Va4uTV1wOABCGCijt6Ax3y2EzDqwmIiIHUa8eorfffhuPPfYYdDpdtXkeHh544oknsGjRIgwcONBmBbZkOic1pvf3xP+9/AqkSZMbZR3mC2fWh5+iEACw9chZxHjoa2zj6+uL8PDwG6qNiIjIXtQrEB06dAjz5s2rdf7w4cPx1ltv3XBRjsJVq8LN4c4oPLIRgG0DkT7nIgBg/Pjx9X6tJrgDgiYsxJ6TmYh++rYa2zi7uOB4SgpDERERtQj1CkSZmZk1nm5vWZhKhYsXL95wUXTjigtMPTtxT7yADt2i6/VagwD+d05A6eqJJ975Dq5XvUsyU0/jq3nPIjs7m4GIiIhahHoFopCQEBw9ehRt27atcf7hw4cRFBRkk8LINnyCIxDarnO9X+efl4pMfSngFY7QQPdGqIyIiMh+1GtQ9R133IGXXnoJJSUl1eYVFxdj1qxZuPPOO21WHMknSOcMALiQVyxzJURERI2vXj1EL774Ir777ju0b98eU6ZMQYcOHQAAx48fx5IlS2AwGPDCCy80SqHUtII9nXDwPJCeWz38EhERtTT1CkQBAQHYtWsXJk+ejJkzZ0II00V0JElCbGwslixZgoCAgEYplJpWsKeph+hiQSlKKwzQqpQyV0RERNR46n1hxoiICPz000+4fPkyTp06BSEE2rVrBy8vr8aoj2TiqlXBw1mNvOJypOeVoJWPq9wlERERNZoGXakaALy8vNCnTx9b1kJ2JtjTCXnF5biQW8xARERELZqsN4yYO3cu+vTpA3d3d/j7+2P06NE4ceKEVZuSkhIkJCTAx8cHbm5uGDt2LDIzM63apKamIi4uDi4uLvD398ezzz6Ligrr+3Bt27YNvXr1glarRdu2bZGYmNjYm9fsmQ+bXeA4IiIiauFkDUTbt29HQkICfv/9d2zcuBHl5eUYPnw4CgsLLW2mTZuGH3/8EatXr8b27dtx4cIFjBkzxjLfYDAgLi4OZWVl2LVrFz7//HMkJibi5ZdftrQ5c+YM4uLiMHjwYBw8eBBTp07Fo48+ig0bNjTp9jY3IR6mQJShL0GF0ShzNURERI2nwYfMbGH9+vVWzxMTE+Hv74+kpCTccsstyMvLw6effooVK1ZgyJAhAIDly5ejU6dO+P3339G/f3/88ssvSE5OxqZNmxAQEIAePXrg1Vdfxb///W/Mnj0bGo0Gy5YtQ2RkJBYuXAjAdCPanTt3YvHixYiNjW3y7W4uPF3UcFYrUVxuQJa+1NJjRERE1NLYyT3WTfLy8gAA3t7eAICkpCSUl5dj2LBhljYdO3ZEeHg4du/eDQDYvXs3unbtanV2W2xsLPR6PY4dO2ZpU3UZ5jbmZVyttLQUer3e6uGIJElCsKcTAF6PiIiIWja7CURGoxFTp07FgAED0KVLFwBARkYGNBoNPD09rdoGBAQgIyPD0ubqU/3Nz6/XRq/Xo7i4+gf93Llz4eHhYXmEhYXZZBubI44jIiIiR2A3gSghIQFHjx7FypUr5S4FM2fORF5enuVx7tw5uUuSTbCHORAVW647RURE1NLYRSCaMmUK1q5di61btyI0NNQyPTAwEGVlZcjNzbVqn5mZicDAQEubq886Mz+/XhudTgdn5+rjYrRaLXQ6ndXDUfm5a6FSSCitMCKnsEzucoiIiBqFrIFICIEpU6ZgzZo12LJlCyIjI63mR0dHQ61WY/PmzZZpJ06cQGpqKmJiYgAAMTExOHLkCLKysixtNm7cCJ1Oh6ioKEubqsswtzEvg2qnVEgI9KgcR8TDZkRE1ELJGogSEhLw5ZdfYsWKFXB3d0dGRgYyMjIs43o8PDzwyCOPYPr06di6dSuSkpLw0EMPISYmBv379wcADB8+HFFRUZgwYQIOHTqEDRs24MUXX0RCQgK0Wi0AYNKkSfjrr7/w3HPP4fjx4/jggw/wzTffYNq0abJte3NiHkeUxoHVRETUQskaiJYuXYq8vDwMGjQIQUFBlseqVassbRYvXow777wTY8eOxS233ILAwEB89913lvlKpRJr166FUqlETEwMxo8fj4kTJ2LOnDmWNpGRkVi3bh02btyI7t27Y+HChfjkk094yn0dhXheGUdERETUEsl6HaK6DNJ1cnLCkiVLsGTJklrbmO+vdi2DBg3CgQMH6l0jAYE6J0gSkF9SgfyScrnLISIisjm7GFRN9k2jUsDPzXT4keOIiIioJWIgojoJ5mEzIiJqwRiIqE54xWoiImrJGIioTswXaMwuKEOZQeZiiIiIbIyBiOrEVauCt4sGAHCxVJK5GiIiIttiIKI6C/U29RJdLOHbhoiIWhZ+slGdhXm5AACy2ENEREQtDAMR1VmIl6mHKL9cAYWrp7zFEBER2RADEdWZs1oJP3fT9YicwrvJXA0REZHtMBBRvYRV9hI5RXSXuRIiIiLbYSCiegmtHEfEHiIiImpJGIioXkI8nSFBQO0VhKzCCrnLISIisgkGIqoXjUoBL43pprxHsspkroaIiMg2GIio3vydTIHoKAMRERG1EAxEVG9+TkYAwJGsUgghZK6GiIjoxjEQUb35aARERRlyio34K7tQ7nKIiIhuGAMR1ZtSAZSmpQAAdp2+JHM1REREN46BiBqk5O/DAIDdp7NlroSIiOjGMRBRg5SkHgIA7D59CUYjxxEREVHzxkBEDVKafhJOKgmXi8pxPCNf7nKIiIhuCAMRNYzRgChfDQBgFw+bERFRM8dARA3WNcAUiH49yUBERETNGwMRNViPAC0AYM+ZSygpN8hcDRERUcMxEFGDhXuoEKDToqTciL1nc+Quh4iIqMEYiKjBJEnCwHZ+AIAdf16UuRoiIqKGYyCiG3JLe3Mg4jgiIiJqvhiI6IYMbOsLSQJOZOYjI69E7nKIiIgahIGIboiXqwbdQjwAADtO8rAZERE1TwxEdMOuHDZjICIiouaJgYhumDkQ7TyVDQNv40FERM0QAxHdsB5hnnDTqpBbVI6jaXlyl0NERFRvDER0w9RKBW5q4wOAh82IiKh5YiAim7CMI+LAaiIiaoYYiMgmbq0MRPtTc6EvKZe5GiIiovphICKbCPN2QaSvKwxGgV2nLsldDhERUb0wEJHN3NLOFwAPmxERUfPDQEQ2U/V6RELw9HsiImo+GIjIZvq39oFGqcD5y8U4fbFQ7nKIiIjqjIGIbMZVq0K/1t4AgK3Hs2SuhoiIqO4YiMimBnfwBwBsYSAiIqJmhIGIbGpoJ1Mg2ns2B3nFPP2eiIiaBwYisqkIH1e08XNFhVHgV55tRkREzQQDEdnc0E4BAHjYjIiImg8GIrI58ziibScuwmDk6fdERGT/GIjI5nq38oK7kwo5hWU4eC5X7nKIiIiui4GIbE6tVFjubcbT74mIqDlgIKJGMaSj6bDZZgYiIiJqBhiIqFEM6uAPSQJS0vW4kFssdzlERETXxEBEjcLbVYNe4V4AgK0n2EtERET2jYGIGo35sNmWFAYiIiKybwxE1GjMgei309koKTfIXA0REVHtGIio0XQMdEewhxNKyo3YffqS3OUQERHVioGIGo0kSRhSeW+zTSmZMldDRERUOwYialTm23hsTM6EkVetJiIiO8VARI3qpjY+cNOqkJVfioPnc+Uuh4iIqEYMRNSotColBlcOrt5wNEPmaoiIiGrGQESNLraz6bDZhmMZEIKHzYiIyP4wEFGjG9TBHxqVAmcvFeHPzAK5yyEiIqqGgYganZtWhZvb+gIw9RIRERHZGwYiahLmw2brOY6IiIjsEAMRNYnbogKhVEhITtfjbHah3OUQERFZYSCiJuHtqsFNbXwAAGsPX5C5GiIiImsMRNRk7uwWBABYezhd5kqIiIisqeQugJqvlJSUerUPrDBCKQHHM/Lxw7Y9CNWpa2zn6+uL8PBwW5RIRERUJwxEVG/6nIsAgPHjx9f7tX53z4JLmz6Y+OI7yPvt6xrbOLu44HhKCkMRERE1GQYiqrfiAj0AIO6JF9ChW3S9Xvt3gQL7coCwQQ/g4X/eA0mynp+ZehpfzXsW2dnZDERERNRkGIiowXyCIxDarnO9XuNXYcCBHWeQXwE4BbWFn7u2kaojIiKqOw6qpialVSkR6esKAEhJ18tcDRERkYmsgWjHjh0YOXIkgoODIUkSvv/+e6v5Qgi8/PLLCAoKgrOzM4YNG4aTJ09atcnJycG4ceOg0+ng6emJRx55BAUF1reHOHz4MAYOHAgnJyeEhYVh/vz5jb1pdA2dgtwBmAZXG4y8txkREclP1kBUWFiI7t27Y8mSJTXOnz9/Pt59910sW7YMe/bsgaurK2JjY1FSUmJpM27cOBw7dgwbN27E2rVrsWPHDjz++OOW+Xq9HsOHD0dERASSkpKwYMECzJ49Gx999FGjbx/VLMLHFc5qJYrLDfj7Ei/SSERE8pN1DNGIESMwYsSIGucJIfD222/jxRdfxKhRowAA//nPfxAQEIDvv/8e999/P1JSUrB+/Xrs3bsXvXv3BgC89957uOOOO/DWW28hODgYX331FcrKyvDZZ59Bo9Ggc+fOOHjwIBYtWmQVnKjpKBUSOga540BqLlLS89Haz03ukoiIyMHZ7RiiM2fOICMjA8OGDbNM8/DwQL9+/bB7924AwO7du+Hp6WkJQwAwbNgwKBQK7Nmzx9LmlltugUajsbSJjY3FiRMncPny5RrXXVpaCr1eb/Ug2+oUqAMA/JVdgOJyg8zVEBGRo7PbQJSRYboJaEBAgNX0gIAAy7yMjAz4+/tbzVepVPD29rZqU9Myqq7janPnzoWHh4flERYWduMbRFb83LXwc9fCKIDjHFxNREQys9tAJKeZM2ciLy/P8jh37pzcJbVIXYJNvUSH0/IgBAdXExGRfOw2EAUGBgIAMjMzraZnZmZa5gUGBiIrK8tqfkVFBXJycqza1LSMquu4mlarhU6ns3qQ7XUM1EGjVCC3qBypOUVyl0NERA7MbgNRZGQkAgMDsXnzZss0vV6PPXv2ICYmBgAQExOD3NxcJCUlWdps2bIFRqMR/fr1s7TZsWMHysvLLW02btyIDh06wMvLq4m2hmqiUSkQVdlLdOh8nszVEBGRI5M1EBUUFODgwYM4ePAgANNA6oMHDyI1NRWSJGHq1Kl47bXX8MMPP+DIkSOYOHEigoODMXr0aABAp06dcPvtt+Oxxx7DH3/8gd9++w1TpkzB/fffj+DgYADAAw88AI1Gg0ceeQTHjh3DqlWr8M4772D69OkybTVV1S3UAwBwJrsQecXl12lNRETUOGQ97X7fvn0YPHiw5bk5pMTHxyMxMRHPPfccCgsL8fjjjyM3Nxc333wz1q9fDycnJ8trvvrqK0yZMgVDhw6FQqHA2LFj8e6771rme3h44JdffkFCQgKio6Ph6+uLl19+mafc2wkvFw0ivF3wd04RDp3LRWvp+q8hIiKyNVkD0aBBg645mFaSJMyZMwdz5syptY23tzdWrFhxzfV069YNv/76a4PrpMbVI8wTf+cU4UhaHkKC5K6GiIgckd2OISLHEeHjAn93LSqMAifzlXKXQ0REDoiBiGQnSRL6RnoDAE7nK6Bwcpe5IiIicjQMRGQXWvu6wtdNgwohwb3PKLnLISIiB8NARHZBkiT0i/QBAOii/4HcEt7Og4iImg4DEdmNNn6u8NIYodC64Ksj+XKXQ0REDoSBiOyGJEno7mXqGdpyphhHeLFGIiJqIgxEZFd8tAIFx7ZCAHjlx2O8xxkRETUJBiKyO7nbE6FVStj392V8s4831iUiosbHQER2x5B/Cfd1dgMAvLY2BWm5xTJXRERELR0DEdmlke1d0SvcE/mlFXj+v4d56IyIiBoVAxHZJaVCwoJ7ukOrUuDXk9n4ck+q3CUREVELxkBEdquNnxueje0AAHh1bTKOXeBZZ0RE1DgYiMiuPTwgEkM6+qOswogpKw6goLRC7pKIiKgFYiAiu6ZQSFh4T3cEeTjhTHYh/s3xRERE1AgYiMjueblq8N4/e0KlkLDucDo+2HZa7pKIiKiFYSCiZqF3K2+8MqozAOCtX05gY3KmzBUREVFLwkBEzca4fhGY0D8CQgBTVx7An5m83xkREdkGAxE1Ky+PjEL/1t4oLDPg0c/34XJhmdwlERFRC8BARM2KWqnAB+OiEebtjNScIiSs2I9yg1HusoiIqJljIKJmx9tVg08m9oGrRoldpy/h5f8d5ZlnRER0QxiIqFnqEOiOd+7vCYUEfP3HOSzb/pfcJRERUTOmkrsAopqkpKRct403gId66PDpAT3mrT+OirwMDAhzrrW9r68vwsPDbVglERG1FAxEZFf0ORcBAOPHj6/za7yGPgZd71F469csPLvyBZSm1RymnF1ccDwlhaGIiIiqYSAiu1JcoAcAxD3xAjp0i67Ta4QAdmcbkV6sQfjE+RgcUA43tXWbzNTT+Gres8jOzmYgIiKiahiIyC75BEcgtF3nOrcPbGPEt0nnkZVfij25rri3Txic1cpGrJCIiFoSDqqmFkGtVOAf3YPh7qRCbnE51h66gAqejk9ERHXEQEQthqtWhVHdg6FRKXAhrwQbUzJ5Oj4REdUJAxG1KD5uWsR1DYJCAv7MLMDuvy7JXRIRETUDDETU4oR7u2BoxwAAwN6zl3HsQp7MFRERkb1jIKIWKSpYh76tvAEAW45nIbNEkrkiIiKyZwxE1GL1b+2NDgHuMArg94sqqH0j5C6JiIjsFAMRtViSJGFYlD+CPZ1QIST43z0LOcUGucsiIiI7xEBELZpKocDIbsFwUwmoPPwxd+dlFJVVyF0WERHZGQYiavGc1EoM8CuHoSgPpy+X419fH4DByNPxiYjoCgYicghuauDid69CrQA2pWTh1bXJcpdERER2hIGIHEZp2nE83c8TAJC46yyW/3ZG3oKIiMhuMBCRQ7kpzBnPj+gIAJizNhm/HMuQuSIiIrIHDETkcJ64pTX+2TccQgD/WnkAv/Nq1kREDo+BiByOJEl4dVRnDO7gh5JyIx5avpehiIjIwTEQkUNSKRVYOj4at7T3Q3G5AQ8t34tfT16UuywiIpIJAxE5LCe1Eh9NsA5Fq/edk7ssIiKSAQMROTQntRIfT4zGqB7BqDAKPPvtYby14QSvU0RE5GAYiMjhaVVKLL63ByYPagMAeH/rKUz8bA+yC0plroyIiJoKAxERAIVCwr9v74h37u8BZ7USv526hBHv/IpNyZlyl0ZERE2AgYioilE9QvDDlAFo6++Gi/mlePQ/+/DM6kPIKSyTuzQiImpEDEREV2kX4I61T92MxwZGQpKAb5POY9CCrUj87QwqDEa5yyMiokagkrsAoqaUkpJS57YjgoBWg33w8f48nM2twOwfk/HZjj/xSA8dugZordr6+voiPDzc1uUSEVETYSAih6DPMV1jaPz48fV/saSAW/dYeN4yAanQYdb2HBSd3IO831agLPM0AMDZxQXHU1IYioiImikGInIIxQV6AEDcEy+gQ7foBi2jzAAk5xlwukABl3b94NKuHwKdjPApOY+f5j2J7OxsBiIiomaKgYgcik9wBELbdW7w61sDuFxYhj1nc3AiIx8ZJQpkIBzBjy7FupOFaBdVDncnte0KJiKiJsFARFRPXq4a3N45EP0ivXHoXC6OpeUCPmH49IAeK49tRmznQMR1C8LAdn7QqHjeAhFRc8BARNRAXi4aDOrgjwhcxPLPPkW3sVOQlm/AdwfS8N2BNOicVBjeORB3dA3ETW184aRWyl0yERHVgoGI6AapFUDBgXV49+NXIHwisfZwOn46ko6s/FJ8m3Qe3yadh5NagZva+GJwR38M6eiPEE9nucsmIqIqGIiIbESSJES38kbvVt546c4o7Dubg3VH0rEpORMX8kqw5XgWthzPwksAOgS4Y3BHf9zS3he9wr3Ye0REJDMGIiIbufoaR2oAo8OAUaGeSM2rwL70UiSll+DPS+U4kZmPE5n5WLb9NNQKoIOPBp39Nejir0F7bw3USgkAr29ERNRUGIiIblB9r3GkcHKHU2QvuLTpA21EN8DNG0cvluHoxTKsOgYYy0tRmnYcpeeOQGSdxL4N36Jd61aNuAVERMRARHSDbuQaR0IABRVluFiiwMVSCRdLFChVa+HcqjucW3UHAIz45Bh6hl9A30hv9I30QXSEF9y0/NUlIrIl/lUlspEbucZRp8qvQgjkFJbhfG4xTp3LwNmsPMDNG3vPXsbes5exZOtpqBQS+kZ6Y1inANwWFYAwbxfbbQQRkYNiICKyI5IkwcdNa3oUp+G3WROxdtseFLgEYs+ZHPxxJgfnLxdj1+lL2HX6EuasTUbHQHcMjwrAHd2C0CHAHZIkyb0ZRETNDgMRkZ0LclehV69w3NfHNLj6bHYhNqVkYlNKJvaevYzjGfk4npGPd7ecQms/V9zRJQh3dA1CpyCGIyKiumIgIrJzV5+9BgC9XIFevbXI7+qPpPQS/H6+BAcySvHXxUK8v/UU3t96CkFuStwU5oTeQU5o462GSmEdjngGGxHRFQxERHaqvmevSRpnOLfpC9eON8O5dTTSCzT4b0oh/ptSCGNpEUrTklGSegQl546iPOssnDRKHE9JYSgiIgIDEZHdupGz18qNQEZxBdKKTGevlWld4Ny6N5xb965sIVB+6Tye/+EkYjqVol2AO9r4uSLcxwVaFS8SSUSOh4GIyM419Oy1yMqvQghkF5Th/OUinL9cjPS8EhSXG6D2CcOu8yXYdf5Py2sUEhDm7YLWvq6I9HVDaz9XtPZzRRs/N/i7azkmiYhaLAYiohZOkiT4uWvh565Fz3AvCCFw+kQyPlv8GuL/NRNFGi+k5RuQll+BkgqBvy8V4e9LRdh64qLVcrRKCf6uSvi5KuHvooS/a9WHCu4aCZIkcWwSETVLDEREDkaSJJTlXUTJmf34cNo9VvOUbt5QeYdA7R0KdeVXlXcIVB7+KIUS5/QVOKevqHG5xrJiVORlQRRk4/6RtyEqPAChXs4I9XJBqJczPF3U7GEiIrvFQETkgOo7PskgDCiqMKCoQkKRQUJhhYSiCqCoQkKhQUKJQYJC4wyNXwTgF4E1R3Ow5miO1TLctSqEebsg3NsF4T4uCPF0hoezGjpnFdyd1NA5qaFUSBBCQAAwCgGj0fS1JgpJgpNaAWeNEk4qJZw1SmhVCoYuImoQhwpES5YswYIFC5CRkYHu3bvjvffeQ9++feUui0g2N3J17aoqDEbkl1bgr1On8L8vlmHMhMdgdPZEVqEBWYUGXC4xzU9O1yM5XW+DymvmpFbAt/LClr6uGvi4aSzPfSqfe7uapnm5aKBRKRqtFiJqXhwmEK1atQrTp0/HsmXL0K9fP7z99tuIjY3FiRMn4O/vL3d5RM2aSqmAl4sGzsVZKDi0Af85tMG6gVINlUcAVJ6BUHsGQuUZCKXODwqtKxRaFyi0blA4uQKSAhBG003ehICA6Ssqv0qSBB8fXyiVChgEUGYQKDMIVBhNqykpN+L85WKcv1xcp7pd1BLcNQqoFYBWpYBWKUGtBFQKCUoFoJQkqBSm3ijrr7XPU0qAUiFBKQFqpQQfTx3CggJMPVlqBZzUSjirlezZIrIzDhOIFi1ahMceewwPPfQQAGDZsmVYt24dPvvsMzz//PMyV0fUMtzIpQKu56+j+/D9B2/gfE0zJQUktRZKZx0Urp5QunhA6eJZ+b0nlK6eUDh7QOmiM0130UFSKFFULlBUbqhciKGmJdtAHoBz122lUZoGrmtVErRKCRqlBKVCgkIyBTAFqnwvAVqtBq4uLlBIleFNIVV+L0GtVECtNH9V1PD8yvfm63Wa85gEyzdVv1gC25XnNb/u6lxX6+uuaq+QTG0Vknk7JUiVX83TlAoJqsr6VYrKr1W2R1XDfAZNqiuHCERlZWVISkrCzJkzLdMUCgWGDRuG3bt3y1gZUctkq0NxVWWmngZgm7AlhAFlRgNKjcDJowexZ+P/0PfO8Qhs1RYGIUEIwAhT55RRAML8PQAhpCvzavlqGgMloUCfh6wL5yCptaaHSgNJpYVCrYWk0kJSqS01lRlMPV75ZTWPmaquDEDBDe0HR6CQAJWistevSu+dVBmyJJjDWGUIq/Lc9L0ECCOUSkWVeRIUVdtVPpekKsuqDLCWabgS8swMBgOUSiXMw+Rq+smLKmPorp5fdXiduOqr0WCEQqGocV7VJwI1L18hVe6vyv2irOwFdXV2gqeHzrQfKx+qyq8SJBgrxwCi8qvp90FYfi/Mz2F5fmWem1aFabe1r2EvNA2HCETZ2dkwGAwICAiwmh4QEIDjx49Xa19aWorS0lLL87y8PACAXm/7sQ8FBaY/aOdPHkNpcZHNlmv+8Mg4+ydOu9r2bujNcdmsuWmW3RQ1l5eV2ux3RQtAXZiFkr8PwanoNvhJQVe6MmzgxInfcGTlMvQZcR9CI9tdmVFueggARigsDwMkGCUFROXzyoOFACTTV8n0NfdiFk4d/sPUM6ZQVH4qVx52UyghKVSQFCpAqYKkVFb5XlU5X33lOaSaunUq12p+ftU3tbSv0g90VbM6vE4CAPOhQ/M2VfbwSBKgUECSlKa6K7cRCkXlVyWkyulXMwKo+bxIsjc+Lio80i/Qpss0f26LWk7OsCIcQFpamgAgdu3aZTX92WefFX379q3WftasWea/Q3zwwQcffPDBRzN/nDt37rpZwSF6iHx9faFUKpGZmWk1PTMzE4GB1dPozJkzMX36dMtzo9GInJwc+Pj42Px4tF6vR1hYGM6dOwedTmfTZbck3E91w/1UN9xPdcP9VDfcT9cn1z4SQiA/Px/BwcHXbesQgUij0SA6OhqbN2/G6NGjAZhCzubNmzFlypRq7bVaLbRardU0T0/PRq1Rp9PxF6kOuJ/qhvupbrif6ob7qW64n65Pjn3k4eFRp3YOEYgAYPr06YiPj0fv3r3Rt29fvP322ygsLLScdUZERESOy2EC0X333YeLFy/i5ZdfRkZGBnr06IH169dXG2hNREREjsdhAhEATJkypcZDZHLSarWYNWtWtUN0ZI37qW64n+qG+6luuJ/qhvvp+prDPpKEqMu5aEREREQtF2/kQ0RERA6PgYiIiIgcHgMREREROTwGIiIiInJ4DEQyWrJkCVq1agUnJyf069cPf/zxh9wlyW7Hjh0YOXIkgoODIUkSvv/+e6v5Qgi8/PLLCAoKgrOzM4YNG4aTJ0/KU6xM5s6diz59+sDd3R3+/v4YPXo0Tpw4YdWmpKQECQkJ8PHxgZubG8aOHVvtSu0t3dKlS9GtWzfLheBiYmLw888/W+ZzH9XszTffhCRJmDp1qmUa9xUwe/ZsSJX3VjM/OnbsaJnPfXRFWloaxo8fDx8fHzg7O6Nr167Yt2+fZb69/h1nIJLJqlWrMH36dMyaNQv79+9H9+7dERsbi6ysLLlLk1VhYSG6d++OJUuW1Dh//vz5ePfdd7Fs2TLs2bMHrq6uiI2NRUlJSRNXKp/t27cjISEBv//+OzZu3Ijy8nIMHz4chYWFljbTpk3Djz/+iNWrV2P79u24cOECxowZI2PVTS80NBRvvvkmkpKSsG/fPgwZMgSjRo3CsWPHAHAf1WTv3r348MMP0a1bN6vp3FcmnTt3Rnp6uuWxc+dOyzzuI5PLly9jwIABUKvV+Pnnn5GcnIyFCxfCy8vL0sZu/47b4uapVH99+/YVCQkJlucGg0EEBweLuXPnyliVfQEg1qxZY3luNBpFYGCgWLBggWVabm6u0Gq14uuvv5ahQvuQlZUlAIjt27cLIUz7RK1Wi9WrV1vapKSkCABi9+7dcpVpF7y8vMQnn3zCfVSD/Px80a5dO7Fx40Zx6623iqeffloIwfeT2axZs0T37t1rnMd9dMW///1vcfPNN9c6357/jrOHSAZlZWVISkrCsGHDLNMUCgWGDRuG3bt3y1iZfTtz5gwyMjKs9puHhwf69evn0PstLy8PAODt7Q0ASEpKQnl5udV+6tixI8LDwx12PxkMBqxcuRKFhYWIiYnhPqpBQkIC4uLirPYJwPdTVSdPnkRwcDBat26NcePGITU1FQD3UVU//PADevfujXvuuQf+/v7o2bMnPv74Y8t8e/47zkAkg+zsbBgMhmq3DQkICEBGRoZMVdk/877hfrvCaDRi6tSpGDBgALp06QLAtJ80Gk21GxI74n46cuQI3NzcoNVqMWnSJKxZswZRUVHcR1dZuXIl9u/fj7lz51abx31l0q9fPyQmJmL9+vVYunQpzpw5g4EDByI/P5/7qIq//voLS5cuRbt27bBhwwZMnjwZ//rXv/D5558DsO+/4w516w6iliYhIQFHjx61GstAV3To0AEHDx5EXl4evv32W8THx2P79u1yl2VXzp07h6effhobN26Ek5OT3OXYrREjRli+79atG/r164eIiAh88803cHZ2lrEy+2I0GtG7d2+88cYbAICePXvi6NGjWLZsGeLj42Wu7trYQyQDX19fKJXKamcgZGZmIjAwUKaq7J9533C/mUyZMgVr167F1q1bERoaapkeGBiIsrIy5ObmWrV3xP2k0WjQtm1bREdHY+7cuejevTveeecd7qMqkpKSkJWVhV69ekGlUkGlUmH79u149913oVKpEBAQwH1VA09PT7Rv3x6nTp3i+6mKoKAgREVFWU3r1KmT5fCiPf8dZyCSgUajQXR0NDZv3myZZjQasXnzZsTExMhYmX2LjIxEYGCg1X7T6/XYs2ePQ+03IQSmTJmCNWvWYMuWLYiMjLSaHx0dDbVabbWfTpw4gdTUVIfaTzUxGo0oLS3lPqpi6NChOHLkCA4ePGh59O7dG+PGjbN8z31VXUFBAU6fPo2goCC+n6oYMGBAtcuA/Pnnn4iIiABg53/HZR3S7cBWrlwptFqtSExMFMnJyeLxxx8Xnp6eIiMjQ+7SZJWfny8OHDggDhw4IACIRYsWiQMHDoi///5bCCHEm2++KTw9PcX//vc/cfjwYTFq1CgRGRkpiouLZa686UyePFl4eHiIbdu2ifT0dMujqKjI0mbSpEkiPDxcbNmyRezbt0/ExMSImJgYGatues8//7zYvn27OHPmjDh8+LB4/vnnhSRJ4pdffhFCcB9dS9WzzITgvhJCiBkzZoht27aJM2fOiN9++00MGzZM+Pr6iqysLCEE95HZH3/8IVQqlXj99dfFyZMnxVdffSVcXFzEl19+aWljr3/HGYhk9N5774nw8HCh0WhE3759xe+//y53SbLbunWrAFDtER8fL4QwnbL50ksviYCAAKHVasXQoUPFiRMn5C26idW0fwCI5cuXW9oUFxeLJ598Unh5eQkXFxdx1113ifT0dPmKlsHDDz8sIiIihEajEX5+fmLo0KGWMCQE99G1XB2IuK+EuO+++0RQUJDQaDQiJCRE3HfffeLUqVOW+dxHV/z444+iS5cuQqvVio4dO4qPPvrIar69/h2XhBBCnr4pIiIiIvvAMURERETk8BiIiIiIyOExEBEREZHDYyAiIiIih8dARERERA6PgYiIiIgcHgMREREROTwGIiKye4MGDcLUqVNlW/+DDz6I0aNH11pPUVERxo4dC51OB0mSkJubW+M0IrJfvNs9EVE9fffdd1Cr1Zbnn3/+OX799Vfs2rULvr6+8PDwwLJly6pNIyL7xUBERFRP3t7eVs9Pnz6NTp06oUuXLtecRkT2i4fMiKhZKS0txTPPPIOQkBC4urqiX79+2LZtm2V+YmIiPD09sWHDBnTq1Alubm64/fbbkZ6eXqflGwwGTJ8+HZ6envDx8cFzzz2Hq+9wVPWQ2aBBg7Bw4ULs2LEDkiRh0KBBNU4jIvvGQEREzcqUKVOwe/durFy5EocPH8Y999yD22+/HSdPnrS0KSoqwltvvYUvvvgCO3bsQGpqKp555pk6LX/hwoVITEzEZ599hp07dyInJwdr1qyptf13332Hxx57DDExMUhPT8d3331X4zQism88ZEZEzUZqaiqWL1+O1NRUBAcHAwCeeeYZrF+/HsuXL8cbb7wBACgvL8eyZcvQpk0bAKYQNWfOnDqt4+2338bMmTMxZswYAMCyZcuwYcOGWtt7e3vDxcUFGo0GgYGBluk1TSMi+8VARETNxpEjR2AwGNC+fXur6aWlpfDx8bE8d3FxsYQhAAgKCkJWVtZ1l5+Xl4f09HT069fPMk2lUqF3797VDpsRUcvCQEREzUZBQQGUSiWSkpKgVCqt5rm5uVm+r3oGGABIksRAQ0TXxDFERNRs9OzZEwaDAVlZWWjbtq3VwxaHpjw8PBAUFIQ9e/ZYplVUVCApKemGl01E9o09RETUbLRv3x7jxo3DxIkTsXDhQvTs2RMXL17E5s2b0a1bN8TFxd3wOp5++mm8+eabaNeuHTp27IhFixbxoopEDoCBiIialeXLl+O1117DjBkzkJaWBl9fX/Tv3x933nmnTZY/Y8YMpKenIz4+HgqFAg8//DDuuusu5OXl2WT5RGSfJMED60REROTgOIaIiIiIHB4DERE5FDc3t1ofv/76q9zlEZFMeMiMiBzKqVOnap0XEhICZ2fnJqyGiOwFAxERERE5PB4yIyIiIofHQEREREQOj4GIiIiIHB4DERERETk8BiIiIiJyeAxERERE5PAYiIiIiMjhMRARERGRw/t/aEcy/DqdpcYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.histplot(train[\"len_diff\"], kde=True, bins=20)\n", + "plt.title(\"train sentence length diff Distribution\")\n", + "plt.xlabel(\"len_diff\")\n", + "plt.ylabel(\"Count\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_col1_col2_scatter(df, col1, col2, title=\"\"):\n", + " # Scatter plot 그리기\n", + " plt.figure(figsize=(6, 6))\n", + " plt.scatter(df[col1], df[col2], color=\"blue\")\n", + "\n", + " # 그래프에 제목과 축 레이블 추가\n", + " plt.title(f\"{title} {col1} vs {col2}\", fontsize=16)\n", + " plt.xlabel(f\"{col1}\", fontsize=12)\n", + " plt.ylabel(f\"{col2}\", fontsize=12)\n", + "\n", + " # 그래프 출력\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAIpCAYAAAAl0NuJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABePklEQVR4nO3dfXxU1Z0/8M/NDQkJgQCKIWQC6IhaH3gQBpYigkp9ou1oRHxaCtqX1opWmnVc6W5/2t0qFlxNqEVtq9DSKquEBx9qdy0Cm7paKMqKZcGAWEII4EMJBDDB5Pz+ODtJZuY+zp07987M5/16zYvknnvOPfdkyP1m7jnfqwghBIiIiIgsyvO6A0RERJRZGDwQERGRLQweiIiIyBYGD0RERGQLgwciIiKyhcEDERER2cLggYiIiGxh8EBERES2MHggIiIiWxg8UFYbPnw4FEXBxx9/7HVXNPm9f8nQO6epU6dCURRs2LAhoU5TUxNmzZqFIUOGID8/H4qiYM6cOV3l27dvxzXXXIPTTjsNqqpCURQ89NBDrp5HKhidczIURYGiKClpy8zHH38MRVEwfPjwtByPMku+1x0gotwmhEBVVRU2bdqEc889F5dccgl69eqFiy66CABw7NgxTJ8+HR9//DHGjRuHK664AqqqYvTo0d52nCiHMXggorT49a9/jePHj2Po0KEx2//6179i06ZNGDp0KP7nf/4H+fmxv5Y2b96Mjz/+GF/96lfx1ltvpbPLRKSDwQMRpUV80BC1d+9eAMDpp5+eEDj0LB8xYoR7nSMiWzjngTLe9u3bcf311+PUU09FUVERzj//fDz22GPo6OgwrPfll1/il7/8JaZOnYqBAweisLAQp59+Or773e+isbExZt9nnnkGiqLgyiuv1G3vs88+Q2FhIQoKCvDJJ5+k5NxWrlyJK6+8EoMGDUJBQQEqKirw93//99i+fXvCvj3vUQsh8POf/xxjx45Fnz59UFpaissvvxxvv/12SvqVzJjH3/+P9nfKlCkAgI0bN3bd01cUBcuWLYOiKJg9ezYA4Fe/+lVMuZGOjg4EAgEoioJ33nlHd7/77rsPiqLg+9//fte2trY2LFq0CGPHjkXfvn1RUFCAwYMHIxQK4f7778fnn39udZh0ffLJJ1i8eDGuvvpqnH766SgqKkK/fv0wbtw4/OQnP8EXX3xh2sYvfvGLrp9v//79cfXVVxueq533O5EpQZTB6uvrRZ8+fQQAccYZZ4gbb7xRTJs2TfTq1Utcd911YtiwYQKA2LNnT0y9I0eOiKlTpwoAoqSkREyZMkXMmDFDnH322QKAOOWUU8S7777btf/hw4dFUVGRyMvLE/v27dPsy+LFiwUAUVVVZbn/ev07efKkmDlzpgAgCgsLxVe/+lVx/fXXi1GjRgkAoqioSLz++usxdfbs2SMAiGHDhonZs2eLXr16iUsvvVTMnDlTnHXWWV1tvfPOO5b7pyXZMZ8yZYoAINavXy+EEOKTTz4Rs2fPFldccYUAIMrKysTs2bO7XvX19WL27Nli0qRJAoAIBoMx5Wbmz58vAIjvfOc7muUnT54UZWVlAoB4//33hRBCdHR0iMsuu0wAEP369RNXXXWVuOmmm8S0adO6zuu9996zPFbx5xy1fPlyAUBUVFSIKVOmiBtvvFFcdtlloqSkRAAQEydOFF988UVCewAEAPH9739fKIoiLrroInHTTTeJ888/XwAQ+fn5YtWqVQn17L7fhYh9PxHFY/BAGevEiROisrJSABDz5s0TX375ZVfZ//zP/4hTTz2165dt/IXs5ptvFgDE17/+dXHw4MGYsieeeEIAECNGjIhp85ZbbhEAxIIFCzT7M2bMGAFAvPLKK5bPQe9C+4Mf/EAAEBMmTBAfffRRTNlLL70kVFUVAwYMEH/729+6tkd/2Ud/4e/cubOr7MsvvxS33XabACAuv/xyy/2L52TM9S6k69evFwDElClTNI+5dOlSAcBSwNDThx9+KACI/v37ixMnTiSUr127VgAQY8eO7dq2ceNGAUCMGTNGHDlyJKHO5s2bxaeffmq5D3rnvH37dvH2228n7P/555+Lyy+/XAAQCxcuTCiPjm1RUZFYt25dTNnChQsFAFFaWprwnk7m/c7ggYwweKCM9Zvf/EYAEJWVlaK9vT2hPPpLMf5Ctn37dqEoihgyZIjmBUIIIa6++uqEQGDdunUCgDj77LMT9t+6dasAIAYPHixOnjxp+Ry0gofPPvtMFBUVid69e+t+ynHXXXcJAOKnP/1p17aewcPLL7+cUKe5ubnr0wet8bIi2TEXIv3BgxBCTJ48WQAQzz//fELZNddcIwCIJ598smvbiy++KACI733ve7aPpUXvnI3s3LlTABChUCihLDq28+bN06w7btw4AUA8/PDDXduSfb8zeCAjnPNAGSt673zmzJno1atXQnn0Xnm83/3udxBC4KqrrkLfvn0195k6dSoA4L//+7+7tl1yySUYPnw4du7cmTB3YOnSpQCAb33rW5qT/uxYv349Tpw4gUmTJqGiosJy/6Ly8/M152YMHjwYAwYMQFtbGz777LOk+pbsmHvl1ltvBQAsW7YsZvsnn3yC1157DYWFhbj55pu7tl944YVQVRXPPfccfvazn6G5udm1vnV0dGDdunX413/9V9x111249dZbMWfOHDz88MMAgJ07d+rW1Rvnb33rWwAQk1ci2fc7kRGutqCMtW/fPgBylr6WAQMGoLS0FC0tLTHbP/roIwDAs88+i2effdbwGD0nPkYTFz300ENYunQpJk6cCAA4efIkfvvb3wLovlg5Ee3funXrTCcGak3MLC8v17ywA0C/fv3wt7/9zdKEPC3JjrlXZs6cie9973v4wx/+gH379iEQCAAAfvOb3+DkyZO44YYbMGDAgK79g8EgnnjiCUQiEdx99924++67MWzYMEycOBFf//rXcf3116OgoMBxvxoaGnDttdfiL3/5i+4+R44c0S3TG//o9ujPCUj+/U5khMED5ZzOzk4AwOjRozFq1CjDfSdMmBDz/Zw5c/CjH/0IL774Impra1FUVIRXXnkFn376Kf7u7/4O55xzTsr6d+aZZ2LSpEmG+2odLy+PHyhG9enTBzNnzsRzzz2HX//61/jBD34AoPuTCK1g75577sHMmTPx8ssv449//CP++Mc/YsWKFVixYgUefPBB1NfXo7y83FG/ZsyYgb/85S/4+te/jvvvvx/nnnsu+vXrh169eqG9vR2FhYWO2hdCdH3t5P1OpIfBA2Ws6Ef6eqmdDx8+rPkXcGVlJQBg0qRJePLJJ20dc9iwYbj00kuxbt06rFq1CrfcckvXhei2226z1ZaeaP/OPvvshI/bvZbsmHvp1ltvxXPPPYdly5bhBz/4Ad599128//77CAQC+NrXvqZZp6ysDLfffjtuv/12AMCOHTtw22234e2338YDDzyAX/3qV0n3Z8eOHXj//fdx2mmnYfXq1Qm3uRoaGkzb2LNnj2aGzejPJfoJC+Ds/U6kh3+iUMaK5gd48cUXcfLkyYTyX//615r1rrrqKgDAyy+/nNTH99EgYdmyZTh48CBef/11FBUV4YYbbrDdlpbLLrsMBQUF2LBhAw4dOpSSNlMl2TH30kUXXYSzzjoLDQ0NeOutt7rmp8yePdvypzTnnHMO/vEf/xEAsHXrVkf9ieaJiD7HI95vfvMb0zaWL19uuD06hwFw/n4n0sLggTLWjBkzUFFRgb1792L+/PldH88CwAcffIAf//jHmvXGjBmD6667Do2NjaiqqtL8K/rYsWP47W9/i4MHDyaUVVVVoX///njzzTfx8MMP48svv8R1112Hfv36peS8ysrKcM899+DYsWP4xje+gW3btiXs09bWhpdffhk7duxIyTGtSnbMvRa9PfH000/j+eefB4CYB29Fvfnmm/jd736XEBgJIfDqq68CkJ8+OXHWWWdBVVVs27Yt4YFZr7zyCp544gnTNp566qmEuk888QQ2bdqEvn374tvf/nbXdqfvdyJN3i72IHJmw4YNori4uCuJ0I033ii+9rWviV69eomqqirDJFHRZEAFBQUiFAqJmTNniuuvv16EQiFRUFAgAIj//d//1TzunXfe2bVsDoB48803k+q/UZKo6Nr8vLw8MWbMGHHdddeJG264QUyaNKkrSVPPRFFWltbpHc+OZMfci6WaUU1NTUJV1a6f18UXX6y5X3Spab9+/cTUqVPFzTffLK699tqucyotLU1Jkqh7772362c7ZcoUcdNNN4kLL7xQABD//M//3NXPeNHt8+bNE4qiiIsvvljcdNNN4oILLhAAhKqq4qWXXkqol8z7nUs1yQiDB8p427ZtE1VVVWLgwIGisLBQfOUrXxELFiwQJ0+eNLxYdnR0iOeff15cffXVoqysTPTq1Uuccsop4vzzzxe33nqrWL16tW4+hE2bNnX9Ih8+fLjo7OxMqu9mF/Pf/e53oqqqSlRUVIhevXqJ/v37i6985SvixhtvFM8//7w4duxY177pCh6ESG7MvQwehOjOZQBALF26VHOfXbt2iYceekhcdtllYujQoaJ3795iwIABYuTIkeKBBx4QjY2Nto6pd86dnZ3i2WefFWPHjhUlJSWitLRUXHTRRWLFihVCCGEaPAghxFNPPSVGjx4tioqKRL9+/cSVV14p3nrrLd2+2H2/M3ggI4oQPablEhEREZngnAciIiKyhcEDERER2cI8D0Q5aseOHXj00Uct7//AAw+kJAkWEWU+Bg9EOerAgQO2kh3NmTOHwQMRAQA4YZKIiIhsyapPHjo7O7F//3707dvX9IFCRERE1E0IgaNHj2LIkCGm2VezKnjYv39/Vx53IiIisq+xsTHm+Shasip4iD6rvrGxMWWpgomIiHLBkSNHUFlZ2XUtNZJVwUP0VkW/fv0YPBARESXBym1/5nkgIiIiWxg8EBERkS0MHoiIiMgWBg9ERERkC4MHIiIisoXBAxEREdnC4IGIiIhsYfBAREREtjB4ICIiIlsYPBAREZEtDB6IiIjIFgYPREREZAuDByIiIrKFwYMD27cDqgooivx3+/bY8tZW4NprgZEj5b+trbHlJ04Ad98NXHGF/PfECevH7ugANmwAXnhB/tvR4fRsiIiIrFGEEMLrTqTKkSNHUFpaipaWFtcfyW30xFIhgPHjgc2bE8tCIWDTJuCaa4C1axPLw2FgzRrjY69aBdx7L7BvX/e2QACorQWqqqz0noiIKJada6ivPnl46KGHoChKzOucc87xulsJzB51rijagQMgt/fvrx04AHL7Ndfot71qFTBjRmzgAABNTXL7qlXGfSMiInIq3+sOxDvvvPPwhz/8oev7/Hx/dTH+1kQyWlqMy9eulbcwiopit3d0yE8ctD4rEkIGLfPmyU8vVNV5P4mIiLT46pMHQAYLgwcP7nqdeuqpuvu2tbXhyJEjMS+3XXCB64cAAEQiidvq6xM/cehJCKCxUe5HRETkFt8FDw0NDRgyZAjOOOMM3HLLLdi7d6/uvgsWLEBpaWnXq7Ky0vX+dXa6fggAQEND4rbmZmt1re5HRESUDF8FDxMmTMCyZcvw+9//Hk899RT27NmDyZMn4+jRo5r7z58/Hy0tLV2vxsZG1/uYl6YRGzEicVt5ubW6VvcjIiJKhq9XWxw+fBjDhg3D448/jm9/+9um+6djtcX27cB557nSdIzjx7XnPAwfLidHav3UFEWuutizh3MeiIjInoxdbRGvf//+OOuss7Br1y6vu9Ll3HOdt1FaalweDicGDoAMCGpr5dfxKz6i39fUMHAgIiJ3+Tp4aG1txe7du1Hus8/hzT6rEULmc9ASCgGHD8sAQYtZnoeqKmDlSqCiInZ7ICC3M88DERG5zVe3Le677z584xvfwLBhw7B//348+OCD2Lp1K7Zv345BgwaZ1k9nkihA3sK44AI5iTIvD9i2LfaTidZWYNYsYPduIBgEli8HSkq6y0+ckKsqGhrkHIdFi7Q/cdDS0SFXVTQ3yzkOkyfzEwciIkqenWuor5Io7Nu3DzfddBM+++wzDBo0CBdddBHeeecdS4GDF8491zgtdEkJsHq1fnlREfDkk8kdW1WBqVOTq0tEROSEr4KHFStWeN0FIiIiMuHrOQ9ERETkPwweiIiIyBYGD0RERGQLgwciIiKyhcGDgdZW4NprgZEj5b+trbHlLS3ARRcBQ4fKf+OflnngADB4MNC7t/z3wIHY8vZ2mdTpnnvkv+3t9sozVUcHsGED8MIL8l+jFStEROQ/vsrz4FQq8zyMHw9s3py4PRQCNm0CzjxT5m+IFwwCu3YBffrIFNPxiouBY8eA++8HHn889sKpqkB1NbBwoXl5plq1Sj5WvOfTQQMBmTmTCa6IiLxj5xrK4EGDXuAQVVDg7FOA/Hzgyy/1y0Mh4+NHIpkZQKxaBcyYkZihM5pamxkyiYi8w+DBQfDQ2gr07ZvijqWYqspPNQoKvO6JddGHevX8xKEnPtSLiMhbWfNgLC/MmuV1D8x1dABLlnjdC3vq6/UDB0B+GtHYKPcjIiJ/Y/AQR2segx9lSj+jmptTux8REXmHwUOcYNDrHliTKf2MsvpgVJ89QJWIiDRwzkMcznlwR3TOQ1OT9iPNOeeBiMhbnPPgQEmJXO1gxOlFO9/kcWRmx6+uzqzAAZABQW2t/Dq6uiIq+n1NDQMHIqJMwOBBw6ZN+hfwUAhoa9O/bRAMyr+si4u1y4uLgZMn5XLL+AulqsrtmzYZl2fiMk1ALsNcuRKoqIjdHghwmSYRUSbhbQsDra1y9cXu3TIoWL5cfjIR1dICTJ8O7N0rs0y+9hpQWtpdfuAAMHo0cPgw0L8/sHWrzDQZ1d4uV01E27/rrthPFMzKM1VHh1xV0dws5zhMnsxPHIiIvMY8DykKHoiIiHIF5zwQERGRaxg8EBERkS0MHoiIiMgWBg9ERERkC4MHIiIissUkXVFuO3FC5lVoaABGjAAWLQKKirrLP/8cmDIF2L8fGDIE2LgRGDjQevtmSzGNljQ6Xe7I5ZLJ4bgREQEQWaSlpUUAEC0tLY7bCoeFkOmeYl/hsCwvK9MuLyuz1n4kIoSqxtZVVbldCCHq6oQIBGLLAwG53ajMCqf1cxXHjYiymZ1rKPM8aLjmGmDtWv3yggL5qYGesjKZIErP/ffLTzH0hMPAyy8nPgNCUbSfCxEtA8wzNa5aBcyYod22lfq5iuNGRNmOSaIcBA8nTuinlrbjs8+0b2G0t8v2OzqcHyOe2cOlog+n2rcvufq5iuNGRLmASaIciERS086UKdrblyxxJ3AA5F/FjY3ynryW+nr9C6CV+rmK40ZEFIvBQ5yGhtS0s3+/9vbdu1PTvpHmZnvbk90vV3DciIhiMXiIM2JEatoZMkR7u97TOFOpvNze9mT3yxUcNyKiWJzzECcX5jw0NWlPvOS9e20cNyLKBZzz4EBRkVztYMTssdhlZTJw6OgANmwAXnhB/tvRIetWVxvXD4flBSk6kz+q5/d6ZTU1+hcwVQVqa5Ov35PWudkpzySpHDcioqzg6qLRNEtnnofiYu3y4mJZbpYTIBTSrh8K6devrNTP8xAts8KN+j3PLVvzITgdNyIiP2OeB4d5HqL0Mkw6ydMAAN/8pnEeiUgEWLjQnxkmzfId3Hcf8Nhj2ZsPgRkmiShbMc9DioIHLW7OWYhSVeD4cfPbI+lmJd9BXp7+2HBuABGRf3HOg4vczNMQ1dEhj+M3VvIdGI0N8yEQEWUHBg82pSNPQzqPY0eq8hgwHwIRUWZj8GBTOvI0pPM4dqQqjwHzIRARZTbOebDJ6pwHo4dYmfH7nAejfAec80BElJk458FFVvM0ANo5ARTFPI9EdbX/AgfAWr6D6mrjHBXMh0BElPkYPBhobQWuvRYYOVL+29oqty9cqP8ArUgEWLNGLkk87bTYsrIyuX3NGrlf/EVUVbuXabot2SROVVXyHCoqYrcHAnL7woXG5Zm8TJOIiCTettAxfjyweXPi9lAI2LQJOPNM7UmNwSCwaxfQp4+89RCvuBg4dkzmS7jnntgHaA0ZAvz0p+5fYFetAu69N3blRCAgP1WwemyzfAfMh0BElFmY58Fh8KAXOEQVFMi5D8kqKABOnvQmkZJZkid+OkBElJsYPDgIHlpbgb59U9wxG9ycVGglyRMnNBIR5SZOmHRg1ixvj+9mIiUrSZ6YxImIiMwweIjjl+RMbiRSstomkzgREZERBg9x/JKcyY1ESlbbZBInIiIywuAhzvLl3h5fUYDKSrk6IdUmT5ZzGuJzMKTj2ERElD0YPMQpKZHLMY04TeBUUOBNIiUrSZ6YxImIiMwweNCwaZN+ABEKAW1t+rc3gkE58bC4WLu8uFjW9yqRklmSJy7TJCIiM1yqaaC1Va6+2L1bBgXLl8tPJqJaWoDp04G9e4GhQ4HXXgNKS7vLDxwARo8GDh8G+vcHtm4FBg/uLvcykRKTOBERUU/M8+Dig7GIiIiyEfM8EBERkWsYPBAREZEtDB6IiIjIFgYPREREZAuDByIiIrIl3+sO+JnZUs0TJ4BIBGhoAEaMABYtAoqKusvb24ElS7rr33VXbIIps6WeRsspzfrm9lJMs3MzOr7bfeMyVCIil4ks0tLSIgCIlpYWx22FQkLIdE+xr1BIlofD2uXhsCyPRIRQ1dgyVZXbhRAiGNSuHwzK8ro6IQKB2LJAQG4365tR3VQwOzej47vdN7fbJyLKVnauoczzoGH8eGDzZv3y0lL5qYGeYND46Zxm9cvKgEOH5KWvJ0VJ3KZ17I8+0q4LOM8ief/98hMWPeEw8PLL9vqeqr6tWgXMmOHeuRMRZTMmiXIQPLS2An37prhjPqEoMg31nj3JfYzf3i7Ta3d0+K9vHR3A8OHAvn3utE9ElO2YJMqBWbO87oF7hAAaG+V8gGQsWeJO4AA471t9vX7gkIr2iYioG4OHOEa3G7JFc3Ny9dIxNsn2zWq9ZNsnIqJuDB7i6D0tM5uUlydXLx1jk2zfrNZLtn0iIurGOQ9xsmHOg97kxFyY89DU5M65ExFlO855cKCkBAiFjPfpmYtBi9lf6Gb1y8rkxS66SiAq/nujY+vVralJ/uJZUABUVxvvEw6b992NvqkqUFvrXvtERNSNwYOGTZv0A4hQCDh8WF4ktYTDwK5dMnlU/IVKVeX2w4f1A4xgEDhwQC4rrKiILQsEgLo6477t2qVfNxVLFRcuND63NWuM+15X517fqqrcPXciIpJ428IAM0zqY4ZJIqLswjwPKQoeiIiIcgXnPBAREZFrGDwQERGRLQweiIiIyBYGD0RERGRLvtcd8DOz1RRmKx7MVlOYtW/EbEWBWbmT1RJ+Z3ZuRETkkGsPBveAnWeRmwmHhZC5CmNf4bAsD4W0y0MhWR4MapcHg9baN1JXJ0QgEFsvEJDbrZRHIkKoamy5qsrtVur7mdm5ERGRNjvXUN8GDwsWLBAAxL333mu5TqqCB70Le/RVWmpcXlBgXF5cbFxuFEDU1QmhKIl1FEW+IhHjcrNzC4eN6/s5gIhEjM+NAQQRkT4711Bf5nnYvHkzZs6ciX79+uGSSy5BTU2NpXqpyPNw4oR8foPXjh9PvIURfX6D3qOnFQXIy3Pvsdl+fj6EleduqKocV97CICJKlNF5HlpbW3HLLbfgF7/4BQYMGGC4b1tbG44cORLzcioScdxESmj1o75eP3AA5N/XbgUO0fYbG2U//GbJEvNz7+iQ+xERkTO+Cx7mzp2L6dOnY9q0aab7LliwAKWlpV2vyspKx8dvaHDcREpo9aO5Of390OKXfvS0e3dq9yMiIn2+Ch5WrFiBd999FwsWLLC0//z589HS0tL1amxsdNyHESMcN5ESWv0oL09/P7T4pR89mT3J1O5+RESkzzdzHhobGzFu3Di88cYbGDlyJABg6tSpGD16NOc8/J/onIemJnkLIV6q5jwoin77nPNARJSdMnLOw5YtW3Do0CFceOGFyM/PR35+PjZu3IjFixcjPz8fHW7ezO+hqEj/cdtRPXM1aDG7OJkFJ+Gwdr4HVQVqa+XXihJbFv2+ulp+rVWuKObnFi3Xa7+mxn+BAyDHvLraeJ/qagYORESp4Jvg4bLLLsO2bduwdevWrte4ceNwyy23YOvWrVDTeMVas0b/IhsOA4cPA6GQdnkoBLS16X88HgwCx44Zt79mjX7fqqqAlSuBiorY7YGA3L5woXH5mjVyMmb8cKqq3L5mjXH9qir9vnlt4ULjc1u40Jt+ERFlG9/cttDixW2LnphhkhkmiYhyhZ1rKIMHIiIisnUN9fWzLTZs2OB1F4iIiCiOb+Y8EBERUWZg8EBERES2MHggIiIiWxg8EBERkS2+njDpNadLLc3qmzFaLul0qaXbSz2TPS8iIsoALj4aPO3sPIvcTDAohEzSHPsKBmV5OKxdHg5bq2+mrk6IQCC2biAgt0ciQqhqbJmqyu1mdVNRbnb8ZM+LiIi8Y+ca6us8D3alKs/DmWcaP32xuFg+IyHZ8mAQ2LVLv3zVKmDGjMTnS+g9c6KncBh4+WXtugBw333AY48lX/7NbwJr1+of3yiTo9F5Af7PYElElM2yJkmUXakIHlpagP79U9svLYcPa9/CiD78at++1B/T7MFZqXiwlt7Dp8zOy88P3SIiygUZ+WAsv5g+3dvj1Ne7EzgA8i9+o8DArNyKjg45FyKe2XkJATQ2yv2IiMjfGDzE2bvX2+M0N6fn+G7SuuVj9byy4fyJiLIdg4c4Q4d6e5zy8vQc301aTxS1el7ZcP5ERNmOcx7i+GXOQ1OT+eRIPXoTK/0w50HvvDjngYjIW5zz4EBpqfZfzj0VFzsrDwb18z2oKlBbK7+OrkKIiv9eSzhsXLe6Wn6dTLmidLevp7paO9+DlfOqqWHgQESUCRg8aNi1Sz+ACAaBY8f0L6LhsCw3qm+0TBOQyxVXrgQqKmK3BwJAXZ1cDhl/kVVVuX3NGv26K1fKZZROytesMT6+3jJNs/PiMk0ioszB2xYGmGGSGSaJiHIF8zykKHggIiLKFZzzQERERK5h8EBERES2MHggIiIiWxg8EBERkS0MHoiIiMiWfK874GdOl2Ka1TcrN+L2Ukw/c7vvmTw2RERpIbJIS0uLACBaWloctxUOCyETKce+wmFZHgxqlweD1uqblRupqxMiEIitFwjI7ako9zO3+57JY0NE5ISdayiDBw16F/boq7jYWXlZmXG5UQBRVyeEoiTWURT5ikSclfv5Iml27k777nb7RER+ZucayiRRcU6cMH82RTocP554CyP6cKl9+7TrWHmwlaoaPxjLrw+nsnLuTvrudvtERH7HJFEORCJe90DS6kd9vf7FDZB/J5s9EdOoXAigsVEex2+snLuTvrvdPhFRNmHwEKehweseSFr9aG5Oz7HTdRw7rPYp2b673T4RUTZh8BBnxAiveyBp9aO8PD3HTtdx7LDap2T77nb7RETZhHMe4mTCnIemJvkxejyrcx46O/Xr+/W+vpVzT8WcB7faJyLyO855cKCoCAiHjfcxCy7MysvKjMvDYdmPjg5gwwbghRfkvwBQWyv/VZTYOtHvq6vl11rliiLLjerX1HRPqux5bLO5FG5TVfNzj/bdj+0TEWUVl1d+pFU68zzoLbcsK7NW36zcKN+AVlllpXEeB6flfsl1YNZ3v7dPRORXXKrp4LZFT3oZIFetAmbM0P94e+VKoKoq+QyTeu1H/wJeuVJ+OuFGhkkrx66qSn5MU4EZJomIUs/ONZTBg03ZnG+AuQ6IiHIX5zy4KJvzDTDXARERWcHgwaZszjfAXAdERGQFgwebsjnfAHMdEBGRFQwebJo8Wd73j1/OF6UoQGWl3M+P7fv12ERElDkYPNiUzfkGmOuAiIis4GoLA+3twJIlwO7dQDAI3HUXUFAgy1atAu65B9i/v3v/igpg8eLupYxG9a20P3cucOBA9/7l5cCTT8r2zdpOdqlm9Njf+57Mtqh3bk7GzgyXShIRpZ+ta6irGSfSLJVJoiIRIVQ1NlmQqsrtQpgneTKrb1YeCmm3HwqZ1zVL8mRWHokIkZcXW56X192+07Ez4ucEVURE2czONZTBg4ZIRPvCHX0Fg87K9QKDnlkqjcqNXuGwEIqSuF1R5CsSMS7XC4qiL7MAwGzsjOrX1Rn3jQEEEZF7mGHSwW2L9nb5bAqvn+XgBisPzjKjqvKhXVq3IKyMnV59JqgiIvIWk0Q5sGRJdgYOgPw73um5dXTIMdJiZez06jNBFRFR5mDwEGf3bq974H96Y2R17LT2Y4IqIqLMweAhTjDodQ/8T2+MrI6d1n5MUEVElDk45yFONsx5UBT9J376fc5DU5N+3znngYjIPZzz4EBBAVBdbbyP2V/YZuWhkHF5WZlxuZFwWP6rl+Spulp+rVWuKN319VRX6+drsDJ2evWZoIqIKIO4vPIjrZjnQdbVypVQWWmc56FnuZM8DU7rm/WNiIjcwaWaacgwCQAnTgCRCNDQAIwYASxaBBQVWa9vVt7aCsya1V2+fDlQUmKtrpMMk1badzp2Rphhkogo/excQxk8EBEREec8EBERkXsYPBAREZEtDB6IiIjIFgYPREREZAuDByIiIrIl3+sO+JnT5YwtLcD06cDevcDQocBrrwGlpd3ln38OTJkC7N8PDBkCbNwIDBzYXW62FNRJ390uz1UcFyLKCS7nnEirVCaJ0kpWFAhYT6QUDGoneQoGZXlZmXZ5WZksN0tC5aTvbpfnKo4LEWUyO9dQBg8a6uqEUJTEC7eiyJfehT36Ki01Ls/LMy4vKDAuNwogzPoeibhbnqsXSrNxz9VxIaLMwQyTDpJERR/QtG9favuWasePJ97CMOu72YOxrDw4S1WN6+fiw6usjHsujgsRZRYmiXKgvt7/gQMg50LEM+u7EMaBgVk5YF6/sVH2I5dYGfdcHBciyl4MHuI0N3vdA2saGhK3+aXvfulHulg931wbFyLKXgwe4pSXe90Da0aMSNzml777pR/pYvV8c21ciCh7cc5DnOj966Ym+XGzXxnNedDre6rmPHR26refi/f2rYx7Lo4LEWUWznlwQFWB2lr5taLElimKfIXDxm30zOWgJc9k1M0eXR0Oa+d7MOs7AFRXd5+H3XJFkeVG7dfU5N4F0sq45+K4EFH2YvCgoaoKWLkSqKiI3R4IyO1r1sgJi/EXA1WV2w8flkmjtASD8i/VsjLt8rIyoK1NP0AJh+Xxk+37woXulldV6fctm5mNe66OCxFlJ962MMAMk8wwaRfHhYgylZ1rKIMHIiIi4pwHIiIicg+DByIiIrKFwQMRERHZwuCBiIiIbMn3ugN+Zraawmw1RGsrMGtWd/3ly4GSEuv1nczcN+u705Ukbq4q4IoFfbk6Nrl63kS+5eLTPdMuVY/kFkI+elpVYx+vrKpyuxD6j+WOPi47FNIuD4Ws1a+rEyIQiC0LBKw92tms72ZtO63vhJttZ7pcHZtcPW+idLNzDfVV8LBkyRJxwQUXiL59+4q+ffuKv/u7vxO/+93vLNdPVfAQiWhf2KOvYNC4vLTUWXkoJISiJG5XFPky+qVp1vdw2LhtvaDGan0nv9Dr6txrO9Pl6tjk6nkTecHONdRXeR5eeeUVqKqKESNGQAiBX/3qV1i0aBHee+89nHfeeab1U5Hnob0dKC42fzS1V4yek+B13508wyH6fAi9R1vn8vMhcnVscvW8ibySsXkevvGNb+Dqq6/GiBEjcNZZZ+Hhhx9GSUkJ3nnnHc3929racOTIkZiXU0uW+DdwAOTfXY2N8v5vPK/7btQ3M/X1+hcJp21nulwdm1w9b6JM4KvgoaeOjg6sWLECx44dw8SJEzX3WbBgAUpLS7telZWVjo+7e7fjJtKiuTlxm1/6rtW3VNVJpu1Ml6tjk6vnTZQJfBc8bNu2DSUlJSgsLMSdd96J1atX49xzz9Xcd/78+Whpael6NTY2Oj6+3gOt/Ka8PHGbX/qu1bdU1Umm7UyXq2OTq+dNlAl8NecBANrb27F37160tLRg5cqV+OUvf4mNGzfqBhA9cc5D5s95aGqSH0ensu1Ml6tjk6vnTeSVjJ3zAAAFBQU488wzMXbsWCxYsACjRo1CbW1tGo8PVFcb72P2F37PJ2cmUx4KyV+MihK7Pfp9TY32L0srfQ+H9dtWFP1HgVupb9Q3M6oKRH/MqW470+Xq2OTqeRNlAt8FD/E6OzvR1taW1mMuXCiTN8X/UlJVuX3XLv2LbDgMHD4sAwAtoZAsN6q/aROwciVQURFbFgjI7VVVyfd9zRrjttescVbfqG9mqqrcazvT5erY5Op5E/mdr25bzJ8/H1dddRWGDh2Ko0eP4vnnn8dPfvIT/Md//Ae+9rWvmdZP9SO5mWGSGSb9JlfHJlfPmyid7FxDfRU8fPvb38a6devQ3NyM0tJSjBw5Ev/4j/9oKXAAUh88EBER5Qo711BfPdvi2Wef9boLREREZML3cx6IiIjIXxg8EBERkS0MHoiIiMgWBg9ERERki68mTGYas+VjLS3A9OnA3r3A0KHAa6/FJohyshzS7NhuL8U0W2Zq1L7TZXdctkeZhO9XykruPRk8/ew8i9ypujohAgEhZOJc+QoE5HYhhAgGY8uir2BQlkciQqhqbJmqyu1m7Zsd26zcybGFECIc1j63cNi8fbO2nY47kZ/w/UqZxM41lMFDEurqhFCUxIunoshXWZn2xTX6Ki01Lg+H9dvXqxM9diRi3De9C7+VYyuKEKGQcX29oMnoFW3b7Beq2bjzFzL5Cd+vlGnsXEN9lSTKqXQkiYo+rGffPlead0RRgLw8/z7Uy4jZQ47Mxp0PSSI/4fuVMlFGPxjL7+rr/Rk4APLvmkwMHADZ98ZGOb5azMbdrD5ROvH9StmOwYNNzc1e9yC76Y2v1XHnz4f8gO9XynYMHmwqL/e6B9lNb3ytjjt/PuQHfL9StmPwYNPkyfJepaK4e5xk2leUzL1/qihAZaUcXy1m425Wnyid+H6lbMfgwSZVBWpr5dfxvxgURb7Kyozb6JnrQUs4rN++1tc9v6+u7u6HVt+ibRsd26h+KGRcPxg0Ljfqe02NfvBjNu5m9YnSie9XynYMHpJQVQWsXAlUVMRuDwTk9gMH9C+iwSBw+LBMsBT/i0NV5fY1a/Tbr6uTL71jL1xo3Lc1a5I/9sqVwKZN+gFIOAzs2mXcvlHfq6q0240yG3ez+kTpxPcrZTMu1XSAGSaZYZLIDN+vlCnsXEMZPBARERHzPBAREZF7GDwQERGRLQweiIiIyBZbj+S+7bbbbB9AURQ8++yztusRERGRP9kKHt58800oNrMX2d2fiIiI/M1W8PDxxx+71A1/MlvO6GS5ot/77rR9L/vmlJtL67hMlYiygqsPB08zO88iNxOJCKGqQsjn38mXqsrtQggRDseWRV/hsLX6bnLad6fte9k3p+rqhAgEYo8dCMjtXrftZt+IiOxcQ1MSPLz99tvikUceEfPmzRMffvihEEKIY8eOiS1btoijR4+m4hCWpCp4iES0L2DRVzDorNzNAMJp380u0mbtG52b231zqq5OCEVJPK6iyJeTi7TTtt3sGxGREPauoY6SRLW3t+PGG2/E2rVrIYSAoih44403cOmll+KLL75AIBDA97//ffzTP/1Tqj4oMZSKJFHt7UBxsfx42C2qChw/nvpbGKnq+/Hj2rcJrLSvd25u982pjg5g+HBg3z7tckWRaYX37LF/m8Bp2272jYgoKm1Jon74wx/i1VdfxVNPPYWdO3eiZxzSu3dvXH/99Vi7dq2TQ6TdkiXuBg6AbH/JktS3m6q+RyLJt693bm73zan6ev2LMyD/zm9slPulu203+0ZElAxHwcMLL7yA7373u7jjjjswcODAhPKvfOUr+Oijj5wcIu12787c46SqzYYGZ+1r7ed235xqbk7tfqls282+ERElw1HwcOjQIVxwwQW65aqq4vjx404OkXZWHint1+Okqs0RI5y1r7Wf231zqrw8tfulsm03+0ZElAxHcx5GjBiBcDiMxx57DJ999hkGDRqEP/zhD7j00ksBADfffDM++OADvP/++ynrsBHOeeCch2RF5xU0NcnbAPFSMech2bbd7BsRUVTa5jzcfPPNeOaZZ/D22293bYsmhfrFL36BF198Ed/61recHCLtCgqA6mrjfcz+ijYrr652J99DKvoeDutfnK20r3dubvfNKVUFamvl1/F5zaLf19Qkd3F22rabfSMiSoqTZR1tbW3i8ssvF/n5+eKCCy4QeXl5YtSoUaKyslIoiiKmT58uvvzySyeHsIV5HlLTd6fte9k3p7RyKVRWupfnwU7bbvaNiChtSzX/L/jAb3/7W6xcuRINDQ3o7OxEMBjEzJkzMWvWrLSmp07FbYuemGEy+fa97JtTzDBJRLnIzjXUcfDgJ6kOHoiIiHKFnWuorWdb6Ono6MCWLVu6nn1x+umn48ILL4TKP4mIiIiyjuPgYdmyZZg/fz4OHTrUlSRKURQMGjQIjzzySFKP8SYiIiL/chQ8PPPMM/jud7+L0aNH46GHHsJZZ50FANi5cyeeeeYZ3H777Whvb8edd96Zks4SERGR9xzNeTjjjDNQWVmJP/zhD+jVq1dM2cmTJ3HppZeiqakpbVkmOeeBiIgoOWnL83DgwAHMnDkzIXAAgF69euHGG2/EwYMHnRyCiIiIfMbRbYsxY8bgww8/1C3/8MMPMXr0aCeH8JTZkkKzZXNOl3J+/jkwZQqwfz8wZAiwcSMQfYSI2bGdlptxUt/tvpE7+HMhoi5OEkps2bJFDB48WNTU1Ijjx493bT9+/Lh4/PHHxeDBg8W7777r5BC2pDNJlFbCnkCgO2GP0yRSZWXa9cvKzI/ttNyMk/pu943cwZ8LUfazcw21FTxccMEFCa+KigqRl5cnCgoKxPDhw8Xw4cNFQUGByMvLExUVFWLkyJFJn4hdqQoeIhHtC3fPAEBRErcrinyFQsb1g0Hj8uJi43KtV/TYkYhx38zKzS4GdXXJ1zer67Rv5A4nP3MiyhyuZZicOnVqUhkj169fb7tOMjLlwVhuURQgL0+/71bKrTygad8++/Wt1HXSN3KHk585EWUW15JEbdiwwUm/MsKSJZkZOADy70Gjvlspb2yU97WnTk0sr6/Xv4iY1bdS10nfyB1OfuZElL0crbbIRrt3e90D7zU329tuZT+rdZNpm9zj5GdORNkrJempT548iR07dqClpQWdnZ0J5RdffHEqDpMWZo+FzgXl5fa2W9nPat1k2ib3OPmZE1H2cpQkqrOzE/Pnz8eSJUtw/Phx3f060nQfgHMe0jPnoalJflxtp76Vupzz4D9OfuZElFnSliTqkUcewaJFi/D3f//3+PWvfw0hBB599FE8/fTTGDlyJEaNGoX/+I//cHKItCsoAKqrjfcJh+Uvzfi5o9FtoZBxfbNPN4qLzfupdWxA9l2vb1bKa2r0LwKqCtTWGh9fr76Vuk76Ru5w8jMnoizmZFlHMBgUN9xwgxBCiE8//VQoiiLWrVsnhBCira1NXHjhhWL+/PlODmGL13keKiu9y/PQ89hOy804qe9238gd/LkQZT/XlmrG6927NxYvXow77rgDra2t6NevH1599VVcffXVAIAnnngCjz/+OBobG1MU6hhL9bMtmGFSHzNM5h7+XIiym2tLNeOdcsopaG1tBQCUlJSgX79+CQ/B+tvf/ubkEJ4qKADmzdMvV1Xj5WlFRcCTTybf/sCBwLZtyR3babkZJ/Xd7hu5gz8XIopy/GyLzZs3d31/ySWXoKamBmPGjEFnZycWL16MUaNGOe4kERER+YejCZN33HEH2tra0NbWBgB4+OGHcfjwYVx88cWYMmUKjhw5gn/7t39LSUeJiIjIHxzNedDS0tKCDRs2QFVVfPWrX8XA6E36NEj1nAciIqJc4dqch71791rab8yYMQCA1tZWtLa2YujQoXYOQ0RERD5mK3gYPnx4Ug/GSleSKCIiInKfreDhueeeSyp4yFRmS9PMllqaLdV0stTT7WO7uZTT66Wa2bzkMJvPjdKP7yfS5XLOibRKZZIoraQ4gUB3UhyzJE9mSaLM2jeq7/axzcqdjJ3bx3bSt0yXzedG6cf3U+6xcw1l8KChrk4IRUm8+CqKfOldnKOvYNC4PBQybj8UMq7v5rEjEeNys18cRmOn16dUHdvpzzWTfylm87lR+vH9lJvSlmHSb1Kx2iL6IKB9+7TLFUX+N8pGqXpwlt7YuXlsM1Z+rpn6gKdsPjdKP76fclfaHoyVjerrjS9+2Ro4APLcjOa2CgE0Nsox0mI2dm4e24yVn6uT9r2UzedG6cf3E1nB4CFOc7PXPfA/vTFKx9glewyr9TLx55/N50bpx/cTWcHgIU55udc98D+9MUrH2CV7DKv1MvHnn83nRunH9xNZwTkPcaL3+5qatG9RZMOcB71zSNWcB72xM+tTOuY8GP1cM/U+bjafG6Uf30+5i3MeHFBVoLZWfh2f0iL6fThs3EYwaFweCsm2tNpXFFmeLCvHjh4r/tgAUF2t3zcAqKnR/4VhZezcOrYZK31z0r6XsvncKP34fiJLXF75kVZu53morHQ3z0PP9tOd56Hnsc3KnYyd28d20rdMl83nRunH91Pu4VLNFD0YixkmmWEy02TzuVH68f2UW+xcQxk8EBEREec8EBERkXsYPBAREZEtDB6IiIjIFgYPREREZEu+1x3wM7OZxq2twKxZ3Sseli8HSkq6y52ueDBaUeF0xYJZ391cEeHlSg8iIkoBl5eNppXbeR56Pste77HZoZAsTybXQs/2jXI5mNV12nen7TsZVydtp6I+EVGusnMN9VXw8Mgjj4hx48aJkpISMWjQIBEOh8WOHTss109V8GD2LPtgUPviG32VlhqXh0LG7esFHkavaN1IxFnfg0Hj+mbtG12kzcbVSdtW2mcAQUSkL2OTRF155ZW48cYbEQqF8OWXX+IHP/gBPvjgA2zfvh19+vQxrZ/KZ1sk+2hpr6mq8fMhnP60zdrXy3lvNq6peq6GUfvMx09EpM/ONdRXcx5+//vfx3y/bNkynHbaadiyZQsuvvjihP3b2trQ1tbW9f2RI0cc98HsWfZ+p3fxBZwHDlbab2yUYzh1amyZ2bgKkXzbVts3qk9ERNb5erVFS0sLAGDgwIGa5QsWLEBpaWnXq7Ky0vEx+Yx657TGMFXjqteO1fb58yUics63wUNnZyfmzZuHSZMm4fzzz9fcZ/78+Whpael6NTY2Oj4un1HvnNYYpmpc9dqx2j5/vkREzvnqtkVPc+fOxQcffIA//vGPuvsUFhaisLAwpcedPFneG9d7lr3fqSrQ2and91TNeTBqPxCQYxjPbFytznnQattq+0b1iYjIOl9+8nD33Xfj1Vdfxfr16xEIBNJ6bLNn2SuKzItgpLTUuDwU6m5Lq/1w2LyfenWrq/XLAfO+B4PGfTNrv6ZGe0Ki2bgCsm29Yxu1bbV9o/pERGSD62s/bOjs7BRz584VQ4YMER9++KHt+m7neej5LHs38jz0bN9unoeedZ323Wn7TsbVSdupqE9ElKsydqnmXXfdheeffx5r167F2Wef3bW9tLQURT1TM+pI9SO5mWGSGSaJiHKFnWuor4IHJf7z5v+zdOlSzJkzx7R+qoMHIiKiXJGxeR58FMcQERGRDl9OmCQiIiL/YvBAREREtjB4ICIiIlsYPBAREZEtvpow6TdmS/7MlmK6uZTT7eWOTsfGSV2v++7lUk8uUyUiM774f+5uyon0cjtJVCDQnWzILAmUG0mkosc365tZudtj46Su1313+/hO+uZ2fSLyPzf/n9u5hjJ40FBXJ4SiJF7YFUW+9AKD6Ku01Fl5KKR/fL060b5FIsZ9d/oGMxsbo/bN6nrdd7eP76RvZsd2Wp+I/M/t/+cZm2HSqVQkieroAIYPB/bt0y5PxcOl3GL14VJ79iT3EZeVsdFr36wuIOt41Xe3j++kb2bHdlqfiPwvHf/P7VxDOWEyTn298QXGr4EDIPumd/GLljc2ynNMhpWx0WvfrC7gbd/dPr4RJ+OaivpE5H9++3/O4CFOc7PXPXBfsudotZ7WfqkaV7f7nq52kmlTbz+n9YnI//z2/5zBQ5zycq974L5kz9FqPa39UjWubvc9Xe0k06befk7rE5H/+e3/Oec8xIneV2pq0r5Fka45D8kcJ11zHozGxmzOg15dQNbp7LTfdir67vbxnfTN6pyHZOsTkf+l4/855zw4oKpAba38Ov4hn9HvQyHjNkpLnZVH29c7vlFZdbX8Wq+8pib5N5aVsdFr36yuosi+J9N2Kvru9vGd9M3s2E7rE5H/+e7/ubOFHf7idp6Hykpv8zxEj2/WN7Nyt8fGSV2v++728Z30ze36ROR/bv4/51JNB7ctemKGyeTHxkldr/vODJNE5Gdu/T+3cw1l8EBERESc80BERETuYfBAREREtjB4ICIiIlsYPBAREZEtDB6IiIjIlnyvO+BnTpf0OVmKCQDt7cCSJd1LPe+6CygokGVmy0CN6lo5tpv8vFQy03HsiCgtnKeV8A+3k0QFAsbJhHqWJ5MEqmf9SEQIVY0tV1W53SwBlVFdK8d2k9NxJX0cOyJyws41lMGDhro6IRQl8eKsKPIViRiX613ce17kjerrBR5WXmVlxuXhsPGx3bzQOB1XXgT1mY0tx46IzDDDZAoejGX03HRV1X/4VCZLx8Of9MbV7Yd6ZTMrY8uxIyIzTBLlQH29ceAAZGfgAMi/VRsb5Rikmtm4CmE8rm72LdNZGVuOHRGlEoOHOM3NXvfAe26MQara5M8nkdUx4dgRUaoweIhTXu51D7znxhikqk3+fBJZHROOHRGlCoOHOJMny/vD8c9L70lVjcszlaIAlZVyDFLNbFwVxfh+vJt9y3RWxpZjR0SpxOAhjqoCtbXy6/hfxooiX9XVxuWhkPExQqHufbXqh8PJ97+szLg8HNY/NgDU1Lgzqa7nuOqprvamb5nO7D0LcOyIKLUYPGioqgJWrgQqKmK3BwJy+8KFxuWbNukHAOGwLL/vPrm6oKe8PLl9zRrj+sGgdlkwCBw4IBNTxV8oVFVuX7PGuO9VVdptp0JVlTw/rb7dd5/5uLrZt0xn9p7l2BFRKnGppgG3MkyuWgXMmCFnwcdTFHkhfewx7XI90b8woxcKP2aY1Dvv+L4zS2LyOHZElCw711AGD2nmZh4JP6/nZy4CIiJ/Y54HH3Mzj4Sf1/MzFwERUfZg8JBm6Vhr78f1/MxFQESUPRg8pFk61tr7cT0/cxEQEWUPBg9p5mYeCT+v52cuAiKi7MHgIc2c5pHQ+rrn935dz89cBERE2YPBgwOtrcC11wIjR8p/W1tjy1tagIsuAoYOlf+2tMjt0TX5Q4bE7l9REZtHIv4j/PJyoK5Ovrxez9/RAWzYALzwgvzXyiTPVOUiaG+XgcY998h/29vt9d1NyYwLEVHGcfXh4Glm51nkToVCQsg1ArGvUEiWB4Pa5cGgLK+rEyIQiC0LBOR2IYQIh7Xrh8Oy/MsvhVi/Xojnn5f/fvml66fcxazvZpz0PRIRQlVjj62qcrvXnI4LEZGX7FxDmechCePHA5s365cXFBj/NVxWBhw6pJ8sadw44/bDYZkp0gtWEz254f77ZaItPZGI/NTGC16OCxFRKjBJlIvBQ2sr0LevK03bcvy4zFaZTl4mempvB4qLjW8DqKocl56ZNNOBCbCIKBswSZSLZs3yugdSJJL+Y3qZ6GnJEvP5Ax0dcr90YwIsIso1DB5s2r3b6x5IDQ3pP6aXiZ6sjrsXPx8mwCKiXMPgwSa9J1qm24gR6T+ml4merI67Fz8fJsAiolzDOQ82cc4D0NSk/0TQXJ7z4MW4EBGlCuc8uKikBAiFjPcxu3iVlXUnhOopus2s/XA4/YED4G2ip4KC7uRZeqqr0x84AEyARUS5h8FDEjZt0r/Ah0JAW5v+x+fBIHDggHGypE2bZICgxctlmkDqEj0lY+FCOVE0/iKsqt4u0wS8HRcionTjbQsHWlvl6ovdu2VQsHy5/GQiqqUFmD4d2LtXZpl87TWgtLS7vKNDzsBvbpb3wydPjr0wnjghL4oNDXKOw6JF3nzioMWs725qb5erKqLjftdd3nzioMXLcSEicoJ5HtIUPBAREWULznkgIiIi1zB4ICIiIlsYPBAREZEtDB6IiIjIFgYPREREZEu+1x3IZGbL8syWapotxTRbCuqkb06ZLZd0cnynbTs9dy+XW/p5qafXPxci8hGRRVpaWgQA0dLS4vqx6uqECASEkAmJ5SsQkNuFECIYjC2LvoJBWR4Oa5eHw7I8FNIuD4Wc982pSEQIVY1tX1XldqfHd9q203N3e+z8emwzXv9ciMh9dq6hDB6SUFcnhKIkXtgVRb7KyrQv/NFXcbFxeWmpcblRAGHWN6e/rCMR476Fw8kf32nbkYizc3d77Px6bDNe/1yIKD3sXEOZJMqm6EOQ9u3TLlcU+avRbUePJt7CsNI3Jw9osvJwKiNGx3faNiDb1Ktvdu5uj50RL49txuufCxGlD5NEuai+Xv+XPJCewAGQcyHiWelbY6PcLxlLlji7iBgd32nbgHF9s3N3e+yMeHlsM17/XIjInxg82NTc7HUPpN27E7dZ7Vuy56B1zGRoHT9VbSdzbKPtye5nh5fHNuP1z4WI/InBg03l5V73QNJ6aqfVviV7DnpPCrVL6/ipajuZYxttT3Y/O7w8thmvfy5E5E+c82BT9P50U5P2LQo/zHkw6lu2z3no7Ezu3N0eOyNeHtuM1z8XIkofznlwkaoCtbXya0WJLYt+X1Zm3EZxsXF5z1wQWkIh7XwPVvpWU5P8L+mCAqC62nifcFgey+7xnbatKN31kzl3t8fOiJfHNuP1z4WIfMrllR9p5XWeh8pK/+Z56Nk3p5JZ82/1+E7bdnrubo+dX49txuufCxG5j0s1Xbxt0RMzTDLDZKr5OQuj1z8XInKXnWsogwciIiLinAciIiJyD4MHIiIisoXBAxEREdnC4IGIiIhsyfe6A35mNjvcyWoIwHy1hZO6TtoGzGfWO+H1aolcnfWfyatQiMhnXF42mlapzPOgtS49EOhel+4kD4MQ5nkenNR10rYQ5mv6nTAbV7Nyr9vPVG6PKxFlPjvXUF8FDxs3bhRf//rXRXl5uQAgVq9ebat+qoKHujohFCXx4qso8qWXAMpqAKF3cbdykTerW1aWfNtCyADBqL6TAMJsXCMR43KzC5Xb7Wcqs3FxOq7ZOm5EuSZjk0S9/vrreOuttzB27FhUVVVh9erVuOaaayzXT0Weh+hzBowekWyF1rMnAHk7wSw9NQAcP554m8Fq3WTaBqw9x0BVZX27tzDMxlVRgLw8/WNbfTaFW+1nKivj4nRcs3HciHJRxuZ5uOqqq/DjH/8Y1157raX929racOTIkZiXU/X1zgMHQM6F0BKJWKuvtZ/Vusm0Dcg5DmYPQOrokPvZZTauQhgfWwigsVG240X7mcrKuDgd12wcNyIy5qvgwa4FCxagtLS061VZWem4zebmFHQMcqKhloYGa/W19rNaN5m2Af0+J7tfT6kaV7123G4/U1k9H6fjmm3jRkTGMjp4mD9/PlpaWrpejY2NjtssL09BxyBXKGgZMcJafa39rNZNpm1Av8/J7tdTqsZVrx23289UVs/H6bhm27gRkTFfzXnoSVEUT+c8NDXJj2STxTkPsczGNVVzHtxqP1NZGRen45qN40aUizJ2zoMfqCpQWyu/VpTYMkWRL7O/vEMh/XwPRUVAOGxcPxzWvrhbqVtWllzbgAwIqquN61dXJ5fvwWxco21Hx1irvKZG/wLldvuZysq4OB3XbBw3IjLh8sqPpMHDpZpCaK9rr6xkngenzMbVrNzr9jOV2+NKRJkvY5dqtra2YteuXQCAMWPG4PHHH8cll1yCgQMHYujQoab1U/1IbmaYZIbJbMIMk0RkxM411FfBw4YNG3DJJZckbJ89ezaWLVtmWj/VwQMREVGusHMN9dWzLaZOnQofxTJERESkgRMmiYiIyBYGD0RERGQLgwciIiKyhcEDERER2eKrCZN+Y7YU02w5pNnSNrP6RsslnS6ldHMpJuBsWZ/bSwLdPndKPy4jJUozd1NOpFcqk0SZJYEyS8SklVQnEOhOqmNW3yhRk9MkTm4mgbJy7m7VtcLtc6f0c/s9Q5Qr7FxDGTxo0Ascoq/SUuPyUEgIRUncrijyZdZ+MGhcbvQyuwhGIs7qm6mrMz53o1/oTupa4fa5U/q5/Z4hyiUZm2HSqVQkiWptBfr2TXHHelAU+evNLUYPrnLzwVdA90OU9u3TLjd6iJKTula4fe6Ufm6/Z4hyDR+M5cCsWe6273ao1tEh7+drWbLE+OJpVt9Mfb3+L3JAnntjo9wvlXWtcPvcKf3cfs8QkT4GD3F27/a6B87pnYPVc0t2DJqbk9/PSV0r3D53Sj+33zNEpI/BQxyzx21nAr1zsHpuyY5BeXny+zmpa4Xb507p5/Z7hoj0cc5DnFTNedCb25ALcx6amvTP3WzOQzJ1reCch+zj9nuGKNdwzoMDJSVAKGS8T2mpcXm0vqLEbo9+b9a+k79+q6v1L34FBbI82fpmVBWorZVf6517TY32L3Inda1w+9wp/dx+zxCRAZdXfqSV3/M8VFbmbp6HnufuVl0rmOch+7j9niHKFVyq6eC2RU/MMJk8ZpikdGKGSSLn7FxDGTwQERER5zwQERGRexg8EBERkS0MHoiIiMgWBg9ERERkC4MHIiIisiXf6w74mdnyLzeXYppx2rZZ350uZ3SydM7PSymdvieIiLKCyzkn0iqVSaK0Es8EAt2JZ8zKnSSBMuO0bbO+O02kZNa+ET8ncXL6niAi8jM711AGDxrq6oRQlMSLs6LIVyRiXK6XnTL6CgaNy40ulHqBg9W2w2Hjvpu1b3YRNxs7owtpJOLs2G5y+p5gAEFEfscMkw6SREUftrNvn3a5ogB5ecYPWHJK7wFNJ07Ihzt5yejhUVbGTu9BRX5+cJXT9wQf0EREmYBJohyor9e/SADy70k3AwdAtr9kSeL2SMTd41qh1zfA2tg1Nsr94i1ZYj6uRsd2k9P3hNF5ExFlIgYPcZqbve6BtHt34raGhvT3Q4tW3wDrY6e1n16bye6XSql6T/jlvUVE5BSDhzjl5V73QNJ6LPeIEenvhxa9R4ZbHTut/aw+htzJ48qTlar3hF/eW0RETnHOQ5zo/e2mJvlxczzOeTCf82A0dpk85yHZ9wTnPBBRJuCcBwdUFaitlV8rSmxZ9Pvq6sSynvuEQsbHMPvrubpa+wJZVASEw87aDodlH7XOTVHM29frG2Bt7GpqtC+gBQWy7WSP7SY77wm7501ElJFcXvmRVm7neaistJ4Lwc08D3pLQUMha207PTenY2ck0/I89DwvJ+dNROQ1LtV0cNuiJ71sgatWATNmJH6EHf0rc+VKoKrKnQyTVo/NDJPuYIZJIspWdq6hDB5scpLLIJOPTURE2Y1zHlzkJJdBJh+biIgoisGDTU5yGWTysYmIiKIYPNjkJJdBJh+biIgoisGDTZMny3kFRks1Kyvlftl0bCIioigGDzY5yWWQyccmIiKKyve6A36mt+yuqkouibznHmD//u79hwwBFi+W5YA7yyWjx/7e92TGw6iKChlYRI/tNidLPbmckTIN37NEcVzOOZFWbieJCgS6E/64kaipZ/tG9c3qui2T+05kF9+zlCuYJMphngezRExnnGH8dMeyMuDgQf3ycBh4+WX99r/5TWDtWnt9jk8S5RazsfFz34nsspqUjSgbMElUCh6MZZRPwa/cThLl5tgwwRX5DZOyUa5hkigHzBIx+ZnbSaLcHBsmuCK/YVI2In0MHuJkQ4Ilt84hHWOTDeNP2YFJ2Yj0MXiIkw0Jltw6h3SMTTaMP2UHJmUj0sfgIY5ZIiY/cztJlJtjwwRX5DdMykakj8FDHLNETIoi8xYYKSszLg+Hu9vSaj8cNu+nF0mirIyNX/tOZBeTshHpY/CgIZqIqaIidnsgILfv2gWEQtp1QyHgwAEgEkn8paKqcvuaNcbtr1ljXL+uTr+u28vGzMbGz30nssvs/c73LOUqLtU0YJZVrrUVmDWrO4vi8uVASUl3uRsZJv2SpTGT+05kF9+zlAuY5yFFwQMREVGuYJ4HIiIicg2DByIiIrKFwQMRERHZwuCBiIiIbGHwQERERLbke92BTGa2fMvtci/PzUtu983P505E5Asii7S0tAgAoqWlxfVj1dUJEQgIIZ+tJ1+BgNyejnIvz81LbvfNz+dOROQmO9dQBg9JqKsTQlFiLzCA3KYoQkQi7pa7eSEzOzcvL6Ju983P505E5DY711AmibKpowMYPhzYt0+7XFGAvDy5nx5VTb5cUWRq3D17Uv9RupVzc+vYZtzum5/PnYgoHZgkykX19foXGED+rWoUGADOyoUAGhtlP1LNyrm5dWwzbvfNz+dOROQ3DB5sam72ugeSG/2w2qYXY+B23/x87kREfsPgwabycq97ILnRD6ttejEGbvfNz+dOROQ3nPNgU/TeeFOT/Cg7ntU5D52d2vXNytMx58Ho3Lye8+BW3/x87kRE6cA5Dy5SVaC2Vn6tKLFl0e+rq+XXWuWKIsv16puVA0BNjTsXMCvn5taxzbjdNz+fOxGR3zB4SEJVFbByJVBREbs9EJDbFy50t7yqKvXnFGV2bm4e24zbffPzuRMR+QlvWzjADJPeYIZJIqLUs3MNZfBAREREnPNARERE7mHwQERERLYweCAiIiJbGDwQERGRLfled8DPzGbdnzgBRCJAQwMwYgSwaBFQVNRd3toKzJoF7N4NBIPA8uVASUl3eXs7sGRJd/lddwEFBdaOb9Y3s7bNyt0eOy/bdrLKhSsxiIgAPpJbR12dEIFA7KOZA4HuxzKHw4mPbgbkdiGECIW0y0MhWR6JCKGqsWWqKrebHd+sb2Ztm5W7PXZetm1W38m4ExFlMjvXUF8GD08++aQYNmyYKCwsFOPHjxd/+tOfLNVLVfBQVyeEoiRe+BVFvvQCg+irtNS4vKzMuDwc1j++Xp1o3/SCmp7Bi1G50wDCbOycXGidtm1WPxJJftwZQBBRprNzDfVdnod///d/x7e+9S08/fTTmDBhAmpqavDSSy9h586dOO200wzrpiLPQ/QZB0aPZ/YrRdF/XoZVqgocP57cLQyzsXPyfAinbVv5uaqq+ePSkzk2EVEmyOg8D48//jhuv/123HrrrTj33HPx9NNPo7i4GM8991zCvm1tbThy5EjMy6n6+swMHADngQMgL55LliRX12zshAAaG+V+6W7bys81mcDByrGJiLKNr4KH9vZ2bNmyBdOmTevalpeXh2nTpuHtt99O2H/BggUoLS3telVWVjruQ3Oz4yYy3u7dydWzOnbJjLHTttPxc+V7h4hyha+Ch08//RQdHR0oKyuL2V5WVoYDBw4k7D9//ny0tLR0vRobGx33obzccRMZLxhMrp7VsUtmjJ22nY6fK987RJQrfBU82FVYWIh+/frFvJyaPFnev45/LHMmSEWfVVUu20yG2dgpClBZKfdLd9tWfq6qmtwYOjkvIqJM5Kvg4dRTT4Wqqjh48GDM9oMHD2Lw4MFp6YOqArW18uv4C4miyFcoZNxGaalxedwHKwnC4e5jxR9f6+ue34fDxm2b9b26Ovl8D2ZjBwA1NclNKnTatpWfa3W1cfvJHpuIKNv4KngoKCjA2LFjsW7duq5tnZ2dWLduHSZOnJi2flRVAStXAhUVsdsDAbl90yb9i3Q4DBw+rH+RDoWAAwdkcqn4i42qyu1r1ugfv65OvvT6tmaNcdubNhmXL1yo3W+rzMauqsq7ts3qL1yY/Lg7OS8iokzjy6Was2fPxjPPPIPx48ejpqYGL774Inbs2JEwFyJeqh/JzQyT7o2dl20zwyQRUSI711DfBQ8A8OSTT2LRokU4cOAARo8ejcWLF2PChAmm9VIdPBAREeWKjA8eksXggYiIKDkZnSSKiIiI/I3BAxEREdnC4IGIiIhsYfBAREREtjB4ICIiIlsYPBAREZEtDB6IiIjIFgYPREREZAuDByIiIrKFwQMRERHZwuCBiIiIbGHwQERERLbke92BVIo+4+vIkSMe94SIiCizRK+dVp6XmVXBw9GjRwEAlZWVHveEiIgoMx09ehSlpaWG+2TVI7k7Ozuxf/9+9O3bF4qipKTNI0eOoLKyEo2NjXzMt00cu+Rw3JLDcUsOxy152TZ2QggcPXoUQ4YMQV6e8ayGrPrkIS8vD4FAwJW2+/XrlxVvDi9w7JLDcUsOxy05HLfkZdPYmX3iEMUJk0RERGQLgwciIiKyhcGDicLCQjz44IMoLCz0uisZh2OXHI5bcjhuyeG4JS+Xxy6rJkwSERGR+/jJAxEREdnC4IGIiIhsYfBAREREtjB4ICIiIlsYPBAREZEtDB5M/OxnP8Pw4cPRu3dvTJgwAZs2bfK6S77yX//1X/jGN76BIUOGQFEUrFmzJqZcCIH/9//+H8rLy1FUVIRp06ahoaHBm876yIIFCxAKhdC3b1+cdtppuOaaa7Bz586Yfb744gvMnTsXp5xyCkpKSnDdddfh4MGDHvXYH5566imMHDmyK6PfxIkT8frrr3eVc8ysefTRR6EoCubNm9e1jWOn7aGHHoKiKDGvc845p6s8V8eNwYOBf//3f0d1dTUefPBBvPvuuxg1ahSuuOIKHDp0yOuu+caxY8cwatQo/OxnP9MsX7hwIRYvXoynn34af/rTn9CnTx9cccUV+OKLL9LcU3/ZuHEj5s6di3feeQdvvPEGTp48icsvvxzHjh3r2uf73/8+XnnlFbz00kvYuHEj9u/fj6qqKg977b1AIIBHH30UW7ZswZ///GdceumlCIfD+Mtf/gKAY2bF5s2b8cwzz2DkyJEx2zl2+s477zw0Nzd3vf74xz92leXsuAnSNX78eDF37tyu7zs6OsSQIUPEggULPOyVfwEQq1ev7vq+s7NTDB48WCxatKhr2+HDh0VhYaF44YUXPOihfx06dEgAEBs3bhRCyHHq1auXeOmll7r2+d///V8BQLz99tteddOXBgwYIH75y19yzCw4evSoGDFihHjjjTfElClTxL333iuE4PvNyIMPPihGjRqlWZbL48ZPHnS0t7djy5YtmDZtWte2vLw8TJs2DW+//baHPcsce/bswYEDB2LGsLS0FBMmTOAYxmlpaQEADBw4EACwZcsWnDx5MmbszjnnHAwdOpRj9386OjqwYsUKHDt2DBMnTuSYWTB37lxMnz49ZowAvt/MNDQ0YMiQITjjjDNwyy23YO/evQBye9yy6qmaqfTpp5+io6MDZWVlMdvLysqwY8cOj3qVWQ4cOAAAmmMYLSP5KPl58+Zh0qRJOP/88wHIsSsoKED//v1j9uXYAdu2bcPEiRPxxRdfoKSkBKtXr8a5556LrVu3cswMrFixAu+++y42b96cUMb3m74JEyZg2bJlOPvss9Hc3Iwf/ehHmDx5Mj744IOcHjcGD0Qemzt3Lj744IOY+6ik7+yzz8bWrVvR0tKClStXYvbs2di4caPX3fK1xsZG3HvvvXjjjTfQu3dvr7uTUa666qqur0eOHIkJEyZg2LBhePHFF1FUVORhz7zF2xY6Tj31VKiqmjBr9uDBgxg8eLBHvcos0XHiGOq7++678eqrr2L9+vUIBAJd2wcPHoz29nYcPnw4Zn+OHVBQUIAzzzwTY8eOxYIFCzBq1CjU1tZyzAxs2bIFhw4dwoUXXoj8/Hzk5+dj48aNWLx4MfLz81FWVsaxs6h///4466yzsGvXrpx+zzF40FFQUICxY8di3bp1Xds6Ozuxbt06TJw40cOeZY7TTz8dgwcPjhnDI0eO4E9/+lPOj6EQAnfffTdWr16NN998E6effnpM+dixY9GrV6+Ysdu5cyf27t2b82MXr7OzE21tbRwzA5dddhm2bduGrVu3dr3GjRuHW265petrjp01ra2t2L17N8rLy3P7Pef1jE0/W7FihSgsLBTLli0T27dvF3fccYfo37+/OHDggNdd842jR4+K9957T7z33nsCgHj88cfFe++9J/76178KIYR49NFHRf/+/cXatWvF+++/L8LhsDj99NPFiRMnPO65t7773e+K0tJSsWHDBtHc3Nz1On78eNc+d955pxg6dKh48803xZ///GcxceJEMXHiRA977b0HHnhAbNy4UezZs0e8//774oEHHhCKooj//M//FEJwzOzoudpCCI6dnn/4h38QGzZsEHv27BFvvfWWmDZtmjj11FPFoUOHhBC5O24MHkz89Kc/FUOHDhUFBQVi/Pjx4p133vG6S76yfv16ASDhNXv2bCGEXK75wx/+UJSVlYnCwkJx2WWXiZ07d3rbaR/QGjMAYunSpV37nDhxQtx1111iwIABori4WFx77bWiubnZu077wG233SaGDRsmCgoKxKBBg8Rll13WFTgIwTGzIz544Nhpu+GGG0R5ebkoKCgQFRUV4oYbbhC7du3qKs/VcVOEEMKbzzyIiIgoE3HOAxEREdnC4IGIiIhsYfBAREREtjB4ICIiIlsYPBAREZEtDB6IiIjIFgYPREREZAuDByIiIrKFwQNRDlu2bBkURcHHH3/sdVcSTJ06FVOnTu36/uOPP4aiKFi2bFnMfr///e8xevRo9O7dG4qidD2kaPny5TjnnHPQq1evhEcmE5EzfCQ3EWWszz77DDNnzsR5552Hn/3sZygsLESfPn2wY8cOzJkzB1deeSUeeOABFBcXe91VoqzC4IGIMsKwYcNw4sQJ9OrVq2vb5s2bcfToUfzrv/4rpk2b1rV9w4YN6OzsRG1tLc4880wvukuU1Rg8EFFGUBQFvXv3jtl26NAhAEi4LaG3nYhSg3MeiCjG66+/jsmTJ6NPnz7o27cvpk+fjr/85S8x+8yZMwclJSVoamrCNddcg5KSEgwaNAj33XcfOjo6bB/z5z//OYLBIIqKijB+/HjU19cn7BM/52Hq1KmYPXs2ACAUCkFRFMyZMwfDhw/Hgw8+CAAYNGgQFEXBQw89ZLtPRKSPwQMRdVm+fDmmT5+OkpIS/OQnP8EPf/hDbN++HRdddFHCpMqOjg5cccUVOOWUU/DYY49hypQp+Ld/+zf8/Oc/t3XMZ599Ft/5zncwePBgLFy4EJMmTcI3v/lNNDY2Gtb7p3/6J9xxxx0AgH/5l3/B8uXL8Z3vfAc1NTW49tprAQBPPfUUli9fjqqqKlt9IiITXj8TnIi8s3TpUgFA7NmzRxw9elT0799f3H777TH7HDhwQJSWlsZsnz17tgAg/uVf/iVm3zFjxoixY8daPn57e7s47bTTxOjRo0VbW1vX9p///OcCgJgyZUrXtj179ggAYunSpQn937x5c0y7Dz74oAAgPvnkE8t9ISLr+MkDEQEA3njjDRw+fBg33XQTPv30066XqqqYMGEC1q9fn1DnzjvvjPl+8uTJ+Oijjywf889//jMOHTqEO++8EwUFBV3b58yZg9LS0uRPhohcxQmTRAQAaGhoAABceumlmuX9+vWL+b53794YNGhQzLYBAwbgb3/7m+Vj/vWvfwUAjBgxImZ7r169cMYZZ1huh4jSi8EDEQEAOjs7Ach5D4MHD04oz8+P/XWhqmpa+kVE/sPggYgAAMFgEABw2mmnxeRMcNOwYcMAyE89en7icfLkSezZswejRo1KSz+IyB7OeSAiAMAVV1yBfv364ZFHHsHJkycTyj/55JOUH3PcuHEYNGgQnn76abS3t3dtX7ZsWVeaaSLyH37yQEQA5JyGp556CrNmzcKFF16IG2+8EYMGDcLevXvx2muvYdKkSXjyySdTesxevXrhxz/+Mb7zne/g0ksvxQ033IA9e/Zg6dKlnPNA5GMMHoioy80334whQ4bg0UcfxaJFi9DW1oaKigpMnjwZt956qyvHvOOOO9DR0YFFixYhEongggsuwMsvv4wf/vCHrhyPiJxThBDC604QERFR5uCcByIiIrKFty2IyBWff/55zCTIeKqqJuSJIKLMwNsWROSKqVOnYuPGjbrlw4YNS3heBhFlBgYPROSKLVu2GGabLCoqwqRJk9LYIyJKFQYPREREZAsnTBIREZEtDB6IiIjIFgYPREREZAuDByIiIrKFwQMRERHZwuCBiIiIbGHwQERERLb8f88/hPE82+BvAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAIpCAYAAAAl0NuJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/rklEQVR4nO3de3wU5b0/8M9mkwAhMVzEEEi4GLFWDXiLSiFHqhbssTaAt9qWg3paLyT8RGqsnnOqtqcVKz1cehQVq2BRwEqgUBGPHCA0FBWhoBQqIkYIMRgKEhISE7N8f388ZzOZzc7szuzu7Ozm83695vU4893nMrNr5mF35jseEREQERERhSkl3gMgIiKixMLJAxEREVnCyQMRERFZwskDERERWcLJAxEREVnCyQMRERFZwskDERERWcLJAxEREVnCyQMRERFZwskDUQiVlZXweDwYN26cI/2NGzcOHo8HlZWVjvTnBKN9uv322+HxeLB48eIudU6cOIHS0lIMHToU6enpXd6D2tpaTJkyBYMGDUJqaio8Hg9uv/32mO5HNJjtsx3Dhg2Dx+PBp59+GpX2QvF4PPB4PI70Re6VGu8BEIVj2LBhOHjwIKqrqzFs2LB4D4cccNddd+G1117DsGHDMHnyZPTs2RPnnXceAEBEMHnyZGzbtg3nn38+vvnNbyItLQ1jx46N86iJugdOHohCuPzyy/H3v/8dGRkZ8R5K0pk1axYeeugh5Obm6rZ/9dVXWLVqFXr27In3338fZ5xxhi5+8OBBbNu2DUOGDMH777+P1FT+KSNyEv+PIwohIyOj41+8FF25ubldJg4AUFdXh/b2dgwePLjLxAEADh06BAAYPnw4Jw5EccBrHsjVFi9eDI/Hg4MHDwJQJwv/b66df0PvfF1Cc3MzHnnkEXz9619HRkaG7meObdu24cEHH8Tll1+OgQMHIj09HTk5Objhhhvwv//7v0HHYHTNw6effgqPx4Nhw4ZBRLBw4UJceuml6N27N7KzszF+/Hi8/fbbUT8mGzZswOTJk5Gbm4v09HScddZZmDRpkmFfnX+jrqiowNixY3HGGWegd+/eGDNmDN54442ojKumpgZ33nkncnNz0bNnT4wYMQL//u//jpaWFsM6wX7/93g8GDp0KAD1DUPn99v/ebjqqqsAAJs3b9bFQ/3uP3r0aHg8HixfvtzwNU899RQ8Hg8mTZrUse306dNYuHAhxowZgz59+iAtLQ1nnXUWRo0ahenTp0fleoPGxkY8//zzmDx5MkaMGIHevXujd+/eKCwsxL//+7/jxIkTIdtYtWpVx/ublZWFcePGhXx/V6xYgeuuuw4DBgxAeno6Bg8ejB/+8IfYu3dvxPtESUyIXKyqqkqmTp0qvXv3FgBy4403ytSpUzuWv//97yIismnTJgEgV1xxhRQVFUnv3r3l29/+ttx6661y7bXXdrR3zTXXSEpKihQWFso///M/y8033yyXXHKJABAAMm/evC5j8Ld91VVX6bZXV1cLABk6dKhMnTpV0tLS5Oqrr5ZbbrlFzj33XAEgPXr0kHfeecfSPl911VUCQDZt2tQl9pOf/EQASEpKilx++eVy8803yxVXXCEej0e8Xq+8+OKLXer49+2RRx4Rj8cjY8aMkVtvvVVGjRolAMTj8cjKlSstjTHQ3//+dznrrLMEgOTm5srNN98s//zP/yy9evWS0aNHy+jRo4Pu09SpUwWALFq0SLftxhtvFADSu3dv3fvt/zxMmDBBAEhOTo4ufvToUdNxPvfccwJAJkyYYPga/+dhzZo1HdvuuOMOASA9e/aUa6+9Vm677TaZMGGCjBgxQgDIqlWrwj5WwfZZRH3WAciAAQNk7Nixcuutt8r48eOlf//+AkDOOecc+cc//tGlvaFDhwoAuf/++wWAXHbZZXLbbbfJ5Zdf3vHe//a3v+1S76uvvpJbbrml43P6jW98Q26++eaOz0WvXr1k3bp1Xer526TujZ8ASgj+P5DV1dVB4/4TPAAZOXKk1NXVBX3dG2+8IZ999lmX7Vu3bpUzzjhD0tLS5PDhw0HbNpo8+CcQ+/bt64i1t7fLnXfeKQBk/PjxlvbVaPKwcOHCjpPI+++/r4tt3rxZsrKyJD09XT766CNdzD/GPn36dJnIPProowJAzj33XEtjDFRUVCQA5JZbbpGWlpaO7QcPHpSCgoKOMYQzeRDRT8yCMXpPQmloaJCMjAxJSUnp8j6LiLz//vsdk5KvvvqqYx8ASF5eXtDP1d69e+XgwYNhj8Fon2tqauR///d/xefz6bafOnVK/uVf/kUAyLRp07q05/9/w+PxyMsvv6yLLV++XDwej6Smpsru3bt1sX/7t3/rmHB/8sknuthrr70mXq9X+vbtK1988YUuxskDiXDyQAnCyuThz3/+s60+Hn74YQEgTz/9dNC2zSYPnf+V6ldXV9fxr7q2trawxxFs8uDz+WTQoEECQLZv3x603pNPPikA5Cc/+Yluu9m/Pr/88kvJzs4WAHLo0KGwx9jZli1bOr4lCPYv41WrVrlm8iAiMmXKFAEgjz/+eJfYjBkzBIA88MADHdu2bdsmAOS73/2u5b6CMdpnM6dOnZLU1FQZMGBAl5j//42JEycGrev/FufHP/5xx7Zjx45Jr169pGfPnkEnUSIi06ZNEwDy3//937rtnDyQiAivNKKkctZZZ6G4uNj0NceOHcPatWvxt7/9DV988QW++uorAMD+/fsBAPv27bPUZ2pqKq677rou2wcOHIi+ffviiy++wLFjxzBw4EBL7Xa2c+dOfPbZZygoKMCll14a9DX+azK2bt0aNH7DDTd02dajRw+cffbZ2LlzJ2pra5Gfn295bP7rTq677jr079+/S7ykpATZ2dloaGiw3HYs3HHHHViyZAleeuklPPzwwx3bv/rqK7zyyisAgDvvvLNj+3nnnYesrCy88cYb+NWvfoXvf//7GD58eMzGt3XrVlRVVeHQoUNobm6GiAAA0tPTcfToUXzxxRfo27dvl3pTp04N2t7UqVNRUVGhy7GxadMmtLS04JprrsHgwYOD1hs3bhwWLFiArVu3oqysLPIdo6TCyQMllVA5IJ5//nncf//9OHXqlOFrTp48aanP3NxcpKWlBY2dccYZ+OKLL/Dll19aajPQJ598AgA4cOBAyAQ9R48eDbp9yJAhhmMEYHuMhw8fBgDDE6r/otL333/fVvvRNm7cOJx99tnYt28ftm7dim984xsAgNdffx1Hjx7FFVdcga9//esdr8/KysKiRYtwxx134D/+4z/wH//xH8jNzcWVV16J6667Dt///veRmZkZ8bjq6+tx4403YsuWLaavO3nyZNDJg9Hx92/3v0+A9nnasGGD7c8TdW+cPFBS6dWrl2Fsx44duPvuu+H1evHrX/8aN9xwA4YMGYKMjAx4PB4sXLgQd999d8e/9MKVkhL7m5ZOnz4NQH2bMWHCBNPXnnnmmUG3OzHORODPRPnII49g8eLFHZOHRYsWAVDfTAS68cYbce2112LNmjWoqqrCX/7yF6xatQqrVq3CI488gvXr16OwsDCicf3oRz/Cli1bMHr0aPz85z/HqFGj0Ldv346J6aBBg1BXV2f58+nXuZ7/83TOOedgzJgxpvV4mzIFw8kDdRuvvfYaRATTp0/Hgw8+2CXu/9nCjfw/J/Tv3z9qaY2jxf+1t9ntiv5bbd1i6tSpeOyxx/Dqq69i/vz5OHnyJNatW4devXrhe9/7XtA62dnZmDJlCqZMmQJA3Zo6ffp0rF69GmVlZdi8ebPt8Zw6dQpvvPEGUlJS8MYbb6BPnz5d4keOHDFto7q6GqNGjeqy3f++5OXldWzzf56+9rWvue7zRImB/xShhJCeng4AaG9vt93G8ePHAaAjh0BnX375JSoqKmy3HWtFRUU488wzsXfvXuzZsyfew9Hx51x48803O45xZ2vWrAkrR4GThgwZgmuuuQYnT57EypUr8fLLL6O9vR2TJ09GdnZ2WG3k5+fj5z//OQBg165dEY2noaEBPp8PZ5xxRpeJAwC8/PLLIb9xWLJkSdDtv//97wFAl6fkmmuuQXp6OiorK1FfX2973NR9cfJACcH/r6ZITpz+37FfeuklNDY2dmz/8ssvMW3aNFRXV0c2yBhKS0vDo48+ChHBpEmTgv4u7vP5sHHjRrzzzjuOjq24uBiXXHIJmpqaUFpaitbW1o5YTU0NHnjgAUfHEy7/RZGLFi0y/cli586dePXVV4Mmu/rTn/4EIPiE1IqcnBz07dsXJ06c6DIJeOedd3QXdhpZtWpVl+RXK1asQEVFBVJTUzF9+nRdf9OnT8epU6dwww03YPfu3V3aa21txZo1a/Dhhx/a3CtKZvzZghLCjTfeiE2bNuGHP/whxo8f33HBWHl5Ob72ta+F1cYdd9yB+fPnY+fOnRg+fDiKi4vh9XpRVVWFlpYW3HfffZg/f34sdyMiZWVlOHToEGbPno3i4mJccMEFOOecc9CrVy8cOXIEu3btwokTJ/DMM8/gyiuvdHRsS5Yswbhx47B8+XL8+c9/xtixY9Hc3IyNGzdi5MiROPPMM2OSbTMSEydORN++fbFhwwYA6mLbq6++usvrDh48iO9973vo1asXLrnkEuTn56O9vR27d+/Gvn37kJ6ejieffDKisXi9XjzyyCO4//778S//8i94+umncfbZZ+PQoUPYunUrfvjDH+LPf/6z6c8/9913H2677TbMmTMHI0aMwIEDB/Duu+8CAH7zm99g5MiRutc/8cQTqKurw9KlS3HRRRdh1KhROPvss5GamorDhw9j165dOHXqFNatW8frHqgLfvNACeHee+/FrFmzMHToULzxxht44YUX8MILL6Curi7sNvr06YPt27dj2rRp6NOnD9atW4e3334b48ePx1//+ldcdNFFsduBKHnyySfxl7/8BT/4wQ/Q1NSEN998E2vXrsVnn32GcePG4Xe/+x1uvfVWx8d1/vnnY/v27bj99tvh8/nwxz/+EXv37sX06dOxYcOGjp+d3KRnz5647bbbOtanTp0a9M6DK6+8Ek888QS++c1v4rPPPsOaNWvw1ltvwev1orS0FB988EHQW3WtmjFjBv74xz/iG9/4Bvbt24c//elPaG1txdNPP42XXnopZP377rsPf/jDH5Camoo1a9bgb3/7G4qLi/GnP/0J999/f5fXp6am4pVXXsEbb7yBiRMnor6+HmvWrMH//M//4Pjx47jhhhuwdOlS/NM//VPE+0bJxyN2L90lIiKibonfPBAREZElnDwQERGRJbxgkog6/OMf/7B0d8SPfvQjjB07NoYjIiI34uSBiDo0NTWFdXGe37hx4zh5IOqGeMEkERERWZJU3zycPn0an332GbKyskI+7IWIiIg0IoLGxkYMGjQo5LNwkmry8Nlnn9l6pDAREREpNTU1umehBJNUk4esrCwAasf9jxkmIiKi0E6ePIn8/PyOc6mZpJo8+H+qOOOMMzh5ICIisiGcn/2Z54GIiIgs4eSBiIiILOHkgYiIiCzh5IGIiIgs4eSBiIiILOHkgYiIiCzh5IGIiIgs4eSBiIiILOHkgYiIiCzh5IGIiIgs4eSBiIiILOHkgYiIiCzh5IGIiIgs4eTBxN69gNcLeDyq3LtXi/30p2q7f/npT7XYtm362LZtWqylBSgrAyZMUGVLixZrawPmzQOmT1dlW1us95CIiMg6j4hIvAcRLSdPnkR2djYaGhoifiR3GE8ktaykBFi9Ovj2c88F5swBfD5tu9cLzJwJPPlk9MdCRETUmZVzqKu+eXjsscfg8Xh0y3nnnef4OGIxcQCCTxz822fP1k8cALU+ezbw4IOxGQ8REZEdrpo8AMAFF1yAurq6jmXLli2O9t/5pwm3mDOHP2EQEZF7pMZ7AIFSU1MxcODAsF7b2tqK1tbWjvWTJ09G3H9hYcRNRJ3PByxYAMyYEe+REBERufCbh/3792PQoEE4++yz8YMf/ACHDh0yfO2sWbOQnZ3dseTn50fc/+nTETcREwcOxHsEREREiqsmD1dccQUWL16MN998E8888wyqq6tRXFyMxsbGoK9/+OGH0dDQ0LHU1NREPIYUVx0RTUFBvEdARESkuPpuixMnTmDo0KGYM2cO/vVf/zXk66Nxt8XevcAFF9iqGjNeL9DcDKSnx3skRESUrBL2botAffr0wbnnnouPP/7YsT7PP9+xrsI2cyYnDkRE5B6unjw0NTXhwIEDyM3NdbTfWH0XU1JivL28XH3D0JnXq7YzzwMREbmJqyYPDzzwADZv3oxPP/0UW7duxaRJk+D1enHbbbc5PhYRYM8e7RqIlBS1LqKWwNwLDz6oxd59Vx979121/Y9/VD8/lJYC48ersrlZbX/ySfXfc+eqzJNz56p1ThyIiMhtXHXNw/e+9z38+c9/xrFjxzBgwACMHTsWv/rVr1AQ5tWC0cwwSURE1J1YOYe6Ks/D8uXL4z0EIiIiCsFVP1sQERGR+3HyQERERJZw8kBERESWcPJARERElnDyYOLQISArS+VbyMpS635vvqke3e1f3nxTi+3erW7t9HhUuXu3FmtoAMaOBYYMUWVDgxZrawPmzQOmT1dl5ydp+nxAZSWwbJkqOz++2yxmxm49IiLq3lx1q2akonmrZloa0N7edXtqavDt4SgoCP6Aq4ICYPJk9ejtzidwr1dll7zySuC++4DDh7VYXh4wf776b6PY5MnGY1m50l49IiJKTlbOoZw8BGE0cXATj8c4E6bHo8oVK4JPBFauBG66qWv9UPWIiCh5Jc2zLeLh0CH3TxwA8xTa/tiMGV1/ivD51DcOweqb1SMiIvLj5CGA256oaZcIUFMDVFXpt1dV6X+qCLceERGRHycPAZqb4z2C6KqrM18Ptx4REZEfJw8BMjLiPYLoCnwgabgPKHX4QaZERJRAOHkIsGdPvEcQHR4PkJ8PFBfrtxcXq7sq/BdHhluPiIjIj5OHAEOGqNsx3SbwZN953Sg2b5663bMzr1e7xdNKPSIiIj9OHoL46ivjCUQkEwujJ4sXFADl5cFP9OXlQEUFMHiwPpaXp7Ybxcxut5w8WcWt1iMiIgKY58HUoUPq7ovmZnUtxJ496psJQGWU/Pa3tdeuWwdcd5367927gVGj1J0LHg/w/vtAYaGKNTQA11+v2h4yBFi7FsjOVrG2NmDBApVIqqAAmDYNSE9XMZ9P3QFRV6euRygu1iYbZjEzdusREVHyYZKoKE0eiIiIugsmiSIiIqKY4eSBiIiILOHkgYiIiCzh5IGIiIgs4eSBiIiILOHkwcTeverWRY9HlXv3arGNG9V2/7Jxoxbbtk0f27YtvDabmoBJk4CRI1XZ1KTF2tpU8qbp01XZ1hZerKUFKCsDJkxQZUtLdI6NVT4fUFkJLFumys5P7TSLERGR+/BWTQNG6ZtjpagIeO+94NvHjQPmzNGfVL1eYOZM9d9GsY8+Alav7tpmSQnwxz9Gc/TmVq5UjwHv/DTPvDwt06VRjMmqiIicwzwPEU4enJ44xINTE4iVK4GbblIJszrzeLpu6xwDmO2SiMhJzPMQgc4/IySz1atj/xOGz6e+VQg2STCbsvpjM2bwJwwiIjfi5CGAP410d1BeHtv2q6r0P0dYIQLU1Kg2iIjIXTh5CHD6dLxH4Jz9+2Pbfl2dO9ogIqLo4uQhQEo3OiIjRsS2/dxcd7RBRETR1Y1OleHZvTveI3DO7Nmxbb+4WN05YecCVI8HyM9XbRARkbukxnsAbnP++fEegTNKSoBevaLfbuBjvufOBW65pevdFZ3Xg8UAlbOCjwgnInIffvMQRDxuXi0qMt5eXt71JOr1qu1msZKS4G3G6jbNlSuBYcOAb34T+P73VXn//cB3v9v156CUFDXGigpg8GB9LC+Pt2kSEbkZv3kIYuVK8zwEsdLYCEyZAhw4ABQUAEuWAJmZKvbLXwILFmixadOA9PTQsZYWdZLev19d4zB7dmy+cTDK53D4cPA7Lnw+4De/UZOETz/Vf1tRXMxvHIiI3IxJogL4fOpfz3ZvMYxEY6M2WUgkdo+Zx6O+Zaiu5mSBiCjemCQqApHkJojUlCnx6TdSdo8ZczkQESUmTh4CxDOvwIED8es7EpEeM+ZyICJKLJw8BIhnXoGCgvj1HYlIjxlzORARJRZOHgJEkpsgUkuWON9nNNg9ZszlQESUmDh5COD1ao+KDjwZxnJCUVSUmBdLAubHzAhzORARJS5OHoKYPFndQhh4S2NGhspLYPRAKX/eBaOYWS6HbdvUEz29XnVi9Xr1T/g8ehQYPlxNMIYPV+t+hw4BWVmqTlaWWg+nXksLUFYGTJigys5P2WxrUyf26dNV2damxXw+oLISWLZMlT6fdswCf4IYPFjte16efns0cjkEGwcREcUeb9U0EI+fLYxkZwMNDcG3nzoFtLd3jaWmAr17G9cbN049ljtQSQlw7rnAnDn6k7HXC8ycCVx5pXrMdue7K/Ly1DcP77xjXG/WrOjmcli50ngcTC5FRGSdlXMoJw9BuGnikAjCSahVXg48+WR0+jNKSOV/35idkojIOuZ5iMCiRfEeQeIJZ/o5Z47+pw+7fD71jUOwPv3bZszgTxhERLHEyUOAO++M9wiSk8+nUmhHKlRCKiaeIiKKPU4eyDHRSIIVbkIpJp4iIoodTh7IMdFIghVuQikmniIiih1OHgK8+GK8R5CcvF71tM9IhUpIxcRTRESxx8lDgDvuiPcI3M9O8qyZM7XHhEcinCReTDxFRBRbnDwE4babV7OzjbenpgaPpaaa1yspCR4rKVG3VQaefL1etb2iQiV+6iwvT0ueZVQvWrdpAlpCqmDj4G2aREQOkCTS0NAgAKShoSEq7b34ooiaSqjlxRe12EMP6WMPPaTFnnhCH3viCS22dKk+tnSpFtuzRyQlRW1PSVHrfvX1IsOGifTurcr6ei128KBIZqaqk5mp1sOp19wsUloqMn68KpubtVhrq8jcuSJlZapsbdVi7e0imzapsW/apNbDqRdtZuMgIiJrrJxDmSSKiIiImCSKiIiIYoeTByIiIrKEkwciIiKyhJMHIiIisoSTByIiIrKEkwcTjz6qEg/5l0cf1WLjx+tj48drsRtu0MduuEGL3X23Pnb33VrsP/9TH/vP/9Ri69frY+vXa7GNG/WxjRu12O7dQEqK2p6Sotb99u1T+SA8HlXu26fFamuBfv2AtDRV1tZqsYYGYOxYYMgQVTY0aLG2NpWkafp0VfqfpNnUBEyaBIwcqcqmJq1OSwtQVgZMmKDKlhazdyV0X6FiZnw+oLISWLZMlXw6JxFRV7xV00A4WROTVXp68JNterpK/RzsAVcFBSo505w5+hOu1wuceSbw+edd6xQVAYMGAatXd42VlAB//KPxGB98MHhfM2eq/zaKmSWrWrlSPe6781M78/JURksmniKiZGflHMrJQxDdeeLgJkYTiAcfBGbPttemUbbLlSuBm27qml3U/1lg5koiSnacPEQweXj0UeAXv4jywMi25magVy9tva0NyMiw/3OC16va7PycDZ8PGDZM/41DZx6P+gaiuprPzCCi5MUkURHgxMFdysv16wsWRHYdgs+n2uisqsp44gCobyNqatTriIiIkwdyuf379evBrrewKrCNurrw6oX7OiKiZMfJA7naiBH69YKCyNsMbCM3N7x64b6OiCjZ8ZqHALzmwV2cvOahtjb449h5zQMRdQe85iECP/95vEdAfiUl+okDoE76/tsx7Zg5Uz9xANSEYP589d+Bd9r41+fN48SBiMiPk4cgkue7GHsCT66dtxv9bFBQoC5uDDzBer1ATk7wOkVFaoIQjFmehyefNO6rvNw8ZpTnYfJkdTvm4MH67Xl5vE2TiKgLSSINDQ0CQBoaGqLS3iOPiKiphFoeeUSLfetb+ti3vqXFvvMdfew739Fid92lj911lxb7xS/0sV/8Qou99ZY+9tZbWmzDBn1swwYt9sEHIh6P2u7xqHW/Dz8U8XpVzOtV636HD4v07SuSmqrKw4e12IkTImPGiOTnq/LECS3W2ioyd65IWZkqW1vV9sZGkYkTRQoLVdnYqNVpbhYpLRUZP16Vzc1m70rovkLFzLS3i2zaJLJ0qSrb28OrR0SU6KycQ3nNAxEREfGaByIiIoodTh6IiIjIEk4eiIiIyBJOHoiIiMgSTh5MPP20us/fvzz9tBYrKtLHioq02OjR+tjo0Vrs5pv1sZtv1mJ33KGP3XGHFps7Vx+bO1eLPf+8Pvb881psxw59bMcOLXboEJCVpW5jzMpS637HjwOFhUD//qo8flyL7d2r6ng8qty7V4s1NABjxwJDhqiyoUFtb2oCJk0CRo5UZVNTeO+BXW1tKjfD9Omq7PyIcZ8PqKwEli1TZSTPyginPyKiZMO7LQwk+2O5U1OB9vbg2/v3Bz7/vGssJyf4dr+CguDPnkhPD34yLSoCtm0Lf8zhevBBYM4c/aTA61UJoq68ErjvPv2DsPLyVJIou7kczPozyitBROQ2SXG3xRNPPAGPx4MZM2Y43neyTxyA4BMH/3ajCYLZxAEwfmiV0b/C33sPuPxy8zatevBBYPbsrt8m+Hxq+403dn2CZm0tcNNNwMqV0e/vwQett0lE5HaunDy89957eO655zBy5EjH++780wTF3nvvRe8njLY29Q2AVf7v3mbMsPYTRjj9zZnDnzCIKPm4bvLQ1NSEH/zgB3j++efRt29f09e2trbi5MmTuiVSZWURN0EWTZkSnXYWLLB//YIIUFMDVFVFtz+fT72OiCiZuG7yUFpaiuuvvx7XXnttyNfOmjUL2dnZHUt+fr4DI6RoM/q5Ix7t1NVFv79o7R8RkVu4avKwfPly/PWvf8WsWbPCev3DDz+MhoaGjqWmpibGI6RYMHrYVjzayc2Nfn/R2j8iIrdwzeShpqYG9913H1555RX07NkzrDo9evTAGWecoVsi9dRTETdBFi1ZEp12pk2z/9hsjwfIzweKi6Pbn9erXkdElExcM3nYsWMH6uvrcckllyA1NRWpqanYvHkzfvvb3yI1NRW+aNyMH4bSUke6of9TVARkZkanrfR0dXtkKIF30/jX582zNvkIp7+ZM40fcU5ElKhcM3m45pprsHv3buzatatjueyyy/CDH/wAu3btgtfuPyltSJ7MF8ZSU4235+QEjxlt9zP6et7o5BmLPA9PPgmUl3edBHi9antFBTB4sD6WlwesWGEvz0Oo/pjngYiSkWsmD1lZWbjwwgt1S+/evdG/f39ceOGFjo9HpOtPGE89pbaLAJddpo9ddpkWu/JKfezKK7XYTTfpYzfdpMVuv10fu/12LRZ4S+CcOVps4UJ9bOFCLbZ9uz62fbva/tVXwMGD6l/9KSmqPHhQbT9yBDh2DLjwQqBfP1UeO6a2iwB79qg6gCr37FHbP/4YOHECGDNG/QQwZoxab20FGhuBiRNVtsqJE9V6LBJEAeqE3dyssnCWlamyuVltnzwZ+PRTYNMmYOlSVVZX208QFao/IqJk5OoMk+PGjcNFF12EefPmhfX6aGaYJCIi6k6snEMNvrx2h8rKyngPgYiIiAK45mcLIiIiSgycPBAREZElnDwQERGRJZw8EBERkSWcPJhYtEglEPIvixZpse98Rx/7zne02MSJ+tjEiVqstFQf65yU6uGH9bGHHw5vLC+9pI+99JIWW7VKH1u1SovV1qpbMdPSVFlbq8WamoBJk4CRI1XZ+cmXH3+scjd4PKr8+GMtduQIMHAg0LOnKo8cUdtbWtRtjBMmqLKlJby+jh4Fhg9Xt5IOH67W/draVGKn6dNV2fnplT4fUFkJLFumys45xuzWM4uZsVuPiMi1JIk0NDQIAGloaIi4LS1TQnIu6enG24uKgseKikQ8nuAxj0ckIyN4LCUl+PaSEvO+srODx7KzRcrLRbxe/XavV22vqBDJy9PH8vLUdrv1zGJm7NYjInKalXOoq/M8WBWtPA+B6Ysp8Xk86tQdzXr+z4lRdsqVK7UkYFbqERHFg5VzKH+2CND55wBKHnanyGb1/LEZM7r+FOHzAffdF7y+WT0iokTAyUOAO++M9wgokYgANTVAVZV+e1UVcPiw9XpERImAkweiKKirM18Ptx4RUSLg5IEoCnJzzdfDrUdElAg4eQjw4ovxHgElEo9HPUG0uFi/vbhYPerb6OJbo3pERImAk4cAd9wR7xFQNASetMO9g8asnlFs3jzA69XHvF5g/nzr9YiIEgEnD0Ekz82rxtLTjbcXFQWPFRWZ/0s6IyN4LMXgU1ZSYt5XdnbwWHY2UF4e/IRdXg5UVACDB+tjeXlqu916RjGz2y0nT1Zxq/WIiFwv5lknHBTNJFEiIi++qE/u8+KLWuz66/Wx66/XYiUlXZMh+U2bpo9Nm6bFHnpIH3voofDGsnixPrZ4sRZbuVIfW7lSix0+LNK3r0hqqioPH9ZijY0iEyeKFBaqsrFRi+3fL5KWptpLS1PrfnV1Ijk5Ij16qLKuTm1vbhYpLRUZP16Vzc3h9VVfLzJsmEjv3qqsr9dira0ic+eKlJWpsrVVi7W3i2zaJLJ0qSrb2yOvZxYzY7ceEZGTmCQqwiRRRERE3Q2TRBEREVHMcPJARERElnDyQERERJZw8kBERESWcPJARERElnDyYOKFF1T+Av/ywgtabOpUfWzqVC1WWqqPlZZqsUcf1ccefVSLzZ+vj/mTDAHA88/rY88/r8XefFMfe/NNLbZxoz62caMW27cPSE1V21NT1brfoUNAVpbKgZCVpdb9amuBfv2AtDRV1tZqsSNHgIEDgZ49VXnkSOg6TU3ApEnAyJGqbGrSYj4fUFkJLFumys5PoWxoAMaOBYYMUWVDA8LS1qYSNE2frsq2Ni3W0gKUlQETJqiypSW8sSS6ZN43IoqBmN846qBo5nnonBuhuy2pqcbb09ODx9LTRTIyrPWTni5SVBQ8VlQkUlEhkpen356Xp7YXFASvV1Bg/r6Wl4t4vfo6Xq/aHpifo3OeDrOxJLpk3jciCh/zPESY5yHcVMbkPI9Hnd7MFBQAH3/cdfuDDwKzZ0d3LEBiZ4tcuRK46aauxzQZ9o2IrGGehwh0/mmC3Cecqe6BA11/wmhrA+bMic1YZsxIzK/5fT7gvvuCH9NE3zciii1OHgL86EfxHgFFw/XX69cXLIjNSVAEqKkBqqqi33asVVUBhw8bxxN534gotjh5oKTU+QJPQH0bEUt1dbFtPxbCHXMi7hsRxRYnD5SUhgzRrxcUxLa/3NzYth8L4Y45EfeNiGKLk4cAv/tdvEdA0bB2rX592rSuj+KOBo8HyM8Hiouj33asFRerx4ObPWY9UfeNiGKLk4cA//qv8R4BdRZ4YgvnTpiCAiA7W78tPR2YOTM2Y5k3LzYTk1jzerVcIsm2b0QUW5w8BJE8N6/ak5pqvD3F4BOTkgJkZFjrJz0dKCoKHisqAioqgMGD9dvz8tT2nJzg9XJygt+mCQBPPgmUl3c9GXq9antJSfB6JSXGY0n0WxknT1b7kIz7RkSxwzwPQUQ7H0CiKS9X2RUvuABoblaTgj17gKeeMj8u5eXqX/cXXQScOAH06QPs2qUyTdbWAoWFQGOjyli5e7d2wmpqAqZMURc1FhQAS5YAmZkq5vOpq/3r6tRv78XFwOrVwXMTAOpfzKFOem1t6u4Lf3/TpqmJDKAySpaXA/v3AyNGqP3t1ct4LMnyr/Jk3jciCo+VcygnDwHa2tTJsjvf2+71qkmD/4QKhHdcgtWLNp8PGDbM+BZDj0f9q7m6mic/IiIrmCQqArHKB5BIfD51HDoL57gEqxdtzE1ARBR/nDwEiHU+gEQReBzCPS5uyafA3ARERLHDyUOAWOcDSBSBxyHc4+KWfArMTUBEFDu85iEAr3lIjGseamuNL5jkNQ9ERNbxmocIRCMfgNPs5EIwM3Nm1wlAOMclWL1oY24CIqL44+QhCH8+gGDKy81zDBh9bV9QYJ7TwCzHQLCxeDxqe0UFcNZZ+thZZ6ntVtsE1PYnn1S3T06aBIwcqcqmptDHxageoJ5yOXasShs9dqz+qZdGdQB162RZGTBhgipbWoxzEwwerN2m2damJhHTp6uyrU17nc8HVFYCy5apsvO3KWb17DLrzyxGRORakkQaGhoEgDQ0NETclvpSPHkXj8d4e1FR8FhRkUh2dvBYdrZxvfT04NsLCsz7KikJHispEamoEBk8WL998GC1vbxcxOvVx7xetb2iQiQvTx/Lywtdzy6z/sxiREROs3IO5TUPQUT6tT/Fh8djLztoOPX836xYsXJl8GRWZv35P3vM7khETuM1DxF4++14j4DssjsNDqfenDnWfsLw+YD77gvetll//tiMGfwJg4jci5OHAN/4RrxHQG5kNQFWqGRWZpjoiojcjpMHojBZSYAVjSRVTHRFRG7FyQNRmKwkwIpGkiomuiIit+LkIcDWrfEeAbmR16uevhmu4mKVrMrOxbceD5Cfr9ogInIjTh4CjB4d7xFQuOwmx7JTz2oCrHCSWZnFmOiKiNyMk4cgkufmVWNGJ0yPxzyZVXZ28Fh2tnE9o5NuJImzKiq6JonKy1Pby8u7nni9Xi2plp16Vm/TBIyTWfn7MxoLb9MkIteLedYJB0UzSZSIyNat+gQ+W7dqsV/+Uh/75S+12G9+o4/95jdabMECfWzBAi322mv62GuvhRfbuVMf27lTi334oZb4yOtV637794ukpalYWppa92tsFJk4UaSwUJWNjVqsvl5k2DCR3r1VWV8fut6JEyJjxojk56vyxInw+mpuFiktFRk/XpXNzVqsvV1k0yaRpUtV2d6uxVpbRebOFSkrU2Vra+T17DLrzyxGROQkJomKMEkUERFRd8MkUURERBQznDwQERGRJZw8EBERkSWcPBAREZElnDwQERGRJZw8mNiyReU98C9btmix55/Xx55/Xov9+tf62K9/rcVeeUUfe+UVLbZtmz62bZsWW79eH1u/XoutWqWPrVqlxfbuVbkKPB5V7t2rxfbtA1JTVSw1Va37VVcDvXoBKSmqrK7WYkePAsOHA5mZqjx6VIu1tABlZcCECapsaVHbjx8HCguB/v1Vefy4VsfnAyorgWXLVNn5aZJG7YWK2W2zrU0laJo+XZXhPknTrL9Y1KOueCyJHBTzG0cdFM08D53zJnS3JSXFeHt2dvBYdrZISUnwWHp68O05OSIVFSJ5efrteXlqu1F7JSXmMbttlpdrOTH8i9ertpsx6y8W9agrHkuiyDHPQ4R5Huw8j4Cix+NRf/7d1KZRlsmVK4Gbburatv8zZJQt0m496orHkig6rJxDOXkIsGULH0hEXXm9QHOzPtW2zwcMGwYcPhy8jsej0k1XV+vTXtutR13xWBJFD5NERYATBwrG5wMWLNBvq6oyPmkB6l/CNTXqddGoR13xWBLFBycPRGE6cEC/XlcXXr3A19mtR13xWBLFBycPRGEqKNCv5+aGVy/wdXbrUVc8lkTxwWseAvCaBwrG7JqH2trgF2OGuubBaj3qiseSKHp4zUMExo6N9wi6n8C7W6Jxt0u025w5Uz9xANTJaP588/7mzet60rJbj7risSSKD04egkie72LsSTH4VKSkANnZwWPZ2UBJSfBY4EnXLycHqKgABg/Wb8/LU9uN2ispMY/ZbbO8PPiJ3ug2TUDdArhiRfD+zG4RtFuPuuKxJIqDmGaccFg0k0SJiFRV6ZPOVFVpsYUL9bGFC7XYE0/oY088ocVeflkfe/llLfbuu/rYu+9qsbfe0sfeekuLrVypj61cqcX27NGSPqWkqHW/Dz/UkiJ5vWrd75NPRHr2FPF4VPnJJ1qsvl5k2DCR3r1VWV+vxZqbRUpLRcaPV2Vzs9p+7JjIhReK9OunymPHtDrt7SKbNoksXarK9vbQ7YWK2W2ztVVk7lyRsjJVtrZKWMz6i0U96orHkigyTBIVYZIoIiKi7obXPBAREVHMcPJARERElnDyQERERJZw8kBERESWcPJgYu9edauex6PKvXu12Esvqe3+5aWXtNjTT+tjTz+txZYt08eWLdNia9fqY2vXarEdO/SxHTu02Jo1+tiaNVps9251i6XHo8rdu8Nrc9cufWzXLi328cfq9kuPR5Uff6zFjh4Fhg8HMjNVefSo2n78OFBYCPTvr8rjx7U6bW3qXvzp01XZ1qbFmpqASZOAkSNV2dSkxVpagLIyYMIEVba0hBdraFD5PIYMUWVDA8Li8wGVleo9q6xU65HGEoHT++10vWTGY0IxE/N7PxwUzVs1O9/6yEVbPB7j7dnZ1trKyREpL9duF/UvXq/aXlQUvF5RkUhJSfBYSYl5rKAgeKygwPzzUFEhkpenr5OXp7bbjSUCp/fb6XrJjMeErLJyDoUD4wnbggULpLCwULKysiQrK0uuvPJKeeONN8KuH63JQ7xP0FzisxhNICoqgk+ajCZS4cQ8Hvf/EXd6v836i0W9ZMZjQnYkbJ6HP/3pT/B6vRgxYgREBC+99BJmz56NnTt34oILLghZPxp5HvbuBcLoipLUiRP6LJr+ZyeYPfbZDrc/c8Hp/Q7VX7TrJTMeE7IrYfM83HDDDfjnf/5njBgxAueeey5+9atfITMzE++8807Q17e2tuLkyZO6JVKFhRE3QQns+uv161VV0T+BAurfgTU1qn03cnq/Q/UX7XrJjMeEnOCqyUNnPp8Py5cvx6lTpzB69Oigr5k1axays7M7lvz8/Ij7PX064iYogR06pF+vq4ttf7Fu3y6n9zvc/qJVL5nxmJATXDd52L17NzIzM9GjRw/cc889WLVqFc4///ygr3344YfR0NDQsdTU1ETcv9FDoah7GDJEv56bG9v+Yt2+XU7vd7j9RateMuMxISe46poHAGhra8OhQ4fQ0NCAFStW4He/+x02b95sOIHojNc8UKSMrnmorVVf90aL2393dnq/Q/UX7XrJjMeE7ErYax4AID09Heeccw4uvfRSzJo1C6NGjcL8+fMd6z+MOQolqYKCro8c93oB/8fP49HHOq/bic2b594/3k7vdzj9RbNeMuMxISe4bvIQ6PTp02htbXW0T3d9F+MugX+MOm8PPPGGkpMDlJcHPyGUlwNFRcHrFRUBJSXBYyUl5rGCguCxggJ9sqvOJk8GVqwABg/Wb8/LAyoq1GI1tmKFatfNnN5vs/5iUS+Z8ZhQzMX2rlFrHnroIdm8ebNUV1fLBx98IA899JB4PB556623wqofzSRRIiJ79oikpKj7o1NS1Lrf4sX6+6cXL9ZiTz2ljz31lBZbulQfW7pUi73+uj72+utabPt2fWz7di22erU+tnq1FvvgA+1+b49HrYfT5s6d+tjOnVps/36RtDS1PS1NrfvV14sMGybSu7cq6+vV9mPHRC68UKRfP1UeO6bVaW0VmTtXpKxMla2tWqyxUWTiRJHCQlU2Nmqx5maR0lKR8eNV2dwcXuzECZExY0Ty81V54oSEpb1dZNMm9Z5t2qTWI40lAqf32+l6yYzHhKxI2DwP//qv/4oNGzagrq4O2dnZGDlyJH7605/iW9/6Vlj1o3HNAxERUXdk5Rya6tCYwvLCCy/EewhEREQUguuveSAiIiJ34eSBiIiILOHkgYiIiCzh5IGIiIgs4eTBxK5dKn+Bf9m1S4stWaKPLVmixZ5/Xh97/nkttnatPrZ2rRZbv14fW78+vNjGjfrYxo1arLYW6NcPSEtTZW2tFvv4YyA9XdVJT9fnObBbr7oa6NVLpfnu1UutA0BDAzB2rEr/PHasWvc7ehQYPhzIzFTl0aNarKkJmDQJGDlSlU1NWsyszbY2lQhn+nRVtrVpMZ8PqKwEli1Tpc8X25gZu+M0Y6ee3b5iwU1jcQsnPwuR6K7vXbfc75jfOOqgaOZ56JzjIFGX9HTj7f7cD4GLx2O/nj8nRrhLQYFIdnbwWHa2SFFR8FhRkapr1GZ5uYjXq9/u9artFRUieXn6WF6e2h6LmBm74zRjp57dvmLBTWNxCyc/C/EYZ6JLpv22cg6FA+NxTLQmD/E+6XNxdjGaEEUa83iM/4CUl9sbp1mbFRXBx2RWz06dWHHTWNzC7jFx+lh21/cu2fY7YZNERSoaSaJ27QIuvji646LuyegBRG1tQEaGva82Qz0g6vDh8OvZqRMrbhqLW9g9Jk4fy+763iXjfif0g7HijRMHihYRoKYGqKrSb1+wwP5vokZtVlUZ/xEzqmenTqy4aSxuYfeYOH0su+t7113324+TB6IYq6vTrx84EP02A9fDqWenTqy4aSxuYfeYOH0su+t7113324+TB6IYy83Vrxs92TOSNgPXw6lnp06suGksbmH3mDh9LLvre9dd99uP1zwE4DUPFC3xuOahtlZ9XRpOPTt1YsVNY3ELu8fE6WPZXd+7ZNxvXvMQgYsuivcIKNY8HuP1aMfmzev6hyM9HZg50/44g7Xp9QLz51urZ6dOrLhpLG5h95g4fSy763vXXfe7Q4zv/HAU8zzoF+Z50Baz/An5+cb5GiKNmbE7TjN26tntKxbcNBa3cPKzEI9xJrpk2m/meYjC5EFEZOdO/Qdi504t9vvf62O//70WW7hQH1u4UIu9/ro+9vrrWuytt/Sxt94KL7Zhgz62YYMWO3xYpG9fkdRUVR4+rMX27xdJS1N10tLUeqT1PvlEpGdPNZno2VOti4icOCEyZoz6n2rMGLXuV18vMmyYSO/eqqyv12KNjSITJ4oUFqqysVGLmbXZ2ioyd65IWZkqW1u1WHu7yKZNIkuXqrK9PbYxM3bHacZOPbt9xYKbxuIWTn4WItFd37tk2W/meYjgmgciIqLuiNc8EBERUcxw8kBERESWcPJARERElqRaefGdd95puQOPx4MXXnjBcj0iIiJyJ0uTh40bN8ITeENrCFZfT0RERO5m6WeLTz/9FNXV1ZaWTz75JFZjj7m331bJPvzL229rsY0b9bGNG7XYihX62IoVWmztWn1s7VottmaNPrZmjRbbskUf27JFi23bpo9t26bFDh0CsrJUopKsLLXut28fkJqq6qSmqnW/o0eB4cOBzExVHj2qxWprgX79gLQ0VdbWarHjx4HCQqB/f1UeP662NzQAY8cCQ4aosqFBq+PzAZWVwLJlquycebGtTSVamT5dlW1tWsysTbN6TU3ApEnAyJGqbGoKbywtLUBZGTBhgipbWsLrz4xZf7GoR9Hj5Hvg9PudDJ9LN40lKcX8xlEHMUmUfklNtbbdv5glbjJLIJWTEzxmlDyqoCB4gpW8PLXdLImS3SRRZomnzMZSUhK8XkmJeX9mzPqLRT2KHiffA6ff72T4XLppLInE8SRRb7/9tjz++OMyY8YM+eijj0RE5NSpU7Jjxw5p7JzVJ8aiNXmI90m/uy9GWSwTcSxGE4iKiuBtezxqMfojZ7ceRY+T74HT73cyfC7dNJZE49jkobW1VSZNmiQpKSni8XgkJSVFNvxfesOWlhbp37+//PKXv4ykC0uiMXnYujX+JywuybN4vfqskSIq+1zgv4o6Lx6PypoZmKXObj2KHiffA6ff72T4XLppLInIyjk0ols1f/azn+H111/HM888g3379kFEOmI9e/bEzTffjNWrV0fSheO+8Y14j4CSic8HLFig31ZVBRw+bFxHBKipUa+LRj2KHiffA6ff72T4XLppLMkuosnDsmXLcO+99+Kuu+5Cv379usS//vWvJ/QFk0TRcOCAfr2uLrx6ga+zW4+ix8n3wOn3Oxk+l24aS7KLaPJQX1+PwsJCw7jX60Vzc3MkXRAlvIIC/Xpubnj1Al9ntx5Fj5PvgdPvdzJ8Lt00lmQX0eQhPz8fH374oWH8L3/5C84555xIunDc1q3xHgElE68XmDZNv624GMjLU7fIBuPxAPn56nXRqEfR4+R74PT7nQyfSzeNJdlFNHn4/ve/j+eeew5vd0qA4E8K9fzzz+MPf/gD/uVf/iWyETps9Oh4j6D7CfwfPZ55xaI9lpkzgfR0/TavF5g/37y/efPU66JRj6LHyffA6fc7GT6XbhpL0ovkyszW1lYZP368pKamSmFhoaSkpMioUaMkPz9fPB6PXH/99dLu4GWtzPOgX4zyKxht9y9meR7MckcY5Xkwut0xJyf4/dj5+e7J8+Afi1N5Hvz9xaIeRY+T74HT73cyfC7dNJZEYuUc6hERiXDygVdeeQUrVqzA/v37cfr0aRQUFOCWW27BlClTHE1PbeVZ5OF4+2393RdbtwKrVgGzZ0fctGv5M2IWFwOXX64ySw4YoLJWVlUBN92k/lc0qjduHHDVVcBnnwGDBgEPPADccYd5nZIS1XZdnfotsrhY+5dBW5u6W+HAAXXtwLRp2r/kGxqA669XWTOHDFHZOrOzQ9dragKmTNFiS5aoTJqAujvCaCwtLUB5ObB/PzBihPoc9OoVuj8zZv3Foh5Fj5PvgdPvdzJ8Lt00lkRh5Rwa8eTBTaI9eQjU1gZkZCR3mlOPR/1mWF2t/x/N5wOGDTO+DSpYPTt1iIgoPqycQ6PySG6fz4dt27bhD3/4A/7whz/gvffegy8Jz7ALFiT3xAFQ3xBE615u3nNNRJScLD1VM5jFixfj4YcfRn19PfxfYng8HgwYMACPP/64rcd4u1Xg/frJLBr3cvOeayKi5BTR5OG5557Dvffei4suugiPPfYYzj33XADAvn378Nxzz+HHP/4x2tracM8990RlsPEWeL9+MovGvdy855qIKDlFdM3D2Wefjfz8fPzv//4v0tLSdLGvvvoKV199NWprax3LMslrHiIX6pqH2lrjix+NrnmwUoeIiOLDsWsejhw5gltuuaXLxAEA0tLS8L3vfQ+ff/55JF24Snq6um8/HuzmHzCrF+t7uXnPNRFRcopo8nDxxRfjo48+Mox/9NFHuOiiiyLpIq4OHQKystTJLStLrT/5pLpdL5jycuOfNgoK1C2JwZSUAEVFwWNFRUBFBZCTo98+cKDabtZmRQXQp49+e9++antFBdC/vz525pnq1snJk4Hjx4HCQvWawkK1Pnmyig8YoK931llavaNHgeHD1a2Pw4er26NWrFDjDRy/v05bm5pETJ+uyrY27XVmMZ8PqKwEli1TZbjfCLW0AGVlwIQJqmxpCa+/WIzTbswOJ/uKlUQZp9HnIVHGH4txJsq+U5giSSixY8cOGThwoMybN0+am5s7tjc3N8ucOXNk4MCB8te//jWSLiyJZpIos2RITid7Mkqy5PGIpKcHjxltDxVPTzdO9pSTY55AyihmtOTkmCdYMosFSwKTlxc6CYzdZE+xGKfdmB1O9hUriTJOo89DSUlijD8WxzlR3rvuzso5FFYaLiws7LIMHjxYUlJSJD09XYYNGybDhg2T9PR0SUlJkcGDB8vIkSNt74hV0Zo8xGOCwCXyxeNRi9EfJKOJQzzGaTdmtn9GKiqCtxuLvmLFbB/cNM7y8uh+Zp0Wi+OcKO8dxTDD5Lhx42xljNy0aZPlOnZE44LJQ4eAoUOjPDByjNFFmC0t6mLXRGf1ItNQibqi2VesJEqyMbsXVLtl/LE4zony3pFi5Rxq6VbNysrKSMaVEC64IN4joEiIaImnxo3Tthtdp5JojPbPSKhEXdHsK1asJBuL5zjtJpFzy/hjcZwT5b0j66KSYTKZNDfHewQUDYGJp/bvj884YsXJBFzxTuKVKMnGIk0iF+/xx+I4J8p7R9ZFnGESUDkdPvzwQzQ0NOD06dNd4v/0T/8UjW4ckZGhHpxEiS0w8dSIEcBbb8VnLLHgZAKueCfxSpRkY5EmkYv3+GNxnBPlvSPrIkoSdfr0aTz88MNYsGABmk3+ye7Ucy54zQPxmge9UIm6otlXrCRKsrFkueYhmsc5Ud47UhxLEvX4449j9uzZ+OEPf4jf//73EBE88cQTePbZZzFy5EiMGjUK//M//xNJF44bMgRIjcr3MRRrVhJP9eplnBMj1uwk6jKLWUmsFU6irmj1FSuJkmzMThI5N40/Fsc5Ud47siGS2zoKCgrk1ltvFRGRf/zjH+LxeGTDhg0iItLa2iqXXHKJPPzww5F0YQnzPGhLd8zzkJ+fGHke/OO0G7PDyb5iJVHGaSXPgxvHH4vjnCjvXXcXszwPgXr06CHPPfeciIg0NjaKx+ORtWvXdsTnzJkjeXl5kXRhSTQnDyIiBw+KZGaKpKSo8uBBLbZunf5/hHXrtFhlpT5WWanFqqr0saoqLfbuu/rYu+9qsf37RdLS1Pa0NLXud/iwSN++amLTt69a9/vwQ+0Pmder1sOpd+yYyIUXivTrp8pjx7RYfb3IsGEivXursr4+dMysvdZWkblzRcrKVNnaGl6svV1k0yaRpUtV2d4uYWluFiktFRk/XpWd8pvZHovdcdqN2eFkX7GSKOM0+jwkyvhjMc5E2ffuLGZ5HgINHjwYP/nJTzDz/76r69OnD375y1+irKwMADB37lz87Gc/Q5NDVyDG+sFYREREySpmeR4CXXzxxXjvvfc61r/5zW9i3rx5uPjii3H69Gn89re/xahRoyLpgoiIiFwmogsm77rrLrS2tqK1tRUA8Ktf/QonTpzAP/3TP+Gqq67CyZMn8V//9V9RGSgRERG5Q0Q/WwTT0NCAyspKeL1efOMb30C/fv2i2bwp/mxBRERkT8x+tjh06FBYr7v44osBAE1NTWhqasKQIUOsdENEREQuZmnyMGzYMFsPxnIqSRQRERHFnqXJw4svvmhr8pCo9u1TD8ry+VQSkz17gK99TcXefBP49re1165bB1x3nfrvjRuBa67RYhs2AFdfrf577VrgO9/RYq+/Dlx/vfrv48eBq64CPvsMGDQI2LwZ8P/qs2MHcNllWr3t24FLL1X/feiQGmdzs8pwt2ePSnYVKmbWn1nsyBHgoouAEyeAPn2AXbuAgQNVrKFB7c+hQ6qftWuB7Gzj7YDKzLdggXo2QEEBMG2aSrgDqFThU6ZosSVLgMxMFfP51AN16upUetviYi3ZjFnMrD+zei0t6gFb+/erdNezZ6vkU5GM02wsZszq2WnT7rG0K1HadFIsPidkTaJ/hhwV49tGHRXNPA92kjlFspglZjKrZ5bMyixm1p9ZLCMjeCwjQ6SgwNoYCwrMEywVFQWvV1QUPOlMXp5x0iN/zGpCJ389s+RSdsdpNhYzdhNWGbF7LO1KlDadFIvPCVmT6J+haHAsSZTbRGvyEOlEgEt8FqNMnKFidtuMxTj9i9GJobzcfr/B2qyoCD6eUMfS47H3R9WsPze16SQ770GozwlZk+ifoWhxLEmU20Tjbot9+4DzzovywIgs8nrVT02dv5q2++Alozb9Dy06fNh6W5E8JMmoP7e06aRI3gMg+OeErEn0z1A0OfZgrGR0wQXxHgGR+oO2YIF+24IF9icOwdqsqrJ/0hIBampUG+EK1Z9b2nRSJO8BEPxzQtYk+mcoXjh5CMAbQ8gtDhwwX4+0zbq6yNuz0ka4r413m06Kxrii8bnozhL9MxQvnDwESPavpShxFBSYr0faZm5u5O1ZaSPc18a7TSdFY1zR+Fx0Z4n+GYoXXvMQgNc8kBs4ec1Dba36ataKSK5PMOrPLW06KZL3AOA1D9GQ6J+haOI1DxHw53Eg9wtMOdJ53Sxmt0277LQ5c2bXE0J6utpuV2CbXi8wf37oMRrF5s2z9sc0nP7c0KaTwn0PjAT7nJA1if4ZipsY3/nhKOZ50G/vbnke8vONcxP4Y1bzPPjrRTPPQzhjMeNEnodwjqVdidKmk2LxOSFrEv0zFA28VTNKD8ZihklmmGSGycTJBpno2QGZYTL+Ev0zFCkr51BOHoiIiIjXPBAREVHscPJARERElnDyQERERJZw8kBERESWcPJgYssWdZ+vf9myRYs984w+9swzWmzVKn1s1SottmyZPrZsmRbbuFEf27hRi338sbq62uNR5ccfa7EdO/T1duzQYvv2Aampantqqlr3O3JE3SXRs6cqjxzRYg0NwNix6s6IsWPVeiSxlhagrAyYMEGVLS1aHZ8PqKxUx6KyUp8Eyawvu/WamoBJk4CRI1XZ1BRem21t6n7v6dNV2dYWXj2nY0ai3V4k7Pbn9DijPRY3jd+uZNgHioIY3zbqqETO82C2GD2aN5LHRdvJ11BQYC9m1FdJSfB7q/Py1HazvuzWs5qTwd+m1fwQ/npOx4xEu71I2O3P6XFGeyxuGr9dybAPZMzKORQOjCdsjz/+uFx22WWSmZkpAwYMkJKSEvnwww/Drh+tyUM0T/xcrC92J0WRTKacHEusYh5P8D/iFRXB69ptLxJmYzHrz269WLAzFjeN365k2Acyl7BJoq677jp873vfQ1FREdrb2/Fv//Zv+Nvf/oa9e/eid+/eIetHI8/Dli0qMQhRogmWg9+ft9/OY5+jndM/1FiM+rNbLxbsjMVN47crGfaBQrN0Do35VCYC9fX1AkA2b94cNP7ll19KQ0NDx1JTUxP2rMlIrP9VzYVLrJdNm7TP86ZN0W0vEuGOJbA/u/Viwc5Y3DR+u5JhHyg0K988uPqCyYb/u8qtnz8vcoBZs2YhOzu7Y8nPz3dyeESuVFcX/L+j0Z4T7QS+zm69WLAzFjeN365k2AeKLtdOHk6fPo0ZM2ZgzJgxuPDCC4O+5uGHH0ZDQ0PHUlNT4/AoidwnNzf4f0ejPSfaCXyd3XqxYGcsbhq/XcmwDxRdrrrmobN7770X69atw5YtW5CXlxdWHV7zQN2Z2e/ttbXqi+VI24tEqLGEuubBar1YsDMWN43frmTYBwot4Z9tUVZWhtdffx2bNm0Ke+IQLWPHOtodQf3hMVuPdj2nx+JkbN48/R9vrxeYPz967UUinLEE689uvViwMxY3jd+uZNgHirKYX4FhwenTp6W0tFQGDRokH330keX6zPMQ/uLmPA/5+fbyPIRTz2qeB3+bVvM8+Os5HTMS7fYiYbc/p8cZ7bG4afx2JcM+kLGEzfNw7733SnZ2tlRWVkpdXV3H0tzcHFb9aE4eRESqqvT/k1RVabEFC/SxBQu02MqV+tjKlVps6VJ9bOlSLbZhgz62YYMW279fJC1NbU9LU+t+27fr623frsU+/FA76Xm9at2vrk4kJ0ekRw9V1tVpsRMnRMaMUX8YxoxR65HEmptFSktFxo9XZee3tL1dXaW9dKkq29vD68tuvcZGkYkTRQoLVdnYGF6bra0ic+eKlJWpsrU1vHpOx4xEu71I2O3P6XFGeyxuGr9dybAPFFzC5nnwGHxHvGjRItx+++0h60fjmgciIqLuyMo5NNWhMYXFRfMYIiIiMuDKCyaJiIjIvTh5ICIiIks4eSAiIiJLOHkgIiIiSzh5MLFtm0qA4l+2bdNizz2njz33nBZbtkwfW7ZMi61Zo4+tWaPF3n5bH3v7bS22d69KwOLxqHLvXi1WXQ306gWkpKiyulqL7dqlb3PXrvDqHToEZGWpvrKy1LpfQ4NKpjVkiCr/7xEkpvWOHgWGDwcyM1V59KhWp61NJZiZPl2VbW3hxVpagLIyYMIEVba0RN6mzwdUVqr3rLJSrYfTX1MTMGkSMHKkKpuaEDGzsdg9LkbM2rNbz2z8TrM7FjftA5GrxPq+UScla5IosyUlxdr2cOqlpgaPpaaaJ2Ayqme0ZGebJ18yi5WUBG+zpMR+m8ES4OTlqe1m/ZklnrLLbCx2j4sRs/bM2D2WTrM7FjftA5ETEjZJVKSiNXmI94SAi3uWSLJ4AvYmEBUVwfuNdCzBJhDl5eZ1jCYQoeoZHUuPx9mTr9mxNBuL3XpEiSxhk0RFKhpJorZtA664IsoDo26tsVH9XBMO/wOIDh+OzViam9VPVID6iSEjw/yreK9X1UlP17aFU89IPB5iZXQsQz2Iy2o9okSX8A/GiidOHCjapkwJ/7VVVbGbOABAebn23wsWhJ4A+HzqdZ2FU8+ICFBTo/Yz1kIdS6Ox2K1H1J1w8kAUYwcOhP/aurrYjQMA9u/X/jvccQW+zsr+GIn1flrpI/B1dusRdSecPBDFWEFB+K/NzY3dOABgxAjtv8MdV+DrrOyPkVjvp5U+Al9ntx5Rd8JrHgLwmgeKNjvXPNTWqq/Ho607XvNgdCxDXfNgtR5RouM1DxG4/PJ4j4DiKfDBrgYPeg1bUVH4EwdAnYzmz4/NWEpKtIkDoCYEM2ea15k5Uz9xCLceYDz+efOcOemGcyyDjcVuPaJuJcZ3fjiKeR5Cbw+nHvM8aEt+vnvyPPjHkqh5Hvzjd5rdsbhpH4icwDwPUZg8iIi8+67+D8e772qxZ5/Vx559VostXaqPLV2qxVav1sdWr9ZiW7fqY1u3arE9e7QTfkqKWvf75BORnj3V/ec9e6p1v5079W3u3BlevYMHRTIzVV+ZmWrd78QJkTFj1B/SMWPUeqh69fUiw4aJ9O6tyvp6rU5rq8jcuSJlZapsbQ0v1twsUloqMn68KpubI2+zvV1k0yb1nm3apNbD6a+xUWTiRJHCQlU2NkrEzMZi97gYMWvPbj2z8TvN7ljctA9EscY8DxFc80BERNQd8ZoHIiIiihlOHoiIiMgSTh6IiIjIEk4eiIiIyBJOHoiIiMgSTh5M1NYC/foBaWmqrK3VYmvXqoQx/mXtWi22caM+tnGjFjt0CMjKUglmsrLUut+uXfp6u3Zpsb17VR2PR5V792qx3buBlBQVS0lR637V1SoxUEqKKqurtVhDAzB2LDBkiCobGrRYUxMwaRIwcqQqm5rCix0/DhQWAv37q/L48dB9HT0KDB+ukikNH67W/draVEKe6dNV2dbW9X0KpqUFKCsDJkxQZUtLeOP3+YDKSmDZMlV2zqJoFjNjdx/M6tkdi1vYHX8s9jvRjyVRXMT8xlEHRTPPQ3p68GQ7RtvDWcySL9lt02wxSwRlluzJLOmRWSwnx9o4CgpUoqhgsVAJpMzYTegULClQXp7abhYz41QCpnDG4hZ2xx+L/U70Y0kUTUwSFeHkIZIJAhdnFqOTr9HEwe7i8ZjHPB7jE015ub19CFXPzljcoqIi+DENNX679WIxFqJkxSRRESSJqq1VD70hdwv2wKaWFvXAJicZPSQp2R86ZYf/gVOHDwePh3pQldV6sRgLUTJjkqgIFBbGewQUDp8PWLBAv6283PlxiAA1NUBVlX77ggWhJwDB9iGcelbH4hZVVcYna8B4/HbrxWIsRKRw8hCgsTHeI6BwHTigX9+/Pz7jAIC6Ov164NiMBL4u3HpWxuIW4Y4r8HV268ViLESkcPIQICsr3iOgcBUU6NdHjIjPOAAgN1e/Hjg2I4GvC7eelbG4RbjjCnyd3XqxGAsRKbzmIQCveUgMvOYh/LG4hf86g9pa9bNAoFDXPFitF4uxECUzXvMQgcGD9X/MyZ1mzuz6PvXqBZSURNaux2O8bhSbN6/rCSY9XY3RTLB9CKee1bG4hdcLzJ+v/tvK+O3Wi8VYiOj/xPjOD0dFM8+DWY6EaN/2Z3Y7YKwWo5wMOTnRz/NgtGRnm+d5MMvXYMYsh4VZLNg9//n5xnke/DEzTuV5CGcsbmF3/LHY70Q/lkTRxFs1I/jZAgAefBCYPTuKA4uh8nJgyhRg1Cj1p8/jAd5/H1iyxN4+eDzAihXA+PGq3QMH1O/wS5aoDJCAyshoFDt+HLjqKuCzz4BBg9R/P/20+fjLy4HLL1eZJQcMALZtU1e533ST8VfKK1YAkyd3jdl57/z/0lyxQn1zUVWlLpTLzQWKi7V/ffp8xjEzbW3qLgr/8Zo2Lbxvt8zq2R2LW9gdfyz2O9GPJVG0WDmHcvIQIJLfnOPBzb+b2/3d3+49+G7ZbyKiRMRrHiIQyX328eDmXAF2cx3YvQffLftNRJTsOHkIEI377J3m1lwBdnMd2L0H3y37TUSU7Dh5CBCN++yd5tZcAXZzHdi9B98t+01ElOx4zUMAXvPgnmserN6D75b9JiJKRLzmIQLh3mfvFm7OFWA314Hde/Ddst9EREkvpjeNOiyaeR7Ky7vmX/B41HajRyaXl5vnJjCrZzcmIrJzp377zp3aPhjVq6jommOhTx/t/vbGRpGJE0UKC1XZ2Kgdm/p6kWHDRHr3VmV9vRZrbhYpLRUZP16Vzc2qv8D8GCkp2viN+qqoEMnN1dcbNEgbY7C+/Ptt1F9FhWrDqE2z/W5vF9m0SWTpUlW2t2sxs3pmzNo0i9lpM9rtiYi0torMnStSVqbK1tbIx293LG5q00mJPn5yDyvnUE4eDFhJduTWJSPD2nb/YpYIyk5Sp/T04NtDJaQyS+hkNkmrqBAZPFi/ffBgtd2sTbOxBEsmlJentpvVM2PWplnMTpvl5dFtr6LCeiKrcPqzOxY3temkRB8/uQsnDxFOHpw+yXOJ/RKLLJ7htGk0gaioCF7frE2PRy1GJwajNqPdnt1jGao/M2ZjcVObTkr08ZP7MMNkBBdM7toFXHxxdMdF3Vtjo5aBEwidBMtMqIdHWW0z2u3Z7c+M3aRhTrfppEQfP7kTL5iMACcOFG1TpujXQyXBMiMSPJmV3Taj3Z7d/szYTRrmdJtOSvTxU+Lj5IEoxuwmwTIT2EakbUa7Pav9ReO18W7TSYk+fkp8nDwQxZjdJFhmAtuItM1ot2e1v2i8Nt5tOinRx0+Jj9c8BOA1DxRtRtc8GCXBMhPqGgWrbUa7Pbv9mbGbNMzpNp2U6OMnd+I1DxG46KJ4j4CiwSgRlNNtFhXpJw5AeEmwzGLBklmZtWnEbntW2w+nPzN2k4Y53aaTEn38lARifOeHo5jnQb905zwPgfe+5+dHP8+Dv81o5nnwt2kWs9NmsDwPkbRnJ89DOP3ZHYub2nRSoo+f3IV5HqIweRAxztwoIvLaa/rYa69psXXr9LF167TYs8/qY88+q8Vef10fe/318GJm46yrUyfpHj1UWVenxbZv19fbvl2LRTPDpIjIsWMiF14o0q+fKo8dC6+vEydExoxRfxDHjFHrofoSMc+6Z9YmM0xaGyMzTMZfoo+f3IN5HiK45oGIiKg74jUPREREFDOcPBAREZElnDwQERGRJZw8EBERkSWcPBAREZElnDyYWLNGJVzxL2vWaLG5c/WxuXO12KxZ+tisWVps1Sp9bNUqLfb00/rY00+HV2/LFn1syxYttmOHPrZjhxb7+GMgPV1tT09X636HDgFZWSrJTFaWWvc7cgQYOBDo2VOVR45osePHgcJCoH9/VR4/br4dUFny+vUD0tJUWVurxRoagLFjgSFDVNnQoMVaWoCyMmDCBFW2tIRXr6kJmDQJGDlSlU1N4bVptg8+H1BZCSxbpkqfL7xYW5tK5jN9uirb2mJXz6w9p9k9XkTkEjG/cdRBTBIV/uLxGG9PTQ0eS001TzyVk2Otr5wc4wRS6en2k0TZTQRl1qbRvuXkBE/Uk5dnnOzJH7OaZCmSesGSRPnbc5rd40VEscU8DxHmeYhGKmPq3jwedeqzGrPbph3+z/mKFcDkydFr18zKlcBNN3Xdj1DHC3B2nETdEfM8RKDzTxNEdpmd5O1OAKI9zfe3N2OGMz8N+HzAffcF349wjpdT4ySi0Dh5CFBSEu8REDlHBKipAaqqYt9XVRVw+LC9uk6Ok4hC4+SBiFBXlxh9ODFOIgqNkwciQm5uYvThxDiJKDROHgKsXh3vERA5x+MB8vOB4uLY91VcDOTl2bsg2clxElFonDwE+O534z0CSkSBJ8TO62Yxu21aqRfqdfPmqXweseb1AvPn6/sOHItZzKlxElFonDwEkTw3rxozOsF4PEBqavBYaiqQkRE8lpEB5ORY6ysnRyWnCiY9HSgoCB4rKDC+sLWkxLxeUVHwWFGReZtG+5aTA1RUAIMH67fn5antZrHy8q4nQ69XbY9mvfx8FcvL69qe07c/Tp6s+rR6vHibJpHLxDzrhIOimSRKRGT1an2ymtWrtdicOfrYnDla7PHH9bHHH9diK1fqYytXarGnntLHnnoqvHpVVfpYVZUW275dH9u+XYvt3y+Slqa2p6Wpdb+DB0UyM0VSUlR58KAWq6tTyZF69FBlXZ0WO3ZM5MILRfr1U+WxY+bbRUQOHxbp21cloerbV637nTghMmaMSH6+Kk+c0GLNzSKlpSLjx6uyuTm8eo2NIhMnihQWqrKxMbw2zfahvV1k0yaRpUtV2d4eXqy1VWTuXJGyMlW2tsaunll7TrN7vIgodpgkKsIkUURERN0Nk0QRERFRzHDyQERERJZw8kBERESWcPJARERElnDyYGL9enWboX9Zv16LPfecPvbcc1ps0SJ9bNGi8GJr1+pja9dqsTff1MfefDO82Jo1+ljnB3/t2KGP7dgRXmz3biAlRW1PSVHrfkePAsOHA5mZqjx6VG3/+GN1+6XHo8qPP9bqHD8OFBYC/fur8vjxyGNNTcCkScDIkapsatJiPh9QWQksW6bKzg9bamtT+QSmT1dlW5sWO3IEGDgQ6NlTlUeOaLGWFqCsDJgwQZUtLZH3Z8Zuf26RCGN0k1gcLze9B24aC4Up5vd+OCiat2p2vr2RS3hLdra113s86lbPYLGcHPuxoqLgsaIikYoKkbw8/fa8PLW9vFzE69XHvF61PSMjeJsZGSIlJcFjJSX2+zNjtz+3SIQxukksjpeb3gM3jaW7s3IOhQPjCdvmzZvlO9/5juTm5goAWbVqlaX60Zo8xPskzMXZxeNxX39GEwijiUOo/jwed/wxrqgIvv9uGqObxOJ4uek9cNNYyNo51FU/W5w6dQqjRo3C008/HbcxdP5pgroHEff1N2dO158wWlrsPXvF39+MGfH/avq++4Lvv1vG6CaxOF5ueg/cNBayzlWTh29/+9v45S9/iUmTJoX1+tbWVpw8eVK3RGr8+IibIIqYzwcsWKDfVl5uvz0RoKYGqKqKbFyRqKoCDh82jrthjG4Si+PlpvfATWMh61w1ebBq1qxZyM7O7ljy8/PjPSSiqDlwQL++f3/kbdbVRd5GrPuO5xjdJBbHy03vgZvGQtYl9OTh4YcfRkNDQ8dSU1MT7yERRU3gA75GjIi8zdzcyNuIdd/xHKObxOJ4uek9cNNYyDrXPtvC4/Fg1apVmDhxYth1ovFsi/Xr+dMFxZ/XCzQ365862tJi/FTTUDwe9XTK6ur4Pdba5wOGDQNqa4P/zu2GMbpJLI6Xm94DN42FFD7bIgLf+la8R0CxFviIcKNHhsezv5kzuz6uvFcv48eGh9PfvHnx/SPs9QLz56v/dusY3SQWx8tN74GbxkLWcfIQhDu/i3G/7Gxrr/d4gJyc4LGcHPuxoqLgsaIioKICGDxYvz0vT20vL+/6h8rrVduN/sWfkWF8Qi8psd/fk08Gb/OPf7TX34oVwOTJwes5afJkNRY3j9FNYnG83PQeuGksZFHMbxy1oLGxUXbu3Ck7d+4UADJnzhzZuXOnHDx4MKz60UwSJSLy1lv6e4/fekuLPfusPvbss1rsxRf1sRdfDC/2+uv62Ouva7F16/SxdevCi61erY+tXq3Ftm/Xx7ZvDy/2wQfavdkej1r3q68XGTZMpHdvVdbXq+3794ukpak6aWlq3e/YMZELLxTp10+Vx45FHmtsFJk4UaSwUJWNjVqsvV1k0yaRpUtV2d6uxVpbRebOFSkrU2Vrqxarq1NJqHr0UGVdnRZrbhYpLRUZP16Vzc2R92fGbn9ukQhjdJNYHC83vQduGkt3ZuUc6qprHiorK/HNb36zy/apU6di8eLFIetH45oHIiKi7sjKOTTVoTGFZdy4cXDRXIaIiIiC4DUPREREZAknD0RERGQJJw9ERERkCScPREREZAknDyZWrFC5CPzLihVa7Oc/18d+/nMt9swz+tgzz2ixV1/Vx159VYutWqWPrVqlxZ57Th977jktVlsL9OsHpKWpsrZWi23Zoq+3ZYsWe/ttfeztt7XYxx+rJEUejyo//liL7dqlr7drlxY7cgQYOBDo2VOVR46EHuPRo8Dw4UBmpiqPHg3dHqCeOjlvHjB9uio7P4Xy0CEgK0vlTcjKUut+LS1AWRkwYYIqW1q02PHjQGEh0L+/Ko8f12I+H1BZCSxbpsrOT/sza9OsXlMTMGkSMHKkKpuawts/M0b9mY3DLqfbtBszY/c4290HJ7llHJSEYn3fqJOimech8Pnybl3S061tD2fx53AId7t/yciwPvbs7OCx7Gzj9jIyRMrLRbxe/XavV21PTQ1eLzVVpKQkeKykROVuCBbLyRGpqBDJy9Nvz8tT283aNKtXVBS8XlGR+f6ZMeqvvNx4HHaZ7Vss2rQbM2P3ONvdBye5ZRyUOKycQ+HAeBwTrcmD3ZMul+61hJpMRbuefzE6sVVUWGvb41GLnZOJUV+xatPOsQw1lvJye8fZ6eNih1vGQYklYZNERSoaSaJWrABuvjnKAyOKomAPzfI/ZOjwYWttRfJwJaO+YtGmXUZjaWtTqcXNvsYPdpzNxOK42OGWcVDi4YOxIsCJA7mdzwcsWKDfVlVl78QrAtTUqPrhCtVXLNq0y2gsCxaE/v0/2HE2E4vjYodbxkHJjZMHogR04IB+va4usvas1A/3tbFo067A9gOPn5FwXxesj0hfZ5dbxkHJjZMHogRUUKBfz82NrD0r9cN9bSzatCuw/cDjZyTc1wXrI9LX2eWWcVBy4zUPAXjNA7md2TUPtbXqa+lwRXJ9glFfsWjTrnhc8xDN42KHW8ZBiYfXPETgppviPQJyK4/HfD3a9YzMnNn1hOb1AvPn2xvXvHnWTiJmfcWyTbuxYGNJT1fH0Uyw42wmFsfFDreMg5JcjO/8cBTzPITeHu4tfFZviwO6X56H/Hx7eR789ZzK85CfHzzPg38cdpntWyzatBsz41Seh0iPSyKPgxIH8zxEYfIgIvLaa/r/8V57TYs99pg+9thjWmzBAn1swQIttny5PrZ8uRZbuVIfW7lSiz37rD727LNa7PBhkb591cmxb1+17ldVpa9XVaXFtm7Vx7Zu1WL794ukpantaWlq3W/nTn29nTu1WF2dOtn26KHKurrQY6yvFxk2TKR3b1XW14duT0SktVVk7lyRsjJVtrZqsYMHRTIzRVJSVHnwoBZrbhYpLRUZP16Vzc1a7NgxkQsvFOnXT5XHjmmx9naRTZtEli5VZXt7eG2a1WtsFJk4UaSwUJWNjeHtnxmj/szGYZfTbdqNmbF7nO3ug5PcMg5KDMzzEME1D0RERN0Rr3kgIiKimOHkgYiIiCzh5IGIiIgs4eSBiIiILOHkgYiIiCzh5MHEsmUqqYp/WbZMi5WW6mOlpVrspZf0sZdeCi/2wgv62AsvaLFXX9XHXn1Vi23cqI9t3KjFtm3Tx7ZtCy926BCQlaUSyWRlqXW/o0eB4cOBzExVHj0aOlZbC/TrB6SlqbK2Vqtz5AgwcCDQs6cqjxzRYi0tQFkZMGGCKltawqtnt82mJmDSJGDkSFU2NWmxhgZg7FhgyBBVNjRosbY2lXhn+nRVtrWFF7M7FrN6Ph9QWak+r5WVoR8AFWqMZu3ZjSWKZNgHt+CxTDIxv3HUQd0xSVQsFrMkS2ZJnYxiRkt6unkiKLPkS2b17LZplrSpoCB4rKDAPNGQWczuWKwmpcrLM08MZDZGs/bsxhJFMuyDW/BYJgbmeYgwz0Ok6YOJ3MT/eV6xApg8WR978EFg9mzr7Rn91QgVMxqH26xcqVLVB+5LIu2DW/BYJg4r51BOHgIsWwZ8//tRHhhRnAV7GFI4D4dyYhxu43+w1OHDweOJsA9uwWOZWJgkKgKcOFAyEgFqaoCqKm3bggXO/+4cbBxuU1VlfLIDEmMf3ILHMnlx8kDUjdTVaf994IA7xuE24Y7NzfvgFjyWyYuTB6JuJDdX+++CAneMw23CHZub98EteCyTFycPAZYujfcIiKLP4wHy84HiYm3btGnO/84cbBxuU1ysfoc3unA6EfbBLXgskxcnDwFuuy3eIyCKjXnz9JOF9HRg5szQ9QL/8HdetxMLHIfbeL3A/PnqvxN1H9yCxzJ5cfIQRPLcf2KP2b8SMjKCxzIyjGNGUlPN2yspCR4rKVEnvmDS081jZm0WFQWPFRUZf8VfUACUl3f94+f1qu1mMbtjMatn1N8DDwS/He7JJ83HWFEBDB6sj+Xlqe12YolyW97kyWqsibwPbsFjmZx4q6aJwNs2ly4FfvQjoLk54qYJajKyYgXwjW8AF10EnDgB9OkD7NqlskICKnNieTmwfz8wYoTKSbBuXfD7xsPt79vf7tpmr17qNU1NwJQp6mLCggJgyRKVLRNQGSWvv15l2xwyBFi7FsjOVrG2NnX3gr/etGnaJMYsFmz/whmLleMSzv30ZmP0+dTV8HV16rfp4mJtsmE3liiSYR/cgsfS/ZjnIUqTh0BHjvDCnmiyc493qPvGo91fouD99EQUKeZ5iJGLLor3CJKLnXu8Q903Hu3+EgXvpyciJ3HyYMGJE/EeQXKyco93NO4HT8Z7ynk/PRE5iZMHC/r0ifcIkpOVn4Ki8bNRMv70xPvpichJnDxYsGtXvEeQXOzc4x3qvvFo95coeD89ETmJkwcLBg60fjtiILP74u3Wsxuzy0p/odqweo93OPeNm8WS9Z5y3k9PRE7i5MHEokXqD69/WbQIOHXKXq6DjAx173vgH/aUFLXdLI9ARUXX2+9EtPvpzWL+W/v8MjPV9vLy4P35cxMYxSoquv5807ev1l///vrYgAGq3lln6befdZZ262BtLdCvH5CWpsraWu11DQ3A2LHq1sixY9W6/77xwK/gBw3SxjFokD42eLDWX1MTMGkSMHKkKpuatNf5fEBlpbpNt7JS/+CoYGPxa2kBysqACRNU2dKixcz6a2tTJ/Xp01XZ1hZem8Hq+Y+L2b4bMdtvszGa1bPLrD+7x8vuOKO9f2btxeJYEsWMJJGGhgYBIA0NDRG3pU7BXAIXj8d4e2qqtbbS09ViFCsoCB4rKBApKgoeKyoSKS8XSUnRb09JUdvN6lVUiOTl6bfn5antZmMpKQkeKykJPU6vV7/d61Xbzdo0q2e2D0bM6kS7r1DM+rN7vOyOM9r7Z9ZeLI4lkVVWzqFwYDyOidbkIZYnXy6JtRhNlhJp8XjUEuxEVFERfB/t7rdZX6GUl7vjmIQ6Lnb2z85xjuRYEtlh5RzKJFEBFi0C7rwzygMjirNgSaIiSbhlta9Q2trUT3tOflVvNM5oJ9xiYjNKFEwSFQFOHCgZiXRNEhVJwi2rfYWyYIHzv/EbjTPaCbeY2IySEScPRN1I5yRRsU4YZaX9AwdiN45QAscZ7YRbTGxGyYiTB6JupPMdKrFOGGWlfaO7jZwQOM5oJ9xiYjNKRrzmIQCveaBkZHbNQ22t+no8ln2F4sZrHoyOi91rHuwcZ17zQE7iNQ8RuOOOeI+A4ikWSbWcFm6SqHATbkWjr1DS04GZM8N/vVVWxhnthFtMbEbJiJOHIJLnu5joM0t/nJpqra30dLUYxcwSZxUVBY8VFamkVMFOCOXl5vUqKlRCpc7y8kIn8SopCR4rKbE/TrM2zeoZ7YNRkih/Yimj/Y5mX6E8+aR5f3aPl51xmh0XO/sX6jhH+1gSxVyMbxt1VDSTRImIvPii/r7rF1/UYvfco4/dc48WmzFDH5sxQ4vdfrs+dvvtWuypp/Sxp57SYvPm6WPz5mmxl1/Wx15+WYutXq2PrV6txdat08fWrdNiH36oJeTxetW63/79ImlpKpaWptb9Dh4UycxUSZkyM9W6iMjhwyJ9+6pEUn37qnU/s9iJEyJjxojk56vyxAkt1tgoMnGiSGGhKhsbtVhrq8jcuSJlZapsbQ2vXnu7yKZNIkuXqrK9PbyxNDeLlJaKjB+vyubmyMdp1qZZPbN9MGJWJ9p9hWLWn93jZXec0d4/s/ZicSyJrGCehwiueSAiIuqOeM0DERERxQwnD0RERGQJJw9ERERkCScPREREZAknD0RERGQJJw8m1q5V+Qv8y9q1WmzWLH1s1iwt9utf62O//rUWW79eH1u/XostWaKPLVmixZ5/Xh97/nkttnGjPrZxoxZ79VV97NVXtdju3UBKitqekqLW/Q4dArKy1H30WVlq3a+6GujVS9Xp1Uut+9XWAv36AWlpqqytVduPHgWGDwcyM1V59KhWp6UFKCsDJkxQZUuLFjt+HCgsBPr3V+Xx41qsrU0l0Jk+XZVtbeHFzPpragImTQJGjlRlU1N49czYrefzAZWVwLJlqoxl9kW7fTldz2lm47SzD07vd6Ic50TAYxkg5jeOOiiaeR465z/obktqqvH2lJTgsZQUkfR0a/1kZ4uUlASPlZSI5OQEj+XkiJSXa3ko/IvXq7abxcz6KyoKHisqMq9nxm69igqRvDx9nbw8tT3a7PbldD2nmY3Tzj44vd+JcpwTQXc5llbOoXBgPI6J1uQh3idvLom1GE0EjCYOoepVVIh4PF1f7/GoJZp/sOz25XQ9p5mN0+j9NNsHp/c7UY5zIuhOx5JJoiJIErV2LfCd70R5YJT0mpvVTzh+LS3qQU9W6/kfonT4cPDXR/NBSXb7crqe00KN04zZA8ic2u9EOc6JoLsdSyaJigAnDmRHebn5erj1qqrMT1oiQE2Nel2k7PbldD2nhRqnmWD74PR+J8pxTgQ8lsY4eSCKgv37zdfDrVdXF169cF8XjTYCX+d0PadF+9g6vd+JcpwTAY+lMU4eiKJgxAjz9XDr5eaGVy/c10WjjcDXOV3PadE+tk7vd6Ic50TAY2mM1zwE4DUPZEe0r3morVVfiQaKxTUPVvtyup7TQo3TjNk1D07td6Ic50TQ3Y4lr3mIwPXXx3sElGhKSvQTAECtl5RYr+f1AvPnq//2ePQx//q8edH5Q2W3L6frOS2ccZrFAvfB6f1OlOOcCHgsTcT4zg9HMc9DdBbmedAvbsnzkJ/vXJ6HcPpyup7TzMZpZx+c3u9EOc6JoLscS+Z5iMLkQUTk9df1H5bXX9dijz+ujz3+uBZ74gl97IkntNhbb+ljb72lxX7/e33s97/XYgsX6mMLF2qxDRv0sQ0btNjy5frY8uVa7IMPtPuXPR617nfwoEhmppoUZGaqdb9PPhHp2VPV6dlTrfsdPizSt6+aaPTtq9ZFROrrRYYNE+ndW5X19Vqd5maR0lKR8eNV2dysxY4dE7nwQpF+/VR57JgWa20VmTtXpKxMla2t4cXM+mtsFJk4UaSwUJWNjeHVM2O3Xnu7yKZNIkuXqrK9Pbx6dtjty+l6TjMbp519cHq/E+U4J4LucCyZ5yGCax6IiIi6I17zQERERDHDyQMRERFZwskDERERWcLJAxEREVnCyYMJj6fr4sZYv3767f36abFLL9XHLr1Ui11zjT52zTVabPJkfWzyZC12//362P33a7Hycn3M/+yGn/9cv/3nP9fqLFumjy1bpsWeeUYfe+YZLbZ+vT62fr0W27xZH9u8WYvt3avuy/Z4VLl3rxbbskVfb8uW8Ort2wekpqpYaqpa96uuVvkcUlJUWV0dXptNTcCkScDIkapsatJihw4BWVmqTlaWWvc7cgQYOBDo2VOVR46o7Q0NwNixwJAhqmxo0OocPQoMHw5kZqry6FEtVlurPlNpaaqsrQ3dF6ASZZWVARMmqLKlJbx9M6vX1qbuq58+XZVtbVrM5wMqK9Xnp7JSrYdTz27MrD8jdupEUs/u+O325zQnx+mmY+KKscT83g8HMc8DF7ctZnkxzOqZ5Zwwy8ORkWFtfAUFKt9GsFh2tnHujvR0474yMmKTT8Msf0ew+/Dz8tR2uzlB7PZnxE6dSOrZHb/d/pzm5DjddExiOZaEz/Pw1FNPydChQ6VHjx5y+eWXy7vvvhtWvWhNHmJxEuHChYuziz+HiZP9eTzB/4hXVAQfj1mdSOqVl0f3eIXqz2l2j4vb+4r3WBJ68rB8+XJJT0+XF198Ufbs2SM//vGPpU+fPvL555+HrBuNyUO8/+Bx4cIlcRePR2UeDEwmFfgvxVB1IqnX2tr1G4dY7Vs82D0ubu/LDWOxcg513TUPc+bMwY9//GPccccdOP/88/Hss88iIyMDL774YpfXtra24uTJk7qFiCheRICaGqCqSttWVQUcPmytTiT1FiyIzW/gRv05ze5xcXtfiTQWwGUXTLa1tWHHjh249tprO7alpKTg2muvxdtvv93l9bNmzUJ2dnbHkp+f7+RwiYiCqqsL/t/h1omk3oED4dWzK9xxxbv/aIzTyb6i1YdT74+rJg//+Mc/4PP5kJOTo9uek5ODI50v4/4/Dz/8MBoaGjqWmpoap4ZKRGQoNzf4f4dbJ5J6BQXh1bMr3HHFu/9ojNPJvqLVh1Pvj6smD1b16NEDZ5xxhm4hIooXjwfIzweKi7VtxcVAXl7XRzqb1Ymk3rRpsXlEtFF/TrN7XNzeVyKNBXDZ5OHMM8+E1+vF559/rtv++eefY+DAgY6MQcSRbogoygL/qBr9kY11f/Pm6U/eXi8wf761OpHUS08HZs60P36r/TnN7nFxe1+JNBYAgP3rMmPj8ssvl7Kyso51n88ngwcPllmzZoWsyzwPXNy2MM+DfnEyz0N+vrN5Hvz9GbFTJ5J6dsdvtz+nOTlONx2TWI4l4W/V7NGjhyxevFj27t0rd911l/Tp00eOHDkSsm40Jw8iwf+IuTHWt69+e9++WuySS/SxSy7RYldfrY9dfbUWmzRJH5s0SYvNmKGPzZihxR54QB974AG1/bHH9Nsfe0yrs3SpPrZ0qRZbsEAfW7BAi731lj721ltarLJSH6us1GJ79mgn75QUte5XVaWvV1UVXr0PP9T+UHu9at3vk09EevZUt1L17KnWw2mzsVFk4kSRwkJVNjZqsYMHRTIzVZ3MTLXuV1cnkpMj0qOHKuvq1PYTJ0TGjFF/aMaMUet+9fUiw4aJ9O6tyvp6LXb4sPpMpaaq8vDh0H2JiDQ3i5SWiowfr8rm5vD2zaxea6vI3LkiZWWqbG3VYu3tIps2qc/Ppk36W9bM6tmNmfVnxE6dSOrZHb/d/pzm5DjddExiNRYr51CPiIhDX3KE7amnnsLs2bNx5MgRXHTRRfjtb3+LK664ImQ9K88iJyIiIo2Vc6grJw92cfJARERkj5VzqKsumCQiIiL34+SBiIiILOHkgYiIiCzh5IGIiIgs4eSBiIiILOHkgYiIiCzh5IGIiIgs4eSBiIiILOHkgYiIiCzh5IGIiIgs4eSBiIiILOHkgYiIiCxJjfcAosn/jK+TJ0/GeSRERESJxX/uDOd5mUk1eWhsbAQA5Ofnx3kkREREiamxsRHZ2dmmr0mqR3KfPn0an332GbKysuDxeKLS5smTJ5Gfn4+amho+5rsTHpeueEy64jHpisckOB6Xrpw+JiKCxsZGDBo0CCkp5lc1JNU3DykpKcjLy4tJ22eccQY/0EHwuHTFY9IVj0lXPCbB8bh05eQxCfWNgx8vmCQiIiJLOHkgIiIiSzh5CKFHjx549NFH0aNHj3gPxVV4XLriMemKx6QrHpPgeFy6cvMxSaoLJomIiCj2+M0DERERWcLJAxEREVnCyQMRERFZwskDERERWcLJAxEREVnCyUMITz/9NIYNG4aePXviiiuuwLZt2+I9JMf8+c9/xg033IBBgwbB4/Hgj3/8oy4uInjkkUeQm5uLXr164dprr8X+/fvjM1iHzJo1C0VFRcjKysJZZ52FiRMnYt++fbrXfPnllygtLUX//v2RmZmJG2+8EZ9//nmcRuyMZ555BiNHjuzIhDd69GisW7euI94dj0lnTzzxBDweD2bMmNGxrTsek8ceewwej0e3nHfeeR3x7nhMAKC2thY//OEP0b9/f/Tq1QuFhYXYvn17R9yNf2s5eTDx6quvYubMmXj00Ufx17/+FaNGjcKECRNQX18f76E54tSpUxg1ahSefvrpoPEnn3wSv/3tb/Hss8/i3XffRe/evTFhwgR8+eWXDo/UOZs3b0ZpaSneeecdrF+/Hl999RXGjx+PU6dOdbzm/vvvx5/+9Ce89tpr2Lx5Mz777DNMnjw5jqOOvby8PDzxxBPYsWMHtm/fjquvvholJSXYs2cPgO55TPzee+89PPfccxg5cqRue3c9JhdccAHq6uo6li1btnTEuuMx+eKLLzBmzBikpaVh3bp12Lt3L/7rv/4Lffv27XiNK//WChm6/PLLpbS0tGPd5/PJoEGDZNasWXEcVXwAkFWrVnWsnz59WgYOHCizZ8/u2HbixAnp0aOHLFu2LA4jjI/6+noBIJs3bxYRdQzS0tLktdde63jN3//+dwEgb7/9dryGGRd9+/aV3/3ud936mDQ2NsqIESNk/fr1ctVVV8l9990nIt33c/Loo4/KqFGjgsa66zH56U9/KmPHjjWMu/VvLb95MNDW1oYdO3bg2muv7diWkpKCa6+9Fm+//XYcR+YO1dXVOHLkiO74ZGdn44orruhWx6ehoQEA0K9fPwDAjh078NVXX+mOy3nnnYchQ4Z0m+Pi8/mwfPlynDp1CqNHj+7Wx6S0tBTXX3+9bt+B7v052b9/PwYNGoSzzz4bP/jBD3Do0CEA3feYrFmzBpdddhluvvlmnHXWWbj44ovx/PPPd8Td+reWkwcD//jHP+Dz+ZCTk6PbnpOTgyNHjsRpVO7hPwbd+ficPn0aM2bMwJgxY3DhhRcCUMclPT0dffr00b22OxyX3bt3IzMzEz169MA999yDVatW4fzzz++2x2T58uX461//ilmzZnWJdddjcsUVV2Dx4sV488038cwzz6C6uhrFxcVobGzstsfkk08+wTPPPIMRI0bgf/7nf3Dvvffi//2//4eXXnoJgHv/1ibVI7mJnFRaWoq//e1vut9su7Ovfe1r2LVrFxoaGrBixQpMnToVmzdvjvew4qKmpgb33Xcf1q9fj549e8Z7OK7x7W9/u+O/R44ciSuuuAJDhw7FH/7wB/Tq1SuOI4uf06dP47LLLsPjjz8OALj44ovxt7/9Dc8++yymTp0a59EZ4zcPBs4880x4vd4uV/p+/vnnGDhwYJxG5R7+Y9Bdj09ZWRlef/11bNq0CXl5eR3bBw4ciLa2Npw4cUL3+u5wXNLT03HOOefg0ksvxaxZszBq1CjMnz+/Wx6THTt2oL6+HpdccglSU1ORmpqKzZs347e//S1SU1ORk5PT7Y5JMH369MG5556Ljz/+uFt+TgAgNzcX559/vm7b17/+9Y6fc9z6t5aTBwPp6em49NJLsWHDho5tp0+fxoYNGzB69Og4jswdhg8fjoEDB+qOz8mTJ/Huu+8m9fEREZSVlWHVqlXYuHEjhg8frotfeumlSEtL0x2Xffv24dChQ0l9XII5ffo0Wltbu+Uxueaaa7B7927s2rWrY7nsssvwgx/8oOO/u9sxCaapqQkHDhxAbm5ut/ycAMCYMWO63O790UcfYejQoQBc/Lc2bpdqJoDly5dLjx49ZPHixbJ371656667pE+fPnLkyJF4D80RjY2NsnPnTtm5c6cAkDlz5sjOnTvl4MGDIiLyxBNPSJ8+fWT16tXywQcfSElJiQwfPlxaWlriPPLYuffeeyU7O1sqKyulrq6uY2lubu54zT333CNDhgyRjRs3yvbt22X06NEyevToOI469h566CHZvHmzVFdXywcffCAPPfSQeDweeeutt0Skex6TQJ3vthDpnsfkJz/5iVRWVkp1dbX85S9/kWuvvVbOPPNMqa+vF5HueUy2bdsmqamp8qtf/Ur2798vr7zyimRkZMjLL7/c8Ro3/q3l5CGE//7v/5YhQ4ZIenq6XH755fLOO+/Ee0iO2bRpkwDoskydOlVE1C1EP/vZzyQnJ0d69Ogh11xzjezbty++g46xYMcDgCxatKjjNS0tLTJt2jTp27evZGRkyKRJk6Suri5+g3bAnXfeKUOHDpX09HQZMGCAXHPNNR0TB5HueUwCBU4euuMxufXWWyU3N1fS09Nl8ODBcuutt8rHH3/cEe+Ox0RE5E9/+pNceOGF0qNHDznvvPNk4cKFurgb/9Z6RETi850HERERJSJe80BERESWcPJARERElnDyQERERJZw8kBERESWcPJARERElnDyQERERJZw8kBERESWcPJARERElnDyQNSNLV68GB6PB59++mm8h9LFuHHjMG7cuI71Tz/9FB6PB4sXL9a97s0338RFF12Enj17wuPxdDxYacmSJTjvvPOQlpbW5THPRBQZPpKbiBLWsWPHcMstt+CCCy7A008/jR49eqB379748MMPcfvtt+O6667DQw89hIyMjHgPlSipcPJARAlh6NChaGlpQVpaWse29957D42NjfjP//xPXHvttR3bKysrcfr0acyfPx/nnHNOPIZLlNQ4eSCihODxeNCzZ0/dtvr6egDo8rOE0XYiig5e80BEOuvWrUNxcTF69+6NrKwsXH/99dizZ4/uNbfffjsyMzNRW1uLiRMnIjMzEwMGDMADDzwAn89nuc+FCxeioKAAvXr1wuWXX46qqqourwm85mHcuHGYOnUqAKCoqAgejwe33347hg0bhkcffRQAMGDAAHg8Hjz22GOWx0RExjh5IKIOS5YswfXXX4/MzEz8+te/xs9+9jPs3bsXY8eO7XJRpc/nw4QJE9C/f3/85je/wVVXXYX/+q//wsKFCy31+cILL+Duu+/GwIED8eSTT2LMmDH47ne/i5qaGtN6//7v/4677roLAPCLX/wCS5Yswd1334158+Zh0qRJAIBnnnkGS5YsweTJky2NiYhCiOsDwYkorhYtWiQApLq6WhobG6VPnz7y4x//WPeaI0eOSHZ2tm771KlTBYD84he/0L324osvlksvvTTs/tva2uSss86Siy66SFpbWzu2L1y4UADIVVdd1bGturpaAMiiRYu6jP+9997Ttfvoo48KADl69GjYYyGi8PGbByICAKxfvx4nTpzAbbfdhn/84x8di9frxRVXXIFNmzZ1qXPPPffo1ouLi/HJJ5+E3ef27dtRX1+Pe+65B+np6R3bb7/9dmRnZ9vfGSKKKV4wSUQAgP379wMArr766qDxM844Q7fes2dPDBgwQLetb9+++OKLL8Lu8+DBgwCAESNG6LanpaXh7LPPDrsdInIWJw9EBAA4ffo0AHXdw8CBA7vEU1P1fy68Xq8j4yIi9+HkgYgAAAUFBQCAs846S5czIZaGDh0KQH3r0fkbj6+++grV1dUYNWqUI+MgImt4zQMRAQAmTJiAM844A48//ji++uqrLvGjR49Gvc/LLrsMAwYMwLPPPou2traO7YsXL+5IM01E7sNvHogIgLqm4ZlnnsGUKVNwySWX4Hvf+x4GDBiAQ4cOYe3atRgzZgyeeuqpqPaZlpaGX/7yl7j77rtx9dVX49Zbb0V1dTUWLVrEax6IXIyTByLq8P3vfx+DBg3CE088gdmzZ6O1tRWDBw9GcXEx7rjjjpj0edddd8Hn82H27NkoLy9HYWEh1qxZg5/97Gcx6Y+IIucREYn3IIiIiChx8JoHIiIisoQ/WxBRTBw/flx3EWQgr9fbJU8EESUG/mxBRDExbtw4bN682TA+dOjQLs/LIKLEwMkDEcXEjh07TLNN9urVC2PGjHFwREQULZw8EBERkSW8YJKIiIgs4eSBiIiILOHkgYiIiCzh5IGIiIgs4eSBiIiILOHkgYiIiCzh5IGIiIgs+f+tPsAu2Ns8MgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_col1_col2_scatter(dev,\"len_diff\", \"label\",\"dev\")\n", + "plot_col1_col2_scatter(train, \"len_diff\", \"label\",\"train\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 텍스트 BLEU Score\n", + "BLEU Score에 대한 개념과 구현은 다음 링크를 참고하세요. \n", + "- 개념: https://supkoon.tistory.com/18 \n", + "- 개념 및 구현: https://wikidocs.net/31695 " + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "from nltk.translate import bleu_score as bleu\n", + "chencherry = bleu.SmoothingFunction()\n", + "\n", + "# train 데이터에 대한 BLEU 점수 계산\n", + "train[\"bleu\"] = train.apply(\n", + " lambda row: max(bleu.sentence_bleu(\n", + " [row[\"sentence_1\"].split()],\n", + " row[\"sentence_2\"].split(),\n", + " weights=(0.25, 0.25, 0.25, 0.25),\n", + " smoothing_function=chencherry.method0,\n", + " ), bleu.sentence_bleu(\n", + " [row[\"sentence_2\"].split()],\n", + " row[\"sentence_1\"].split(),\n", + " weights=(0.25, 0.25, 0.25, 0.25),\n", + " smoothing_function=chencherry.method0,\n", + " )),\n", + " axis=1,\n", + ")\n", + "\n", + "# dev 데이터에 대한 BLEU 점수 계산\n", + "dev[\"bleu\"] = dev.apply(\n", + " lambda row: max(bleu.sentence_bleu(\n", + " [row[\"sentence_1\"].split()],\n", + " row[\"sentence_2\"].split(),\n", + " weights=(0.25, 0.25, 0.25, 0.25),\n", + " smoothing_function=chencherry.method0,\n", + " ), bleu.sentence_bleu(\n", + " [row[\"sentence_2\"].split()],\n", + " row[\"sentence_1\"].split(),\n", + " weights=(0.25, 0.25, 0.25, 0.25),\n", + " smoothing_function=chencherry.method0,\n", + " )),\n", + " axis=1,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5065 368\n" + ] + } + ], + "source": [ + "print(len(train[train[\"bleu\"]!=0]), len(dev[dev[\"bleu\"]!=0]))" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAIpCAYAAAAl0NuJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6J0lEQVR4nO3deXxU1f3/8fcwkBAlGXYIZCRAxQ1ZyvZFicSAVlCLpBgV6tYWN7SirVa6od9+FSv9WtQKWhWpG6g8QrFqtZoYShQKolQeUhEVvgYMWy0Ji4YwOb8/5jeRzJLMSSYzNzOv5+Mxjzj3fmbmzNzgvHPOvee4jDFGAAAAUWqX6AYAAIC2hfAAAACsEB4AAIAVwgMAALBCeAAAAFYIDwAAwArhAQAAWCE8AAAAK4QHAABghfAANCI3N1cul0vbt29PdFPCcrlccrlc1o/Lz8+Xy+VSWVlZ7BuVJGL9GTX3WDXH9u3b5XK5lJubG5fXQ+ohPAAAACuEBwAAYIXwAAAArBAekPI2b96siy++WN27d1dGRoYGDx6s3/3ud/L5fI0+7ujRo3r88ceVn5+vrl27Kj09Xf3799f111+vioqKBrWPPvqoXC6XzjvvvIjP9+9//1vp6elKS0vT3r17rd/HY489phEjRuj4449X586dNXnyZK1du9b6eSSppKREhYWFys7OVlpamnr27KmpU6dqzZo1IbXRjK/bnDvi8/mUk5Mjl8vVaPt/+tOfyuVy6ZZbbqnfVlNTo/nz52vEiBHKzMxUWlqaevfurVGjRun222/Xl19+2eTrN2Xv3r168MEHNXnyZPXv318ZGRnKysrSyJEj9dvf/lZff/11k89he6xsfteAuDBAClu9erU5/vjjjSQzYMAAc+mll5qJEyeaDh06mO9973umX79+RpLZtm1bg8dVV1eb/Px8I8l06tTJjB8/3kybNs2cdNJJRpLp1q2bee+99+rr9+/fbzIyMky7du3Mjh07wrblwQcfNJJMYWFh1O2XZCSZW265xbhcLjNu3Dhz2WWXmcGDBxtJpn379qa4uDjkcePHjzeSzFtvvRWy7yc/+YmRZNq1a2dGjx5tLr74YjNmzBjjcrmM2+02ixcvblC/bds2I8n069cvYjsjfY6RzJkzx0gy1157bdj9tbW1plevXkaS+eCDD4wxxvh8PjNhwgQjyWRlZZlJkyaZyy67zEycOLH+9d9///2oXt+YyJ/R008/bSSZvn37mvHjx5tLL73UTJgwwXTq1MlIMmPHjjVff/11yPM191jZ/q4ZE90xAVqC8ICU9dVXXxmv12skmdmzZ5ujR4/W7/vnP/9punfvXv8//OAvvenTpxtJ5oILLjC7d+9usO/3v/+9kWROPPHEBs85Y8YMI8nMmzcvbHuGDx9uJJm//OUvUb+HQPsyMjJMSUlJg3333XefkWQ8Hk9IGyN9Mf7xj380ksy3vvUt889//rPBvlWrVpnMzEyTlpZmPv744/rtrREePv74YyPJdO7c2Xz11Vch+1euXGkkmREjRjRonyQzfPhwU11dHfKY9evXm3379kX1+sZE/ow2b95s1qxZE1L/5ZdfmnPPPddIMvfdd1/I/uYeq+b8rhEe0NoID0hZzzzzjJFkvF6vOXLkSMj+wP+Yg7/0Nm/ebFwul+nTp0/YLyljjJk8eXJIECgpKTGSzEknnRRSv3HjRiPJ9O7d29TW1kb9HgLtmz17dtj9I0eONJLM3Xff3WB7uC9Gn89n+vTpYySZd999N+zzBb7kfvKTn9Rva43wYIwxeXl5RpJ57rnnQvZddNFFRpL5wx/+UL/thRdeMJLMj3/846hfozGN9c5EsmXLFiPJjBo1KmRfc45Vc3/XCA9obZzzgJQVuH6/qKhIHTp0CNl/5ZVXhn3cq6++KmOMJk2apMzMzLA1+fn5kqR33nmnftvZZ5+t3NxcbdmyJeTcgSeffFKSdMUVV6h9+/a2byViW6+44gpJimqugvfff19ffPGFBg4cqBEjRoStCfe+WsvVV18tSVqyZEmD7Xv37tUrr7yi9PR0TZ8+vX77t7/9bbndbi1evFgPP/ywKisrW61tPp9PJSUl+s1vfqMbbrhBV199ta666irdfffdkqQtW7ZEfKzNsWru7xrQ2uz/LwUkiR07dkiS+vfvH3Z/ly5d5PF4VFVV1WD7Z599Jkl64okn9MQTTzT6Gsee+OhyuXTVVVfpzjvv1JNPPqmxY8dKkmpra/Xss89K+uYL01ak9xDYHnivjQm8r08//bTJyYyac0KnraKiIv34xz/Wm2++qR07dignJ0eS9Mwzz6i2tlaXXHKJunTpUl8/cOBA/f73v9dtt92mG2+8UTfeeKP69eunsWPH6oILLtDFF1+stLS0Frdr69atmjp1qj788MOINdXV1RH32Ryr5v6uAa2N8ABYqqurkyQNGzZMQ4cObbR2zJgxDe5fddVVuuuuu/TCCy/ogQceUEZGhv7yl79o3759+q//+i+dfPLJrdJmY0yTNYH31bt3b33nO99ptLZ79+5Wrx94bhvHH3+8ioqKtHjxYj311FP6+c9/LumbnohwQeumm25SUVGRXnrpJZWXl6u8vFzLli3TsmXLNHfuXK1evVrZ2dnWbTnWtGnT9OGHH+qCCy7Q7bffrlNPPVVZWVnq0KGDjhw5ovT09BY9/7HHqiW/a0BrIjwgZfXt21eSIl4+uH///pBeB0nyer2SpDPPPFN/+MMfrF6zX79+KigoUElJiYqLizVjxoz6L8Mf/OAHVs91rG3btmnYsGEh2wPvLfBXe2MC76tbt24hQwWNCfw1f+DAgbD7a2trmz2EcPXVV2vx4sVasmSJfv7zn+u9997TBx98oJycHJ1zzjlhH9OrVy/NnDlTM2fOlCR99NFH+sEPfqA1a9bojjvu0J/+9KdmtSXwXB988IF69uypFStWhAwxbd26tcnnsDlWLfldA1oT5zwgZY0fP16S9MILL6i2tjZk/1NPPRX2cZMmTZIkvfTSS1Fd0x8sEBKWLFmi3bt3669//asyMjJ0ySWXWD9XwNNPP93o9sC4eGNGjRql7t27a/PmzY12yQfr0aOH0tLS9OWXX2rPnj0h+19//XUdPXo06uc71rhx4zRo0CBt3bpVb7/9dv25IVdeeaXatYvuf18nn3yyfvazn0mSNm7c2Kx2BATmiejTp0/Yc1OeeeaZJp/D5li19HcNaDWJPV8TSJzDhw+bvn371l894PP56vdt2rTJ9OjRI+Klmt/73veMJDNp0qSwVxAcPHjQPPPMM2bXrl0h+7766ivTuXNn065dO3PTTTcZSeb73/9+s95DoH0ZGRkhVwXcf//9RpLJzMw0lZWVDfZFupLgoYceqr/0b/Xq1SGvd/ToUVNSUhJyqeLEiRONJDNz5swGn+PGjRvrr7QI9zlGY968efWfUdeuXY0ks3Xr1pC6kpIS88orr4RcOVNXV2d+9KMfGUnmwgsvjPp1w31Ge/fuNW6327jd7pDP7qWXXjLp6en17zVYc49Vc37XuNoCrY3wgJRWVlZmjjvuOCPJDBw40Fx66aXmnHPOMR06dDCFhYWNThIVmJAoLS3NjBo1yhQVFZmLL77YjBo1yqSlpRlJ5l//+lfY173uuuvqv0wkmdLS0ma1P/D42bNnG5fLZc466yxz2WWXmdNPP91IMm6327z44oshj2vsMsTbbrut/nlPO+00M2XKFHPppZea/Px807lzZyPJLFq0qMFj1q5dW/+eBw0aZKZNm2bGjh1rOnToYK688spmXaoZsHPnTuN2u+vbdNZZZ4WtC1xam5WVZfLz88306dPN1KlT61/b4/HEZJKom2++uX4SrfHjx5vLLrvMfPvb3zaSzC9/+csmw4PtsWrO7xrhAa2N8ICUt2nTJlNYWGi6du1q0tPTzSmnnGLmzZtnamtrG/3S8/l85rnnnjOTJ082vXr1Mh06dDDdunUzgwcPNldffbVZsWJF2PkjjDFm3bp19V8mubm5pq6urlltP/aLatGiRWbYsGEmIyPDZGVlmfPOO8+8/fbbYR/X1BwGb7/9tpkxY4bp16+fSU9PN5mZmWbQoEHmoosuMo8//rj58ssvQx6zZs0ac+6555qsrCyTkZFhhg4dahYuXGjq6upaFB6M+WYuA0nmySefDFvzySefmDvvvNNMmDDBnHDCCaZjx46mS5cuZsiQIeaOO+4wFRUVVq8Z6TOqq6szTzzxhBkxYoTp1KmT8Xg8Zty4cWbZsmXGGNNkeDDG7lgZY/+7RnhAa3MZE8Vp2AAAAP8fJ0wCAAArhAcAAGCF8AAAAKwQHgAAgBXCAwAAsEJ4AAAAVpJqbYu6ujp98cUXyszMbHJVQAAA8A1jjA4cOKA+ffo0Of17UoWHL774on4hGQAAYK+ioqLJxfSSKjxkZmZK8r/xrKysBLcGAIC2o7q6Wl6vt/67tDFJFR4CQxVZWVmEBwAAmiGaYX9OmAQAAFYIDwAAwArhAQAAWCE8AAAAK4QHAABghfAAAACsEB4AAIAVwgMAALBCeAAAAFYIDwAAwArhAQAAWCE8AAAAK4QHAABghfDQiFWrJJfrm9uqVYluEQAkF59PKiuTli71//T5Et0iRMNR4eHOO++Uy+VqcDv55JMT0haXS8rPb7gtP9+/HQDQcsXFUm6udPbZ0vTp/p+5uf7tcLb2iW5AsNNOO01vvvlm/f327ePfxKYCgsslGROftgBAMioulqZNC/1/6c6d/u3Ll0uFhYlpG5rmqJ4HyR8WevfuXX/r3r17XF8/2qEJhjAAoHl8Punmm8P/ERbYNns2QxhO5rjwsHXrVvXp00cDBgzQjBkz9Pnnn0esrampUXV1dYNbSwUPVbS0DgDQ0OrV0o4dkfcbI1VU+OvgTI4KD2PGjNGSJUv02muvadGiRdq2bZvy8vJ04MCBsPXz5s2Tx+Opv3m93ji3GABgq7IytnWIP5cxzh29379/v/r166f7779fP/zhD0P219TUqKampv5+dXW1vF6vqqqqlJWV1azXtDkh0rmfHAA4V1mZ/+TIprz1Fr288VRdXS2PxxPVd6ijeh6Cde7cWYMGDdInn3wSdn96erqysrIa3FqqrCy2dQCAhvLypJycyH+suVyS1+uvgzM5OjwcPHhQn376qbKzs+P2muPHx7YOANCQ2y098ID/v4MDROD+ggX+OjiTo8LDT3/6U61atUrbt2/XO++8o6lTp8rtduuyyy6LazuaGo5guAIAWqaw0H85Zt++Dbfn5HCZZlvgqHkeduzYocsuu0z//ve/1aNHD40bN05r165Vjx494t4WY/yXYx473lZWRo8DAMRKYaE0ZYr/qorKSik72z9UQY+D8zn6hElbNid7AACAbyTNCZMAAMB5CA8AAMAK4QEAAFghPAAAACuEBwAAYIXw0Ijycv+EJYFbeXmiWwSkFp/Pf4n00qX+n9GustjcxwGIjqPmeXCScNOmBqZKTZ6LWwHnKi72L9t87OqLOTn+mQkbm0CouY8DED16HsJoanEsm8WzANgrLpamTQtdtnnnTv/24uLYPg6AHcJDkGiHJhjCAFqHz+fvOQjXwxfYNnt26FBEcx8HwB7hIUi0q7ix2hvQOlavDu05OJYxUkWFvy4WjwNgj/AAwFEqK5tX19zHAbBHeADgKNnZzatr7uMA2CM8BIm2S5OuT6B15OX5r46IdGKyyyV5vaFDh819HAB7hIcg48bFtg6AHbfbf1mlFBoEAvcXLAhdtrm5jwNgj/AQRlPzODDPA9C6Cgul5culvn0bbs/J8W+PNF9Dcx8HwI7LmOT5KrRZizwa5eUNuzhXr6bHAYgnn8//766y0n+uQl5edD0HzX0ckMpsvkMJDwAAwOo7lGELAABghfAAAACsEB4AAIAVwgMAALBCeGjE5s3+M7RdLv/PzZsT3SIkI59PKiuTli71/2ThJgBO1z7RDXCq4Elm6uqk007z/3fyXJ+CRCsu9q8EeeyCTjk5/smOmJMAgFPR8xBGpOlto90PRKO4WJo2LXQlyJ07/duLixPTLgBoCuEhSLRDEwxhoCV8Pn+PQ7herMC22bMZwgDgTISHIKefHts6IJzVq0N7HI5ljFRRwQJsAJyJ8BCkri62dUA4lZWxrQOAeCI8BGkX5ScSbR0QTnZ2bOsAIJ74CgyyaVNs64Bw8vL8V1VEOvnW5ZK83oYLswGAUxAegpx6amzrgHDcbv/lmFJogAjcX7CAlSABOBPhIYym5nFgngfEQmGhtHy51Ldvw+05Of7tzPMAwKmYJCoCj0eqqgq/HYiVwkJpyhT/VRWVlf5zHPLy6HEA4GyEhzA6dw4fHCT/9s6dpf3749ggJDW3W8rPT3QrACB6DFsE2bs3cnAIqKry1wEAkIoID0FGj45tHQAAyYbwECTaHgV6HgAAqYrwEKRHj9jWAQCQbAgPQdati20dAADJhvAQpEePpi/H9HjoeQAApC7CQxhNXYbJZZoAgFRGeAgj0noD0e4HACCZER6CrFkT2zoAAJIN4SHIGWfEtg4AgGRDeAAAAFYIDwAAwArhIcg778S2DgCAZEN4CDJ2bGzrAABINoSHMIxp2X4AAJIZ4SECY0KHJt55h+AAAED7RDfAycaOJSwAABCMngcAAGCF8AAAAKwQHgAAgBXCAwAAsEJ4AAAAVrjaohGlpdKECd/cLymRCgoS1x4Aycnnk1avliorpexsKS9PcrsT3Sp7yfI+nM4JnzPhIQKXK3RbIEhw+SaAWCkulm6+Wdqx45ttOTnSAw9IhYWJa5etZHkfTueUz5lhizDCBQeb/QAQjeJiadq0hl8EkrRzp397cXFi2mUrWd6H0znpcyY8BCktjW0dAITj8/n/ggzXkxnYNnu2v87JkuV9OJ3TPmfCQ5Bjz3GIRR0AhLN6dehfkMcyRqqo8Nc5WbK8D6dz2udMeACABKisjG1doiTL+3A6p33OhAcASIDs7NjWJUqyvA+nc9rnTHgIUlIS2zoACCcvz3+WfKQTsF0uyev11zlZsrwPp3Pa50x4CBLtPA7M9wCgJdxu/+V1UugXQuD+ggXOnychWd6H0zntcyY8hNHUPA7M8wAgFgoLpeXLpb59G27PyfFvbyvzIyTL+3A6J33OLmOS56uwurpaHo9HVVVVysrKavHzMcMkgHhwwoyBsZAs78PpWutztvkOJTwAAACr71CGLQAAgBXCAwAAsEJ4AAAAVggPAADACuEBAABYITw0orzcP/lG4FZenugWIZjPJ5WVSUuX+n+ycp9zcGyA5OXY8HDvvffK5XJp9uzZCXl9lyt0ms+8vMhTgyL+ioul3Fzp7LOl6dP9P3Nz47umPcLj2ADJzZHhYf369Xr00Uc1ZMiQhLx+UwGBAJF4xcXStGmhS9Tu3OnfzpdU4nBsgOTnuPBw8OBBzZgxQ4899pi6dOkS99ePdmiCIYzE8fmkm28OP014YNvs2XSTJwLHBkgNjgsPs2bN0vnnn6+JEyc2WVtTU6Pq6uoGt5aKdkUyVohLnNWrQ/+qPZYxUkWFvw7xxbEBUkP7RDfgWMuWLdN7772n9evXR1U/b9483XXXXa3cKjhNZWVs6xA7HBsgNTim56GiokI333yznn32WXXs2DGqx8yZM0dVVVX1t4qKilZuJZwgOzu2dYgdjg2QGhyzMNaf//xnTZ06Ve5jlgbz+XxyuVxq166dampqGuwLJxYLY5WXRzcksXq1NG5cs14CLeTz+c/c37kz/Ni6y+VfonbbNlb0izeODdB2tcmFsSZMmKBNmzZp48aN9beRI0dqxowZ2rhxY5PBIVaiDQQEh8Rxu6UHHvD/d/CVL4H7Cxbw5ZQIHBsgNTgmPGRmZmrw4MENbscff7y6deumwYMHx7UtTfXFOKOvJrUVFkrLl0t9+zbcnpPj315YmJh2gWMDpAJHnTDpJMaEDmEwVOEshYXSlCn+41JZ6R9Hz8vjr1on4NgAyc0x5zzEQizOeQAAIBW1yXMeAABA20B4AAAAVggPAADACuEBAABYITwAAAArhIdGrFrln9gmcFu1KtEtAgA4hc8nlZVJS5f6f6bSarHM8xBB8Ox4kpSf7/+ZPBe3AgCao7jYv/z8savI5uT4Z1hNhYnQ6HkII1xwsNkPAEhexcXStGmhy8/v3OnfXlycmHbFE+EhSLRDEwxhAEDq8fn8PQ7heqAD22bPTv4hDMJDkMDQRKzqAADJY/Xq0B6HYxkjVVT465IZ4QEAgChVVsa2rq0iPAAAEKXs7NjWtVWEhyBlZbGtAwAkj7w8/1UVkU6cd7kkr7fhiszJiPAQZPz42NYBAJKH2+2/HFMKDRCB+wsWJP/y84SHMJqax4F5HgAgdRUWSsuXS337Ntyek+PfzjwPKcyY0KGJsjKCAwDAHxC2b5feekt67jn/z23bUiM4SMww2ajx4wkLAIDw3O7UvWyfngcAAGCF8AAAAKwQHgAAgBXCAwAAsEJ4aMS6df7rdgO3desS3SK0ZT6f/4qdpUv9P5N94RwAyYurLSIIN3vYmDH+n1yBAVvFxf6V+I5dUCcnxz/ZTKpc2gUgedDzEEakaUej3Q8cq7hYmjYtdCW+nTv924uLE9MuAGguwkOQaIcmGMJANHw+f49DuN6qwLbZsxnCANC2EB6CBIYmYlWH1LZ6dWiPw7GMkSoq/HUA0FYQHoBWVFkZ2zoAcALCA9CKsrNjWwcATkB4CPKPf8S2DqktL89/VUWkk2xdLsnr9dcBQFtBeAgyenRs65Da3G7/5ZhSaIAI3F+wwF8HAG0F4SGMpuZxYJ4H2CgslJYvl/r2bbg9J8e/nXkeALQ1TBIVwZQp0sqV4bcDtgoL/b87q1f7T47MzvYPVdDjAKAtIjyEcdFF4YOD5N9+0UXSn/8cxwYhKbjdUn5+olsBAC3HsEWQr76KHBwCVq701wEAkIoID0Fuuy22dQAAJBvCQ5CtW2NbBwBAsiE8BDnxxNjWAQCQbFzGJM+Fh9XV1fJ4PKqqqlJWVlaznuOrr6Tjjmu67vBhKSOjWS8BAIDj2HyH0vMQJCOj6csxp0whOAAAUhfhIYymLsPkMk0AQCojPIQRaR2CaPcDAJDMCA9BSktjWwcAQLIhPASZMCG2dQAAJBvCAwAAsEJ4AAAAVggPQUpKYlsHAECyITwEKSiIbR0AAMmG8BBGU3NuJs+cnAAA2CM8RGBM6NBESQnBAQCA9olugJMVFBAWAAAIRs8DAACwQngAAABWCA8AAMAK4QEAAFghPAAAACuEh0aUlvqX3w7cWEkTAAAu1YzI5QrdFlhJk8s3AQCpjJ6HMMIFB5v9AAAkM8JDkGiHJhjCAACkKsJDkMDQRKzqAABINoQHAABghfAAAACsEB6CBK+k2dI6AACSDeEhSEFBbOsAAEg2hIcwmprHgXkeAACpjPAQgTGhQxMlJQQHAACYYbIRBQWEBQAAgtHzAAAArBAeAACAFcIDAACwQngAAABWCA8AAMAK4aERpaX+5bcDN1bSBADAYeFh0aJFGjJkiLKyspSVlaWxY8fqr3/9a0La4nKFrpw5YYJ/OwAAqcxR4SEnJ0f33nuvNmzYoHfffVcFBQWaMmWKPvzww7i2o6mAQIAAAKQyR4WHCy+8UJMnT9aJJ56oQYMG6e6771anTp20du3auLUh2qEJhjAAAKnKsTNM+nw+vfjiizp06JDGjh0btqampkY1NTX196urq1v8usFDFY3VMfskACAVOarnQZI2bdqkTp06KT09Xdddd51WrFihU089NWztvHnz5PF46m9erzfOrQUAIPW4jHHW389HjhzR559/rqqqKi1fvlyPP/64Vq1aFTZAhOt58Hq9qqqqUlZWVrNe3+Z8Bmd9cgAANF91dbU8Hk9U36GOCw/BJk6cqIEDB+rRRx9tstbmjUdSWhrd0EVJiX/hLAAAkoHNd6jjhi2C1dXVNehdaG3RBgKCAwAgVTnqhMk5c+Zo0qRJOuGEE3TgwAE999xzKisr0+uvvx7XdhjT+PCFs/tqAABoXY7qedizZ4+uuOIKnXTSSZowYYLWr1+v119/Xeecc07c22KMf2jiWCUlBAcAABx/zoONWJzzAABAKkqqcx4AAICzEB4AAIAVwgMAALBCeAAAAFYIDwAAwArhoRGlpf75HgI3VtIEAMBhk0Q5SbhJogLTVifPxa0AANij5yGMphbHslk8CwCAZEN4CBLt0ARDGACAVEV4CBLNipo2dQAAJBvCAwAAsEJ4AAAAVggPQYJX0mxpHQAAyYbwEKSgILZ1AAAkG8JDGE3N48A8DwCAVEZ4iMCY0KGJkhKCAwAAzDDZiIICwgIAAMHoeQAAAFYIDwAAwIrVsMUPfvAD6xdwuVx64oknrB8HAACcySo8lJaWymW5KpRtPQAAcDar8LB9+/ZWaoYzlZY2XMOipIT5HQAA4GqLCMJ1mASCBFdgAABSWUzCw9q1a/XWW29pz549uuGGG3TiiSfq8OHD+uijjzRo0CB16tQpFi8TN02NtLhcBAgAQOpq0dUWR44cUWFhoc4880z94he/0IMPPqiKigr/E7drp3PPPVcPPPBATBoaL6Wlsa0DACDZtCg8/OpXv9LLL7+sRYsWacuWLTLH/DnesWNHXXzxxVq5cmWLGxlPx57jEIs6AACSTYvCw9KlS3X99dfrmmuuUdeuXUP2n3LKKfrss89a8hIAAMBhWhQe9uzZo9NPPz3ifrfbrcOHD7fkJQAAgMO0KDx4vV599NFHEfe//fbb+ta3vtWSl4i74MWwWloHAECyaVF4mD59uh599FGtWbOmfltgUqjHHntML7zwgq644oqWtTDOop3HgfkeAACpymVM8y86PHLkiC688EKVlpbqlFNO0YcffqjTTz9dX375pXbs2KHJkydr5cqVcrvdsWxzRNXV1fJ4PKqqqlJWVlaLnquxyzW5TBMAkGxsvkNb1POQlpam1157TU8++aQGDBigk08+WTU1NRoyZIiWLFmiv/zlL3ELDrFmTOjQREkJwQEAgBb1PDhNLHseAABIJTbfoTGZYdLn82nDhg31a1/0799f3/72t9tsrwMAAIisxeFhyZIlmjNnjvbs2VM/SZTL5VKPHj10zz33NGsZbwAA4FwtCg+PPvqorr/+eg0bNkx33nmnBg0aJEnasmWLHn30Uc2cOVNHjhzRddddF5PGAgCAxGvROQ8DBgyQ1+vVm2++qQ4dOjTYV1tbq4KCAu3cuTNus0xyzgMAAM0Tt6stdu3apaKiopDgIEkdOnTQpZdeqt27d7fkJQAAgMO0KDwMHz5cH3/8ccT9H3/8sYYNG9aSl0io8nL/fA+BW3l5olsEp/L5pLIyaelS/0+fL9EtAoDW06JzHh566CGdf/75GjBggK655hplZGRIkr766is98sgjeuGFF/Tqq6/GpKHxFm6SqLw8/8/kubgVsVBcLN18s7RjxzfbcnKkBx6QCgsT1y4AaC1W5zwMGTIkZNuXX36pyspKtW/fXn369JEkffHFFzp69Kiys7PVrVs3/fOf/4xdixsRq3MeGptdMoAAAckfHKZNC/19CPwOLV9OgADQNrTaPA9du3atX7sioFu3bjrxxBMbbMvNzbV5WkeJdmiivFwaN6512wJn8/n8PQ7hgqQx/gAxe7Y0ZYrElCcAkgkzTAaJptchIHk+OTRHWZl09tlN1731lpSf39qtAYCWidvVFkAqq6yMbR0AtBUxmZ66trZWH330kaqqqlRXVxey/6yzzorFywCOkp0d2zoAaCtaFB7q6uo0Z84cLVy4UIcPH45Y52tD162tXv3NVRVN1SG15eX5r6rYuTP8EJbL5d8fze8TALQlLRq2uOeeezR//nx9//vf11NPPSVjjO6991498sgjGjJkiIYOHarXX389Vm2Ni2hPguRkSbjd/ssxpdBzZQL3FyzgZEkAyadF4WHJkiUqKirSokWLdN5550mSRowYoZkzZ+of//iHXC6XSktLY9LQeGrqREhOlERAYaH/csy+fRtuz8nhMk0AyatF4WHHjh0qKCiQJKWnp0uSvv76a0lSWlqavv/97+vpp59uYRMTw5jQoYnVqwkOCFVYKG3f7r+q4rnn/D+3bSM4AEheLTrnoVu3bjp48KAkqVOnTsrKygpZBOs///lPS14iocaNIywgOm43l2MCSB0tCg/Dhw/X+vXr6++fffbZWrBggYYPH666ujo9+OCDGjp0aIsbCQAAnKNFwxbXXHONampqVFNTI0m6++67tX//fp111lkaP368qqur9b//+78xaSgAAHCGmM8wWVVVpbKyMrndbp1xxhnq2rVrLJ++UbFa2wIAgFTTamtbfP7551HVDR8+XJJ08OBBHTx4UCeccILNywAAAAezCg+5ubkhC2NFoy1NEgUAABpnFR4WL17crPDQVr3xhnTuud/c/9vfpHPOSVx7AABwAlbVjKCxjJQ8nxgAAH6sqtlCTXWupFDnCwAAIQgPQd54I7Z1AAAkG8JDkGPPcYhFHQAAyYbwAAAArBAeAACAFcJDkL/9LbZ1AAAkG8JDkGjncWC+BwBAqiI8hNHUPA7M8wAASGWEhwiMCR2a+NvfCA4AAFhNT51qzjmHsAAAQDB6HgAAgBXCAwAAsEJ4AAAAVggPAADACuEBAABYITw0orTUv/x24FZamugWAQCQeI4KD/PmzdOoUaOUmZmpnj176qKLLtKWLVsS0haXS5owoeG2CRP82wEASGWOCg+rVq3SrFmztHbtWr3xxhuqra3Vueeeq0OHDsW1HU0FBAIEACCVOWqSqNdee63B/SVLlqhnz57asGGDzjrrrLi0IdqhidJSqaCgddsCAIATOSo8BKuqqpIkde3aNez+mpoa1dTU1N+vrq5u8WsGD1U0VsfskwCAVOSoYYtj1dXVafbs2TrzzDM1ePDgsDXz5s2Tx+Opv3m93ji3EgCA1OMyxpl/P19//fX661//qvLycuXk5IStCdfz4PV6VVVVpaysrGa9rs35DM785AAAsFddXS2PxxPVd6gjhy1uvPFGvfzyy/r73/8eMThIUnp6utLT02P62iUl0Q1dlJTE9GUBAGgzHBUejDG66aabtGLFCpWVlal///5xb0O0J0FysiQAIFU5KjzMmjVLzz33nFauXKnMzEzt2rVLkuTxeJSRkRG3dhjT+PAFwxUAgFTmqBMmFy1apKqqKuXn5ys7O7v+9vzzz8e9LcaEDk2UlBAcAABwVM+D087dLCggLAAAEMxRPQ8AAMD5CA8AAMAK4QEAAFghPAAAACuEBwAAYIXw0IjSUv98D4FbtCtuAgCQzBx1qaaThJskKjBtNZdvAgBSGT0PYTS1OJbN4lkAACQbwkOQaIcmGMIAAKQqwkOQaFbUtKkDACDZEB4AAIAVwgMAALBCeAgSvJJmS+sAAEg2hIcgBQWxrQMAINkQHsJoah4H5nkAAKQywkMExoQOTZSUEBwAAGCGyUYUFBAWAAAIRs8DAACwQngAAABWCA8AAMAK4QEAAFghPDRi3Tr/CpqB27p1iW4RAACJx9UWEYRbdnvMGP9PrsAAAKQyeh7CCBccbPYDAJDMCA9Boh2aYAgDAJCqCA9BAkMTsaoDACDZEB4AAIAVwgMAALBCeAjyj3/Etg4AgGRDeAgyenRs6wAASDaEhzCamseBeR4AAKmM8BDBqFF22wEASBWEhzBGj5bWrw+/b/16hiwAAKmN8BDk4MHIwSFg/Xp/HQAAqYjwEOTyy2NbBwBAsiE8BPn009jWAQCQbAgPQQYOjG0dAADJhvAQ5OmnY1sHAECyITwE6dSp6csxR43y1wEAkIoID2E0tdw2y3EDAFIZ4SEMl6tl+wEASGaEhyAbNsS2DgCAZEN4CDJyZGzrAABINoQHAABghfAAAACsEB6CvPtubOsAAEg2hIcgI0bEtg4AgGRDeAjDmJbtBwAgmREeIjAmdGji3XcJDgAAtE90A5xsxAjCAgAAweh5AAAAVggPAADACuEBAABYITwAAAArhAcAAGCF8NCIFSv8y28HbitWJLpFAAAkHpdqRuByhW4rLPT/5PJNAEAqo+chjHDBwWY/AADJjPAQJNqhCYYwAACpivAQJDA0Eas6AACSDeEBAABYITwAAAArhIcgxcWxrQMAINkQHoJMnRrbOgAAkg3hIYym5nFgngcAQCojPERgTOjQRHExwQEAAGaYbMTUqYQFAACC0fMAAACsEB4AAIAVwgMAALBCeAAAAFYIDwAAwArhoRGlpf7ltwO30tJEtwgAgMRzVHj4+9//rgsvvFB9+vSRy+XSn//854S1xeWSJkxouG3CBP92AABSmaPCw6FDhzR06FA9/PDDCW1HUwGBAAEASGWOmiRq0qRJmjRpUkLbEO3QRGmpVFDQum0BAMCJHBUebNXU1Kimpqb+fnV1dYufM3ioorE6Zp8EAKQiRw1b2Jo3b548Hk/9zev1JrpJAAAkvTYdHubMmaOqqqr6W0VFRaKbBABA0mvTwxbp6elKT0+P6XOWlEQ3dFFSEtOXBQCgzWjTPQ+tIdqTIDlZEgCQqhzV83Dw4EF98skn9fe3bdumjRs3qmvXrjrhhBPi1g5jGr8ckxMlAQCpzFE9D++++66GDx+u4cOHS5JuvfVWDR8+XL/+9a/j3hZjQocmSkoIDgAAOKrnIT8/X8ZB384FBYQFAACCOarnAQAAOB/hAQAAWCE8AAAAK4QHAABghfAAAACsEB4aUVrqn+8hcIt2xU0AAJKZoy7VdJJwk0QFpq3m8k0AQCqj5yGMxmaXjGY/AADJjPAQJNqhCYYwAACpivAQJJoVNW3qAABINoQHAABghfAAAACsEB6CBK+k2dI6AACSDeEhSEFBbOsAAEg2hIcwmprHgXkeAACpjPAQgTGhQxMlJQQHAACYYbIRBQWEBQAAgtHzAAAArBAeAACAFcIDAACwQngAAABWCA+NKC/3r6AZuJWXJ7pFAAAkHldbRBBu2e28PP9PrsAAAKQyeh7CCBccbPYDAJDMCA9Boh2aYAgDAJCqCA9BAkMTsaoDACDZEB4AAIAVwgMAALBCeAiyenVs6wAASDaEhyDjxsW2DgCAZEN4CKOpeRyY5wEAkMoIDxHcdpvddgAAUgXhIYzbb5fmzw+/b/58/34AAFKVy5jk6YSvrq6Wx+NRVVWVsrKymvUcR45Ixx0n+XyRa9xu6fBhKS2tmQ0FAMBhbL5D6XkIsnBh48FB8u9fuDA+7QEAwGkID0E+/TS2dQAAJBvCQ5CBA2NbBwBAsuGchyCc8wAASEWc89ACaWnSrbc2XnPrrQQHAEDqouchApcr8r7k+cQAAPCj56GFGgsO0ewHACCZER6CbNwY2zoAAJIN4SHI8OGxrQMAINkQHgAAgBXCAwAAsEJ4CPL++7GtAwAg2RAeggwbFts6AACSDeEhjKbmcWCeBwBAKiM8RGBM6NDE++8THAAAaJ/oBjjZsGGEBQAAgtHzAAAArBAeAACAFcIDAACwQngAAABWCA8AAMAK4aERe/dK/ftLnTr5f+7dm+gWAQCQeFyqGUHnzlJV1Tf3Dx2SevaUPB5p//5EtQoAgMSj5yGM4OBwrKoq/34AAFIV4SHI3r2Rg0NAVRVDGACA1EV4CDJ6dGzrAABINoSHINH2KNDzAABIVYSHID16xLYOAIBkQ3gIsm5dbOsAAEg2hIcgPXr4L8dsjMdDzwMAIHURHsLYvz9ygGCeBwBAqiM8RLB/v7Rnj5SbKx1/vP/nnj0EBwAAmGGyET16SNu2JboVAAA4Cz0PAADACuEBAABYITwAAAArhAcAAGCF8AAAAKwQHhqxapXkcn1zW7Uq0S0CACDxHBkeHn74YeXm5qpjx44aM2aM1iVgLmiXS8rPb7gtP9+/HQCAVOa48PD888/r1ltv1dy5c/Xee+9p6NCh+s53vqM9e/bErQ1NBQQCBAAglTkuPNx///2aOXOmrr76ap166ql65JFHdNxxx2nx4sVxef1ohyYYwgAApCpHhYcjR45ow4YNmjhxYv22du3aaeLEiVqzZk1IfU1NjaqrqxvcWip4qKKldQAAJBtHhYd9+/bJ5/OpV69eDbb36tVLu3btCqmfN2+ePB5P/c3r9carqQAApCxHhQdbc+bMUVVVVf2toqIi0U0CACDpOWphrO7du8vtdmv37t0Ntu/evVu9e/cOqU9PT1d6enpM21BWFt2QRFlZTF8WAIA2w1E9D2lpaRoxYoRKSkrqt9XV1amkpERjx46NSxvGj49tHQAAycZRPQ+SdOutt+rKK6/UyJEjNXr0aC1YsECHDh3S1VdfHbc2GNP45ZjGxK0pAAA4juPCwyWXXKK9e/fq17/+tXbt2qVhw4bptddeCzmJsrUZ478c89ghjLIyehwAAHAZkzx/R1dXV8vj8aiqqkpZWVmJbg4AAG2GzXeoo855AAAAzkd4AAAAVggPAADACuEBAABYITwAAAArhAcAAGCF8AAAAKwQHgAAgBXCAwAAsEJ4AAAAVggPAADACuEBAABYITwAAAArjluSuyUCC4RWV1cnuCUAALQtge/OaBbbTqrwcODAAUmS1+tNcEsAAGibDhw4II/H02iNy0QTMdqIuro6ffHFF8rMzJTL5YrJc1ZXV8vr9aqioqLJ9c0Rfxwf5+LYOBfHxrkSeWyMMTpw4ID69Omjdu0aP6shqXoe2rVrp5ycnFZ57qysLP6RORjHx7k4Ns7FsXGuRB2bpnocAjhhEgAAWCE8AAAAK4SHJqSnp2vu3LlKT09PdFMQBsfHuTg2zsWxca62cmyS6oRJAADQ+uh5AAAAVggPAADACuEBAABYITwAAAArhAdJDz/8sHJzc9WxY0eNGTNG69ata7T+xRdf1Mknn6yOHTvq9NNP16uvvhqnlqYem2Pz2GOPKS8vT126dFGXLl00ceLEJo8lWsb2307AsmXL5HK5dNFFF7VuA1OY7bHZv3+/Zs2apezsbKWnp2vQoEH8v62V2B6bBQsW6KSTTlJGRoa8Xq9uueUWff3113FqbQQmxS1btsykpaWZxYsXmw8//NDMnDnTdO7c2ezevTts/dtvv23cbre57777zObNm80vf/lL06FDB7Np06Y4tzz52R6b6dOnm4cffti8//775l//+pe56qqrjMfjMTt27Ihzy1OD7fEJ2LZtm+nbt6/Jy8szU6ZMiU9jU4ztsampqTEjR440kydPNuXl5Wbbtm2mrKzMbNy4Mc4tT362x+bZZ5816enp5tlnnzXbtm0zr7/+usnOzja33HJLnFveUMqHh9GjR5tZs2bV3/f5fKZPnz5m3rx5YeuLiorM+eef32DbmDFjzLXXXtuq7UxFtscm2NGjR01mZqb505/+1FpNTGnNOT5Hjx41Z5xxhnn88cfNlVdeSXhoJbbHZtGiRWbAgAHmyJEj8WpiyrI9NrNmzTIFBQUNtt16663mzDPPbNV2NiWlhy2OHDmiDRs2aOLEifXb2rVrp4kTJ2rNmjVhH7NmzZoG9ZL0ne98J2I9mqc5xybY4cOHVVtbq65du7ZWM1NWc4/Pf//3f6tnz5764Q9/GI9mpqTmHJuXXnpJY8eO1axZs9SrVy8NHjxY99xzj3w+X7yanRKac2zOOOMMbdiwoX5o47PPPtOrr76qyZMnx6XNkSTVwli29u3bJ5/Pp169ejXY3qtXL3300UdhH7Nr166w9bt27Wq1dqai5hybYD/72c/Up0+fkLCHlmvO8SkvL9cTTzyhjRs3xqGFqas5x+azzz5TaWmpZsyYoVdffVWffPKJbrjhBtXW1mru3LnxaHZKaM6xmT59uvbt26dx48bJGKOjR4/quuuu089//vN4NDmilO55QPK69957tWzZMq1YsUIdO3ZMdHNS3oEDB3T55ZfrscceU/fu3RPdHASpq6tTz5499cc//lEjRozQJZdcol/84hd65JFHEt20lFdWVqZ77rlHCxcu1Hvvvafi4mK98sor+s1vfpPQdqV0z0P37t3ldru1e/fuBtt3796t3r17h31M7969rerRPM05NgG/+93vdO+99+rNN9/UkCFDWrOZKcv2+Hz66afavn27LrzwwvptdXV1kqT27dtry5YtGjhwYOs2OkU0599Odna2OnToILfbXb/tlFNO0a5du3TkyBGlpaW1aptTRXOOza9+9Stdfvnl+tGPfiRJOv3003Xo0CFdc801+sUvfqF27RLTB5DSPQ9paWkaMWKESkpK6rfV1dWppKREY8eODfuYsWPHNqiXpDfeeCNiPZqnOcdGku677z795je/0WuvvaaRI0fGo6kpyfb4nHzyydq0aZM2btxYf/vud7+rs88+Wxs3bpTX641n85Nac/7tnHnmmfrkk0/qA50kffzxx8rOziY4xFBzjs3hw4dDAkIg5JlELk2V0NM1HWDZsmUmPT3dLFmyxGzevNlcc801pnPnzmbXrl3GGGMuv/xyc8cdd9TXv/3226Z9+/bmd7/7nfnXv/5l5s6dy6WarcT22Nx7770mLS3NLF++3FRWVtbfDhw4kKi3kNRsj08wrrZoPbbH5vPPPzeZmZnmxhtvNFu2bDEvv/yy6dmzp/mf//mfRL2FpGV7bObOnWsyMzPN0qVLzWeffWb+9re/mYEDB5qioqJEvQVjDJdqGmOMeeihh8wJJ5xg0tLSzOjRo83atWvr940fP95ceeWVDepfeOEFM2jQIJOWlmZOO+0088orr8S5xanD5tj069fPSAq5zZ07N/4NTxG2/3aORXhoXbbH5p133jFjxowx6enpZsCAAebuu+82R48ejXOrU4PNsamtrTV33nmnGThwoOnYsaPxer3mhhtuMP/5z3/i3/BjsCQ3AACwktLnPAAAAHuEBwAAYIXwAAAArBAeAACAFcIDAACwQngAAABWCA8AAMAK4QEAAFghPACI2p133imXy6V9+/Y1Wpebm6urrroqPo0CEHeEBwAAYIXwAAAArBAeAACAFcIDAGv79u1TUVGRsrKy1K1bN9188836+uuvG33M/v37NXv2bHm9XqWnp+tb3/qWfvvb36qurq6+pqysTC6XS2VlZQ0eu337drlcLi1ZsqQV3g0AW+0T3QAAbU9RUZFyc3M1b948rV27Vg8++KD+85//6Kmnngpbf/jwYY0fP147d+7UtddeqxNOOEHvvPOO5syZo8rKSi1YsCC+bwBAixAeAFjr37+/Vq5cKUmaNWuWsrKytHDhQv30pz/VkCFDQurvv/9+ffrpp3r//fd14oknSpKuvfZa9enTR/Pnz9dPfvITeb3euL4HAM3HsAUAa7NmzWpw/6abbpIkvfrqq2HrX3zxReXl5alLly7at29f/W3ixIny+Xz6+9//3uptBhA79DwAsBboPQgYOHCg2rVrp+3bt4et37p1qz744AP16NEj7P49e/bEuokAWhHhAUCLuVyuRvfX1dXpnHPO0e233x52/6BBgxp9Hp/P17IGAogpwgMAa1u3blX//v3r73/yySeqq6tTbm5u2PqBAwfq4MGDmjhxYqPP26VLF0n+KzOO9X//938tai+A2OKcBwDWHn744Qb3H3roIUnSpEmTwtYXFRVpzZo1ev3110P27d+/X0ePHpUk9evXT263O+QciIULF8ai2QBihJ4HANa2bdum7373uzrvvPO0Zs0aPfPMM5o+fbqGDh0atv62227TSy+9pAsuuEBXXXWVRowYoUOHDmnTpk1avny5tm/fru7du8vj8ejiiy/WQw89JJfLpYEDB+rll1/mnAjAYQgPAKw9//zz+vWvf6077rhD7du314033qj58+dHrD/uuOO0atUq3XPPPXrxxRf11FNPKSsrS4MGDdJdd90lj8dTX/vQQw+ptrZWjzzyiNLT01VUVKT58+dr8ODB8XhrAKLgMsaYRDcCAAC0HZzzAAAArBAeAACAFcIDAACwQngAAABWCA8AAMAK4QEAAFghPAAAACuEBwAAYIXwAAAArBAeAACAFcIDAACwQngAAABW/h9sP21v3hJnPwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAIpCAYAAAAl0NuJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHHElEQVR4nO3de3wU1f3/8fdmQwIICRcBAxuMIqi1glYrP0AUFe9fiw2IilK0Vm1BHygtttRW9NsqVlu/QSvevlVq1aJyqdZSrTcUxUtrS0urUsSgAYOAxQQBuSTn98d+NyZ7nbM7uzs7+3o+HvuAzJ458zlnhsyH3TnnBIwxRgAAAA6V5DsAAABQWEgeAACAFZIHAABgheQBAABYIXkAAABWSB4AAIAVkgcAAGCF5AEAAFgheQAAAFZIHoAcWLZsmQKBgMaMGZOT49XU1CgQCGjdunVW+1100UUKBAKaP39+VuLyA7f7KN1zla5AIKBAIJCTY8G/SB5QNHL9SxoA/Ko03wEAxeCYY47RO++8o65du+Y7FADIGMkDkANdu3bVIYccku8wAMAVfG0B35s/f74CgYA++OADSdIBBxzQ9r1vIBDQsmXLJHV8LmHHjh267rrrdOihh6pr166qqalpq+/NN9/UNddco2OOOUb77befysrK1K9fP5111ll67rnn4saQ6JmHdevWKRAIqKamRsYY3XvvvTrqqKO0zz77qLKyUqeccopee+21jNq/ZMkSHXvssaqoqFD37t01ZswYLV26NK263nrrLV1wwQUaOHCgysvL1atXL5166qkJ60v1/fqYMWM6nINURowYoUAgoAULFiQs88tf/lKBQEBf//rX27a1trbq3nvv1ahRo9SjRw916tRJffv21bBhw3TllVe68lXWtm3bdN9996m2tlaDBw/WPvvso3322UeHH364rr32Wn366acp60jnXC1cuFCnnXaa+vTpo7KyMg0YMEAXXnih3n777YzbBCRkAJ9bvny5mTJlitlnn32MJDN+/HgzZcqUttc777xjjDHmxRdfNJLM8OHDzVe/+lWzzz77mNNPP92ce+65ZuzYsW31nXTSSaakpMQcfvjh5owzzjDnnHOO+cpXvmIkGUmmrq4uJoZI3ccff3yH7fX19UaS2X///c2UKVNMp06dzIknnmgmTpxohgwZYiSZ8vJy8/rrr1u1ef/99zeSzNVXX20kmaOPPtqcf/755phjjmmL8/bbb4/Zb8qUKUaSeeCBB2Leq6urMyUlJUaSOeKII8yECRPMsccea8rKyowkc8MNN8TsEzlWIscff7yRZF588UVH7brnnnuMJHPqqacmLBM5F08++WTbtosvvthIMp07dzZjx441559/vjn11FPN4MGDjSSzZMkSR8c3JnEfLV++3Egyffr0Mccee6w599xzzSmnnGJ69+5tJJmDDjrIbNmyJaa+dM/Vnj17zMSJE9uukZEjR5pzzjnHDBs2zEgyXbp0MX/84x9j9kt1TgAnuIJQNCK/pOvr6+O+H7nBSzJDhw41jY2NccstXbrUfPTRRzHbV6xYYSoqKkynTp3M+vXr49adKHmIJBCrV69ue2/v3r3mm9/8ppFkTjnllLTaGggEzEMPPdThvQULFphAIGBKS0vNqlWrOryX6Mb49NNPm0AgYPbdd1/z0ksvdXjvH//4hwmFQkaSWbZsWYf33E4empqaTNeuXU1JSUlMHxtjzN///ncjyfTr18/s2bPHGGPMBx98YCSZUCgU95y+/fbb5oMPPnB0fGMS91FDQ4N57rnnTEtLS4ft27dvN9/4xjeMJDN16tSY+tI9Vz/84Q/bkt3333+/w3uPP/64CQaDpmfPnmbr1q0d3iN5gBu4glA0bJKHl19+Oa1jzJo1y0gyd955Z9y6kyUP7f+nHNHY2Nj2P8vdu3c7jiPS1rPPPjvu++PHjzeSzKWXXtphe6Ib4/Dhw40ks3Dhwrj1PfbYY22f6rTndvJgjDGTJ082ksxNN90U895VV11lJJnvfe97bdvefPNNI8l87Wtfc3yMZJJ9OpPI9u3bTWlpqenTp0/Me+mcq08++cR06dLFdO7cOW4SZYwxU6dONZLMHXfc0WE7yQPcwAOTQJS+fftq9OjRSct88skn+sMf/qB//vOf2rp1q/bs2SNJWrNmjSRp9erVVscsLS3VaaedFrN9v/32U8+ePbV161Z98skn2m+//azqnTJlSsLtixYtcvSswZYtW/Tmm2+qS5cuOuuss+KWiTzLsWLFCqv40nHxxRfrN7/5jX79619r1qxZbdv37Nmjhx9+WJL0zW9+s237IYccou7du2vp0qW68cYbNWnSJB1wwAFZi2/FihVavny5PvzwQ+3YsUPGGElSWVmZNm/erK1bt6pnz54x+9mcqxdffFE7d+7USSedpAEDBsTdb8yYMZo3b55WrFihK664IvOGAe2QPABR2j8cGc99992nq6++Wtu3b09Yprm52eqYVVVV6tSpU9z3KioqtHXrVn3++edWdUpKeJOMbF+/fn3KOurr62WM0c6dO1VeXp607ObNm61jtDVmzBgdeOCBWr16tVasWKGRI0dKkp566ilt3rxZw4cP16GHHtpWvnv37nrggQd08cUX60c/+pF+9KMfqaqqSv/v//0/nXbaaZo0aZK6deuWcVybNm3S+PHj9corryQt19zcHDd5sDlX77//viTp+eefTznhUy7OCYoPyQMQpUuXLgnfe+utt3T55ZcrGAzqZz/7mc466ywNHDhQXbt2VSAQ0L333qvLL7+87X+bTpWU5Gfgk5M4W1tbJUndunXT+PHjXT1+pG4bgUBAF110ka677jrNnz+/LXl44IEHJIU/mYg2fvx4jR07Vk8++aSWL1+uV199VUuWLNGSJUt03XXX6dlnn9Xhhx+eUVu+9a1v6ZVXXtGIESN0ww03aNiwYerZs2dbUti/f381NjZaXxsR7feL9NtBBx2kUaNGJd2PIcLIBpIHwMLjjz8uY4yuvPJKXXPNNTHvR7628Ir6+noNGzYsZntkaGIoFEpZR3V1taTwTfv++++3SnQ6deqkPXv2aNu2berevXvM+5Hhs7amTJmi66+/Xo8++qjmzp2r5uZm/fGPf1SXLl103nnnxd2nsrJSkydP1uTJkyVJDQ0NuvLKK/XEE0/oiiuu0EsvvZRWLJK0fft2LV26VCUlJVq6dKl69OgR8/7GjRuT1mFzriLn5OCDD2YqceQF8zygaJSVlUmS9u7dm3Yd//nPfyRJ+++/f8x7n3/+uRYtWpR23dnwm9/8Ju72Bx98UJJi5p2Ip3///ho6dKi2bdump59+2ur4ke/j33nnnZj3/vGPf6ihocGqvoiBAwfqpJNOUnNzsxYvXqyHHnpIe/fuVW1trSorKx3VUV1drRtuuEGStHLlyrTiiGhqalJLS4sqKipiEgdJeuihh1J+4mBzrk466SSVlZVp2bJl2rRpU9pxA+kieUDRiPzP7V//+lfadUS+S//1r3+tbdu2tW3//PPPNXXqVNXX12cWpMuWLFkSM6HSwoULtWjRIpWWlurKK690VM9Pf/pTSeGvBH7/+9/HvG+M0RtvvKE//elPHbaPHTtWknTDDTdo165dbdvXrVunKVOmpP0RvvTFQ5EPPPBA0q8s/va3v+nRRx/Vzp07Y96LtCVeMmijX79+6tmzpz799NOYJOD111/v8GBnIjbnql+/frryyiu1fft2nXXWWVq1alVMfbt27dKTTz6pd999N81WAUnka5gHkGu//OUvjSTTrVs3U1tbay655BJzySWXmHfffdcYk3g4ZXtbt25tG1rXu3dvc/bZZ5vx48ebvn37mu7du5vp06cbSWbKlCkd9nMySVQiqYaYJtsnMnTxq1/9qpk0aVLbkEtJ5rbbbovZL9kwxLlz55rS0tK2CY/OPPNMM2nSJHPyySebvn37Gknm+9//fod93n//fdOjRw8jyQwcONCMHz/eHHfccaZLly5m7NixZuTIkdZDNSN27txpevbs2daempoa09raGlNuyZIlbZMmjRo1ypx33nlmwoQJ5uCDDzaSTFlZWdzJlBJJ1Ef/8z//0xbL8OHDzfnnn29GjRplAoGAmTx5csLzmO652rNnj5k0aZKRZEpKSsyRRx5pxo8fb84991wzatSotknRotsWqRPIBFcQikZLS4uZM2eOOeyww0znzp3bfolGblxOkgdjjNm8ebOZOnWqGTRokCkvLzf9+/c3F154oVmzZo154IEHPJU81NfXm8cee8yMGDHCdOvWzeyzzz5m9OjR5ve//33c/VLNYbBq1Spz2WWXmcGDB5vOnTubrl27mgMPPNCceuqp5vbbbzcbNmyI2eftt982tbW1pmfPnqa8vNwcfPDB5qc//anZvXt3WvM8tBeZy0CSmT17dtwyjY2N5uabbzZnnHGGOeCAA0zXrl1NRUWF+dKXvmSmTZvWljw6layPfve735mRI0eaHj16mG7dupmjjz7azJs3z7S2tqZMHmzPVcTSpUtNbW2tGTBggOnUqZPp0aOHOfTQQ815551nHnnkEbN9+/YO5Uke4IaAMRl8bggAAIoOzzwAAAArJA8AAMAKyQMAALBC8gAAAKyQPAAAACskDwAAwIqv1rZobW3VRx99pO7du6dcaQ4AAHzBGKNt27apf//+Kdew8VXy8NFHH7UtGAMAAOw1NDSkXDTPV8lDZNW+hoYGVVRU5DkaAAAKR3Nzs6qrq+OugBvNV8lD5KuKiooKkgcAANLg5Gt/HpgEAABWSB4AAIAVkgcAAGCF5AEAAFgheQAAAFZIHgAAgBWSBwAAYIXkAQAAWCF5AAAAVkgeAACAFZIHAABgheQBAABYIXkAAABWfLWqpttOOUV69tkvfj75ZOlPf8pfPAC8oaVFWr5camyUqqqk0aOlYDD7+yKx3bulefOktWulQYOkqVOlsrJ8R5UdnriGjIfMnj3bSOrwOvjggx3v39TUZCSZpqamjGOREr8AFK9Fi4wJhTr+TgiFwtuzuS8SmznTmGCwY78Gg+HtfpPNa8jmHuq5ry0OO+wwNTY2tr1eeeWVnMeQailzB0udA/ChxYulCROk9es7bt+wIbx98eLs7IvErrlGuvXW8P/G22tpCW+/5pr8xJUNXrqGPJc8lJaWar/99mt77bvvvjk9/imnuFsOgD+0tEjTp4f/rxctsu2qq2JvYpnui8R275Zuuy15mdtuC5crdF67hjyXPKxZs0b9+/fXgQceqAsuuEAffvhhwrK7du1Sc3Nzh1em2j/j4EY5AP6wfHns//jaM0ZqaAiXc3NfJDZvXuqbZUtLuFyh89o15KnkYfjw4Zo/f76efvpp3XXXXaqvr9fo0aO1bdu2uOXnzJmjysrKtld1dXWOIwZQLBob0y+Xyb5IbO1ad8t5mdeuIU8lD6effrrOOeccDR06VKeeeqqWLl2qTz/9VI899ljc8rNmzVJTU1Pbq6GhIccRAygWVVXpl8tkXyQ2aJC75bzMa9eQp5KHaD169NCQIUP03nvvxX2/vLxcFRUVHV6ZOvlkd8sB8IfRo6VQKPED04GAVF0dLufmvkhs6tTUQxSDwXC5Que1a8jTycNnn32mtWvXqiqH6bjTeRyY7wEoLsGgNHdu+O/Rv8AjP9fVxb+ZZbIvEisrk2bMSF5mxgx/zPfgtWvIU8nD9773Pb300ktat26dVqxYoa9//esKBoM6//zzcxpHvKdZbd4H4E+1tdLChdKAAR23h0Lh7bW12dkXid1yizRzZuxNMxgMb7/llvzElQ1euoYCxnjnVnjeeefp5Zdf1ieffKI+ffro2GOP1Y033qhBDr+wam5uVmVlpZqamlz5CoMZJgHEwwyT3sMMk5nXa3MP9VTykCm3kwcAAIqFzT3UU19bAAAA7yN5AAAAVkgeAACAFZIHAABgheQBAABYIXlI4rvfDU++EXl997v5jgiZammRli2Tfvvb8J+sYlg4du8OT4Jz5ZXhP/2wUiJQqBiqmUCiKUAlJokqVIsXh5e0bb8yXSgUnrWNCXq87Zprwksrt0/2gsHw7IF+mgQIyCeGamYoWeLg5H14z+LF0oQJsUvabtgQ3r54cX7iQmrXXCPdemvsp0QtLeHt11yTn7iAYkbyEMXpVxN8hVE4WlrCnzjE+8Qosu2qq/gKw4t27w5/4pDMbbfxFQaQayQPUVL9orIth/xbvjz2E4f2jJEaGsLl4C3z5qVO6lpawuUA5A7JA3yvsdHdcsidtWvdLQfAHSQP8D2nK7rncOV3OORwTTzH5QC4g+QhSqq14W3LIf9Gjw6Pqkj0oGsgIFVXh8vBW6ZOTb1aYDAYLgcgd0geovziF+6WQ/4Fg+HhmFJsAhH5ua6OZZG9qKwsdaI+Y4Z/l14GvIrkIY5U8zgwz0Phqa2VFi6UBgzouD0UCm9nngfvuuUWaebM2OQuGAxvZ54HIPeYJCqJ736346iKGTP4xKHQtbSER1U0NoafcRg9mk8cCsXu3eFRFWvXhp9xmDqVTxwAN9ncQ0keAAAAM0wCAIDsIXkAAABWSB4AAIAVkgcAAGClNN8BeFltrbRkyRc/f/3rrL6YKT+Pdoi0bcMGafNmqU+f8NDQkSPD25ctC5cbMyb8yke7/dz/cB/XCxJhtEUCyZbd9k+P5dbixeHVLdsvUhUKhSdwKvR5FuK1LaKkRGpt7bitd2/p3ntz224/9z/cx/VSfBiqmWHykCxxiPBPr+XG4sXShAmx/Rbp60KeqClR25xYtCg37fZz/8N9XC/FieQhg+Qh+quKRPgKw7mWFqmmJvGy2IFA+H809fWF95FoqralEgpJ69Zlt91+7n+4j+uleDHPQwacJA425RD+zjTZzdUYqaEhXK7QpGpbKuvXZ7/dfu5/uI/rBU6QPCDrGhvdLeclbsSc7Xb7uf/hPq4XOEHygKyrqnK3nJe4EXO22+3n/of7uF7gBMlDlK9/3d1yCA/vCoUSP4gaCEjV1eFyhSbStnSFQtlvt5/7H+7jeoETJA9RnD4EycOSzgWD4eFdUuwvpMjPdXWF+fBVpG1ORujEM3du9tvt5/6H+7he4ATJQxypxp/4Z3xK7tTWhod3DRjQcXsoVLjDvlpawhM/7dolXX99bNsiSuL8K+vdO3fDNCV/9j+yh+sFqTBUM4FOnaS9e2O3l5ZKe/ZkVHVR88uMdYkm0Ln0UmnQIGaYhD9wvRQX5nnIMHlIlDhEkEAUNybQAeBHzPOQgQ8/TJ44SOH3P/wwN/HAW1pawp84xEu5I9uuuipcDgD8iuQhymGHuVsO/sIEOgBA8hBjxw53y8FfmEAHAEgeYnTt6m45+AsT6AAAyUOMf/3L3XLwFybQAQCpNN8BeM3AgeHRFKlGWwwcmLuYioGbQ8KyObwsMoHOhAnhRKH9g5PZmEAnnbZE5p+wGRrKkDzEs3u3NG+etHZteAjy1KlSWVm+o4qPazjHjI80NTUZSaapqSnjusK3hfgvuGvRImNCoY59HAqFt+ezLtvjVFe7e5x02rJokTG9e8des717J94vV32GwjJzpjHBYMfrIhgMb/carmF32NxDfXUrdCt5SJY4kEC4a9EiYwKB2P4NBMIvm3/8btblxN69xrz4ojGPPBL+c+9e9+pOpy2LFqW+bqP3y3WfoTDMnJn8OvJSAsE17B6beyiTREWxWaPAPz2XHy0tUk1N4qGPgUD4+YL6emcf1btVV76l05ZU+0SEQtK6deH9/NRncM/u3eEHwpPNVRIMhkec5fsrDK5hdzFJFAqCm3Mm+Gn+hXTakmqfiPXrv9jPT30G98ybl3qSs5aWcLl84xrOH5IH5I2bcyb4af6FdNpi065IWT/1Gdyzdq275bKJazh/SB6QN27OmeCn+RfSaYtNuyJl/dRncM+gQe6Wyyau4fzhmYcoPPOQO5HvKzdsiN+X6Tzz4EZd+ZZOWzJ55sEPfQb3FOIzD1zD7uCZhww4TQhIHDIXmTNBik3abOdMcLOufEunLe33SWbu3C/281OfwT1lZdKMGcnLzJiR/8RB4hrOqyyP/Mgp5nkoTG7OmZCL+RdyJZ22uDXPQ6H2GdxT6PM8cA3bY6hmBl9btBfvKwz/9Ja3FMoMk7nGDJPIJ2aYLC4291CSBwAAwDMPAAAge0geAACAFZIHAABgheQBAABYIXkAAABWSvMdgJf5eahmNoY1ta+zd29p1arwbIbRQ7ycHLt9mb59w9s2bfqivNTx/Uh5KfHQxHjHjdSzYYO0ebPUp480YIA0cmR4u81wx3RF4tqwQdq4UfrPf6SSEufH9NoQNa8Ou8102GGqa9KNPvfaudy5U5o5U1qzRho8WLr1VqlLl/zFAw/J8pwTOcUkUc7Em1AlFMpsQpV4dcabXMbJsVPV1bt3/ImQkk2KFK/OZPWUlNhNtJStfkt1zGycy0y4GY+bdWU64VGq8+RGn3vtXI4bF7+t48blJx5kn8091Ae3wi+4lTwkuykVegKxaJExgUBsewKB8CvdX/Lx6nT6an/sTOuKfmWrzmyeC6fHzMa5zEZ70onHzbpmzkzet6kSCCfnKdM+99q5TJQ4kED4GzNMsjBWXKkWT0pnERmnCzKlEgiEvy4wJvzxvVsGDAjXnWl87bVfXCpdtv0WfcxsnMtMuBmPm3VlusiTzXlKt8+9di537gz3WSo7dvAVht8wSRTiWr48+S9BY6SGhi+eHXCjTqeMCdfjZuIghetzM3GQwvXZ9FE8tv0WfcxsnMtMuBmPm3XNm5c8cZDC78+bl14s6cZlc4xcn8uZM90tB38ieSgijY3ulrMt6yeZtjud/dvvk41zmQk343GzrrVrndWVqFym58nN8rk6l2vWuFsO/kTyUESqqtwtZ1vWTzJtdzr7t98nG+cyE27G42ZdgwY5qytRuUzPk5vlc3UuBw92txz8iWceohTDMw8bNsSPPZNnHhLV6VT7Zx4++si9vo0885BpfO156ZkHN89lJtyMx8263Hrmwcn1k+kzD145lzzzULx45iEDTm8whZY4SOFfPHPnhv8enSRFfq6rs/sFlazORBIde+5c6fbb7epK5fbb7eNLZe7czH+JR/rNaUzRx8zGucyEm/G4WVdZmTRjRvIyM2Yknu/B6fWdSZ977Vx26SKNG5e8zLhxJA5FL8sjP3KKeR6ciTeevLo6f/M8RB+beR6cHzMb5zITbsbjZl3ZnufBjT732rlknofiw1DNDL62aI8ZJtOvkxkmnWOGydzUxQyT9phhsrjY3ENJHgAAAM88AACA7CF5AAAAVkgeAACAFZIHAABgheQBAABYKc13AF7m56GaXhc9ZG34cOmee8JDxgKB8M/V1R2HstkMc3NjSFz7IZbth3mmqqulJTwEtP0w0NGjpRUrYuNxe+heroYCZus4XhrK6KVYnEgn3kJqY7ZjzaT+QupHx7I850Ta5syZYySZ6dOnO96HSaL8IdWEPO1foVC4fLx9Iu85qT9R2XRiTFbXokXxJ6aKnpQqFApPYJRpnG63O5/HyVX8hRaLE+nEW0htzHasmdRfSP1ocw/15K3wzTffNDU1NWbo0KF5SR6c3LSQHYsWGRMIODsHqV6BQPgVPdNkvPrjlc0kxnh1LVqUnTZl0q/p1pfr4+Qq/kKLxYl04i2kNmY71kzqL6R+NKbAk4dt27aZwYMHm2effdYcf/zxOU8ebH6Rw1179zr/xMHmZltdHa47Vf3ty7oRY/u63GybkzhtYratL9fHyVX8hRaLE+nEW0htzHasmdRfSP0YYXMP9dwDk9OmTdOZZ56psWPHpiy7a9cuNTc3d3ihcC1f7nyVSaeMkRoawnWnqr99WTdibF+Xm21zEmd7brQ7n8fJVfyFFosT6cRbSG3MdqyZ1F9I/ZgOTz0wuWDBAv31r3/Vn//8Z0fl58yZoxtuuCHLUSFXGhu9UXeysrYxRspno21O63S7XK6Pk6v43TxGLmJxIp14C6mN2Y41k/oLqR/T4ZlPHhoaGjR9+nQ9/PDD6ty5s6N9Zs2apaamprZXQ0NDlqNENlVVZbdup/UnK2cbY6R8NtrmRnvSKZfr4+QqfjePkYtYnEgn3kJqY7ZjzaT+QurHtOTgaxRHlixZYiSZYDDY9pJkAoGACQaDZq+DL4Z45qGwRb4jdOuByejvFVPVb/PMg5MYvfbMQybtzudxchV/ocXiRDrxFlIbsx1rJvUXUj9GFOQzDyeddJJWrVqllStXtr2OPvpoXXDBBVq5cqWCORoUa4y75eBcMCjNnRv+e7w5NlKJ3ifyc11duO5k9UeXdRJjqlja1+V0Pyf1SqnjbM+NdufzOLmKv9BicSKdeAupjdmONZP6C6kf05KDZCZt+RhtEcEnDvljM89DdXXieR4i7zmpP1HZdGJMVpfTeR6qq+PP82Abp9vtzudxchV/ocXiRDrxFlIbsx1rJvUXUj/a3EMDxnj3/9BjxozREUccobq6OkflbdYid4IZJvOHGSaZYTKX9RZ6LE4ww2T+6i+UfrS5h3o6ebDldvIAAECxsLmHeuaZBwAAUBhIHgAAgBWSBwAAYIXkAQAAWCF5AAAAVjy1toXXMFTTmUTDkNpv79s3XHbTptihStH7jxwZ/rn9UMYxY5wNbYrU1dAgvfFG+HwNHixdfnn450yHqUnJh1xlOiQr3f1375bmzZPWrpX23z+87YMPpEGDpKlTpbIy5zHkQqEMXUuk0ONHYfPE9ZflOSdyikmici/eBCihUPwJjqLLJJrcKXrCJCk8sVKqSVVsJpeKHN+mrt69Yyd4al9Por5wOhlMuvvPnGlMMJi4rcFguIxXZNpP+Vbo8aOwZfP6s7mH+upW6Fby4OTmg/DFmu46FOnul2zmRps6A4HwK9EMlE7ritQzc2b8fZIdx8kxU+0/c6bzNnshgUi3nV5R6PGjsGX7+vPNDJO23JgkymZNBf/0nL2WFqmmJvl69dkQCknr1sV+VZBOLIFAuL76+o5fodjWFQhIJSXhfZ0ep71Ux0y0/+7dUteuiY8bLRiUduzI31cY6bbTKwo9fhS2XFx/TBKFrFu+PPeJgxQ+5vLl7sRiTPjZiPb1pVOXMclv4PGO016qYybaf94854mDFC47b57z8m5Lt51eUejxo7B57fojeUBaGhu9c+xMY2m/fzbblahup8eMLrd2rX0M6ezjlnTb6RWFHj8Km9euP5IHpKWqyjvHzjSW9vtns12J6nZ6zOhygwbZx5DOPm5Jt51eUejxo7B57frjmYcoPPPgTOT7tw0bctsPuXrmwaZdbj3zkOiYfnvmwbadXlHo8aOw5eL645mHDDi9YRRz4iCFL865c8N/t0m4ItrvY7P/3Lmx/zAisdjUEylbV9exPtt2RcrMmBH+e/Q+iY7TXrJjJtu/rCx8XKdmzMjvfA/pttMrCj1+FDbPXX+ZDezwFuZ5yL14Y46rq1PP81Bdnd95HiLHt6kr3jwP7etJ1BeZzPPgZH8/zPNg00/5Vujxo7Bl8/pjqGYGX1u0xwyTzjDDZOq+yLQvU2GGydwq9PhR2LJ1/dncQ0keAAAAzzwAAIDsIXkAAABWSB4AAIAVkgcAAGClNN8BeFmxj7ZIZ7RBuvXbjMZI55ip6vDL0/ORdmzYIG3eLPXpIw0YkNv2+KEvU7Wh/eiWQYPSG80DFLTMR4Z6B/M8uMfpPAfpriOfak6GSL1urF2fqg43juEFyfo0V+3xQ1+makOqeTUKsc2AMXb3UF/dCt1KHpxMMuRnidaMj/dKZx15J/Une9/mmImOFalj5szk7xfKDcBpn2azPan6uhD6MlUbxo3L3r8LIN+YJIq1LdKWzjoRNnOqp7sORTrHTHWsTNek8AqnfZrN9jjpa6/3pVvXZkQhtBloj3kekLZUa8bHY4zzdeTTqT/dY6Y6ljHJF5WyaVc+Oe3TbLbHSV97vS/dujYjCqHNQLpIHtBBJmvBO9nX7bXmk9Xn1rHcjtlttvFloz1O6/RyX2YrNi+3GUgXyQM6yGQteCf7ur3WfLL63DqW2zG7zTa+bLTHaZ1e7stsxeblNgPp4pmHKDzzkHzN+HjSeebBpv50j5nqWDzz4H4Myfra633p1rUZUQhtBtrjmYcMOP2l4cfEQUq+Znw8tuvIO62//Xvprl2f7FiRn2fMCP893WN4QaSdTs5XttrjpK+93pep2hAISOPGOaurUNoMpC3LIz9yinke3ON0nod015FPNc9DpN545fr0MeaxxzI7Vvu4U71fKJL1aa7a44e+TNUGJ/M8FFqbAWMYqunKktzJ/hfnnx5LziszTC5cKE2dGp4xMSIUCv8vsbY2/bYww2R2YyjkvmSGSRQjm3soyUMcTj7+9U+vedvixdKECbH9HTlHCxc6TyAAAInxzEMGfvtbd8shfS0t0vTp8RO1yLarrko+VwMAwH0kD1EmTXK3HNLnh4mHAMCPSB7gWX6YeAgA/IjkAZ7lh4mHAMCPSB6iPPKIu+WQvtGjw6MqEj3AGghI1dVfjAIBAOQGoy3iYLRF9tgO44uMtpA69nmuRlsUwrDDQojRC1papGXLwi9JGjMm/KKvss8r16hX4vAqq3toVmecyDEmifK2eJPvhEKpJ9PJ18RD6cabS4UQoxcsWhQ7wVlk4jP6Kru8co16JQ4vs7mH+upW6FbykCxxIIFIz6JFxgQCsf0YCIRfqf4B791rzIsvGvPII+E/9+71dry5UAgxesGiRan/PdNX2eGVa9QrcXgdM0yyMJanpFq4yWsLCBVCvIUQoxe0tEj77x+ecTOZUEhat664+8ptXrlGvRJHIWCSKHhKoc3XUAjxFkKMXhCZqjuV9evpK7d55Rr1Shx+Q/KArCu0+RoKId5CiNELbNpf7H3lNq9co16Jw29IHpB1hTZfQyHEWwgxeoFN+4u9r9zmlWvUK3H4Dc88ROGZB/dFvnPcsCF+n3ntO8dCiLcQYvQCnnnIH69co16JoxDwzEMGnCYEJA7OBYPh5bOl2OQs8nNdnXf+4RZCvIUQoxcEg9Ltt6cuN3cufeU2r1yjXonDb0ge4kiVGJA42KutDU/oNGBAx+2hkDeX1S6EeAshRi+orZUWLZJ69459r3fv8Hv0VXZ45Rr1Shx+wtcWScT7CsM/vZUfhTbDWyHEWwgxegEzTOaPV65Rr8ThVTb3UJIHAADAMw8AACB7SB4AAIAVkgcAAGCF5AEAAFgheQAAAFZK8x2AlxXTUM14Q5gku2FNXhwGlUlMXmyPX+SjbzmfgIuyuDR4ztmsRZ5K9Lrv7V9+s2iRMaFQxzb27h1+td8WCiVe9z5eHcnK50ImMXmxPX6Rj77lfAKp2dxDfXUrdCt5SJY4+C2BWLTImEDAWZsDgfAr+hduojoSlc9nu5zE5MX2+EU++pbzCThjcw9lkqgoxbQwVmTBmGRr3UeLXkQmVR35WHQmk5i82B6/yEffcj4B55gkCo4sX26XOEjhhKmhIbyvkzqiy+dCJjF5sT1+kY++5XwC2UHyUMQaGzPf12kdmRzLViYxebE9fpGPvuV8AtlB8lDEqqoy39dpHZkcy1YmMXmxPX6Rj77lfALZwTMPUYrxmYcNG5y3JdEzD4nqyOczD+nE5MX2+EU++pbzCTjHMw8ZcHoTLfTEQQr/spw7N/x3J0lTpExd3Re/aJPVEa98LmQSkxfb4xf56FvOJ5AdJA9xpEoM/JA4RNTWSgsXSgMGdNzeu3f41V4oFC5bW+usjkTlcyGTmLzYHr/IR99yPgH38bVFEswwyQyTXmuPXzDDJOA9NvdQkgcAAMAzDwAAIHtIHgAAgBWSBwAAYIXkAQAAWCF5AAAAVkrzHYCX+XmoJsPWvkBfAIAdT33ycNddd2no0KGqqKhQRUWFRowYoT/+8Y95iSXRjIs201d71eLF4Sl7TzhBmjQp/GdNTXh7saEvAMCep5KHUCikm2++WW+99Zb+8pe/6MQTT9S4ceP0r3/9K6dxpEoQCjmBWLxYmjAhdpniDRvC24vppklfAEB6PD9JVK9evXTrrbfqkksuSVmWhbGSiywSFH2zjCimRYLoCwDoyBeTRLW0tGjBggXavn27RowYEbfMrl271Nzc3OGFxJYvT3yzlMLJUENDuJzf0RcAkD7PJQ+rVq1St27dVF5erm9/+9tasmSJvvSlL8UtO2fOHFVWVra9qqurcxxtYWlsdLdcIaMvACB9nkseDj74YK1cuVJvvPGGvvOd72jKlCl6++2345adNWuWmpqa2l4NDQ05jrawVFW5W66Q0RcAkD7PP/MwduxYDRo0SPfcc0/KsjzzkFzke/4NG+LHXkzf89MXANCRL555iGhtbdWuXbtydjynCUGhJQ5S+CY4d27479FJUuTnurriuFnSFwCQPk8lD7NmzdLLL7+sdevWadWqVZo1a5aWLVumCy64IKdxpEoMCjFxiKitlRYulAYM6Lg9FApvr63NT1z5QF8AQHo8NcPkpk2b9I1vfEONjY2qrKzU0KFD9cwzz+jkk0/OeSzG+HeGydpaadw4ZlWU6AsASIfnn3mw4cYzDwAAFCNfPfMAAAC8heQBAABYIXkAAABWSB4AAIAVkgcAAGDFU0M1vcavQzWRWksLwzfTRd8B/kfykECiaaoDARIIv1u8WJo+veOqm6FQeEZKJo5Kjr4DigNfW8SRan0Lm/UvUFgWL5YmTIhdrnvDhvD2xYvzE1choO+A4sEkUVH8vDAWkosslhV984tgsazE6Dug8DFJFJCG5csT3/ykcLLY0BAuh47oO6C4kDwA/6ex0d1yxYS+A4oLyQPwf6qq3C1XTOg7oLiQPAD/Z/To8PfyyUbaVFeHy6Ej+g4oLiQPUZw+BMnDkv4TDIaHFEqxN8HIz3V1PPAXD30HFBeShzhSJQYkDv5VWystXCgNGNBxeygU3s5cBYnRd0DxYKhmEswwWbyYJTF99B1QmGzuocwwmQSJQvEKBqUxY/IdRWGi7wD/42sLAABgheQBAABYsfra4pvf/Kb1AQKBgH71q19Z7wcAALzJKnl44YUXFLBcFcq2PAAA8Dar5GHdunVZCsObGG3hjyfn/dAGP+P8AIWH0RYJJJspr1gSiMWLpenTOy54FAqFJwMqlDH7fmiDn3F+gMLkyjwPr7/+ul588UVt2rRJU6dO1eDBg7Vjxw69++67GjJkiLp16+ZGrCm5Nc+Dk29a/J5ALF4sTZgQ285I3xTCpD9+aIOfcX4Ab7G5h2aUPOzevVvnnXeennjiCRljFAgE9Oyzz+rEE0/U559/rlAopKuvvlrXXnttuoew4kbyYPOIhl8TiJYWqaYm8RLLgUD4f4f19d79eNkPbfAzzg/gPTb30IyGav74xz/WU089pbvuukurV69W+zykc+fOOuecc/TEE09kcgjkwfLliX+pS+GkqaEhXM6r/NAGP+P8AIUto+Tht7/9rb7zne/osssuU69evWLeP/TQQ/X+++9ncgjkQWOju+XywQ9t8DPOD1DYMkoeNm3apMMPPzzh+8FgUDt27MjkEMiDqip3y+WDH9rgZ5wfoLBllDxUV1fr3XffTfj+q6++qoMOOiiTQyAPRo8Of9+cbMRJdXW4nFf5oQ1+xvkBCltGycOkSZN0zz336LXXXmvbFpkU6r777tNjjz2mb3zjG5lFmGNOH4L068OSUvgBtblzw3+P/uUe+bmuztsPsvmhDX7G+QEKnMnArl27zCmnnGJKS0vN4YcfbkpKSsywYcNMdXW1CQQC5swzzzR79+7N5BBWmpqajCTT1NSUcV3h9CD+q1gsWmRMKNSx7dXV4e2Fwg9t8DPOD+AdNvfQjOd5MMbo4Ycf1sKFC7VmzRq1trZq0KBBmjhxoiZPnpzT6andmudBSj5k08+fOkTzw+x/fmiDn3F+AG/I2TwPXsMkUQAApMfmHurK9NQtLS1666232ta+OOCAA/SVr3xFwQL878MLLzgvd+KJ2Y0FAAAvyjh5mD9/vmbNmqVNmza1TRIVCATUp08f3XTTTWkt451PJ53kvByfPgAAilFGycM999yj73znOzriiCN0/fXXa8iQIZKk1atX65577tGll16q3bt369vf/rYrwQIAgPzL6JmHAw88UNXV1XruuefUqVOnDu/t2bNHJ554ojZs2JCzWSZZ2wIAgPTkbG2LjRs3auLEiTGJgyR16tRJ5513nj7++ONMDpFzzz/vbjkAAPwmo68tjjzySP373/9O+P6///1vHXHEEZkcIuecPgTJw5LuYrgeABSOjJKHO+64Q2eeeaYOPPBAXXbZZerSpYskaefOnbr77rv12GOPaenSpa4EmkvGMM9DLi1eLE2f3nGVxVAoPANhbW3+4gIAxGf1zMPQoUNjtv3nP/9RY2OjSktL1b9/f0nSRx99pL1796qqqkq9e/fW3//+d/ciToJ5HgrP4sXShAmx/Rk5BwsXkkAAQC5kbZ6HXr16xcwY2bt3bw0ePLjDtpqaGptqPcXpA5OBAAlEplpawp84xOvHyKc/V10ljRvHVxgA4CVWycOyZcuyFAaK0fLlHb+qiGaM1NAQLjdmTM7CAgCkkNFoCyATjY3ulgMA5IYr01Pv2bNH7777rpqamtTa2hrz/nHHHefGYeAzVVXulgMA5EZGyUNra6tmzZqlefPmaceOHQnLtbS0ZHIY+NTo0eFRFRs2xH/uIRAIvz96dO5jAwAkltHXFjfddJNuvfVWXXjhhXrwwQdljNHNN9+su+++W0OHDtWwYcP0zDPPuBVrTjh9CJKHJTMXDIaHY0qxD6pGfq6r42FJAPCajJKH+fPna+LEibrrrrt02mmnSZKOOuooXXrppXrjjTcUCAT0gtNlKj0kVWJA4uCe2trwcMwBAzpuD4UYpgkAXpVR8rB+/Xqd+H9TLZaXl0uSPv/8c0lSWVmZLrzwQv3mN7/JMMT8SJQgkDi4r7ZWWrdOevFF6ZFHwn/W15M4AIBXZfTMQ+/evfXZZ59Jkrp166aKioqYRbC2bt2aySHyikQhd4JBhmMCQKHIeG2LP//5z20/n3DCCaqrq9ORRx6p1tZW3X777Ro2bFjGQQIAAO/I6GuLyy67TLt27dKuXbskSTfeeKM+/fRTHXfccTr++OPV3NysX/ziF64ECgAAvMFqbQsnmpqatGzZMgWDQY0cOVK9evVys/qk3FrbAgCAYpO1tS0+/PBDR+WOPPJISdJnn32mzz77TAMHDrQ5DAAA8DCr5KGmpiZmYSwnmCQKAAD/sEoe7r///rSSh0IVr6mMwAAAFDur5OGiiy7KUhjekyhHYiluAECxY1XNOFJ9uFJEH74AABCD5CGK08SABAIAUKxIHgAAgBWSBwAAYIXkAQAAWCF5AAAAVkgeojgdhslwTQBAsSJ5iCNVYkDiAAAoZiQPCSRKEEgcAADFzmqGyWJDogAAQCw+eQAAAFZIHgAAgBWSBwAAYIXkAQAAWCF5AAAAVhhtkUS8lTMZgYF0tbRIy5dLjY1SVZU0erQUDOY7KgCw56lPHubMmaOvfvWr6t69u/r27auzzz5bq1evzkssiZbcZilupGPxYqmmRjrhBGnSpPCfNTXh7QBQaDyVPLz00kuaNm2aXn/9dT377LPas2ePTjnlFG3fvj2ncaRKEEggYGPxYmnCBGn9+o7bN2wIbyeBAFBoAsZ494P4zZs3q2/fvnrppZd03HHHpSzf3NysyspKNTU1qaKiIq1j2iQG3u05eEVLS/gThujEISIQkEIhqb6erzAA5JfNPdRTnzxEa2pqkiT16tUr7vu7du1Sc3NzhxfgJcuXJ04cpHAC2tAQLgcAhcKzyUNra6uuuuoqjRo1Sl/+8pfjlpkzZ44qKyvbXtXV1TmOEkiusdHdcgDgBZ5NHqZNm6Z//vOfWrBgQcIys2bNUlNTU9uroaEhhxECqVVVuVsOALzAk0M1r7jiCj311FN6+eWXFQqFEpYrLy9XeXl5DiMD7IweHX6mYcOG+M/IRJ55GD0697EBQLo89cmDMUZXXHGFlixZohdeeEEHHHBAHmJwtxyKWzAozZ0b/nv0w7iRn+vqeFgSQGHxVPIwbdo0PfTQQ3rkkUfUvXt3bdy4URs3btTOnTtzGkeqxIDEATZqa6WFC6UBAzpuD4XC22tr8xMXAKTLU0M1AwnGST7wwAO66KKLUu7vxlDNjvHEbvNOb6HQMMMkAC+zuYd66pkHD+UxkkgU4K5gUBozJt9RAEDmPPW1BQAA8D6SBwAAYIXkAQAAWCF5AAAAVkgeAACAFU+NtvAahmoCABCLTx4SSLQ0t82S3QAA+BHJQxypEgQSCABAMSN5iOI0MSCBAAAUK5IHAABgheQBAABYIXkAAABWSB4AAIAVkocoTudxYL4HAECxInmII1ViQOIAAChmJA8JJEoQSBwAAMWO6amTIFEAACAWnzwAAAArJA8AAMAKyQMAALBC8gAAAKzwwGQS8Ra/4iFKAECx45OHBBKtmslqmgCAYkfyEEeqBIEEAgBQzEgeojhNDEggAADFiuQBAABYIXkAAABWSB4AAIAVkgcAAGCF5CGK03kcmO8BAFCsSB7iSJUYkDgAAIoZyQMAALBC8hAHk0QBAJAYyUOUF15wtxwAAH5D8hDlpJPcLQcAgN+QPAAAACskDwAAwArJQ5Tnn3e3HAAAfkPyEOXEE90tBwCA35A8xMEkUQAAJEbyEAfzPAAAkBjJQxSniQEJBACgWJE8AAAAKyQPAADACskDAACwQvIAAACskDxEcToMk+GaAIBiRfIQB/M8AACQGMlDAokSBBIHAECxK813AF5GogAAQCw+eQAAAFZIHgAAgBWSBwAAYIXkAQAAWCF5AAAAVhhtkUS8lTMZgQEAKHZ88pBAoiW3WYobAFDsSB7iSJUgkEAAAIoZyUMUp4kBCQQAoFiRPAAAACskDwAAwArJAwAAsELyAAAArJA8RHE6jwPzPQAAihXJQxypEgMSBwBAMSN5SCBRgkDiAAAodkxPnQSJAgAAsfjkAQAAWCF5AAAAVkgeAACAFZIHAABgheQBAABYYbRFEvFWzmQEBgCg2Hnqk4eXX35ZZ511lvr3769AIKDf/e53eYsl0ZLbLMUNACh2nkoetm/frmHDhunOO+/MaxypEgQSCABAMfPU1xann366Tj/99LzG4DQxCAT4CgMAUJw8lTzY2rVrl3bt2tX2c3Nzcx6jAQCgOHjqawtbc+bMUWVlZdururo63yEBAOB7BZ08zJo1S01NTW2vhoaGfIcEAIDvFfTXFuXl5SovL893GAAAFJWC/uQhG5w+BMnDkgCAYuWpTx4+++wzvffee20/19fXa+XKlerVq5cGDhyYsziMST7qgsQBAFDMPJU8/OUvf9EJJ5zQ9vOMGTMkSVOmTNH8+fNzGkuiBILEAQBQ7DyVPIwZM0bGQ3dnD4UCAIBn8MwDAACwQvIAAACskDwAAAArJA8AAMAKyQMAALDiqdEWXsNQTQAAYvHJQwKJJolyumQ3AAB+RfIQR6oEgQQCAFDMSB6iOE0MSCAAAMWK5AEAAFgheQAAAFZIHgAAgBWSBwAAYIXkIYrTeRyY7wEAUKxIHuJIlRiQOAAAihnJQwKJEgQSBwBAsWN66iRIFAAAiMUnDwAAwArJAwAAsELyAAAArJA8AAAAKzwwmUS8xa94iBIAUOz45CGBRKtmspomAKDYkTzEkSpBIIEAABQzkocoThMDEggAQLEieQAAAFZIHgAAgBWSBwAAYIXkAQAAWCF5iOJ0HgfmewAAFCuShzhSJQYkDgCAYkbyAAAArJA8xMEkUQAAJEbyEOVXv3K3HAAAfhMwxj/f4Dc3N6uyslJNTU2qqKhIqw6bTxX803MAgGJncw/lkwcAAGCF5AEAAFgheYjyv//rbjkAAPyGZx7icPLcg396DQAAnnnIGJNEAQCQGMlDHMzzAABAYiQPUZwmBiQQAIBiRfIAAACskDwAAAArJA8AAMAKyQMAALBC8hDF6TBMhmsCAIoVyUMczPMAAEBiJA8JJEoQSBwAAMWuNN8BeBmJAgAAsfjkAQAAWCF5AAAAVkgeAACAFZIHAABgheQBAABYYbRFEvFWzmQEBgCg2PHJQwKJltxmKW4AQLEjeYgjVYJAAgEAKGYkD1GcJgYkEACAYkXyAAAArJA8AAAAKyQPAADACskDAACwQvIQxek8Dsz3AAAoViQPcaRKDEgcAADFjOQhgUQJAokDAKDYMT11EiQKAADE4pMHAABgheQBAABYIXkAAABWSB4AAIAVkgcAAGCF0RZJxFs5kxEYAIBi58lPHu68807V1NSoc+fOGj58uN58882cx5BoyW2W4gYAFDvPJQ+PPvqoZsyYodmzZ+uvf/2rhg0bplNPPVWbNm3KWQypEgQSCABAMfNc8nDbbbfp0ksv1cUXX6wvfelLuvvuu9W1a1fdf//9OTm+08SABAIAUKw8lTzs3r1bb731lsaOHdu2raSkRGPHjtVrr70WU37Xrl1qbm7u8AIAANnlqeRhy5YtamlpUb9+/Tps79evnzZu3BhTfs6cOaqsrGx7VVdX5ypUAACKlqeSB1uzZs1SU1NT26uhoSHfIQEA4HueGqq57777KhgM6uOPP+6w/eOPP9Z+++0XU768vFzl5eW5Cg8AAMhjnzyUlZXpqKOO0vPPP9+2rbW1Vc8//7xGjBiRkxiczuPAfA8AgGLlqU8eJGnGjBmaMmWKjj76aB1zzDGqq6vT9u3bdfHFF+csBmOSj6YgcQAAFDPPJQ/nnnuuNm/erOuuu04bN27UEUccoaeffjrmIcpsS5RAkDgAAIpdwBj/3A6bm5tVWVmppqYmVVRU5DscAAAKhs091FPPPAAAAO8jeQAAAFZIHgAAgBWSBwAAYIXkAQAAWCF5AAAAVkgeAACAFZIHAABgheQBAABYIXkAAABWSB4AAIAVkgcAAGCF5AEAAFjx3JLcmYgsENrc3JznSAAAKCyRe6eTxbZ9lTxs27ZNklRdXZ3nSAAAKEzbtm1TZWVl0jIB4yTFKBCtra366KOP1L17dwUCAVfqbG5uVnV1tRoaGlKubw730f/5Rf/nF/2fP8XY98YYbdu2Tf3791dJSfKnGnz1yUNJSYlCoVBW6q6oqCiaC8iL6P/8ov/zi/7Pn2Lr+1SfOETwwCQAALBC8gAAAKyQPKRQXl6u2bNnq7y8PN+hFCX6P7/o//yi//OHvk/OVw9MAgCA7OOTBwAAYIXkAQAAWCF5AAAAVkgeAACAFZIHSXfeeadqamrUuXNnDR8+XG+++WbS8o8//rgOOeQQde7cWYcffriWLl2ao0j9yab/77vvPo0ePVo9e/ZUz549NXbs2JTnC8nZXv8RCxYsUCAQ0Nlnn53dAH3Otv8//fRTTZs2TVVVVSovL9eQIUP4HZQm276vq6vTwQcfrC5duqi6ulpXX321Pv/88xxF6zGmyC1YsMCUlZWZ+++/3/zrX/8yl156qenRo4f5+OOP45Z/9dVXTTAYNLfccot5++23zY9+9CPTqVMns2rVqhxH7g+2/T9p0iRz5513mr/97W/mnXfeMRdddJGprKw069evz3Hk/mDb/xH19fVmwIABZvTo0WbcuHG5CdaHbPt/165d5uijjzZnnHGGeeWVV0x9fb1ZtmyZWblyZY4jL3y2ff/www+b8vJy8/DDD5v6+nrzzDPPmKqqKnP11VfnOHJvKPrk4ZhjjjHTpk1r+7mlpcX079/fzJkzJ275iRMnmjPPPLPDtuHDh5vLL788q3H6lW3/R9u7d6/p3r27+fWvf52tEH0tnf7fu3evGTlypPnf//1fM2XKFJKHDNj2/1133WUOPPBAs3v37lyF6Fu2fT9t2jRz4okndtg2Y8YMM2rUqKzG6VVF/bXF7t279dZbb2ns2LFt20pKSjR27Fi99tprcfd57bXXOpSXpFNPPTVheSSWTv9H27Fjh/bs2aNevXplK0zfSrf///u//1t9+/bVJZdckoswfSud/n/yySc1YsQITZs2Tf369dOXv/xl3XTTTWppaclV2L6QTt+PHDlSb731VttXG++//76WLl2qM844Iycxe42vFsaytWXLFrW0tKhfv34dtvfr10/vvvtu3H02btwYt/zGjRuzFqdfpdP/0b7//e+rf//+MQkdUkun/1955RX96le/0sqVK3MQob+l0//vv/++XnjhBV1wwQVaunSp3nvvPU2dOlV79uzR7NmzcxG2L6TT95MmTdKWLVt07LHHyhijvXv36tvf/rZ++MMf5iJkzynqTx5Q2G6++WYtWLBAS5YsUefOnfMdju9t27ZNkydP1n333ad999033+EUpdbWVvXt21f33nuvjjrqKJ177rm69tprdffdd+c7NN9btmyZbrrpJs2bN09//etftXjxYv3hD3/QT37yk3yHlhdF/cnDvvvuq2AwqI8//rjD9o8//lj77bdf3H32228/q/JILJ3+j/j5z3+um2++Wc8995yGDh2azTB9y7b/165dq3Xr1umss85q29ba2ipJKi0t1erVqzVo0KDsBu0j6Vz/VVVV6tSpk4LBYNu2Qw89VBs3btTu3btVVlaW1Zj9Ip2+//GPf6zJkyfrW9/6liTp8MMP1/bt23XZZZfp2muvVUlJcf1fvLhaG6WsrExHHXWUnn/++bZtra2tev755zVixIi4+4wYMaJDeUl69tlnE5ZHYun0vyTdcsst+slPfqKnn35aRx99dC5C9SXb/j/kkEO0atUqrVy5su31ta99TSeccIJWrlyp6urqXIZf8NK5/keNGqX33nuvLWmTpH//+9+qqqoicbCQTt/v2LEjJkGIJHGmGJeIyvcTm/m2YMECU15ebubPn2/efvttc9lll5kePXqYjRs3GmOMmTx5svnBD37QVv7VV181paWl5uc//7l55513zOzZsxmqmQHb/r/55ptNWVmZWbhwoWlsbGx7bdu2LV9NKGi2/R+N0RaZse3/Dz/80HTv3t1cccUVZvXq1eapp54yffv2NT/96U/z1YSCZdv3s2fPNt27dze//e1vzfvvv2/+9Kc/mUGDBpmJEyfmqwl5VfTJgzHG3HHHHWbgwIGmrKzMHHPMMeb1119ve+/44483U6ZM6VD+scceM0OGDDFlZWXmsMMOM3/4wx9yHLG/2PT//vvvbyTFvGbPnp37wH3C9vpvj+Qhc7b9v2LFCjN8+HBTXl5uDjzwQHPjjTeavXv35jhqf7Dp+z179pjrr7/eDBo0yHTu3NlUV1ebqVOnmq1bt+Y+cA9gSW4AAGClqJ95AAAA9kgeAACAFZIHAABgheQBAABYIXkAAABWSB4AAIAVkgcAAGCF5AEAAFgheQDg2PXXX69AIKAtW7YkLVdTU6OLLrooN0EByDmSBwAAYIXkAQAAWCF5AAAAVkgeAFjbsmWLJk6cqIqKCvXu3VvTp0/X559/nnSfTz/9VFdddZWqq6tVXl6ugw46SD/72c/U2traVmbZsmUKBAJatmxZh33XrVunQCCg+fPnZ6E1AGyV5jsAAIVn4sSJqqmp0Zw5c/T666/r9ttv19atW/Xggw/GLb9jxw4df/zx2rBhgy6//HINHDhQK1as0KxZs9TY2Ki6urrcNgBARkgeAFg74IAD9MQTT0iSpk2bpoqKCs2bN0/f+973NHTo0Jjyt912m9auXau//e1vGjx4sCTp8ssvV//+/XXrrbfqu9/9rqqrq3PaBgDp42sLANamTZvW4ecrr7xSkrR06dK45R9//HGNHj1aPXv21JYtW9peY8eOVUtLi15++eWsxwzAPXzyAMBa5NODiEGDBqmkpETr1q2LW37NmjX6xz/+oT59+sR9f9OmTW6HCCCLSB4AZCwQCCR9v7W1VSeffLKuueaauO8PGTIkaT0tLS2ZBQjAVSQPAKytWbNGBxxwQNvP7733nlpbW1VTUxO3/KBBg/TZZ59p7NixSevt2bOnpPDIjPY++OCDjOIF4C6eeQBg7c477+zw8x133CFJOv300+OWnzhxol577TU988wzMe99+umn2rt3ryRp//33VzAYjHkGYt68eW6EDcAlfPIAwFp9fb2+9rWv6bTTTtNrr72mhx56SJMmTdKwYcPilp85c6aefPJJ/dd//ZcuuugiHXXUUdq+fbtWrVqlhQsXat26ddp3331VWVmpc845R3fccYcCgYAGDRqkp556imciAI8heQBg7dFHH9V1112nH/zgByotLdUVV1yhW2+9NWH5rl276qWXXtJNN92kxx9/XA8++KAqKio0ZMgQ3XDDDaqsrGwre8cdd2jPnj26++67VV5erokTJ+rWW2/Vl7/85Vw0DYADAWOMyXcQAACgcPDMAwAAsELyAAAArJA8AAAAKyQPAADACskDAACwQvIAAACskDwAAAArJA8AAMAKyQMAALBC8gAAAKyQPAAAACskDwAAwMr/B5ssWtDG3pcXAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_col1_col2_scatter(dev, \"bleu\", \"label\", \"dev\")\n", + "plot_col1_col2_scatter(train, \"bleu\", \"label\",\"train\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### TF-IDF & Cosine Similarity" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.feature_extraction.text import TfidfVectorizer\n", + "from sklearn.metrics.pairwise import cosine_similarity\n", + "\n", + "def get_cos_sim(df):\n", + " # TF-IDF 벡터화\n", + " tfidf_vectorizer = TfidfVectorizer()\n", + "\n", + " # 문장 두 개를 결합하여 처리\n", + " combined_sentences = df[\"sentence_1\"].tolist() + df[\"sentence_2\"].tolist()\n", + "\n", + " # TF-IDF 매트릭스 생성\n", + " tfidf_matrix = tfidf_vectorizer.fit_transform(combined_sentences)\n", + "\n", + " # 문장1과 문장2의 코사인 유사도 계산\n", + " # 첫 n개의 벡터는 sentence1, n부터는 sentence2에 해당\n", + " cos_similarities = []\n", + " n = len(df)\n", + " for i in range(n):\n", + " cos_sim = cosine_similarity(tfidf_matrix[i], tfidf_matrix[i + n])[0][0]\n", + " cos_similarities.append(cos_sim)\n", + "\n", + " # 코사인 유사도 컬럼 추가\n", + " df[\"cosine_similarity\"] = cos_similarities\n", + "\n", + " return tfidf_matrix\n", + "\n", + "tfidf_matrix_train = get_cos_sim(train)\n", + "tfidf_matrix_dev = get_cos_sim(dev)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAIpCAYAAAAl0NuJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7VElEQVR4nO3de3gU1f0/8PckISHhkkC4BbLcIl5ALlouBUSwUhGpUgEBL4DWFq9Vi00Va4taFa0tTahSL1VR66VKoFZFq6IgXqp+qSjeEBElhACiJgSCQJLz+2N+uyS7szNzZs7Mzu6+X8+zj2T3zDmfc2aSPe6e8xlNCCFAREREZFNGogMgIiKi5MLJAxEREUnh5IGIiIikcPJAREREUjh5ICIiIimcPBAREZEUTh6IiIhICicPREREJIWTByIiIpLCyQNF9O7dG5qm4csvv0x0KElj6dKl0DQN559/fqJD8cy4ceOgaRpWr17tS3vxrsPzzz8fmqZh6dKlvsQBADfccAM0TcMNN9zgW5tBpfpa9/t8+n0dpzpOHoiIJK1evRqapmHcuHGJDoUoIbISHQBRMjvzzDPxwx/+EPn5+YkOxTMPP/ww6uvr0bNnT1/aW7VqFQ4dOoQePXr40p6Zyy+/HDNnzkSnTp0SHQpRoHDyQORCfn5+Sk8cAPg2aQgrKSnxtT0znTp14sSByAC/tkgzH3/8Mc466yx06tQJubm5OPbYY/GnP/0JjY2Npsc1NDTg73//O8aNG4eOHTsiJycHffr0wSWXXILKysoWZe+55x5omoZTTz01bn3ffPMNcnJykJ2dja+//tp2/PX19SgrK8MJJ5yADh06ICcnB7169cLpp5+Oxx57zLD8bbfdhuOPPx7t2rVDXl4eBgwYgOuvvx7fffedYRvr1q3DjBkzUFxcjOzsbLRv3x59+/bF1KlT8fTTT7coG+974OYfax86dAi33347BgwYgNzcXBQWFmLKlCn45JNP4vbzu+++w4IFCzBkyJBI3AMHDsTNN9+M+vp62+NlpKmpCffeey9Gjx6NgoICtGrVCl26dMHgwYPxy1/+MmatQbzvipt/Z71x40bMmDEDXbp0QZs2bTBs2LAWY/X222/jjDPOQOfOnZGbm4uRI0di1apVhvHJrr2pq6vDfffdhylTpqBfv35o06YN2rRpg4EDB+K3v/0tampqLNt5+umn8aMf/QgdO3Zs0VejNQ/jxo3DSSedBABYs2YNNE2LPHr37g0AGDt2LDRNw+OPPx437j/+8Y/QNA3Tp0+37OP8+fOhaRouvvjiuGU+/PBDaJqGrl274tChQ5HnX375ZZx++uno2rUrWrVqhQ4dOqBfv34477zz8Nprr1m2bcfy5cvx85//HMceeyw6dOiA1q1bo0+fPvjZz36GjRs3Wh7//vvvY8qUKZHrY9CgQSgvLzf9u7Ru3Tqce+656NmzJ3JyctCxY0dMmDABK1euVNInsiAobaxdu1a0adNGABB9+/YVM2fOFOPHjxetWrUSU6dOFb169RIAxJYtW1oct2fPHjFu3DgBQLRt21aMHTtWTJs2TRx11FECgCgsLBT/+9//IuVrampEbm6uyMjIENu2bTOMZfHixQKAmDJliu34t27dKvr37y8AiLy8PPHjH/9YzJw5U4wZM0bk5+eLXr16tSj/zTffiCFDhggAon379uKMM84QU6dOFZ06dRIARJ8+fWL6+vLLL4tWrVoJAGLw4MFi2rRp4swzzxTDhw8XOTk5YvLkyS3KP/jggwKAmDNnTovnX331VQFAjBo1SowfP17k5eWJU089VUydOlWEQiEBQBQUFMS0L4QQH330UaRMUVGROPXUU8Xpp58uunbtKgCIIUOGiJqaGtvjFu2CCy4QAETr1q3F+PHjxdlnny0mTJgg+vXrJwCIFStWtCg/duxYAUC8+uqrLZ6fM2eOACB++ctfijZt2oijjjpKzJw5U4wcOVIAEJqmiaeeekqsWLFCtGrVShx33HFixowZYvDgwQKAyMrKEmvXro2JL951GG7vwQcfbPH82rVrBQDRuXNnccIJJ4gZM2aIU045RRQWFgoA4ogjjhC7d++O287ll18uAIihQ4eKs88+W4wdO1a89tprQgghFixYIACIBQsWRI5buHChmDBhggAgunbtKubMmRN5XH311UIIISoqKiLn30hjY6Po3bu3ACDWrFljWKa5jRs3Rq6Z/fv3G5aZN2+eACDmzZsXeW7p0qVC0zShaZoYMWKEmDFjhjjjjDPE8ccfLzIzM8WVV15p2XZYvGtdCCEyMzNFXl6eGDp0qJgyZYo444wzRN++fQUA0aZNG/HGG2/EHBM+n5dccolo3bq16N27d+TcZWdnCwBi2rRpoqmpKebYsrIykZGREfl9mDZtmjjhhBMix914440xx8S7jskZTh7SxP79+yNvSFdddZVoaGiIvPb+++9H3lCN/mifc845AoD4yU9+Inbu3Nnitb/85S8CgOjXr1+LOs8991wBQCxcuNAwnuOOO04AEM8884yt+BsbG8XQoUMFAHHKKaeIXbt2xfTvueeea/HcjBkzBAAxYsSIFm8edXV1YuLEiYZ/3E866SQBQPzjH/+IiaGmpka89dZbLZ6zmjwAEMcdd5yorq5uEWv4zWfu3LktjquvrxclJSUCgLj++uvFgQMHIq/t27dPnH322QKAuOCCC0xGK76vvvpKABDFxcUtYgr7+OOPxVdffdXiOavJAwBx8803t/gjH54cFhcXiw4dOoiHH364xbFXXXWVACDGjx8fE4Ps5KGyslK8/PLLorGxscXz+/btE7NnzxYAxKWXXhq3nczMTPH000/HvC6E8eRBiMPnd+zYsYbHNTQ0ROpvPrEOe+aZZwQAMWjQIMPjjYwePVoAEI8//njMa4cOHRJdunQRAMSGDRsiz/fp00cAMJyk7dy50zC2eMwmD0888YTYu3dvi+eamprEXXfdJQCIAQMGxEwCml8/l156qTh06FDktQ8//FB07txZABB33313i+NeeOEFoWma6NSpU8zE64MPPhDFxcUCgFi9enWL1zh5UIuThzTxj3/8QwAQoVBIHDx4MOb18CQg+o/2xx9/LDRNE927dxd79uwxrPu0006LmQisWrVKABBHHXVUTPn169cLAKJbt24t/mCY+de//hX5P/G6ujrL8l999ZXIyMgQmqaJ999/P+b1bdu2idatWwsALf6vKPzJxrfffmsrLqvJg6ZpYv369THH/fe//418AtTc3/72t8hEzUhdXZ3o0qWLyMrKsh1jc++8844AIM444wzbx1hNHoYPHx7zxnDo0CHRsWNHAUCcddZZMXXu3r1bABDZ2dkx16Ps5MHMvn37RFZWlujcuXPMa+F2fvazn8U93unkQQgh/vjHPwoA4sILL4x5LTx5vOeee2z35f77749MnqOFfz+GDh3a4vm8vDyRn59vuw0zZpMHM+FPoj766KMWz4fPZ1FRkeGnKX/9618j/2PS3IgRIwQAsWzZMsP2nnzySQFATJ06tcXznDyoxTUPaSL8He706dPRqlWrmNfnzJljeNzKlSshhMDEiRPRrl07wzLh7Wpvvvlm5LmTTjoJvXv3xsaNG/HWW2+1KP/ggw8CAGbPno2sLHtrdl944QUAwDnnnIO2bdtaln/ttdfQ1NSE4447DoMGDYp5vUePHpgwYQIA4NVXX408P3z4cADAueeei9dffx0NDQ224ounZ8+eGDx4cMzzxxxzDACgqqqqxfPPPfccAGDGjBmG9bVt2xZDhw5FQ0MD3n33Xel4jj76aLRr1w4rV67ELbfcgi1btkjXEW3ixInQNK3Fc1lZWejTpw8A4LTTTos5prCwEB07dsTBgwfxzTffuI4B0K+/22+/HZdddhkuuOACnH/++bj00ksj62rirXGZNm2akvaj/fznP0deXh4ee+yxFm1//vnnePHFF1FQUIDzzjvPdn3Tp09HmzZt8PLLL2Pbtm0tXgv/Tv3sZz9r8fzw4cNRW1uL2bNnY926dWhqanLRI3Off/457rzzTlx11VW48MILcf755+P888/Hzp07ASDu2ofp06ejdevWMc+H/yZt2rQJ27dvBwDs3r0b77zzDnJzc3H66acb1mf094jU4+QhTYT/2IT/oEfr0KGD4a6BL774AgBw//33t1gY1vzxm9/8BgBaLHxsvogw/IcNAA4dOoRHH30UAHDBBRfYjv+rr74CoL/52RF+U47XX+Dwqv7mb+ALFy7E8ccfj+effx5jxoxB+/btccIJJ+D66683XeAYT7ydCu3btwcAHDhwoMXz4fGeNWtW3PEOLwiTWWga1q5dOzz44IPIzc3F9ddfj759+6J79+6YMmUK7r33Xuzdu1e6znh9DE/y4r0enox+//330m02t2vXLowZMwajR4/GtddeiyVLlmDp0qV46KGH8NBDD0UWmO7Zs8fw+PAiR9U6dOiAWbNmYf/+/bj//vsjzy9ZsgRCCFxwwQXIy8uzXV/btm1x1llnoampCQ8//HDk+V27duG5555D69atcfbZZ7c4ZsmSJejbty8eeeQRDB06FAUFBTj55JNxyy23YOvWre47CaCxsRGXXHIJjjzySPzyl79EeXk5Hnjggcj4h6/peOMf73e0Xbt2KCwsBHD479eWLVsghMD+/fuRk5Nj+PvRpUsXAM5+P8g+btUkU+H/UxkyZIjh/0E3N2LEiBY/n3/++bjxxhvx5JNPory8HLm5uXjmmWewe/du/PCHP7Q9EfBTt27d8H//939Ys2YNXn75Zbzxxht4++238cYbb+DWW2/FwoULcc0119iuLyNDbn4eHu9TTz0VXbt2NS3bq1cvqbrDpk6divHjx+Pf//431q5dizfeeAMrVqzAihUr8Pvf/x4vvfQSBg4caLs+qz7KjoGsn//853j99dcxcuRI3HjjjRg8eDA6dOgQ+YSte/fuqK6uhhDC8Pjc3FzPYrviiitwzz334G9/+xvmzZuH77//Hg8++CA0TcNll10mXd/PfvazyMTouuuuAwD84x//QENDA6ZNm4aCgoIW5Y855hhs3LgRL774Il555RW8+eabWLt2LV555RXcdNNNuP/++6U+/TBSXl6Ou+++G926dcOiRYswatQodO3aNfJpwjnnnIPHH3887vjbET42/PvRtm1bTJ061VXc5A4nD2kinHAn3va3mpoa1NbWxjwfCoUAAKNHj8add94p1WavXr3wox/9CKtWrcLy5ctx7rnnRlLRRn+8aiX8f6+ffvqprfLh/ob/r8dI+LXoZEThLZbhjz+///57LF26FJdddhmuu+46TJs2zbNcBKFQCJ9++ikuvPBCzz5OB/T8FLNmzcKsWbMAAJWVlfjlL3+Jp59+GpdffjnWrFnjWdsq7du3DytXrkRGRgZWrlwZ8+a5b98+7NixIzHBAejfvz/Gjx+Pl19+Gc8//zy2b9+OmpoaTJw40dE1NGbMGBxxxBH47LPP8MYbb2D06NGWv1NZWVk47bTTIl8f7dmzB4sWLcKNN96Iiy66CGeeeSbatGnjuI9PPvkkAH2L9hlnnBHz+qZNm0yPj/fVWV1dXeQrreLiYgCH/x5pmoYHHnjA84kpxceRTxNjx44FoP+iN98DHtb8Y9DmJk6cCAD497//7ejj5fAftKVLl2Lnzp14/vnnkZubG/c7/XjCOSMef/xx7Nu3z7L8iSeeiIyMDKxfvx7vv/9+zOvV1dWRdRThPfvxtG7dGhdffDEGDRqEpqYmfPDBB1KxywiPd/gPsl9CoRBuvPFGAMD69et9bduN2tpaNDY2on379jETB0D/v3I3/8cbT3Z2NgDYWhNz5ZVXAgDuvPNO3HXXXQD0zJVOhb/uW7p0KdatW4cNGzYgFArh5JNPtnV8+/btccMNN6CgoAD19fX47LPPHMcCAN9++y0A40/CPvroI8vr6amnnor5+g4AHnnkEQDAEUccEZngd+/eHYMGDUJdXV3k95cSg5OHNDFt2jT06NEDW7duxfz581ssnPrwww9x8803Gx533HHHYerUqaisrMSUKVMMP7nYt28fHn300cjCqOamTJmCgoICvPLKK7jlllvQ0NCAqVOnRr7zt+uMM87Acccdh+3bt+Oss86KWWT3/fff4/nnn4/83LNnT5x11lkQQuCiiy5qUX7fvn2YO3cuvv/+e4waNQqjRo2KvPanP/3J8LvgTz/9NPJ/UE6/LrBj7ty56NWrF5566ilcc801qKuriymzY8cO3HfffY7qf++99/DPf/4T+/fvj3ntmWeeAeBt/1Tr2rUrOnTogJqamsibTdh///tfzJ8/35N2w/8nvGnTJsPJeHOnnXYajjjiCLzwwgt4//33UVJSEpkkOjFnzhxkZGTgySefjExGws81V19fj0WLFhl+97927VrU1NQgMzMz0henwot/77rrrhZ/V6qrqzF79mzLCdb27dvx61//ukVCqE8++QQ33XQTAOBXv/pVi/Lhv1UXXHBB5JptTgiBt99+Gy+++KKzDpE9CdvnQb5bvXq1yMvLEwBESUmJmDlzpvjxj38sWrVqJaZMmWKaJOrkk0+ObK0bNmyYmD59ujjrrLPEsGHDIolZPvnkE8N2L7744sg2UADilVdecRT/l19+GUlMlZeXJ0455RRx9tlnixNPPNEwSdTu3bsjCYny8/PFT3/6UzFt2rTI/nGjJFH5+fkCgDj66KPFmWeeKc455xwxbtw4kZWVJQCI2bNntyhvtVXTbCtfeDyiffjhh5EEQgUFBeLEE08U55xzjvjpT38q+vfvLzRNE127dpUZuogVK1YIACI3N1eMHj1azJw5s0XCr+zsbPH888+3OMZqq2a8rZNWW+PiXW+yWzWbbzMeMWKEOPvss8Xo0aOFpmli1qxZ0u00F2+rphAiknfkqKOOEueee6648MILxTXXXGNYT1lZWSTGP//5z3Hbs+vUU0+N1Kdpmti8eXNMme+++04AEBkZGZGEZ2effbYYOXKk0DRNABC///3vbbcZ71r/73//G/kbcMQRR4jp06eLU089VeTm5ooBAwaIM8880/C8hc/nxRdfLFq3bi369OkjZs6cKSZMmBCp78wzzzRMElVeXh75nTziiCPEpEmTxDnnnCN+/OMfR/JdRJ8LbtVUi5OHNLNhwwYxZcoU0bFjR5GTkyOOOeYYsXDhQnHo0CHTP6aNjY3iscceE6eddpro2rWraNWqlSgsLBTHHnusuOCCC8SKFSsM80cIcTi3AADRu3dvwz8GdtXV1Ynbb79dDBs2TLRr107k5OSIXr16iTPOOEM88cQTMeX37dsnFi5cKIYMGSLy8vJE69atxTHHHCOuu+46wzwJ//jHP8QFF1wgjj322MgY9erVS0ycOFGsWLEiJnYvJg9C6BO2P/7xj2LkyJGioKBAtGrVShQVFYlhw4aJ0tJS8eabb1oPloHq6mpx2223idNOO0306dNH5OXlifbt24v+/fuLyy67THz66acxxwR98iCEnudg1KhRoqCgQLRt21YMHTpULFmyRDQ1NXk2efjqq6/EOeecI4qKiiJvZNET2LBPPvkkMun97rvv4rZnVziXgdk1dujQIXH33XeLs88+Wxx99NEiPz9f5ObmipKSEjF16lSxatUqqTbN8jx88MEH4owzzhBFRUWidevWol+/fuI3v/mN2LNnT9zz1vz5//3vf+L0008XhYWFIicnRwwYMEAsWrTINA/Mhg0bxNy5c0W/fv1E69atRV5enujbt6+YMGGCWLx4saiqqmpRnpMHtTQhPPhCkIiIIq6//nrccsstmDt3Lu65555Eh0PkGicPREQeqq6uRv/+/bFnzx58+OGHkTUCRMmMWzWJiDxw7bXXoqqqCi+//DJqampw8cUXc+JAKYOfPBAlsdtuu8127oujjz4a1157rccRUVjv3r2xdetWdOvWDTNmzMBtt92GnJycRIdFpAQnD0RJbNy4cbYTOo0dOzZyjxMiIjc4eSAiIiIpKbXmoampCdu3b0e7du1i7vJHRERE8QkhUFdXh+7du1um/k6pycP27dsjuc+JiIhIXmVlpWXm0ZSaPIRv8VtZWSmd/piIiCid7dmzB6FQKPJeaialJg/hryrat2/PyQMREZEDdr72542xiIiISAonD0RERCSFkwciIiKSwskDERERSeHkgYiIiKRw8kBERERSOHkgIiIiKZw8EBERkRROHoiIiEgKJw9EREQkhZMHIiIiksLJAxEREUnh5IGIiIikpNRdNVXbvx8oLQU2bQL69QPuuAPIzU10VMmlsRFYuxaorgaKioAxY4DMzERHFStRcYbbraoCvv4a6NwZ6NZNf23HjsPP9eihJiaj9pzWrWrMjOoBWj43ahTw5pvBv47sSJbfCQqub78Fxo4Ftm8HuncH1qwBOnb0OQiRQmprawUAUVtb67quyZOFAGIfkye7rjptVFQIUVzccvyKi/XngyRRcRq1a/ZwG5NZe7J1qxozo3oKC/VH8+cyM4N/HdmRLL8TFFxduxr/Dnft6r5umffQQE0eFixYIAC0eBx11FG2j1c1eYg3ceAEwr6KCiE0LXbsNE1/BOWPZaLijNeu1cNpTHbas1u3qjFzOgZBvI7sSJbfCQqueBMHVRMImfdQTQghfP6wI64bbrgBy5Ytw8svvxx5LisrC506dbJ1/J49e5Cfn4/a2lq0b9/eUQz79wN5edbl6uv5FUY8jY1A797Atm3Gr2saUFwMbNmS2I9rExWnVbtWQiG5mOy2Z6e/qsbM7RjItBUEyfI7QcH17bdAYaF1uW++cf4Vhsx7aOAWTGZlZaFbt26Rh9nE4cCBA9izZ0+Lh1ulpWrLpaO1a83fFIQAKiv1comUqDit2rUiG5Pd9uz0V9WYuR0DmbaCIFl+Jyi4xo5VW86twE0eNm3ahO7du6Nv374499xzsXXr1rhlFy5ciPz8/MgjFAopaF9tuXRUXa22nFcSFaeK+mTqkG3PrLyqMVM5pom+juxIlt8JCq7t29WWcytQk4cRI0Zg6dKleOGFF/C3v/0NW7ZswZgxY1BXV2dYfv78+aitrY08KisrXcfQr5/acumoqEhtOa8kKk4V9cnUIdueWXlVY6ZyTBN9HdmRLL8TFFzdu6st51ag1jxEq6mpQa9evbBo0SJceOGFluW55iEYwt/vVlXpH8dGC8r3u4mKMxXWPLgdM6t67AjKdWRHsvxOUHBxzYOEgoICHHnkkfj88899azM3F5g82bzM5MmcOJjJzATKy/V/a1rL18I/l5Ul/o9kouIMtxvdph2aJh+TTHtWdasaM7N67AjSdWRHsvxOUHB17Ah07WpepmtXH/M9uNvY4a26ujrRoUMHUV5ebqs88zwEi9Ge9lAoeFvSEhWnbJ4HtzGZtSdbt6oxc5rnIYjXkR3J8jtBwRWUPA+B+tri17/+NU4//XT06tUL27dvx4IFC7B+/Xp8/PHH6Ny5s+XxKr62aI4ZJt1Llmx6zDDJDJN+SZbfCQourzJMyryHBmryMHPmTLz22mv45ptv0LlzZ5xwwgm45ZZbUFJSYut41ZMHIiKidCHzHhqoe1s88cQTiQ6BiIiILAR6wSQREREFDycPREREJIWTByIiIpLCyQMRERFJCdSCyaCprQUmTQK2bgV69gSeew7Iz090VP5It+1kQeivyhii6wraVseDB4ElS4DNm4GSEuDSS4HsbOOyfp0bL8dfpi4VcQThenZL5bbiVBOINALu00oEh8okUSUlxok4SkoUBBpwRolsiotTN5FNEPqrMgajuqKTLCXyfJaWxsaTmak/H82vc+P1+NutS0UcQbie3TJLaJZsfVHNywSGMu+hnDwYiDdxSIcJREWFEJoW22dN0x+p9ksbhP6qjCFeXUE5n6Wl5nE1n0D4dW78GH87damIIwjXs1t2ruFk6Ytq8SYOqiYQSZth0i0VSaJqa4GCAutyNTWp9xWG1Q2UUu3mPUHor8oYZG+45ff5PHhQv+lcY2P8MpmZ+k3nMjP9OTd+jr9ZXSriCML17JbMNSx7g7hk58dNG1PmxliJMGmS2nLJZO1a819aIYDKSr1cKghCf1XGYFWXm7pVWLLEfOIA6K8vWeLfufFz/M3qUhFHEK5nt2Su4aD3RbXSUrXl3OKCyShbt6otl0yqq9WWC7og9FdlDE7j9Ot8bt5sv5zV3QPD3MaeiPE3KqcijiBcz27Jxhbkvqi2aZPacm7xk4coPXuqLZdMiorUlgu6IPRXZQxO4/TrfNq8RQ1KSvw7N4kYf6NyKuIIwvXslmxsQe6Lav36qS3nFtc8ROGaB31rlNFVkQzfmcoIQn9VxmBVl5u6VXCy5sHrc+Pn+NtZ8+AmjiBcz27JXMNc82CMax4SJD/f+v+QSkpSb+IA6L+E5eX6vzWt5Wvhn8vKUueXNQj9VRmDWV3REnE+s7OBefPMy8ybp5fz69z4Nf5WdamIIwjXs1vN+2BG04LfF9Vyc4HJk83LTJ7sY74Hdxs7goV5HtQw2mMdCqXu1qgg9FdlDHbyPCTyfLrN8+BF7F6Pv926VMQRhOvZLbM8D8nWF9WCkueBX1uYYIbJ5M5QJyMI/WWGSeOyzDDJDJPMMNmSVxkmZd5DOXkgIiIirnkgIiIi73DyQERERFI4eSAiIiIpnDwQERGRFE4eiIiISArvbZHEvNyOlWxbvRIRr9M2EzW2Ttr1OtZku85UaGwEVq/WHwAwbpz+MOq3qi2fXbroz+3aFcytuyQnEL837tNKBIfKJFFBZ5REpbhYTfIUL+v2QiLiddpmosbWSbtex5ps15kKFRVCFBbGJvgpLIztt5vxMUuyZJQ0LNXHPZV4+Xsj8x7KyUMSqqgQQtNi/yBomv5wcxF5WbcXEhGv0zYTNbZO2vU61mS7zlSoqIj/Zh5+hPvtZnziHWv2SOVxTyVe/94ww2QKJ4kK3zgm3j3v3dz8xsu6vZCIeJ22maixddKu17Em23WmQmMj0KuXni3RTHHx4aybTsbHamzNpOK4pxI/fm+YJCqFrV1r/odBCKCyUi8XpLq9kIh4nbaZqLF10q7XsSbbdaZCOM2ylW3b9LTdTsfHamzNpOK4p5Kg/d5w8pBkqqvVlvOrbi8kIl6nbSZqbJ2063WsyXadqSDTl82bndepYsxSadxTSdB+bzh5SDJFRWrL+VW3FxIRr9M2EzW2Ttr1OtZku85UkOlLSYnzOlWMWSqNeyoJ2u8N1zwkmfD3XlVV+sdU0VSsefCibi8kIl6nbSZqbJ2063WsyXadqeBkzYOT8bEaWzOpOO6pxI/fG655SGGZmUB5uf5vTWv5WvjnsjJnF4+XdXtBRbzhPfePP67/t7HRvNyTTwK/+IX+yyvTplmsgF7f1Kn695XhGOzGZsbJGGVmAn/5S/w/UEbHeB2TH6zG2835yMwEFi+2Lldert+a3On4WF1n8QTx95taCtzvjbuNHcGSLls1hTDe6xsKeZfnQVXdXnAar9390kblCgtj9+s7bdNoz31pqdq93DJjZJYjQOV1EKTrzOpaULW33m2eB7vjI5vnIci/39SSl7833KqZwl9bNMcMk4fJxrt8OTBtWuz/XYdn8MuWAVOmWJe74QagXz9nGSafflr/PwW7omOTZWeM4vU37MkngbPOkm/bTUxeszrHv/418Kc/WV8rdjHDJLnl1e+NzHsoJw+Uduzul/78c+f77d3GEI+X30una/4Fq/OQmRn/K4pUHBNKX1zzQGTC7n5pN/vt3cbgRZtuY0rFPAB2zoPZ2oZUHBMiOzh5oLRjdx+0m/32Xhyj8ng3daZSHgBVfUmlMSGyg5MHSjt290G72W/vxTEqj3dTZyrlAVDVl1QaEyI7uOaB0o7d/dLhNQ+JyKkRjx9rHtIt/4LVecjMBJqa0mdMKH1xzQORCbv7pd3st3cTQzxe7+UO3D5yH1j1WdOAefPivw6k3pgQ2cFPHkzs3w+UlgKbNunb8e64A8jNVRBogNnZAhRdxuttXyraM+rX008DV17ZcsFcKKS/GUyefLj8pk3AffcZlzPbomd3a2R0DMXFwOjRwEsvAd9+e/j5jh31sr/9bWz2SpXbtoxisupvOIaqKuDrr4HOnYEePZJnC+Dy5cAVV7TMAFlcrE8swlt2ZceE4gvCFt1kFoStmkwSFcfkycbJVSZPdl11YNlJhGM3yZGXiYRk2zPrV0ODEK++KsRjj+n/bWgwLt+jhxA33tiynGzc8eJsHsONN+ptNT9O07xPXmQWk1V/zRISqbwWvGRnHGXGhOLz6ppNF16On8x7KCcPBuJNHFJ5AlFREfsmFX7j0jT99XhlzI7xIiaZ9uz0y015p2Opor+lpe5jdctOzH7F4pSKc072cKzd8Xr8mGHSxdcW+/cDeXnW5errU+crDDvJgXr00P9tNzeBqpsnuWlPNumRiiRJTutw0t+MjMQmL5KJORQK5qLCdEyMlSgca3f8GD8umHShtFRtuWRgJznQtm1ySY2EcJc8RzaJklF7skmPVCRJclqHk/4mOnmRTMxBTaSUjomxEoVj7U7Qxo+ThyibNqktlwy8THDjtG4Vx8kmPVKRJMlpHV6dgyCd2yAmUkrHxFiJwrF2J2jjx8lDlH791JZLBl4muHFat4rjZJMeqUiS5LQOr85BkM5tEBMppWNirEThWLsTtPHjmoco6bzmwSw5UHjNg92kRqrWPLhpTzbpkYokSU7rcNLfoKx5sBNz0Nc8pFNirEThWLvjx/hxzYMLubn6Hn8zkyenzsQBsJccqLzcflIjFclzZJIoxWtPNumRiiRJTutw0t958w4nMnISq1vNYzajacFNpJSOibEShWPtTuDGz93GjmBhngd3jPYPh0LyeR6ij1Edk2x7dvrlprzKOmT7qyJWt8zyPPgdi1NBGMd0wbF2x8vx41ZNZph0LJ0yTJodoyKDm9M6ZPsbhGx9yZ5hEgjGOKYLjrU7QcgwyckDERERcc0DEREReYeTByIiIpLCyQMRERFJ4eSBiIiIpHDyQERERFKyEh1AkB08CCxZAmzeDJSUAJdeCmRnJzoqY4na+tS83S5d9Od27Gi5Xc/pVk67fXK7DdMoPiC2X7t2qdsaGu91Vds7VZ1/bqnzlsx1ALTcDltYCHzzTXJuiw3z4/riNewR92klgkNlkqjS0tjkPJmZ+vNBY5Q0pLjY+6QrZsmBzJIc2YnNbp9k+24nCVNhof6I1x+r+K1iivd6aamz8+jV+U/UdZUuZK4Dq2syGc+NH9cXr2E5Mu+hnDwYKC01/yUN0gSiokIITYuNUdP0h1e/JPHatfOwis1un2T77iZmu/FbxVRaKheDqrFSdX69vq7Shapr0ej8JMO58eP64jUsjxkmXSSJOnhQvzFWvBsOAfpHXvX1if8KI3yjlHj3ePfqRjNW7dphdYMoqz59/rn+VZLdvquI2Sp+O22EY3Hblp32nJ7/RF1X6UL1tRgtqDchC/Pj+uI17AyTRLmwZIn1H/fGRr1coq1da/4HSAigslIv52e7dsSLzW6fliyR67uKmM3qt9uG7MQhXlt22nN6/hN1XaUL1dditKCfGz+uL17D3uPkIcrmzWrLeam6Wm051e06qctu3XbHP1yf6jGIrt/LNuLV79X5T9R1lS78GLcgnxs/ri9ew97j5CFKSYnacl4qKlJbTnW7TuqyW7fd8Q/Xp3oMouv3so149Xt1/hN1XaULP8YtyOfGj+uL17D3uOYhSjKueaiq0j+Gi+b1mod47dph9T2+VZ/Cax7s9l1FzFbx22kjMxNoapKLwe1YOV3z4Pd1lS5UX4vRkmXNg5fXF69hZ7jmwYXsbGDePPMy8+YlfuIA6Bd9ebn+b01r+Vr457Iy9b8cZu3aYRab3T5lZ8v13W3MduK3il3TDl9bdmNQMVay5z9R11W6UHktRtO04J8bP64vXsM+8Hjnh6+Y5+HwIxQKbp4HO7HZ7ZNs31XkebCK3yqmeK8b7e9XOVayEnVdpQuZ68BOnodkOzd+XF+8huVwq6aLry2aY4ZJuXaZYdJ+TMwwSQAzTDLDZLDIvIdy8kBERERc80BERETe4eSBiIiIpHDyQERERFI4eSAiIiIpWYkOIMhqa4FJk4CtW4GePYHnngPy8xMdlTNOVhybrfg2210hs5rZz5XQZm0Z7RppvrsCcB+nnb4m08pwq+sj6PHbEbTdL0GWjn1Oax5vG/WVyjwPJSXGe6lLShQE6jMn97Q3OsbOXnM7dbuJyymztqzyVRj1WzZOO331czzcsnt9BDV+O5yej2Q6j6qkY59Tkcx7aGAnDwsXLhQAxJVXXmn7GFWTh3gTh2ScQDi5p328Y2Qe8ep2E5cXY+Cmf3bjtNNXP8fDLZnrI4jx2+H0fCTTeVQlHfucqpI+SdS7776L6dOno3379jjppJNQVlZm6zgVeR5qa4GCAutyNTXB/wrDyT3trY6RES/HvpO4nFLZn2h24rTT1x499H/7MR5uORnPIMVvh9Pr08/rOijSsc+pLKnzPOzduxfnnnsu7rvvPnTo0MG07IEDB7Bnz54WD7cmTVJbLpGc3NPe6hgZ0XW7icsplf2JZidOO33dts2/8XDLyXgGKX47nF6ffl7XQZGOfSZd4CYPl112GSZNmoTx48dbll24cCHy8/Mjj1Ao5Lr9rVvVlkskJ/e0V31/e6P6nMSlsn3VzNpQ2b4fffEyhiDEb4fT69PP6zoo0rHPpAvU5OGJJ57A//73PyxcuNBW+fnz56O2tjbyqKysdB1Dz55qyyWSk3vaq76/vVF9TuJS2b5qZm2obN+PvngZQxDit8Pp9enndR0U6dhn0gVmzUNlZSWGDh2Kl156CYMGDQIAjBs3DkOGDOGaB4ec3NPe6hgZVmseZOJySmV/osmseTDra3jNgx/j4ZaT8QxS/HY4vT79vK6DIh37nMqScs3DunXrsGvXLhx//PHIyspCVlYW1qxZg8WLFyMrKwuNjY2+xJGfr99B00xJSfAnDoCze9qbHSND02LrdhOXU3baMnrNit047bRfXu7feLgle30ELX47nF6ffl7XQZGOfab/z+OdH7bt2bNHbNiwocVj6NCh4rzzzhMbNmywVQfzPBhzck97N3kerOp2E5dTZm05yfMgG6edvvo5Hm7ZvT6CGr8dTs9HMp1HVdKxz6ko6bdqhiXia4vmmGGSGSaZYTI+ZphUf1wyS8c+pxqZ91BOHoiIiEjqPTTQ97ZYvXp1okMgIiKiKIFZMElERETJgZMHIiIiksLJAxEREUnh5IGIiIikBHrBZKLt3w+UlgKbNgH9+gF33AHk5iY6qvhkt0odPAjcead+TLt2wKxZwI9+FJztVTL9cVK2qkp+i6nVls6gjJ1bqsbIbAun0XN+jR+3YCYn2fHn+fKQxzknfKUySdTkycYJgyZPdl21J4yStBQXx0/SUloqREZGbP/atg1GYheZ/rgta2e8rI61c3yyUD1GRsmjjJ7za/xkf1fcHkdqyI4/z5c8mfdQTh4MxJs4BHUCUVEhhKbFxqlp+iP6l6W01DpLZCJ/wWT6o6Js9HHxJh12jo13fLLweowSPX6yvytujyM1ZMef58uZlMkwKUtFkqj9+4G8POty9fXB+AojfGOabduMX4++Mc3Bg3rcTU3m9RYXA19+6f9HfDL9AdSVbS76hl5WMcVrM9k+HpXpp5sxMuPl+Mn+rrg9jtSQHX+eL+eS8sZYQVFaqrac19auNf+DLQRQWamXA4AlS6wnDoBeZ/gYP8n0R2XZ5pqPl52Y4rWZbPwaIzNejp/s74rb40gN2fHn+fIHF0xG2bRJbTmvVVfLldu8WX3dKsn2R3VZo2PcHp8sZGN2O0YqY1FZZ3Q5L65Jsk92/Hm+/MFPHqL066e2nNeKiuTKWd1u3EndKsn0x4uyRnE4GYdEjJ1bfo+RylhU1hldzulxpIbs+PN8+YNrHqIk65qHqir947hoybrmwU5/AHVlm4v3fb6dY5P5+1SZfroZIzN+rHmw+7vi9jhSQ3b8eb6c45oHF3JzgcmTzctMnhyMiQOgX/zl5fq/Na3la+Gfy8oO/5JkZwNXX21db3l5Yn6xZPrjtKwZTWs5XlYxmbWZbPwYI6t6Ae/GT/Z3xe1xpIbs+PN8+cTjnR++Yp6HlrGGQvJ5Htq1C8Y2Jpn+uC1rZ7ysjrVzfLJQPUZ28zz4NX6yvytujyM1ZMef50set2q6+NqiOWaYTCxmmEwcZphUexypwQyT3pJ5D+XkgYiIiLjmgYiIiLzDyQMRERFJ4eSBiIiIpHDyQERERFI4eSAiIiIpvLeFib179e2LmzfraZ0feQRo2zbRUbXk11akZN/yFC9+VdtBo18bNQp480137Vm16fXYeFEvYN2W0+MS0UeitOVxzglfqUwSNWyYcZKcYcMUBKqIURKU4mL1SVD8ascr8eIvLbXfL7MxMHotM9Nde1Ztej02btuwmywqui2nxyWij0SpRuY9lJMHA/EmDkGaQFRUCKFpsbFpmv5Q9YfRr3a8Ei/+eA+jfpmNgd16ZdqzalPVuHvVhsyYN2/L6XGJ6CNRKmKGSRdJovbu1bMtWqmrS9xXGOEbv8S7Z72qG7/41Y5XrOKPx+iGWrJ1OG2v+Y19vBx3r9pwMuaapmevBOSPM4sx2a9fIr8xSZQLs2apLeeFtWvN/8gKAVRW6uWSoR2vWMUfT/N+Oa3DaXuAP+PuVRtOxksI/Rgnx5nFmOzXL1GQccFklM2b1ZbzQnW12nKJbscrfvVflXB7foy7V20k4lqI12ayX79EQcZPHqKUlKgt54WiIrXlEt2OV1T038++hdvyY9y9aiMR10K8NpP9+iUKMq55iJJMax6qqvSPXqOpXvPgdTtesYo/HqM1D7J1yIi35sHLcfeqDSdj3nzNg+xxdtY8JOv1S+Q3rnlwoW1bYNgw8zLDhiU230NmJlBerv9b01q+Fv65rMzdG8vq1cCTTwK/+IX+hzdeO4sW6d8ZP/64fkxjo7M2vWA2TvFEj5+dsZap36o9wPvz62UbsmMeLlNe7uw4sxj9GEeitOXxzg9fMc+DEKGQu+1ndvfZh0LyeQsSJd44GcUfb/zMxtrotYyM2GunbVvjcZTJ8+D2/PrVhsx15CTPg0yMfowjUSrgVk0XX1s0l24ZJpcvB6ZNi/2IN/x/aTfcAPTrp7fz9dfAjBnxyy5bBkyZ4iwOL/iZYXLTJmDBgtjjNU0frxtvPDyOzDDJDJNEQSHzHsrJAwGQ2xMPcP98PMwtQETJimseSJrMnnjun4+PY0NE6YB5HgiAN3vi03H/PHMLEFE64OSBAHizJz4d988ztwARpQN+bUEA9AVkxcXxt8lpGhAK6eVkyqYbjg0RpQNOHgiA3J547p+Pj2NDROmAuy1M1NYCkyYBW7cCPXsCzz0H5OcrCNRDzbekdemiP7drl/3tacuXA1de2XLRXyikv+FFb72MV/bPfwY6d7a3LRLwbgtdONnV6tX6z+PG6Y/m9VvF5GQMGxuBW27RJxHffnv4+c6dgbvuAs46y1lfZMZJ1RbUVOOmr+k0TpSepN5DPc044TOVSaJKSoyTRJWUKAjUI0bJcJwkcGpoEOLVV4V47DH9vw0N9ss+9ZRx4iijhExGyX9UJZmqqIitO9xmuH67CYlk4lN1DqzqNKtHprxs3cnMTV/TaZwofcm8h3LyYCDexCHIE4iKCiE0zTxuTdMfXv3BsxOD1UNFjBUV1u2UljqL1Sw+L85BvDrj1SNTXrbuZOamr+k0TpTemGHSxdcWtbVAQYF1uZqa4HyFYZWYqDmvkhTJxGDFTYx248jIAJqa1MXnxTmQTTjFRF/G3CTuYtIvSidMEuXCpElqy/nBKjFRc0J4k6RIJgYrbmK0G4fTiQNgHJ8X50A24RQTfRlz09d0GiciGczzEGXrVrXl/OAk4ZDqJEVeJD0KQr/stuVFrLIJp5joy5ibcWHSLyJj/OQhSs+easv5wUnCIdVJirxIehSEftlty4tYZRNOyZRPp2RWbvqaTuNEJINrHqIk85qHqir9Y1QzXq95sBODlWRe86DyHFjVGW/Ng53ygFzdyUx2HFUdS5RsuObBhfx8/fbbZkpKgjNxAMwTEzXnZZIiuzFYcRtj8zjMXH213pZsrPHi8+IcyCacYqIvY276mk7jRCTF450fvmKeB/McA6GQ99vKjGIIhezneVAVo1d5Hqzi8+IcxBtTmTwP8crL1p3M3PQ1ncaJ0he3ajLDpOPsiKpjSNcMk6rPATNMqsEMk0TxybyHcvJAREREXPNARERE3uHkgYiIiKRw8kBERERSOHkgIiIiKZw8EBERkRTe28LEt98CY8cC27cD3bsDa9YAHTsmOipdoraN2WnXrIzb4/3qQ6KOiVdHVRXw9ddA585Ajx6xdakeM6v6/L7+VI4lt1r6h2OewjzOOeErlUmiunY1TvLTtauCQF0ySlhTXJyYBFDR7ZqVcXu8X31I1DF26jCqS/WYWdXn9/Xn1Vj68TuTzjjmyUfmPZSTBwPxJg5BmEBUVAihabExaZr+8PIPuFW7ZmXijaXd41X0zUn9fh1jt47o+kpL1Y6ZVeyq23Mbj5ux9Pp3Jp1xzJMTM0y6SBL17bdAYaF1uW++8f8rDKubPnl90yuzdnv00P9tdUMqp8e77ZuTsfPrGNlYm9eVkaGXd9qWbLvhTKEq2nMbj4qx5I2t1OOYJy8miXJh7Fi15VRau9b8D7sQQGWlXs7vdrdtczZxsHu82745GTu/jpGNtXld8d7I7bYl267K9tzGo2IsvfqdSWcc8/TAyUOU7dvVllOpulptOdXt+sFpLE7Gzq9jZF5zwu/rxu96VIxlkK7xZMcxTw+cPETp3l1tOZWKitSWU92uH5zG4mTs/DpG5jUn/L5u/K5HxVgG6RpPdhzz9MA1D1GSYc1DVZX+0V80r9c8mLUbXrMQr4wZO8erWvMgU79fx8SLNVFrHszOYWYm0NTkz/Wnciz9/p1JZxzz5MU1Dy507Ah07WpepmvXxOR7yMwEysv1f2tay9fCP5eVqf+FtNNuebl1GbfHu+mbk7Hz65h4sUYfb2TePL2cijGzil3T9PbivS7bntt47LSXqN+ZdMYxTxMe7/zwVTrneQiFEpPnIbpdszJuj/erD4k6xk4dRnWpHjOr+vy+/rwaSz9+Z9IZxzz5cKumi68tmmOGSWftMsOkun4ww6S69pjt0H8c8+Qi8x7KyQMRERFxzQMRERF5h5MHIiIiksLJAxEREUnh5IGIiIikZCU6gCCrrQUmTQK2bgV69gSeew7Iz090VDovVjG7qVNmF4XZzgG3OzXM4urSRX9u167UWPnt5Up2lXV7cQ6M4gOCs0uHuwwo5Xm8bdRXKvM8lJQY768vKVEQqEtG+6eLi93tn3ZTp51jzXIWhMua1eMkPrM2VYxZInlxDXhRtxfnwKjOwkL94dX5lRkTL88NkZdk3kMDNXlYsmSJGDhwoGjXrp1o166d+OEPfyhWrlxp+3hVk4d4E4cgTCAqKoTQtNiYNE1/OP0D77ROO8fGK2PnYXacWXx22nQzZonkxTXgRd1enAOZa0nV+ZUZEy/PDZHXkjZJ1DPPPIPMzEz069cPQgg89NBDuOOOO/Dee+9hwIABlseryPNQWwsUFFiXq6nx/ysMq3seOMkZ76ZOO8f26KH/+ayqshePLLP7S9i5rXWy5dn34hrwom4vzoFMnU5idtJm8/oB784NkR+k3kO9nsm41aFDB/H3v//d8LXvv/9e1NbWRh6VlZWuP3kYPdre/9WMHu24CcdefdVebK++6k+ddo/149E8PidxyYxZInlxDXhRtxfnwM315vT8yoyJl+eGyA8ynzwEdrdFY2MjnnjiCezbtw8jR440LLNw4ULk5+dHHqFQyHW7W7eqLadSdbXacm7rlGnHa81jcRJXkPpixotrwIu6vWjfzTlyeqzMmHh5boiCJnCThw0bNqBt27bIycnBxRdfjBUrVqB///6GZefPn4/a2trIo7Ky0nX7PXuqLadSUZHacm7rlGnHa81jcRJXkPpixotrwIu6vWjfzTlyeqzMmHh5boiCJlBrHgDg4MGD2Lp1K2pra7Fs2TL8/e9/x5o1a+JOIJpLlzUPVVX6B6DR3Kx5cFKnnWMTueYhXlxWxweZF9eAF3V7cQ5k6nQSs5M2jdY8eHFuiPyQUmseTj75ZDF37lxbZdNpt0X0im4Vuy2c1GnnWNkV8vF+lokvXlyqxiyRvLgGvKjbi3Ngp07V51dmTLw8N0ReS9qtmkZOOukkMWfOHFtl0znPQyikPs+D3TrtHGu23z9c1qweJ/FZ5RhwO2aJ5MU14EXdXpwDu3keVJ5fmTHx8twQeSlpt2rOnz8fEydORM+ePVFXV4fHHnsMt99+O/7zn//gxz/+seXxqm/JzQyTzDAZZMwwyQyTRCrJvIcGavJw4YUXYtWqVaiurkZ+fj4GDRqEa665xtbEAVA/eSAiIkoXMu+hgbq3xf3335/oEIiIiMhC4LZqEhERUbBx8kBERERSOHkgIiIiKZw8EBERkZRALZgMmqoqYOBAoK4OaNcO2LBB31qYzFRsx6yqAnbsAL79FsjIAMaN0x8qt4omw7ZKFdvx7GxfTYR4feMWRH8EbSs2UQyPc074SmWSqOxs46Q22dkKAk0Qo+Q1xcXOE0FFJ+lRnaTKSZx+cTOWZnUEob/x+lZa6r7PZE3FteVHnZR6UirDpAxVk4d4E4dknkDESxEtk4LaKh0w4C49tlm9QUrv62YsreqIrs/v/sqc66Cdl1Sg4tryo05KTUmbYdItFUmiqqr0m9dY2bYteb7CCN/cZ9s249ft3Pwq3rHRiouBL7+UvzGXnfqDcGMhN2Nptw6ZulSSPddhQTgvqUDFteVHnZS6ZN5DuWAyysCBassFwdq15m8IQgCVlXo52WOjbdtmXI/T2Jozi9MvbsbSbh0ydakke67DgnBeUoGKa8uPOokATh5i1NWpLRcE1dXOy9k91ukxXtevmpuxlK3DaXmn3LaTyPOSClRcW37USQRw8hCjXTu15YKgqMh5ObvHOj3G6/pVczOWsnU4Le+U23YSeV5SgYpry486iYCA3RjLLa55MBb+3rOqSv+YMloQ1jzEi81unH5xM5bRdQR1zYOdc9FcEM5LKlBxbflRJ6UurnlwoUcPIDvbvEx2dvJMHAD9j0J5uf5vTWv5WvjnsjLjPx7hY6OPi6e8XO6PkFlsMnH6xc1YRtdhZ0z97K/dc9FcUM5LKlBxbflRJxEA5nmIJ13yPIRCyZHnwW6cfnEzlmZ1BKG/8fpmlOchaOclFai4tvyok1IPt2q6+NqiOWaYND6WGSZ1zDCZ+DhTFTNMUiLIvIdy8kBERERc80BERETe4eSBiIiIpHDyQERERFKkbsn9s5/9TLoBTdNw//33Sx9HREREwSQ1eXjllVeg2d0A/v/JliciIqJgk5o8fPnllx6FEUx79wKzZgGbNwMlJcAjjwBt2yY6Km+o2MLpx5bFIGzn3L8fKC0FNm0C+vUD7rgDyM2N36fwuIwaBbz5pvy2zCBssUvE9ZHK20VToQ+U5jzOOeErlUmihg0zTt4zbJiCQAPGKIFMcbHz5FF2jzWrw6guq0RSsu06MXmycduTJ1v3KTNTPm4V4+tWIq6PeMcZJaryezzcCsI5JTIi8x6qZPLw1ltviVtvvVVcddVV4rPPPhNCCLFv3z6xbt06UVdXp6IJW1RNHuJNHFJxAlFRIYSmxfZR0/SH2R80N8da1RFdX2mpvXJ223Ui3sQhegJhp09GsUfHrWJ83UrE9SE7fn6Oh1tBOKdE8fg2eThw4IA488wzRUZGhtA0TWRkZIhVq1YJIYTYv3+/KCwsFDfffLObJqSomDzU1dn7g+XjnMgzDQ3m/yevaXoK24YGtcfaraN5XfH+r91Ju07U19u/Luz0yejRPG4V4+tWIq4Pu9dEIsbDrSCcUyIzMu+hrrZq/u53v8Ozzz6Lv/3tb9i4cSOEEJHXWrdujbPOOgtPP/20myZ8N2uW2nJBtnat+Z0dhQAqK/VyKo+1W0fzuhobrcvZbdeJ0lJ75WbNsn8H0mjN41Yxvm4l4vqwe03IxBIUQTinRKq4mjw8/vjjuOSSSzB37lx07Ngx5vVjjjkGX3zxhZsmfLd5s9pyQVZd7bycm2Nl63BCdd2bNtkr5/a6CMetYnzdSsT14bY/Xo6HW0E4p0SquJo87Nq1CwMHDoz7emZmJurr69004buSErXlgqyoyHk5N8fK1uGE6rr79bNXzu11EY5bxfi6lYjrw21/vBwPt4JwTomUcfP9yBFHHCGuvvpqIYQQu3fvFpqmRdY8CCHE2WefLQYOHOimCSlc8yAn/B1svMVpdr7TdnJsdB2puOZBdsFkvDUPbsbXrURcH1bHJfN6gSCcUyIzvq15OOecc3DPPffgrbfeijwXTgp133334cknn8Ts2bPdNOG7tm2BYcPMywwblhr5HjIzgfJy/d/RubzCP5eVGe8/d3NsdB128ojNm6eXMytrt10ncnOByZPNy0yerF8X8cbFjKa1jFvF+LqViOvD7Lh4/BoPt4JwTomUcTNLOXDggDjllFNEVlaWGDhwoMjIyBCDBw8WoVBIaJomJk2aJBp8nEYzz4MzRvvOQyHn+/jtHmtWh1FdVnkeZNt1wos8D2ZxqxhftxJxfcQ7zijPg9/j4VYQzimREZn3UE0IIVxOPvDoo49i2bJl2LRpE5qamlBSUoLp06dj1qxZvqanlrkXuR3MMOn9sdF1MMOkdT3MMJn48XArFfpAqUfmPdT15CFIVE8eiIiI0oXMe6jUvS3iaWxsxLp16yL3vujTpw+OP/54ZHIqTURElHJcTx6WLl2K+fPnY9euXQh/iKFpGjp37oxbb73V0W28iYiIKLhcTR7uueceXHLJJRgyZAhuuOEGHHnkkQCAjRs34p577sEvfvELHDx4EBdffLGSYImIiCjxXK156Nu3L0KhEF5++WW0atWqxWuHDh3Cj370I1RVVfmWZZJrHoiIiJyReQ91ledhx44dmD59eszEAQBatWqFmTNnYufOnW6aICIiooBx9bXFcccdh88++yzu65999hmGDBnipomE2roVGDAAqK8H8vKAjz4Cevb0ts1k3MIVvX0y/DMAjBunP4LWh4MHgSVL9G24ffoAAwcCu3cf3lK5di2werVeNkh98PL6SMZrj4gSxE1CiXXr1olu3bqJsrIyUV9fH3m+vr5eLFq0SHTr1k3873//c9OEFJVJorKyjBP6ZGUpCDQOo+QxxcXBTh5jlbgJEKKwMFh9KC01T3edkRHMPnh5fSTjtUdEanmWJGrQoEExz3377beorq5GVlYWunfvDgDYvn07GhoaUFRUhMLCQrz//vuq5jqmVK15aNUKaGiI/3pWFnDokOPqDS1fDkybpv/Zbi6cY2vZMmDKFLVtuhUv5ngqKhLfh9/8Rk/q5FSi+uDl9ZGM1x4RqedZkqhx48Y5yhj56quvSh/jhIrJw9atQK9e1uW++krdVxiNjUDv3sC2bcavaxpQXAxs2RKcj5GtYjZSXAx8+WXi+nDwoP71U2Oj8zoS0Qcvr49kvPaIyBueJYlaHf4SOIUNGGC/XF2dmjbXrjV/ExYCqKzUy40bp6ZNt6xiNrJtW2L7sGSJu4kDkJg+eHl9JOO1R0SJ52q3RSqqr1dbzo7qarXl/OA0lkT2YfNmNfX43Qcvr49kvPaIKPGUpKc+dOgQPv30U9TW1qKpqSnm9RNPPFFFM77Iy9NviGWnnCpFRWrL+cFpLInsQ0mJmnr87oOX10cyXntElHiukkQ1NTVh/vz5WLJkCepN/le80e1nxTYl+5qHqirjxYdB/N7ZKmYjXPPgjJfXRzJee0TkDd+SRN1666244447cN555+Hhhx+GEAK33XYb7r77bgwaNAiDBw/Gf/7zHzdN+K5nT303hZmsLLX5HjIzgfJy/d/R61HDP5eVBeuPt1nM8ZSXJ7YP2dnAvHnu6khEH7y8PpLx2iOiAHCzJ7SkpETMmDFDCCHE7t27haZpYtWqVUIIIQ4cOCCOP/54MX/+fDdNSEnFPA+hULD32jPPg3+8vD6S8dojIrU8y/MQrXXr1li8eDHmzp2LvXv3on379nj22Wdx2mmnAQD+8pe/YNGiRaisrFQ01TGn+t4WzDBpDzNM+ocZJonIK55t1YxWWFiIvf9/dWHbtm3Rvn37mJtgfffdd26aSKiePdVtx7QrMzP5tsQZxXzKKQkJxbbsbOCqq+K/fvLJ+iNovLw+kvHaI6LEcH1vi3fffTfy80knnYSysjIcd9xxaGpqwuLFizF48GDXQRIREVFwuFowOXfuXBw4cAAHDhwAANxyyy2oqanBiSeeiLFjx2LPnj3485//rCRQIiIiCgZXax6M1NbWYvXq1cjMzMSoUaPQsWNHldWbUr3mgYiIKF14tuZh69attsodd9xxAIC9e/di79696On1KkMiIiLyjdTkoXfv3o5ujOVXkigiIiLyntTk4YEHHnA0eUhW+/cDpaXApk1Av376rZxzc/1rX2brnIptdtF1jBoFvPmm8/YBfbvjK6/o21579gR+9KPDK/rjxdvYqB/ndKukH1sOw21UVQFffw0UFgLffAN07gz06BHbppuYotuK14bZsX6MBbd4EqURj3NO+EplkqjJk40TCE2e7LpqW4yS9hQXGyftkSkr0150IiWZ9gsLhWjb1ngM27bVXzequ6Ii9jWZJE0qxsJJG9GP5m26icmsLas6EjUWqtsgIn/IvIdy8mAg3sTBrwlERYUQmhbbrqbpj+Z/mGXKyrbnpn3Zh906rN4s3Y6FqrEKt1ta6jwmO23FqyORY6GyDSLyj28ZJoNGxW6L/fvt3TGzvt6brzDCNyrats349eY3KgLslzX7usGsDjfteyHejalkxs3pR+pOxiojI/6NuMxistuWUR1BGAveUIso+fh2Y6xUVFqqtpystWvN3zCEACor9XIyZZ2256Z9L2zbZtwfFWNhxclYma0VNovJbltGdQRhLFS0QUTB5SrDZCratEltOVnV1WrLWZWVqUfFcSoYte3FuKk8VrZe2baalw/SWCTyOiEi7/CThyj9+qktJ6uoyH45mbJu23PTvmpG7aoYCy+Pla1Xtq3m5YM0Fom6RojIW1zzECUoax6qqvSPfqMZrTmwU9ZqzUO8Oty07wWrNQ9uxsKKk7FK5JqHRI4F1zwQJR+ueXAhNxeYPNm8zOTJ3uV7yMwEysv1f0en1Aj/XFaml5Mp66S9aDLty7J7fHm5cX9UjIWV5m3YNW+e3r5sTOG27IxLdB1+j4VXbRBRgHm888NXqZ7nIRSyn2chXlmZ9qLzPMi0b5bnoV272FwO4bq9yPMgOxZO2oh+NG/TTUxmbVnVkaixUN0GEfmDWzUV3RiLGSaZYdKqDWaYZIZJolQh8x7KyQMRERFxzQMRERF5h5MHIiIiksLJAxEREUnh5IGIiIikMD21iR07gCFDgJoaoKAAWL8e6NYtcfEcPAgsWQJs3gyUlACXXgpkZydmtXu8HQAyOzRUtO9VO1b1y+yAcBurn+fX7x0+RJSkPN426iuVeR7y8oz31uflKQjUgdLS2LwLmZl63onoffbFxd7uszfLPRAdoxexGLWvsh2r+s36Hx2H21i97qvTtvyMi4j8IfMeGqjJw6233iqGDh0q2rZtKzp37iwmT54sPv30U9vHq5o8xJs4JGoCUVpqHk/0Q9P0h1dvMJqWuFjita+qHav6S0ut+x+Ow22sXvfVaVt+xkVE/knaJFGnnnoqZs6ciWHDhqGhoQHXXXcdPvzwQ3z88cdo06aN5fEq8jzs2GHvZj7V1f58hXHwoH6vDbNbOxvx4t4Cdu+34FUsVu27bcdO/Wb3qmherkcP/S21qspZrF731WlbgH9xEZG/kjbPwwsvvIDzzz8fAwYMwODBg7F06VJs3boV69atMyx/4MAB7Nmzp8XDrSFD1JZza8kS+YkDoL9xVVbq30mrsnat/MRBZSxW7bttx079ds6FEHo98SYO4TJmsXrdV6dt+RkXEQVXoCYP0WprawEAHTt2NHx94cKFyM/PjzxCoZDrNmtq1JZza/Nmd8dXV6uJQ0Vdfh3vtB2VY+W2Ta/76rQtP+MiouAK7OShqakJV111FUaPHo1jjz3WsMz8+fNRW1sbeVRWVrput6BAbTm3SkrcHW/nKxi/6vLreKftqBwrt2163VenbfkZFxEFV6DWPDR3ySWX4Pnnn8frr7+O4uJiW8dwzcNhXq55qKrSP572Oxar9lWteTCrX3bNw/btzmL1uq9O2wL8i4uI/JW0ax7CLr/8cjz77LN49dVXbU8cVOnWTX+zNpOX51++h+xsYN48uWM0Tf9vWZnaP+CZmUB5eeJiad5+uF6V7dipf9682NeMlJcDixc7j9Xrvjpty8+4iCjAPN75IaWpqUlcdtllonv37uKzzz6TPp55HvRHKBScPA9exGLUvsp2rOo36390HG5j9bqvTtvyMy4i8kfSbtW89NJL8dhjj+Hpp5/GUUcdFXk+Pz8fubm5lserviU3M0zGxwyTzDDJDJNEqUXmPTRQkwctzufBDz74IM4//3zL41VPHoiIiNKFzHtooO5tEaB5DBEREcURyAWTREREFFycPBAREZEUTh6IiIhICicPREREJCVQCyaD5uuvgeHDD2/Fe+cd/b9eCOp2PKvjgMPPdemi/7xrl/n2RifbAEeN0n9evVp/fdw4/XjZbaFWfUjElkMvzn2QtlEGKRYiUsTblBP+UpkkKj/fOAlQfr7rqmMYJdwpLvYvEZCdtoyOKyzUH0bjFF2vTLtGZTMyYuuPfs6qH3b74NXY243Jbft+Xk/JFAsRmZN5D+XkwUC8iYMXE4iKCiE0LbYNTdMfKv/IOm0r3nFWj3C9paX223XallU/ZOr1YuxlxtVN+35eT8kUCxFZS9oMk26pSBL19deHP343s2uX+68wwjck2rbN+HUvbn4k25bVcXZkZsa/mZTRTZfctGXUDyd98PoGT16cez+vp2SKhYjsSfobYyXS8OFqy5lZu9b8DU0IoLJSL5eotqyOs8PsLpTN21XRllE/nNSrcuyNeHHu/byekikWIlKPCyajfP212nJmqqvVlvOiLRVtO2lXZX1u6vaq/16cez+vJ1Vt+HV9EZFanDxE6dwZ2LfPXjm3iorUlvOiLRVtO2lXZX1u6vaq/16cez+vJ1Vt+HV9EZFaXPMQJRFrHqqq9I9xo3mx5kG2Lavj7MjMBJqarNsF3LdltuZBpl6/1jyoPPd+Xk/JFAsR2cM1Dy507gzk55uXyc9X88lDZiZQXq7/O/qGouGfy8rU/HF12pbZcVY0TX/Mm2evXTdtGdUXJluv6rE34sW59/N6SqZYiMgDHu/88FUq5XkIhfzL82CnLSd5HprXK9Ou0zwPVv2w2wevxt5uTG7b9/N6SqZYiMgct2q6+NqiOWaYtD4OYIZJt5hhkoiCQOY9lJMHIiIi4poHIiIi8g4nD0RERCSFkwciIiKSwskDERERSeHkgYiIiKQwPbWJqipg4ECgrg5o1w7YsAHo0SPRUbnnZstkvLIq6gzClr4gxBCkOPyUjn02wnGgpOBxzglfqUwSlZ1tnPgoO1tBoAlklLSnuNh+siajsirqLC21X4dXZPqRDnH4KR37bITjQIkk8x7KyYOBeBOHZJ9AVFQIoWmx/dE0/dH8D5TdsirqjPcwqiMIY5MOcfgpHftshONAicYMky6SRFVV6TfssbJtW3J9hRG+UdG2bcavG92gyqrs558DJSVq6ozHjxsoyYyNlx8fByUOP6Vjn41wHCgImCTKhYED1ZYLirVrzd+4hQAqK/VydssuWaKuTjt1eEVmbLwUlDj8lI59NsJxoGTDBZNR6urUlguK6mq15QBg82b1dXpZh9u6vYwhSHH4KR37bITjQMmGk4co7doB331nr1wyKSpSWw7Qv7JQXaeXdbit28sYghSHn9Kxz0Y4DpRsuOYhSqqveaiq0j8CjWa0PsGqbHjNg4o64/FzzYOdfvix5iHRcfgpHftshONAQcA1Dy706AFkZ5uXyc5OrokDoP/BKS/X/61pLV8L/1xWppezWzY7W02dZoQAfv5z++WdkBkbK42N+m3DH39c/29jo/3ya9cCf/mLmjiShcqxT2YcB0o6Hu/88BXzPFgrLRUiM7NlnzIz9eejGe05D4Xs5XkwKmdW1ijPg9973WX6Yfd4s7hlcl7IxJGM3I59quA4UCJxq6aLry2aS7UMk8uXA9Omxf9YdNkyYMqUls/7nWHylluABQuM4wOMY1TJaXa/eGMbL26r8v/8J9C5c3plGWRmRR3HgRJF5j2Uk4c0kQz7yJMhRiOycSdrP4kotXHNA8VIhn3kyRCjEdm4k7WfRERhnDykiWTYR54MMRqRjTtZ+0lEFMbJQ5pIhn3kyRCjEdm4k7WfRERhXPOQJpJhH3kyxGhENu5k7ScRpTaueaAYybCPPBliNCIbd7L2k4gojJ88mNi7F5g1S7+HQ0kJ8MgjQNu2CgJNoOXLgSuvbLlgLxTS36zMtkDa2T7mdItZ9HFffw3Mmycfo1UcVvE1f71LF/25XbsOlwXiHx/eZlpeDnz7rb24nZ6LoHKzxVDVtaN6WyO3TVI6kXoP9TDfhO9UJokaNsw4WdGwYQoCTbCGBiFefVWIxx7T/9vQYF7eTvIj2QRJVsc99ZRcjFb1GSVeah6f0XHNH4WF+sPoeKNjO3YU4sYbreOWPRdB5fT8uznWTZte94koGcm8h3LyYCDexCGVJhB2VVQIoWmxY6Bp+iP85mlVxmndKmKN9wi3U1oqd1zz463qToc3GjfnMSjXjt/1EwURM0y6+Npi7157d8ysq0v+rzCs2Elm1KOH/me1qip+GaPFf6oTJVnVF4+mARkZ1vegcCIdFj66OY9Oj/U6yRaTeFG64oJJF2bNUlsumdlJZrRtW/yJQ7iMUcIj1YmSrOoza8eLiUO47lRP9uTmPDo91uskW0ziRWSNk4comzerLZfMVCYpiq5LdaKkICdUCnJsbrk5P06P9fqaSIVrjshrnDxEKSlRWy6ZqUxSFF2X6kRJQU6oFOTY3HJzfpwe6/U1kQrXHJHXuOYhCtc8HGYnmVF4zcP27XIJj1QnSrKqLx6ueXDHzXl0eqzXSbaYxIvSFdc8uNC2LTBsmHmZYcNSf+IA2EtmVF4OLF5sXsYo4ZHqRElm9cUTLjdvnv5vu8dFH2/UZroke3JzHp0e63WSLSbxIrLB450fvmKeB28Y7XcPhazzPESXcVq3iliN8jw0b8dJnofw8ar7kIzcjEFQrh2/6ycKGm7VZIZJ5fzMMOk2i1+iMkymeyZCZpgkSm4y76GcPBARERHXPBAREZF3OHkgIiIiKZw8EBERkRROHoiIiEgKJw9EREQkJSvRAQTZhg3A4MH6Dm9NA95/Hxg4UH07Qd4OFh3bqFH6z6tX66+PG6c/4m15NOtPY6Nej1ldXvJ73FW1F4TrJVExBKHvRAQmiYonXrIg1SNmlIimuDgYiWiMYsvIME6gZJZsyag/FRWxSZei6/K7b16Ou6r2gnC9JCqGIPSdKJXJvIdy8mDAbOKgcgJRUSGEpsXWrWn6I5F/FOPFZvYoLbXXn4oK67q87Lvf466qvSBcL4mKIQh9J0p1zDDpIknUhg3AoEHW5T74wN1XGOGb72zbZvx6Im++YxVbPBkZQFOT8Wvh/nz+OdC3r37TITPFxcCXX6rvu9/jrqq9IFwviYohCH0nSgdMEuXC4MFqy8Wzdq35m7MQQGWlXs5vVrHFE2/iABzuz5Il1hMHQG/fi777Pe6q2gvC9ZKoGILQdyJqiZOHKHY/h3H7eU11tdpyKnnZ5ubNiY3D73FX1V4QrpdExRCEvhNRS5w8RJG9nbNTRUVqy6nkZZslJYmNw+9xV9VeEK6XRMUQhL4TUUtc8xDF7zUPVVXGn2IEYc1DvNjiycg4vJQtWtDWPPg17qraC8L1kqgYgtB3onTANQ8u2J0QuM33kJkJlJfr/47+FCP8c1lZYv4YmsVm5uqrjY9p3p/sbGDxYuu6ysu96bvf466qvSBcL4mKIQh9J6IoHu/88FWq5HkIhYKx9UxVngej/gQxz4OX466qvSBcL4mKIQh9J0pl3Krp4muL5phhkhkmg9heEK4XZpgkSj0y76GcPBARERHXPBAREZF3OHkgIiIiKZw8EBERkRROHoiIiEhKVqIDCLKtW4EBA4D6eiAvD/joI6Bnz0RHpZNddd68fJcu+nO7dh0+FnC+it3JCni3q+aNdoG8+aa9HR4qV+un2+r/VO1vqvaLyDMebxv1lco8D1lZxjkesrIUBOqS0X734uL4+92NykfnVojOuWBWn5tYnB5jdXxmpnV9bttV3Y9kk6r9TdV+EcmSeQ8N1ORhzZo14ic/+YkoKioSAMSKFSukjlc1eYg3cQjCBKKiQghNi41J0/SH0RumUXmrR7z63MTi9Bgn/Ymuz227qvuRbFK1v6naLyInkjZJ1PPPP4833ngDP/jBDzBlyhSsWLECP/3pT20fryLPw9atQK9e1uW++sr/rzDCOf7j3Z44Ose/VXkrZvcMkI3F6TEybcar7/PP9RtyOW1XNo5Uu9dCqvY3VftF5FTS5nmYOHEibr75Zpx55pm2yh84cAB79uxp8XBrwAC15VRau9b8jVMIoLJSL2envJXo+tzE4vQYmTbj1bdkibt2ZeOQrS/oUrW/qdovIj8EavIga+HChcjPz488QqGQ6zrr69WWU6m6Wq6c3fJO2pWNxekxTtqMtnmzu3a9Lhd0qdrfVO0XkR+SevIwf/581NbWRh6VlZWu68zLU1tOpaIiuXJ2yztpVzYWp8c4aTNaSYm7dr0uF3Sp2t9U7ReRHwK15qE5TdO45iFK+Dvaqir9I9Vo8dY8xCtvxc6aB7uxOD1Gps149YXXPDhtVzaOVPuuPFX7m6r9InIqadc8BEHPnkCWRfaLrKzE5HvIzATKy/V/a1rL18I/l5Ud/kNnVt6KUX1uYnF6jN02zeLPznbXrkwcTuoLulTtb6r2i8gXHu/8cAwJ3KopRPLleQiF1OZ5MKvPTSxOj7E6PjrPg1F9bttV3Y9kk6r9TdV+EclK2q2ae/fuxeeffw4AOO6447Bo0SKcdNJJ6NixI3ra+F991bfkZoZJb2JxeozZ8cww6Y9U7W+q9otIhsx7aKAmD6tXr8ZJJ50U8/ycOXOwdOlSy+NVTx6IiIjShcx7aKDubTFu3DgEaC5DREREBrhgkoiIiKRw8kBERERSOHkgIiIiKZw8EBERkZRALZgMmi1bgP79gQMHgJwc4OOPgT59Eh2VM+mwFS3cx6oq4Ouvgc6dgR49/NmO2dgIrF6tPwBg3Dj90Ty7plkdds9PUM5jUOIIKo4PpTxvU074S2WSqIwM44RKGRkKAvWZURKc4uLUSoJjlgjLTV/tjF1FRWySrXDyrYoK6zrsnp+gnMegxBFUHB9KVjLvoZw8GIg3cUjGCURFhRCaFtsHTdMfqfAHLV4fo/sr21c7Y1dRYd6uWTyaJkRpqb3zE5TzGJQ4gorjQ8ksaTNMuqUiSdSWLUDfvtblvvgi+F9hhG/8s22b8eupcOMfqz42FwrJ3/zKbOx69NDfGqqqZCJuWUdGht5WvNeb39gr0ecxHa4nNzg+lOx4YywX+vdXWy6R1q41f1MVAqis1MslK6s+NifTVztjt22b84lDuI54E4fw65WVwJIlwTiP6XA9ucHxoXTCyUOUAwfUlkuk6mq15YJINvZkHJPNm+2V8zrmZBw7P3F8KJ1w8hAlJ0dtuUQqKlJbLohkY0/GMSkpsVfO65iTcez8xPGhdMI1D1FScc1DVZX+kWm0VPgO1qqPzTlZ82A2dn6veUj0eUyH68kNjg8lO655cKFPH/0PupmMjOBPHAD9D1R5uf5vTWv5WvjnsrLk/kPWvI9mNE2ur3bGrrwcWLzYXn3x6pg3T/+32fnJzg7GeUyH68kNjg+lFY93fviKeR6MGe07D4VSa9uYWZ4HN321M3ZO8jw0r8Pu+QnKeQxKHEHF8aFkxa2aLr62aI4ZJpMLM0z6JyhxBBXHh5KRzHsoJw9ERETENQ9ERETkHU4eiIiISAonD0RERCSFkwciIiKSwskDERERSclKdABBdvCgflOizZv1DH+XXqon7FHJyZYuu1sHVZRpzul4mLUju70yXl2J3hoX3f6oUcCbbx7+ecQI4J573F1LbvuY6DGSlWzxEqUVj3NO+EplkqjSUiEyM1smesnM1J9XxSiZTHGxeTIZO8eoKtOc0/Ewa8cssZNRLPHqKi2VH0eVjOKKHqvoh+y15ORaUXm835ItXqJUIPMeysmDgdJS8z/8KiYQFRVCaFps3ZqmP4z+SNo5RlUZFeNh1o5Zfc3LNc/CaPc4q3FUSTYuJ9eSk2tF5fF+S7Z4iVIFM0y6SBJ18CCQlxf/ZkWA/tFpfb3zrzDCN9DZts34daMb6Ng5pkcP/d9WZYSIfzOn6LadjodVvHaFQodvDCVbl9c3IlLRR6trycm1ovJ4vyVbvESphEmiXFiyxPyNEtBfX7LEeRtr15q/4QgBVFbq5WSO2bbNXhmzu0BGt+10PKzitauyUq/bSV1G46iSij5aXUtOrhWVx/st2eIlSlecPETZvFltOSPV1fLl7B6jSrg9p+OhMl43Yw14N3aq6jXrn5NrReXxfku2eInSFScPUUpK1JYzUlQkX87uMaqE23M6HirjdTPWgHdjp6pes/45uVZUHu+3ZIuXKF1xzUMUP9c8VFXpH8NGM1vzYHZMeM2DVRkhgO3b7bXtds1DvFjsar7mQbYuv9Y8uOmj3TUPMteKyuP9lmzxEqUSrnlwITsbmDfPvMy8ee7yPWRmAuXl+r81reVr4Z/Lylr+cbRzTHm5vTKLF9tv2+l42InXiqbpsWRnx6/L7FggdhxVMuujXVbXkpNrReXxfmsebzxBipcobXm888NXKvM8TJ5svLVu8mTXVUcY7WUPheTzPEQfo6pMcyrzPITbMcvzYBRLvLqM8jxYjaNKicrzINNHt8f7zY88K0TUErdquvjaAgCWLwemTYv/semyZcCUKS4CbYYZJplh0mkbqZphMt7vX/iTEpW/f0R0mMx7KCcPUbjPnChx+PtHlDhc8+AC95kTJQ5//4iSAycPUbjPnChx+PtHlBw4eYjCfeZEicPfP6LkwMlDlDFj9O9U42290zQ998CYMf7GRZQO+PtHlBw4eYiSbPviiVIJf/+IkkNWogMIoilT9O1gl14K7Nx5+PmuXYG77krtbWJWWw4Tsb2vsRFYvVp/AMCJJwIZGcCuXepjCvp2xqDHZ8VO/OHfvyuvbLl4srhYnzik8u8fUdLwOOeEr1QmicrLM07uk5enINCAspPsqLjY38RCFRVCFBaaJ1xSFZNR//3ur5mgx2dFNv6GBiFefVWIxx7T/9vQ4Ge0ROmHSaJcJolq00a/30A8eXnAvn2Oqw8ks8RYzfmZqGf5cmDqVOtyKmIKemKioMdnJdnjJ0oHTBLlYvKwY4e9ldzV1UC3bo6aCByrxDzR/EjU09gI9OqlZ570OqagJyYKenxWkj1+onTBJFEuDBmitlwysErME82PRD3hlNV+xBT0xERBj89KssdPRLE4eYhSU6O2XDJwmnDHy0Q9fsYU9MREQY/PSrLHT0SxOHmIUlCgtlwycJpwx8tEPX7GFPTEREGPz0qyx09EsbjmIUo6r3moqrJeMAmk7pqHeP1P9HfyQY/PSrLHT5QuuObBhW7d9N0UZvLyUmfiAJgn5onmV6KezExg8WJ7Zd3GFPTEREGPz0qyx09EsTh5MLBvX/wJRCpu0wQOJ+bp0aPl89F/0IuL/dtWN2UKUFEBFBaal1MRU7z++9lfM0GPz0qyx09ELfFrCxM7dui7Kmpq9DUO69en1icORphhMtgZHIMen5Vkj58olTHPg6LJAxERUbrgmgciIiLyDCcPREREJIWTByIiIpLCyQMRERFJ4eSBiIiIpGQlOoAg27sXmDUL2LwZKCkBHnkEaNs2MbFEb1ccN05/uN3mxq1zREQki1s14xg+HHj33djnhw0D3nnHVdXSli8H5s4Fvvmm5fOFhcC99zpPsLN8OXDllS3veFhcrGcDZNIeIqL0wq2aLsWbOAD688OH+xfL8uXA1KmxEwdAf27qVL2Mk3qnTYu9VXJVlf68kzqJiCg98JOHKHv3Au3aWZerq/P+Kwy7N4cqLga+/NL+1w3hGxVFTxzCeKMiIqL0w08eXJg1S205N9autXdXyW3b9LIy9cabOAD6nQ8rK+XqJCKi9MHJQ5TNm9WWc6O6OrFlZeokIqL0wclDlJISteXcKCpKbFmZOomIKH1wzUOUdFrzUFWlf0URjWseiIjSD9c8uNC2rb4d08ywYf7ke8jMBBYvti5XXi73Jp+ZqR8D6BOF5sI/l5Vx4kBERMY4eTDwzjvxJxB+53mYMgWoqNBzOkQrLNRfc5KTYcoUYNkyoEePls8XF+vPM88DERHFw68tTDDDJBERpQuZ91BOHoiIiIhrHoiIiMg7nDwQERGRFE4eiIiISAonD0RERCQlK9EBBNmGDcDgwXoiJU0D3n8fGDgw0VH5z2ynh5PdGl7s8PBq1wh3oxARGRAppLa2VgAQtbW1ruvSpwzGj3RSUSFEYWHsGBQWClFaKkRxccvni4v1Y8zqkz3GToyq6/SyXiKiIJJ5Dw3k1xZ33XUXevfujdatW2PEiBF4x8+sTIjNuij7eqpYvhyYOhX45pvY1775Brjjjti7c1ZVAdOm6cca1TdtmtwxdmJUXaeX9RIRpYLA5Xn45z//idmzZ+Puu+/GiBEjUFZWhqeeegobN25Ely5dTI9VkedhwwZg0CDrch98kNpfYdi9r4YRo3tjhO+nEe9W4E7up+FFnV7WS0QUZEmd52HRokX4xS9+gQsuuAD9+/fH3Xffjby8PDzwwAMxZQ8cOIA9e/a0eLg1eLDacslq7VpnEwdA/4C/slKvo3l98d6M4x1jJ0bVdXpZLxFRqgjU5OHgwYNYt24dxo8fH3kuIyMD48ePx1tvvRVTfuHChcjPz488QqGQ6xjsfg4TrM9r1KuuVluH3fpk2vWiTi/rJSJKFYGaPOzevRuNjY3o2rVri+e7du2KHTt2xJSfP38+amtrI4/KykrXMdhdz5Dq6x6KitTWYbc+mXa9qNPLeomIUkWgJg+ycnJy0L59+xYPt95/X225ZDVmTOwdN+3SNCAU0utoXl9xcfxJl9ExdmJUXaeX9RIRpYpATR46deqEzMxM7Ny5s8XzO3fuRLdu3XyJwe4iyFReLAnoCwEXL5Y/LvyGW1bWcjFhZiZQXt6yjNUxdmJUXaeX9RIRpYpATR6ys7Pxgx/8AKtWrYo819TUhFWrVmHkyJG+xWG1niHV1zuETZkCVFQAhYWxrxUWAqWl+v+hN1dcDCxbph9rVN+yZbGfaJgdYydG1XV6WS8RUSoI5FbNOXPm4J577sHw4cNRVlaGJ598Ep9++mnMWohoqm/JzQyTOmaYZIZJIkp9Mu+hgZs8AMCdd96JO+64Azt27MCQIUOwePFijBgxwvI41ZMHIiKidJH0kwenOHkgIiJyJqmTRBEREVGwcfJAREREUjh5ICIiIimcPBAREZEUTh6IiIhICicPREREJIWTByIiIpLCyQMRERFJ4eSBiIiIpHDyQERERFI4eSAiIiIpnDwQERGRlKxEB6BS+B5fe/bsSXAkREREySX83mnnfpkpNXmoq6sDAIRCoQRHQkRElJzq6uqQn59vWialbsnd1NSE7du3o127dtA0TUmde/bsQSgUQmVlJW/zrQjHVC2Op3ocU7U4nup5MaZCCNTV1aF79+7IyDBf1ZBSnzxkZGSguLjYk7rbt2/Pi14xjqlaHE/1OKZqcTzVUz2mVp84hHHBJBEREUnh5IGIiIikcPJgIScnBwsWLEBOTk6iQ0kZHFO1OJ7qcUzV4niql+gxTakFk0REROQ9fvJAREREUjh5ICIiIimcPBAREZEUTh6IiIhICicPREREJIWTBwB33XUXevfujdatW2PEiBF45513TMs/9dRTOProo9G6dWsMHDgQK1eu9CnS5CEzpvfddx/GjBmDDh06oEOHDhg/frzlOUg3stdo2BNPPAFN0/DTn/7U2wCTkOyY1tTU4LLLLkNRURFycnJw5JFH8ne/GdnxLCsrw1FHHYXc3FyEQiH86le/wvfff+9TtMH32muv4fTTT0f37t2haRr+9a9/WR6zevVqHH/88cjJycERRxyBpUuXehegSHNPPPGEyM7OFg888ID46KOPxC9+8QtRUFAgdu7caVj+jTfeEJmZmeKPf/yj+Pjjj8X1118vWrVqJTZs2OBz5MElO6bnnHOOuOuuu8R7770nPvnkE3H++eeL/Px8sW3bNp8jDybZ8QzbsmWL6NGjhxgzZoyYPHmyP8EmCdkxPXDggBg6dKg47bTTxOuvvy62bNkiVq9eLdavX+9z5MEkO56PPvqoyMnJEY8++qjYsmWL+M9//iOKiorEr371K58jD66VK1eK3/72t2L58uUCgFixYoVp+S+++ELk5eWJefPmiY8//lj89a9/FZmZmeKFF17wJL60nzwMHz5cXHbZZZGfGxsbRffu3cXChQsNy0+fPl1MmjSpxXMjRowQF110kadxJhPZMY3W0NAg2rVrJx566CGvQkwqTsazoaFBjBo1Svz9738Xc+bM4eQhiuyY/u1vfxN9+/YVBw8e9CvEpCI7npdddpn40Y9+1OK5efPmidGjR3saZ7KyM3n4zW9+IwYMGNDiuRkzZogJEyZ4ElNaf21x8OBBrFu3DuPHj488l5GRgfHjx+Ott94yPOatt95qUR4AJkyYELd8unEyptHq6+tx6NAhdOzY0aswk4bT8bzpppvQpUsXXHjhhX6EmVScjOm///1vjBw5Epdddhm6du2KY489FrfeeisaGxv9CjuwnIznqFGjsG7dushXG1988QVWrlyJ0047zZeYU5Hf700pdVdNWbt370ZjYyO6du3a4vmuXbvi008/NTxmx44dhuV37NjhWZzJxMmYRrvmmmvQvXv3mF+EdORkPF9//XXcf//9WL9+vQ8RJh8nY/rFF1/glVdewbnnnouVK1fi888/x6WXXopDhw5hwYIFfoQdWE7G85xzzsHu3btxwgknQAiBhoYGXHzxxbjuuuv8CDklxXtv2rNnD/bv34/c3Fyl7aX1Jw8UPLfddhueeOIJrFixAq1bt050OEmnrq4Os2bNwn333YdOnTolOpyU0dTUhC5duuDee+/FD37wA8yYMQO//e1vcffddyc6tKS0evVq3HrrrViyZAn+97//Yfny5Xjuuefwhz/8IdGhkU1p/clDp06dkJmZiZ07d7Z4fufOnejWrZvhMd26dZMqn26cjGnYn/70J9x22214+eWXMWjQIC/DTBqy47l582Z8+eWXOP300yPPNTU1AQCysrKwceNGlJSUeBt0wDm5RouKitCqVStkZmZGnjvmmGOwY8cOHDx4ENnZ2Z7GHGROxvN3v/sdZs2ahZ///OcAgIEDB2Lfvn2YO3cufvvb3yIjg/9fKyvee1P79u2Vf+oApPknD9nZ2fjBD36AVatWRZ5ramrCqlWrMHLkSMNjRo4c2aI8ALz00ktxy6cbJ2MKAH/84x/xhz/8AS+88AKGDh3qR6hJQXY8jz76aGzYsAHr16+PPM444wycdNJJWL9+PUKhkJ/hB5KTa3T06NH4/PPPIxMxAPjss89QVFSU1hMHwNl41tfXx0wQwhMzwXs1OuL7e5MnyzCTyBNPPCFycnLE0qVLxccffyzmzp0rCgoKxI4dO4QQQsyaNUtce+21kfJvvPGGyMrKEn/605/EJ598IhYsWMCtmlFkx/S2224T2dnZYtmyZaK6ujryqKurS1QXAkV2PKNxt0Us2THdunWraNeunbj88svFxo0bxbPPPiu6dOkibr755kR1IVBkx3PBggWiXbt24vHHHxdffPGFePHFF0VJSYmYPn16oroQOHV1deK9994T7733ngAgFi1aJN577z3x1VdfCSGEuPbaa8WsWbMi5cNbNUtLS8Unn3wi7rrrLm7V9Npf//pX0bNnT5GdnS2GDx8u/vvf/0ZeGzt2rJgzZ06L8k8++aQ48sgjRXZ2thgwYIB47rnnfI44+GTGtFevXgJAzGPBggX+Bx5Qstdoc5w8GJMd0zfffFOMGDFC5OTkiL59+4pbbrlFNDQ0+Bx1cMmM56FDh8QNN9wgSkpKROvWrUUoFBKXXnqp+O677/wPPKBeffVVw7+L4XGcM2eOGDt2bMwxQ4YMEdnZ2aJv377iwQcf9Cw+TQh+RkRERET2pfWaByIiIpLHyQMRERFJ4eSBiIiIpHDyQERERFI4eSAiIiIpnDwQERGRFE4eiIiISAonD0RERCSFkweiFLJ06VJomoYvv/wy0aFY6t27N84//3yldWqahhtuuCHys1fjMW7cOIwbN05pnUTJhJMHIiKXtm/fjhtuuAHr169PdChEvkjrW3ITpZpZs2Zh5syZyMnJSXQoljZu3Kj81sv79+9HVpb3f9ZefPHFFj9v374dN954I3r37o0hQ4Z43j5RonHyQJRCMjMzI7c2DjovJjitW7dWXmdz9fX1yMvLS/vbcBPxawsiH1RVVeHCCy9E9+7dkZOTgz59+uCSSy7BwYMHAQBffPEFzjrrLHTs2BF5eXn44Q9/iOeeey6mnr/+9a8YMGAA8vLy0KFDBwwdOhSPPfZY5HWj7/h79+6Nn/zkJ3j99dcxfPhwtG7dGn379sXDDz8cU39NTQ2uuuoqhEIh5OTk4IgjjsDtt9+OpqYmqf5u2rQJU6dORbdu3dC6dWsUFxdj5syZqK2tbRFX8zUP4dhff/11XHHFFejcuTMKCgpw0UUX4eDBg6ipqcHs2bPRoUMHdOjQAb/5zW8QfV+/6DUPRp5++mlMmjQpci5KSkrwhz/8AY2NjS3KjRs3DsceeyzWrVuHE088EXl5ebjuuusir4XXPKxevRrDhg0DAFxwwQXQNA2apmHp0qVYsGABWrVqha+//jomjrlz56KgoADff/+93WElCgx+8kDkse3bt2P48OGoqanB3LlzcfTRR6OqqgrLli1DfX09vvvuO4waNQr19fW44oorUFhYiIceeghnnHEGli1bhjPPPBMAcN999+GKK67AtGnTcOWVV+L777/HBx98gLfffhvnnHOOaQyff/45pk2bhgsvvBBz5szBAw88gPPPPx8/+MEPMGDAAAD6/1WPHTsWVVVVuOiii9CzZ0+8+eabmD9/Pqqrq1FWVmarvwcPHsSECRNw4MAB/PKXv0S3bt1QVVWFZ599FjU1NcjPzzc9PnzMjTfeiP/+97+49957UVBQgDfffBM9e/bErbfeipUrV+KOO+7Asccei9mzZ9uKK2zp0qVo27Yt5s2bh7Zt2+KVV17B73//e+zZswd33HFHi7LffPMNJk6ciJkzZ+K8885D165dY+o75phjcNNNN+H3v/895s6dizFjxgAARo0ahRNOOAE33XQT/vnPf+Lyyy9vMUbLli3D1KlTPf+0hMgTnt3sm4iEEELMnj1bZGRkiHfffTfmtaamJnHVVVcJAGLt2rWR5+vq6kSfPn1E7969RWNjoxBCiMmTJ4sBAwaYtvXggw8KAGLLli2R53r16iUAiNdeey3y3K5du0ROTo64+uqrI8/94Q9/EG3atBGfffZZizqvvfZakZmZKbZu3Wqrv++9954AIJ566inTcr169RJz5syJiX3ChAmiqakp8vzIkSOFpmni4osvjjzX0NAgiouLxdixY1vUCUAsWLAgps7m41FfXx8Ty0UXXSTy8vLE999/H3lu7NixAoC4++67Y8qPHTu2RdvvvvuuACAefPDBmLIjR44UI0aMaPHc8uXLBQDx6quvxpQnSgb82oLIQ01NTfjXv/6F008/HUOHDo15XdM0rFy5EsOHD8cJJ5wQeb5t27aYO3cuvvzyS3z88ccAgIKCAmzbtg3vvvuudBz9+/eP/B8xAHTu3BlHHXUUvvjii8hzTz31FMaMGYMOHTpg9+7dkcf48ePR2NiI1157zVZb4U8W/vOf/6C+vl461gsvvBCapkV+HjFiBIQQuPDCCyPPZWZmYujQoS3itys3Nzfy77q6OuzevRtjxoxBfX09Pv300xZlc3JycMEFF0i30dzs2bPx9ttvY/PmzZHnHn30UYRCIYwdO9ZV3USJwskDkYe+/vpr7NmzB8cee2zcMl999RWOOuqomOePOeaYyOsAcM0116Bt27YYPnw4+vXrh8suuwxvvPGGrTh69uwZ81yHDh3w3XffRX7etGkTXnjhBXTu3LnFY/z48QCAXbt22WqrT58+mDdvHv7+97+jU6dOmDBhAu66664W6x1kYg1PRkKhUMzzzeO366OPPsKZZ56J/Px8tG/fHp07d8Z5550HADEx9ujRw/XiyBkzZiAnJwePPvpopI1nn30W5557botJElEy4eSBKEkcc8wx2LhxI5544gmccMIJqKiowAknnIAFCxZYHhtvB4ZotuCwqakJP/7xj/HSSy8ZPqZOnWo71j//+c/44IMPcN1112H//v244oorMGDAAGzbts1xrEbPi6gFk1ZqamowduxYvP/++7jpppvwzDPP4KWXXsLtt98OADELQ5t/SuFUhw4d8JOf/CQyeVi2bBkOHDgQmbAQJSMumCTyUOfOndG+fXt8+OGHccv06tULGzdujHk+/BF6r169Is+1adMGM2bMwIwZM3Dw4EFMmTIFt9xyC+bPn+964V1JSQn27t0b+aTBrYEDB2LgwIG4/vrr8eabb2L06NG4++67cfPNNyup34nVq1fjm2++wfLly3HiiSdGnt+yZYureq0+QZg9ezYmT56Md999F48++iiOO+64yEJVomTETx6IPJSRkYGf/vSneOaZZ/B///d/Ma8LIXDaaafhnXfewVtvvRV5ft++fbj33nvRu3dv9O/fH4C+8r+57Oxs9O/fH0IIHDp0yHWs06dPx1tvvYX//Oc/Ma/V1NSgoaHBVj179uyJKTtw4EBkZGTgwIEDruN0I/zpRfNPLA4ePIglS5a4qrdNmzYA9HEyMnHiRHTq1Am333471qxZw08dKOnxkwcij91666148cUXMXbsWMydOxfHHHMMqqur8dRTT+H111/Htddei8cffxwTJ07EFVdcgY4dO+Khhx7Cli1bUFFREcnCeMopp6Bbt24YPXo0unbtik8++QR33nknJk2ahHbt2rmOs7S0FP/+97/xk5/8JLKNc9++fdiwYQOWLVuGL7/8Ep06dbKs55VXXsHll1+Os846C0ceeSQaGhrwyCOPIDMzU+qrDy+MGjUKHTp0wJw5c3DFFVdA0zQ88sgj0l9/RCspKUFBQQHuvvtutGvXDm3atMGIESPQp08fAECrVq0wc+ZM3HnnncjMzMTZZ5+tojtECcPJA5HHevTogbfffhu/+93v8Oijj2LPnj3o0aMHJk6ciLy8vEgOg2uuuQZ//etf8f3332PQoEF45plnMGnSpEg9F110ER599FEsWrQIe/fuRXFxMa644gpcf/31SuLMy8vDmjVrcOutt+Kpp57Cww8/jPbt2+PII4/EjTfeaJmfIWzw4MGYMGECnnnmGVRVVSEvLw+DBw/G888/jx/+8IdKYnWqsLAQzz77LK6++mpcf/316NChA8477zycfPLJmDBhguN6W7VqhYceegjz58/HxRdfjIaGBjz44IORyQOgf3Vx55134uSTT0ZRUZGK7hAljCbcTrmJiMjS+++/jyFDhuDhhx/GrFmzEh0OkStc80BE5IP77rsPbdu2xZQpUxIdCpFr/NqCiGz79ttvI/fjMJKZmYnOnTv7GFHwPfPMM/j4449x77334vLLL48sriRKZvzagohsGzduHNasWRP39V69erW4KRfpNwDbuXMnJkyYgEceeUTJ4laiROPkgYhsW7dunWlWx9zcXIwePdrHiIgoETh5ICIiIilcMElERERSOHkgIiIiKZw8EBERkRROHoiIiEgKJw9EREQkhZMHIiIiksLJAxEREUn5fyuQ0lqLs1otAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAIpCAYAAAAl0NuJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACsNUlEQVR4nO2deXgUVfb3v9WdnewhkEA3BCIiyKZssoRNxN0orqOyqKMorgMTR2ZD56fijI5DXHAfUUfHUeK+K5tBEAFRcUNkTUJCWEOAQEhy3z/OW+lOp6q71u7q5Hye5z5Jqu9y7qlbt2667veUJIQQYBiGYRiG0Ygr0gYwDMMwDBNd8OKBYRiGYRhd8OKBYRiGYRhd8OKBYRiGYRhd8OKBYRiGYRhd8OKBYRiGYRhd8OKBYRiGYRhd8OKBYRiGYRhd8OKBYRiGYRhd8OKBsZxly5ZBkiSMGzcu0qZEjPbgg+nTp0OSJCxcuDAs7Y0bNw6SJGHZsmUtjt99992QJAl33313WOwAgIULF0KSJEyfPj1sbToVq8d6uM9nuMdxW4EXD22UvLw8SJKEbdu2RdoUhmk3bNu2DZIkIS8vL9KmMIytxETaAKbtMWzYMPz0009ISkqKtCkRoz34YN68ebjrrruQm5sblvZefPFFHDlyBN26dQtLe8G46KKLcNpppyEtLS3SpjBMRODFA2M5SUlJOOmkkyJtRkRpDz7Izc0N28IBgCMWDTJpaWm8cGDaNfzYoo0hP4vdvn07AKBHjx6QJKk5yc+L/Z9THjlyBH/961/Rp08fJCUltfjK9auvvsKdd96JYcOGIScnB3FxcejcuTPOP/98fPbZZ4o2qD0D9f9KVwiBp59+GoMHD0aHDh2QlpaGSZMmYdWqVYb63dDQgH//+9+YOHEiOnbsiPj4eHg8HkycOBGPPvqoYv4nn3wSI0eORFpaGhISEtCrVy/cdtttqKioUGxj06ZNuPbaa9GjRw/Ex8cjOTkZ3bt3x7nnnovnn38+LD6oq6vDP//5T5x22mlIT09HQkICevfujTvvvBN79+7V77gAXn/9dUycOBFZWVmIjY1FVlYW+vbti+uvvx7fffddi7xqz4r9n1nv3LkTv/3tb9GlSxckJiaiX79+eO6555rz/vzzz7jyyiuRk5ODhIQEDBw4EP/73/8UbVPb86DG8ePH8Z///AdXXXUVTjrpJKSmpiIxMRG9e/fGbbfdhp07d4Zsp7S0FOeffz6ys7Phcrma+6q052H69Ono0aMHAGD79u0trjtJkgAA06ZNgyRJmDdvnqrdr732GiRJwrBhw0L28amnnoIkSTjrrLNU8+zduxfx8fGIi4vD7t27m4+vW7cOl19+OTweD+Li4pCamoqePXvi4osvxttvvx2ybS189tlnuPXWWzFo0KAW1+Xll1+ONWvWhCy/fft2TJ06Fbm5uUhISMCJJ56Iu+++G3V1daplfvnlF8yYMQP5+flISEhAWloaxowZg//85z+W9In5/wimTVFaWiqmTZsmOnToIACIiy++WEybNq05/fTTT0IIIZYuXSoAiOHDh4uhQ4eKDh06iLPPPltcfvnlYuLEic31nX766cLlcon+/fuLc845R1x66aXi1FNPFQAEADF//vxWNsh1jx07tsXxrVu3CgCie/fuYtq0aSI2NlZMmDBBXHbZZeLEE08UAER8fLz48ssvdfX5wIEDYvTo0QKAiI2NFWPHjhW/+c1vxPjx40V2drYIHOZHjx4VEydOFABEQkJCc7+9Xq8AIDp27CjWrVvXosyGDRtEamqqACB69+4tJk+eLC699FIxYsQIkZycLAYOHGi7DyoqKkT//v0FAJGZmSkmTpwoLrroItG9e3cBQOTl5Ylt27bp8p0/99xzjwAgYmJixJgxY8RvfvMbcc4554h+/foJSZLEv/71rxb5p02bJgCI559/vsXxuXPnCgDimmuuETk5OaJbt27isssuE+PHjxdut1sAEA899JBYtWqVSElJEb179xZXXHGFGDFiRPO4evXVV1vZN3bsWAFALF26VLG9uXPntjheVlYmAIi0tDRx2mmniUsvvVScc845okuXLgKAyM7OFps2bVJtZ+bMmcLlcom+ffuKK664QkyaNEm88sorQgghnn/+eQFATJs2rbncM888Iy6++GIBQHTo0KHFdSfnW7dunQAgunXrJhoaGhTPw5gxYwQA8cILLyh+7s+BAwdEYmKicLlcory8XDHPI488IgCIyZMnNx/77LPPRGxsrAAgBg4cKC655BJx0UUXiWHDhon4+HhRWFgYsm0ZtbEuhBD5+fkiLi5OnHLKKeKCCy4QkydPFn379m0eZ4sWLWpVRj6fU6dOFVlZWaJz587i0ksvFeedd17zvDZq1ChRV1fXquxrr70mEhISBABx0kkniYsuukhMmDChudw111zTqozaOGaCw4uHNop8Q9m6davi5/IFD0AMGDBAVFZWKub74IMPxM6dO1sdX7lypUhNTRWxsbGtJq1QN0755rlx48bmzxoaGsS1114rAIhJkybp6uvkyZMFAHHKKae06u/x48fFW2+91eLYH/7wBwFA5Ofnt8hfX18vrrvuOgFA9OjRQxw7dqz5s2uuuUYAEPfee2+r9o8cOSKWL19uqw+amprEqFGjBABx3XXXiYMHD7bo4+zZswUAMX78+KC+UuPo0aMiMTFRJCcni59//rnV59u2bWteeMqEWjwAEDfeeKM4fvx482fvvPOOACBSUlJE9+7dxb333iuampqaP58/f74AIE444YRWNuhdPBw8eFC8/fbbLc6jEHSe58yZIwCIc845R7UdAOLxxx9v9bkQyosHIVouDtWQz+Mbb7zR6rMNGzY0L2yOHj2qWoc/V111lQAg5s2bp/j5KaecIgCId999t/nY+PHjBQDxn//8p1X+AwcOiFWrVmlqW4jgi4c333xT7Nu3T/F4TEyMyMrKEkeOHGnxmf/4KSwsbPF5WVlZ8yL7rrvualHuu+++E/Hx8SIhIUGUlJS0+Gzbtm3NC+/ARRkvHozBi4c2ip7Fw+eff26oDXkCDpxgtdw433nnnVb1VVZWNv/nXV9fr8mGb775pvkbBLX/vPypq6sTycnJqjYcPnxYdO7cWQAQL7/8cvPxc845RwAQX3/9tSa7rPbBhx9+KACIQYMGtbgZyzQ2Nop+/foJAGLDhg2abPSnurq6eSGplVCLh27duin+dzhgwAABQAwbNqzFwkEIWghlZmYKAGL79u0tPtO7eAhFly5dhMvlarEQ829nwoQJqmXNLB5ee+01AUCcfvrprT6bMWOGACDmzJmjuR+LFy9u/kYsEPn6yMnJaTFu5P/+lW7segm2eAjGb37zGwFAvP/++y2Oy+czMTFR8Z+ad999VwAQqampLcbX5Zdf3vytlhJfffWVACAGDx7c4jgvHozBex7aOZ06dUJBQUHQPHv37sWLL76IO++8E9dffz2mT5+O6dOnY/ny5QCAjRs36mozJiZG8RltTk4OMjIycOzYMc3P7z/66CMAwLnnnouuXbuGzL927VocOnQImZmZOP/881t9npSUhCuuuAIAsHTp0ubj8vPnm266CR9//DGOHj2qyT419Prg/fffBwBcfPHFiIlpvc/Z5XJhzJgxAICVK1fqtic7Oxt5eXn47rvvMHv2bPz444+66whk/PjxSEhIaHW8V69eAICzzz67eS+ATExMTPOeG7U9CXr59ttv8fDDD+PWW2/Ftdde2zx+Gxoa0NTUhF9//VWx3CWXXGJJ+4FcdNFF8Hq9WLx4MX7++efm4zU1NfjPf/4Dt9uNm266SXN948ePR15eHjZu3Nhqv4y8F2fq1Kktxo08nq+66iqsWLECDQ0NZroUlJ07d+KZZ57B7Nmz8dvf/rbZ/z/88AMA9flj0qRJyMnJaXX8vPPOQ1ZWFg4ePIivv/4aANDU1IQPP/wQAHD55Zcr1jdkyBAkJydj/fr1pq9fhtUW7Z5QevRnnnkGv/vd73D48GHVPAcPHtTVZm5uLmJjYxU/S01Nxf79+zVf3PLGUK3KBnkzpLyxTYn8/PwWeQGgqKgIK1aswGeffYazzjoLsbGxGDhwIMaMGYMrrrgCQ4cO1dS+jF4fbNmyBQDwl7/8BX/5y1+C1u2/KU4PL774Ii655BI8/PDDePjhh5GZmYnhw4fjjDPOwJQpU9CxY0dd9ampI5KTk4N+npKSAgCmJ/jDhw9jypQpePPNN4PmUxu/dsVqiImJwcyZMzFnzhw89thjeOyxxwAAL7zwAg4fPty8uNCKvHHz7rvvxvPPP48RI0YAoA2jL7/8MgDgmmuuaVFm3rx5+O677/Dhhx/iww8/RGJiIk499VSMGzcOV111Ffr06WNJX++55x7cd999OH78uGoeNf8Hu0bz8vKwd+9elJeXA6B/cOR6tPhu7969mv7ZYNThxUM7JzExUfWzdevWYcaMGXC73fj73/+O888/H926dUNSUhIkScLTTz+NGTNmQAihq02XK/q+8EpKSsKnn36KNWvW4KOPPsLKlSuxcuVKrF27Fg8//DBmzpyJxx9/XHN9en3Q1NQEABg9enTz4kaNk08+WVfdMgUFBdi2bRvef/99LF++HCtXrsTHH3+MDz/8EHPnzsWbb76J008/XXN9ofpo9ziYM2cO3nzzTZx00kl44IEHMHToUHTs2BFxcXEAgJEjR2LVqlWq4zfYtWGW66+/Hn/729/w4osvYt68eUhOTsaCBQsAALfccovu+qZPn4577rkHr732GoqLi5GYmIh3330Xe/bswWmnndZqcZ2Tk4O1a9di+fLl+Oyzz/DFF19g9erV+OKLL3D//fdj3rx5+MMf/mCqj2+88QbuvvtuJCcn47HHHsOECROaVTeSJOGPf/wj5s2bp3v+8EcuK18fAClaQhEfH2+4TYbgxQOjyuuvvw4hBG699VbceeedrT7ftGlTBKxqifzfq//Xv8GQ/9vYunWrah75v3yl/0yGDh3a/C1DQ0MD3nrrLUydOhULFizAJZdcgvHjx+uyXyvyf1OFhYX4/e9/b0sbAN0wL7nkkuav7Hfv3o0///nPePrpp3Httdc2f9MTDbz22msAgP/9738YMGBAq88jOX6zsrJw1VVX4dlnn8WLL76IE088ERs3bkTfvn0xYcIE3fV1794dEyZMwOLFi/HGG2/gqquuapaVXnvttYplZCmxLCc+evQoFi5ciJtvvhl//OMfcckll4RcqAZD9v99992HG264odXnofwf7BqVI+d6PB4AQMeOHZGYmIi6ujo89NBDur8lY/QTff8CMpqQ/7sy8yxz3759AGhiCuTo0aMoKSkxXLdVyPsGPvjgA03PyOXnnvv27cM777zT6vO6ujq8+uqrABByIRATE4NLLrkEZ555JgDgm2++0Wm9ds4++2wAvgVduMjOzsY//vEPAMCOHTuwf//+sLVtlmDj9+OPP8aePXssb1PPdXfbbbcBAB5//PHmRxc333yz4bblRcLChQuxa9eu5scRansAAklISMCNN96IAQMGoKmpqVVcD70E8391dTU+/fTToOU/+eQTVFdXtzr+wQcfYO/evUhJScHgwYMBAG63G2eccQYA36KFsRdePLRR5BW5vCnJCPJzzxdeeAG1tbXNx48ePYqZM2cG/c8gXAwaNAiFhYWoq6tDYWEhduzY0eLzhoaGFouEhISE5gl69uzZLf6TPn78OG6//XZUVVWhR48eLTbMLViwQHFjV1VVFdauXQtAeZK0isLCQgwdOhRfffUVrrnmGsV9Dfv378eTTz5paMG4fft2PPvss4rPn999910AQEZGBlJTU/UbHyHk8RsYJGzjxo248cYbbWkzOzsbcXFxqKqqar55qtG/f39MmDABP/30E9555x2kpqZi6tSphtuePHky0tPTsWTJEtx3331oaGjAxRdfrHjOHnrooVbXCkDf4MnfCJgdz7L/n376adTX1zcfr6mpwbRp01BTUxO0fF1dHW666aYWAaF27tyJ2bNnAwBuvPHGFhty586di7i4OBQVFeGFF15o8ShD5vvvv8cbb7xhql8MwY8t2igXX3wxli5diquvvhqTJk1CRkYGANr417t3b011XHPNNSguLsb69evRo0cPFBQUwO12o7S0FHV1dbj99ttRXFxsZzc08fzzz+Occ87Bl19+iV69emHkyJHo0qULqqqqsGHDBuzevbvFf+v33HMP1q5di8WLF6NPnz4YP348UlJSsGrVKuzYsQNZWVl4/fXXm/+LBGgCvPnmm9GjRw/069cPqamp2L17d7MvJkyYgAsuuMC2PrpcLrz11ls499xz8cILL2DRokUYOHAgunXrhvr6emzZsgUbNmxAY2Mjpk+frqjICMb+/ftx/fXXY+bMmRg0aFDzZrVNmzZh/fr1kCQJDz74INxutx3ds4W5c+fikksuwV/+8he89tprOPnkk1FdXY3S0lIUFBSgS5cuhpQpwYiNjcUFF1yARYsWYdCgQRg9enTz+02effbZVvlvu+02LFmyBAA9q5c3kxohISEBV1xxBZ588snmBZPaI4t7770XRUVFOOmkk9CnTx8kJiZi586dzcqLqVOn4tRTTzVsCwDccccdePHFF/HBBx+gZ8+eOO2003D8+HEsX74cSUlJuPbaa/Hvf/9btfzUqVPx3nvvoWfPnigoKMDRo0exZMkSHD58GCNGjMA999zTIv+pp56K//znP81qjj//+c/o27cvsrOzsW/fPmzYsAHl5eW4/PLLMXnyZFN9Y/ibhzbLTTfdhHnz5qF79+744IMP8Nxzz+G5555DZWWl5jrS09Oxdu1azJw5E+np6fjwww+xatUqTJo0CV9//TUGDRpkXwd0kJGRgeXLl+OJJ57A8OHD8c0332DRokX45ZdfMGjQoFYbGePj4/HRRx9hwYIFGDhwIEpLS/Hmm28iNjYWt956K7799tvmr0Nl7rvvPtx0001IT0/Hl19+iddffx0//vgjhg8fjhdeeAEfffSR7hu2Xrp06YIvv/wSTz75JIYNG4aNGzdi0aJFWLFiBQD6T+zjjz9WlEeGIj8/H/Pnz8d5552HAwcO4IMPPsD777+Pw4cPY+rUqVizZg2uu+46q7tkK5MnT8by5ctx+umno7KyEu+88w6qq6tx991348MPP1RVu5jlqaeewowZMyBJEhYtWtR87Slx+umnw+12Q5IkU48sZPwXC3l5eaqvyX788cdxzTXXICYmBsuXL0dJSQm2bt2KM844A2+++aYlr6fu0aMH1q9fj6uuugputxvvvfcevv32W/zmN7/B+vXrQ6oievTogbVr12L8+PH4/PPP8fHHHyM3Nxd//etf8dlnnyluaL300kvxww8/4He/+x3S09PxxRdfoKSkBD/++CNOOOEEPPDAA7jvvvtM940BJBHOB6gMwzBMM88++yyuv/56TJo0CR9//HGkzWEYzfDigWEYJgIcPnwYAwYMwJYtW/Dxxx9j0qRJkTaJYTTDex4YhmHCyIMPPojvv/8eK1aswJYtW3DWWWfxwoGJOvibB4Zpgzz77LPNeyFC0bFjRzz00EM2W8TIjBs3DsuXL0fHjh1x3nnn4eGHH27e0Mww0QIvHhimDTJ9+nS88MILmvJ27969OegOwzCMFnjxwDAMwzCMLtrUnoempibs3LkTKSkprd7WxzAMwzCMOkII1NbWokuXLiHfPdOmFg87d+7U9TY6hmEYhmFaUlZW1hylWI02tXiQX+VbVlYWVWF0GYZhGCbSHDx4EF6vt/leGow2tXiQH1Wkpqby4oFhGIZhDKDlsT+Hp2YYhmEYRhe8eGAYhmEYRhe8eGAYhmEYRhe8eGAYhmEYRhe8eGAYhmEYRhe8eGAYhmEYRhe8eGAYhmEYRhe8eGAYhmEYRhe8eGAYhmEYRhe8eGAYhmEYRhe8eGAYhmEYRhe8eGAYhmEYRhe8eGAYhmEYRhdt6q2aVlNRAfTvD9TWAikpwIYNQNeukbYqMjQ2AqWlQGUlkJsLFBQAbnfoz7R87p+nogLYvRvIziZf++etrwcefZTyHT4MDBkCTJwIjBvXur5gbQPa7Fm2jBJAbcjtqPUnWBm9aPVpRQVQVQXs2we4XNReQQGwcmVrX44cSceV7Jbb6tSJ6q+upjxqZUJRVwfMmgWsXQukp9N58njIjuHDgaeeAjZvBnr0oGusqgpYvRoQAujVC5g5E4iLU+6v3KecnJa2Kvlo8WLgpZeAQ4eA0aOp3tWrQ/u1rKylPTNm0N+BxwPtVDp3oXyo5/rQWmdg2WXLgCVLyH6vF5gwwTdOzF6XWux3Elr65HRWraIxILNyJTBiRJiNEG2ImpoaAUDU1NSYrisuTgiaIlqmuDgLDI0ySkqE8Hha+sHjoePBPgtVNlj9gXmLioRwuZTzZGW1rC9YvVlZlELZE5hHLltUpNyfoiL1Mkq2GfV3KH8B6n5yu5XtDlaXUplQ/SksVK9Pa3K7yTYt/VXzUXKy/jJa2lGzU62OYD40en1oPS9qY1lpnBi5LrXY7yS09MnpBBuPZtFzD7WgOeuYO3euANAi9e7dW3N5qxYPagsHObWnBURJiRCS1NoHSsf8P5MkmlTVykqSb/IJVpeeFDjxaa030B4rbAlmm1F/B/NpuJK/r5SwYuHgnwoL9Z/HoiL9/THr16Ii7WPOjutD6bzoHctWXZehxkik0NInJ9rtjxb/m0HPPVQig5zB3XffjUWLFuGzzz5rPhYTE4OOHTtqKn/w4EGkpaWhpqYGqamphmyoqKCvV0NRXt72H2E0NgJ5edRXI8hfiSshST7/Ga0/EI8H2LaNftdrt2xPUxOwc6c19ijZFuxrUS3+DubTcCFJ1J+tW1v2p64OSEqKnF0yLhedRz2Y9avbDXTurH3sSBLZaeX14X9eAKB7d5rP9CC3K4T+smq2OOFRgJ65zOt1jt3+BD6qUMPMIww991DH7XmIiYlBjvwwMwTHjh3DsWPHmv8+ePCg6fb799eeb98+0805mtJSczf2YJOxENYtGmTKy8lm+Xc92GGPP7Jt48ap59Hi70gvHADyVVlZ6/4UFUXMpBboXTgA5v3a2Khv0SmE9deH/3kBjN38rboO1MZIpNAzlznJbn+0LBzkfOH4SsBxaotNmzahS5cu6NmzJ6666irs2LFDNe+8efOQlpbWnLxer+n2a2utzRfNVFZG2gL9VFY61+5QdjnVbjUC7d20KTJ2MC1x0jUQrXY4xW4n46jFw/Dhw7Fw4UJ89NFHeOKJJ7B161YUFBSgVuVOPWfOHNTU1DSnsrIy0zakpFibL5rJzY20BfrJzXWu3aHscqrdagTa26tXZOxgWuKkayBa7XCK3Y7G3PYKe9m/f79ITU0Vzz77rKb8VmyYLC/XtimlvNxwE1FDQwPtQDa6ccrtVi8rSVS3mfoDk8dDNhuxW7anSxdrbFGzzay/g/k0XEmShPB6W/fnyJHI2iUnNbVJsGTWr243jR09mzsDFROBn+u9PvzPS0ODEF27Gju3Ho+xslrGSKTQMyc4yW5/Vq7U5vuVK423oece6qhvHgJJT0/HiSeeiF9//TVsbXbt2lq3HUhcXNvfLAnQhqHiYvpdklp+5v+30meSRDr/YGWLi331W0FxMdkczG4l/O159FHr7FGyLRih/O3v00gh2zV/fuv+JCYChYXWtldYqO0cAj4fzZ6tvX6r/Dprlm/shLJX/nzWLF/7Sp/7Xx9a65TPi9sNPPKIZvNbtfvII/r8HswWJ+B/bQVDkpxltz9aN0GGLd6D8TWK/dTW1oqMjAxRXFysKT/HebAHJW2016uu85Y/C1U2WP2Bee2M86Bkj544D16v/XEeQvnUP2mN8yDbrSfOQ6CvlIhUnIdAH2mJ86DHr6HsVKsjmA+NXh9az4ueOA9Grkst9jsJLX1yOsHGo1miVqr5+9//Hueffz66d++OnTt3Yu7cufjmm2/w448/Ijs7O2R5K6Sa/nCESR8cYZIjTHKESY4wyREmnYFdESb13EMdtXi44oor8Pnnn2Pv3r3Izs7G6NGjcd999yE/P19TeasXDwzDMAzTXojaOA+vvvpqpE1gGIZhGCYEjt4wyTAMwzCM8+DFA8MwDMMwuuDFA8MwDMMwuuDFA8MwDMMwunDUhkmncegQMGUKScry80nylZwcaauiD7ukXGoyzEB53q23kpzOjNzUqn6EkokFk4HqlZeOHg388AO9ITA/X1lWqMfuQBmqmiQ0UA4bKP80IgmsrwcWLPBdi7J0Uo/8sb6eXt61aRPJLB98kAJbqeXX0odgMlet48PMuDIqkzYrK9Zqc7TJOJUIh1xVb/mqKmDQIODAAZJCf/ONT7ocNsyHlXAOVgaJGjpUOQjH0KEWGNqOUArK4vGYD8aiFgAqIUE5GE5hobodWmy0oh/BAtR4PMoBm4Id1xLYKlhAIz12K9UdLGhXMFu0+NY/b2Fh8FDOgXUq1ac0LgCqW2swMS3nRe/4MDOuQpVV+9xsQDOtNtt17YeTUGNT6/yht41g5ZOSlO1JSjLfXz33UF48KKC2cJATLyC0UVKiHEtekigZnUTU6tWbgtXhb6MV/bDKZjX79JTVs4DQW7cR2606l5JEfYv0uz+0jg8z4ypUWTN+MNOu/8LFjms/nJgZm1r7qddPagsHOZldQERthEmzWBEk6tAhbW/MrK3lRxjBaGwE8vKA8nLlzyWJIg5u3ar/671g9VqJJNHXk0LQV5ZqeUL1wy6bZfuamoCdO7WXc7uBI0dCP8Kw09ey7YB19UsSRdlsbLSmPitQGx9mrg8tZc34weMBtm0z1q7HA/z6Kz1asvraDydWjP1Q/dQ7BqqqtL3ts7LS+CMMPfdQ3jAZwJQp1uZrr5SWBr/whKBQuaWl1tZrJUJQW2oLBzlPqH7YZbNsn56FA0CT1oIFofPZ6WvZdivrF8JZCwdAfXyYuT60lDXjh/Jy4+2WldHYsuPaDydWjP1Q/dQ7BgYN0tau1nxm4cVDAJs3W5uvvVJZaW0+o/nDRTC7nGizlvHrRLujlUBfmrk+wnFezLSrdW508viy0ja1uvSOgQMHtOXXms8svHgIQONrNDTna69o+XpNTz6j+cNFMLucaLOW8etEu6OVQF+auT7CcV7MtKt1bnTy+LLSNrW69I6B9HRt+bXmMwvveQiA9zxYg/w8r6KCvn4LxOyeB7V6rcR/z8POncb7wXseWsN7HoxfH1rK2rnnIZTN8p4Hq6/9cBLOPQ9a/cR7HhxOcjIwdGjwPEOH8sIhFG43UFxMv0tSy8/kv+fP1z95BKtXL/7l1WwsLgYeeSR4nlD9kG02a6+afY8+qq/srFna4j34+9pK/G23yi9yHbNm0e9667Ty3ATWqTQ+zFwfWsoa9QNAdRttd/58Glt2XPvhRO81a6SfesdATg6QlBTcjqSkMMZ7MCfscBYc58F5KGmYvV5nxHmQ7dBioxX9CKYZ93qV4wYEOx6tcR60+NY/r5Y4D/51hiPOg9p50Ts+zIyrUGXVPrcjzoOSzXZd++Ek1NjUOn/obSNYeafEeeDHFkHgCJPWwBEmW9fBESb1+YUjTBoryxEmzdOeIkzquYfy4oFhGIZhGN7zwDAMwzCMffDigWEYhmEYXfDigWEYhmEYXfDigWEYhmEYXfDigWEYhmEYXcRE2gAn8+uvQN++wPHjQGws8OOPwAknhKftcEqcQsnUcnOBkSPpbzVplxnpV2D7I0eqSwCD1admQ2Bf/Psnt5GVBezdq9xWfT0FYlqxgqS6U6ZQvcFs1OJTpf4EShJnzqQ8esaCHtlpoP2y7/W0tWwZsGQJsGMH0K0bMGGCuowz1DhSqresjCLtdewIdO6sLJOTz3tTE5CZSbI1WbpWXa0so5RfELZ5M0X669uXbAZ89VdVtRwf/j+rq4F9+yiao9L14C/hlP8O1udQ2Cnp1JtfaZwqyYCdJNV0ki1mqatTlx2HDfNhJZyDlUGi1N7jLkkWGBoCpaAhHo89wVW0BshRCggkB5VRCyKkJeiMUvtqAYGC+UDNhuTk1sdDBQDyb6uoSLnvauPD41EOHqTUZmB/iopa993loj7o8UOosRMs8E1g+0Z8rjZeQo0jLfUG2qUlr1JKTla30Wjyvx6CBY/Sem3oPa9WlQ2VX2mcKgUgC+c8Fgon2WKWwkLlMVVYaL5uPfdQmG/OOVi1eFC7MfjfOOyipES5fUmiZOVgV2vL6hRsktLbvpIPSkrs74Mdyf+cFhUZK6d37Oj1ebC27Bgn0XouzfTZ6HWqZU7QWzZUfrUbl5zkBUQ457FQOMkWs4Tyv9kFBC8eTCweNm3SdtFv2mSh4f+fhobg/7FIEoUtbWiwvy0rk8fT2maj7Qf6oKFBiK5dI38TMJokifyg979gJT+EGjsej7N93rVrdJ9LI0np2rBqTtBb1oo5we0W4siR8M1joQjnnGo3R45oOwdHjhhvQ889lDdMBtC3r7X59FBaGvwtbkLQ81/52amdbVlJeXlrm422H+gD+bl9tCIE+aGpSX+5QD+EGjvl5c72eUVFdJ9LIyhdG/6YmRP0lrViTmhspGfx4ZrHQhHOOdVuioqszWcWXjwEcPy4tfn0UFlpbT676zDTntn25fLh7ofTCKcf2Of2EMyfZuYEvWWtOq+bNulr107COafajVa/as1nFl48BBAba20+PWh5V7uefHbXYaY9s+3L5cPdD6cRTj+wz+0hmD/NzAl6y1p1Xnv10teunYRzTrUbrX7Vms80xp+OOI+2suchmNLD6j0P4dgwGWzPg5ENk7znQf15dbCxI+95cKrPec+DtXOC3rJWzAn+ex7CMY+FIpxzqt3wngeHc8IJgCQFzyNJ9sR7cLuB4mJfG4FtAsD8+dpjJyxbBvz3v/SzsVF7W1ZTXNzaZjPt+/vA7QYeecS0iRFB7ndxMTB7tr6yQgDXXus7x6WlwMMPt6xXqR3Z53rb+u1vfX/b5fNHHonecxmI1jGtdG34Y2ZO0Fs2VH5JAgoLg/UGmDWL4g0YtTnUvKUXK+ZUq20ySmJiaP8XFoYx3oPxNYrzsDLOQ7CVnd0oaZK9Xu2SIj2a5miK8xDMB1bHeVCzwf8/FjUbtcZ5COyPmgwrIUH7f7FKbQe2oyfOQ7AxZCTGglVxHuQ+tec4D1rnBL1lQ+U3E+dBb7tWxWIw6j8nxodwSpwHSQghwrROsR097yIPxhtvAJdcQqckEEkCFi0CJk82YagGjEZDU7NdXmUr2c4RJn2RA7dtC/7f+ZgxwJ/+ZH2EyWDnTQjg8suB//0vuB/lc/zaaxSN0WiEyQceAObOVa/ffwz5R4JcsQL4/HN1++65B7jrLvsiTD7xBFBSot7+3LlA794cYdKJESaNzFt60euDcNhkFLsiTOq5h/LiIYDGRppI1OQ9kkQT2datzgttGs22O4FI+U9Luy6Xtq9Lzdpo1AeRHnuRbp8xjhPPnRNtCgd67qG85yGAaNYFR7PtTiBS/tPSrtbnrGZtNOqDSI+9SLfPGMeJ586JNjkNXjwEEM264Gi23QlEyn92nA+jdRr1QaTHXqTbZ4zjxHPnRJucBi8eAohmXXA02+4EIuU/O86H0TqN+iDSYy/S7TPGceK5c6JNToP3PAQgP+uqqFDfMOnUZ13RbLsTiJT/tLQb7j0Pen0Q6bEX6fYZ4zjx3DnRpnDAex5MYGWshXATzbY7gUj5T0u7s2b5tPZqWGGjUR9EeuxFun3GOE48d060yWnwNw8qvPEGMH06UFvrO5aSAixcGFqeY0ZSpYVQ0satW4FXXgH27PGV8XiA668nWY+/dFCWw23fTn97vUBmJknQysuBLl2Amhpq68gRYMgQYOLElhLIQLnf8OHAU0+RjKipCUhPp/+cU1OB776jekaPBm69lfwS2JfPPgP++leyoV8/ClD06qvAhg1AWhpwwQVA//4+Wd2YMUBDA/X50CFg2DDywfr1QEYG8LvfUTtLlwLr1pGkqWtXYMQI6h9AsjvZL2+/Ddx+e8sNU/HxwODB9LOqCjh8mPqUk0MSQkmi/p10Evn0wAH6LDkZOHrU17cuXcgnS5YAX31Fdblc1J8TTgD+/e+WL4dKSwOuvpp+//VXkkLW1SmPi4QE8tdJJwFXXknSuepqkgr691FJCpuTQ3YtWwbs2EH9W7KEzr1MUhIwaRLVIUk0lmbOJN/6yzXXrqVz7N+HwkLy+Y4ddK727CHfjBoFDBxIduzcSedsxw76r2/aNGDCBKq/vh549FEaK0eO0LkYP943BgEak3v2kE379vna79qVgk8VFpKNL71E13VBAXDTTcDq1eSLqioq19RE58/l8vUxLq6lFFge13I+f/lloEwT8Ek+lWTHwWTOgZJaWSrqL61duTL4XCPLKgOvx6wsZemrkgxTvk6VpL1apLehaGwE7ruPbtj+5y47G3j8ceDSS83JwY3y+uvUf/+51OulhUOkZJoA+WjsWLpmunQBli+nedssuu6h5sNKOAcnBImyO6iInqBK2dlC3HGHEPfcoxy0KDnZeEAcpeBLepMkmbPBjiSfq9mzwxO6OxIpVAAsPcnl0h7EykhKTqbgN2YCOrlcVIfRseZ2U/lQ4z0rSzlIl1KSx1mwAGta6go8l4FzjVJAp2D2KOV3udR9pyXol5E5LdC2oiLjgeiMomRXdrYQr79uT3ta6dxZ2U+dO5uvW889FOabcw5WLR60TChKlJQo33AkiZLZQa5WPyfrEvuXUzQn/7mmqCiytmiNfmnFNWf1AsLuudwoagsHOZldQHCESROPLf77X/rKNxSvvAL85je+v+0OKhKqfoZhGIDmmi5d6FFJpN7DANB8t22b+nxn5ZwWqi09ODVA1L599KgpFHv3Gn+EwRsmTaBl4aCUz+6gIqHqZxiGAWiuqaiI7MIBoPkq2Hxn5ZwWqi09ODVA1Nix1uYzCy8eLMLuoCLtORgJwzDRSbB5y6nB1pwaIGrnTmvzmYUXDxZhd1CR9hyMhGGY6CTYvOXUYGtODRAlK8OsymcWXjwE8MorxvIVFNBzMDUdviSRxEeWSOolVP0MwzAAzRFdu0Y+BoHHE3y+s3JOC9WWHuyey42yfLm1+czCi4cA/DdB6slnd1CRYPVrgRcd2mA/MdGMPH4feYQCi0WS4uLg853ZOU1PW3pwaoCozEyKyxGMzp2tifegCXPCDmfh1DgPXm9k4jzI7SqV4TgPwX1WVGQutoCTUzTFeUhJaZtxHvyvTSvjPATONVrjPPiPe6fFefB6nRPnwcq53ChOifPAUs0gBMo2A+WZakQ6wqRaFLtAmwCOMKkUYdI/0t5jj1FUx8OHSSZVXW1fhMnp08mvcsS+piY6Fx07AmvW0N9NTcDBg+TD3Fzq67p11P+dO312mI0w6fHQ8exsKrd3L+0w79KFojOqRZjcsYPq2riRImEmJ9P52r+fovTZHWGyoIBseeklGgvyOJMjRHKESedGmAz0WeA1GYkIk3bP5UZxQoRJXjwwDMMwDMNxHhiGYRiGsQ9ePDAMwzAMowtePDAMwzAMowtePDAMwzAMowtePDAMwzAMo4uYSBvgZCZNAj791Pf3GWcAn3yivXwoaZGaDEitHED5y8pIXtbURMfS00k6l5lJMrnMTOCdd4C1a+mzceNIIvnVVyQ5GzsWKCwkidfWrcCuXSSLSksDLrwQuPlmakeWu40cCfTpA7z8MvDllyS169iRZIk9evikndu2AT/9RFKu9HSSbB4+TNK76mrg2DFqY/hwktuVlQHdupEcc/Fi+hsATjiB7OzcmXzT0EBSRQDo0AE4+WSSk516KskSFy3ySU1POIFkaHv3AsePk1TT46HP9uwhyVxiIsmbTjmFpHYrV5L8MTOT+tvYSO2MHk39vuYa4K67yAYhqE1ZapiWRn3ev5+kbzNmALffTuPm97+nfrvd1GZtLZVvbKTzFRtLdXXtSn06cID8LklA9+7U/q5ddE6XLgW++YbKJicDffsCP/xAfkhNpXPcqxf1Yf9+OheVlXR+5fOVlkZ+amggqd2JJwIxMXQO0tLoHBw4QHLcBx4Ann4aeOstkucBNEYzM6nO3bvJzx07AgMG+Hy5bRv1ua6O+jxkiK/umhpg0CDq35YtJGHt04fqamqiMSEE+V7WgFVW0rnq3JmkgxUVJCc+4wzyy5dfkqS4vJzOeV0dSf3y8qhvqanAlCnkH395qpLksbSUpJxlZXQsM5PO89dfk00FBT55cbDr019uuGMH8Nxz1PcePYAbbqBxoCT7a2wkP8nX3YgR5OPt22k8AOT7xkYar2Vl5IvUVKonUDprRNLoL+sUgq5jt9sng5V9uGsX+aa8nGyYMIF8+NRTdJ7y8kh+vHdv67nNqPQxXGXVZO1OkmzW1ADnnkvjq1s34P336ToLK+bDSjgHJwSJkgkW/EUtcJPHox4MxYqgTJw4tdckScE/1xqESpKUg2IZuT49Hl/AoZISawKmqQXt0hJMKVRAKTOBuuS5TWnO0xJ0SW2+tLqsWkC9wHOrtW07yM9X9nF+vvm69dxDYb4552DV4kHLxRCMkpLwToycOHGKviRJlIqKwtem2g0vnDYo+SDYjbikRHnxZ3VZtbxG7bYDtYWDnMwuIDjCpIkgUYGPKtRQe4TR2Ehf2Vn1nnqGYdo2kkRTfzjweOjRkv9X7vX1QFISzV2RQJLIrq1bWz8KCDWfWlUW0D9vB2vbDmpq6DFSKA4cMP4Ig4NEmUDLwiFYvtJSXjgwDKOdcP77Vl7uC+cts2BB5BYOAPW/rKy1XUDo+dSqskbm7WBt28G551qbzyy8YdJiKisjbQHDMIw6gXPU5s2RsSMQpblT63xqdVk9hGvO37HD2nxm4W8eLCY3N9IWMAzDqBM4R+XnR8aOQJTmTq3zqdmyZubtcM353bpZm88svOchAN7zwDBMOOE9D6H3LVRUKPvIqrJA8Lx67bYD3vPgcLTGcVDL53YDxcXa6pAkbfkYhml7SBKl3/8+fG0WF7e+0cXFAbNmhc8Gf+Q5cP585Ruw/3waOF9aWTZYXiN220FaWuhvifLzwxjvwZyww1lEe5wHr1c9zkNKCsd54MTJaHJinAevt/3EeZDnNqU5z2isBjvKao3zoLVtO3BKnAd+bBEEjjDJESY5wiRHmOQIkxxhEmgfESb13EN58cAwDMMwDO95YBiGYRjGPnjxwDAMwzCMLnjxwDAMwzCMLnjxwDAMwzCMLjg8dRAGDAA2bPD93b8/qRasQt7VW1ZGu5h37qQd56eeSrvA9+6l3cweD+38PnCAdl+r7e5uaKCd2lu30q7zhAQK/iLvLE9Oph38vXoBjz3m21l/xhnAfffRLmqXi/JVVtJu4i5dgLPOoh3qXbrQLt/KSrIzK4vyA76d/YcO0bGkJMo/YAAwdCjt2t+4kXZzZ2bSZ01NpGCoqSFbu3ShPhw6RDu9Y2LoeFwcqTmamsgvaWlUDwD07AmsX0++c7uB004jn1VUACkp1H51NZVtaiI/xMbSzveGBjqfdXV0LlwuUghkZVH9MTHU1vHjZNO+fVQmPZ12Oo8eTfbv3El2HjlCKSUFOOcc6vPq1b7zlpVFde7ZQ/3r1IlUE2VlPh/U15MtiYnUbyGo/Zoan7IiPt53nvwVEx07UtvFxaQqqa+nv9PTaSd8Zib5prqa2gLIHy4X7Y5fupT+TkoCLrgAGDUKeOEFavuEE0g18OyzNMb27/f5KimJ6qqro93fdXVke9++dO4zM0kpsmMHKSw8HmDMGOC3vwX+9Cfgl1/Int69yRebNlF9cXH0s7aWfJWdTb6rq6M2O3Wi8yjv9H/sMeDNN0nJ0dhICo2rrwYGD6Zyubk03mfPBj74gOqeOJH8t349+XriRKrvu++AFSvIX7GxVF6SyOcZGdQP2Qavl9QPcrCn1FTqx+7dvuvgtNPIZ2lpNC7Ky2lM9epF/pfr7t8f+P57UimNHk3qiZUrfcqJUaNIZbNtG2n6Z8xo+bmsAqiqaqkqCfwpq0yUFB+lpXT9VFXRmAeonDwnZWeT0qWpidQhn31GeYYNA/75TxoXanOdvxKlutpa5YJRNYZ/n3fvpv516kRz/9at5OeZM33jUWubsnJl8+bgdUQt5pWhzsFJcR5CoaQn1pOM6Mo5ceLEyT95PC1jTZiZk+RUWKhvrvO3wcr5VEu9WvvsdlOcCq1tKsXMUKrDaei5hyIM9hhi3rx5AoC4/fbbNZexavGg5QIxg573xnPixImTnUmS6KZm5ZwkLyC0zHWSRMnoAkKtjVD1GpmH5Zt/sDa11uFEoj5I1Jo1a3DZZZchNTUV48ePx/z58zWVsyLOQ+CjCjWMPsLgd18wDOM05ABOVlJbS0HAtMx1Rt8TEWo+VavX6DzsdlO/TjzR+BzudtPjTSc+wojqOA+HDh3CVVddhWeeeQYZGRlB8x47dgwHDx5skcyiZeGgJ18gRt4bzzAMYyd2vBRryhTtc50QtE+ktFRfG6HmU7V6jc7DjY1AUZG5ObyxkfZCRDuOWzzcfPPNOPfcczFx4sSQeefNm4e0tLTm5PV6w2ChOcL17neGYZhIsnmz/jJ650et+QPzmZmH5Q29ZjDiG6fhqMXDq6++iq+//hrz5s3TlH/OnDmoqalpTmXyyxEcTLje/c4wDBNJQr0BUgm986PW/IH5zMzDvXoZLytjxDdOwzGLh7KyMtx+++14+eWXkSDryEIQHx+P1NTUFsks/ftbmy+QggLfi5oYhmGcgB0veXrpJZrrtL7i2uv1vYRKK/J8qtaGWr1G52G3G3jwQe39Uqtj5kxjZZ2EYxYP69atQ3V1NU499VTExMQgJiYGy5cvxyOPPIKYmBg02vFQTgGtmyCNxnuQ3xtvdOAxDMNYiSQBs2ZZOycVFlLciuJiXxvB2geA+fP1L2Lk+VSpjWD1Gp2HZ82iOBah2gxVhxM3S+rGdu2HRg4ePCg2bNjQIg0ZMkRcffXVYsOGDZrqaE9xHlJSOM4DJ06czCWvN/JxHvxtsHI+1VKv1XEe5DbbQ5wHR0o1ZcaNG4dBgwaFVarpD0eY5AiTHGGSI0xyhEmOMNleIkzquYfy4oFhGIZhGF33UEe/22KZvJxmGIZhGMYxOGbDJMMwDMMw0QEvHhiGYRiG0QUvHhiGYRiG0QUvHhiGYRiG0YWjN0xGmqFDgbVrfX8PGULSPK34y3g6diS52hdfkAxryBCShLlcJPVbvZpkXr16+eRXn35K6dAhkoNNmkRyIH+5FOAr39REbdbWkmQwN5fkU19+SfKvgwdJCjZ1KrW7ZAnJrA4cIOmZLN9KSCCZmiyrPOUUkgd6PNT2qlU+qd7x49QfWeZYX0+yM0kiqZzHQ3LC9euBX3+ltmJifHLDtDSSCe7ZA2zfTlJIWbqWkkKyuOpq6pPLRceOHycJXLdu5MPvvydp3eHD1Oe+famtzZtJNnfaaeSPHTvo5/791P6oUWTvu+/ST7fbZ3/nziQDrKqiftXWkmzt6FHKIwTll2WKHTqQpE+W8l1zDeVfswb4/HM6hx06ACedRP1PSaH2+/UDXnyRzlFtLdUZH0+f9+9PMkuXi9pLSSE/HjlCeWR5X04OtbV2LUnBxo8HHnqIxsRnn5ENR4+Sn6dNA8aOJWnfv/9N7R46RGMnK4vegnjuucDChSRTA0h+NmgQjRc5Anzv3jQmhw8nf6akAM8/T2MxIwOYPJnqLSsj2+XrYfdun4wYoHMrBPl7+HA6n0IAy5dTWa+XjsnS5GXLyI4dO2hsZWT4zv2oUcDAgXTOAq+n1at98sM9e6juxkbq9y+/0LH0dOCqq+iczJ9P0uLUVKp31CjKI0sXU1NJynf4MPnnlltayvAC5X9KEkmgpXyxqYn6t2OHb2wXFNBc4C8FlP0g7yeXpdvymzG1yBX1yBqD5VWSOSpJQOW8anbrRaldeT4MJgHV659g/TIqDW0z2BxzIqw4KUiUVQFXOHHiJERyMqVI26GWXC5fACAt135WlrYgby5X63JKfsjKovYD2/V4WgdKUrJPKV+ovMH6GVhfSYlyf7Oy9AeI0jq3Ktlg1D9a+q7mw2hCzz0UYbAnbFi1eNAyWQSjpEQISYr8hMaJE6fwpsJCZ137kkTJP4qkkn2B+ULl1dq2fKMNlVfrTVfP3OrfJ639NjN3K/kw2mgzESb1YkWQqMBHFWqoPcJobKSvh828751hGMYqJIke8fz6K0U6VJub5Hzy4yqz85gk0Vf9QtDX/8HweChqZrCv/Y3MrVps0Oofre3JPozGRxh67qG8YTIALQuHYPlKS3nhwDCMcxCC9ngsWBB8bpLzlZZaM48J4QsVH4rycmozGEZs0mKDVv9obU/2YVuHN0xaTGVlpC1gGIZpzebN2vJFag4L1a7ddmn1jxbaw32AFw8Wk5sbaQsYhmFak5+vLV+k5rBQ7dptl1b/aKE93Af4sUUAQ4aYy1dQQM+89L4nnmEYxg4kiSSvM2cGn5vkfAUF1sxj8vP/rl1D5/V4fDJUNWSbjNoQqt+yf8zg78O2Di8eAtAax0Etn9tNr0QGeAHBMO2NwkJnXfeyLfPnUxwKtbnJP5/bHXwe09O/4mLgkUe05Qu1wVC2SWv7cj5/G4L1W/aP3vqV6orGzZK6sV37EUY4zgMnTm0zcZwHXzk9cR68Xm1xDJTyhcobrJ+B9UUizoOSDUb9o6Xvaj6MJliqaUKq6Q9HmOQIkxxhkiNMcoRJjjDZXiJM6rmH8uKBYRiGYRiO88AwDMMwjH3w4oFhGIZhGF3w4oFhGIZhGF3w4oFhGIZhGF3w4oFhGIZhGF1weOogWCHVVJImAS0lPiNHkhxLTRakJBvKziap2LZtJOsC6HdJImnlO+/4XvLSqxeFXi0ooDIrV5L8MDkZ2LWLpHOnnEIyyspKasftJtldQwPJ8E49lY4JQXK3LVvIlmPHSKLWtStJCzdsoDpdLqrzrLNIggiQvO3rr4Eff6Q6Bw6kvnfuTOU2b6b2s7PJhu+/p7KJidRHj4f6tGsXSfTmzCEp4tq1ZFfPniRl3LuXZG+y5FOSfPLK+HiS5NXVkZTw6FH6XJZdyhK5jRup/01NlLZto7zJyTQOjh0jWzt0ICmqEFTm11/pfHXq5JNa9u9Pvt2+3ee7/ftJ2pmeTv6TJOr3gQMkCYyJoT7Gx9M5yM2l/gDku379SKIo2xUfT33s0sXX56Qk6uPOnWRf797kozFjqOzKldSfK68kG6qqKO3bR33ev5/6eOQItbd6NZ2PHj2AKVOAp5+mPF26kAS1spL8N3Ystf/55z4JaHY2Sej27aN+jBunLkNcvJjkq9u2kbx06lTg9NPJr8XFwFtvATU1NG6GDiUZ9N69Phlpt250rHNnGpfDhwNPPUXjKy+PzsfevcryOiX5nXy9lpWRDxobqczw4dR3oLU8MPDaHzOGzkFpKfkkM5Okhf7yQlmu+fnndEyuK5j0UGnOCSWr1CstDFVOS71yHtmHsox25kzKK5fPzATefpvOVa9ewIMP0vWv16Zw4RQ7IoLNMSfCitOCRCkFRUlObn3c7VZux+NRDvzCiVNbSEoBkBISlPPGxtpjg8fjC+yjFPhHazAn//qKivSVMWKr2pwTaL9cJthnoeaxYOW01Bss6JLLFTr4V2GhPpvChVPssBI991CEwZ6wYdXiQcuFHIySkvBNwJw4cTKeJIlSURH9jLQ9WmxViwSpZH+wPgWrL1SdwXzmX69aHXqTvIAIZVO4btxOscNqOMKkiSBRgY8q1FB7hNHYSF+Nmn0vPMMw4UGS6FFKY2OkLQmN/KKnrVtbPo4wOuco1ae1TvnxjFq9XbvSLbWiQr9dStTWUgRUNZvU+mI1oXwTLjvsgINEmUDLwiFYvtJSXjgwTDQhRHQsHACytayM5hkZM3OOUn1a6wzmMyGovFULB4D22QSzSa0vVhPKN+GyI9Lw4sFiKisjbQHDMG0d/3nGijknsA4nzmObN2vLZ7ftWut3og+thBcPFpObG2kLGIZp6/jPM1bMOYF1OHEey8/Xls9u27XW70QfWgkvHgIYMsRcvoICet7FMEx0IEt1owFJojeNyhJSwDfnSJI19Wmt0+1W/1x+7t+1qzG7lHjppeA2qfXFakL5Jlx2RBpePASgNY6DWj63m7ToDMM4H/kGMGuWLz6GU5Ftmz+/5WLHf84JtN//b6W+CQFMnAi8+irFpJD3MYSqU5LIZ8HaLC4GHnlES89CU1hIMUlC9TPQN3agxd/hsCPi2K79CCNtLc5DMN07J07RnpwQ58HrtTbOg9drX5wHf1vV5pxA++UywWIt+KfAOAVFRa3nJ7ebjodqM5hd/mPAijgPoXxjB06xw0pYqmlCqglQ1MAjR9Q/T0oCDh8OXY+ZCJObNwNz5wavf9o0ijZod4RJgPKZ4eKLSQbrH2EyJQX45BP1MllZFHEPoEiGavTsST+3bDFnoz9DhlAUwq1b1fPk5lKEQP8Ikz//TNEn9eLx0DkKjDB5+DCwaZN6uRNPpPEaH0+RCPX4YNgwKm8kwuSJJwL//Kd63X/9qy86J0eYdE6EyfvuCz2vSBKwaBH9fsklZLdansmTOcKkE+ywCj33UF48BFBVpW2jS2Wl78K3Gq26bY+HJthIapq14vXq06bLz0x//ZVuqsHyWa0nl+sE9Gm5jfrKqNbevxygv22j46ct69zbMnrGp8cT/Jric9w24TgPJhg0yNp8RtCq2y4vj7ymWSt6telCUJkFC0Lns1pPLtepV8tt1FdKdWmpz7+ckbaNjh/WuUcnesZIqGuKzzHDL8YK4MABa/MZQY8+2CmaZr11aa1Xq7Y7UliptzeqtTfTrpGyrHOPTuw4H3yO2y+8eAggPV3b8/30dPts0KMPdoqmWW9dWuvVqu2OFFbq7Y1q7c20a6Qs69yjEzvOB5/j9gvveQiA9zwo21JRobxxSitqex7U6g3c8xAsn7znQX71tFn89zyEsk9Pn4K1F2zPgxYbAP1tm93zoMc3TOTRMz7lPQ9q1xSf47YJ73kwQU4OqSmCkZRk38IB0B4rorjYGZrmUEiSMW36/PmkAgiVz19Pblan71+nXi13sD6Fak9JF65HT24kvojR8cM69+hE6xiRpODXFJ9jBuBvHlRRk2tqlWlqIVDOVVAA1NfThXvgAEn1vvyS5HH+xMQAd90F3H23TxZWWkr/BTz7LMn1hAD69iU5XqdOPtmaLAutrKTjAH3D8dZbwMGDJAuLjSWp2+zZwPjxlP/tt4GXXyYpqUxCAnD55cCZZwK33UYSw0BiYnz/xRw/Tnb06kV5jx2jiei776htmfh4+g/J46Hz0KsXSTo3biT/+NfdsyfJ5Q4cALZvp5/BRrTLRf1Tk1PGx5Os7oQT6Fy/8QawY0fLlwB16EC2xcbSW/4yMuhRV3IycPLJwEcfAV99BRw96iuTmAgMGEDfpOzd6zuemgrceqtvA1rXrvRIbMMG4NAh6pvLBSxc2HLcxcWRVPCPfyQ7du4kCdzmzXS+/P0ZSGIi1XfZZb5j/pKzrCxqf9s2kmWedBLw3/+SPSNHAgMHUh9++QV47LGW5z01Fejdm3526kTlx45VlhyqSZmVpJP+MubAcdyxI9m7dSt9S/Xb39J1sGkTjS9/SeXOnVRu5066vocMoSBJ/rJR+brwtxcIbWsgWmV8Vsj9Qkk0/T/bswf43e+Uv9n0emlRIEsw77uP5qN9+3x5srOBq66iwE3hlCZqlb6HsknNV21NdmkEXfdQG+NNhB0nBYkKhVoQKT0pIYGCtWgJ/uIf4MXq4DWcoi+5XMED/diZPB71QEpZWcGDNsnJ6nEcGLAq0CalQEb+tipd34G2BwZg0pMv1FyiVofaZ6+9JsTSpUL85z9C/Otf9HPpUiEaGtTrTE4WIjXVnK1G0RN0L5hNav5QmkfD1TcnoeceijDYEzasWjxomWzMUFISvomaE6dgqbBQCEmKvB2BqajImXYpJaUFgZLtkkTJf3GkJV+ouUStDjV7Q9WvVqeRuqxA73ypZpOefoWrb06DI0yaeGwxaRLw6aeh851xRvDoiGpYFXSJYdoy8tfI0YD/xlMrg5+F2pBoZi4xGpjMqK1GsSrwmtUB3NoqvGHSBFoWDnryBWJV0CWGactEy8IBaBlsy8rgZ6GCMJmZS9TqN1KnFluNYlXgNasDuDG8eAg7HFSFYdoe8nVtdfCzYPVZMZcYDUympS4rsCrwmtUB3BhePIQdDqrCMG0P+bq2OvhZsPqsmEuMBibTUpcVWBV4zeoAbgxLNVvBex4YJvJE+54HK4Kfad3zYCSAm9HAZHrqsgKr9zxYFcCtrcJ7HkygdUFgZOEAGAvmwzB2UVhIE6TZ4FpWM2uW82xSwz/YlpXBz0IFYdIawE1P/XoDndkdMMrIfKlkk9UB3BgANis/wkp7i/OQmBj+OA/RIp/jFDxFMs6D19s+4zx4vdriPCjlCzWXqNVhtH6lcllZrc+ZXluNoifOQzCb1PyhNI+Gq29OgqWaFkSYBFo/wjD6qEKNUBEmTz2V/jP84gv62mzjRoo22b078PvfU2S8cEWYlKOujRwJLF8OvPQS2VJQANx0E+VZsoRsqK6mKIYA2bFzJ0WoU4ow2a0bRSysqaGvfnfvpiiP+/dTHXKEyW++Aerq6DOAojcePUp/JySQv3bvBhoaKELiwIHkv4wM8snWrfSfRJ8+wCmnUDTG/fvpWLduVDYnh/yZm0vHk5KApUspsqLHQ5E0O3cGVq2iiIYHDypHmPzhB4oGOXIk0K8fsGIF7dj2eoEJE+j4U0/RprkePeg8lZaqR5gcOhRYtw5oaqJzffAg5c3LA66+umWESSHoeFMTRSdNTgauvJKiVL78su+c3XIL/ffrPxb1RpgMjMQ4fDjwxBPA559TXo4w6cwIk1rrVyoHRC4KI0eYtB8991BePDAMwzAMw3seGIZhGIaxD148MAzDMAyjC148MAzDMAyjC148MAzDMAyjC148MAzDMAyji5hIG+BkzjoL+Phj399nngl89JH+evwlRk1NJO3bv5/kc2rytMWLgYULSYKWmkqSv/R0kph160ZlGhuBV14h6V6XLsCIET5JWlUV5f32W5IN+ksq/aWhAEkvd+zw1dvQQFLM774j6V9CAkkVx471Sfzq64FHHyVpU20tSfd27yY5pSSRzaedBkyfDsTEkOwtK4vsWbmSJIRTppDk7q67gF9+IdllUhLJ8rp1I0llp04kjfzuO5JzxsWR5DM9HbjgAmDQIJJJrl5N/qiqojLV1SS9POEEoH9/sq2igs5neTlJQPPzSUJ69Ci1O2gQSQwlifqdnEwS0Q4dyFczZ1I7FRXUzr59dA5lSVegFBEgPy1Y4JMNDhxI57Wigvzcvz/1KzGRpKu9elHehASyqU8f8l9mJvVr925q5+uv6fMRI8iGrVvpfDc20jkQgn4eO0bnbswY4NZbyS5ZjuYvSezUicbm55/TseHDgffeI4loRgYFbTrjDPpMTeb2ySfAww+TbHbIEODBB4G1a1vKfJXkkErSyGASubo6smftWhoHd9xB/vIfY198QeN+yBCSxwrhG+ceD/nzwAH1azDYtRwoHc3J8V1zanJStX75ywM7dfL9LV+fauNKrQ5/P8s2ZmXR9SnbpUWCqFanlbJTI9LIUHapjbH2Kr20FZtjToQVJwaJ0hIMKjAwjlJAGqckl0uIoUODB9Vp78njofNYVGR9MCMzSZLMja3Y2NZj2eOhfiYkhC6v1Rey/5QoLLTHN8ECPvlfy2YCsgX2S299Sn5RqiOUn4P5V2udWm1Ra0tPXj12Bet7qPoZffdQhMGesGHV4kHLhayFkhJ9E1hRkT0TI6fwJo7Cad5/ktR6ordr4eCfgkUmNHte/ftlpL5Av5ixScm/eurUaovSudST1y7/M8rw4sHE4uHMM7UNxDPPDF5PQ4MQXbvqH9x2T46cOEVDkiQKD9zQQNfTkSPhadfj8bXpfy1bFb5bkqguo/XJfjl2zJxNgf410k+ttvi3FaoNK+zS22/Gh557KG+YDMB/j4OZfPJzUT0IoS8/w7RVhKAQ3PLz/6Ki8LRbXu5rU6a01Lq34ApBdRmtT/bLggXmbAr0L6C/n1pt8W8rVBtW2KXF5sBzzOiHN0zaRGVlpC1gmOhHvo42bQp/m2p/O4HNm62px79vRvup1RY99Vthl1W2MMrwNw82kZsbaQsYJvqRr6NevcLfptrfTiA/35p6/PtmtJ9abcnN1d6GFXZprZ8xSBgeo4QN3vPAiVPbSO1hz4OR6z1wn4GZDZNqewu01qnVFqU9D1ryGrVLb78ZH7znwQRa4ziEyud2A488oq/t3/9eX37GmUhSpC2IbmT/zZ/v0+UnJtLr6e2muLh1LAC3m46bPa9y+eJiSv7H9JSfP5/inRipwx9//wK+fmqpU6stgecyWBtK512vXVpt5ngPFhCGxUzY4DgP9ieO8xA6eb3tJ86D12t9nAfZf0pEc5yHwH7prU/JL0biPATzr9Y6tdqi1paevHrsCtb3UPUz+u6hkhBCRHoBYxV63kWuBY4wSZcdR5jkCJMcYdJ3bXKESY4w2VbRcw/lxQPDMAzDMLruobzngWEYhmEYXfDigWEYhmEYXfDigWEYhmEYXfDigWEYhmEYXXB46iCccQbw2We+vydOBD79VD2/lTuNA3d1yzum5Z8pKcDzz9NO/RNOoB38a9f6lBTjxlGdK1dSLHdZjVBeTuFka2tpZ/8JJwCxsfT7jBnAihWktDh4kHaRp6dTGSFoN/7u3bSzfcsWUowIAXTuDOTlUXsDBpD6YcUKaru+HjjxRODkk0ltUFNDP/PySG3w/vt0rE8f2kW/cye1ffgwsGcP9SU5mXaJHztG7cXG0i75Tp3oZ4cOpDIZOZJ+HjtGWu79+2m3/VlnkTJk40YgLQ248kqqY9s28kltLbWXk0N+/ewz8ll9PSkN8vNJOTJuHNm+bFnLXfv791NdGzfS56ecQnaWlpI65IorSEmydSsdT0kB1q8nhUXnztT2kSPAqFHkv717feqHZcuA7dvJzj17SGHRtSswdCiwZg2ND1khkpxMqoqbbqLz7b/jfOdOOtbURDakpvqUO2PHUnlZaSGrDwBqf8kS6q/XS+MvJ4dsGDKE3jnx1Vfkw6wsoGdP6n9ubsud/f7jWVaqAOrKI73XkqxmamwkFYUk+ca0rJDxV0IE2qWkdtCjwgiFUv+NKj20Kh7U+mxVX/SoJCJZr1U43b6wY7NsNKxEMs6Dle+y16v/Vksci4GT0ZScbE28EY+H4kBoHc9ZWcr5g11LoeKomLFLS/yHUIS6no3GmFDySbC21Hxoti9OrtcqnG6fVUTtK7kXLFgg+vfvL1JSUkRKSoo47bTTxAcffKC5vFWLBy2Tjz9Wvsu+qIjDVHPiFJjUrqVwtW/0JqF2vetpQ+v8oqWtQB9a0Relc+OEeq3C6fZZSdQuHt555x3x/vvvi19++UVs3LhR/PGPfxSxsbHi+++/11TeisXDxInaLvSJEym/nvfTa4mR76SIhJw4OSnpvZasTErvvAiFXhuNvFcj8P0SWtox8m4HPfOcE+q1CqfbZzVRu3hQIiMjQzz77LOKnx09elTU1NQ0p7KyMs0dV0PPhCKEEEuXasu7dKn2vJw4cVJPkbqWli7VN5cYsTGwDa11/OtfzuiLU+q1CqfbZzVt4sVYjY2NePXVV3H48GGMGDFCMc+8efOQlpbWnLxeb5it1P5e+MpKfoc8w1hBpK4lvW0asTGwjNY6Nm82145V+Z1Sr1U43b5I4rjFw4YNG5CcnIz4+HjceOONePPNN9G3b1/FvHPmzEFNTU1zKisrC7O1+t5Pz++QZxjzROpa0tumERsDy2itIz/fXDtW5XdKvVbhdPsiShi+CdHFsWPHxKZNm8TatWvFXXfdJTp27Ch++OEHTWUjuefBinfZA7TngTdMcuLUOkXrnget13OwPQ+h5hd5z4OWtszsTdAyzzmhXqtwun1W06b2PJx++unihhtu0JQ30mqLwAEWTG2hlpfVFpw4tU6stgg9v4RLbaFlnnNCvVbhdPuspE0tHsaPHy+mTZumKa/T4jwYfZc9x3ngFOlkVZwHr9eaOA/BriUjcR602uXkOA9KPgnWlpoPzfbFyfVahdPtswo991BHvZJ7zpw5OPvss9GtWzfU1tbilVdewd///nd8/PHHOOOMM0KWt/qV3BxhkiNMcoRJjjDJESaN2eGUeq3C6fZZgZ57qKMWD9dddx0WL16MyspKpKWlYcCAAfjDH/6gaeEAWL94YBiGYZj2gp57qKPebfHcc89F2gSGYRiGYULgOKkmwzAMwzDOhhcPDMMwDMPoghcPDMMwDMPoghcPDMMwDMPowlEbJp3G2LE++RpAMrjly43VpUWauWwZyQTXriVJXpcuJBHcv1+73Mpftgb4JJulpXSsqYnkit98Q/K7vDxg2jRgwgSfdE0u39Tkk9IB9Pu+fVQOIPt++YVkhvn5wAUXkEyuY0dgwwZg0yaSpWVlkVyutpbkmV4v0KMHyRK//Rb47juSITY2klyuRw+SsVVVkSywqYlkjrt30+cjRpA/XC6SSmZmAm++SdI0WQq5fTtJIDt1Aq66ivr25ZckZ5wyhXzyyCPAf/7TUk7qdpM8de9eYN06koGOGgX060fy07IykmhmZJDNX39N7XToAJx6KtkVKD2srydJ46ZNJGU86yxg0SKSpApB59XtJvnl/v3kr+pqqr+srLVMc/jwlmNi5Ejf+ZXPuZLkUZZtVlfTGDzlFGD6dODXX2lMXHMNnb+9e6ndbt1oXMiyTSXpcHY2nSOApJ8rVgDff09969+f6h83jmx76SWSlY4eDdx6K8lYla6P9HTgnXdIDtyrF/DAA3RNyNfO8OHAU0+R5Dg/n+SYK1e2vnbS04GYGN81I/e7oMDXHytkd2pyz6YmGpuytNVoG2pzR7A5RWkeCCUJDTZWrJAlKtkLBO+DnnNktZTSydJMR9hmc8yJsBLJIFHBUAow4vG0DAqlNdCNfzmldpTq0RLhLjmZguYYCbjDST3FxtrfhlIwMLVgS0ZScrL148LlIvvUrg87U1ZW6/4Eu670XttqyUgbanOH0rmV61ebB4IFowrVD6P+CVZ/sPMQas7U6iczUS+trM9K7LStTUWY1EOkwlMHQy1krH84ar2Tn1JI1HCG6uXEyapUWOiMcOxGQg3rCT3t347WNvTWbzQMttaw1kZDMevpR7B8ajaEmmONLNisrM9K7LaNFw8mFg9jxmgb5GPGhK5Ly8t73G5jE53/y1gaGoTo2jXyEzAnTtGc9LzkyOiLubS2YeeLv/xfwKWnHSMvgbK6H0pzX7D69dpsdX1WEg7b9NxDecNkAP57HMzmKy2l0M7BaGzU1p4/QtAzaTmMrvwsmmEY4wReV8HQcm2bacNo/VooL285d2htR49/ZKzuh9LcF6x+vTZbXZ+VOM02XjzYSGVleOq3ux2GaU9ouZ7MXnOhyjt57tBTxq5+6LU/UvmsxGm28eLBRnJzw1O/3e0wTHtCy/Vk9poLVd7Jc4eeMnb1Q6/9kcpnJY6zzfjTEefh1D0PwTYB8Z4HTpyckYzseTCyYVLPngc7NpMq7XnQ0o6ZPQ9W9UNtz4Na/Ub3PFhVn5WEwzbe82ACrXEctORzu4HiYvpdklp+JkmUZs3SZ5/M/Pk+Xa/bTTELGCbaKCz0XQuRRG7f/7oKRrBrOxRa2jBSv9Z8xcUt5w4t7ej1j4zefvjnUZozA20INcfqtdnq+qzEcbYZX6M4j2iK8+D1Govz4F9OqR2jcR5SUjjOgx2J4zyo2+ykOA/Briu917ZaMtKG2tyhdG7l+u2I82DUP8HqD3YeQs2ZWv1kZZwHsz6wCjtt03MPlYQQIkzrFNvR8y5yLXCESY4wyREmOcJkKDjCpPF+ABxh0gh22abnHsqLB4ZhGIZhdN1Dec8DwzAMwzC64MUDwzAMwzC64MUDwzAMwzC60PVK7muvvVZ3A5Ik4bnnntNdjmEYhmEYZ6Jr8bBkyRJIOkXNevMzDMMwDONsdC0etm3bZpMZzuSii4C33vL9feGFJAkMJJRkSu2z+npgwQKf5GzmTJ98LfCzGTNI7qgmV5s5k+pVkmkuXw4sXEiSyNRUCsxzyikk/8vKIrnkypU+GePpp1Nd9fXAo4+S/YcPkxSxY0eS8wEkhTtwgGSJBQUkO3zpJWDbNiAhARg8mKR8e/fSC108HirvL10DfBLAqiqSgsoyx4IC6svChST9TEsj22+6ifpeWkryTyGAo0d9csm0NKCkhOSM/fpR+eeeA95+G6ipoWOnnkpyvqwskgVu3kwyyh49yP7ycpIk7toFdO5Mkju531lZ1OaRI3R+t20D4uPJ5smTSd62ejVJ9VwuOldeL/184gmyu0MHkqru3Utyz6QkOq+pqcD69eTvpCQ6T7W15J+dO6mf6enUh5EjW0o2hw8HHnuM+ikESSVHjSJ/f/st8MUX1O7AgXSsurqlvwOlfLLcb8kSkm56vXROvv0WePddXxsjRpAdGRnAmjV0PD+fpK8rVqhLFgNlwVlZ1Jfdu2lslpdTm2PHkj3Ll/vsGDs2tPzS/xrp0YNsra6m+kNJn50s0wNa+y6UJNTJ/XGybUwQzIeVcA6RCBKlFLDD41EPdCJ/VlTUOjS1203HlT7TEnQnIcGaIDrJyUIUFioHH7I7WA+nyCX/IEJ6ApfpTR6P9QHJjI4l+XrUek07gVDnJtBWJ/fHyba1R/TcQ2FFg6tWrRL333+/uOOOO8Qvv/wihBDi8OHDYt26daK2ttaKJjRh1eJBy6QjBA1wpeiNwSI62hGrnhMnK1NRUeRtCGeSpJaLJrVr2j9fpCgp0dcnJ/fHyba1V8K2eDh27Ji46KKLhMvlEpIkCZfLJRYvXiyEEKKurk5kZWWJe++910wTurBi8XDhhdouzsLC8IbU5cQpXMnub5ycmLxeIY4dC35NR/KlSEL4XoykpT+SRHmDvTDPCS95cqJt7ZmwvRjrL3/5C9577z088cQT2LhxI4QQzZ8lJCTg0ksvxdtvv22mibDjv8chGG+/Tc9kGaat0dQUaQvCT1kZ7TEKdk0LQflKS8Nnlz+lpdrnHCEob0VF8DyR6k+ovkTa10xoTC0e/vvf/+Kmm27CDTfcgMzMzFaf9+nTB1u2bDHTBMMwTFjYvFlbvspKe+0Id7uR6I/WNiPlayY0phYP1dXV6N+/v+rnbrcbR44cMdMEwzBMWMjP15YvN9deO8LdbiT6o7XNSPmaCY2pxYPX68XPP/+s+vkXX3yBE044wUwTYefCC7XlKywk6SGHsWDaGq52GHfW6yW5c7BrWpJ8ctVIUFBA9mlBkihv167O7I/cFyfaxmjD1DRx5ZVX4qmnnsKqVauaj8lBoZ555hm89tprmDp1qjkLw4xSHAcl3noLKC6m3wMvAP+/g33GME5k9uxIWxBeJAmYP59irIS6pufPj1wMArfbZ58WiovptfOA8/rj3xen2cZoxMzOzGPHjolJkyaJmJgY0b9/f+FyucTAgQOF1+sVkiSJc889VzSEcbusU+I8eL3qcR7kz6yO8wAIERsb+V3rnKI3hSvOg9frnDgP8vWo9Zp2AqHOTaCtTu6Pk21rj+i5h0pCCGFy8YGXX34ZixYtwqZNm9DU1IT8/HxcdtllmDJlSljDU+t5F3kw4uMpuqIacXHAsWO+v8MZYfLtt2lFrsbcudQmoC3C5M8/A3/7m3bfTJlCXycCrSNMlpYC994bvPy4cb4ImEpMngz07ds6wuSKFbT7Ohj9+wNnn609wmRFRfD/5Hr1AhoajEWYfOUV4KOP1OsuKADOO88XYfLAAWDt2uD982fSJODKK9UjTO7ZA2zcqF7+lluAvDyOMMkRJiOPk21rb+i5h5pePDgJKxYPFRXaniuWl9OFGk4aG2nCV5M4yc85t27VdvGFqk9P/Y2NQPfuwaVhgO+moad+rXZ6PHQjt6Lven1ppm4rz4OR9hmGYQB991BLtkY1Njbiq6++wmuvvYbXXnsNa9asQaPaHcLhBBGPGMpnJVZro/XoxkPVL7+fIhTBhoVa/VrtLC+3ru96fWmmbivPg5H2GYZh9KLrxVhKLFy4EHPmzEF1dTXkLzEkSUJ2djbuv/9+Q6/xjiS1tdbmsxKrtdFGNdRK5azUYwfWpaduJ/hIb91Wngcj7TMMw+jF1OLhqaeewk033YRBgwbh7rvvxoknnggA2LhxI5566ilcf/31qK+vx4033miJseEgJYWe32rJF26s1kYb1VArlbNSjx1Yl566neAjvXVbeR6MtM8wDKMXU3seevbsCa/Xi88++wyxsbEtPjt+/DgmTJiAioqKsEWZbC97Hioq6KvnQIzueVCrT0/90brnwSpfmqnbyvNgd98Yhmm7hG3PQ1VVFS677LJWCwcAiI2NxRVXXIFdu3aZaSLsdO3qUzyoERcX/oUDYL02Olh9gYSq3+32acqDMWsW1aXHfq369uJia/puVmeut24rz4OR9hmGYfRi6puHUaNGYciQIShWmdlvv/12rF27Fl988YVhA/VglVQTUJdrBso0tSJLqz77jCR5HTqQJOnWW2kSl2VXDQ0kJ5QkkgrOnEnlH32UZG8dOpA06803gaNHffV7vcCDD9Jz7E2bqPzw4XR8yBDgrrvoeK9elC8x0WfT448DH3zQsl+S1PK/1uxs4KabyL4dO4Bu3YAJE4CRI6n8W29Rmbw8+v3Qodb+HD8euOIK8sHrr7dsz+MBHnqIvl1YsQJITiZZ6Omn+/47v+8+4B//AA4fbll3ZiZwwQVURpa1rlzZWsbWqROwYQNJ94QgqenGjcDixeRzmfR0YOhQkmImJAAnnUQ+i4vTJimTpWdvvw28/DJJA/37ef31ZGdlJfDNN7R/Rgj6+4cfgLo69XGUmgpMm0bndd06yp+WRpFRb7ut5cL3jTeA229v+Y1NZiblGz26pczR7W4pD+7Rwye1BHx55DKyDDJwrAX6JFCGN3IknZtAHxqVO+uV+fnn79SJjgX6Qale+Rr65Re6Bi+4gMZMVhbJbeWf0S4BtZto6X+02Gk1uu6hZgJKrFu3TuTk5Ij58+eLI0eONB8/cuSIePjhh0VOTo74+uuvzTShi0gEidJCsKAukiREQoJ6W0rvu1fKM2SIvsBSQ4faFwTISHK5lPuanEwBhUK9vjccNgaeJ49HW4Chjh2FuOMOIe65J/grks0mSSJf+dPQQO1mZqqX83joFfNGApMp1eUfaCrQF4FteDzK51euR6kOLZ+pXYfBxlGwes34IVj7wexta0RL/6PFTjvQcw+Fnor79+/fKnXt2lW4XC4RFxcn8vLyRF5enoiLixMul0t07dpVDBgwwHBH9GLV4kHL5KCVkhJ7b2icIpckiZL/zVJpIROuxY2c/BcQajbZ7ZeiInPtBisb6jP/c6LHD1b7SevYULK3rREt/Y8WO+3CtgiT48aNMxQxcunSpbrLGMGKxxZXXUXRAUNx5ZX0lXQw9Ab/YaIPefPhr7/SowgnnGu3mx65uN2RGX+SRFErIxXqxWwQLivxekOPjba+gTVagpZFi512ErbHFk7Dim8e9PxnEYqlS8P7Hx+nyKV//SvyNgTa097H39KlzrgOtY4N2d62hlb/R7r/0WKnnei5h5oOEsWow0F42g+bN0fagpZs3kzv5GjPmA3CZRVax0ak7bSLaAlaFi12OgVLFg/Hjx/Hzz//jJqaGjQ1NbX6fMyYMVY0E3VwEJ72Q35+pC1oSX4+jz+zQbisQuvYiLSddhEtQcuixU7HYOYrjsbGRnHnnXeK5ORk4XK5VFO4sOKxxZVXavvq6sorQ9fV0GB+1zYnZydJolcIHztG5zrcmxOVkttN9sjjLxIbJq1Qbpg9Jw0NLa/DSJwbLWMj0N62Rij/O6X/0WKnnei5h5oKEnX//ffjwQcfxNVXX40XX3wRQgg88MADePLJJzFgwAAMHDgQH3/8sTWrnDARahOknnxagxsx0Yl/wKW4uNCBmcLFrFlkj57gU3bYoBQMTCv+5YL508ogXMHqNYIkaR8bbTloV7QELYsWOx2DmVVKfn6+uPzyy4UQQuzZs0dIkiQWL14shBDi2LFj4tRTTxVz5swx04Qu2mucB5eL4jZEc5yHmBhjcR5kCVU4bAw8T16vNi2/nM+K+AHBklKcBzWbAu2zKs6Dv0+0xHnwepXPbzCfaflM7ToM5QerzpPesdEeiJb+R4uddmCbVDOQhIQEPPLII7jhhhtw6NAhpKam4r333sM555wDAPjXv/6Fhx9+GGVlZRYtdYJjZYRJoLVsU4s8Uw0rI0z26wd8/z1FWhw9muqIi/NFCNQbYXLxYrIpKQkYMwa44QaKHlhaSm0MGULRISWJ8geLMHn++cCAAb6+NjVRvSefDMTGUuTGqirg44/p3QvdugGzZwNnnEH2yP1UijBZWkqvkl69mi5pf//IkRH1RpiUJPp54ADJC0eOBH78kXz1/ffmIkwGi4hYUdE6wqQkUb8HDSJ7d+0C1q+n93UkJQGDB1MEw06dyIehIkyq2aQWWZEjTHKESbuJlv5Hi51Wo+ceamrx0LVrV8yePRuzZs0CAKSnp+Pee+/FLbfcAoAWD3/5y19wKDBWsU1YvXhgGIZhmPaCnnuoKbXFKaecgjVr1jT/PX78eMyfPx+nnHIKmpqa8Mgjj2DgwIFmmmAYhmEYxmGY2jB5ww034NixYzj2/99wdN999+HAgQMYM2YMxo4di4MHD+Kf//ynJYYyDMMwDOMMTD22UKKmpgbLli2D2+3GyJEjkZmZaWX1QeHHFgzDMAxjDNseW+zYsUNTvlNOOQUAcOjQIRw6dAjdunXT0wzDMAzDMA5G1+IhLy/P0IuxGiP1hhyGYRiGYSxH1+Lh3//+t6HFQ7RSWAi8847v7wsuAN5+23h9/jK93btJ3rV7N0m8AJIUdurUUvIlS9vkMtnZJONraiIp4vbtJPPr3h3IyAD27aO3wslSynHjqO5gcjl/2Z0QQEoKyQDr6kjSOXQo1fPdd8AXX5B889RTyd5vvyXpZmKiT9LpdgM7d1Le776j3zt0IAnn4MH0zgV/eVtGBrBmjU9+6S+1bGykPFVV9KbIIUN8tqxcSfUOHEg+qa6m/rtclGfkSOqXLOG85hrgzjuBpUuBgweBnj3pHA8aRJLExkaSbApBfRg6FNi/3+dzgHz71lvkgxNPJAmn2w089hjw+efAoUN0Dnv08PlfliIuXgy89BLl8ZfYqsnC6uoo2NLatSQnnTWLpKv+587/XHbqRHUtX95STivboAV/uW9TE7UbE0N1qNWjRf4oy4KXLaPPA6WfeqVwSv6cOdM3boDgNjMtMStNtELa2F7lkVGLrREnwoxTg0QJYTzwjNnAPcnJrYNBRTJ0cHtLWVkUBCk5ufVnLhcFZwocFx4PBfGyanxkZWkLcFNUFLw+pXpCjWuPh+oNFZDM49EehKekRNmfZvrenlE6h3rPh5nyVtXBmEfPPRRhsCdsWLV40DIp6aGkxBnvPODUvlOwibioSH89Vo5rOVJoqJtFSYn1fW/PqJ1DPefDTHmr6mCsIWwRJp2GFWqLwEcVamh9hNHYCOTl0dfdDBNJPB6KVhn4VXB9PUWw1Lo1yePxPQqyclxLEtW9dav645Fu3egxmF7U+t6eCTU3aTkfZspbVQdjHXruoabiPLRFtCwc9OQrLeWFA+MMystpPAayYIH2hYNcz4IF1o9rISj8uJKNAB03snAA1Pvengk1N2k5H2bKW1UHExl48WAzlZWRtoBhfCiNx82b9ddjpIxW1K4Zs9cSX4st0eoPs+cjWD4r6mAiAy8ebCY3N9IWMIwPpfGYn6+/HiNltKJ2zZi9lvhabIlWf5g9H8HyWVEHExl4z0MAvOeBaavYseehooK+WrYC3vMQXuS5Se0cat3zYLS8VXUw1sF7HkygNY6D1nxuN1BcTBcBw0SS4mLlCTgujmJI6KknLo5+AtaMbbmO+fPVbxJuN72y3QhqfW/PyHMT0Pocaj0fZspbVQcTIWxWfoQVjvPQOqWkcJyHSCYjcR683rYT58Hr1RbnwevlOA+RQukc6j0fZspbVQdjHpZqWvRiLI4wyREmOcIkR5hsD3CESQbQdw/lxQPDMAzDMLzngWEYhmEY++DFA8MwDMMwuuDFA8MwDMMwuuDFA8MwDMMwuoiJtAFOZsgQUh3IDB5MO9+1EGrnsJadxY2NwKefAg89BGzcSDvfp0yhXfqrV7dUbcgKjZwcoKYGuOsuUg7k5wNnnw2sXw8kJ1P5ceOo7SVLSK3R1ERqhupq0lYPGABMm0Y7+7Xsdq6vJ/19aSlQW0tqhd27gbQ04MILgdtuo3z/+hfwn/+QXb17A7ffDvz0E6kXtmyh/nbuDEydSjvnn36a6kxKIturqkiBMGgQ1fHDD6Sa8Le3sZHUArLC4re/JcVFaSkpJLKzlZUQpaW+GPorVwLHjwMnnAD07095MjJIeeFy0bh47jng++9JiXDKKZR3wgQ6jytXUl2rV5NvXS5SblRXkzrl8OGWagt/hYMkkfrF66W6AvszcybZs2wZnb9t26iM1wt07Ejnv2tXKguEVkEEjsWsLLLRX1WTne3reyjVhVFFhZJio6qKkqygCaxv5EgqY1ZdEWi3lSoNq+q200anoFdtweqMCGOzbDSsOCXOQ6h302t5d31JiRAJCZGNUZCcHFpnXVRE8QoiaaecYmP12SLHYDASf0Mt6Wnf5aJ4DmqxFZKTW9fncmkbF1lZwWMryOPNSPwRtXgPoWI5BI7xYNeLUV/rjeugZrcV8SGsqttOG52CljnRTH5GG3ruoQiDPZq5//77xZAhQ0RycrLIzs4WhYWF4ueff9Zc3qrFg5aJS41Q76YvKgr97vqSEutuZlYktQuyqCjytnEylpTGoNFxoXW8+o/xUNeLVbYFQ4vdRm9GVtVtp41OIdScqbRQ1ZOf0U7ULh7OPPNM8fzzz4vvv/9efPPNN+Kcc84R3bp1E4cOHdJU3orFw+DB2ianwYNbl21oCP4flCQFj+AnSVQ+NzcyNxS11LUr9c2fY8ec840Dp8gkj4fGQdeu2stIEkUObGgIfb2YtS1wzAZeq1rsDlWPnXVr9Y8RG52CljlTHi9G8jP6iNrFQyDV1dUCgFi+fLni50ePHhU1NTXNqaysTHPH1dAzQQWydGnkJ3S70tKlLfv6r39F3iZOkU9Gx8HSpfZfL4Fj1ui1GqweO+u200anoLWPcv/05mf0oWfx4Gi1RU1NDQAgMzNT8fN58+YhLS2tOXm93nCa14q2/M75wL5t3hwZOxhnYXQcVFbaf70Eq19P23rttKpuO210ClrtlvPpzc/Yh2MXD01NTbjjjjswatQo9OvXTzHPnDlzUFNT05zKysrCbGVL2vI75wP7lp8fGTsYZ2F0HOTm2n+9BKtfT9t67bSqbjttdApa7Zbz6c3P2EgYvgkxxI033ii6d+8uysrKNJdxyp4HtQ1gvOeBU1tKVu15sGPDJO95iA60zJlKex605mf0EfWPLW655Ra89957WLp0KTweT1jb1hrHQSmflnfTz5pFv6t9XlxMb2h0Eo880lo/HRcHzJ4dGXsY8/iPv8CxqJXiYhoHjzyir83582k8BbtezFJcHFzz73ZrsztUPXbW7e8fM/U4GS1zpjxejORnbCQMixnNNDU1iZtvvll06dJF/PLLL7rLOznOg/+76bW8u57jPOhPHOehZd+CxV2Qx1s44zwEjvFg14tRXzsphgLHedCOljnRTH5GG3ruoY56JffMmTPxyiuv4O2330bv3r2bj6elpSExMTFkeatfyc0RJjnCJEeY5AiTZuAIk9rhCJORR8891FGLB0nlu8vnn38e06dPD1ne6sUDwzAMw7QX9NxDHfVuCwetYxiGYRiGUcGRGyYZhmEYhnEuvHhgGIZhGEYXvHhgGIZhGEYXvHhgGIZhGEYXjtow6TRGjybJmsyoUcCKFdrKBsqIRo4kCZ8sr8zOJkldqONK5XftImmmywWMGUM/q6ro+J49QHk5SffGjlWWti1ZQtLIX34hmd+wYcC99wJ/+hNJUdPTgTvuAGJjKX9DA0kjXS6ge3fg11+Br78mGWJ6OpCaSr4ZOJD6oGTfzp2+/iQlAR06AD/+SLLSTp0oT4cOJDWsrSWZoCxzTEykY7/+StLGoUOBo0eBHTvIV0eOUL1paUBeHsk/d+6kPCkpwEknAZdcQrbLfiwro3P73XdUtkMHoG9fIDOTfNatG/lo61ayt3dvyte1K+XZt49krtXVZN+ePZTi46mNUaNI3iifz+HDSTLqLyF99tmW8szOnYENG6hd2bcxMT5ZHtByTJ1yCjB9OvklLQ245hryk9xmoNSzRw+gTx/gv/+lfKNGAf36+ca4WjtqtvvLR+PiWo77wPGsVUYny35XrPBJi2XJsCxplfvSvz/5PJgM1S6MSrHtKhfJvjLtFHtDToQXJweJUgsEpPV4sLDWdgQwaqvJCj9GIiUnhw7CpFRG7zk30o7bTcG2ggV78niMBxxLThaisFD7udPSlhmU+unfptrnSgHJrChnJ6H6yrQt2swrufVi1eJBywSlRkmJPbH6OXGK9iRJ6jedoiJr2wnWlhnUrm+5zaIifde/2XJ2L5KC9ZUXEG2PqI0waRYrgkQFPqpQQ+kRRmMjfW1eXm6oaYZp83i99CjI/2vv+np69NPUZF07kgR4PK3bMkOo61uS6DFbY6O+es2Us7qPMlr6alfbTOTQcw/lDZMBaFk4qOUrLeWFA8MEQw4B7s+CBdYuHAD6H1mpLTOEur6F0L8AMFvO6j7KaOmrXW0z0QEvHiyksjLSFjCM8wm8TjZvDl9bTqnLSuywS2udTvUJYz+8eLCQ3NxIW8AwzifwOsnPD19bTqnLSuywS2udTvUJYz+8eAhg1Cjj+QoK6Dmgyvu9GKbdI78t1J+ZM+mZv5XIbxoNbMsMoa5vSTL2/N9MOav7KKOlr3a1zUQHvHgIQGscB6V8bjdQXEy/8wKCYVoiScD8+a1vlHFxwOzZ1rYDKLdlhmDXt/z3rFn0u9br32w5q/soo6WvdrXNRAm2az/CCMd5CJ44zgPHeQiVUlLsifPg9YYvzoOWtsyg1E//NtU+V4rXYEU5OwnVV6ZtwVJNE1JNfzjCJEeY5AiTHGFSCY4wGZ62mfCi5x7KiweGYRiGYTjOA8MwDMMw9sGLB4ZhGIZhdMGLB4ZhGIZhdMGLB4ZhGIZhdMGLB4ZhGIZhdBETaQOczLRpwIsv+v6eOhV44QVtZRsbgWXLKAE+GVwo2ZVcbskSkiJ6PD5pYHk5/d2xI0kalSRw/lK5qiqSslVUKNeTmUlyQgDIyCB5pVIb/hLP7dtJRrh7N0kUAZIaduhAskiXi+wZPpzkooEyvxkzSCr5ySfAZ59R2aFDgQcfBFav9rXR0EBS0kOHSDY5aRL5avduSrIcNSOD+lRW5pN2er3UtwMHyL70dOrb11+TzV27AiNG+CLkyedEPl+yNFUOhpOW5pNMFhSQLxYvBr76is6hJAEDBpBsUpYVBkoWs7Lo5969VGdmJvk3J4f+rqqiutatA77/ntosLARuv53qW7wYeOkl8sfo0cCtt/rkkQDJGB97DPj8c5K5ZmeTNDVwrAC+fjY1+ezQIqfUK9lrbxI/M/1tb75i2gA2x5wIK04KEqUUaCcrSzngi8dDZdTKBUtyWbldtSA9ZlJbDi7l8dA50ep3SQr+eXKy8jk2k2Jjlc9JURGdd7XgSoEpK4vs0zKWlMa02ri1In+0Y6a/7c1XjHPRcw9FGOwJG1YtHrRM6GqUlOi/OYS6IWkpX1Rkvh5O0ZeGDrW2PklqfdMqKVEeW5JkTf5ox0x/25uvGGfDESZNBIkKfFShhtIjjMZGinBYXm6oacNIEn1d39gY3naZtock0WOrrVt9j1+CjWmz+aMdM/1tb75inA8HiTKBloWDWr7S0vAvHAD6X4UXDowVCEH7R0pL6e9QY9ps/mjHTH/bm6+YtgUvHiyksjLSFjCMNchjWeuYNpo/2jHT3/bmK6ZtwYsHC8nNjbQFDGMN8ljWOqaN5o92zPS3vfmKaVvw4iGAqVON5ysooGeU4UaS+JkoYw2S5JOwAr4xLctWrc4f7Zjpb3vzFdO24MVDAFrjOCjlc7uB4mL9bapNHloRgl45zbQ/hg61vs75832LUf8xHThO5b/N5Ad8MTb++1/6GU37d4z014qyZohmfzMOwnbtRxiJ1jgPXq/xOA+B9Zsp356T1lgWbTnOgzwO1ca02rg1k7+txDjQ6x+rylphZzT6m7EHlmqakGoCQHw8RexTIy4OOHYseB1GI0y+/jpw2WXG7Jb/W7n7bormGCrCZEWFdnWJjPxVq9URJgsKgKuuUm/36qspyqSWCJNHjgBvvmnIhUG5+25gzhztESbvuw+YO1e9vttuAy64gH5vjxEm33iDvjELnIHkcbxoETB5snr9TsPpESbbmr8Z69FzD+XFQwDyjTYU5eU04VqJFXEitGrDjbRll+7cSr27XbE29PadNfzBYf+EF/Y3owWO82CC/v2tzacHK+JECKFNG26kLa1168VKvbtdsTb09p01/MFh/4QX9jdjNbx4CKC21tp8erBSzx2qLjNtWa07t1Lvbrcm3mptfnvV8LN/wgv7m7EaXjwEkJJibT49WKnnDlWXmbas1p1bqXe3WxNvtTa/vWr42T/hhf3NWA3veQjACXseKipab2rSit49D3rasnvPg5otRvY8mPGhEkb3PFjRp7YI+ye8sL8ZLfCeBxN07dpyF7sScXHWLxyA4LpvLejRhutty07duZV6d7M+tMKGUHbY6ctogf0TXtjfjNXwNw8qqMk1tcg0lfCXbsoSuU6d6D+B118H9u+nTZjPPw/8/vd07NAhX/nYWKBLFzq2d69yG5mZJOEbNYokewBJviSJ/m5sBA4coL979QJmzgTee48kgxUVLfsYF9ey/ZQUknGdcQYtnIYMAYqKgDVr6D+ZCROoP3v3ktzw8GHyU5cuJJ/s0gU44QSgb1+SajY1AenpZI/LRTLW6mrgppuAmhpfuzExQM+eJMvs1InacrmovCwX3bOH2j1+HOjRAxg8mPz8zTdAQ4OvroQE6ntdXWvfJSYCF15Im8ZWr6a6/P06cya1sXkz+e6BByjfp59Sqq6m/kyZQnmffZby1taSj/3PWYcOwKWXAgsWkC+WLAF27AC6dSM/jhtH5+rRR4EVK4DkZKr39NOpvCzp69SJ/q6u9sn7/D9XOzZyJLVbUUE+zMqiOvbsoW/UZDsKCiifXC5QdjtzJt1s/CXJssTQ36ZgN6Q33iA5qv9mPq+XbmRKskF/SWNWFrBhA7Btm88eeeHvf70pjXv/fEq+Cea/wD6FQ2ZpFUr+9niA668n30R7/xhz6LqH2hhvIuw4JUhUIGaDP9mV3G4hhg6NvB2cWqaEBOVgVAkJwceRUpAwpWNutzY7QgWecrnIpmB5tAQgamgQYulSIV55hX42NKhfR8GCb7ndFDAr1PXmny+wvkDfKPnPv0/RGHTJ39/33BPc/mjsH2McPfdQhMGesGHV4kHLxKqVkpLI34w4cYpUkiRKZm82JSWho3uGu09FRco2WdVnu1HzaVvpH6MfjjBp4rHFoEHAt9+GzjdwIH0tHozGRory5/9IgGHaG2Y349kV+MsMkkSPz9TeC+H0DYhafCpHSlXC6f1jjMEbJk2gZeGgNV9pKS8cGEYIcwGI7Ar8ZQYhgr9Qymyf7UaLT6O5f4z98OLBRjjgCsP4MHo9RPN15FTbrbLLqf1j7IcXDzbCAVcYxofR6yGaryOn2m6VXU7tH2M/vHgIYOBA6/IVFNgTD4JhoglJIvmlLHvUi/wmV6NxO+xAkoI/6zfbZ7vR4lO3W/1zp/ePsR9ePAQQahOknnxuN/DII2asYZjoxooARFYE/lLDTDC2WbPo92gMuhQqaJQkUf/UPgec3T/GfnjxoEAo/YkefcrkyUBJCQW0cRpuNzB0qLP+o2N8wayUjgcbR1lZrT9XOqZ1wneFmB1cLrIpGB4PsGiRcsAnPUyeTPUE+ybP7abAZaGuN/98gfUF+kbJf3Kf/vEPZZus6rPdqPm0rfSPsReWagYhULapRZ6php4Iky++6Ivid801wJw5FMkxIwO48UbgueeAr7+mRUxODkUE9HiAESMokmNTk/YIk3FxFEmzuBh4+22K7ti/P3DllcDPP1OEw8OHgVNPJXtzcuyLMDlyJEUw/OUX8ktTE23IiosDkpL0RZjcuBHYuZN8dvrpvregZmUB2dmUPyMD+PJLaiM5GTj5ZIpYuGMH3RSHDKE2O3emcu+8oz/CZF4e+XPv3tYREWfM4AiTRq4jjjBpLaHsj/b+MdrRcw/lxQPDMAzDMBzngWEYhmEY++DFA8MwDMMwuuDFA8MwDMMwuuDFA8MwDMMwuuDFA8MwDMMwuoiJtAFORklrb1SbIsudKipIQvj118D33wNpacAFF5CE8X//Aw4dIrnYoEEknVOTTn3yCfDPf9LLaZKSSHaYmgqMHk2ytXvvpXY6dyaZ5K5dZHtaGkkoExNJ6tfYSHLAfftInnjaafT5zp0k/xw/Hli6lCR8yckk4cvJATp2JJlmYyPVe/AgcOQIfZaaSpLWuDh6697hwyRNzc0FqqqoDxMnUhICWL4c2L6d5JcuF72JdMIE8sOCBSQzLS8H4uOBnj2BSy8FPvqIJIMdOpD/ampIgpmWBjz9NLWbkkLy1fJyYP16sjElBTjrLJKT1tbS36NGka1ZWeSvnByyZdkyklB6PGT/vn1kZ3U1tdulC/lk/Xrg6FGSOA4aRLLMr7+m85KbS/5Yv57KjBhBfX7vPfLD+edTmRUrqE05rsCaNfS3ECQBbWoCfvqJfFlX55OsZmSQzFeSSGqamQnExJDcc9w437jxH3+yPHP3brJVlsr65wdIwvvYY1QuJYXkomPHKksZFy8GXnqJxu/o0SSHXL1am7zPqBRQi8xSq6Qw0D/Z2SRJtkKW6G+nkrzWar8wTFiw9eXgYUbPu8hDEfgOe/+kl5ISITye4HUGSx4P1SHXlZBgvC5O7SdlZdF40Tr+5PxCCFFUJITL1TqPJLUuo2U8+o/hUNeGWt5Q5dxu/fWEuj611mGkbjv8wjBm0HMPRRjsCRtWLR60TMxaKSlpPeHqTZJEqago8jckTm0/FRZaX6c8hv1vfmrXhlJeI9dUqHq01hWqDrN1W+UXhjGLnnsoB4kKQE+o5lCea2ykCIPl5YZMaYEcb76pyXxdDBMJJIkeAW3dSn8Huzb88wY+stNzTanVo6euYHWoocdOK/zCMFbAQaIcQmmpNQsHgBYqvHBgohkhaI9OaWnoa8M/rz96rym1evTUFawONfTYaYVfGCbc8IZJG6msjLQFDOM89FwXgXmNXlNK5fTWZcZuJ9TPMFbCiwcbyc2NtAUM4zz0XBeBeY1eU0rl9NZlxm4n1M8wVsJ7HgKwY89DRUXovKHgPQ9MtKP0bF/t2gi150HrNRXpPQ9a7LTCLwxjBbznwQRab/Ja8rnd9Kprs8gLmtmzzdfFMKEoLLS+TnkMz59P14X/tRG4YA/M60+wcqHaDESuS8s/DGp1qKHVTqv8wjBhx2blR1hpq3EevF6O88BJf3JSnAf/MRzq2lDLG6pcYJwHLfWEuj611mGkbjv8wjBmYKmmiccW/nCESY4wyREmOcIkR5hk2gt67qG8eGAYhmEYhvc8MAzDMAxjH7x4YBiGYRhGF7x4YBiGYRhGF7x4YBiGYRhGFxxhMgjx8bTjXCYujpQIemhspF37S5bQTn2AdnEfPEi73Hv1op3pcXG+MvX1pPV++21SEfTvD0yfTrvhS0upvvp62n0vB5NJSSE1QEoK7bh3u+n3AQPo+Nq1tGtbkqi+U08ltUBODtm4dCnt8K+sJNVEbi6VHTWK8h06BPztb7Sz/+STgeHDgY8/prYvvBC47Tay/dFHyT5ZGVBb6+tXSgqpEzp2BHr0IDs2bCBFg9dLqgSAbGhoAL77ztePESNIfZKRQbY2NFCZs84i5cWWLZQ3KQmIjaV+5uSQegKgHfQdOgBjxgA33US78j/7jFQXiYmUr7YW2LaN8tbVkV8SEqgeSSJFxaFDvvpjY33jQx4rkgT060f9/OEHUq3U1JBaIjOT1Ct1ddTno0epXHIynY9OnSjt3UtqiL17qb9r1pCfe/Ykn+3dS/mamkiJAvh24ofaxV9fT+doxQpqd8oU4PTTW6t5li2jBCgrMYKNdyXVgqyEUDuupCgItGPMGLpmtCgVQtlnhYKB1RChYR+1YWyWjYYVp8V5KCkhHXwoDbzbTbp6Iein2Vd4c+Lk8bSOCaAWuyE5uWUcEaUx6x8DIth4V4tpEBiDQe24bLeWa0epj3rt01uHHXW1VdhH0YeeeyjCYI9mli9fLs477zyRm5srAIg333xTV3mrFg9aJudQlJTon/CHDo38TYdT20iSRMk/6FOoMlryqE38JSXWLHr11BHYx1DXo1Ldeuqwo662CvsoOonaIFEffvghvvjiCwwePBiTJ0/Gm2++iQsvvFBzeSviPAQ+qlAj2CMMrTHzGcZO5PcgbNxIjyhCvRfF5Qqdx+OhRztK75uIxHjX8q6HUPbpeV+ElXW1VdhH0UvUxnk4++yzce+99+Kiiy7SlP/YsWM4ePBgi2QWLQuHUPlKS3nhwEQeISgCaVGRtheqaclTXk7j259Ijne5j4E2+RPKPi112FFXW4V91D5w1OJBL/PmzUNaWlpz8nq9kTYJAG0OYhinsGmTtfUFjm8njPdgNmi1T0s+K+tqq7CP2gdRvXiYM2cOampqmlNZWVmkTQJAu4oZxin06mVtfYHj2wnjPZgNWu3Tks/Kutoq7KP2QVQvHuLj45GamtoimcVfMmk0X0EBPdNjmEgiSSRnffBB2s8QCi15PB7fy7BkIjne5T4G2uSPbJ/aq7G11GFHXW0V9lH7IKoXD3agNY5DsHxuN8Vp0MvQofrLMIwS8sQ9fz7FsZg9O3QZLXmKi1tvcpPHu9rNQg966vDvY7CNd/7XY2D9Wuuwo662CvuonWC79sMgQOSkmtS+etIKx3ngFKnk9UZnnAfZbi3XjlIf9dqntw476mqrsI+ij6iVah46dAi//vorAOCUU07Bww8/jPHjxyMzMxPdunULWd7qV3JzhEmOMMkRJjnCZDjqaquwj6ILPfdQRy0eli1bhvHjx7c6Pm3aNCxcuDBkeasXDwzDMAzTXtBzD3XUuy3GjRsHB61lGIZhGIZRgDdMMgzDMAyjC148MAzDMAyjC148MAzDMAyjC148MAzDMAyjC0dtmHQaSgFrgu3n9JcldepEx6qqWkrThg8HnniC8iUmkjxRCJ+MMjUVuOQSkh+uXQukpQFnnEFySX/pXn098P33PvlgVhbQvTvJEVevJnlgfj5JFzdtIhmiLAc9dozkUh06AL170+9yqNg9e0jGV19PbQkBHDhAssScHOD4cZJ+ut0kbzzhBLKrro4knhUV1LbLRX1JSaGfiYlkY2oqyR9//pnkqp06kXRz82Zqf/Bg4PzzgVWrSNra1EQ2yOdCCGDXLvLX/v1U37hxQGEh8OWXlD8ri2x/802SSqankxzx0CGya/RoklFu3kySzwMHgB9/pLo7d6ZztXs3+TYx0SeLlI917w6ccopP6nr4MHD33WRTSgrZkptLdXXt6oukJ0sYq6rIzxUVJDcdO9b3OdBaGukvWZQlnzk5vroDpW/19cCCBdS//PyWUmA1KaUWCZ3S+JZlk6Ekl8HkeqHknXK5wL+HDweeekq5n3phSSHD6MTekBPhJZJBooIFyOHUvlNWlrZgYYFltARL8nhaBt0pKmodeEkOQhZsjAbWo3d8B7Yp16dUzr8tPYGl1AJNBfZTL6FsZJj2QtQGiTKLVXEetITI9ffaG2/QtwVtx5NMNCFJwKJF9M3Lgw+ar2fy5JbHjYxvSVLPL19fv/898NBD1l83RUXAP/6hLa9a32QblfzBMG2VqA0SZRYrFg96YusLQV935uUFf389w9iJJNHX/Dt30mMNM3i9wNatLR852DW+3W6q3456jxwJ/QgjVN8kiV7w5O8PhmnL6LmH8oZJk5SW8sKBiSxC0Bg0u3AAgLIy394LwN7xbcfCQa53wYLQ+UL1TYjW/mAYhuDFg0kqKyNtAcNYi/+YjtbxLW/ADYbWvkWrDxjGTnjxYBJZpcAwbQX/MR2t4zs/P3QerX2LVh8wjJ3wnocAjO55kN9uyTDhJhx7HuwY3263T4prdb169jyo9Y33PDDtDd7zYAKtE5mcz+2m12cD+hYeDGMlxcXA7Nnm6pAkYP78ljdKo+PbP29gOUmiNGuWYVODMmuWtngPwfom/x3oD4ZhCF48KBBqARH4+eTJJOnq2tU+m5joJSuLkt4yJSWUgpX1en1ywn/8g2SKgTc7t5uOl5TQf9Kh6glEy/gObNPj8dkfWM7jofr+8Q/6qWaTUj+CIfdTq0wTUO+bbCPLNBlGGX5sEQSOMEm2cYRJjjCpNr45wiTDtB04zoNFiweGYRiGaS/wngeGYRiGYWyDFw8MwzAMw+iCFw8MwzAMw+iCFw8MwzAMw+iCFw8MwzAMw+giJtIGOBm9Uk0l/GVoVVWUFi8m2WCHDiQjrK6mvPHxJFGTg+h06EDSP7ebJIaDB5OEsbSUJIgpKcDAgSTt3LMH+Pprkm+mpgIXXACcfDLwyivAt9+SBK2pierKyKD6s7OBnj2BK68k6eIXX5B88sABknYClCcvj9rZu5dsr66menr2JFnkpk3UP4DabmykvowcSbLKn38m+zt0IDsbG0lS53aT5HDAAPLDzp3U3kcf0e8uF33WpQvJIzMzSSa6fTvZcPQoyerKy6mdjAzg1FOp7rw8smfLFmDDBpJcnnAC1fPll77+JSeTDbW1JLkEqL3evUn619hIsQM2bSI54DnnAK++CmzbRm1MmwZMmEDyyKIi4JdfSNZ65Aj1weMBJk3ySW2zs0nm+O23JIk9fJiOBY4xt5tsnTChpWzTH39JZl4e0L8/SR1376bz4i/tFQLo1csnZ9QqnwyUZXbsSP7cutUnj3S7W9cFKMuWd+0iu1wunyQV8ElRgdZSVSWC9T2Y/LS9SjLba78ZGxFtiJqaGgFA1NTUmK6LplvlpJWSEiE8nuB1cYr+5HbbW39WFo0lf4qKjLXrdgtRWNh6XHo8vjb0jFuXS4jk5Nb2ZmVpK5+c3Lq8Wp/19t2/T2r9CszTFmmv/Wb0o+ceijDYEzasWjxomfRCUVIihCRF/sbGqe0kebIvKrK+bkmiVFTkrHGrtGjS26+SEvXrUe53W72Rttd+M8bQcw/lIFEB6H0xlhLyC3fKyw2ZwDCKeDz0WCQlhcaY1UgSPU6wo26jeDz0iMjtpkcVSUn67JNfGiaE79GaUp62+AKsUPNQW+03YxwOEhVhSkt54cBYT3k57auw6+YuhLMWDgD1WQ7bvWCBfvuEoDrUFg5ynrIyXztthVDzUFvtNxMeePFgA5WVkbaAaats2hRpC8KPfD3J7z+xu522gtb+tLV+M+GBFw82IL9kimGsplevSFsQfuTrKT8/PO20FbT2p631mwkPvOchACv3PFRUqOdhGL3wngdzex527lS+Htvqs/9Q81Bb7TdjHN7zYAKtN3ulfPKrk197Dbj+ekvNYhgUF1O8ilmzrK9bXjTPmuWLM+IEiot9N7a4OGN9Ly4GHnmEfg/sl/z3/Plt7wbqdlPfgfbVbyZM2Kz8CCuRjPOgpKXWo3fnxEkthSPOg9drbZwHpdgNSiklxb44D/59UutXYJ62SHvtN6MflmqaeGwBaPuvy99rb7xBUR4DPSlJdOyee+h5bTgjTPboAbz8cvA+5OZav1kqNZWiVIaD3r0psqCeCJMHD1LUTTWGDiU/9+5NUSEvv9we26dMIVvaYoTJ3buByy5T7/vFFwN9+nCEyXDSXvvN6EPPPZQXDwFs2EAhkUPx3Xc0YTlRS93YSDeeYPI0gBYkTU3Wtu12h++Zuf/zcC3oOVeAfbE62vKzZideDwzDaIP3PJhg4EB9+ZyopZbfpREKqxcOQHg32/nHANCCnnNlZ6yOSIyJcOHE64FhGOvhF2MFoPV7GDmfE7XU7Um3raevTjtXbfE8Oc3HDMPYAy8eApD3KWjJBzhTS92edNt6+uq0c9UWz5PTfMwwjD3wnocAjO55cJKWOtJ7HpqatH+DYwajex60nCvAvlgdbfm5vxOvB4ZhtMF7HkzQv7++fE7UUrvdPl17MGbP1levf/+U+ipJ1sQg0BpjwD8GgBb0nKtgeUMRyk/+7bQ1nHg9MAxjPfzNgwrBbhhKHnvjDeD221tuFktMJDlbair9N9avH8k0t28H6upImnn4MLB/P/23npJC33qkpdHXuh06UP6NG0maFhNDZWJjKWVm0vHGRpLlyXl69ABqa8kWpQ2MkkTfTPToAezYof2dAW43SUtra6mtQGJjyb6cHGr76FFt9arVc/iwsq/j48n+AweAY8cof309+fmss4CLLgI+/xz49FOyNTmZfHrsGJCQQD/XrAGOH2/Z5rhxJKH0eoGRI2lT3xNPAB9/TNJaGZfLp5hXokMHkiN26QI8/HBLXyUnA6NGkaRUCOqDHNlx+HAq09gILF9OGws9HpJb7t0LrFtHdRcUADNmAM8+S+dO/k/+11/J5xkZNL46dSI/dexI56RrV+rXypUtJXuNjS1lj337Ut/XrKF6uncHpk0j/wSWBXwbdGWZZKdOJBMuKWnpN6+X/NGxY+s69Eo1taBFnmhUwsjSR6YtouseamO8ibATySBRQgjx2msU9CbSQYU4mU8uV+RtsCMFBldKTtbeV0lq+bfWIGiSJMTll9P1oRRITW+QKC0oBUbyeEIHjQrMY7RuholGOEhUmINEAfTNw8UXG26SYRgFSkqAyZP1lQkWtA0AFi2in6HyKLWrpW699jKMU+AgUWF+MZbWDYoMw+jDjkBg8ouy1K5XtU2dHACLaevwhskwozUoE8Mw+rAjEFh5efDrVQjlQFYcAIthfPDiwQI44A3D2IcdgcCM1MUBsBjGBy8eLIAD3jCMfdgRCMxIXRwAi2F88OLBAgoK6DkqwzDW4vH45JxaKCigMmp7l+R9CfLba9XyeL2t29VSt1I5hmmL8OIhAK3bR/3zaQ3KxDDtHb0Bt+wIBFZc7Lte9QSy4gBYDOODFw8KhFpAKH0+eTLJyrKy7LGJCS+uNnplBN7YUlK09zXwhpmVpW28u91AURFdH4Hf0GVlUeCsQLKyjMk0ASqzaFHrtjwen5RSSx6jdTNMe4ClmkFQ+i8plLcaGylS3pIlJDGrqqKof5GIMFlZSZ/FxQG9etFrxL/+GqipoSh/GRnAkSMUmfDwYbI/JwdoaAD27KG+ZmYCI0aQjbt2Ub379lGetDSKlChJwFdfUZ9cLqBPH4oyKATwyy/08+hRiu6YkkKRIDdupEiPbjf9bGigzwoKyJY1ayj6IkCROk8+GRg9GqiuprpXrgS2bDEWYbJjR/JXXR2l+nr6fMAAiv7oH2Fy2TI6N+npviiPhw9TXV270k1jxAgqM3w48NRTFKmxRw/gxBPpP9z9+8lP+fl07oWg+oRouxEmN2wgm/LzgZkzaQzK10dgZEaAI0wyjBPgOA8WLR4YhmEYpr3AcR4YhmEYhrENXjwwDMMwDKMLXjwwDMMwDKMLXjwwDMMwDKMLXjwwDMMwDKOLmEgb4GSMSjX9pWtZWSSzy84mOeDTT5OEMy8PmD6dtOEbNtBn555LssBXXiFJYnY20LMnScBSUkgCuWQJyR9TU6kOl4vkoDk5Prng7t3A2rXA998Dhw4BSUkkLTx6lCSRmZn0s66O6klNJbmiEJT27KF64+Lo75oasqGpieR+3bsDF15IEsTqapIQHjlCMlIhSPJXU0MSyW7dgP79qfz+/cAPP1B7F1xA0tEvvvBJIaurgbfeIkmoJJF08vhxkkb27EnyxP376eVEn3xCPz0e4IwzqL2yMvI/QHUdO0Y+mjYNmDCBbPCX2GVlAd9+S/LDDh3Ini5dqI+yhHDxYuCFF0himZcHTJlCclhZMiq3pVWuV1/vk0UGyhj9x09lZej6/cdaVRWdt7Iy8qfLRedpwgSSPfrLMZXaVWpb/htQlk+q2WrEL+GA5ZUMYyGiDVFTUyMAiJqaGtN1+W6lrZMaJSVCeDzBy3KKTEpOFqKoSPv5ycoSIiFBXxseD40BNYqKhHC7W5Zxu+m4lvHjX7+esZaQIITLpd6u1vqysoy1H8ov4UDJXifYxTBOQs89FGGwJ2xYtXjQMiEGUlIihCRF/ibJKXJJkigp3ZCKioKXLSwMPX7k+ouKrBtrRUX6x67e9oP5JRyo9S/SdjGM09BzD+UgUQHoib0ve66xkb7SLi831CTThpBfvLR1q+8r8fp6enQkP1IxW7/LZU1dANmYk0OPPvSU0du+kl/CQahrM1J2MYwT4SBRYaa0lBcODCEE7TuQ9woAtNfAqpu9ENbVBVBdehYOchm9KPklHIS6NiNlF8NEO7x4sIDKykhbwDgN/zGxeXPk7HAa4b5WtLbH1zDD6IMXDxaQmxtpCxin4T8m8vMjZ4fTCPe1orU9voYZRh+85yEA3vPAmCFa9zzs3Okbz1rKRNueh4oK5f7xngeG8cF7HkygdQL1z+d2A8XF+hYeTNtDPv/z57e8EcXFAbNmBS9bWEjlg40h+bNZs6wba7Nm0WvD/evXUiaUrf6o+SUcyNemvx0ykbSLYaIem5UfYYXjPHBSSykp9sd58HrtjfPgX380xXkI5ZdwoGSvE+xiGCfBUk0Tjy384QiT9DdHmOQIkxxhkmHaPnruobx4YBiGYRiG9zwwDMMwDGMfvHhgGIZhGEYXvHhgGIZhGEYXvHhgGIZhGEYXMZE2wMnoUVvU1QFFRcCmTaQMuOAC2gH/zDN0bM8ee22NFC4XKUX27299HPD5UCmoUGIikJFBipDDh33HDh1qnTc2lhQRx45RXW43/R0fT4qLpCRqKzER2LeP/k5KojxlZT4lSF0dqVFqaqje/v1JkfD996QEkY9deSXw88/AihVkT6dOQI8elHfkSOCJJ4Bly0jpEB9PbcnKmqQkqqdrV7IpORlYv54UKUlJwKmnArW19FmvXqQiWb26tQogULmTnU12bNhAQY3y84Hf/hZ49llSUeTlke1791qrJgilUoi0iiHS7TNMu8Rm2WhYiVSch8LCyMcx4NR2ksejLyZFsHrMxjFQio/gX2+oz+0m0u0zTFtCzz0UYbBHN4899pjo3r27iI+PF8OGDROrV6/WVM6qxYOWiVmGFw6cnJokiZLRG2lJCZVXq7eoKPjndt/AQ9nHCwiG0UdUB4n63//+h6lTp+LJJ5/E8OHDMX/+fLz++uvYuHEjOsnRZ1QI97st5K+hGcapGH13Q6j3tYR6x4bd74zQYh+/s4Jh9BHVcR4efvhhXH/99bjmmmvQt29fPPnkk0hKSsK///3vVnmPHTuGgwcPtkjhpKgorM0xjG6EoD0fcqRIrZSWBn/RmxDBX45ltF2taLHPzvYZpr3jqMVDfX091q1bh4kTJzYfc7lcmDhxIlatWtUq/7x585CWltacvF5vOM3Fpk1hbY5hDFNZaW9+u+sxWq9d7TNMe8dRi4c9e/agsbERnTt3bnG8c+fOqKqqapV/zpw5qKmpaU5lZWXhMhUA7ZRnmGggN9fe/HbXY7Reu9pnmPaOoxYPeomPj0dqamqLFE4efDCszTGMbiSJXpgmv+hLKwUFtGdAbQ+QJAXfS2C0XSvts7N9hmnvOGrx0LFjR7jdbuzatavF8V27diEnJycsNmjdPioExRQoLLTXHoYxinxjnT9f/6ZBtxsoLm5ZT2C9s2bR72qfG2nXSvvsbJ9h2juOWjzExcVh8ODBWLx4cfOxpqYmLF68GCNGjAibHaEWEP6fv/UWLyAYa/F6aTOux2OuHo+HXvk+ebKx8pMnU/muXZXr/cc/gn9utF2r7LO7fYZpzzhSqjlt2jQ89dRTGDZsGObPn4/XXnsNP//8c6u9EIFY/UpujjAZGo4wyREmIx3hMdLtM0xbQc891HGLBwB47LHH8OCDD6KqqgqDBg3CI488guHDh4csZ/XigWEYhmHaC1G/eDAKLx4YhmEYxhhRHSSKYRiGYRhnw4sHhmEYhmF0wYsHhmEYhmF0wYsHhmEYhmF0wYsHhmEYhmF0wYsHhmEYhmF0wYsHhmEYhmF0wYsHhmEYhmF0wYsHhmEYhmF0wYsHhmEYhmF0wYsHhmEYhmF0wYsHhmEYhmF0ERNpA6xEfsfXwYMHI2wJwzAMw0QX8r1Ty/sy29Tioba2FgDg9XojbAnDMAzDRCe1tbVIS0sLmqdNvZK7qakJO3fuREpKCiRJsqTOgwcPwuv1oqysjF/zbRHsU2thf1oP+9Ra2J/WY4dPhRCora1Fly5d4HIF39XQpr55cLlc8Hg8ttSdmprKg95i2KfWwv60HvaptbA/rcdqn4b6xkGGN0wyDMMwDKMLXjwwDMMwDKMLXjyEID4+HnPnzkV8fHykTWkzsE+thf1pPexTa2F/Wk+kfdqmNkwyDMMwDGM//M0DwzAMwzC64MUDwzAMwzC64MUDwzAMwzC64MUDwzAMwzC64MUDwzAMwzC64MUDgMcffxx5eXlISEjA8OHD8dVXXwXN//rrr+Okk05CQkIC+vfvjw8++CBMlkYPenz6zDPPoKCgABkZGcjIyMDEiRNDnoP2ht4xKvPqq69CkiRceOGF9hoYhej16YEDB3DzzTcjNzcX8fHxOPHEE/na90OvP+fPn4/evXsjMTERXq8Xv/vd73D06NEwWet8Pv/8c5x//vno0qULJEnCW2+9FbLMsmXLcOqppyI+Ph4nnHACFi5caJ+Bop3z6quviri4OPHvf/9b/PDDD+L6668X6enpYteuXYr5v/jiC+F2u8U//vEP8eOPP4o///nPIjY2VmzYsCHMljsXvT698sorxeOPPy7Wr18vfvrpJzF9+nSRlpYmysvLw2y5M9HrT5mtW7eKrl27ioKCAlFYWBgeY6MEvT49duyYGDJkiDjnnHPEihUrxNatW8WyZcvEN998E2bLnYlef7788ssiPj5evPzyy2Lr1q3i448/Frm5ueJ3v/tdmC13Lh988IH405/+JN544w0BQLz55ptB82/ZskUkJSWJWbNmiR9//FE8+uijwu12i48++sgW+9r94mHYsGHi5ptvbv67sbFRdOnSRcybN08x/2WXXSbOPffcFseGDx8uZsyYYaud0YRenwbS0NAgUlJSxAsvvGCXiVGFEX82NDSIkSNHimeffVZMmzaNFw8B6PXpE088IXr27Cnq6+vDZWJUodefN998s5gwYUKLY7NmzRKjRo2y1c5oRcvi4c477xQnn3xyi2OXX365OPPMM22xqV0/tqivr8e6deswceLE5mMulwsTJ07EqlWrFMusWrWqRX4AOPPMM1XztzeM+DSQI0eO4Pjx48jMzLTLzKjBqD//9re/oVOnTrjuuuvCYWZUYcSn77zzDkaMGIGbb74ZnTt3Rr9+/XD//fejsbExXGY7FiP+HDlyJNatW9f8aGPLli344IMPcM4554TF5rZIuO9NbeqtmnrZs2cPGhsb0blz5xbHO3fujJ9//lmxTFVVlWL+qqoq2+yMJoz4NJA//OEP6NKlS6sLoT1ixJ8rVqzAc889h2+++SYMFkYfRny6ZcsWLFmyBFdddRU++OAD/Prrr5g5cyaOHz+OuXPnhsNsx2LEn1deeSX27NmD0aNHQwiBhoYG3HjjjfjjH/8YDpPbJGr3poMHD6Kurg6JiYmWtteuv3lgnMcDDzyAV199FW+++SYSEhIibU7UUVtbiylTpuCZZ55Bx44dI21Om6GpqQmdOnXC008/jcGDB+Pyyy/Hn/70Jzz55JORNi0qWbZsGe6//34sWLAAX3/9Nd544w28//77+L//+79Im8ZopF1/89CxY0e43W7s2rWrxfFdu3YhJydHsUxOTo6u/O0NIz6Veeihh/DAAw/gs88+w4ABA+w0M2rQ68/Nmzdj27ZtOP/885uPNTU1AQBiYmKwceNG5Ofn22u0wzEyRnNzcxEbGwu32918rE+fPqiqqkJ9fT3i4uJstdnJGPHnX/7yF0yZMgW//e1vAQD9+/fH4cOHccMNN+BPf/oTXC7+v1Yvavem1NRUy791ANr5Nw9xcXEYPHgwFi9e3HysqakJixcvxogRIxTLjBgxokV+APj0009V87c3jPgUAP7xj3/g//7v//DRRx9hyJAh4TA1KtDrz5NOOgkbNmzAN99805wuuOACjB8/Ht988w28Xm84zXckRsboqFGj8OuvvzYvxADgl19+QW5ubrteOADG/HnkyJFWCwR5YSb4XY2GCPu9yZZtmFHEq6++KuLj48XChQvFjz/+KG644QaRnp4uqqqqhBBCTJkyRdx1113N+b/44gsRExMjHnroIfHTTz+JuXPnslQzAL0+feCBB0RcXJxYtGiRqKysbE61tbWR6oKj0OvPQFht0Rq9Pt2xY4dISUkRt9xyi9i4caN47733RKdOncS9994bqS44Cr3+nDt3rkhJSRH//e9/xZYtW8Qnn3wi8vPzxWWXXRapLjiO2tpasX79erF+/XoBQDz88MNi/fr1Yvv27UIIIe666y4xZcqU5vyyVLOoqEj89NNP4vHHH2eppt08+uijolu3biIuLk4MGzZMfPnll82fjR07VkybNq1F/tdee02ceOKJIi4uTpx88sni/fffD7PFzkePT7t37y4AtEpz584Nv+EORe8Y9YcXD8ro9enKlSvF8OHDRXx8vOjZs6e47777RENDQ5itdi56/Hn8+HFx9913i/z8fJGQkCC8Xq+YOXOm2L9/f/gNdyhLly5VnBdlP06bNk2MHTu2VZlBgwaJuLg40bNnT/H888/bZp8kBH9HxDAMwzCMdtr1ngeGYRiGYfTDiweGYRiGYXTBiweGYRiGYXTBiweGYRiGYXTBiweGYRiGYXTBiweGYRiGYXTBiweGYRiGYXTBiweGYRiGYXTBiweGaUMsXLgQkiRh27ZtkTYlJHl5eZg+fbqldUqShLvvvrv5b7v8MW7cOIwbN87SOhkmmuDFA8MwjEl27tyJu+++G998802kTWGYsNCuX8nNMG2NKVOm4IorrkB8fHykTQnJxo0bLX/1cl1dHWJi7J/WPvnkkxZ/79y5E/fccw/y8vIwaNAg29tnmEjDiweGaUO43e7mVxs7HTsWOAkJCZbX6c+RI0eQlJTU7l/DzTD82IJhwkBFRQWuu+46dOnSBfHx8ejRowduuukm1NfXAwC2bNmCSy+9FJmZmUhKSsJpp52G999/v1U9jz76KE4++WQkJSUhIyMDQ4YMwSuvvNL8udIz/ry8PJx33nlYsWIFhg0bhoSEBPTs2RMvvvhiq/oPHDiAO+64A16vF/Hx8TjhhBPw97//HU1NTbr6u2nTJlx88cXIyclBQkICPB4PrrjiCtTU1LSwy3/Pg2z7ihUrcNtttyE7Oxvp6emYMWMG6uvrceDAAUydOhUZGRnIyMjAnXfeicD3+gXueVDi7bffxrnnntt8LvLz8/F///d/aGxsbJFv3Lhx6NevH9atW4cxY8YgKSkJf/zjH5s/k/c8LFu2DEOHDgUAXHPNNZAkCZIkYeHChZg7dy5iY2Oxe/fuVnbccMMNSE9Px9GjR7W6lWEcA3/zwDA2s3PnTgwbNgwHDhzADTfcgJNOOgkVFRVYtGgRjhw5gv3792PkyJE4cuQIbrvtNmRlZeGFF17ABRdcgEWLFuGiiy4CADzzzDO47bbbcMkll+D222/H0aNH8d1332H16tW48sorg9rw66+/4pJLLsF1112HadOm4d///jemT5+OwYMH4+STTwZA/1WPHTsWFRUVmDFjBrp164aVK1dizpw5qKysxPz58zX1t76+HmeeeSaOHTuGW2+9FTk5OaioqMB7772HAwcOIC0tLWh5ucw999yDL7/8Ek8//TTS09OxcuVKdOvWDffffz8++OADPPjgg+jXrx+mTp2qyS6ZhQsXIjk5GbNmzUJycjKWLFmCv/71rzh48CAefPDBFnn37t2Ls88+G1dccQWuvvpqdO7cuVV9ffr0wd/+9jf89a9/xQ033ICCggIAwMiRIzF69Gj87W9/w//+9z/ccsstLXy0aNEiXHzxxbZ/W8IwtmDby74ZhhFCCDF16lThcrnEmjVrWn3W1NQk7rjjDgFAlJaWNh+vra0VPXr0EHl5eaKxsVEIIURhYaE4+eSTg7b1/PPPCwBi69atzce6d+8uAIjPP/+8+Vh1dbWIj48Xs2fPbj72f//3f6JDhw7il19+aVHnXXfdJdxut9ixY4em/q5fv14AEK+//nrQfN27dxfTpk1rZfuZZ54pmpqamo+PGDFCSJIkbrzxxuZjDQ0NwuPxiLFjx7aoE4CYO3duqzr9/XHkyJFWtsyYMUMkJSWJo0ePNh8bO3asACCefPLJVvnHjh3bou01a9YIAOL5559vlXfEiBFi+PDhLY698cYbAoBYunRpq/wMEw3wYwuGsZGmpia89dZbOP/88zFkyJBWn0uShA8++ADDhg3D6NGjm48nJyfjhhtuwLZt2/Djjz8CANLT01FeXo41a9botqNv377N/xEDQHZ2Nnr37o0tW7Y0H3v99ddRUFCAjIwM7NmzpzlNnDgRjY2N+PzzzzW1JX+z8PHHH+PIkSO6bb3uuusgSVLz38OHD4cQAtddd13zMbfbjSFDhrSwXyuJiYnNv9fW1mLPnj0oKCjAkSNH8PPPP7fIGx8fj2uuuUZ3G/5MnToVq1evxubNm5uPvfzyy/B6vRg7dqypuhkmUvDigWFsZPfu3Th48CD69eunmmf79u3o3bt3q+N9+vRp/hwA/vCHPyA5ORnDhg1Dr169cPPNN+OLL77QZEe3bt1aHcvIyMD+/fub/960aRM++ugjZGdnt0gTJ04EAFRXV2tqq0ePHpg1axaeffZZdOzYEWeeeSYef/zxFvsd9NgqL0a8Xm+r4/72a+WHH37ARRddhLS0NKSmpiI7OxtXX301ALSysWvXrqY3R15++eWIj4/Hyy+/3NzGe++9h6uuuqrFIolhoglePDBMlNCnTx9s3LgRr776KkaPHo2SkhKMHj0ac+fODVlWTYEh/DYcNjU14YwzzsCnn36qmC6++GLNtv7zn//Ed999hz/+8Y+oq6vDbbfdhpNPPhnl5eWGbVU6LgI2TIbiwIEDGDt2LL799lv87W9/w7vvvotPP/0Uf//73wGg1cZQ/28pjJKRkYHzzjuvefGwaNEiHDt2rHnBwjDRCG+YZBgbyc7ORmpqKr7//nvVPN27d8fGjRtbHZe/Qu/evXvzsQ4dOuDyyy/H5Zdfjvr6ekyePBn33Xcf5syZY3rjXX5+Pg4dOtT8TYNZ+vfvj/79++PPf/4zVq5ciVGjRuHJJ5/Evffea0n9Rli2bBn27t2LN954A2PGjGk+vnXrVlP1hvoGYerUqSgsLMSaNWvw8ssv45RTTmneqMow0Qh/88AwNuJyuXDhhRfi3Xffxdq1a1t9LoTAOeecg6+++gqrVq1qPn748GE8/fTTyMvLQ9++fQHQzn9/4uLi0LdvXwghcPz4cdO2XnbZZVi1ahU+/vjjVp8dOHAADQ0Nmuo5ePBgq7z9+/eHy+XCsWPHTNtpBvnbC/9vLOrr67FgwQJT9Xbo0AEA+UmJs88+Gx07dsTf//53LF++nL91YKIe/uaBYWzm/vvvxyeffIKxY8fihhtuQJ8+fVBZWYnXX38dK1aswF133YX//ve/OPvss3HbbbchMzMTL7zwArZu3YqSkpLmKIyTJk1CTk4ORo0ahc6dO+Onn37CY489hnPPPRcpKSmm7SwqKsI777yD8847r1nGefjwYWzYsAGLFi3Ctm3b0LFjx5D1LFmyBLfccgsuvfRSnHjiiWhoaMBLL70Et9ut69GHHYwcORIZGRmYNm0abrvtNkiShJdeekn3449A8vPzkZ6ejieffBIpKSno0KEDhg8fjh49egAAYmNjccUVV+Cxxx6D2+3Gb37zGyu6wzARgxcPDGMzXbt2xerVq/GXv/wFL7/8Mg4ePIiuXbvi7LPPRlJSUnMMgz/84Q949NFHcfToUQwYMADvvvsuzj333OZ6ZsyYgZdffhkPP/wwDh06BI/Hg9tuuw1//vOfLbEzKSkJy5cvx/3334/XX38dL774IlJTU3HiiSfinnvuCRmfQWbgwIE488wz8e6776KiogJJSUkYOHAgPvzwQ5x22mmW2GqUrKwsvPfee5g9ezb+/Oc/IyMjA1dffTVOP/10nHnmmYbrjY2NxQsvvIA5c+bgxhtvRENDA55//vnmxQNAjy4ee+wxnH766cjNzbWiOwwTMSRhdsnNMAzDhOTbb7/FoEGD8OKLL2LKlCmRNodhTMF7HhiGYcLAM888g+TkZEyePDnSpjCMafixBcMwmtm3b1/z+ziUcLvdyM7ODqNFzufdd9/Fjz/+iKeffhq33HJL8+ZKholm+LEFwzCaGTduHJYvX676effu3Vu8lIuhF4Dt2rULZ555Jl566SVLNrcyTKThxQPDMJpZt25d0KiOiYmJGDVqVBgtYhgmEvDigWEYhmEYXfCGSYZhGIZhdMGLB4ZhGIZhdMGLB4ZhGIZhdMGLB4ZhGIZhdMGLB4ZhGIZhdMGLB4ZhGIZhdMGLB4ZhGIZhdPH/AKk8Wpcfm4ZxAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_col1_col2_scatter(dev, \"cosine_similarity\", \"label\",\"dev\")\n", + "plot_col1_col2_scatter(train, \"cosine_similarity\", \"label\", \"train\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 텍스트 내용 분석" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "스릴도있고 반전도 있고 여느 한국영화 쓰레기들하고는 차원이 다르네요~ / 반전도 있고,사랑도 있고재미도있네요.\n", + "앗 제가 접근권한이 없다고 뜹니다;; / 오, 액세스 권한이 없다고 합니다.\n", + "주택청약조건 변경해주세요. / 주택청약 무주택기준 변경해주세요.\n", + "입사후 처음 대면으로 만나 반가웠습니다. / 화상으로만 보다가 리얼로 만나니 정말 반가웠습니다.\n", + "뿌듯뿌듯 하네요!! / 꼬옥 실제로 한번 뵈어요 뿌뿌뿌~!~!\n", + "오마이가뜨지져스크롸이스트휏 / 오 마이 갓 지저스 스크론 이스트 팬\n", + "전 암만 찍어도 까만 하늘.. ㅠㅠ / 암만 찍어도 하늘은 까맣다.. ㅠㅠ\n", + "이렇게 귀여운 쥐들은 처음이네요.ㅎㅎㅎ / 이렇게 지겨운 공포영화는 처음..\n", + "미세먼지 해결이 가장 시급한 문제입니다! / 가장 시급한 것이 신생아실 관리입니다!!!\n", + "크림하우스 환불조치해주세요. / 크림하우스 환불조치할 수 있도록해주세여\n", + "\n", + "액션은개뿔 총몇번쏘고 끝입니다 / 액션은 흉내만 내고 그마저도 후반부에는 슬로우모션 처리\n", + "감격스러워 입막으심? / 너무 감동해서 입 다물어?\n", + "이번 년도에 본 영화 중 가장 최악의 영화...... / 올해 본 영화 중 최악...\n", + "특히 평소 뮤직채널에 많은 영감을 불어넣어주시는! / 특히, 당신은 항상 많은 음악 채널에 영감을 줍니다!\n", + "다음 밥스테이지가 기대됩니다~ ㅎ / 다음 후기도 기대됩니다~~\n", + "사진 간지.. ㅋㅋ 축하드립니다 / 사진이 나왔어요..ㅋㅋㅋ 축하드립니다.\n", + "영화보면서 기분전환이 되었어요 / 영화 보는 내내 뭔가 모를 편안함을 느꼈어요\n", + "건강하게 자라기를!! / 얼른 건강 회복하기를요!!!\n", + "고수님들의 많은 가르침 부탁드립니다 / 고수님들의 많은 지도 부탁드립니다 \n", + "러닝화 신었더니 뒤꿈치가 푹신해서 자꾸 앞으로 힘이 쏠리고 뒤꿈치 들리네요 / 런닝화를 신고 발 뒤꿈치가 부드러워서 계속 힘을 빼고 발뒤꿈치를 들어 올렸다.\n", + "\n" + ] + } + ], + "source": [ + "def print_text(df,n):\n", + " for i in range(n):\n", + " print(df[\"sentence_1\"][i], \"/\", df[\"sentence_2\"][i])\n", + " print()\n", + "\n", + "print_text(train, 10)\n", + "print_text(dev, 10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 텍스트 전처리\n", + "- 텍스트 전처리에는 다음과 같은 방법들을 적용할 수 있습니다. \n", + "- 특수 문자 제거 \n", + "- 초성 대체 혹은 제거 \n", + "- 띄어쓰기 교정 \n", + "- 맞춤법 교정 \n", + "- `` 토큰 대체 혹은 special token으로 사용 " + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "# 초성(ㄱ-ㅎ), 중성(ㅏ-ㅣ), 완성된 한글(가-힣), 알파벳(A-Za-z), 숫자(0-9), 그리고 공백(\\s)만 허용\n", + "def replace_special_letters(df):\n", + " df[\"sentence_1\"] = df[\"sentence_1\"].str.replace(\n", + " r\"[^A-Za-z0-9가-힣ㄱ-ㅎㅏ-ㅣ\\s]\", \"\", regex=True\n", + " )\n", + " df[\"sentence_2\"] = df[\"sentence_2\"].str.replace(\n", + " r\"[^A-Za-z0-9가-힣ㄱ-ㅎㅏ-ㅣ\\s]\", \"\", regex=True\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "ename": "FileNotFoundError", + "evalue": "[Errno 2] No such file or directory: './data/raw/train.csv'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[27], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m train_v2 \u001b[38;5;241m=\u001b[39m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_csv\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m./data/raw/train.csv\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mUTF-8\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m dev_v2 \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mread_csv(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m./data/raw/dev.csv\u001b[39m\u001b[38;5;124m\"\u001b[39m, encoding\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mUTF-8\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 4\u001b[0m replace_special_letters(train_v2)\n", + "File \u001b[0;32m~/miniconda/envs/ame/lib/python3.11/site-packages/pandas/io/parsers/readers.py:1026\u001b[0m, in \u001b[0;36mread_csv\u001b[0;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend)\u001b[0m\n\u001b[1;32m 1013\u001b[0m kwds_defaults \u001b[38;5;241m=\u001b[39m _refine_defaults_read(\n\u001b[1;32m 1014\u001b[0m dialect,\n\u001b[1;32m 1015\u001b[0m delimiter,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1022\u001b[0m dtype_backend\u001b[38;5;241m=\u001b[39mdtype_backend,\n\u001b[1;32m 1023\u001b[0m )\n\u001b[1;32m 1024\u001b[0m kwds\u001b[38;5;241m.\u001b[39mupdate(kwds_defaults)\n\u001b[0;32m-> 1026\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_read\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilepath_or_buffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/miniconda/envs/ame/lib/python3.11/site-packages/pandas/io/parsers/readers.py:620\u001b[0m, in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m 617\u001b[0m _validate_names(kwds\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnames\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m))\n\u001b[1;32m 619\u001b[0m \u001b[38;5;66;03m# Create the parser.\u001b[39;00m\n\u001b[0;32m--> 620\u001b[0m parser \u001b[38;5;241m=\u001b[39m \u001b[43mTextFileReader\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilepath_or_buffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 622\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m chunksize \u001b[38;5;129;01mor\u001b[39;00m iterator:\n\u001b[1;32m 623\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m parser\n", + "File \u001b[0;32m~/miniconda/envs/ame/lib/python3.11/site-packages/pandas/io/parsers/readers.py:1620\u001b[0m, in \u001b[0;36mTextFileReader.__init__\u001b[0;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[1;32m 1617\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhas_index_names\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m kwds[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhas_index_names\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[1;32m 1619\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles: IOHandles \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m-> 1620\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_engine \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_make_engine\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mengine\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/miniconda/envs/ame/lib/python3.11/site-packages/pandas/io/parsers/readers.py:1880\u001b[0m, in \u001b[0;36mTextFileReader._make_engine\u001b[0;34m(self, f, engine)\u001b[0m\n\u001b[1;32m 1878\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m mode:\n\u001b[1;32m 1879\u001b[0m mode \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m-> 1880\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles \u001b[38;5;241m=\u001b[39m \u001b[43mget_handle\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1881\u001b[0m \u001b[43m \u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1882\u001b[0m \u001b[43m \u001b[49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1883\u001b[0m \u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mencoding\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1884\u001b[0m \u001b[43m \u001b[49m\u001b[43mcompression\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcompression\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1885\u001b[0m \u001b[43m \u001b[49m\u001b[43mmemory_map\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmemory_map\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1886\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_text\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mis_text\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1887\u001b[0m \u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mencoding_errors\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstrict\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1888\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstorage_options\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1889\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1890\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1891\u001b[0m f \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles\u001b[38;5;241m.\u001b[39mhandle\n", + "File \u001b[0;32m~/miniconda/envs/ame/lib/python3.11/site-packages/pandas/io/common.py:873\u001b[0m, in \u001b[0;36mget_handle\u001b[0;34m(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)\u001b[0m\n\u001b[1;32m 868\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(handle, \u001b[38;5;28mstr\u001b[39m):\n\u001b[1;32m 869\u001b[0m \u001b[38;5;66;03m# Check whether the filename is to be opened in binary mode.\u001b[39;00m\n\u001b[1;32m 870\u001b[0m \u001b[38;5;66;03m# Binary mode does not support 'encoding' and 'newline'.\u001b[39;00m\n\u001b[1;32m 871\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ioargs\u001b[38;5;241m.\u001b[39mencoding \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m ioargs\u001b[38;5;241m.\u001b[39mmode:\n\u001b[1;32m 872\u001b[0m \u001b[38;5;66;03m# Encoding\u001b[39;00m\n\u001b[0;32m--> 873\u001b[0m handle \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mopen\u001b[39;49m\u001b[43m(\u001b[49m\n\u001b[1;32m 874\u001b[0m \u001b[43m \u001b[49m\u001b[43mhandle\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 875\u001b[0m \u001b[43m \u001b[49m\u001b[43mioargs\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 876\u001b[0m \u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mioargs\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mencoding\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 877\u001b[0m \u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43merrors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 878\u001b[0m \u001b[43m \u001b[49m\u001b[43mnewline\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 879\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 880\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 881\u001b[0m \u001b[38;5;66;03m# Binary mode\u001b[39;00m\n\u001b[1;32m 882\u001b[0m handle \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mopen\u001b[39m(handle, ioargs\u001b[38;5;241m.\u001b[39mmode)\n", + "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: './data/raw/train.csv'" + ] + } + ], + "source": [ + "train_v2 = pd.read_csv(\"./data/raw/train.csv\", encoding=\"UTF-8\")\n", + "dev_v2 = pd.read_csv(\"./data/raw/dev.csv\", encoding=\"UTF-8\")\n", + "\n", + "replace_special_letters(train_v2)\n", + "replace_special_letters(dev_v2)\n", + "\n", + "print_text(train_v2, 5)\n", + "print_text(dev_v2, 5)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [], + "source": [ + "# 초성 대체\n", + "def replace_consonant(df):\n", + " df[\"sentence_1\"] = df[\"sentence_1\"].str.replace(r\"[ㅋ]+\", \"웃음\", regex=True)\n", + " df[\"sentence_2\"] = df[\"sentence_2\"].str.replace(r\"[ㅋ]+\", \"웃음\", regex=True)\n", + " df[\"sentence_1\"] = df[\"sentence_2\"].str.replace(r\"[ㅎ]+\", \"웃음\", regex=True)\n", + " df[\"sentence_2\"] = df[\"sentence_2\"].str.replace(r\"[ㅎ]+\", \"웃음\", regex=True)\n", + "\n", + " df[\"sentence_1\"] = df[\"sentence_1\"].str.replace(r\"[ㅜ]+\", \"슬픔\", regex=True)\n", + " df[\"sentence_2\"] = df[\"sentence_2\"].str.replace(r\"[ㅜ]+\", \"슬픔\", regex=True)\n", + " df[\"sentence_1\"] = df[\"sentence_1\"].str.replace(r\"[ㅠ]+\", \"슬픔\", regex=True)\n", + " df[\"sentence_2\"] = df[\"sentence_2\"].str.replace(r\"[ㅠ]+\", \"슬픔\", regex=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "반전도 있고사랑도 있고재미도있네요 / 반전도 있고사랑도 있고재미도있네요\n", + "오 액세스 권한이 없다고 합니다 / 오 액세스 권한이 없다고 합니다\n", + "주택청약 무주택기준 변경해주세요 / 주택청약 무주택기준 변경해주세요\n", + "화상으로만 보다가 리얼로 만나니 정말 반가웠습니다 / 화상으로만 보다가 리얼로 만나니 정말 반가웠습니다\n", + "꼬옥 실제로 한번 뵈어요 뿌뿌뿌 / 꼬옥 실제로 한번 뵈어요 뿌뿌뿌\n", + "오 마이 갓 지저스 스크론 이스트 팬 / 오 마이 갓 지저스 스크론 이스트 팬\n", + "암만 찍어도 하늘은 까맣다 슬픔 / 암만 찍어도 하늘은 까맣다 슬픔\n", + "이렇게 지겨운 공포영화는 처음 / 이렇게 지겨운 공포영화는 처음\n", + "가장 시급한 것이 신생아실 관리입니다 / 가장 시급한 것이 신생아실 관리입니다\n", + "크림하우스 환불조치할 수 있도록해주세여 / 크림하우스 환불조치할 수 있도록해주세여\n", + "\n", + "액션은 흉내만 내고 그마저도 후반부에는 슬로우모션 처리 / 액션은 흉내만 내고 그마저도 후반부에는 슬로우모션 처리\n", + "너무 감동해서 입 다물어 / 너무 감동해서 입 다물어\n", + "올해 본 영화 중 최악 / 올해 본 영화 중 최악\n", + "특히 당신은 항상 많은 음악 채널에 영감을 줍니다 / 특히 당신은 항상 많은 음악 채널에 영감을 줍니다\n", + "다음 후기도 기대됩니다 / 다음 후기도 기대됩니다\n", + "사진이 나왔어요웃음 축하드립니다 / 사진이 나왔어요웃음 축하드립니다\n", + "영화 보는 내내 뭔가 모를 편안함을 느꼈어요 / 영화 보는 내내 뭔가 모를 편안함을 느꼈어요\n", + "얼른 건강 회복하기를요 / 얼른 건강 회복하기를요\n", + "고수님들의 많은 지도 부탁드립니다 PERSON / 고수님들의 많은 지도 부탁드립니다 PERSON\n", + "런닝화를 신고 발 뒤꿈치가 부드러워서 계속 힘을 빼고 발뒤꿈치를 들어 올렸다 / 런닝화를 신고 발 뒤꿈치가 부드러워서 계속 힘을 빼고 발뒤꿈치를 들어 올렸다\n", + "\n" + ] + } + ], + "source": [ + "replace_consonant(train_v2)\n", + "replace_consonant(dev_v2)\n", + "\n", + "print_text(train_v2, 5)\n", + "print_text(dev_v2, 5)" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [], + "source": [ + "# 띄어쓰기 교정\n", + "# !pip install git+https://github.com/haven-jeon/PyKoSpacing.git\n", + "import pykospacing\n", + "spacing = pykospacing.Spacing() \n", + "\n", + "def spacing_text(df):\n", + " df[\"sentence_1\"] = df[\"sentence_1\"].map(spacing)\n", + " df[\"sentence_2\"] = df[\"sentence_2\"].map(spacing)" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "스릴도 있고 반전도 있고 여느 한국영화 쓰레기들하고는 차원이 다르네요 / 반전도 있고 사랑도 있고 재미도 있네요\n", + "앗 제가 접근 권한이 없다고 뜹니다 / 오 액 세스 권한이 없다고 합니다\n", + "주택청약 조건 변경해주세요 / 주택청약 무주택기준 변경해주세요\n", + "입사 후 처음 대면으로 만나 반가웠습니다 / 화상으로만 보다 가 리얼로 만나니 정말 반가웠습니다\n", + "뿌듯 뿌듯 하네요 / 꼬옥 실제로 한 번 뵈어요 뿌뿌뿌\n", + "\n", + "액션은 개뿔 총 몇 번 쏘고 끝입니다 / 액션은 흉내만 내 고 그마저도 후반부에는 슬로우 모션 처리\n", + "감격스러워 입막으심 / 너무 감동해서 입 다 물어\n", + "이번 년도에 본 영화 중 가장 최악의 영화 / 올해 본 영화 중 최악\n", + "특히 평소 뮤직 채널에 많은 영감을 불어 넣어주시는 / 특히 당신은 항상 많은 음악 채널에 영감을 줍니다\n", + "다음 밥 스테이지가 기대됩니다 ㅎ / 다음 후기도 기대됩니다\n", + "\n" + ] + } + ], + "source": [ + "spacing_text(train_v2)\n", + "spacing_text(dev_v2)\n", + "\n", + "print_text(train_v2, 5)\n", + "print_text(dev_v2, 5)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "# 불용어 제거\n", + "from nltk.tokenize import word_tokenize \n", + "\n", + "def remove_stop_word(df):\n", + " def _do(target):\n", + " stop_words = \"아 휴 아이구 아이쿠 아이고 어\"\n", + " stop_words = stop_words.split(\" \")\n", + " word_tokens = word_tokenize(target)\n", + " result = [word for word in word_tokens if not word in stop_words]\n", + " return \" \".join(result)\n", + " df[\"sentence_1\"] = df[\"sentence_1\"].apply(_do)\n", + " df[\"sentence_2\"] = df[\"sentence_2\"].apply(_do)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "스릴도있고 반전도 있고 여느 한국영화 쓰레기들하고는 차원이 다르네요~ / 반전도 있고 , 사랑도 있고재미도있네요 .\n", + "앗 제가 접근권한이 없다고 뜹니다 ; ; / 오 , 액세스 권한이 없다고 합니다 .\n", + "주택청약조건 변경해주세요 . / 주택청약 무주택기준 변경해주세요 .\n", + "입사후 처음 대면으로 만나 반가웠습니다 . / 화상으로만 보다가 리얼로 만나니 정말 반가웠습니다 .\n", + "뿌듯뿌듯 하네요 ! ! / 꼬옥 실제로 한번 뵈어요 뿌뿌뿌~ ! ~ !\n", + "\n", + "액션은개뿔 총몇번쏘고 끝입니다 / 액션은 흉내만 내고 그마저도 후반부에는 슬로우모션 처리\n", + "감격스러워 입막으심 ? / 너무 감동해서 입 다물어 ?\n", + "이번 년도에 본 영화 중 가장 최악의 영화 ...... / 올해 본 영화 중 최악 ...\n", + "특히 평소 뮤직채널에 많은 영감을 불어넣어주시는 ! / 특히 , 당신은 항상 많은 음악 채널에 영감을 줍니다 !\n", + "다음 밥스테이지가 기대됩니다~ ㅎ / 다음 후기도 기대됩니다~~\n", + "\n" + ] + } + ], + "source": [ + "remove_stop_word(train_v2)\n", + "remove_stop_word(dev_v2)\n", + "\n", + "print_text(train_v2, 5)\n", + "print_text(dev_v2, 5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 데이터 증강 (EDA, Easy Data Augmentation)\n", + "- 개념 내용은 https://stages.ai/en/competitions/327/board/community/post/2783 참고하세요. \n", + "- 코드는 https://github.com/catSirup/KorEDA 에서 가져왔습니다. " + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [], + "source": [ + "import random\n", + "import pickle\n", + "import re\n", + "\n", + "wordnet = {}\n", + "with open(\"./data/wordnet.pickle\", \"rb\") as f:\n", + " wordnet = pickle.load(f)\n", + "\n", + "\n", + "# 한글만 남기고 나머지는 삭제\n", + "def get_only_hangul(line):\n", + " parseText = re.compile(\"/ ^[ㄱ-ㅎㅏ-ㅣ가-힣]*$/\").sub(\"\", line)\n", + "\n", + " return parseText\n", + "\n", + "\n", + "########################################################################\n", + "# Synonym replacement\n", + "# Replace n words in the sentence with synonyms from wordnet\n", + "########################################################################\n", + "def synonym_replacement(words, n):\n", + " new_words = words.copy()\n", + " random_word_list = list(set([word for word in words]))\n", + " random.shuffle(random_word_list)\n", + " num_replaced = 0\n", + " for random_word in random_word_list:\n", + " synonyms = get_synonyms(random_word)\n", + " if len(synonyms) >= 1:\n", + " synonym = random.choice(list(synonyms))\n", + " new_words = [synonym if word == random_word else word for word in new_words]\n", + " num_replaced += 1\n", + " if num_replaced >= n:\n", + " break\n", + "\n", + " if len(new_words) != 0:\n", + " sentence = \" \".join(new_words)\n", + " new_words = sentence.split(\" \")\n", + "\n", + " else:\n", + " new_words = \"\"\n", + "\n", + " return new_words\n", + "\n", + "\n", + "def get_synonyms(word):\n", + " synomyms = []\n", + "\n", + " try:\n", + " for syn in wordnet[word]:\n", + " for s in syn:\n", + " synomyms.append(s)\n", + " except:\n", + " pass\n", + "\n", + " return synomyms\n", + "\n", + "\n", + "########################################################################\n", + "# Random deletion\n", + "# Randomly delete words from the sentence with probability p\n", + "########################################################################\n", + "def random_deletion(words, p):\n", + " if len(words) == 1:\n", + " return words\n", + "\n", + " new_words = []\n", + " for word in words:\n", + " r = random.uniform(0, 1)\n", + " if r > p:\n", + " new_words.append(word)\n", + "\n", + " if len(new_words) == 0:\n", + " rand_int = random.randint(0, len(words) - 1)\n", + " return [words[rand_int]]\n", + "\n", + " return new_words\n", + "\n", + "\n", + "########################################################################\n", + "# Random swap\n", + "# Randomly swap two words in the sentence n times\n", + "########################################################################\n", + "def random_swap(words, n):\n", + " new_words = words.copy()\n", + " for _ in range(n):\n", + " new_words = swap_word(new_words)\n", + "\n", + " return new_words\n", + "\n", + "\n", + "def swap_word(new_words):\n", + " random_idx_1 = random.randint(0, len(new_words) - 1)\n", + " random_idx_2 = random_idx_1\n", + " counter = 0\n", + "\n", + " while random_idx_2 == random_idx_1:\n", + " random_idx_2 = random.randint(0, len(new_words) - 1)\n", + " counter += 1\n", + " if counter > 3:\n", + " return new_words\n", + "\n", + " new_words[random_idx_1], new_words[random_idx_2] = (\n", + " new_words[random_idx_2],\n", + " new_words[random_idx_1],\n", + " )\n", + " return new_words\n", + "\n", + "\n", + "########################################################################\n", + "# Random insertion\n", + "# Randomly insert n words into the sentence\n", + "########################################################################\n", + "def random_insertion(words, n):\n", + " new_words = words.copy()\n", + " for _ in range(n):\n", + " add_word(new_words)\n", + "\n", + " return new_words\n", + "\n", + "\n", + "def add_word(new_words):\n", + " synonyms = []\n", + " counter = 0\n", + " while len(synonyms) < 1:\n", + " if len(new_words) >= 1:\n", + " random_word = new_words[random.randint(0, len(new_words) - 1)]\n", + " synonyms = get_synonyms(random_word)\n", + " counter += 1\n", + " else:\n", + " random_word = \"\"\n", + "\n", + " if counter >= 10:\n", + " return\n", + "\n", + " random_synonym = synonyms[0]\n", + " random_idx = random.randint(0, len(new_words) - 1)\n", + " new_words.insert(random_idx, random_synonym)\n", + "\n", + "\n", + "def EDA(sentence, alpha_sr=0.1, alpha_ri=0.1, alpha_rs=0.1, num_aug=9):\n", + " sentence = get_only_hangul(sentence)\n", + " words = sentence.split(\" \")\n", + " words = [word for word in words if word != \"\"]\n", + " num_words = len(words)\n", + "\n", + " augmented_sentences = []\n", + " num_new_per_technique = int(num_aug / 3) + 1 # 3가지 증강 기법에 맞춰서 수정\n", + "\n", + " n_sr = max(1, int(alpha_sr * num_words))\n", + " n_ri = max(1, int(alpha_ri * num_words))\n", + " n_rs = max(1, int(alpha_rs * num_words))\n", + "\n", + " # sr: Synonym replacement\n", + " for _ in range(num_new_per_technique):\n", + " a_words = synonym_replacement(words, n_sr)\n", + " augmented_sentences.append(\" \".join(a_words))\n", + "\n", + " # ri: Random insertion\n", + " for _ in range(num_new_per_technique):\n", + " a_words = random_insertion(words, n_ri)\n", + " augmented_sentences.append(\" \".join(a_words))\n", + "\n", + " # rs: Random swap\n", + " for _ in range(num_new_per_technique):\n", + " a_words = random_swap(words, n_rs)\n", + " augmented_sentences.append(\" \".join(a_words))\n", + "\n", + " # Hangul cleanup and shuffle\n", + " augmented_sentences = [\n", + " get_only_hangul(sentence) for sentence in augmented_sentences\n", + " ]\n", + " random.shuffle(augmented_sentences)\n", + "\n", + " # Limit the number of augmentations to num_aug\n", + " if num_aug >= 1:\n", + " augmented_sentences = augmented_sentences[:num_aug]\n", + " else:\n", + " keep_prob = num_aug / len(augmented_sentences)\n", + " augmented_sentences = [\n", + " s for s in augmented_sentences if random.uniform(0, 1) < keep_prob\n", + " ]\n", + "\n", + " # Original sentence 포함\n", + " augmented_sentences.append(sentence)\n", + "\n", + " return augmented_sentences" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [], + "source": [ + "# EDA 적용 함수\n", + "def apply_eda(df, num_aug=2):\n", + " def conditional_EDA(row, column_name):\n", + " if row[\"label\"] >= 1: \n", + " return EDA(row[column_name], num_aug=num_aug)\n", + " else:\n", + " return [row[column_name]]\n", + "\n", + " df[\"sentence_1\"] = df.apply(lambda row: conditional_EDA(row, \"sentence_1\"), axis=1)\n", + " df = df.explode(\"sentence_1\").reset_index(drop=True)\n", + " \n", + " df[\"sentence_2\"] = df.apply(lambda row: conditional_EDA(row, \"sentence_2\"), axis=1)\n", + " df = df.explode(\"sentence_2\").reset_index(drop=True)\n", + "\n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": {}, + "outputs": [], + "source": [ + "train_v3 = pd.read_csv(\"./data/raw/train.csv\", encoding=\"UTF-8\")\n", + "train_v3 = apply_eda(train_v3)" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "스릴도 있고 반전도 있고 여느 한국영화 쓰레기들하고는 차원이 다르네요 / 반전도 있고 사랑도 있고 재미도 있네요\n", + "스릴도 있고 반전도 있고 여느 한국영화 쓰레기들하고는 차원이 다르네요 / 사랑도 있고 반전도 있고 재미도 있네요\n", + "스릴도 있고 반전도 있고 여느 한국영화 쓰레기들하고는 차원이 다르네요 / 반전도 있고 사랑도 있고 재미도 있네요\n", + "스릴도 있고 반전도 있고 여느 한국영화 쓰레기들하고는 차원이 다르네요 / 반전도 있고 사랑도 있고 재미도 있네요\n", + "스릴도 있고 반전도 있고 여느 한국영화 쓰레기들하고는 차원이 다르네요 / 반전도 있고 사랑도 있고 재미도 있네요\n", + "스릴도 있고 반전도 있고 여느 한국영화 쓰레기들하고는 차원이 다르네요 / 반전도 있고 사랑도 있고 재미도 있네요\n", + "스릴도 있고 반전도 있고 여느 한국영화 쓰레기들하고는 차원이 다르네요 / 반전도 있고 사랑도 있고 재미도 있네요\n", + "스릴도 있고 반전도 있고 여느 한국영화 쓰레기들하고는 차원이 다르네요 / 반전도 있네요 사랑도 있고 재미도 있고\n", + "스릴도 있고 반전도 있고 여느 한국영화 쓰레기들하고는 차원이 다르네요 / 반전도 있고 사랑도 있고 재미도 있네요\n", + "앗 접 제가 접근 권한이 없다고 뜹니다 / 오 액 세스 권한이 없다고 합니다\n", + "\n", + "54228\n" + ] + } + ], + "source": [ + "print_text(train_v3, 10)\n", + "print(len(train_v3))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "ame", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/utils/preprocess/wordnet.pickle b/utils/preprocess/wordnet.pickle new file mode 100644 index 0000000000000000000000000000000000000000..52755119f72b5266c9881e38410120f2ac5ae2c8 GIT binary patch literal 236584 zcmZUcd3;_)_5X|P`!2X6f?O6^1jPkWHW6e~K-R15h5?ahToJ*vO-tGa+R~;?+oYtB zk`_}))3i;Y1q2aLWD!wO0Z~xM^F-YD<@f%aGjsF!{r&Nr*ZG{!nYnXk=FXk%&eOW_ zb+rk_*;`JSFk!4~WUOb&SZ7ylqq6q8mW?hvdt)^=>!;X+GB{jQOQTX!mJI~OfGd1P+d zB}F!WR(;-*M$d3<*RuBdmRZf@7@y|Jvl zspX9+OwUN|&1LN^Ma!E#OwY*ZU|a3287Oscb1-S3zPO{dN5w4ds=fVELnK*#dzQ6# z6fJwYgQs^d2TKMU?OnCKJt3nbgN?}(m5_IqwS8LN>9^fjJgYH(P|*}+ZQqt6*LzNW4AE+^;B7C5kpY)tK_9hA~JuzqyqaP8o-c1Y23 zumvD7;d3XLM+w_F=zhW9p5K zww1Myl(nN;KH^z7Ix^f?yi^%_bXhy5AvdF>PKwrVvAuYJ;@8eKnJJKf4{bmidK?2$(Q?AjUb zcE>W6_?hO`=a5yzRp{>C+Vuv;<}Jmo_Kh5YK&ykr0}4Iy z(zAEcvvf~i{m#DnjP}O*R&Jm%rK>intW7RjCYkf->RF8$y|p%vb1GG_w>Bl^ReM+c zmT9%AW$lKdWoo)kr%dghFzVSfGxKc7Jl)OhD{C_@_2-!9Z*d#%3O#QfW$nh6j?`53 zS=rrG)@HWcl$!E8mNyo5%5hd%o82-iIg;zVK5i~+bBdOmJ;gi-nC5zdy4xD_r_?$< zLszY?&C5QjUh~~&{uBl1^1G_vF{RPfURzMs7Pc%%7omk+&{bPh*1C(9MIOQGS#{d% zo(vlESJW0~Am>{=HXgtF;;ve6SzFT5n_^qjJ=WD$yS1#{)^clVulw4lyYvxWo2!7%Q83BXSV4Ica*hn7A<#J5@eb&P#bVCX&78v z;b6u(fjhHXV{m!xu9VWXtwMukZDq?~y4v9K`qBlpp|ZBBXc@9FxHM>Hhf|oL!8%XF z>aw<`Xj$zJJ?mv!>wwoBV8p@V*#hef@I(pRo#JtHPgz^va!}Bt*_l**1pwpzlRySVYsoTv-Ut)d$4GEz`~3zYQtLlwpF+K&1*+j zj_A$N-(GvjqfuVb3Vx@oJ>2r06ivsn#%=3skCe4XiX_xT25f+HV|?$(kD}%89-SxtpDDWTwmRL`f0ea=xBM%$W3+|q+EhUQDQo|2`A^De61#Fr zoUqY^31!>}8KkBVgWPT(A>!+d-WXW~>HbcJrb&U`1XC)`%C@Nm*$f$^rWjYX^3GF` z&5hndwA6gTx!e{n-MFRETZxwHX{9>Wm$b&MjoSuU1nK$q#cc~tP5k_6^&6MhX*N3B z;&v8fdt{KBZhiXd`kbD)gK;||iy+;jTf0o$P8p9ayis`P3eOy%MT)zCJ;Uq$ee{mw zt{BSrdSnr#H%GQx#-pnT8jGjI-NC6i7j!A`8!(jdjmRK1-LyNu$+$O*lbX0yy*vi- zEyleSSp@0cB&_S=&8w__Ta&4NTZc@0VDd}Tsc1}J7vGMdjC&%BAl=hV4V`*pd`E>D zR;+4^dx29eV^~Gty)l&Woya0c_rTq~jJo1J+r|jMzoUSyu zjLu;^07Dtyg)D+}zY-kTdEmJ7V&2W2@gQ?P7#XCdLbqll9%9_PkwuX15m~Df53O*2 zTcfix9+t7UI`KUjd&3jo3r?w|Q$RT$j-ib2Ll!~0M^2}ucU^pcg&FkV`+*9>Pg)*7 z*n}Hvm&GG8)<^*V4`tlwoh^K1g%?i|{&0ocyOd)eX~ytJfpf{PrqafvF_iHbWD%r$ zdC&`nJGOGJ54Os1oH>6K8Kho#_V((?Et*yDXr-wdUE8Y4b-X!!Oiog(YFwYx9ZxXs zL}U@9`_)ztjCGB~k2m4bk!kUyCfryu7*B4-i)O`BnsIM;Jhd6G>5iv?)2*%^pm!BN zfuW3_LW1c)mH8<}BTu;b_g`rz_{t!S4ECcl?YwUw{l! zt7@*4UufJ#$RbG3*{zFQ+=O*kmo#DJ$fe*^t@~%wON^IcDC1|5MUZZh(ck0!9a}PH z#39;midTcmSVI;; zy64vd3U5J-8FSf2-|YB>jMcST)Ed8-F;5Gf>G&nE7arH4qoTt5GPW{)1z7~?-oWy( z&tD<>tCgvZ2GU+{*I-JSMFaz4N=` z^~QYzSp@0+@~wilVoLqI!PYp@oF^fJ)KnYR%w;efCmYu$PHL+ELku5B;uPbiB8wp1 z#x3=U9q|T0^%RXw?Tzi`ISm=4=K7|df1GaI3~^E`PPf=$+>PR-=Bp2Km+>a!W+ICq z-3pM`hqzhbl$A7j!_(qybH3S}rKd{GM9J(pC*!fULA@I1X3YJI?*w~fnnoEMjPo#* zaXvCgO(|Zpygsudb{V%ooYcfI4Yqi8Txi@PaZ|QgaqE=hPi|%BzuEyFknVWsl!3j1B$1Fj;|ZLP;p#tq0KNY9Ze z@VyoG3*QH>@=p%;V<_XdkU?s?rI97-zC2*ugW{y77Gp-==wNH3t1o`r=!Zm0^`N{X z6zzA6dsv**6zx5IG&b=O;~qs8LAuq2=14Z_w)ZW7x|0 zePj`&dz&wzJT8+>ym$50mk!4#!0EqH4|3xxeAkX-o?*Xc;;%A>Y^?2wFJ%lrHn}IhT;cg`nBuR&p3f=3Z!nbc z6=aa=HGwLk3ihgTqsSsi_Z#!Rb3J2x>q~lLBVz(GqZY?1ym&x0?za`TS%dgm#=2Hd zSNvVZs%c#N_ZiojCAxhe{sEjHt2SE1_(u$7{1Y-rO$lewfj;e@jr$9-2+}>_E8E2V zwZd(^O!39PRhaoc_`hdt1I>x?9~tAUKH@(!u2Y%u{}(tV%p?3ahBE#KSp?}R*DUaV zD`!nS&KQmpUMJ^`kVTMg&f?az#@A&$*4bO1u`X_$F;fJ%#7&wp{H9G zIfgQBfh>ab>SDa+w#+zPY^#jZ#kT$*+#0uO#$0^cCajBZ2Ts|-`;Zsy_87{z1F{Ix zJzM-;xudYH+YNQbod78$lfFD7J7Xy0F32KC_mFUm9(S!UBTXLT*Mn2wl~d}ASI6Bj zlyP@t5u~T-*0%Tt0c(NUdo?b4W5z5njCC%HZ_2m<&jiSuGuD6@{FaRI*M;7iF5ihGO5l{kx8z}@=Dw{lZtk~Oe!RJe{gC@hm|4Cs!YAz$#ifw(fdsS56LDfSTemko4^egcZlmyOesZGWQSoZ<9m=n zYI=DMF{`&BzSp?JkwuVhnM4W3_X${gKe&ACrjhvmj8mq4AY+D5Dvb|jjI*-l2yjZs z)Q)slAHr6~BauO>zktWn{$Zm(B3f!nCq3<u^8+`_n;Wg5u z8(Nm=GqVZII<%_Br!b`yu^vx~&caZ}vynxR?ok-01e|03wn*F6PG^-MGM{Uq&O-*N zo*`=ciSc~nN@NkF=L}J}PlHp=cC^wTkDoE;3(Q%%*EZ%ed0AbUv4$+*i@+)Ez3q+8 z4e??OWxNDg1nCx-3QcW_mySErT++5)X3n2AXX&0SaqY3Ca;^`}*Qn}pa}LNLH5K@} zE+yj%!&ge+Hl3c@3#)vF} zbibXEc2@V|7n-p8n_tXWPY(D?;G8#fHB%zr&&>&mW(*MU>1dIZ;FDC0MfL2Ak(*3NiAw;DGQSp?~xMOyc3 zkCQSU9n>a>I5}hH2rV@{tiiMa@9`#Z$RN&jdsp5KS`!JMoDY6LCt2@E@_Hk$L5ciw&GGvgNvUv&X_*3F?gxJQshkZuw2j5H<< z$49{_k!&==@LhBMo;gc5X9ymh_*jKm%wv}G`x&Rm9?uwmUHA#GN8ae1tH__kz_1z_ zq>iVOvF8trds>{-#4Vnsy8T1roA2(yJ`4ezT#Nt^h3D{sCwvfXwP1J&gkbwOHDyLJ6TqJL-f??p>Z z$?ok`!}SN_{)jAsbZ^8uTH~JtRIeF#>jnDfjMXm&|0QGcM)UZ8%@`p5ZxyEh0sr@m z_2{(q#eZZ>KU(}hn=w6we^r>>XYl_9dq2C*7MwNORulh&t&IOg2C05yWN4#jcAP+K z%m5l0qeJJBGRs#$Qv0A8EqkkII#Ei9v}VkM@QI95>3kBLO2dombPQ!Y0~w@N2~lKc8uux2QoSbX z?J(2U3C}WGO@EM@f-+=hqWB!+&J`!sIc?eMSQgJS?tEksq}%=RTJY$K+}8BI7Pb7D0NxoVZIW%oa89rQr1ZGL1Cf zR>dyE#xgWANKLod)z_H6KDHQlxj3omS+!Y6H8H{HD@038LD|noGkB$OpFuKl z#$5$YRT1ajrSbFTd^Ivi&G%^k$m z-u$Ke#0p#g7u!$IxA!eF1WmzE#;HiwohxTGgWd54b4D-^IvCqg$~X-fq^5kO9cE}S-MAUZB1rdJRvSG# zc4VxnKk$titHI>`aZ?l4EzAUa631qDv)4Ax!cfN9$RKt6!VJ%DHf|2G2-5w+3vKdx zF4!Z|zB@9b)12p-vvhN2+JeqZoL@P!>qk==UFN(18KkDG&L2=j3yoVOPHJih)-d;^ z4Vbap=pNBh(^J4!1_oi=;9{e15iQkYCR!#7Vy|&a#7Rw8^|HLxxZA`@bxw^vQ%!xw zEfpsY=s#J#}?lX54aQ5u|%AGUd-$^o}O1D}A%VzI-<7dmf6VI*W~@EvREL$|{1~#qV@e#tz_K$kNKIKn!!Xzt zhmBh;PHM{O8LT|%OOCk4=(VDyrl4GhNwpE<)`^qq94)!tW_KHR50X(a((+^U-Vv4F zdT>e~+X<))8_fA$bC&Lz$94yH=G|A}>FXLp-SK{~KmKg6;^i-&Z(%Fr1IQpX70jS@ z%^x)G+v23AM0R$msyt-ecaTMpo(j#DXCKaZ)Z=*soE`<+CKeyXP{!{fiy++st3-J5 zf3I>L>tXEP79TU`@0+u9zY?k~Z0%yLYl;>hF2vTF52Q+Bu8rmvr1^4n&HLbEx~ zVqj>DEP`}zYMG#!-q#rFia(P{Ep7b{zMPp8e=f{#f|e+rL-DfXIUXIhYd(*yj4vRI zAl>2{TeO}}GnAxXWYg%{-t_i-5mOaQa{DE=GX4r#1nC}2b&;2{X*`yfF{M~oaPP3u z&9AYQ@i)jIHDxXz6!B2KV%)39B1rcVWLW}kG-KXf!ga96?Hj3eBMoefoRLM4ZYiwK zW66u@sn+;g3u4_8wp;TN(M&$m8ji17sNY#A>2}q0mET(sd#iae{$S33G-v6}&VQ<$ zQ|LdN^Iwobs#g~4x7tYluSWk3Sp?}`%xp#WHMhT4CPsUU+3eC4{~?pz!1O*Qd)O5y z>p!ukXPvFQZNu?j7|Qr>WRRLF>6||Dfm#>;WAuMTOHIvDb=?V@DD+0iAT@7s=#H;5 zVq+0fQ@DldO{hdRF?v(cQgbWNtJ$Eu!A}8hzwHGRT(BQhqRM% zJByQ=ZgfpIU1a6=E=KQ)EP`}@5GJ=J`t_L7<7_ilaX0hd9T}viOWoc>Ll)m)+#8Wa zknU-|y{FN+B)+K$tK8n)gf%>QOB1FAjc;wj4c=*Q%Xq9~Lt}75+#}=qkiLG6ZwIG( zV@qstPYf(RBUyZwvwd4Tw}W08O;6lQCVLiagH7DK!oHC7&I+%YtMu-ZF(U}!0-UbL z4U)ipF_dvXWD%q{N4|gMOdV0^1I+nd$RO2oQSYbQd*Xq{9VAX_mBZ}wi3b~Zh&ZXK zFsH9ey`Xm+eW+-u9@IBF#lwty53&f-Eqy67-&cot-+{(Rv9Gr5BehiyuPQp;elaY*^v$Ks>m&H>uW(N?acq+K6L#p(rVJPD#kU^^F zoX;A@Pa1c+IH{>@J34rw#WRdM6Ilf5b_a9-G>iYKjQtfF&#EwOE<>BMD@QXWo3X!R<9Qi#Va=tS56*SPA}BGG@zcm6NcSSPS8M!C<(y)_z??5MXX)8lcXd${ z=H(wR2B)_q8y9_k@e*uhycAgk>0WlM(lC>E*|@)bk)-DCv*zDo{?h$51>JAGm&==j zq;<|Y6Sp?~xWehe++>IIY)wnKt6FA)&>lPShVkqM*WD%rS zfqB?wH(?F%Zw7l{Ldq})LmB5HgVc2E%*xXIbs9HMoYc%|M^c<`T$ebhiL-q@ae;9Q zkwuX1S!SD$;-U)M{-@XtPIu#m9t>q%j4Xom=D@d9*e}$Zv2TEiODa6GjnP27HDlJ; z>NBUr+ra5!w$&>3VPJU~$?|e`ZrH}Hc>B0Bk1M0#esf-C&eAPqR4sAKD`zr?f{J&T z^Eb^|y5EN1;y~q`igblJ--!%T{VhuYrJcTa89gXkYNA<0?PV6DE3Pzp2w4Q__6YJ; z)r<)As%&cXWz#Sw&xbMpfMYd=GOj@uLAu}C0zRzS5Z4M@le4Imb!zQB7{QeDahUTL z;yMgvyc<~r>3+8}7;tsRd(2r8Xkm!WJEUp7`EM|P=^nqmu|?l&LDX!Fb+JOfAl_&G z_nW_TkDu*x-NW%)8OxV>!v~tMz8rcmW2S%<*SEo*cs|!}OkW)z!oadKl0kNMt`E_y z+z=nGoZ0!MKEfmB{3tR=_5Qtf34Ygz?;(pI-IB<7S%Dq{r-qX$?Oq%9f8YEcM+T{B zHixA~eZXK-Oi!4{lk$+78jJx((%tbX<9>iFf^;u)zP4GwNgCbpX-uhrJ8!J>qW_`! zKV$yVQ|d?wi_euao-+K{oPUB0Qax!}yre++^k`CFeAYaEDi5itMo#KtSXH0I7~ANd zBiYW4^y0No<5j%RVM^7<=YF3z{}+%!s^2N|E^_{baW5i^Al-{zoh7z%{|{y>H`pWQ zFbH*yUcykumytz~?tQW~eeu@<_Fn4X^UA*Xn+kJ^1d|A_fKw9LUC&I+s~E~SiVRXy z5<8h8SP<*RHN;6x1;sW~GJeds-y(}3-7h+YX{NULnlNL?3A)eUWs)AEzT*2m*i$e% z#JLe|@edfv_(vq`&y_P{)}Dd*Cv(nG{n(V*i;jKr>?h61IohCZ+W%`FD0n^U(hR`**_isW)rjxM)yr|HWL! z37e7vsh$GLK=o=PtYv(iIH`$aTuJISHf|GS5u{t{#^$po(H1uarw5EGuEyMDsx7;K(}kz^ zX$ZfoIltbVr8hh8X3lA{!w>(^SCG3~kT+Nm>3KRNd2~#PZ?u4VGE%|6$%4Guf=Ks5 zC&f&$^5DEhCVP;4@!_o*6P!I8@oiO*s-EnDDc5ZCc{>I^j7A2jUKEsr_8Yy!xV^+l zO*Ml4_T;5;Z{yyHN1DX<824Ue5u|$}nV%yOhYPE~`Rs+8Z7kNQSMhyVQ(iMEJhVK% z9|J4V$RIUcdewT>z7HCAggB}GZeyA>e#nR;MM(8P+=w384;%LpaZ*!y+q=|(KgzhH z#YuH;bk(x4xozQd0mK|XePc`~9(NYs#?c)E0 z(Vs*XLAt;5svY;IXH$JmIy^0&fhi?;>JlaRObliG6tW1?EsC+uk@}o&-TYaVKiysV zpKboWt|=Wl3y8<|d`w;|8}=of?!UAkpGF3$DdU-CxTi0E z#<&Z_NlopR4ZRffLZdGdE!Bha!HrURv2mA(lbTYwc&UovQsXWYCpCo|oLiqgJAT%< z7I9MjlHQTmB`-HRh?bgy`iu1nz^~?DiKms8LnfKN4usqKX3HaqNV1$ zY)`M`n$c0TRHvCnN&6eWVDuM7OU*YrS1*Du8TVx*!(?Qxxa!4x<$o|6vcair)+|pQ z=4-GqOhyK&DQ@otU2ELe#YuIJceI8f*BN)cIH@TU7p{Z5948{JD{TZO$}HwEl9oZQtOk*OHUcmpy>O@-!Nuy*67 ziIbXck#i3QhU0YOW{8uTb6)$#bQ>K;-zZvYx=UsYy}7-~=$S~qd`9}SP<@U$tI5Q$ zNfFM*lpakTMK>khjG>HkkgP$=U#~oUhP1Rd&NXMX_iUMto#r_Y8KkD$VDB*FfceIC zA=#IW^p^zdP745jJ(U|@N-i|dMaUpE#lm7DAN_V4*MsD{XQZda&j45qP6=n%>DqPi z7IW@J2B|5cUhZ-@E-~&_WD%r$L>#Zj9OZ2pGYdy$iG3Mc%^8kM!TCZ<8%$H&j-ibG z$RbGhd+VPTmsOrAs^#W+hj~i3%cf|*Iqp2URqv|-b6#Q2(#@G+hFX?8&Dk1p``lS2 zcbEAOB7@X4K3g;;t~6pugw!vMaqQ3EnIj=(osUA^%9pAXI8QZvfkSseRJtEGZWM*?cI7Q^=By2F}dyzqE zN)gjQOqt(j-2KQRNcV_3>6fjK-^y6?*mQ0l0H=uAM@DDiK@4U5HnIrPt*{jGp>a=! z`gnfFJRdes>3$kXCriC71kI(3p>E|PBCHdr_V$CkT(imi-4 zLl!~0w>`{!cTQ2g`gt}fC%w^qE}J-BAw}|hWuguCmivWlVwy4q`~{}eT33<1h^>sj zM6zl7{}1x3Du`NlkNG7F^0Eby?(c-^hJKw*7OYI-5?alrJ|%Jn}O z{YNB2X{1MIM^%abQ)Oc0=^_5yWMarKufND-m7Z;Lj8y&#PT6mtNz3PN*vj~KWD%tM zg;p{-X_ez2RS?aXck2w^_)iP+FJzGFN!K>n={DK-Z=?T%!?i}Li~ z1k&hUOv%r;{j?iZCJmM>-q%$o78d-TH^wwxhCFGTU?}6JNOpV6pWg(A=6ZfN%b0Fm zefrY4xp01-w*aK9u~Sk;2N%RGv6XQvWRRNMwjMPOTN}5HIH`%Fq2T?xt#R9llj`}S z0na=u+U!{FN27N_7D2ja%w&!{uusf(#*``&GjY5Vb}|25kwI!| z%IEcJmh1J#?IuoYO644znP$L8>PwMfrB)_7o>ICDn2zzQee^#7RwD zTerT{-`lu%ij$f+ju_>Ln0<^Z#7RvBv5HD;eaC%`-Ve$0G}3drt1r>}WAdEV=@B%Z z2bll6kU^?nN{uq(-UE$02w4Q_mYamrbnn4Un4xbxBx6?C#J?L{T}XyQF_iHzWD%rW zWUM4B@Oy-Ft$lArGMa@v9Gq%#bsO))#yT}JNcBt@WQ+kT|bd!@AK7oNl$&ifA z<snf7W>{AD}`8KkCS zcmH#ZJ5QX{RL_T6wWxN!aiut^DV(SC)5d)USp?~R4>LF`cqCqs@#qkXx`Xk;jQPG@ zX}qYylp^@z3j2=YOEMwK}*xQXJVR-9`1B;zI{iy+OX0NcWqK_q$#X-6G?<#Yy!9>Vfr7E_#e!jAY##X;%~Nb?TOEA~&!q0lk>K zvTLrKnbRd0IJyiOr1}-u2hAog`QK)AAF>G2{eGsbPxR7k(lVcixVZt*>ydaDIMt6TWrNttxDpwp`rYe;F29!{qgRQRnlfkly80w*vWJacjpT4M zq$P;0+YI%TcWWvWPx(SC>$R9X4Ls7R5{_Ui<2q!Jnl7TvuU1FzHu@gXQpagO;&;8# z8$?S@bQgOuEcCrb--j%MbWb89Y^U$Xl=4Ie7FdvPS&#=Th;$1w{=LA1O{Ns$+u6j% z!DM;}Q)*P18)7W?9SmiB7#XB`I>%qqj~M-^XsL;|^B$Cy-!=MsNEXVGmL~0*=xrDM z7^d_jvO}rI_UL}!f;^54QvFC&>H+T}N&7F7_=Gtk&N%b7yz-`S}R-b=7Z%!}BNoo~==JS4G z+>7F*rn*J<%ZE+BH2POawx=U==8dlERkB~oCU)tjq0-Bk#;cpRVZX-4_H-m)b}NW2 zK?)}ARgnNvWewB`dEtP&)K9e z;5k4Q(_flQ=~{oql-lft9s1tzZy1;%KnAHP>305=qWFi=|3nr+x}}4j4(q?7|CLP| z-Y&dRrhiu^dKqr|Pd4${Ge>X9>%W-NJy#(oY_6nigybMKq+M$~$m_Cc{PG)TlSZ~| zxgz3CDpPg&O|yyp2dP9h!{nD|_W~c6DdgtZI9d(K(P~wY;c1E9vI@eQ3ID&LAX{0G ztu2UjPcii12GQI6PY^HcZ7s-l7DRd##ADpP3Zjhi?AyVD?1&6fQ_W)=Jv+*FGHz!i z3--vf$ybi{8fLd?+y(46sduo)zpMGb-u$KipYq%-o5rucdp3=i#2YYqB~owXc4ibX zl<`f-AT>SQRbju`=(mWL>NhYpd3IwlUyU30He?Z``wjH6&1)d;0Zt7+y)X{Se!DsE zi40QxIy~9+CH8Q?!|1(`MUZYc2c7Ev-q}>A&*7!^JbKG?WJ zkVTO0GXv}Rc3ePh+t^LKMMfBjG_W2jtID6?YH|+)r}Ag4?DJ3W!B)oiB3Z$ge;P`s zvGUd`qcEl&w{)k8KkDd6e{vfgl(sPXIf=4u)e7ydlCR4iZk(g3a z^zqMcv0Ye!tLUOEmKzQ#50;qUuiO>RqL-}N*O^j&J^f17+B;-2C05gtqk}o_q9fUU9{A6JHyjh zI#imjGx~bbQk|~1X}gD(-oIgVt7xf-u97^_=t;;TNcUz$f3;>S?2|EhTGgC#xLTX} zPeBH$DKQHg<^>h@R4o+FS6Wn&xAB?wl-LbU zg}`X4za#cwV6QwfNKKWWV~zP-{}$tVkwuX1dCOKN_BSr6Fn{XCa>A`(k67Q(67g*q z%GietQd7h|9eMDE&GdP*tpf=q^1P&ru3@1#^|-8rRMbarPbRJqt}U+nqsC%*;jJ6arcOm z>YS=9r~j=tZUd52&yn7Iv&o%p#rIa2Z-Xh6`@pHvO)X5BZE}WUKZfUBfe{kj~o4jXsLdu zI-{IydD6J2#7Rv-IhNA5`TW4>r$tLm1;;n9`bRJ}2N?Yfk`vpIcHeO9PSc@9Kf>gB z&L*w;(A@ZA^ZyAlNKMi4oyLH@Z=N;!r$|0bM|yMvHj6>hN&MBgNec@q{Fg9! ziSVXRwwJM$@z=;8HPu>X%I0^(-x&7_vIx?xa`F7@FvVAe)w(I-Q9!z1|JRi|21fYE zAT?E4Uzi&+?zc!b03a>av;z2A6K1|5{w`x? zn_Q?|@n7JSTs}RRJGU`~K|MAOL`MdxDZ@vsp#N*!ge`P==@z{Xk@fMxMi8l%GLuXa zUWcKK8zX~MuQ%iVn;5;RXsL;=rsp;@dUMfIQ%dNg@D2MG#%+l#f^^RamW*zh7`JM| zdIfC_PRZi<0#+%u!BEC+kwL0omyT?jZQai3?U6;0?wLqG*H2&F0h4E%`o3=4(Sqz` zL8Rv(X+>b?@gVl!b*dJ-Sdd+jL8{*!)k51eUvJ!Q$RbGhimjn(cicT=%}vbXOt*}g z3DO@}yb+x4R+ASS;+rs(@y$pMcFWFqs%?Ku#-kqjTQeqd{v0{JEn`iV6Zsw)(4i?PH%iyg?rfr(;E-W*#G7<9wcm?B0kbR z7~nDMcrUyU!N6vEB!4p|Pd&Dph2^unLo?R)CVUUeSYesTeoqr-rZv77?2)Gk4#&XX zj3N1(vH#=zesi`4bn?WMUmr0451PMpZ*}=pf-UJj18{__3ZxL;+I$F88mDrQYDX&{ z%BnIRiMfm)Mh2;=Xsm}S`Xfdkg)D+}kF=UIKN?eNMtHz{9{m^#a;ycBZb4Y&Nc3^p zG&*u)>M4CRn-~Wquj4T_6+m137=|*QfGmP^FItY_V4>#33U{p&{&Y0fbJ zGtFPRS7X&JzGZL5)R(iG@sigW03@x&0I#K5=g zNQUgq&Rpy>O;{JZAmeng3o}j^yQmp+v5Udu7bC(;Fz_uqGDuAiw-!`-<7LKu7Reux zA*)=0YXN&iT$zi-%gs3;gH$gO&5Qdw$rVOlDOzf($TW7|#(d7`t3*rnWbi4C?(y@+ zU5zY)bbq+{%!b0LW!z|I#&*O5h#Zk1(> z%Hs4_nuD;=q99+jAlD#+)bU&+NnbPWT5(cS)wJUe74+*yUng3s2Te8qdgHz!PHGCu zmXf9V8`jur^hD88)1(z=Tum}!GLqGOq~#Dt4(jvAHn0~IdC5ooaf&%lHD~GO+-P5> zH^B|U*2=aoi|v3^S0?c{7R%x^3}u{-EQ0jPbB1{;90S1EVQx1fgVc0~9G*iIHyJlm zoYZs+5VMS!EkddX(m(mKW&UR4=7^K(+qUcN?Y#KXJmp;T=#+=l6nfYWX_;r-d}I-% z`~5PRP0U?jzePszGAuCXg~%W^MMS#?x5&6|aZ(dExkp@&af`)CP1Sq$EKbE%q2FS3 zuV|^MVAt|rMK;a4#OPZ^OHHAttgkP&>D}9m?nAO@kM!1zuAPToiph_=)ycoNn{&T8 zOZVGlHyS%VmI+(&&RrLmXOeCAnnk+}O>F${7&1upgfV7KPwfh$?-VW7 zbA$`=*AnqA;|7sMknZW|<|C(Bab?Eo(nG>IU8^$5%a|pQIGizer@*T#Y=7k**9hAi zxNRkUTicC~DK$;pzWC|arqRS%_WUHrCj4~diNK{b8S-=U!2 zG5TTAQd5eUrX#hF826|+sfpv|Ps8+GGaDCF9;(n4beLe+#7JO-1?C;blaIn3>rfbspQy8}6BZJhG zy?nyuTb_Sz^mE7}NVj}oX^JmV6#98gsW-xoYd=x^1q<>EWRRM2T^mHZ!Ko&u|N6Zm?yl=;Z^)$-yx0z%FB>WmUU4_$A`L~X_F zQk~OMC}YaajN2Sp1nD-EuobjnpVg0B$m*jVwyN?6WZ-mZ?VxRqTVde%bR^%gk2_nI zZqtO-)NY$G-?S^T?K0+6D&g(HsfzNK%|7+I1GX~mh~x-$`SY8=qn}<8J5?rTUOmLl zm^_J0HtN)@T`-h!S7eZy9!Q=z-+1zRqjy6x=tideSLa#}i;}m0L!>9l2JI)D+K2laO3+4^D}p!ncW|l3c&B_01W&&88S#sZ-%PC4mA28(Na@Z z@rSzn0nfq49U@L@3QFhMXAa+O^r51qrl39Rb=!v-_Z}pN!y&z~=vlA7MtU!Jyr#8V zsUB|r??VQueku0Pq!ons8~p*%Qq!e)_UZP2(6}RzoUe}bMwkZnLju-F^{|PjJ01y6 zMd5}IV_*dw8KiowOuA@rag=dKi<6o-4wPXaa*T1uB3b)J`bBPAU%z8{JPw@xpMWHM z)I5(jPw8HGYSI{1SD2l6B<}=pN*=3PWdDg6I8PnP(sy>&0sPEYo|JKY&TVSxPRp)bgM~?s?YFA3!?lRTf|X&6XWUTe+Dv0O@+XI zNtUk8H11R4q*jl4Y8K8iS{DdXQ%xGuAFZk$pJVj7NdDLx=_%>tuf1$n$a&eMw@0UK z{W%{~szWs7KF%z$F}6lBw$4HHpB+p+aFNecK`^9EqZe3^3oVFrzi<`fMcFhS%f*;3 zJ$ol|h5wFY`$l8_Ty0lp28e0gOCT9=BZJg*o6N~CvDWM|qd$ve%#F0GX&#Mo$pGovLLp( zWjf2 zsZP`NO6LnsHTnk8Qd1S-xHIoE>+GBjf?+U`mC>|Gu!r zYc7T|b|Q-)-D}d!DLQ0zUd8}*Fy}X8774nVac6s60QSh!f8#8~P{u{bAT<@*6lOR( zVz+TUNWPm#db3Ow&y#yF_`F5?D~4BU}kHadrJIIaYHMAR7d2#3sh6*5Tmh%{8? z^Uq=9R*RFGDk8lmUXN>xTPsd#I$mt;94&wNl*x#Btdob-6q+3p9AI^~arcOmnz$J~ z+OW9ZxDDc@I>%d=1jl=gyAR3kd8FSO9C>y>I6eMMTQBI;8}nP{{{S*bO>qr&kFFk$ z4;uGvB%jYCy(X>Xi<;s1P{yOf{DB-F(1TO9F?PZ5ForTdg5;mfvNLUtxJS(yF+pt; zrvmUyeHU29?;+VQkF*EVdYc1dlltOgm{QtVTB5=c&G#+H;}%4^r_aZ1PgEFRh8a(0 ztYHUXpUPNESya9sRG8T=O8w~yvp^63!wM50kM}dpn9Bd7Cak*q;|hCr{G`HMkMPfC z%q^0n_)~DoKYyBjhM|lAac2@ht=U&fcoSK8@!5&!MaZ>vNhBE#F8KkD#qd!pE z5MMOzm*S-Q{G^ibDu*@SCFiRBdzeXsB3F7 z@l{MIef+mD6LF*FUq=S1sn+qW6>sK-abx17rnE2S#m!LNxYv+HknSbUal?FQ`a5BM zP2UgyKD(rR`a{N)0QnyOSYe%5JUjjg?CGSVrx~t4V<_WakU^?v$@urle>M7VqNS!B zW3QM0@9f`={)cF(DaU9z2Kje0H2C1H4orS}<)ms_2HIl(O(uyoqn{B}9!b9Dvg4>$&cE}(#&7BY48@D%N z2PFRqj`UdgY>YzMF=P5!s$4r|tWR6vcg|Qmco(o=H972xfxk3E2C1nS=MVF>j#{SO zjNVlN18C%#8#_^2O52l zXsKzss<)Gawls`mn)hJyI7A*&Qv}rwz1!$RMN9QUA!cpJILx^Bh?AO9ewPmaQOxf( z`f$-wQ&~?MW|<q@{L29~NzNPbJ$D@rtMzmC?)!^yag|2w4(Z`9FnnK^*>wEg+ zM~yySwA7RzWJZ_mw*8pVCy16>-IrD=PBiZ0;-sdSZOTX&KFR2lk(}6$wCYNlQ$;)l zQ+oFM+jIodspfy0`Ahf5Wx5^b_lb;YB;@_|g z?bGN}dGl#(W&8{>NcFU_nNRn2fpHfiiy+;rix0>y0(++Mza(h$U`_SBYg*jho&eA>m)-BVY z5q+)+>&dt(W6DYR^BJ?Ep=HIZE4*%*in3PW#r%=;K#UcJ2Y&(VDc6y7r0$Ct%J?ND zo75|3zpF22tp9+(_bcF(f8+yK`znSqUV|)x^yWPJTE=WzSKw>GsUUe+eWLg4*vfbv zvIx?>lF#lQ>#}mbz6!!ZCU>i{|Aqx=MFy$qv0Ap_HTbC8{H;a zs?$0;*Eg_FF?yCgL~n;VV33CX^6q<0zYcokiECMM52jhvQPM$EDxvynln$5@}UGSN31JqO8IbV!R4 zng|r*+-w?;uoF|N)Pu{kFJ&HvGR{Y`E-rsxMW7SY8oS1wN0#VMB^Q|ULS&HYd7~58 zS$JAxTsN`^(!IjZA8rgTi#^~}E#{4+*XLsMzs3Bed$r)b?6s!13NpS0X^927)q+U( z46L>z-BtzBc43dE&w?yP2C3=c=T*WJ)n(m!)wT*i&4e)iriAtE$6s zx%uB={?gr_e<$W4`DVu28VerCn8B#7wE|o{RdTo!LmBTv7D2ifU3IO&%3ptfjQ>jW zA3_GHsU|R#@%vn5^ss2Dsp`!e;h|PdSZ(wg(Na@3c+%DyHzH1|cPLrDj_ZuLTZGgU zh(kpg6W?RpdT~+{$Jm?4V1se@B8wp1^T`iQzYm;h0?&m%ulJk(w~#? z)J8JYmcNDrEJ3EFy~iwwtr)E7)-dV&=Kr|)OSkKdb#Z1MY%9-_9UHdoY{0cHiP0z^UxoN8DRij5mOHD~*f0!SJS2wyLT51Z- zmml7rA2a&5qNS$LtS|cq4zC&gJJC{8U1hr!&(iOW`vbBF()}iSTI(~W#XnYfG5hOQ z$3IoLhtK_I#Xo~RM_{$#;V&4<_*Z0*nx5tx?~H#l;_pZfphNmq{0R4dRM=zvCpg90 z-&enb<#7!B6B@Dz(k*bElg()=|5G{BR5f@@{@0u*Y)ulRrh8=xjyJ(ZSQ&gH8GIvi zDl})eafOG5_5XpJG-2_Zf>UK`U!d*Ln_(#9=Exv5U8v2rX>DQLmPmG>Bke*uTY?kp zw*sfzRu+nMwB$RIUc)swt~aXX5W>KqkF z3vD|Yx3f5@iDTTvICvN1c17}6Xh=^09Mc)Eudv6n8`x7%?~L|6?vA01Z$JjA9x*+0 zZSjAjac@EvLAqyyhkJ9z+P{MDTQXL>gKhDx8N&;|4V?0y6-@4E4-Aa9k&L#pGi!+I zgYH>j`#37Tqrwa4ir)+DjjsOp)koBOV`IS^$%1$GPfzDQ!qx~^J;$QSl=^o2Hk`J)6Rz)cNmh>=8$%g6z6*~X5=T|_kvTRInS0h;&2S?K1T+r>7w)P zABf*?+y{_FknXAXa32Jx)X$uy*82!^{tz-q^>&Iq6Y0Hoq|qN1E!D5X=jR&5eZ;t< zkVTN5-cGEt+LoxJn@l8G-Hv0jiAhWTWml$SF{L|OG+Apg$6?@%Ib@LP3DRC3kK%Zv zKPFmgx^eAb7>*|xcOtR~((T5rxgL%m&zL4khZ3JuVLE@bS|?|mjv_uKV~SC6p9-!r zPJd>08V1(Dk*tAdXSS6nvQIWS^L0U6Jl&knKnAHP)ijUvs?Rj;Q%KHsM|yEl?r>*~ zW9xyRow4c({5cux)U&B8@?&Wd;*hBBUy3{w5V{z*?Pjr+7Xsi|z43?Smq z7v+tU$ICGA zf8t11wzIRkKpg1VGVZ*1iYn{n<{Zpfx?P#>mIl#RG+|x&N^r^w`;YecISggI3Rwi{ zsdjYfJcrL$m9_VVBVhkVTO09bTJ<6}_;@#N4M$i!gbnH@a7ow%CoKj6KL8HC@5Zu$KQ~qi+!{ zHRU1SP4Ees|K(S&c`T8KRF8m1%o^>kc&pL3iI$oc9BB3Wj97}~FVm2gd%TF%BHj*8 zA2M+`E4?f?_gj!<$RIT}GhOy)_REdCL!8v~$Z(z=5BoQb8$cF8x?hTal3hG2uE>~o zl<=KkuSny6S$r3^G7chx)O3rtOibS`uQYlH$^WJyJ^G$uy?Iv&+hPz$z_F2pEFG>) zj@D^Imhl4;iF-k=KVh`HO<|*xYX(-;#&aR1Wi}=q&RGjC&BtH{nRn z41F%lH{sxPo9ts^tpAWXf5)7qyEFfn$l&bZCaiCM9|5N)d~H5W?@?_0GdVIyO$lKq z2I0SF++)ZhNcXr|9Aa?yeQ@eNPHtzgs!V&_{GUJusVOdhI-fM|DP$3(TU=v3OVtMc zKv*TLEw$_UXHpJ_uUyy~+20p`n6dhq?A?4OW4(6af7FDvI{0I-=TmA1euANl&mx1= zR2^8b@k0fFYV^-UOHE1VTXN$5xpB`S*@=$yY~au-xaYy?I(&?d;RSR41u{tWh)A)x z7mfQRlEF37wm*(_%#FViP?r}krT!&w%G}NsDTOa%V-Gr#J?QeczIZ#&gLUhEV?ivA z8~Zd$dd2)-HGk=z;q4sp)fY#bupY5GIMsGqb=ukn2L6B?$sdqc&VCoa%{V3YHE^nu zZETodAAg5|t>{R$qW>S~KUA2NS5orF3VS*JDdUu7e+H*2YpW`%W`DuP2pd@h>FLqU zUk3bbJcv!GE6Cq1$UiKIbgyl;JR$m@7R0`MA^ra{=YJ!ER4>9hr|#1o_>Xb_MY0JU z>7~Xw544dJm{M}g(L78jZIm(nJMEx)T@%&^S{n=NqB=TZ6F|;IIw|dOQw*$cBZJhG z3Xgenza z-QKtzkgRhfy=L)}W*7dB88fv;V;y(Om^@HFZ|98ZW7L;+$6df)zM5njnybX@ijAdi zWD%r$@}U>o9Mo=2CbC^2c5gBBQF0p8~qk! z5u|$!f#z!h=(lDQZ6BX3%Jeo&o^%b}_^1!t9@rR=BZE}Wwsh-z8ut!yQau6cYI)GT zjNThr1nHiDD&}`)6A4Hm_GvPuG!@x|OG^2^*`#~*o7u0)lmhObO(ZCJ9e~Mmko(hL z3cU+M84pAjLAsT@HlV>Bl<}DDVvGl8Oma1zKBU67K{39&!h~mP@X(Cem#X*<1Lq29 z{}%Ed44l@6uiqoVo~*Hj%QR*4VGQg`M+T|+wW6`3>cde+AC2T+%aLA{ZGbEK7)&XP z@0g-l>|@RUIP;foSqwpO#*bFcioClk9&gScLk6k2M(4dyCm4OAXsM|#4smAgVEnjo zCn1X<-J7kBR&ghTJyGm;*1?LWnDeRTEZxg}xJS?TX&KWIW*iYek+C*;aUjAcGge&q zpPn((fHV>DjEo77OFT2<^w4~&!p!e51$kD+seREjeri94dsrbjmmHJRurD#ZEO1Wu8Zn9|eDte-#epT@?DIFfVUbCB_e|AK59e?%|Lrtya6 zqGppnj~8bXUmd1r`w~p4qLDFV)TJ28co~v~a{233&!%eCn$M0qbASMS-xhPe92umh zT1gLbvK}LET2G+=ttdVDD?L}C4WBhW3nUn&5C1c(xnojs? zh3!1ncnvt!VUOTz7|M7pvIx@cwpjDfo8jx`Y$FW&p9-b^I`h9C8KmZhyiNY!Fs@ac z)b!kOSG3FoooMtVBm;P)KlAL6TG%OiayC(MQrE5xQ_70LW%?v%3I>MpNQUw9x5kQs zy}>*!sq{a+R<@h-G;@~j*Ms(RX{T2~bR3HZnPEXXEQoXqGG?a{Dv38{6Z_^;EH`D7 zpHV2UnV3?lhj=A*##tE3I2*}eUj9}UAZ`}08QuQQ`cOxlQ{ka*;kg+Ti*RSgd^(}s zE%Sse3v`5AMQW4kKvrs>_ywCiXn!j{!sQ7N# z>D#l3FTIngAJe5@D*lh-GOT4>jto+BWwji*!?yRjg9KsxoPdwGCT_E0g^fnd;SQOzE>M z@^lS|VLUQO^?T!JJSAboxOL*B`h&=vN=nV$M&Bb^Y6{9aD?!&Aw?Uj#=QMg}XnU`5 z_aWJyj70{|AskYHDp+iuaexgGPT_wA7Rg8`s5$jQb9f|2s!| zv$U4I!rk#-k_SH5Tdk0FCpzcBqF?cw{r zagQU5Al<7)XNUfk=ZOmQ`13FAPl8jmV8=0g^q<1Ozq%p$SGUU9cdb30u}>n#A7;!u zLh}{RG+~CW@kd~f+!i_3#~))T<4=$*kZ0#c=Ugp-Jex6Jk+aJt{xsu;r~GGNe`zy$ zopRyl*vj}EGDxkmUz;1AH|_;w5u|&L+L?6m7vS{0JiCWqG|yj}r*!j7b2-1tnC6mw zeeor5$}i1>cE*=6Fmy*UbkEL=Q?xDlH{+NE`|kKkg*m4U{#9_Q1+*J8*p`l=jCEv? z>i0uKD6V1Lm^i8FUOPJ2z7T(F+-pd-r6aw>`FA?F-(@`3!H&HR@%P|#(Z2sj)_Fkd zRa9>uRGLcfMLPB-}tk5(skBNCFAi zyMVob*xN0jB1LK6?|JqaQ=Q|qRUP7j9u{Atn&wh8S+ z^_|8cH&2&Ue>r@4UwuXsguXIO*xanuHHD?8Zr(VLuvgX=C|ObU?v5(yw#3%0TOo^J zrmEI%EUM2m_bhRO+3CxLo^4`lWTyy6o{bo6)99IE+oESBwmBlCZikJ9;z$;XH~x7C zJGB1v%jV3b9qqppvIu4**?fXT+S%MLNLuR1$WuMb^<;NNk4K#s-_6duBa2`ZlS4jj zNr|zC={=DQlq2K5ZkatYe?i?#x}P6gO-3#LIgLpTg$Zl}O&h&2;lk_$U38zu#E5rJ z0^GMTvB)Z~^;}Fja=?Ol7M;;$$=y83ET@C zoezNY{m~;OXyK@Lt%HGe;z-tsx6ULf4dnw`-CKUt16$pzed|H3?)^XN!RYx$h2g~* zy7eVU4rptg<6 zv-9D07Pd1xGU`=)Wvj>ewMR6%rmK(~M>aYwY}GoBLeKQ_);#rS4BdJRlF8|fvl_t@ zd+M=`&QA84$bMX-YYqi-VP4hfRDIb=sveJ?>BWhcwBS#`(5)vTJ4HBRPB-Y3h4rMd zI-|<39;;IVoh;oI)5TZTQ>3WG;HuiukEt$<>z>*K(Z_*HoYv^0S7^~|eGPiXXO?%m zKOIB2o`IxkF6X9%J9DF_ceto$+4Hr?A{Y;k;(K`M+IqIRbC3*{Bje$*uxUBvqIj=&73vGn~7tuu`{-M|~|{3c`(%-RoSoVuoIjGKOo zXu+1wp1Zf2ew%2)e8vLZYwqph1oQs%SU1#nn0qI(Q-mEw&UO*^u2%28N%`yD zjSi`={(Hviv)9)5qGx^!hxcKit&J>#QTA#$`~xOFi0l;MHdUFn@}Wl8ng)CedOp}N zd>BKwegs(r<929XY0k?>&7Ch!Fq7d@Y6#Qn$IN|PoM47qwpM35eZpKtc8YK$13SSp zIp~v(&gWG61?c$&YU|n;Vq=sXSp@UiZpzkAoBIrsQF3Hld!8m}*3UM2G-B)L(DT~2 zETvmnPyX}RI8zN-1moINFf>;CMROM+J4HB-GWIuinC~yOlJU#xmmo3)dzL9vk8`N; z4ka8hqLKU9lB+v+IgCtg~M4>xyIGYT4&XZY1vl09a-@%UnN_?a-0_Q(6e> zgP4t;kCa`Q;}o4a_P-ig1an-|ebn?(X}^uR_LwIR!6xwr^&ZYQcMY;rgqy^pq^twz zaZ7q57SE^)?0l`Ah3z~-JC$62ot;%5-~&!&Nx5yI{TCsNV3sre3x{v^IK=g)7mF6m zc&*+rI={CrF}D=iDZ<&_Tc+M+x-4(lXkx_G`~2S6m_}x^B+#31EyI+_#X5+KJwk93 zHkNlIi(te_JytPa>t@q~q6PEG#7QH|&8-k8m_aoRLOmLl(jKA1zwx>(STiR@1kM7R>*-YL#}DTW@ZI zIKfPDj=GPHLT)#G2a;Aa(y6MM8L<)2S1?8MN&}u>we#2PEF5+0J7(6e+s(t8lh(=e z8}|GrvIu63<}Xkq_*>?_Elw~Kjbp2>S*9Vj@0k8BvQvbkM#+)4F;DS(m@-D381#KR z|G>_|@oI1?9^4P5>r1a%=A@})5|XRl*?7@5k=I@5ks}!B)oW z5MR+hHvJRPg86>1Q0=9zTse>1L2(;rif+FADn(|r+efim~qrYT`l@v)4vfdm@#0F)d_>5?=$^d(SmUcqcf)t z&!0h=K00|}{hd92FAu?t<1N}GQn&C2(|;5#nAc}39ja^4e=_}N(Sk{{b=hLSa(^-X zSJ8rbaYjvJz1`nT|6R0ThUSA12Zs%r9u_Uwgr1wBM@)~37L2?%bjRTEoEz)?<{m)O zyhcVL!ukS@i}crjV9MgbtB7U$r-S?pSp+jO?7K4Pyz-#we znP|aGoXHD@R<0bL(pxt-y#X`W@V>HSv9o)fdlcOziZZhq3M5n5fHV`L<7E(qG4s zZTn(si$SuGKB>>e)~(M&7QyV?poo6HiTy+f1~EM4ruqUCFGMmk9U1Ayez@!^z~+7X z%j6LTx{6r2(2?#eFtNA32qp5J=D!|*)~yF3i(n>}X2&@#4>EnQXu&MM*ph{+1mz>| z#*6Lo5_t&b7ih)62!Hibb1xGo7@Rgvq&wjdb1xSsnB0VgY84)8?iJz$GZQi&p6|+G z<_;Gpn2E)oz0$-H$W9TC1fWkE?nv~^d)Kl}>@wMovj5S@A{ckBzBV?pgg(afv7!Z& z*0c-1kjI&R6|z%=BeSzFN^CEB{20^73ZLV8!dO!*_CFC*MvJ*Z;dT zTBk({C!0G(oM3Pxaf_##J58KmrrFHpx|i3OJ6)V$-V1ppJ|btBK2x+{()5h?IQySv z`n943gQghGTJYJX&q30*Mn+0dyl8Wt{(3H^xW~~s3o^)g4)Qu=5zH%2;GiA{dA;d3 zh!%`Y$9=?J7P{yg?eQjg2<8O_825)e7SV!1)7IjvtK@jA>9>g%+(<87tBZF{ zzg@IoUc6^vjuyVd^gEHXwUKeZ?7S9(iSHU?%EJ5IGWm66*pr^Q_n=3T4Bb9%XuZpT z_hMrMHe?aZIQ6kr%Yfqae$yX7GEE)nKXvQTCE^D$#TAFIW<$$WI-Bl84pNXsFs?YX zj(K{$Lu51amoXu-@&^zIVDkD5DQoM3PS756c79~UQ>;Rfb%`}Gs%syM;qXaKNL z%O}lUAWks3`4_8)F{aIZ7L8rjkVP=BJ$WYC zp?==n7sLrBNBy6I_lxE(LelO=`hS_@LGdm6OPDfMTiZAX8ILT2nK|Z9*Rei4rwOJf ziWW?oYQ?(sY9#cSo+Mf@X>VVo(34GHELt#V^}x>3r?2*!zC^TOhW6%33Vo^RDacL{ zj#O+fJ{42kjr!h}PScw(%|R|h7QwutH__4+FE>41wBSaXMdEx`W|+Q0v|zrcbX%}4 z^-{k|SK4DHlC#Z`5hcplsQ>phCO#ze5$Z3mlF1Dmda;>kJgae`w=G@z8g!7R!p%-FmGFWqP?ji@d-a&*N#OdR*aq$>aRwtBzTSw9jnt7$V{d|xs(fpd|8H^-SHHaJof4aUy}s;FH#?MY zJgztpb5Od+T?r8f%PyD67hzNmYn)NPVyt64v6Yx|j()QZmF{H~=5Ae$EQ0w2e8#5e zTTHJJEtr{5`;a!bvDO~zN_Z0BEnBwpCVWH!aSNwa}Sa*&rf|+*S&rd;qVETthc4tRM zX7yHpqVJT+AHHZ<-G!bFtK}@38DHKF-$jx7b*3jx2(i*?24B75KgBKZq90 z^k86_lbil%?oZ+bGpKh#)4%=M^k0ySsv{$xdY?7Xf5ntZ&%*5M7SzAl|L@2mn3wa0 zobn$sJuF%<=_w1@JVNw{=~2;wN%N&=0XOvhrXLV37_>?icI@Uu_7Btl6fKxEFVJdN z-~MI#LD7QQ?BS{X+r&d61oK}hR%qPuuMeAkM6_V$7(U%}C_ifMKjH-2pzeRZjFtp@yJdQj{jo& zg*X;sTbcZ7aB>rq={fTCnhkY3tZ^Y;xRI;fm9;&#ZruUdDZ+6fc24PEsQ=lqF^%@K z+onxBHKvg%H|D(coiSw$+mO3p>(*V7MKBY~1B1HoZl-rfc8ak7SHmVzwb-LEjjU*D z8+&5PKcRLW^VRpl)~(M$GGV?ALjSJz2Dz#3-I`X-%PRdoGC5_K;52JJ)4oUOec!ir zymks1K@ogzYvTQi=D_n>6GI^J9G>5r)^U!T8x8wm%6KyAR2}X8^##~i(~c~H*?i`m z+}}h;gkYo+!wZ=kUu60KWTyy6vCcdscGNqt)%(Y5n&Cm{*{Ku`2V-EWJhBL8u@=rR zG51n&g8BNa8(?Hd-2^W)eTZnmjMmL-*<4w-^K#RNA{muOMy8p|hhVx=^A(MWjlda& zREWbcW#s6bXMFu|3@l|w7Qsl7p*xn=BTO7ALNGrvOJ{O2MD~3gWsjqgY~YTJM2X8D zgB~Y+jP}i@zN>dF&h|Xkp^ifq!MHAqlX>a$Rd|&>j+cjE=2&K%MZQ15^ogPcGdcAa zJ@q7WuNEhmL08SlEe%dKeG0Nugd@EeGhFNv^wh>QI**l6Hl5a(7^lNDGHY^uO=B8a zbxC@ijwxSg`sZi#t7qs8Y~6Y$vIu6)Y{DQl&-6IU9Q=!F>E2 zWF9A8ooo6$(Skvb^sUw^H<~xEGyQteg82kFaeeXBkp;_@8{S}#HzL_p4jC_hdwmVW z=4~xznx{|LezSwT1z7}}htrpHY~E`6ZOBd$_A5Rz_T-MPtg0hxPDY&8@%F}~#U^oD z$2&0PSHa`|S#rJ;bGN<=$yResD4)II)9c^enixTt>OqkAv?i9l#`od9nDVx6n@+7q zPwRcy80AM6!A#0FXMDi)2a$~RBO~K5*(h?!hcLxk#k12k|Hb|vMi#-ioEDEpsrnJq zA4M{+9vPSOna_GG=eH&w3oX;fT9Z$amg(cIi5bXo-A`c3c+k~P7N{7y^^?dVn71`c z=Z)$T7nr_Kv|!S`R72dH|CH%Zix$jpu=Ww{t)DUXStR?=A^q~}EvL`@bFI#_7dkXQ zj~)r`3%ddE1#Ij?hb)4bIakb76)JW=y2u`1LUxL<6KUfG#$n2*NQ~%^rP46oK_(!J zU=|JRPu(}WPBhnp>=fZhb91_%Nthz(G*^d6PqzQX$Re0&L+5tX@p?^PB3dwLHB_(h zn8~H4r-&BJq#InWLVc>aX~<3y9-DNRp=UHAEibq8bYv0CXn5}mJ;52KuRwN+u&*_| zWbN>>_4UeDU)oElU1v&n>(tv-D0m;Hd@??WQ;nXhu(3uSSp@SRsql^G{2iv)o1QIN zFzH(tk!-`)Eva)%UoBcNXxb)xNHx`AuIYKA1v50Y>d27uO<#j#Rsb@hOCQg2FYOy> zO?2H}F-;d-fGHDvj?QLN z&Z%{=bd4Oa?M+?MkP67q`qGA!=M7^>jji8^9tq2AWoqCfm#(VIuyyNA$Re2c?t`ZE zEWT{|X3>I~avWDTjq%KJbFzIHT8FQF4qN?KZS-U61S(;mFkyY=b?= zT=#Z6-+?TG*~Vc^bvu6pSp@SI=g$=PO>^H8 zCzv(8Icw{;O?(H*Ht)#x-oGow&2`2|xx)9*o1E3BX7~3obn6e0MKJ%4%rI+x{h_%# z#RfF=Dbwq(%>7!NUe|7iM8q6PD2*m*VjO#f{9FQNs< zhE{3tSJQt(vaLHZ^D;YkamYD(yeFd^K)9UM=}z1s2N^~d!TduSu+fJ(VtQ1xV9-1i z&1vV++;92;(SlihX0-SpCjKcxFp_|YCyL3x%snVhFrUbVi5g}8x4DPJ31)Pdw719| z#1ET(M6_T_Q$i>@kDC4ul5u@xl%H+r|6+Hs7fWEcNFnG%JCfn(+gyT)6w?1YVYzonuA}ODSsr_Q}om2<+)3J5yGkg`{h%n26 zB5QBfnAC!~*w1TonfO0V-}h6T$`0?k_bpoAi&rr@NTw|@WhqQC89qJ zK~G;*kY|~GwrIhYrc@QZwdrk;wD*xwU@+V_ernxTx+kJBVK~l+*sd{cJoIdPOc^I8 zsth=uJ7DY99g&?P90|vs{E-SfH735|bR#JqJImw(btYrntLiT3?NxKt>aN(jbvI+j}?%tSm)?dV9k1?kFqdhT2meDtniqc*fXzC-2U?xx-vAs?2BU&(X4GoeQRNB|{ zb43d#%|7Xoyw5ZJd}OBxN0jNej82*T#+qUz`UPW5IXmHnn3|_fc63{4e{9{_K^DRM z-}b^UGJOD&_C3=7%gl|THSQle5K|-q+h`6im|G9B|H1Ybj&800nHb<8syomCt}n6w zOOZt||9BjT0Q?L}U?+D{c&O zlId5A7R*0nG%a48lTDu@S}ySk- zl6~~Dn}*i()YqGPgE+zbHyxqo31@FK{U*_Z&23IqdyW3oH=BNoXu%AvHTKRmZ#Dfk z(Sk{PrH!&k*Yw+w9N&hFThUp0es|u1DQ;zS>IO!@lJAVpU1oJ`*>5S;DpEmayaf0!zwA5jc=>*H_ zXH9=jv|t9E#mXc$vorSvae^6ikOMURjryYLi;&C~Kssfqb|n2JOi?q}!liL`9*-=7 zZI(&r38p8C7K~_kD}cGR$J``wg2~Zq#pV-}&0Q=`Fu6--Xck4Uxl53pBHVtNsc>D2 zp7kC+)flGOc`C99M*KLvHHUtunZ8W4U`F2uMJoGVZhE?C!A!-$srnGlFn5JG!AwOO zW=t!fpZQADGeryL9Z-~0Wb~Q4N}OO`mcDV?m$S_EixUhk--p@e=7E4S?Y_X*Bi|(6DJr! zwX;L?kKJVY%c2GI$}`y)oG!2adb8<4B&Vz)qwr||csZtc7l&4i%PX#Mkd??Hn12Wz z%e_~bUM*TM=n(^To zyL0xjv%+BghD=eWuGXc$Iaa5A_$~B|T6-Aqx3O{j8nOuHV_h+o;pF;VbKgUDimEb+~^~dfaV~AIU?o zeKwS&`imc%{)uS8e6nrg|J3x)LJ|n<|#N|NevCG(pC(LZto|L$^ML>=fZ}zGIyB9(i24`z=wPK*^NlLr8FbpZ0MdG-g}1W%|r_(O?OK4-)wGr3nWwZ zkBRV=y9b5YEoiJrYS9lh~ z&i3C0Sp+jOt^cm3cM~m`|F(4I@SM3SMt3*8hiJhpq}GgsW(Zb)xTih#l80axbbV|e z)-2k3jy?94hhRQwR_IW4?qhCWWTyx_3k?s>R8Q-3rE7dXbW&Xf@$+Q$!(nrznTs{b z@O(^7#&pR2Fm&q+kVPb*2iyY(t2N8}K zP@!TV3;Mv;L?1)+BOElwlsWHUOnG5y(lHD8#n@OLk1T>&Ca&vMee$K|UWV)x;YgfF zhC>=XzdZf>hf2z#d=0X`mi=g9H=MT;STajWD$&%qf(ST zS4WsWQnX-Zrgm+`QKpX;Etu&}u@k*-$Cy4A*(t&ipOxC*K>vLlro08peTIOsy~;t3 zM;5`1kN1QWeS+x|kt~)+#$%yf7@<#UOiVq<8q2FOHR;skpOdk5>nX@0n13>7DSK?{ zPfj&`8nRP_{U5+=V6K)rK^CS?&NjYSV)g7f*CUnA2=7k z!SowN3&yKVI0n^Nl&6Zpo9yvsc?jkO7OYiFxc*yAzg4tg&>MH?dYkF4Xu%9k$2yah zsC2*G^gBcgCapy$(PB6KF46C7X$@#c7s0ztzX#bV!ts>61GJ*{UQGGi`3%IAq4zn+ z`;kR3-#uDF9Ki7ba~~8Z*hHrJHh#!-L3WC;UrmNm^qu@Ldi<3ZTnxC#`H1~LiY$Ve zGT!)Hu{+=N$B>;O?8s9s$r9<~V@+j#-xtH=s)>1rnt&Rx6feX5IAHJ%=GDJ5wG9d&zb%_lKt(Fk&D?Z zFJAR8G$!gKL#tdN`y!@zji`PwpRitppY(SFPkrtqX*MuRefvp>X{>SWL}0IDKa{FfT8btIfibXjx2(i z=HB#OcRj=O6-Wl+kr9u%t9iXdU)h-Wv}6bE%rT~{7x#@ZWwCG-rc4sLEF&tjuyt!c zvIs^?P0iogCgvbJMc9$h^q4tpO0ckA-I`ceK7Xo0%*7O!-{>|E8{6I?i(tN))Xwm~ z#@v87!F=}29f+*8!1T4E1%uX58RO2R!gZz>B0EJm5~=N2UeuZ>bRxv{jcI7b_%toX zlu@Q?9Iw?9Y;1amEQ0xPC|jd=y212~q6Ih7(N(_8^i84#gQmYR)9A~lZx$_>8Jc2~ z=?;VDmWvb2Ml-VoR+v~RLNHT;^Le9RdX?$b$W9TCl%VDi^eve3eeBbTSaps4*CLBx z#9?Ulp!)pQnY&e-U`BssbFJGhF`l-;^zBH_heJ9haQVr*15@TdCZ^Bl zots|2;vio|7Qy^O#(1>&rLTU?^w&iTHuQRi{1~*T-!T16(SjMDHQM?_dE{HBzb#rY zX!T&y{l?9H$Mkna3kJ;wxEyq(THE(be;>(7amYy5RjSeH;y=KYchlN_=pc6@i(o!p z>et-qUFPlmrO%JW%S<3GOF^lwB9Ce5^- zJ7%hb@jlbP6)o6gVdIqT4>90mj z-!ED)gT^GE2h9Bg*(t(N(Wkg0RsJd6ONUYZg_4hR@&X#Hit>Zly7k}4BAB;Nhd=%g znR{5AU~&UjiF?G{qv8Y`E}Hu0{wwZ3=CU=+XpQdWG1HGDJ4HCMczgKr6ODvH@Yn>~ z3_a7R-PUt+`)^@?;fQd%?a-EO5Y1o87Qcf$6Ir%G4&Mx6e?d~9ZIEb)=Y^+-C*#=RE!(z|j+{;0p z;~>Hg0-dW#_8uD~d%gB?kbNCQxD67$t0gbvHNm*+Xi^BqLkLA0JN=>6It9D_&> z)4jaFL0;$}!VzS}03M?EcM$iU#q_w2{a=JEg89tJ#C&ECFn6Fh!ANP1UQ$dm;q)NW z2a6WWpc7^@eqLW}?j_;`lT-1|3Vm}g6DJrPJuk!8vqIn8%f$)i!{sEQ=wUe2^ed1w z?~!qLZEyBrt%>$3EUvVhKMuOdDITelvGEP@dyM&q>!+EM0?Ml$0b z8GqUaJqA-2sDsnAY1Xm!KMq+0Guil-##!mFGJU*g!R8hh(!ACaI>GdbNZR*E|C{!W zp64dvNn=cOQYyr&F=e%dt{Cq^XJg7#*J*SvHO_I6a~(uDiiK!W zp109IRw&UHf1Ukbk1T>&1>Z2UzQM#BMF{5OTiB!iyf>M9vpB(wHv9QTd+{x%--_%M z;dr{x@mjtOQ%0L%hOl)Vy#q6PEmEMsu>vibpY9~37TUl$66;Y+8h3P>l-hwM@0 zAsAZ^v4`*fIDOboACZ$_#*QaI>^^Gld?csIAtP%}ojG(zuNrS3!<0$I1}tn&u!!mM z4)O_P5zHH6{x|yqazoYhCy|W6BO~!?4AXVZ2BsHa$}6_E3mxQB$RgMzkxqzI2L80^ z&xjUmasqoW%&VU@_c>&z2uF6Cw^kATJbJ!F#Euh+zhLJtB8y-?MMepu8g-HBFCm#H zk95pw*XJ08d-TXdF#nSR_xe>@^*71% zWYL0o>r5n?x=i(pi%s{67EGEZVzh29F@33M!K7Iv%bqGsD4Ak@UBa2|>1TPg(IdOyO z8$}D|<6OfLKCUe-Gkp`XQ-mD{a(+hf%dJTvJYDzZ#>5QfyvQJ?eBJoS^8PKy(5)+w z96u+2*HM^8xL|o*Io4T6)2y=dYC8+tnTm;u`&;bn%DYc;P~KT%|Fy^>74@4>AQ8i*7SzPQ!5 zRb&y&hrk@^m^}71(_a@Yn9*t*7vC`bP0@lGn$J_b>)$f{Z6rs(Bi-}HK6&aZh+Q(i zBdb%1KrvSR-Hj$HBknl;9;S>qy8~S7kM{SmF(Dtxk#ubk=vWi_!!`)#C6DwtN$zxz zyO2dNOFkwA4Qi2vQs{1b{0Pa}bjV0%Z>g<}{o}@@aoOm!{Yhh@$&f9spEf4CSlRts z*ZtWT6MKxy^m9yEUyE71zretD_sAlcY1v-&SEhfB>=fbX#cVe7))nuO)oJM+)n&T3 zF;Plpo8~vIslBcH8q6wjFYF`K9>z5jx(TmOnIf{`TZeuxP+e>44e(Sn&`ZB&L# z4TjMt^Y-Kitzu*ACEPrjrrs8*3>?RCmPen%<$wGQ)Y&z8q>x%VUr!3TT^i|%lUp& zY;-OlId&cyX{NTO`-Ps~2H99=e};o>hAe{dROqG5w#eqDw?Hzj0O>38tsPqBe7j|9 zn!PlepIbF1m7si-NvLOHil?C7gviU!!p4Sx$Re2ei+v?xkIt=4ZzEbTt12sI>T=tf z+fJNd*8lo?c~R>2=5`P#7?;(Y)aV-6(ezHpP7(I)Y%IigZcS{}8T&)-(wd~ZsM{4& zzD-)I;)K`@8;8>)i(vlml!aPeORvu!ruRg$?LIOdOk0)Qt1+pb9&MKAG$wseW3$G+ z8qp|( z`XEdZ4>qF9G&$HoUhE*k5v1LN;3XS_ushWPN9?5z@-k!*%;&;7|458OOuro2DZ;+u zFl%jM8TX-$$vcKkQ?dC9Oc5_^`Cc7{ty>RAc8c)-xymaW)5fbDfhkvE4~*wU$yVo) zn7j2TWTyzng{EpLgHrV9#uSHr$#e{+OeP+o8tVP^SZv*T9I^<;J=0&yLl*ri)5jw@ z-yRu%;;r;WpMWVdKx;eEK~6#z!F-gxvvY0wt4*IQS}^I^JT})2PceO}Xu)`2N9SEK zv~oi|&D?8{oNbSEsSn39sHZo&Y6L9vJOe$x>KKOB&8uf(=+?84MX-sM=BlV^`C8Lw zixy0J6-y?Z4(FIY7uhMonGRF4&^oU%X#_6zcz7MAtX8b((;oM)$Iz{BKyt>t{8ghJ z<^*CET)xrHo-4+^yvd$#Mi#-W9`!BIH#_?D-(ruqBI%?+MoLUwqNzY{lkVDwcKjLO zD_FaY3n|4R2lefZPU}?sJDMQM&1_qY%R9%ou)|P&7kb{#{3W9^d+NI}bnAPNMKBB2 z-r4G#ey_Rri4%;()Q-k6HvN9n9}q3r++UAsqf7&)+wX(+_>epV^J!=kKewKW=?{w* z%G5t{_3;U7ru%P2LKOa-R2D7GXWzua+>c<@9ZpoyYcrYWztACB|cwQLU7<_y#Q-&4oG$8LNqq@M;5_|u(n>{bGvF@{j}-Nh!%{0 zhr^?O*4*dB3Ff^r10tq1jrB=vIbwcZ}2`e{D(iYzn?cakef*Auk*rTyG$@FB=f|*a4W6lDui_P^S zJ4HCMt)`&Q99p}!ULup;lA)DLv`_4%jm~FI!KXC379rw4wYfz2%QOvBW?R;b4Kkwu zL$_XzEP@f+k$E~^MfKt7re}y24BBn~OPJbHuP}WjvQvcp+(-HbhuJyh8jtSJ#2SC7 z1F)DH(dQsnA&X$iEbg$`~J+3Z8$sEk5k6g;plQ&^wlYe9p%xm{?^2j{h!_B4#MGH1G zOZJ(NJhv`4y+X8LOS2!e=#{2di53i+f=xvy^lH<$h!)IOnK{Nwr`0v))*?GaIMx?Y z{;osG5^43^k$F>fpik->#yt0Z9uXgATm-XHg>%oJ(mFWuc>#~^DFig z4o^qtS=sgZ9lv=j+CIuYOCqK0L$h@6X&H z=DK`)jLYzKQ|otHonn`7;&)q}DDfBHYjtKia|ZGE(KBHt>mWeQe*FQqZv7#$2xh|2 zlf_r-PIGr5J4HCM$&_*RZj`*x{F(V3_>rA|j4XojB=sjZELDx*C#HXj>=fa6bEeGG z_$&0!FvS&_7NK&SqVwkt@(W}UjHszaM`Poc=6)qkFgcD_q8R?QxqHM3HXlTd@hELs zB6P1kej^XTj4NO7!5J!-?lb*c(Sn(0XU}9KZhc>VXZrV|1>?V&H_4R7`Ui7=6epPR z;#39V^(S+G7AF|-ayO2~&Qt{d#U6i^hhT(OC5VUdH*&z7WxiSxhEvmlBU^bcZS z?f|j~Ml6|V%^W+`a33=LFp>@cWMpva5=uX8*^LMKBZ4o9fpm%snYiFq5C*`N`8V`Jb}KCOhFFn2~3qJlhxy&aRt6 z(8Nd5#78>v+WS0i{ppw@^6F3EX+FdLo7rF3Nj^HB0gJVD^G4Uy5q!63^~ecZqGw95 zs{zNwY=wa({>UPjcgFFui!Z6qGWTp`rwB)}#6Tab7Pm%^3+X1uudmzKd0S)=%*@^1 z#dfB*7cH0>m@gLZ#SZ3nM6yx<8QF^AV@|Yz-bp4`Fb3yI-x)prnh{XtyInA_Z6C4- zX8JO$&x{>LymvFbJCbetkdZl7u$-5^x`lNQOi>gMt-h)5Y3IG{EF7gjh2C?dI2LqR zUAnC9-I9D7_Gy%1PTk!XCDWLGWAf5-F|cbtvIs`}M*7yP>x=T}`KI?nc8YNOFK{nF z&wIUMnofUyp`G`)vv4@`x)O_yo%K%Y46zw>VlSyLvi||dBADq;bLq0V^+0n6i4)9u zOyhg&!6sget8puR*VzvnBK&@o+KD&5T@$d{qymu+xEJp`>=Uydw- z`S;8hzGhWD)Z8nOObbB9XJGQ`dKgOPEk4)O_YSw`EA1&9f5sHHBkbwF<}{}x?RJ#i zgyTUE&Y;73c*>%Bv`mgRCXQ!4rqRhm`j=xHeYB6miF)dBjh^9OHAdImz2h5Q;aBz6 z6UOQTshgD5rZ>}VF>xnk6vg69nUomnd1AEYEcEzL4s#*{JwDV6 zUW=_;&qfx(_&dG}^&AuDiV%!j(E1K??0M#1hwKz#KPwThm*Niwg9lR=@E`RJnDR~G z9;r#Z5kt4W30Va5{uxDHv5F>OeY5Geh!)Hjor(Y_g!4e&YWi)W1tVH;s*ZNeyn3rY6yN3SFy;q!IhGVWNCC2;Ayi$9Sw+(PZ}u=Fig|G67q+PDFN!aNIUK^f0zd z2I`T?7oy2FWkCC#Qoo#pHEx~?WSxxGtrsIZMK~VJx+MzV+v-ew!uJyNeBl-^(tFDJ zY?or|)+xv$nD6(BC3UKaX-KxgLq^F>4cIxz0ox>7=8wN z`_heGwzgh@pIZ@K+8O}1-FHSHyc8{Xj zG27f6Bt!VfNSdfNU)|`#D;BEZG#5Q%7!LC=Fv}jv;qw2-`5HUBTw!h;eb?hx)dBl2 zu)lC57hCKO^w4QquiY4=wO!{R3z0=IOP*N^sYGdB$s*I&ixy0puk6hADk&G6ULsmB zbFXGW^wy>3ZV)FJocf=r=iX>;8Io=Fk@4Ij=iY>#ul>#IwExqW?R+z`2*!n&MKU^N zunwAAj%3F>WM%;GhPOhx63C+>Hm$^z!(VH)MeRr|dRT>-4fK&kFbheJ5F=$5_taZV zuMsU6v_5|HC$e$&TGQ)93uYQ|o;VMY7vNUYw}}?ai_=-k{K9LN)%B(~h!)Ibq7_G` zyWQL!;si5!`=&B=tA54YSH%fts&K{z#oyP=eI3~;!jb9bELElP8|d-=(I8;^2id-9 z|8F6SU~{cyy4JVNeFw>2ct~GMXL-PV7d;=i6vYePj{L2=~loo4NV}b3a6~ z6FxE`1xFR+&Q_-rWng^0tI^f}O%}LYx?glI^rMD^k@Jty^R-z%Nkz<0Fm&rrk+hBf z$C-w)on2R?ArMdK=l1^vvIs`3bq3$S^!iJ4ze0A3aAYv`A5O2oM$e**8hiA8-(&xK z?JsP9wZW-a{YJX}I&^*G?vqKS>ktD2be}{q{oBTIc;&d^87{ehhbaqO3e4Z5b?YCH zogy4**|$N3=^yRsJDfdJ-2wc~pX~o<`wNFZ18H!7X>}GXqW={={%LeJ$IGL2>)(+@ zuz8{bM5_*&8x|)R#r9}_PaQEaDnc*;2{)KyvOKGNM8ik&o6tTAgETI6L^C ztsZ&zUyZJDrhyst!A942gz*1H&-_S-Ddp2c7#JW&(mrmT<6@6A`p_*4M;6bkk4je_ z(*ddfX-LX&RXzUOkgBLWhLW#P+q?NVwr+g_Sp@Sf=L@T;CX4Emrk@fmmY>F&`nbva`FqNS`&D_(Gogy6hYBjSZFR9OHbq160-K^2IK8b4Z=8ewd z6~9HRGa^B+z?SHlY|NmWvZQW>fyObi2xfuDlu?dsq_}vN>1T@;%zJIyty`PkMzmnQ zP8`HOb!Oex+;-vwBPf+dPB>M8x4r2dL<=UZjeRH<#?>87?<86*`kl?~B2F;# z9OqS#0K1yoO`Kp}c5o@5DRma?Zh8+S=iMPAOU9YJdrEiphh7O@MUL2`_h2ts^@@>8 z>CTtwIhe9KIAO5vjn=LEAUj1kbNQeuT>CaUdvFg=TUejFQTJ}M&y%iaz)I!Ox7;~eT$$Re0&x?U3thS$!l z$D2L@*(t(~1jDfkdLnv0<#nq@FYB)-+4Os~Z)YqGP1CoJh zWTXTmNN{hI?rH(Gv^O=R-chP$Z*Fut807qxR=;&XL&R@I&or9j2^Md|(5+o$rwIF> z$g|3RZ*O$V#P~+4s$DR2>xYp= zFw>oW72eg4nER+W!Q>b(>zP;2H}^4dg4u*#x2k^J#3zuQA{-Bd*{ghsYNKb9`jgU~ zt*F@0kfJEMpf%Bx5T*-d@;$+Ss<}iCsC>HB8R3HeOdFojgE>oO`Yfh=7@jp;KZl`P zKaXT_yZqhZ!~UhSXVx#Y&a?s5F8rdMFG3c2Hr`ma%orUepAfmX-q&wfVb>Pco(lZc09VKri>Pj;(bn6w!BA98k zLYt!1E6vRmCzu>bKw|fqyGop3a70%n#4L0D;smpNxtMdI-OoJR^c*A&XJjNj{b969 zuWohn>cu^EZllu%(f58Hdd8nEuBm>_$Iz|UAd6tev6qc4X4V073y_^6961rhLm%lXJNq?ec${h={;TbO3$h4iiY}idZjHIM;smqk80f3(Ox%j>6yeBlY>Rvw zN=7I8U)I}m1F{I_O|h%^oT>G8b9W#+Mc6r6ErNJ`zJe(q8!N%IH=X^zW`E(hHF6FG z?$=wLiX7`ozJZ>#0ZvoobUIc5eiK`_ehb+t!cm~HJdV*nI)%UOASz*$`{-Z)j{U!D zf8p?_fSlru)V|mHlU5pT`o8^tfGmRfA}|S>MiJeqKQw)(Xu(JdRfuVp+-2@=ae{3! zsbcdZb3Ya*m>eh1G0)^D=6)(pF#pnL^QwmWGt)m8Eto+W+GAwn7v_E`PB1t%r0Es> zmAPLdnS73nJ7*iH>!#|m_h5=Aqt-6xXWVQ5-yn-%UQ1Q#o_e3T--;7#ay=`#FQFT< z{?7F8k)0wO4^=6~pfP&pCdv|$;*WOzlbwa_JWRJBnf1@DGadQr690>x|B5Vv5h;2* z=e4L$$#wpF87s$Ei_j*Xq-k*qpz{pnJoMYfrA zmtod*Pn$O;m1)tm-2ziyl_$q>$+&Haty{N37QuY5%n{=pANIh1rs-#i7R-!F29L3; zXPe$yv|v6*jfxG{ZOm;ePB5PpqqhtiY-etJae^6+J;~_j*umV6;siH_>*=jKncErJ zDZ)|4GEs0BDK4fMex-u9YfG*iS9g=5)X~^;^knUhDc>SG+zGG;hHl*xSp+ji%qirH zwwJl*AUWI(=|7^d)|YT^^hi_H3YjCx)7;1Y`yz{Aej?_suFo~`JQ0HJt!cdV`R4W$ zC)gy(RJAK#VD5$D1mh_%DKHOb+uw9Yv|v6YS|99ILg*KnK0vf!L}zsJ@_L|&gG31C zUwZmrJ=olfk&G52eb1WMM*I3D8}(jH^`))O8F}b0lkO@n${~%S&&kVCG6#CquPV5Q zVq>2;WD(3*aNZ_er-zw49LbDrWIS*B0bhv{7t-`@qDBA85q3TjSp*{)G(IxNGkuOS zeKeA_<49j?bi%@V3`%xxP%%2zZpYb8IBw*&)%8_&^B4@@I%=%P+w%lu5sZjyW+~<6 ziRMlcCzv-CwToAqJ6W9I#vA6FcZ#`F#R#GuGg8Wpx_n=bAnb z*(t*D*O&H=PFr7Jhn_DO^(HdS>+SpoI}1DNS_c;$2yc{0QD=`Xef;0lxC~Fz?Zya?|z{eC3PU!?C= zE5vyDKY+fm^1z4tgLeLqorTkRoa#)ab*7tGy+a?i^GEC~9M04k=|%o%>&&!d9(g_A z&L2Y-!H6Z%&uYxaO@BhPU}gu+{+wH@xlf7{%%D8Ki#(xXuiqthzSPdb@ngslE;BQ@T#NKUNfY3&)TOxM+;70`_|J zyo0_Cnpw6OL$@wLc8YLwWpy+xZJm`i*Q~EM*!e~~3&&IA9PDNGbR?Gd)SK+~Wn>Y| z$I>&8I(@y_+@LtYD1|g9pM4|gaHm1I+#W0BAsC^Dma`R7Z(V6_l{mpjCdQUjgQoaf zZTc3`fLUDzP);zO!B3)uj?Cr1)?&2f7Z3ded!QNLsV@7iBDG63mG$@0C{Su+Eu z!hhe+KR_12%%+|Z%GBQaL(_MP7R(3Ft~g|-yUg8<>=fb1J2Pg~A4zcusmab8>W|U$ zj+kOap8g3228@wKFy9;2j1BhHpPBo)IKlkK_?-R1+%J)xA{@!)ImGo>=vn=WNyQXZ zzqbE9$Re0GNBeLUqe|oIy{3PI>=faMGpk5@m(}~wGtQbDvZ(&n&cCy>aHJ}ep?Vh9 z-?us$fd<+iTAdyZcF6c+tJ4F4{wMUTCNL;Mw-`eRf5z6We?b<(j4S=C?1#u}|5ww0 z6D^p@LZ<~$`@6Xzaf12H>178t6C)x7GZ4#Nc?P5A?iVK*|3^PPD_8XSf57xVkgTaj z#_iID%uxaV9IG=q?O)QPyqaGhL}|0Hy#I}%TOUFe!T2NI!>mF*Z2A$=f|(cS0KBEA zK5FhiNRCcJX6eMNX_WR)lmw62^KoPmjH^)b759X>C&dXy1kBCQSkP0ZH`x_hFcWG1 z0`;eEij^tTNTy69BZp{fllArK=n;ou+BNjXJj2eL*;zQ8)#h1LHy`V)j;}53yd|;- z=52@bR_2~5PB62A_b}6U@L8sxEm|;XjvpQ9<)yA$o8AV=acIaWF4#3>ri!w?mCioBapsPK_dF=hkz|D&6xgjZWf7 z-?i0w3;1yChMrY_J{8y9rccH0*t&HOWD(4V(YIbBD|?#TOPpZdHyz)-KHl{?ruP;t znBO7xuxH-S(th3gKK9sG9)j5jW|`A-O*~J8U|d;?R$_kY^G)w3TCm9>i?nXx1?FCe z>=fa6PuL$EZvRGC&m|wTPNNUqV*W+wSq#v-L0L&*e*m^_JrG$0^S@XhLry)&+`-6B z5sv?gStTz<&o_co!YJuqV&|9ISvZ_yZPv@iI&)rfJ;cs0M;5{M4pmqkYVH-{1cT#w zsEgt-bBBu)432Y1HB0Z6=8h02*xU(YolEMG=8h647~HVVz#gnen>$9FU~)0F`dD+v zAv;Cbd6ln5Gjm!df42F|D?@oc_VHLVnY9_}fO>mQz}BrNB8y-=aj%mYrxPDfGW}}N zf_YyXCJqnYR8KZ{ia5atsucoEPUP!*s_D~23ua-=hwU{cP8T7VxsUhe3=?OH5X^kd z##4;jFni=I)2~G`@QaKG8M9Q*Mvtei3K3I;&av~kb{39enNQMrtwLw+>!j$N)&x`f zw_cB)C&RPL!W?EvupQZ|kx86J4%4k~L>9q(GZs%Bp5#%OH<^C3Xu+g=7HL%p^RC}w z`mLe`GYibxpqJxq=DOkp^D*DTPW3(Y?dINr>=a=?W>t51n<q;qvvbf_AX7pM!OhU1S3JRbnP)WNt|GE>_kOle6qQVk+g@A@j-*=MadV6 zzIK)ZTw>2l?I|3YDyn%?HagRtLwDa)J5NIv!F)bmmsc+{cR8|CgngmW$;^qFTc@LE zy6`Zs@2NBFd&cc!DS>LzfraI8*?iszQ zE|BgzBLS~P$@{;BvYf-pFm&reWD(5!U{8pt)9WI0*NYR(;*x>hMg5v1yV&#+(Si|_ zZ`H`f19hpn8^j4F7YiD0G`CEgU|yEVMr;epWp6V5Wzm8eBkkWmuHI~JP@G_-tj1K9 zn^=Kl+cIQ)uA+HD5x7z&rvb_;DJqk*valLG(u8lVItp*W(5-8bMKJzF^`f;V)`<|z zm@{(EH-f&STTS04S}}r1_TVZ;KWTdgDT(@0k8BvQva3E!(9>-@}wy zh{I4=uM>*2B*+bn7pWMKDvauU|8zerfJk;sk@ERMh9; z*XHg)c8YNPX?&3GMbAH(aL3T#mGw7vzR%9W@%dXZTRXZ?`u$EJdCYdN03D@o(lUE)ln1oixA8_OIzgu6aPTcqD49} zSh$kyoPWyXI#IM%{)HZi$&4SpC=X&_X)v+~<`ZLAN~#GDnR{5AU~ogLyo>20<{lL% zn5n{KF(!ol$J~F#2}WeqPxP3H$B}F(j&w0G%1iWw6i0KQk7Bnz+35Pzv#Y>U=$QxD zC1Tc1b(7r`?M;zIFkk<6df3xUKV7t7#7;93+4%k$<~9>2m@#KT5?w2so7+O1V1}b8 z<<;BL+*aZQlVb}Zc3FLUJ2qb$etHjDOYE*R-5=Ft?*P!At}?S2&A;8rV*zcNQ&}5oUS|bexRoiCHtOuAoP@G`CnDq1>Wa3~E zf=NtXR9|f3CCE+@j{DM{RGxG5Qkj(F$tCyIbdno)huhzIaMoabr9F>87QsjcO#|c8$)i5f^iiS( z^X(=1jy7=&vQvb8MzYMR~w!eaq`fjn0C`;dNKnS4-FZXo2I&Eg8Euozm)8lGj=Hi=J7Cd3?S7 z^)w7jV@5K#D`%x7$6`_sRgrjl>raN#fZ`eUKhyrg5i>o?zIs;c%$h$<;d`x}&qfx( zOkL`ou}bJ1)8~p7%sklcRdb%{*NGO)JUB3Qp?Eh9|5zN<-v0mn(yv9rk z7OSFfm{i|o?%m=9lcT;rIK95d+(8`td12Q>t zU}E0)2hsES(h)=r;6oU?wIDgQOU`<}!`E+6-|Up-^~3h}+cSA8!z!xDe8fRMiY$T| zRYnB(7@cqKW8wsxVxt*3{J7~)AeqUGbktNAA-O7g&UoO<^GSPNU{B$EPM%PFVWX1+ z^&$8adOSBWArDQpgHL1Y*3Te|U_^usJhXz4Z_8&*e@?Vu+=C**GS<(V`+_*Z40^d% zap)GmX!;`2g84M2csTG&=EjK=%*zrfrq_)(H$j|WHqX^Tt-V#`G0`49$W9TC)Cq19 zdOSE4g6jtAWIJDsEQ0wI<}c7g?KO7^l2f;lktwcYA8#Lzaw(=Peb`t0GWO_RQl~h` zR0k1u5cTnq4=7}&wLykg^pfmEqF&}8mm`Z{d$ao7PB%9L*(t)lm0>D^a95zmt&GN2 zB3IgZrk#buIkpw)lkPm({_j)LEE0e+$VVZxf2Bl4Vs?&vq!i z3d4(+s2(-P{#PT5U_M7SjpEkknwy906yeByY;H?6WPYo&VD^%G8|^G?XXSR*axQE2bv)I%^(OSp98`ZMYDb~^Wo+GgGqMQA8!@z!#-;1G zgQk~@7R;1f=A~6D%&inB*aT&e$@|f*GQC=~U~~I@Lu=;NTg3q7?9=FLuu!+}teYn<}+kj-tEMz?4Xbaxn>alUr9gWW11(i2n zL2uthRa?J`pn^_a^)CD0jVyxk^_26EO#B$h(OSqzHAa@;ej;7hA!CisU^nR*^`~Q8)Up4wR_8Pk zg8aPIX)`k&>lcjZ1j=Yo{{q_^vs*|_DmY5Z18Jr-Fgp_=5XszS0&uN(*5!B zDgc>&Ba`1oDx~+JWJ1L^=(iZU^>@f37t9Ge9$gFSAN`{} z{v;2<%(hG;W|ab6*MBzs7i6ahN8z?)?dZ&@TAcn@Oc5oXg+4cbv;W_bMKGSl2vh%t zObm+<%$#!t$FKL*5p$#B1e1#@+x_Mq5GR=NLJ9k0Og;M3vq;HBkOz?!V#$ z^95j0BroA(<{n4VK1N2K?s0kd1bY4nT|s25C++-{orNPt41LhyyUFfyRxZ)Nb8g*?L}GlG`*K-!HhI#wNrLK$K2lH1S6=9NR5HeeN68w zS}=l=RrT3drVm1Pig2uerM=pE9E>$`H7&K#i8Jbp9pohr zBJ7kF@lt!bl%uBjGP@mOH{s0dA;eo_{ly*_u7|6&SkpFl46) z+j;1g@k6&vuZK(b14emeLvnB|d_AJonKibO|;~Eyq*0qB6XuMIl=xXB8y;t)TS=0Cz*J)2*G%0qZ5~F zdhf~RP7x=V96QsKaHpC(4ap(c$VkK(zkE%j>-D9B^K|J-Cn;x0QRFrbXr75F?oM+m zX}_F>ff>+9#(d=;HCOM8bhdPV*4hP`=U{3ws*a{oJ^Ng2-FhCf2sUwN3rSAOGWU9M zf|(fX)b<7wZ$x&AaKv-taIZ{pA6M2lqeP^2ng%cJTQGF%TaiUDK91`1V(?EJBMjEJ z*`q5D!F)kzT2eZ`-P}9G31)oz8BHBu-)Zh$NEZ7dogA9J$`|$Bjm||>ZoNmkGe63E zH!9=m`%to|XL!1AlK%Dm*t+!t$RZg3s^KhB>4WAzBu=m`X!uv{`%z4P7|9SXG7<*j zBPf|ysfaKO`=j&HxgT(n@sLEDZpH{cWIsyM++vB*`QGLoQoShM~QpU^TKoefxiSpw_b`Yg84Lb zAO+22b5oI>A{>vLId0QXGHX$ho3Ad`dYPRsx3h5EPE1Lg-ulx%9iG5a$mw;4{jadU zu>D77d)nre_V>0J7qbIB^VZgD^5#qj=|dL5CS$28$ttsYmFZcc1@oKJZgJCZdN#6C zg#Z5uuXAK|QPa+xy;>$00nDnH+bAP_^Xoj6{J^siV?G)yfRRNo{+s3ya~{+gIAD5# zXu(Wn4p?Wx%eCgN6DJr!N3Ncf$J{M6y$H$1(#R%VDNgJ4=$Xf_?ost_v7MLLS=i1x ziUn?|oufGGsW;g3Mr0Ap#PURBRil=fzDcxTMoI@rELF|o%cgG@EtuIcw%`~vw;aiy zS;$CHcF_oW1*R;#*~W90C!4NxkX6Vc7?&HpjDgMmy4u_=;soPG8d`r7(|@!l0n-WA z*kdh{ou!eHlVVxJI`qu%G1>f9JKtt!;dJ(5oAn!=?{J3OVCUPBMKDw0;(;83xWn{U zLetPE1KBCU@su?GZhieGdL|DeUNqF`gZ!5Lziofv zDDN5U`i`CTv1FO&=(tt&yY~DZvIxe%My0BL-`o$x2_{Fm%Rl_k+@0bCGdIMH!2Tum zF4K1-nfi=uQdrI0AE9T2XRXp!CDa;!Z2zCwUpR|qcD3eny|Dh&K@{y#vMqC2*CWXS_p~H?qf&6)iyo2HntM7W zXoUU-TeseaEQ0xvnS`UW3J2?NP5(}`U?$sAZ-@SSbAJ#gm_gSuyVJXv|IzfHkewnt zHn05|Ju_ziI!zD#i=F?9EP`<@<`_`J)7$$u(|;E&7z|x zDo!xt9$OaQZ|(sk8)YFQaxSrUwlT)$#&eGDc3eR#!8)%_l~=M%^x z82`>VwZ?;=H1`yeHNeQY%^WMaq=&4)TNn_ze8{7SMGI!?QVP)qeV)1JixW(a zu8lcM>we~5AWpF5IPs>w(A@sw1oK7JV2d~3=$L*HvQvcP(U9`2D>?u@bMBNS+9UKp zJ0E0c;YjXC-h&%m$L!$yV(Cim5$YQ+LCJ(r193@xDTZ!+8L|jQj5SA><#30Xd$~Bl zOr!~OIfuWWQOmEv@SbUk8nC7s7I9f>LP z9UR&#=MXHQz=C$?m?r%!5i-hB91H#$dlXgS--O<-N=6qHD8Ex)5YJQYK?o`x)f zk)RqVzk&TO*VfmVJ{`%n(a4BZY(jPhdR%L01?{S}^-MdTWoO|?;dOqfua&M_z_*^= zkd&Hgt)J8Av68r+i=J6x%JQML(k*SzK=) z8lY%#X>lpMIK`!uQYcUgEmE|+6qmsVC=QWL*cc>`O*Y9UY#<5=Y?K5N+}&M@Lv|PU zBH!;m=ggDs|GTdDI@h`9J|oXO^UgCqQiJn*C=N63aB)(d<6c4?&vArtM~ai`Pp*>h zAH;teeUxaaQQz^M?ZF(#T#a(q&EjZTNR6_HMgN=B3H_JR$B35dakF<$+_Atv%(5iK>oK?85fry7w&NR8C$ zA}5;wKF#RUMN5q+d3TNUf{i;U{c_1=Ljfi-5#t5!5?rL#T7jUdC7-ZaFBy+?_i=^}F z8TlH3KPJNrs;#dz%OS`l)k9&PRy9$RaYMyPjTjj6V{T%Yam`4kgppqBuo9TX8^eXI zE@Vgd2mv1~8PGn-?ouC#Q|Zid-W8~xMI^T$MJ>P_^CF$NSsp6SzzO1ccTj#Z6V2XLU8JVQ| zV^a%sj31>lmTob+O|;Z_FU_~AJvP<2Y2u{DAG%jx4p7j1>2#xKAZtmwKLsbL&gM7; zI|X|tuH`9ovIEVrj=9(7S?2Lp^C;c3!_R)0ZC>mVsv)X5W`CR6OE-J|S88eAZuZJQ z?{R2N5-VconwNRVBsJ5kg;gN_W87Qfq&i3T>!8E8jeAF&)OZ6l`>49# zHSRreQa#qrJ{;nr(?>LX_`X?uAPcDx^3)mHBmJRqA0cZ=y8T}vD7jihIv=Na4_u#q zeOqof`wp|0US68GPBYd&gEkdCCQUzlZ1$fZlhlZN)>yrYPmTLboK!D6`c91=u6pNl zqrVU>H69GwMsqa0@TFONB@3x>QWaNIl51>DriAhcUz^c4$Xb%_HBvQG_iYy^rXJ+u zJDj|NY@g2PzFpY!J#O{K%i&+ zv(XE!4lUJlrk#z8%xNx+E1hL=Qk_$5*G-IHEuC+QiG$FqNAgY zTU?w}=eWaF{+2LqNn|Za_dKeSx)e_SpP1h^H7{+(%b2lrD+0W*_69o4W@-NkIvKqG zWzBdwWRe>1mG*=`b_}c9k)0f6d`-Z^kYQpJ{#$=CZVz!% z!yg?I)(!1x+@F!PB;A|GlZ1dtElg7mir)+)Ch(7Gun-RF>YTZORJGyS|I*f zfV!9a0V2=YAV9+Q$AOEBk+me&$ABap+ql65Zm=7}IU=dP1 zVfv&^=#l?n+#$$XlI{s()7PN|XqoI`0#>GVdiBJ7c)<#Vv>XABgnNVZNF10QMsi7U zF(y8>wvMWdJGrNWmtHsHqs>^l#S|g`%Z#mQ+lO0cC&jAD<{M5xiOHRsWmg}g?aCX5O;~<;QDHy<9L(Uau zjU6j|&h3J=UH3e2d?mTxlv`;C^L*U6ju=TVS@u@Vu-lr}HuMFR7aLFIlQlJ8XkIQt zCaIAz1jiFyY}_SC4ueKk8F8tA6`6*qO3P&x=8Qf9ydDJ&!;psqw#INeU?+X;@geqRVUWZe}qZ@XaDK`5t$RyRnQjc%cfPB4iH;9uO z@px{IHEx_ZsnLev7B;4IN&a}FCy18nUbzxjt%QljO%f+HzMri<)N{e>jYi)jT57~P zYd~kOmORh zg83GSpIb09kHYi7A(PYyj%A*3_Z#UPZE!8fj0ZOR&j}*T9iOEi={M!tHgle*>AMMs9lt;Z5WIBTi~?%tDOiDkbCI zMsk%B(&Ev9!0g?9r(jx_!tWML<)AGx?-k7c2tDBYV1K{}-~$}$`9owaN%z3r^G5|o z;PWf&fwhC2*)_(&s{Nn zgoV~9{Oyy~`(Lmr|h|0h#tkqt`;TTZdKeEeLE>nvSNl(YS2=4HU%XzRS1JBUH` zyezVoq-P;k7k6$^&c3tp)U)^zR4T`?(NrQp~Sv1-A3 z5~gWa14kL=Q#Oay?`%lMjiuH|Zd)q$?LBYN?$FhROMzLV0x)Y9OWpZFhOAYvH9q?0 zwF`#lVe&c!Q`CjmtuS{0^O0GvU~cMACAvP?Q>xXLRG$2uHo%RmmXJy6f)5@&LFf&Q z-bl36s8#3#G!4i#<2Dv2)xBygmouI5x{1-7ik2E)IVN^mQ{K$D&BaM|ube5S7B*hD zFnUYTQr#;{_S8Dx%DCT&lN!MeYfwG6wQ<`Z*_Dj+GBRt3{y^J;y(nvk8j);g#@i#4 zR1XNQvuQ@&!MGj8NsaVXbm?<`tsq@lHk77*-W-0zXhEF(P)qXz3^v1^5~Wy1Fl z6=w2!)Zn}u*k6#=n>S5Ti~Wzd)${I1W|u4b{$s`csbEgO7TyC~{aw}e-V+DzBSz9~ zF2+2(GGs4d`+L#^+#3+}4NXlNLi^yr>@t$2*0QuJae_9!=Y1Wm@vl#{Em2)bLvM{f;sESkY3WaM8x3>v^1U z$0KV=x@VkmiuD9J*^8n)VSXYw-fAm};HqLIR~1*r9@rU`G4t(O%W$R{pJm3@F)^f(6Pv*o0eYlMJS z$2kQvq@#a*7PcbA5YM?4No~Rk)bqg6yN5j=MAsUbqeFHK{U64ReL2sk`AX$Wsv;?X>>4Oee;#AfD(WGoNFMW|o zYNU>y`Ov<(pK<+>bgYq{I(7uX4FE^ca)*Ite3cnXH)BP@C-Q1D)}NAv4jt^6rmPM! z`@zU0HC_{AXtp3CUt{#OqNO@*{Z*EtPt8M&ZW1lklTG!j;xN>>VdA7l$Ue=1*Jh)K zBUyrtw1kG&5e56KNFE9H9P1cAh&ElvNETq@#>6x-NsZuJo2by0ve8CghpZ*(UeK%7 zZEJB_(4rlKQ)DHREfYAJ3x|5X0hy$F415mS$J;k~tkL5{OZ8{h+&oA7k2h|DIH{4i zs%D*N^d!+zBip>gaieiJiIeJH89nG2GgZ$u+2|>vr3Q`HHU@9$Xd8WtXsJ<-_$<@z zXftjqlEv6aFGsCS+HpG#T&gH@m~O^1kV&csq>7v7=uG2gA!|vxmoYdh#qz@H61CDn~YZ8NJao`MUWRe<*hU4jz3c>^5f$Q|Cq zfgQ@oBsJcG2lke6ZzJhgBfBQ-oq{7_?-m>hd#_;eJmmXbuoChC*uQFe%nw1_QH*5z zxmd=K+EoN`WDJm|e;~3lFy?5Y7#~Mk;T3)QBz!WUOe_XK2FunXw!0unY z92yTzt@%^j>iIJy`;?14pB948p9@W=sPZNVf~VSQIH{T%(-zwd%I$M|1x{FfRVwS(ga9Jsp}nWUEg z%K&jd8TYd|sfC-}KCUG%w5I$mjI1T;p6C{~)=kd807v=uT3D&PL|0l}W z1{J2+Pp9^`753_T!>$;9BXImDTNx%|yjD7rWb$^EeH6*<&3*@Dk{StTGM@+D(YT$EOgkg1GBayZ z-nqiqa>Cy(T`@)f_uzPt>72JcCGUzuJ^uk&OVT|sk7&2bSnFLGP5Gl4?{3D@&6qYF z&Gh`Ig6Vg6^cj@*0Q;+AbFk`XQobi{^rewWs()1(6b*VWqxTjq)gM~LkZ;mH#{C6J zXBufycMfY*&AD%dsd;H3{I%fro>Ro{S1_b1tNp>A2|8MhQJ=rzz`kW9`<9Dw1b#q; zdoj7%kPj?40zU{`{^G6qU=ZDCB;Dv@$&1jEr9*_RX1L|fd}tR^&vzKO`djJE9gagi zAAw9#Ju@g|RKXZ_HqXiRE?A$iqq|~`Gy7MC=}!^%G2qCY zY0XN=u{hN8amZSd?j?ldQ>YA%FBqV5d_q^u|NBH?du0B+Cv_#+<$Q8i%$Ub1#kga_ zwfR&5TgW)HFV(U-4(#iJ@1ElKy6>%m+i{Qu?3rNt`JdYQ1bB&zgXj#I?a)T&9E zD{!di?#Lw7Ge&>i#+KZ}xSryqI@dvmoNrh!;~J10_l307wNGOCLrd;m;eO*fMl|I< z6=pOVd}YC^6en?NHP{oSX)@}UzBsUn8JVO;#H^X83hr;*03@53ksh(nj}I)E=_c*P zxT;_VEadlUaJ)^Xm>BIIghM?KMzV^#GNw$yU1P>pXt_xHTC*HtmeTzt)6#F9lbZ_W z&LEAj3@x~07WbbF$-^p)J>TeNa3q7JS_Cj02PUJDNou@=-mE&DlSdlYg5(Hmq(#hV zpSV%r$hgU@?U|EDoAGtXBsDT_#1Iv*R^!HqlNucB?da=XZ`=(?mU1Jlh-#`}Yy}wp zA17di+ouD@7p#4Id{ibB9Mb_43ub+y#%L#1So=mt4ckv?a#s7!Q?`!)eN4} z6*E$Lb5~5oc}u}8FVy3vs(q%^a%N$`{+4~Ca>@`TW z;{65Nhqoy|P_THydJybs2C1ri2#0!p7@4F-qCD_NjC)j^R9`f!0}c6KR%d}eW=4<8 zNNTK3XENsrBc4REXdCIt_QeiQ3EQ8P13;e!_&2z-54)B@_53W71FmIeMc3y5pX-X5 z_j|rzj&IlS$O{Dn^g>>&u+Ia&RB+4#zFct31HMvW{Bw-WtHPE{<^^9XKry`zhHKW>_0T_BXLqAQFB^5nQEDDT)Q}_&b2qvBpaDKjO#?wQAT*t11T8gTdwhkE`TnWRPvMzPvrWd6dqFOjt*-2)!Q{9)hx zm9Rd7+Uw_Ge_fo^Blgh0!6`cFmD#tr)$@1AB(-X#b`Bq?fWJ5TzerYRBmG@aX>-%X z4+V3ii)?=^m@lgm{FAVk+P?Ycikvf1%i|YXD*|Ibg92Mv*j^mRD*gfxJs-}J^^|nO zjeCrdNopjtf#aqup^F;5m}sf-UOntz8n-x-?lRJMtFW1ylW2ANSl_&aT=k+j>qV(q z5*#@-oZXRJjL|nQg#4cuVD0wqNPTW>un>OD;c*kk{gYYT@$}b!QAPfXjZK-P4h9M@@fU! zE!W)VRB*hC-+;YTvN~5Ua&;W)c@1Qe8l{r083ewjachZ_>fHRcLAp<3ZR6GvCv^db zzjcjU56LlKNPB?rw>~&(3nn5k-oT81YsS(&>*2;;t@LeJoHzlneY81kBqu9Qw6tn~ zcp!hh8{<&Vn;>gRy0;(kOf^k(o65=lwjTXvT}?dv&5KFo*%rbjzAXV!d}#~KQVGsm z;YJ@CNgrCq3ZGMAv?+G$f@wS}{%wS0=^y#KwyQJ#iPR@Uu<1C!OrBsB{3Fnjs?8uwRmQl0Ch1&P1?jN2bsOVT|OU#9W5 zf*CPUe*L{*HSO?w061QkSI`IIP|pV;lhk-!96v$79{Yoh{)cF(k&dC`XdUH4j5`!r zOVTYJ9k)&tcbKr%x{TZ$E})X6Y0~j+T1$OIvF{wpsYcxYR4_wc1d;z)aCpH|@!T3?h; zudpu+J)^=DA^uHg7EGU5H%Ola_LQ?$Mq6Rd#-X0iK_;nD#(IrXLbGw_ijx{^{%4KL z=NWN6vX-RV6R^uodG~Ly#}Ez|nDK?kBsF4awo-7BaTg=$S0g+_)>mNp+4f3US?y>w#o88tJL!cCwKJa?gTw6b!b#gjFm% zIS#X-BH8c)*}KBCT7>(6qXKPXdcjtjUWr>hHzJeN_`9%MX4n+;ZV;*k+medB)^3K`MJ~@vu?s_D5 zA|pL2syy=fh6?weBRm!y4?TUbMy$r+P|xF$NooYlISQ1C3C2wnCpBIKCp1%sljKQ8 z-zZwD(`vnOYCiN$Mo$(k)kAhVPciOhWGzYeZwh;>Ih>GVU2l<-eeL@URI1yG$^6-U z30+Q8i%Dm1Uf$$9tzhwF*mQ8b5N<@r!wekic_y-!q`7UHF zN%yy^&8ma)-NN=kVUFh>fd4ZWWn%Vg!Gk)2OrJJz==W>i!Dr3zpk@8o~_%&pb8c(HNh z!bR0@8uuS@Qk_%X*3_8aGVX08lhH^^0J9TX#r=-3UOMx``Q1WlN`axj_rU(#YTWXF zcpnEk)yO0@Qm6gpbMuGBeS~Bp8fmdmX{iv*FPM)64e8uouok;;gnCE8Y~58nodr{_ zDS!E6aJ&Fd*(W&E^QXupH4?&t59Z51GwyS7Ql0A@JXZ?>zcB7gBz0T%};haC>ufXxt?y#&GFK5QmJw^T}T7H2sTbIU7%qy7jie@a` zjoH9MidHI^Vk^9|u(D7i;j2_6onFXQ!BMstzq^)hGY<9qYh;q@&%>m6XVbv^8{<|- z){=C4<(goaHA(Au*N~I)QK$EjZEIGTfA^TFc`a}}vOBDeLp`s9Oj4tP*f=$>Ys7jY zq(&iTO#}Clt#8~0NcJ`(EyhUTZwpp^LW~=NP);_&f$hymwl^1JEq!9tdE*MR z3>n)^7T`wVO&4JMQ)~vV0#^W=<516AAZtmwzZ8#n%gR`r&lo`8%8Y+!#?t*Um>3=1 zH*Z~V$BahI^EMS8-M3@d0MLxdvL^h>l_;Ac~>+3gBeS=LMCFj0+elk6i}&9d!9OX_kx+K zmhqno2FQMog4>yi;G3{#!3<2x{?7}rPR7W430pWV5{3zrfRf zfUwf1_V9s)q=}+$&OzYFQzjj$91q5U$!27d8ZU=w+@`tt5aSL-(jP`zEIO)&Ts^Gd z$hE`45%Bbxis=X(>iI}ylIj76@js0_N}SY)R3~^0%5~$8M%I#akM!Evn)~<{*dx(c zD7DEkW_&C%N%er(IlyAue4KH|i<27dr>h(D2}YcVr1OjP82IS35apzTwc{Rqvar=< zv|UaSu&++rHC&LZ=FF+ZUURtMRIs*YYjJk*uj={qie!@;jL90 z6el&_jSkEmlrJ*wVkF&Pq~#n{p}0#5*47j7r3Gt@gd?sm6SiW>L8X@$QpS9ouBb?w zE8PoemF&daqhM`4A>^K5&k5FuXvIJ;9O}6N$$WA#hSL_3-UTa}EGg+zFq5kqV7L+_BG!ln;Zb2rgkwMd@sCr>n$ta^oBiZ4M^aA2u zuM@V~Q0p#QW!_p$m_-sE1CBgk2NGwFT#o}wu#wCy7h^2dof&J!7T~C6-mU@|XZGXG zUb@A{h9-7iiJnlLIvD@pKZw)B%86sPrdlAAaPm~J-dQ#`;=mbUNX`f=_8O16Wv=MS z#c4sPQ!1w_)SGdtLe+b^1&4ZWL)MaXPb+`IVT}rPs@dD)(FkWr8E(_e%XDOt8n3_GEUwSi1jZr*j&lqJ z?Nvg)G2?HMNou@sPE%wV>UYL{FHWkL-Ogt2Qa0iT5mMui*2Mldc7sjMKN|fLlHJTm zZ+Y^UA3RR0u*N){=C8NKP7F9uS@Vp$wSt zZ)nUbnDL6pBsBtJo{|$GS2Av8aZ-b88KdfP72{SFC)K%jwr9buX56pENsYJHFq<(O z1^XMLR~Iccyt2-I;GDdMachc`8eSPpae6JI*A^|+y;3hJ*maCsSDe)NpZcku(CZn! zzG$i8m5~*=4UGG(IH~Sc|8GABd_$u*5-l~VSp3zD*jR*A50j>z!ra8TO~px#r=+`0 zCBB()n~Reg{us<(IO{sGhe&CaDo5bC^wI^7h8kZ7rKydr;h4%u&Q zw9~xX^1){G4;e{~e+JvE`VG=)bB7pxsA#G2RP#9Rc5Xh*xWmOsbxwzalGY=PI}%w- z(ydZbH9NYwgS!8pa?*`HWOZ9T4Mee5?afS$~k&_I$S!&#coGmGq|ECUOy3i~xl7-ZWzOkiq zc(bCv*yu|{OAVS!ZTj00N|zda8M2n7dx_@gDJGjQ2S@SOSExB(VaDCfSh|19s<3(# zCo4&V)sX2aCsk2&JP;gD$%d@KgYs2od^Ivj^&GQH zdl;dcm7|BX%q$i3yec-MUUSc6yofBC=Fj-BbYjN_=uWmCk=R5?rdTv4{sh(7u zOB;}f8aE7COVTZP%8DMbxeHb+Yq+p-PlpVR5U{v!WN{s9^tL(mG2+@du>Z7>FhdcGdXTrkobGvaQi z&!JS@fNOZ6Z^#1Yu{hN8I3yQC$%`dnEO#ulI1v zq=Gf21-?<(b7gkEsUlgi4mla@iDCWg{JHb;6ddaLW@M7;Z(9eXdgQkl-G-#!i?p>) zI49qaLp?u$Oj0A%8GSVu_n>hPAvp#N>3PU%&2dZ*4ayJW6k!dwR6Jt#k0O)QsO5;5 zjASI~F{2+BEj6NI0+*H7PMlQdAm}ya=Z$+ooYbggSc~H+e$nWcko1a?9yeR#IhMLIdRc^Ju^(3b z3OG{ve=J{xspr>_Nou6hyZWyi_l7vBkvR-V_L-XBH10p*q*k0NoVSd7Tbxwqw6Tp1 z67LxIt~jaA;Yl^(d&a#lPHJ%8k^I2855-9huK!ro_#YWJA6ZM%?a7s!q@^7kHJx4e z(J^mG?lAjKWRmJ(bqt+5f98z*v2mXuxkC!+xyYml*AjgytUqW6oxsm3vZ+z~TR#U! z$)j7z=l2U7xIhY-q{g3yVe7Aq_*#TikG``%YX}?jH^zM{PHH^n)LvSb@ttwsBe^{a z=}8+#H+N9}udx2%8J29DhE2!4$NM}Hxc)OZ}8mUZx}8@Glysm|%(KmuOVxV4bAB;9k4 z34OS=3s$ZX&N>zLhgi45{>s*?F!uOg9~_CK(}=?cIB@D0vX-Qm98->LSYeNBqpldg zHE_FrWlwB)KaRUDV94Yk?^4)OYj%6fktYutc-d#Win>5Skp9+pL zu}8s-kBZ;3VCok=#-A(fDcP&So|3)6krMhlhN}M7*5(m!xLMEx6E35(G z+^>9;admN0BgZ@;M;rGqB&({C-rnmyfc*mP{h3delT}-^^q8nPw&2K<;|h*+9S@GT zf-|jZVl~lI{s(q=LWQ zX~OnJCHGFRNUv7TD5SFP%!;IOhR?IQVAV5cSC~W**g4=B@}eHkpn5(RSxeGAPHO)1 z1T3c->|&bp3)W^6g86sB09EK0fTMNH_lCw5xqBgQ^?VVsmZZl6HfxLE#a%JsT_S9M z!j{|frG<=dn9)zqV>7Jo%xEZ!RR3YJLqbSXTq!c?8&F4&NhjU{V>$ zHsxX*F^?)ZVjf*^1a=)b9)o#y&c|!Tp`OPeYe~B20URx}>nmf0&Wf=c%y_IBOE=@r zQRCFDA6FSOhNdDs-i#-hv2?3D=1--~I!epOCsy_yV|9*mo@Dknn!R){zRc|3Bw*hV zE-h{zn;IQA{_B8M2V-7M)C#a_}Q9c7}Imn#C+6M|>f@p43%0c74pPIC+Z6DV-28 z+wA9x%P>0>oXdRtdxjSt;!#&eNLs{iBE_#SV!T+B224$)Hm>A5#T3j*#m?k*%N zs*(P7wS2oV-(9eF9baQ4Tl0ej z+hK9c9TyC#qi`Mu$NM8@JUoI!JwJ-9CFvGecz&!h#!^RmJZ{EMn6dQuAGPKu3ux!8 zkEbfYK=jiB{+VjkLcnLbViNQ$I9?BnC7DTj4u^Vv9$8D$z5BrtX4P4$FH~MshfH&u(cT2d+w#xf zf6VwTWRe;IH4WDdB5xb_jyS2#(U#ES#dnQ+Pn^_9+yw3$?4I8@?gL~kN%sV_jM3tr z55bWD|D=6n#`BR$YKg@9AMM6rwRgHXIFhKRpH((E3`|t_iTO8P>jI1T;7I*~q zePwJ**?Q#vn(+_FBsKEYcgOu`+)qd*l966DYI7XTsj>K;(mM3Cu3Jn9OyR9p zaKyJhI9@CFwi3n$IM7)}CaF>Ws6*j4G;SkgElKydd)kB6!0|37nDNGDyoni0x3{Pz ztD7#c^xch{ndRnYDcythU6ET<*mpW^Sz%Vgk)KGD(f}Pvcg* zL3tbFwiPGU8<~2r?TpwS$wF(Sr@%e!P+^TX56U|h3{VPoD!84g&7K4D&IPL}#i0(n z6s&*zjK2Bz;CQ3cTeU%MR~*=fjO1LeV$76)xZMh7p-AVDA^DF5tEwMAD(?=C!2Dd3 zKjBc%dmxike?(2E?P{Ve8WN+cp&fKRWX*w{M_7`ClGAb%Z4#AdZ&u%%)>xk{UhI(UXHd#^_^3 zOO3BykI6h!KF+w~k(`N*wA6&Z6TszRxh$D8z0CL|WRhC`%cI1dY}_fxT9WQX-oJ*Y zR@gtMso`o?l@u*KD4h|6O4}Sm*+ID-ABhfu1pvo^dgT zW2b7qxZpUI=#mOE*-G2!Qn2?u=X3G*WuSV#9GRrXD;wF^(K04qVO)1)ElIcM(Kskv zk1klT_5@c+ltV8ZSagkK(e?i^?rp|a-?JIO1MFk=SDL+aFCX5VYb-cy`xe~UG+e_? z{R&nGWmxar9~|F4#*2o|)L_B@+_;PxSxeIW<#6f1(3$zFf+?uNS9ihfy$9t%!b)!Y zByN|PsJ`{!VnR)+;(ZM`N(Lt_Fk5&n4s@51beCmpk6R_DNlsQiJPAV!jwB2#SR-bf zq}p6z?5UiGSJ<1?BNkvw&q#2jXMnZkT5w<%8p$klF;@GYJ$j=HR?Sbl@4Bv-^4bda zz%)ld>|=0X3L422w2ZAIhBXQd~Ah1vEziT=7bzyNX?~yClm}2o(PVS zp(=t&xYhHG$RssB7I!x0n~az<XeTO}*Q1WZv1ho5e{DuDMaK?-t|QkW4xwJ@s(> z>8EzV9Ybg5X1T@>YIpU@lGD(f-tQ(*2GVX41Qk~NtJu1d~ zjJp@fX6dQ$$AmDdVUF+q(;8; z*JVlD%f`KeiT3#OkazaJD#=UR=$)9<|CZzc|MZq|VgKxZ zQgD0EN%H$?!K_c~Xq%KjE11enpY_iRR%4Xe!!HV^nV>CxUlvSDPWE3_m1S^L zr21n$Hzn{Vx#~Z!!MdLXywtGZZf;&^{esnuAC(sd$KREk9T{%^1rGJx4OvUl-E;r3 z;ufill~t6%Ma_6IWRmJdhFVcAiC-GGxHzd%oH&YsBCv#UONx_P{LRx4>{7-pElz51 z)5mBT!!pMG3du3p$m%b-EFkjKKU&L~YNrW@CDnzxZfg~M@GgIvMXwG z-mtLG5Ih+9UcNGcPT0m_LU6nPKl>wZ3y}-Unc-vyH zLt3{h_VcTY-nOsoukWqI>`?6WN8hp7t48I&KBOVh(r)6tjoSxVOVT|#*V|IIzkoeC9sbSR*Np#a#?sxGb0qoX z?N=}#OX2;6yQxCrzP|pV-lT=R_EDu1pslf>Vjkyd8=|Js*ZlQlpc~fiNk zjr%8(L$8sMnnrO)30ph2-`I}1+)vVw>o}Eu#%x`fL*0BdZgi26NooX7LFYD*V~jf% zSxeF_cnGzbk1JSP6&a>JzF^HWGKPOb!M3iqF`rm4yzEZ`dp59EQa3xFj6*%2f~22Z zjAOmhsS7a23(d$$SkD$qj#xWzS}}=LN~a6|f2)$tC{~n74al6?1#5%ESp~;T?AaCe zrB~+^tezXiIv31IW5VYatc3uCcV5Aewo|#nJ}L0;f;&g`)t2fDg#W+gTNlc;n;w_t zS{D_dxyXwJx?}`Sm&nP!uSCft;iX+MlR1}Fm~EzXB`z;GJ^@#NqkJ-T&$NDb9O}6T zlJmQYG3$jiC)Kmy&fWvavfK;oopsf~4WN4NjjScz7e2pSv0r7ZZIo;Y=x@dY%vid|q=Rqf<$=P=Qys#{$&RBq42vt8 z<=RboI({@;DU)x_?m**?~ z2RomKf&H4q*?rx=VC?nW&0=g!FEx{x|A zWxTM}LY#fXg`6yHoFFH?kNI;av-Gy3p+y_cCRQHV)6agVNy6QfcFMwyh14(>M-<;w zVIAf?J5Mf{znz8)rxYA@?#%^jjEV4W0Y^pX7r0U{x8YXLQ<1eKy*#p>Vp_qhkXC%t z3+D1pWyy?!BmSA-$ZM8KQ6^^LP|vp_Ye~8X?k$+v1;>o)oPsr>N(1mVa0KQKx8qRH zbCIE(+KE3yfLj#Sqs6X8fQTOE1xO5YR(iF-d&53)TZaQej=#F*ZM1VV|FV4D2c6 z@2A{-90v~bLMEwRl4&fe@AIT_Pl=NnrTnVdYD+$C+%rh}(?~C<^utH@7X9r1apFZk zhf`#V#shlf=W$@)GLo~rWN$UEzt|TmV@Al;$#}_(Uq&XWo)&RjmGp{nuOhj$8R-G} zjX8~MeP;# z%e^`ZrU|20+X;?G=lYt-^rdmA=TDHV%Pz+4tW)3~%1?#6sm=g=1}K@v;eTWE=QuF+ zj7(A^V;G>OQ~ITGUx}0IoIZ%GhyL2QZ^TLUrmF({)`;(rOgAIrp}AzOHGf|){~X!= z7woCg1O@BSf53s8qmZ>E-8^Hgj_OYZ)5_34@8^O6YCA2oK|H5+O)M;+Qpev;2Q+ijlD^hES5HlWn>{W8oF3aHu_gaFN@?VW~67Q(Rn%WiRah+4@zrW<0`}R z^5$a&WRhByNO3C~w-U0Jq+4jT(v(FjgQIB7VGG>cyowpGicC`D(d^s<(W@E#Ytd38 zo?#rnG(7*txYfl;b+77XaMcX-8b+@vT58aC9;xWHj9y!`R1Y~)xsGw`ijx|#>bRo0 zc|GIS7bi8cvS}W*jDp?3=-(pgKqEaXo92nz5F8Kh4jY+q4Vk1ySoZf*R2v(;36fK= zksg-+J2wUUceH&vr-oYGo0cZ7yNZ@t(UCKMFnTv+ElIBmIG=_;g8i*TSi76? zpO8svgvBu=%$gC^9!BqptR?9lmeKjo;26%dJF1ujk(a&9%ihQ&)pLd~sJMNM`-?cK z5t~lcAEMf9U!(sjT56$bbT-QOen#&vTB_5U7}6PH!}H&a{<~C_)$+@a#6`nx1aR94~p zFta#Z7Eu=wn4ojZ&-52)8pEcf2^MUATGq1mjLbvOXJW6{NZrt(@&PJf9>d z`!<+UJ{cUJ19vzDhk8C0nWRRt*y}lBfcz(;PZKRQqV{>&(~UbroYe5jB#(BA4$o&A zeHOBoq4PYg>l`*Nsa6qYOU!W#`Q$jl63#H4V}&3LCNTaQ_Ol(=QWsdZ)B1h0kOdw z%Ra_kDNd?$YL;{RRHJcy#YwIFX@I7mas9cNAbJK^IuL8&SgG~i2 zmcH7I2O*Qx5(&%x2j#)WU4!KCYor%O?EoB!g$yvShF^*C_)7cxopjM9`2Wpu1@MyLuSK&m({PF>r*FX^<8-s1VfNBJV*29b{LBi|@dwWm zR?hoD)|~_A=36Th#tIlwnO$MNAmBORh|j~g4F}HmLMEx6cAiq<&oyqIIH_KdaMlu> z=sS$Q6In~ry~O&qp1TU>BdmGEyM?Wg(2Ho(0YdqnV!~fc!QBfkNo&)IPWRzZ&-Wvf z)QG-mioQzF4;cNRXsMC%Q5@dbkRLMcVR2G}qkPk4c*M9z#Yv5~)qAe`9*-IKxHzf7 z`I+BO826+&sSzeQMY(&*xTnQQ^`vU}Y{(GJt3PA(vq3SX< zr3(WbUcjNAUqmLUkqy0v=wOpM4f!RbUq;rFbRWMfv;ufVuKKiTiwec{Rj|jv!4XuV z`86Es`E_J1Nslt83O2t{8MjXur|sWwn(=>-Now@*Mh?ku8Syrf9y2l?lF{>V`JIAU zn550z?}FnYdroBvBfp0OJ!WJrNq5g25lIq0D410i!XJX8!e4Be z`7=TPVDyiorG{6Y1nwu}eikRyz1k@KC_TwSzg31Vj7(C)E5oLE{e^Me#7T9IVLfq+ z7`Lc6sSzyy4-QL%Ud-rUik2FA%P}?nJc}E>glMV7_h5$Z<$Fn^ml7@2Bkts47vAX7 z#w~;7>}#Zd`5=A;@KV;<%pAkyysTL+XO_~vpfmr=e8TdTv7($aC9hz{E1I!%GuAf< zZl%gt$;V-3GhW4vrF&b5;gVGaRQwnp(eTM?6{bPQ={>(L#ym{^4Zsu3{oM+7bsV@T z3dvQ=vQ$WshBXW3v!RgI0*B`@oKVYcQ8;ksHL{kZn`hFXF_m=-Rvu!zUcmsRWPNZ1 zHhLUq73B?ZU=21hN%a@N3DJ5v8ydHfIH~b!X^*lLx1lZ9jNVwZ)bQ%@Y+~G|;-m)G z$~gqR^Jd0vj%1=4>F<@Plr01-CzvY+Z&|Qj26(H20eaZqfukI_hplm_=WUR+B;8+- z8*f_~GpDW4wlm}Hkx6PKkul9NZFvXdb`&QyDno`AcQRsU5mLhw`?wgd-^IA!i<4TO znPbNWYgE*;$V?*)ayqj@n zo(0q6();^!!L-%ncdvr^OzRV~cfoiTzYo|WW86=Z@qfXgp7%v2sZjt}l))E}3qk&B z^nRkH`a==0)*bI}+~1J3B;C_V>8DNpcW`tbx%!hF$L#>KKMugH8{Vi;!xub6DKve{;XH#!YAX75GOS_lEYr*BaQo~IH}IH_Z+Tyj-!mL zBWp>zKNo3X*8J!S(@3MB{|g*1&kc^jp`MRLGMoH=jE}2~RX!V9^6_ST0y0VURH%7L zkvY-0lf+34?pA9foow7GNM@0dovLdy z#sacIBjjfm%n-f;JF7A#va<^bBja-_to!B%_AbE>4kSv+&c9&%>df z&qpSy@tRn$gz>+Py8u~B()~dvSVArY`zbH&{5h$w`pxd>-M#&~$@wDlbultYjSmtn z-#HWY1eX|nsc5MYA!{f|%w@)1j;tl=7NPo?e1fhhn5L*&M%{(~H>Z0P6TB$>Jqre? z0o$v1>Fmv}S|vF*;1v162bbja#-X13AlafU`|@V46tLzHtDQLorLkZZ#OV&OzQRh6 zV};cZCl8!vw{ErVk3&5VKym_@?Ctx;eZg=8%~$~}NZnOte>E~mjl5z(JgxXa#tjxH zHL|&l@yk}leT~uAB5O&yC!H~aVFU6I@PfY$`QBv4L(N#a8`H!f6NfD@=KOYyo6UH* z8B6zv;Qt3VqQdm2!6U&@5wWX@7e~rkaAVaqGD(exYT*9whCJH1>%>W|IL$=28aD>X zE@h<0i$B7=9vo*5G0w_>;h z7K5@?XrdWULMEv(a@#hQ@nY4mB>qOTxJedLtEhDQz+~g5AZtmwC!V1yK0!ANTQS4% z7C^*1Vu&`=x8cB?F)~SwENNjY&b&O$xar7RlJ23pzZn(w)$ub6W)XmnnVnT|2j!2u ztZx;z@;kPHUVvKlvx`alG}}BsM_38f0ZO-3B;|zNJGX=5Ra38x9<0N+=iAspDmU7>d`z`eC_>z=Nd7kw`{{%lQC)OfiM2YSKC zT9WR8Y1C{=exP7g_cTWyEEpjEp$hw%bPo&LD`HUT5kS16{+tOlFh7bzJwJx5CF%Ye z;8+9lc!en>Tr~8Au(DaJc{JTPH$PcS+$ld*aEIUJ^mM^Im2%>l5(MYhv`^qhp&9wv zE++WO&lMaEx#z*2{tpL~`9S(gN!2-_|kr+WfJwii`|D5wJfOH$b&bRQdn3a2qGzb#mc=BZ-7 z1ADyT@I4Oo{9hz@Ez8)FKH6@;qjddH*|Q=IvZ{00sWDaSLq-Cp9>F zgZyz8#)4sr3DI;r(Fw?q(K?$U>^;fR1F~ThcNyFKYB+$Xb$a301ec-%QQW z{1T@q_RN;jC0X3;moR(jUQDJn&A+uJFDY!b8$Oo;M3yjkOIvGc9O`))WRmKSp*|s1 z=dX-g7RjtK(({^g0tXJs%T-thxXj7Rcfo3UuOMtSOLLFBVj=bM!gwXHr-GSH{m)m% zp`KSkCaLAG*`U@PHOZ<*uZFB8>HgkkwP6R->3uR>Uf@A&R76r%p!!3oERW5pPb9%++aw~{5}6Ro)qF-mhTV&&r+s3s(1?CiUNht*SGuzs%n&6M|q{%mLs?4^vfq9uCBT zyOWVD)-J|0SKFDjI=Eo_=yuQl5Vrq1yE+a5L`Xh`cqk66(MBezo<;548_VTkhZ}bU zvX-RVQ@8i(EAGgG=g(kBy(Rw>>;XqIj>4gy>qvUk#aP=KN&eB5u^O>AG~|Do@iAsB z-C`0)xjeQD)-s9XDome{z>WvUBjJHHjVIv1(O$?THA(~(BNfI;#+@uqYCJCEP+Yfh zigBkRYe~94t~Ho)0>|Sq`%g#kG&4TkjHR0~pLu=y&nQ?|M1apMm^FWD37jQtZ$#bc zisTLgQg{wH9!D!IN9BwICwn0|*{c|1smXC!^+F2;JKD+^}v zglroNj>qcT1#4)hAJ_vA5B+hV?~F`RtNc=)3^eX4aZ;l!^`0y4YU2iplN$b*L!dwp zHtrg6QiJ1VQ#o8~+z=$2m64XMlo@eN;CPwSnOYr{hnn#)GnVdEC9_6a!^BSI%HEDl zZOOyUegrZ}jRdniNquJHT96#=g|vt@=trw=6xbICPPpjA9UVx*5+vCaDn+#yyAUna0gRa-J8` z1M*A3ZUsj`TAVmH&o<*Z$Rsranlq)NZF0WNxZ9CzRYqDs5Smh)TVc*2#CBf6+Lgk8 z?2dwEPmOvfIP%mz+=W9u-;GRCJ!0)FVS&Ou#@#DUYH)tq#eK%zkEC~u^rvH00oSrW zP%x!V_(8BoO3PbEVLXIGJwJ@BCF$mw*=1dT^hm+s`B8ABn4?j-i1slY>iKbGElGFJ zx3-9TqF}Y}sgj>8xYJYiRKXGW)8I&%dw2$idVUs}q{e$7tN6D+XWaARq&mmBJ=*Q_ zf^jb*Ye~AlBQ71~9lQjNCvb2Oj097eDe9< zzG2*(NV>#G4`_OK4R`&gU=2}V`xZD-L8ZbF_1ieq^E=2SH3DX(1zYOhHSRrRElIb4 zV#b_$e_fey2m^2Vn+h`_PJ`v!1=#i}eFu(2(|}>L=6f9I2qWnT%h0=tD~pp_{Mi88D#ooUPHJ#Nx!}5QUd^~)i<250*R;?~{*7^~Be^IU=|#!? ztpWCj>TI5)3U5s_UJIF|dO+&Fun=KwY$q0 zpkT&5G&u6xg2ht-Y}geuG_n!6B+|x8YB<#M#>iTd?oXs^NSpE|6{h6ldDDU;F`I!G z1V(B$$AOEIkx6Pi6|G1-Z)x0C$Xb%_rBUmXXXM`%906}#a6IKU1;;FaBt)G5hv9-ovgq*sJ|GuuQ;g@CL4j_{%YKQ;-osK zZXy5s{f+yZIH}=}%g!cToBwXy0pg?vH;dinv-5$*9fYLEi}Yfq9^&kLaD|yn$Mzou z(>@eF1RO7f187LZp*Ya#MJA~c5lg;%OwNZJcLb77FVZ4nctQakS>c{6GMb(LDXf}U zxph<_Bi1_D2RAgt({qMwj>e5W$;c$NdU~yBImWnSk<20^{RtV9BvHqK;|ZAJ;+?J5D$E&ac7B>>YR!TpP93bJ4c+<@Hc~l1!m`L+_~bUI@i&6u9AM9ap#MZ>YO%| zQkVYQxC_KdEu(uhLMO`Wg+^b5tnZsT#b*j4wqdss6xf*k5ME z2Aza8LH6Dv2 zb2#1RD&wveC)GLaH)XZiAmav$lN$bfq2D#eT`Nv%ybo?<@@0!djBY~Kl5|UN1UnS$ z{}rtkWe|?2hM9dcGD(f7rr8q6;l_;+Cp8)u4ElLgBaLoB(wRkCR9ttbU`K)DucYl( zGxBINz7CnB#^a8f+ey={)wnU@qz1=Pz4*J{xEsVt4UPp9v_r=lHx9|7XQV&t)%I^3 z5B3Dma#ul}V8#=XNoq9GSkKb4nRc2Mq)sx68)YHYAGfo|4Bc5rY&RJ_S+vy14c4$T zcEuq$Q;fb@wA7%R$FdBW6+ihFquWGFjePc9@KcSOhO8y&UdA{ehEbg9;PM>9DR+5> z8P7Ch>1G_m*|W^p+p!I}&7VFd-)i==kx6Pi6-QV5L(eh#HqlZeU7XTN`M%w_x#FZc zr^!NsooCz~$Xb$a6|{&u1@u`YQ-tpVM@i^6Q+=Deaj55ekV$I9NGWNXm+v+1K5|nrQ3~APMI1PA3(4(G|Ht^{g8Ba_@K?a`28QyVADmys zfxDWJNoqWT8^3Pc8%WNiMtZ8<-<#k_1!ut!@_)?uEo72f@^G+T*W1RugRCX#9uWNj ziomvJ9Zx!_aTzK!AJ{8A169_9~B&{pyw~Z*6C{({@;FM2Tt)2 zbiS$bJ8`JzkC91g#LaseF(ZFs+^6ECI;Ywcf1ermxj3oLG0>s9;tS)x6el(O5g(o2 zuZ;UzoK*iq>Uxx6H>m6TjnUtVmRh_{YHypGzccQ8aZ;UASA~<{{%hP1$Xb$a*#xI{ z^^aY!n!`U8%tu*A@%&t2PN8G>{X(?`{&i^3!r;iW0o`e5^aZy_ z!Mr1N%ohd6%cfJxZotKG;6Q352U1tY3>`C$vv|RsefYpP=OqeOhqm|Jykx;Fb5U4J z6^y;`(go|u@V|_(4RX`+{Z%1JmW-DLN6HwFz(4uWC)8pzH!?T(@t^rOjw>)yG@8SDII#K|$u8k+%zn{jM&hOOJ*!RRR<|kH_BM! zOL*QG>`zMRy9o~ExG9n;-E2%jmhom8GYBEPdB)=DmTl1k>;JiB53FC#R$zY^bqXG~ z#({Ov$RO1VK|{SfZ)@Ck$WoA=-XcY0`<|F^b^xb{_Mcf^6oTx2OoFFaEccJ4M# zYYTQU<6V(KYA#Z(onwc`-Hh8^oK)x1==C1P?TKVPG%`ITje74@V6G8j*UH`*>tIVd zTKj-K#*C`c$KDr*a@-FYqB}EECuQIAijSM6dYLKzVzsZ$AiEgFpbzd zddGutD91yP+|-nfI|sLRj_DN-%~<6Q+rtVxt3vp2Vb$r>mYk;FRmn`Qob1>mHi^%s z)-l&3arLLRR8kqmqi|q87fJ6{UhL0coSHkw$jN@vI5DktY!BSoJS`pv_VA|jm^txy z9O&R8OF_DO9;l66CuXc;59tb=lrf73gii*0V9jhUm=jOIp&U;|mV$H(jF8y$5X;@h zx}kJhJk5+xM+T{$F{7*X9WGu*Xmzx##flJ^z>S+r5#lpV_{4Y(0g2I##foKbTfv~#O>9>7AFj^ z$s|8Eo7K&j+P7oI%y?bKnz_RM`i%KTg>L|-cLM2f*c)*u$D5F)AUzdX7PSm+(=If& zrQTe4u`Xs~yv4lSiVRXcGb`#f`_Rj{-r}St&i*W8V;|%CB1=JfN<3QqY;PT+imE>j+=`40Qa#`Sw8A-7%eaB!q$W=5N~k{u88=v*RF7;OdugV`D&vNT zlbSeX9}&9ExS_~Wke;${W<7KqmND%Z;o;yES$k6!L*r16BakeHE{xOvu(~kjhpO1u znDIz6mY$Mj=roOok1C9{U5wYMHRC!nmY$-;$~U;t8GDkA$ruvvvA)1GaIqf?_VUfp z5)R{VD91aHL8_+}8B43S!MO2ARzoAxgHxv83HE@P8sW>i%Zw)=gH%u0mKJdnjhlpI zQWu#jJkImGzq(_@gg9AFR^iR6miZL0hs{UGBA2N+FsX|y1?gt2!VGs$#_b#{N~9Yz z2I%vi1}@&1yN2VvIF#dk$WoAQk+}<6wWIWbgzITy%^KQa#{g{FHG|Bf01pY1Nxnq&@@i*WpGHottHr&mn_U z4~2WJr!`;R!Oo@N}L&Eyx-#~D9^3vD<2MU?Ri&(me9P?LMh2<= zdVS`qjJ#vqyU0?Io@(Y%!@8=uh`CDJwcf+k-(_aK`b_Vemk-Q~^pvi%+v0};D#)}? z)MorBV|+1k7C-KRbqDP$$neC$Hp(a zdG3g|rGj4-LCmaIL2S<$&sx0E0rr>UKg3X2Cl2M|( zIck{p2z{He=2i&nyPlZi*uKx0by`}-^aD6OoM}CMRzKoUjz1wwL3%1B?B|60xxiXl z(kuP~PUFj691Zv@hzp#MoTw#BJ0{Tjz|>0mef%z0t7Q`Y1DqbNo;zn}|A_i{JYzjxds-2{$s}TY($Zgnv0a}7n~PYrhJj5Al;wZ#4?LGA2>Y~q;ZD% z&3FMbmY&LwxTd&Z#+^0eWxJ5Db!ltH$AvS=M1#mh3e0K_uG&}>?1`&I{!MW)9LjNV zWRRLaWP0`WaS7v=6erbRXI2fLKwQeWrIB21j7+b?WEp2~E(7-0VSP92AD1=b<;+-m zGH$5UwEOY}o^3Wd4GHNpNqRlW42f8)TWVI-S|3uBt% z6yLQAJi1!3Sf{{@3F3F%jOoDZB$4%mE&CwX&m@)#Y=ex|g(0vF3(PWHa4BQ#H6XB& zumTggaV7zJ@+O&7$eRMvJ9XY!r99dU2PT1$r64^OIWA6YtBqS^%&%8Vcec#9v#ys- z1cOsxUAGO_%-PmB&}T*lsa|qO02&6{8n+#iJ~J|7g1eFLMNvkaPq`w zD*(qL?1%&1W@M0>OCE)vL3#?j4`)C%#Jw|i&--M|pGLDg`+_~WQ*8Fbp&a)|2C4oQTqVS? z%>l+8C{AkP=*o#Z$hd=%r64_JQ9O6JDY3caRt`q&tdWSjAc)FCxCPE zRCcf;>O>sM@gyYk!P&U8#V#v3x!aguZ%bu7#f(oiW9cbl=(IB|Q7$kIZ){KNiD`wN z4)!OrjGl)0891=57+DI^Q(&wUg*&U;xM{8iyw5h{bC5x*=VIEobgpsdiIdtr0mPCT zhJ?>I`T`_7i;*dL(>&pYJu(0Dkg=vW$eN2XX3$XM=NE%LqZt#Ss9u5ty=5f5<-(ZR za8C5OEMr<=vb{WGU$1&a#ySEPK7u`kv^07`yb=eF&O!#M>80(*)fBHb?iz7Yz39@d zV;?4 zRPD=y9%A%uqNOHUXXP-k$1M9$qlbx>S`TpWoz3;}4jedw8d(a`Q^v9J;Oqij(U8QuFd|~_Z9j7}d zC5=#i1NuMFy#!!<@TKv+yN$e7C4PnjCuSizF-ykQHiq~@K>rtd^fLUi zz(XzMuQH}rAif=(LZkG)pHU#Gj4(MVwUUDl1g!{%YKB zNczOc^pM$8)T#SD;|^?Twf+J2hfc200Y`u0KyMgHZ#Wwhsv`7vfjQ@ua`q26c~<{} zhW|Vp%k#X*Ak~wFg&xG}U&hUcWC9s!8Ks%?`30;m#?1^2GcHiz!DHod!2+|_68nX~ z9%at0;i(JbP>zcrOF?=X1889$irWKtHk*Ovx(H=~Ngp1eP!^MuJ=L7z;sxdiMW%+9 z$e5h~!b^hvsa%r-|W&cW;^@V}4Q9Vai~$-^Evl;fUA=9Oh{l_~dx z(*oKnV~_UU851q>`w0JU`1|%SQOx(txbwj(dD$QA&*wl^X44PAp&SoHa+gzKto!O3 z<3WY7dL<85#e>cG5M+?*g(+qDp~fAC$)uvSH%2Trk2O~xS8`8aTa6Os;c zxA9ypuDq}Z)5a*qgpuE zJYHd36era=id^lKc%^YyAxlAe%AcVFRRvs~u{vn{k*>*@>1!3`YYW`BUK>!Z1LuNa zb@BB$l;aJ^AT_OARwaF-5jTmD>M}}>m^QV;%Inx)lH4P zjq4*$YB$HwL0{u4kX&kvOa+7AKgVuP5?}A20;g~WXUs`X@>^BlCR$<>;*gBBv%ju3-qr()9}4#5Ox43M9LjMxGDuAk z7QJLa8r|Y4&%HpB~4W@i=6Vn&M||h{kw_aScd%zeo$n{f!5w_^Al+-?`I_ z?=oZQ>8bn^=}t^2@Sw)7>gqTV>@PRk`WusQD96djAT`B80XH#eY}{0FQayE3KzAE= zk2tCR&%djJ?VqY48;zbOTB>_xt!Yh7yw|w<#7RwFsowqlnv9-~r2mUd?{0K#?t%4v z%>Wl^L2D$o;J}5&NM?%*<34p-tvD-V%}!Cv&+dU$nY3oiHe!|DHn67^KX`^V@5h0& zqmk?g&c?c!l~&@MjA=hp8sglHX|Sp2K3L!xoXXr1AIg|TMB*RLnE6|U_ejP7@sEPj z8tBgEd#HNUz3L{eq zVzQpf{8_Lkar*f^XU5N)vGioj*f>f0p8}^}%nKR&@94#hsn})zlCU)&8hX=$R;s^@ zlc#z^Z+>g>6&%^xpss6z>afIK5uD&(#YoosrE!BOG z9q#nEMt>(-s^_0=0Mh)@_eTF9TB-*=m{ZRiREz&;^iQItdJ=IpMxQD1XXAcBa#$A9 zUc004`YTTU$@FRIn8k*(miU`_`Q5xox0Lfo{gE*hXJ`HR_@}Tnq&X+@uYx3#A^!#! zfp^ZWR$TwVjm^TF5Lc-wt{h>aVm&Xe%o!t@Ge)LDkvd58WlR%7w)2BM>;bwZL}4$0 zTRAR>3{w5ft)V*n%q3UP`o7&ri)K*kX>Qjb28y)YQW1Xqy?AHDWmtQj@D#%iho^q6JO#J;;1$#l~;26$(Sj~)A zH)H9Z{VZyn6W8cAo?f9Llr_!x-)1b`j5&!)*9@*@#x?}S82;L3xehW&^|&`vhUdg} zjav^{3er<3=?Uu>IEA_aIK@|8dCv0K5QlOsAxlBJm2l-Z2Ng3^yph?bB048-Y{r`) zgVdD3-Nu_5y_smKd57MJxVaHqh>+?T%2MDacC%H-Esfqvv{X<0#BFWdHsYkZSL<$b z1XA4A=sU@6S0u zzMZzXt6A=5meP|YU8mg(fYlxV|H9@@)iyC|xjk`XP8b=arsp$Bs(;Yl#_c0cs&kAZ zlRoV(ran`C7~Q*mWLvP zR1bwgFSx^uJ6xPp&xE=Pj=SxgJ2f6*^pT>adi?5!XlW`9k)w=08p+COq~#HuRzV+= zF*Bx}edfet!T$Fm;Nw7aa*?GV-F&hyOn;OUGGI0%C#r7d%Ptot37-Z|8A^@9r-6*8<5rGmAcIs-7ygnA{86UPH2N%L zDM(K*-pp~r_r!DQzJ#$6~*s^^<# zkmkf-+(qJ~I>+(za2FeQ39=NVd)o51o)9kud*P_&yaal>W_&p^NX=jNuy}_SqBSRc3j$SxQfd!MY;a^4Ao`WR@JRHRJ1$L8?EGP_8%P1`$#{ zp;%kiP}RvgzZ;FdNwn1T!n)Su?#6htakq$*>WRSxY}A6c8rMsl)SQSdnsMlDTpw{# z(<7OU=&YQ^;ft}a(G{Ylx>sg|Xa@B&uD>{`&e7`SnCJnupiwgD zxGS>;nekv`kedF@e8&1}s0*vBVwG78k%d%`WmC1Po<8(*jUFmms>g(-=+u+Lj2kXa zs&h3n70cU=8-ZkjG}3a7-R)|jR)bR((+1G%)|l}~WRRKy(&8MdkWt3fij(ROA>-&W z))_ZioK)v3#%gMCjB)kiqO5vO%W&6!(<|zZ)mDfIh`!2nr7U+;-vbE^5f#LHoV?vbdzYQ{!}(fz)d%zF)M|f~LTz zulIn_b3{wcZ`s&!S5=&A+=EDV1tU`pF~!a?eyG6OKiLu=&R9o&l9`Wy{lCEik4Hhw z=psu&dMdTa@^NAP7j$Fv6Pe^7My(8aGGq0BiPBRUccf@M4fa|s{e_;vp&Xw@mV$Jz z)$Eq>=Q8#`((^qrMf*P)`%mbFj63?=!2v+=#f<$A_Y&A^WsVl)1AG~Wa(o5J6~Z#s zAFQ2Ar4#+%Zu_Zx6I>u{_OBs>)Rg$z@ZH3s6 zao~h2WRRL7E6Y!f_zcPMR>+=_{T%E+a8`tHa~1jfh1q{;_R>>9p<&93_OFDkpm4@S zyMQ$iI0E&)R{8C~DaA@_p*S6+69?8kBU$$>dm9^}GdF5Z{JOxS=BV%ejj#e2`7OXh z(gkrf@jD#K@q1*D>L2YGrdg}w561l{PO5*K?9dui8-FtHXK_+JgPWNcWNWZ-zlxLU zb%?#HMuUDc`ghS%lUIi5+Sz{dhjD+3ljd8n>7@skx$3C8pe6+~_4lOZB?(pSioG6+||Lts!7@b1YH6YffBK*h+m(6(bOx zwT&9kUJvw{>wV$MujwswX7l!u++? zH*N!DDM(MRGkK!?Z3yO`jY>ha4yH4kwK~_L*Ev=&5*9F z(YuP4nvy}|H{5r!n{m5~lbSdxHU+zfaeIoBnu2A%yklIwns0j0;b(NaCCsZ<_h+`;0cCa+YR3~Z@59%A&N zqNRGsZ8JHgTZ1r%8GX2DsVQVylbw_5;t|Fji7W-_mfqS{bCiH(Hp7|JdPf&{QXM-h z;xXA+)!wn0#Ha9ane3cAJRV;Fo_7MEXBnVV98biJ#mvYc)idIO39LPeCmVN)IH@^R zhUjL8Q;jQ&lj{EX{NPSA?sRcdougk%)Xy;POk^oYPjwX0K1;yfnH`PP*k@qZ4E(uZufy00fx~$?l;ioxQjnek>uW@PEW={@Z)&zOUr`j4=8d0a)j7AJof`a%e*Fn||y!&tmD}xRKLQz~dObH}Dt{!^_|-<&h?eSg*~mF@q!FW#r64^eQlojQEii{YX<0Ma zJ1R^cjRuwD7-W#@B_UbX8#h**)D)Ypv2`6ph>|eQ=sS?5AU!=aaSa($<7f-O_yRMc z4Zc&@-o1FayRr#`4tm)M!uGqNCo&P>DVwr>5)RDiB1=KKJ=`BQrNHT7Q-%NcVRy?( zfoqxIJsIe*nZ|5PV02M+j@~pmsUGr}-J9(@Nc#ISNk}RKO&NQcnGW`t+wCE-83#53 zBZE{g>@0+3EoqB!GsQ`DuA)`T$7dNg8(9j{(;Fv$t>E+!+8dpt`o%Ugz8@K+dO@-U zG@>6cdX8wR{v3AP@)686?m;A-U}So83OL+D;PjkM*0!;R{$VqI#Ehk<3}fiyQ30#F zCvyU5Wqd4SZOLh?kB?{UpWYK0cUDi)lb$TFZvX8SpAxn_966<(wPdudpYCBIFV7U1 zxPhN7aC))lGVbDd5VrC?-xFj1A8`IKhQ}8`<@h3!ZNb@+WyY$*UNXzYReYE)qV8br zCjb4Hai%wn3{w4jshNq9;`3jlUllF2J5Lh*n$fR|mg;%Jt1#33hH-C-lUjIXr?9@J zw~T&Uv{d)1KXz4o$GCTq>6o+#B3>l<)PlgZgb0fY$mV$JPn?9;91$umO zUu8`DNndO`I6cBY$qpP?-;68;>BYC*m4Sl&8jxSvs-bUiD93M+r64_(*z}C=%vg1V zb|rjomOq%K^#4d<&i;b&OtDv{X-V=D_G&tY_T%NRGln+6%C*k!xi{Z-7&ZjP)n%X&aiC5;90lPZQlV zRgu}q=#527%``{7jn@G{n;5;RXsL;&{i)qI_}KfCYt4R z{Hqn+t&HAUwA5}|C3;%i#^`O4TyKO-xmEby4kxc8n8Ko{Zg2KGAcIsd7>v@>R^HLL zoy19Xj*W;E$DNJa10YVIF&yT5SFY}Xe@*HD>I_|z@u_owhnJI(A*H+$(RhbgkN>qVa-Ck3I(jmrGYjQOI(p9L;{Gg>!sHV)-@ z4wA*pGENE86wejNA#pIxc|9>9pAYtg;tGTmxeIVB#|x1`YIk{IEH4;$kvOT&X_ak7 zyx6!)kWBF+b0TO1&ZS^aG0y8H#V#}B%aK8<=LYAG(J{KhxF}Al*9f-vPA&8+jlK%W zdS+yLPU?DGExfos7yh7J1dz(gHQ7q($%g9#v~n=G9tT!6Bf0n}8#DeW z?#2SQ*z*6IGS(2~SkA@DnDs;LGp58_z-jP|{gu1u@^E(_3j-bGQExH zgDeH<_IeD}sMXfDz(d)n-4-h{hSXJb{e+eGGVY&A8kNEWGVYjFBhQt>Dwi~QXl1J# zHZYrza55Q`vA4ViXD@n>nhJTT!pYMv#c>D@<#-#i6r`v4r}z%d*yB4aV~^tS0;lKS zF03eaKW_w1UXnPvoj6wGP>wZ7mOjhg%09#RBL!6UJ@TV6?&1(F=8tPLrc|g%)@9FX zJ&qQzg2b`N^b9FZ<6GkxT+_q-1?q9&5@BR1Nbi|hQtN$RIU+Cu$oq(GESy=*gm``mfQx2+>oF zo+?_Z)8mHItkh9IcN=|=XsJ$9q?_!>qDG^qA=wd(OfNbq-=KT1oa|kwWbVsAXB{;G za(QXgp4aI(lw&h8NX=D>^>t<#*Mcks>7F9>suX8}JuPeM^zWW!#x*2!X)Ttfb zS{UOMx7cRJ_nWcwl-JyD+1Ap*j#y^>9+0bYz=N0r_NtOopVA}e;#Q6iB7;=V0ega; z`jF8Nii8TETqTSQQgiO>v^2F){$unD zqNVzaao$FShU%ERi7%SPOR|uf1K@x;3*cp=UlA=ey_j}+5cq$MdsUoNPgG`VI8~13 z(rZS)j%1H8(n_A{t43=OzJZfxQ{nced3npcNKYk`rqtU4_LWhY@q2tHlWKXsn@NUQ z)Q);jSXBZ|02(ar`hNBzlMev?aOb zL8^amG({-~9maKvlj?D0#Gs-{N5}W8?x+|RyUgfoWGP6u1msOMD)J53pO${L-NmmnN;n}Kl-PPy*B?D>_wJ#R>PF|3l4O(kwL1bQ6D=A z@;Bpt7bn#@{`J%&e;D^ClEbKx={utPP6zxi;T)sCGpQIs{*y`lFXq`i`%D9x^JXk# zIuHK>d%`eD$bkj(;ZTnABZE}`gnIsL7BGtiWg*owDvb;*WZc3?)eS$nBKEYbt3 z@GP1!D*-fsv>4c~|tXVFH3{q3c*1#nTc!>A&ECuQI(pV_YYl6LOSydeWZN_Vv zvGi2u6xH zqgvvYX1NtINKK*e{b*nC*2ZlkPO3kFiD+8u+Zwl>IH}IjLg6^R?Ty<3SqjqA(<^Jc zZtoR$EHK;5YnW^ztg0lYNOLu+O6G!Ess4>CygB25mmD}#H^_BDDx(NYVV`cd@$ zMjs$rYDy5QPjLqtcMy{G(@0B@u2Hn@YvRFR|7@vRaX7?`4>e=ysRUEqu;cNt!kAvU zj1M>CBalI=X9N4hx#8IH}H6PHAs#jmH~z z0+RElktuRieKfpJ%($z@PP07;oZpOn=Jc;|D92Nfr64_(3r=HzJGBSy>d$%888f7+ zz)u7FFPNsxm|@EP({W?rG%`p{5oO4WyTRg_#+`*^)ilymaT;_y8|*os`f}%(@wvz# z)dQN*z@b0!JmbzsGXIQBksdcpZGa2F#T#~w9uhA!<6y?p&6xXW6r+nW_849)tbRno zx=-tpY{J_qqL*ge(Oj*r_+{YqJP-479Ln(uWRU8W4ku02P~lmcN3*z67E(Pk8D*w* za+PscBbk9lrZi$on5AXc2wSVjI_O#iM2cUVt@O7ZG9g~qjcXO+^*u56H-J-wHIT%X zp&N1F{AncTPs=!Uq{J!wo6X)HOV5?%fbvxzZ!urDB7@ZQ63+E9t~at2q^Iv2PkjKM z%UlS+nzz1YS%C~v^M5BlyPwhhMN9RbI~%(P7*UC2jWseofk~2q0{SN^2U(jt2<&e= zXrl6SFb-TQj0{r!iEY|btf8?XM&Bk{suw%%(qO~LP~(P)lbT<-PM4<)H|}7C z9Iu6BgR$%_uFM@W3O~LuRsgh+?lj}OkU^@K^_EJtmnRrE5y?eONDGL6LPyiII4NTm z@2V6|2B%oG&t^qluQ&yVa-51R1?kCijrCXWHe)NYTv<7ZDtwAoLfvCt8j(S&=Mm=& z54HE2X7s(tQjl&*r@vI9@59Ms(9%oW2b#=&IxB>Qf3u^KgDbTrK~pg-90z9g1w1=X&a~slYZ>x3^8yYdBnKK}AD;uKG!pwfh;z1(oU>I}a%%zH3&PgwpbCF6liHw1lwK+@dxpR-XY7x8 zrNFH0Y37(Mu$PSVzOUj?j;|qu)bzeIc(pq9b>rSZvacAKUXBxI8B2c?oB~Sy(fF1b zzir0S%~=cvDR<0Xy;vFdnGdBy@F(IJZFHupE1{BsgLwQf$y?Ut~iYMDCy3F`%WRU6sF>$~|7{Cp zO4)b9mUeem#qSFek2KtW0DG>CsnE93A93I$YGja_>-q-&`~7V6FQTP-By^=*OZ?Ti z-^5AvAKL8`;_pWMAwsGbnHE+%O^kmU_ZO1mwvZNceOgq5e}hwzr-c{)G0Ssj8%R83+#zEwpBa!=EH$*vU!$n#=MhGc3q&r45E4i%SXE-zPm~ zX>bZv#ggP+28VK778#^^s5Inw|K*HZ9$5;~Q$VSOwt}z~XAD>DL8?Ky64+}Qe!VM$ z%5fEBkeVK$u|X=URgGIsoK)wS$)ymjZrmD3I>pHJcvh>D;cI5xnHu8%7S3PSS^&>C z{^>krZ5+yR9b}N|FPU1y>l(M7IH}InPSI%0`o?V_PO7h4AXzswq9j6UA~c}9kr5js zOF?>(5t{%!PHE<5Q?uO6ET!Aq`7F)m854QU@@yfjwS`@6-K5=(7N2I0JKDQ2Kc+F zmadJv;J}T-NNyCCrIkR=Wu|QGRv7brGL#p0H{(6bSh{DkeY<-W##Cm?$-T^YZ!?yj zQjL0$$nMh9q&mmD z@I4%B+;QThdVwT$k2m535mM72Ds!tEcc2+eeo+KYG^3MbB-M*R8<+FY{Wb0sB;8+R zN^x2y>_0iRz&bFC?r(u>dus&yG;n%#IvOmtkEi26-xnFA`h)oGbA0ld#+@Zjs#pBe zhQzatI7ft3fA1zWo#MI1ohMFe;wXZh6&xIG+y&yKdYW)d$c07(5mJ*U2AR5UYmFBf zcd z1@>}6o-$Z7O@n*g3m9DKl*k(+TS$6Js=sy~>1?Zmoxt8u-=Np+6Hv`O&Z#`O^=)d%cZ z2h>M*N>ZgL@V;hLAtR}&^WQOTV0&|wTl6!F{<4so-@Bq?L}MIaT%|av&h_Dhz^XXV zxIxHLke*8FIGe>E4EDsufyAvc;~{1&y{GYQ-NxL(MAvnw84ojK={ehU;OX#g)vk0BalIAiXxpPT^&h8 zvmb5t(o^PE(1R^3S*D{U4E1I?78#_br*`R}h}t;LxI4s2^%${Mik4G@apRGtAl+V@ z7JkRziSfW}173zl?DF>Wf7 zJ}WY%wC!(+cMGf6#xPO`{|@e7xd$h2XfRCE2r9>E$RITZ%t{1V-fP@_NG?%ATEObJ z()nrvd*NV+iJ!rAGj29x>1NE`58`HYWBcp028QAQ_lviP9__ z%5gT5HPrH=7r{#xw+}Mv&}#NJ5;28^arULOnV0*`i}cj*)3O+&A22UgfwWd~Abgx- z_H)f%da^H8xj$(3_E>gLk8kO0of#i8FApPwR8KKBurhY}h;fgKlbSfzKj}+<%(%zJ zNp*iCI7NF{e8RXVkxT_6i-N)5MaJ(Ee!5Y!<1vl)99J_q(RO&e*R z$ARuElJ09Z=1Q_u_et!hDaMbrVfd(nEii| zL8`x^X47lqtH!;CECuN)tki#bJ!4I#vK;-5Zd^ev5Z}z0lA`M3t&9m+_-$cJ5?bf) z0MaW{)o2*&T^!2sJtW6P%hHOBKFQe{n|ohQDiZvac#rr2IQds+h-D=o;=uebvJ|AJ zm^U-jJ2QTqF=bNtlLFV&YKQHo!uAItnx6qYW`nd$G=7dlIevj;=2w;$jr2$QQrLX* z@A)bN{d?L0o~O*huywEl2bNPKgVdDloOPw|w9B}!#Yy!n=`%&u@HfVND^99&{Fg}b z?~MB%$#K!h6qUZ*pajVM6b_0uv!BdNdP*DiPgpVgS`tGx3D;= zsqet`Dr!E~RL4b(UR1QyL{oXNb6O`JEN1lL$WoA=Qk3h>8CqQeoL*ebHO}N+(u|iv z2B{uJmQApIYH8z^5hv9-wkAz%jmsLh9I_Oor-yK+AcHu|7g+lwYT^n#F@MGt!9G93 zfbfh~eM2kZ#?47c)>O;hno@McCbqD6Q^%gH((Q}36|v_@tD3LX%$IbJg>Cj)J!Aei zTFbfyI6bw!xi>enY7To%+*o3b3{w3K8A{^cv6gXbBTGSg`ggEMgp(J!!*3lqsc35C ziI-Y8W9D!4Wv&N4_v(`Q(gqe@0;~0LEyoRzY%|V2;1t0P<-;?JbIV#|$&5ELW9eQE zOpO~0q-Wd8f=$5glboXl+Z2a#+zeR?(o=;+)yKh$^yfC0llf2myDbXL4$TK<$1OAN z=)(a0^te?|%v)?NY!$a2M^3cFZRBK?4WHY#054@j>(o@=4hOawBiUx0E%nYj2v|%= z9~y`|X6$Q>cgmQuD*K%?);KPB7qDk413nx*N9=aRtsHkl2C4pKaX=|ay1Q|EAer$+ zrng{IC(~_jaBYr+`i(ZrZ#mNOX#R)2DB;eXBPX*LaL7e z*v&tR=mAC_C|YWw`3GnQ5BeaZ4@PpA64KHs(eV(lr!egX&eA;8j1Mzo>1Iq7#ei)* zT-bhD4FB-q5cUz-gbg+_IkLd%(?1HF(v@AnEZCBtqj4+8W00jF-GYSH05VB?ta(vh zCbxK;*&lEA(zCq>cS3fu`%CQ!CuXPaP*1|ibA%B(9&<7dObjFG8Oz>E58I|_4xics z>qlG$=TvIy9L=I@95^}}Sqjoqs&JPCN54UzQP_8K+Y*)gnPz_$GD!6dWav8CpKbIx zNY-2rAHN`-8*VJ;VT4TK0=xanv^>2_C6Zhs^Yut56deO*~ z2~&r#;7&Ek^*DJ1RkK=!b%S}i5gDZVXV}I{`NnvYaW{*T>M`jvT3_OWbK)&V-zr+F zd*u#vN^~#ddW)0lUP)qY7Z?`%7~NO2)SSw?^j5i2VRSzvS1lpadlbI=fS`YH?DXV*r;0V>QN&6erbRhCz0wr1=Ak zGP+i@RQJlsA#ioZjTR@>>rJ}c)WOUl(>@(z7WJ}_ntapQ>YU6iOU8{8C)Gn9Y5wjo zu0fns_czDRl^k!}oybylOO-igS&75Xoj`WJ*AtF5D|V1ojUuZ5V#oj2|&$>8VZ0C@hCCPv@-W zmiTDlg^gHhJ3nS#9yc%2Q+{(`6?HgY%M;!9ENvsMPn!KxW-mR(hqel7@^r>ppa*^i z?6o*I9}wEJIF#da$RO1}&6>HKQmn9_H~K%KrKWVCwaLA+@de{v6ercWRBgRv+{@ym zdfKWdJ3PK(+<%d!AU(yG9tqs5;FO2VQfVt7f2G&V{&i%K>Yq7fqG5`i&;2ovw!i=RS z<7Q4boD#n@< zjq#fTw~g1H~$3KukYDxo5caoBS8uynt zsfp7_42vB8HtrvBQvDrf=>S6|-#l9>*m;pbswXY|N^<&N#?6Q1RwkrHR)-<+lbOE< z*09O~1!hG3?x}G>u;(_%rZB;`5Dw+IFfvF@52Ej)z!ouXQE^iJ-B`fPdoO0(;^L(G zyD?tKe`N{dmP9f^j7*uE7Jn}V&Y3w!GjdCt@iNFD)f0kY=+xR+*68I#OU(%}OefPW zZ`=w;c^(}4Ci zWrZs`*EM=Q(Ng_^e3ASa);DegaZ(eRo^?9#g4L&>b^OSm)7l0 z#_f#c{Apw^C-S!o*t43LkYBr+@ovZ5>USeb_ z2}Y}k?Tu6VEp#?djr*AKzGf^vMXG78a(KUtbOsaGEKaI(-0i{VeTZ>~B1=JfdMF%Oc36QK8UY^;_LNDnIs%7sJQB&C<-(X76^P+c zW^8>YngrCaw&x)pZC;KsFVa(r=*O-t5%JjU)WvO{oVZK!ABR(VDr1mpe;toQIi7$F zQvG$PDO#%HiN>8IPO7&8X>zpHYK)&|&&g(SiY%n29Mh-+?@Rvw z4*Eitf^-WajT)-mbd`Bg7}S-zZ0u^YzsBsPr|hV*>BwsfV|tkClwN1X*CT^e{}`zd zxGJ5zy20ohksS7gOwq3$qbh?D-<#y5NBfx0&EQ<_>JlE0IB} zmt5@`w?Wu}Mh_A#)!)8OTVzz^1{+<4ECuQ5?GsI{Hv}ioEcVH(UZf{4 zT5w}E{xCWD4_4_jyukM3j<;v5^ZwvRWDHP6TPzy`_h7mvIxsNp*jm9n2WiMB^rjlj=EJ zj0#OQdJ3`>q^Eos$#jXP>f=${& zFLrN%86x6$e_zI4H#C7g>G@=Mr|CGbcNrO^rg*C+PmSyuMz zOyaG|ewKNeZC<2X^z@$mA6pB1YSu1BFUYJmv%lZ$rJFr}8x`LNy6s0b`Tu2(+0R7= zsh%`!vEtbe8ut*g6r`u5Nrmj;jQ#)nNXBGe+t zqNFE`ep0klFJyMnhFjC)p`RDT5u89&|UjC&qg3er<@q{8{1 zjES#m`WJ+)eT&Bz0bYjs4^c=j;ZTk*BZJiR6t)&Bp_3lqGPiEkB{?bUdBJL8UO4gsi*?_|u1R`KtG z{rM~$r-Abx4(0ehGD!90qI!Y*z_<^^Np-Haw`!-4jQd!e)RaSAm8xo$L!TJ^sc5P0 zm0E{x-Dk#qj^sKgWXgp!68;6)<3~r1`K2$-_$xD(o<9MW|GpX6laipl1m0sguSfO7uUFF3GG8CeR_Q~cQE0QXyg*$~ah@9*GL zLGYDnHk)_&1GjSg6UlaE*;~@+H^u;ZYy8W+sMV=SGFx$|%>3JY{euirJ;hjRg_n7@ zR*3T=gVe;Sx?o)LU&hTRPO5*V8vg31zSaCjFCbc~2g_W|=%%=!aSI_!L3&D(=23BB z0sC#HG5kfqDT(w@LR}Pxa$F1D7pBoFSmMpM3IZbh?9$2M) z>5SE*-Ib#av5_b)m6IVBS4bf853O`ovb=I>Dw!()p*EFMl zBk6D>EmeFVX)UlPFM$%`+Ge~CGD!7^wv6TCzPPS&>mj+^37L{N?Kxi`?8!szK|XC@ z#v3AoR1b(|H`P$dxQ&pdAUzjTwaTG4#>szu#rWzb=4Df4ked1gT@3tL16y_7W@fQD zlHJP46ub0YZBgL#Eo~{BhVeZFHPN>!tkM^@HQ0wD+Uj|h&p~X1GwZjJ92+Jt`pCNJ z?c`)7nB)2R*KH5>?-YkLt+oSh<+vjJZ}&6(`j@g8cfJ)L;h)zx%_? z;&5asNKbh&YJw*GslASnljQ|{=;^KTNU-OHo&ThN)ls;W~XT-he*d=o3Us%}K}@DtnuaI|*3|(k*IQ_(?H2Ib+gV9j;Rf z%wcS-#5@(8KCq6|!7JlXj;A4mRF8*x)s|hS8-0dosU8nYxOk>k{)NJtbTkg1yx2EtA<@!p@${%=mIMmY$-d3CN~+ zMS)qS#`5ymji-sfGGlU|Z#7;8_G*o6phCVH2Nr=NOF?=HJRJsmZN{F3*AGyt z1+Hqr48@JpwUL~zo$WcG>G7OoX&A1bP zrjcMDl5A^@qs+1v8KkCA^sZC`b;gZGmV)#h=ljDWq)IA#JWV|~VIqrs2OSd|>F zJ1%1d41WhW6(T>pxB&-F2}80fJR9qDO~$0|%-9b`y$kFmkne$=+7oc#lrUtF>Ip$H z;yapT++-vNYa`Rw&e5D|I1Y9UaOG3S(4=2M%En}KA$8fj1SA^nyf zShh34{u)hF^cu5pU}ZQmNcDi}k}qgX>G?Wh zF@4^z;Kn7&NV?#%w{98#w`Lnud^J0DR|v1+e}}qb_gDNh#zbE$@I+*j)^VG6MB34lEi+2C2TMiO$daMtp$eE@fm&x6~2( z5S&8kps&n0!$)TPu^CHG#_8_vPcmlbylg)$FpU)OXBpG66#hKpj;RwEuZ~}2%pXPk zmtcQ|S{up#3WsuRM+T|>A+UXdqk%e%>l7!|zul(k9W1n@FGT`&nZ?(#keYncoa1Tn z8{@teC)JyotZ*jg{0+V{`g_q*-77z9O4AR<{fJ~%8<{d8m8_q@Uf$^f6eaa%^YRNa zNcBb(cS*A-n)ctXM*k*SYI+*=pAMk<-MBxHr64_(+hQd2Pn`U_pqs}{B6OJlGB1Cd z7wPtO6$^wkTKSLpvhS9hX={n|Y@>vp7a62_1dZ#cW}@5Z`9w=iG)+w{wjH+lhN zDM+_CCYn+d7yMr*CI3P=`G=4eA1#bSIWB@M1?m2pdHK?!g+1FZyK3s=VrIX%*-KBE zK(~jL?Mn#%f8DMnarH;0?dwb7P>xF@gH$hE>36w|am$L6nm8YuUe37X#YuI4X|du8 z#;u6t5-VhS4axztGo<@Ua1C*^uI zqgO|kf^>U`HZpPsN=0Q{Lryl;!D;Yo0=#?_b435ftsK`v2C4bwtbet(aqEbanjWor zGl?j+XsI4?ZscJsn_S<}=n|4?aAc}Wpy4(GdqkTX zyawFZ>^Cuc>B(MqYPZHs&0e`o(^J>8FuBOI|7PZ8b7YX}@5YEBV=r46x1~6#o^fM_ zF{T^0GHz>RDM(L6n1#jE(>!e(oV;dAi}|-T`|XfHs)t3}mF<4p8@Gcvsfkl{O5W{g z+)m=8rdo^HA$Ad`MNe^Ov)DxzQa$8KOTb-?+YMO?(k(&U-|oWt10}57+M|bw@SYiW zrlmo9f&G)j&EWGP5bg&g8=0jte4 zF4h>25VoShcr54lq=SKuEUft3;Oi)`zdij%n%zg^!1{7zkeXB8hHZ~E?l@#ANVmta zI!E=*@flOdgik1Nn%+MVoF1exUykrS35Rk#8CeR_Q`~6|(@Z@jW7+auoSJcJJ;idy zYN*4XmN5a#|LNfLu=eI&GB^W=ay%2sZC5f*Wu%ucusf@;*ELYo)@PgjIc6_Cm9eJE z4pvT|n{j7advIQX)5O5}1!f?G%)X$&giQ)x2=-RgQ1)jsq2Ce%ZcKzDgH%uTx*A$B z@nYjH5hv9-+U|_#Tx#59NG8IODG{x&7B2^TWs)ifdN@~@eMAPS9#&01{Y|bk?kaIo zz23rW8j!f!=xanv&9&YzRXbGI*BX5tlJ(@s^wlta#9tcvdO2C?O!x+{C&J{hI?-}) zWxNqLjv7M-sUCq*I>=Ft_nVErMYPm{=8PE8w;J6GSqjo~1gKY30(#@*MFIz6)W_`m zn!WUt#mTs$Fy;f-%y~aE?r+A@%~(xLX50q|+ph-0N`QY)ENEm3W*`pbI0zY}7OARf zM(WhTMpucJ>KVct(K{Mq+->5dI+xOKsBy!@N$pOIL=QLmcF|JZYr3IlgmKl#Qjnfn z39JFI<@jW0tdXlStIJ&D$c*XGXd}_69$5dI+Kj!MT$eGar|?E+>|NtAU@w`)bXz@c z9N>)%Qd5knZ}ra_XWSj)q$W;rgKIEuyf~?z5O$j&P0x6z(RYcKn!M`t3NmhjaTCQ! zb&iFIe58|%n~bDGj!b1YeehEXoMr~6W~>^VJiR+(MIU?**vopK2LDAj;>H4UWRU97 zW`#H(8$-+Y8hsy>4C)vz-*lS6?CeVh1hCd+K@qNcgpL2@|JkN(GMU?L3%1s zX#vTcjG0Z>FLbW3RmpTr(){~_*@Pyv=G-3w`-jDm&3wNP<4}%|AWK1d%AwSUdbHb^ zdXn=)9y8;|%~*OeP9x?|6j-*?;*(%6oyAZ8Dcs8OX=IR^&tv8w-Vte5L~|O?n9;K` zlA4mgJ^eJEGwykDQau17Kyy_a*;+aum=OPCMlZ-nss})oMD_NfaW9FJ>Um2IMBVnX zaj%Gz>N!zA3Qoh@|26tmWGP5bFV9^OoVoZK*fW+TxoNe{>t_Fk*-KAD2u#DiDPS%4 zs$QC=eXA!X9&cyt=Lx=(v3Drn?SXk#e6I&q%D)fxJWj2X4{#{Q50OD?&qAxF*hfZx zELv)!eV~C-^@-7+B3WmSw5W?Fs-N}1`bmE-tPh%RqDKK3Ue}^mu=_&WP zxsYJLFEHj*hChHk%0q38{YM-)j0{-{((M(QU-Xq)KNt3DnbV&5#q57Id+F(6sXg&q zVcf~}^el1w-HiV*W9j|{H!wb+Hq@WliPG&(f8pdA%;bsIo#RlB{~&`@PZ#z@@pAKQ zD{fw7keWF5nu+_Dar23j>i%p(CeCl%0!TXI$ds+cWX*y&d5NFZ%Nx}TnU{sli}X~; z(>jSo%-)(Vv;`PaTGWgeLk6in_(*wM+=wMaNX;+9X#`DiN#m9hC)G1~j4rjeW#>jO zBYJ70?JHwIiLYW=H!UJ+o!dE&bhO2%y@PHK04Q6Fq<+$Q3rda4!!@|zmH znP{n=oei{BY`fp)MsI=S4r!#l8$*`LuPwp;Zp=(kJ#S^kTbr@;ln@+HM$2g%VH?5i zJvMHe$@ba3+MAo=c3?lk0d{*(IqrZAQvFTYXk6Pn?r7Xj$WoA=9#Pv{$0hHaaeEUp zRKw#g8SAtgqPJ@|u9f|6V2{7H{|}G5LbB`}nI6m_9hKGI z8EgCP=$5!o56l@iao>!&3{D3e?fBMq&CA6*Z~=L44$B^)CXp)`X2j(G6v{! zxr2ojn2Zm}po5E%56wWq9tQ9)f_=JNl5#i>9AJhl1?l!elznkWnz8*vSi``6QrwO* z`=gOTYDyg9q-o}3j5}7GR4;$bed6yp?Ri zv&mv&yuj!SMN4&hEZaXU(}K|#iI(cA#rb7~e6ewth?DA1t+d3s)VRyUNp*h%Z0-N$ z#$6#!sy~vIag*7WH!((|uSBxE9GU)&I(EHI^i??dM?{y3Xk2af*C2z`^r#NH3#>%E z*0}4$N%d&dGUGZtUT@qD;-q@?Ybu%YjW-&1lQ^j!CNqjml-+FHE#jmmj%}oh%dN)s z5+~Ke9MvMOw{d;MNi8^vbnI(fg*d61<4B46*w48B;-q?VvC)^MZxs!3fYFtrr6yXd z@f)lp4m5g@XsI4D^DomY;$Y*d#7Rw@{_C{zh8TAnk}I%~R=Tx?8Ez=pvtWQ34>RN8 z$RITZ)G@2KUi)_AMu?N@T-zvJ?ObhK4U$Q0WU8DO9s_G8Undir*UPLuJtj5|}w-yO5pHMhiag)=;?9|RI(YWDq znuJqI1PxK!X?SrmZsj-y8KkB};9NlVD#fYB-7QY4Cr||g@5AFg#x;tQ>Ktc;aNgoH znLFLMW^qzISkj3Pb%t>*;-or9lcV>XIMcXU z;-osqitxVmakg=-;-vcXm>;{7Yod+2AIb6DNXs|Q>(`FR2f&`mb=6&C=EON>JlBk+ zr%dKRf|knopc(5g);_mye8?;xHcRO#*yhpV9x+R6RB}=o7i&Cf#*ZO`RR7@S_EpP{ zV*0qzPasP{dK%M)ZW+iFhx%?$;+i7LLUQ$>o-!{_BZE{=jkHeq8RMQsmV$JP8dY0o z&8YaCu>ICan&$j1#sf)crWy%q(7$g;clbua!>L;%$kqo5dTlkm}Xg$l(en-{cHM3vc?4_qK>!B(o=NbiW z($%AJO|WPBxay8%^KabBaV=z!>ZwDWt1a2ats_oq9&@-Yu4}}4NY;rX(+4u{HVqze z(%kwurRVS$=M*os=8;O&eIT}pU;>N~pB2KCoIm_Ah2ZnUA zUT9OZ*i05uQ(`M4rVZ#EcU#=t=q-@+ijnDif!IOLs zt;!tvKs>4k*;zj!9-T>99@CTL&V^$O%vsxfUB_i(ebUDRJX-t|#`TLQ;82byBDqsq zmKFz^X{_)(sR!0=4krs+@|xdH#sf|%OlTxva%zDoL`1F(&dJbEt4vSBf#c1Pr69dW zc%siRdv&9=G3dTIY8DgBnda*(WRU7#*Q`pdu1^+co5eY@km@Cw$^P`3=Nf&UXsJ#! zgEOg7CFgvjFAy!&bDbG$O2mc61#wcH;~r|bi;TM%Sqjoq>Ty*E+$CUt_2h7=8DEAB zQqxDOYo{(Z;tFIbNVibho98NK5u8Gy8L42eG~=txSbBOSm$t!O-EEwFUt`ACB7@Wv zcS2Tk>^kGFN0x&0BJOZEWQ-wa-^CljUL&)De0q!g--KH^-i!=VQ`l~Qi*dIiSrm@U zZzO-c!2U+913T`jioMOaj~PohW7^U>M5u4KF~3V{nhG=SXU5W#F=N%FRsW1TSwPE_ z(*UsN0E6ZeDqLt1FSYoe7jxxFySqjqA_tkf7S6#j6I-EQsHKA>t(9z~)jCqlsy>O0}ywsZ) zs}>kdVJW zi0N*SK@bu7e*2tLw;$hHZ=H2^?Q`qaty`~d4X3Kyp-Cn;S0>%IH|#CocxxUolK@=9 zkx8oO2LA@FMVxJ1Cz6?Hq*s|_VV8gexGsoBWp=|V_Xk_&;0Rvlnv^{ zf!2x2R*sutdr2bwwO#ldWRmKU(t_3p?m^=o5+^mdv0dVRYuv-)q(-({e@Io&BSt@p zWFa=vOANhbX5StI`?KMB$3VF3A2<8onZ0!Xt1ulqb&lxY+a<~$ymC~w|6uk{n7wqf zch^M~$|ucUe+LF)1}3*Dj;HLBKO&RV$UZi~rIGQpaeopg)j8JAsPcQpxM#&ljq6%x zsQd7oanB=bNxDBKA4k66F9>@>V`6@>kfcuJp9?uKmSdv<(Z2(|1Y*N*Bt2@G*`Lkt z_p-3X$q>aW6~M*n)dE&@U!VV0E{nUp29DB%SKdvd<>vEu!s_{TWRhAvmd*kChjA;A zwItn=5L>tOfx`);qiKL8M7$)%L;LNL0c4UI(K+{qac_!~>YNtCaNR$RdrO?u!Rz=W zy=~k(;-q>RV+ETA*Z3&EYxKWFOLcm{#>qv$XY~7`rAEvh92U@=|83j{$Xb%_dEC}4 z?mrdo7%KdsuoWf#hQlrBzXbXJny-`E^B)nw7UD>@5SP8ZGy6E?j|*no5LyU%rCkSk zeHm9Sm`X$VQw6hOjk*%6fc<6>!Kwt*^QVzXYW($ZUmiP6FLpJfR~IeSpPT;-xt7;3 zZcQYv-bhPlWanB1tE++S+F&m^DssF+{gmF|fGD(d*^?duRai2rhl63zIv(u=& zgPZfZC5X8DXHQem=SvW^0>fwuT92UkD@w{Q;jbs6~jIHS7Wx9cYRhRso=mUJQ zV0P+IG+!zhfNMqGuwVu%_*>_VgcX^LzYK_4+O5ArKs|4a#L2r@%DMHc0#*xoG@F3^ zN~SwC+O{bHbf%F>YP3X`P0gDbu{pAqq{APu5^y2z&Rd}4Oz2CWD{M%)}OTk*Mg8jF_ zk+bxvd9YmxV4fM7q(+`BFsJX`jN4tD)Zo0|w1;tfB5O&y|C77fJ7byN{dWoS^42%^ z*8Dv)-V2$eM&>e-(8YlZ_;ee+H?o$bTL$(|Z&Bv{pu#kf`7-PS_6LyP3s1B!0rk8e zGD(erF>3=c0H6hV;_Qj4j+@;7H;UYCiTiGvmX}Sb7xFW)0;ZA*_E)-;(BhWFfhI|K#3$6gXmH z7wD0T^U(y<^D)RIbuhUcM|P}n$02J;x+jU@mOHxg@fBwHg9VB|ZooRq?1X}~0R_2y zVuh(|aS=VKV2sthJsBLuNM~J-%XI=+QjJVfBVohYlx%1|#kf<&Np+6zi7JfKj5}SN zROfI*(5wHcac3ae2^{Ig!lr@qnP5+V{2WNYS!Vn*WRe;Yjq1>rfj>9yY$V%&BRyw4 z0jUA&fVy)E?wi{!d@i`W%qAUHaUKEnd_FQs^&8Q{RO9{v<1Q2@H4;JNZE8!t$ha&{ zs&nLmZgR14mmq6Nx)%^nz@^~G>Zx;-fXmGIa%7U~5$O{~Z{`Z)ej!e3B!Kn=*IjAc zRpO)uw}jo<=o%aMD{)dIPD(E&^lIa-LDDrwdg4^FyYrBODJ1&K3>7Y=c~~JS+WH#| zFE~nf6F9PV_-GBIjv%0(MP3z+u34PaNFghsSzs~RxH00SR$L!0aAS=d zhh%#)q!%LQnyLG)Em)f?x6jDe6%473OU752MQGSh07rt^^A11Mi3HU1^~faEZ_FoM zSu@GF7I9L8W2|gcS8g@#260j&!3&$U@91RX+K}{zk)B{a?7ZG74Oq5Q!JZ)foyh+i z38?3GWGzYei$`@p=V@kaU;5GW@^rJj37MpN5;SK1M$IFiGTiVWV(GUM51EZvRyfJ|x1ofV!!bGIdTf#c$7)(4nFKt0bzCaLkw zAF(XoYQ#JdQX}`4*l5Ch<8BitH8|EZ@V0I@t{YiP(mgdCveY>`FA%nZ%Sj%Vv% zMc{bv-R%QYyK)Z!^}HCFq(kgUU1-jVTPkdC0I&=YvEms>|Lsl! z>iI4tF4o0T_wOx0bfHt7prsDvJz$Tv|IP`0H{Fx(C4lZNGD(fMi7zy1 zxX-xzk#uj7o+XUiz&!x=h-f`4;MZpS8)TANA~Nnl;~o+xHQLT&X6n3R{Purq^uwa1 zmP^~UwCEAz9u+6mIr-Xh%g2m+99c`!tIYcyz#GwgWL+~dDygRYQ~~BbEnv-Gye+49<)-Yj1*OX;3~p3(V5GqdYjd;2DFe6v~p1(~E)k3s)3zhvBB z#Yy%51U~8cWg}ie){=C8itd?xH+AP%!O<3@lKq=mzGjxv&63YY-%UOF@4}X1+8VC| z;{AI({~&;s%g7`(62^Em`P*k)zc{I-fj&7881V*@eZ!D`J2ot3zmhk>k+ANT{7}$uj4%H){0hhnOZL|4V0_yp5Ncy2Nwu%hD<8{r_(Y5*W zX11Q0N%v&VTcU#@*B7?I)Vr55jf5j&{sKXzlr`)0=?w^|=Px2zZY+C6tg(PE4O)5% zH#EzQ%u>21sDqAYWvPt~$eyp5<;KV))!!(tSoy0)Y$8Ic=M=t4+B0@jBgkKS1OyC#pbe*8eNa3-hr{*VX=i-Y$*$=9zV?z9zJhn+}22rtwQ>npck+Wz_Uba zfpAf;ndP>~BsF5`Zc*Xc&baNxNsV_+8sK&??(5>D`eXOa?#VkEu@jQ1Tcqb)H=Ah# z{MP;U82OuK`7LCU8X2@`u|7*X8@G!%sgbKAyYjb<*cHjiR7jh(z?Vch=hek`2=)8O z8-~)hn_aRyGD(fUkQ1CX^O z-JaPkB8~$U+HjMDz>y-n!>Qa4CZL`VK{8t_WBpV5@pj@SWYG`J-u`ABje4jVABId) zBS*&0)K~LI#vP8ts~PDzLPzKbKzudXiD9;_AV1QKk3uG?9+4dWiRftKjzQLvbpJ2o zCk}UP!4w7IQ_S*Ivy^U$rTeGEoi=E^$e!$UGybU=OK&tjL)h|}EIYFT!+P^s z0I!hyCwJtZf$I6^$Rsr$kb!mH<=Mt1aZ;l^&*O|e^BXL2y0)0-2;nHZW&M6jvH|6_Ty7krq7!Tbkux zf;}yAn8PRJS7v-QGD-D_Y^~YEe2sBK#7PZqJl;6Hd8l#2#7T8dr4k>w;l?$IlN#LO z9#)#<5yp)~){^v+I1Lt$DwvML3dSOuE6n$tzQpJXd)|xzR~f6P8%sbvk3%M@abp_N z%qd)J+;vF&n2}!CAjShC7P5Cicb;ID6Ol=($HMfImgih=+$3>QgY)FI7}tu#i5cmy zm2F8#`VHVHL$)56Nx3}P?Awq@s>h|V?HP1Bjhl+Zj~Quk!S%Oyg+TE*zp=!OVTULn*^-M>(fLX;7HQ7z54R-cb-95J>QJvY^h=&x4lKU+;%3wZ>zJ8 zNYpF>>UlOYN%j98V+d@T);FsocN*O#T59B*5;7&vF>WrhmZbZ$@}H%9cB`=6lw~vX z8b~dpnO`vDnZmb$JyBFY%<$yf38?38WRg1gCg}k!Fm9nZsnOD4zbeLn+3ae`(7ebj zdSoFruD0D%@?ztbh?5#s4QosM_1$6gQe-Vjw@1)Iv}J%u;_#t#Q1hK;c^5KCjY2>~ zc&zmrw;ah%Tu9Ft#++F(baw;po4q{W1CDZ_MX1a3y#&w$MJB0Lj%zR2`;5C^oYc7K zc(&nb%?}v&YjINJMb6ZY>wRPJSvLAX(Ng_V{`b1{A>)3FtR?B5ULB>^njZ#x`c^C% z+Ba){e#DF)MJA~p5r+fyHBHEm8TYt2sgZWZLT;Rpe`nn9#YwGl9!~f9gV9fjmKv8f zb%=Y?xTnNPjayQFiT01iJuOaZJT?WCW9_)~Pewn3%-k$t|g7io1^Q?KXV8(5AuRnt$t32Q@1l03O$Rst=HjFLf&Hk@Ozl^LU z=@vKZOEnDq3fSY~|DbhRubT1SkV&fNK_uig4g_lKHp@AxgS zKU9C`P(9__X8aB^NsX6|`zGAG#{Em2)OcWdH4M$~8TY<8sh+WX0tP19nbiL_`U4~r zt4Obic)0%vSXJ6?1?$6#9M6%=fG7?edx7;w1Tde9Oj09t+9+pe{@A#cc7u~zaq?zZ znNa+bk+me<@7U3*-ThZ7m+uxP|vF&Ye~9Y%zwE5hNXG+M$C}w z8sNB?nFz*Q*Ce2x*Fx5kbiXrRN7Tq`7tHjp=8@JZIEKPLQ?U4{tlBMD^P;pZKL_@k zX*0~l^Ygj{)br<&wItndHf)}jfUH+A(|F2~^$R9nwIAvi3MLPfEgLjo*?+OZoT16R zz9ej)6Hc1nu#hA~#v4_bPc-<;1#5O6{1tG#*kKmi#sqL|6f#Nmm#57NCN0RD7`G{s zU96Fw|4W)y+|i!DR$)e;r_acnf&IUwLHj$bNNrA7J#T@mCFx#=EWzJ`IpEg3rCnkj z8_(vg%zkTRk{ZRF#kR9Y0cwd=-UcdIi^8HtlJfg%YpFr;3ybur$WPg z2Ld>b8OfPZ#aNri;Iy@417>I|?^G~NxqfwX!5*3NlQ#D^3E;peWRe&H1F82V5TNA_BP`mn6Y$!1i#5Xl|6Iqe12rV zui5X1Oj6?wYNMx~yuWb=AnE8LEiQ9z>&XX#;|ctc4>IF}kx8mYq!}F?jt?>Jhsauz z?h(N;q;zP(G<20!hk+wvrea9Nj|gDlE;322A|7b#%|{q_B(j#ITf`6={yGZm5h;KI zf3z7NW5&{pu_lL)ZN$@u+j|}!DP3xG&N#U zb&l{SQ*~|$ViQMJr)jL_ymD3lcxeT zTX7c~cL|coS7eomaF-U0_or+xD>xqSakp3kBI4C1)NxG$kaZ~*zudXmVFHY>p*9a@)v?J$4w!j*ahY%F;aSh+Yp#;?P zFk~%BxA-&~HKr{OH)BPhfZ6;PCgdiwAAw9#%io^em4@b##*ISOl61TG;HAw3`Mv3O z3=C&Z*6hb1lhkM^vgHQN6lVLz8a+<5RKFEzu#K{eyADbB80qE7C!EI@EL-||6Fz}E z^27$L%KLh7cHZXqe(PMh(b&n@U(c--t|7<3aJ>!oJzAxqNjBZts^)J{{f$Qgi{d(p;H2F85fO@_S zSxeH*7;eR)nfdn0m_D?er@GB}0WwMTEKohp2;V~E79rWV8tLD|=^eR8z#0}F$zpIk ze>?6vqw^91*tHtTgl%Qq)6BqbUTVhnOl*{eUo?NSWoCb;*-MY-YtoiocNNS|1}f&g z!m7SkEb7Y33lMX6WjU46oThwFAysJZtpKI&|B59y(6IY`1+%hOG2IW2cf$5ttyA&? z1l04dk*xNuj5%KDj%E2b6`srrf{FRT3Ns-*xhFqVFuU$6S-&lKU>b+UH|2-HUc^@{ zUc#SM<8O};R?m+j@kuWB8h^tzeDZFz!ilQoT+YXq}^NCAst|qyH#cYWzdSk5i^SZQP&4Nsa1=i5S`!{0E*f z`dQIZ~q4qdco)yMN17DcN}~v7}EQ*(SJd*F*VZbY#K4R z*paT62#V6ktoy>Y{8zJo8JVPdO8VK|m$+Ur?o}i^U?II&v*iNZ--PXZP{sXPWuon+ znB8r}-0Jm$l?g=gkAmfT3|;|_v@L6s_gNnS_1uq4QX_3_T@5#2+#BMgdN-O0)&4O( z{jHO9`!~(vpR$nZS8EGF^8YR4-WDe{GLb`Hx?8l5)jLMNi)7I+GX8Svf#iRIV^n%< z2OT}~on=`0J-g(6yF|LLoMAsA_Oo4jEx-J4yU_YAOIeiNnm@2h{$rO&x4W!ZO51%_ z{?Lq-zbeS|Yw?x;ui1ZO_R>97Ob4|s%l|WbTdl(%Yb?DIz91d>W4mOf-Sr^SBUNUB zTMU`LGF)*3ZwUSr!S%d~T`0ZrLYA}Bnpo8?w2IDS`m|lL8Zt?ZGR@zbdU$o?)(|H( zxJ7jLmgO~#TMJ2#8|gDyR?Ct=b%ob1p|r&qQP!sz53O|+YB|Ivc+=a}Zu<;DUV>;Z zX))4g31AKx$sDrm?c0DWE8MyTQ&{@P;Kf|9c_q;S2S;(#n0!-Sp8&j=k$5o|W34aY z^SMF6bT+6V@)rx%cs`pgeW~D>jM%VX+9w+C+^E9%2jQXj<%0V?699e^(-v&oY{DNHxz_%G$OVa(F_?>qvI8wHI!QpYf2RQNs zZv(cN+LHh}gm1qhaRT<+wg+pyV+Ki7uCaGRYkqV6+A8Xuk;-r?!t-HTtLO$NOA0t^I zjP#pa&v4d|d_uwc=FM1;Pb^r25)3??)PM(C*-+~fxGUESrgbRy(w`I@gBquRBP;Q& znjfS;Q28D=cqQ;y3vzMf|e8ZT^D89K|1e}+s_Jqu`& zD4&0B+}Yx!2FG4%)ZWRsbC9(p-QOPExUPI|!PqgS+F2;Ssrs!0zD=TA-Xj1iGWyZfmCaIA(?Tgiz`;~E5BWp>zrK*pi zQ7Xl2Don*kn`KCa;k%dTp^cchhJk&WfoY~Z98}LuNKT5XESEKl8&NQs#fLJFtT5YE zQ3yvB%og?P7&U|a`6FO70qjbRtR?B5^M3Kz3VY<^z=Ica_iG8L=j)JkxBoxm@fG&S zCKMbuo(PWDiia!Ssn-)w&y$czYLpL}f%FwyjB7g_7 z1rU?%k~UJ<@#xYoO9%~On?Dq3nZ8(T-PMVYo*ztQM+(Ng10Yt))G!NyG&Cv}ix zZ1pDNI*_#_-4p89%_vyQtw{LI;K+gD?V9Mlg@AgViL52*<>I~(t$9|#ngOHhHoIVr zpAuOo*dt?zSKWgy0_u4VvX-QKWbI8Xz07kPjTLaK8P7u|sgd{Iew}aJZQ`UlN3E+3 ztZp~18;M^u(rz-)I$xFYf`X|$mEwgJ#)kraQH5E{h7U&%IG&(&ipEeD6Hw1fknBV) zWBWGn^}a*EzD}$I;!`x8b5?uuQiWPKrhD9qJ8hSwWhIE7KCK}wLADReh@b4axTqT+jC+lTwL7gWo+7mTAM93tv`d~wCaE4BP3XQE zxKtbWj5w*0L`F+V;+<*ar6Z~DMdEZK5}Er~{U^o?OTuw62MOj6@M6rNdK z`3>XV6el&(hch1e@lWI45+`+#V@&>SXaqScIB9m(0t$arBbnvh!qJowkecug~2%Z#PFF<%Y1wawV-Ir^*k7t#M+$Lv3Y zOj5m=$oK5CMtlxQrx|Hg=)mY_EKX{ahEdvvL(@oKHF^`#QX_Tzg{V?DHSTN3T9WQ>(5u_cz|lLNi*seGO3&tI zzXdW$^|&aoifc>bwh|}RIlcsavzzkP#%&``Y9z5qTSn=hTr+xG(Ng2-x|ZpKv7K?- zi<26+9L|pZ-FXM&zAjE`yce9DSmw#4I~u(c5_fE*m33`Y#h?-NHwcQ?%)H|$4t6s8 zZy}S^NF|=qbL<${osHfF$%Hl1qN8Z5b$JWjWP+lgc5p@$^VVkn9kZA2YW6 zF{+45+7FD|N1W8ixUsgwBcsdv8oeK~mZaN0;%phM5hS*$o6D!5J?}3WF;`tZlx6fL&xRA zgl$M{+LXR7GyhRB(I6{s42Ks?hf?^6g0)R7_{f48eHT6o9L`I;fuljJ2S(zcElclt zkI2UgSm%0VM?X7(9S1J2N==-6JOOxTBa_tlzfYdfH-~MYo0M-Sn8k^*km@f}ji{51 zI9Y^Lzf^6mswGx8i=QBCNxCPC>4Q@Qlq|;B@bt>3RwVJB28c9zYwdIb*kl@+q{d&0 zjjXux4CBreCpBIPivU?(d6scM6DKv^X4T^RxzT5fmKvAhEy-pk$+&ZnbdHf;a28nQ za4y)>hhLUzi}TF*d}Na9_tAga|F;(yeW7TnexH7;O!7s>WpPr2W2})hTx{GW;-q@C zE0zwS4%MLQrAA+d+#MkD>b!O_*fTG$4WI%n!QVuG$ADBj-WUR8QS2&m_w$Rsr$gZoax zGoUFCGkUmasqvCnSF07t?YYV55u&9=RYEBlX~ZZb6VXUd7R_3gxi^D74Fm1W-3-a2 z&3KF%OZPux^@he)_Wd0Z z)zH@)JxR3GpvSh;Yf~y)jBXVz)nn#srONpR<0gxf8h2$U5xP)q#!W%il5{T#qzI3h zsRd&wd}D=ei^tp!j<2Sl6ho_I8e#ZrBa_s)m)G?-8P_3BYCHm4M>DF(Bg`=RW+XGv z$TIFYSSQ?~&`R0!%+J$7?Zd|uGsll-m z7Q^Waj9ZATCF%Z@RY_h%kQYjx5l@5MWA=;9Ub<(&WRfv1FR6^5{I@$^DzJgg$CwxCRDgurj;h7#Ffca=-k{YSvR2f$L{l>Tl#Yv6N5FVFy z>XeoaKV%lam4(!}di)5b^I_v2L2_C$(w}KO`!;sxM}_TkIDSNatbw%tZzCqnzXSVM zm0d;h??KE#BWp=|iB?xWVU||r*nfn8C(ZaNWRhB*ZiGBp{%G9O$Xb$a5i#8ObuZt3;|9b@^-Bj^%WoL{ zrf8{gSDo9$;Y-H7h2-!hq-6k4FYfIIJiz&h?||b!U`HtDcM0I|B_xM04I0}5)AtG< z;E-o(+xHtW{<{Azn7Ty0tq+7Px5~wi#0|}Hf7r=$h`E$jjzwJhO_^w;97Ot_f>hlG|E3en9Fm6-aZhc`@ADX88 z0w5CV)*BGOB4uQf>eZIV%(Kz7&tEc&4Ux4Z-IMG0-UuAE&9E8y%Vzl%vy|@tN`L5$ zEA03EY6I3&Z6aJ!xhWtj0*W-*@-+hLc{3zuGRacaRy_aal`*5?+Ny60Gv3mSrJHdd zUoi^ORt5LBPS;K@TUVH^NEv9~reMvAQBZ3ID{dxxwk=p^Y!csg!b-L--o5}L&pQ-L z>&1=BU$5}6Ha1qtI~L=<>u2Vj0RF&{&TkM<&)-BQsa}4xdj-Rx-!g7zWGzWA$RPEcThd=fvhFz z{#vPrn4#RW0V}5ORu~^OruM#9VP9RiSHXA-XrAEv!uD-rl6CJw>OpBa|DeJwg_=4p z@6&*Fvwgu)m~lsF@5%cSP|y1#Ye~B0j684d9IgJw0SfX)7W)rP$p;op-&v1+P{G7S zqa_~-i(&4i_ginw-;mnLJT#c7)MK zBAH7@`u_mpC;=sy(x=jPw6JOis`a?`m|~(+ytw4p3R6>Z$#DhC#f{qF_=5GZV1D(- z1xI`*6im&mn()Me`LZaFPO7kw_4tv1$1y6~-HsqZv=B@bGCWAg310 zXtC0FTER3H#GhVaDptITek$yfEw~2EiB`oKl@&f?cqg4%u=)(m^rH(VNt!eJ8Q9-! zJoe8CsOPhhY^+rodlFKGJqhPj*t6i=3VRluH;63@&abd%!37oeEV!@%EAbZ<9Iq&Y zOEIUnG$LP2Ks{fA#Lv4JM}A#eVNdL3752nlUSUt{6&1!Ol=t?CX54UOElKyk zGGnNG7jYVDQjpafoG>>65dYIoPO@&wBMGSIQOG1UBDO^#x!JhUNH(HIdWFEDd`uvZ z0Y@`|p7IErxEyQtkuAkn)q@w;X;|Z(h3CJWh{`-vSjb~Po zjkk=x9$8D$y)v)vK1o4V1Na?V8nEuz3XZbj1~(8;&y$f!YTRz&{CJu+qo*M0Xe0f0 znk%%_Os#^bu9sMycOyaZOqE$XVVsGK#NAt$SPB=;=aM{K*jg}E6gLqRiFBI|0_u4N zGD(g1(_|IE&Bon=WLqwz$Iaj-?{y~F)1om(x1VM9v&~+*+wY zehxB8jeF0urqW#FZWSlhGmq(r$h>(*&qvmhbpPC~P_F*yGe0w4FhPw;U6D%l} zR9vcF7Z$8xtd3=QQNhewX%@MsU`FC}{bFI|E)8o$%S#je8nN zj~nUtp%qFZ{{)V=La+M97TG^z_RpHVbZ`He*guVX3rS}i=^5zd?d^i2yuH(a<&W|jTqWT zoBMwRMgIB=`q=DO`Yv%v^|+#RtV}4=&*G#;CNYFb5m?2zRgtwM-E(_5l?Deof#W80 zMyO_1Gvn3GSi0vB$yr0dii`JJ)~vAS&064yN!uMx$ZHc&&+8zQ)JX35(Mr;1jQgxO zsWDJGb)32vTuoQ;b7rxwEToo)wQu3)jav^{OVUe*EB)((BN;m5pgVuTj5k0gsgW}{ z%u|_t(YP-mIq4Yb|4fJt1?*vI4}muVN32Zy5%6UKIOZ6cq(-b9at*h!abFcDwQzXG zw&YEW+Z4$D5%NCWf4$UQCOEcaInWV-o=?KDY zZQM4O^LHa{&YsT9llhl}ylJ3dzSO4`2dv5JmVJ|8> zHDHeC%-?9l)GXg@z0x=a5qlw79*wkA^z}6LFYL(Q2YcSq zA=JSq%tq~P_CGLt>1NOWmqMTSDL8ER6}GmTU8^YfD<-;xT-hJ&30<+UOD8ZMKtMeo zh^!^)o*o*r#D7pD=Hi3F@$P9mPM@U+4`G%`tz1}d!^+Vw6f+?mK)lI{_8G(+dJ z3f2_ST$Vu#`!}mC{~Qo^@kY+s1k`gvCaG~3Z!Mi;+_~bU#$(Q~L8bGIJ0HnzU`S5^ zoBH<*$rn`EI|vsRtkXwn7GDI8MBF?=)qW+Xjd4T7Nezw$Aly*nhKZ9Je-tJ#nC8Q&VYtyvNZhcIo-DuRh=S$X zi!bv?VQY6>r(T7|!bUZiD3#3x#|q%l;HX-vYsL^(&ts9bB;9Tqw-{G&JoU8&4~$@_ zYF@ssV7X9nzwrgf{U(6p4dV>O<4+`@p07tHsgX7Qe3Oi8L9+B2SrVd%TZL74yyi9kwsXRAH+onO$IJiX6SMn5g2# zWxgF8$)9e+2Ga;&1{#^9#;iYn#WxwzAwsG@mnI46ug);;W^q!3V~~)Z{w>DM6era= zwxZO>cb0Lp#Yv5#!XiSim^zK_Le`RWFDl*=n*;WQv#3D#nQO+kB9qk9F5U6}0gIr? A+5i9m literal 0 HcmV?d00001 From 193d7ab8e985b4d66e263ae2e2a09a7e2421f4a1 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=EC=9D=B4=EC=98=88=EC=84=9C?= <49704047+yeseoLee@users.noreply.github.com> Date: Mon, 30 Sep 2024 10:55:32 +0900 Subject: [PATCH 21/27] =?UTF-8?q?[feat]=20=EB=AA=A8=EB=8D=B8=20ensemble?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- utils/ensemble/distribution.ipynb | 278 ++++++++++++++++++++++++++++++ utils/ensemble/ensemble.py | 164 ++++++++++++++++++ 2 files changed, 442 insertions(+) create mode 100644 utils/ensemble/distribution.ipynb create mode 100644 utils/ensemble/ensemble.py diff --git a/utils/ensemble/distribution.ipynb b/utils/ensemble/distribution.ipynb new file mode 100644 index 0000000..9a1666b --- /dev/null +++ b/utils/ensemble/distribution.ipynb @@ -0,0 +1,278 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import warnings\n", + "\n", + "# 모든 경고 메시지 무시\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_label_count(exp_path):\n", + " df = pd.read_csv(f\"{exp_path}\", encoding=\"UTF-8\")\n", + "\n", + " # target 값을 반올림하여 새로운 컬럼 생성\n", + " df[\"rounded_target\"] = df[\"target\"].round(1)\n", + "\n", + " plt.figure(figsize=(12, 6))\n", + " # 반올림된 target 값을 기준으로 카운트\n", + " grouped_data = df.groupby(\"rounded_target\")[\"id\"].count()\n", + " grouped_data.plot(kind=\"bar\", color=\"skyblue\")\n", + " plt.title(\"Label Count\")\n", + " plt.xlabel(\"Label\")\n", + " plt.ylabel(\"Count\")\n", + " plt.xticks(rotation=0) # x축 라벨 회전 없애기\n", + " plt.show()\n", + "\n", + "\n", + "def plot_label_count_df(df):\n", + " plt.figure(figsize=(12, 6))\n", + " grouped_data = df.groupby(\"target\")[\"id\"].count()\n", + " grouped_data.plot(kind=\"bar\", color=\"skyblue\")\n", + " plt.title(\"label Count\")\n", + " plt.xlabel(\"label\")\n", + " plt.ylabel(\"Count\")\n", + " plt.show()\n", + "\n", + "\n", + "def plot_multiple_label_counts(exp_path):\n", + " num_experiments = len(exp_path)\n", + " num_cols = 2 # 한 줄에 두 개씩 배치\n", + " num_rows = (num_experiments + 1) // num_cols # 행의 수 계산\n", + "\n", + " # 전체 subplot 크기 설정\n", + " fig, axes = plt.subplots(num_rows, num_cols, figsize=(12, 6 * num_rows)) # subplot의 크기 설정\n", + "\n", + " for idx, exp_path in enumerate(exp_path):\n", + " row = idx // num_cols\n", + " col = idx % num_cols\n", + "\n", + " # DataFrame 불러오기\n", + " df = pd.read_csv(f\"{exp_path}\", encoding=\"UTF-8\")\n", + "\n", + " # 데이터를 그룹화하여 target 별 count 계산\n", + " grouped_data = df.groupby(\"target\")[\"id\"].count()\n", + "\n", + " # subplot에 각각의 그래프 그리기\n", + " if num_rows > 1:\n", + " ax = axes[row, col] # 2차원 배열에서 해당 위치의 subplot 지정\n", + " else:\n", + " ax = axes[col] # 1차원 배열일 경우\n", + "\n", + " grouped_data.plot(kind=\"bar\", color=\"skyblue\", ax=ax)\n", + "\n", + " # subplot의 제목 및 축 설정\n", + " ax.set_title(f\"Label Count ({idx})\")\n", + " ax.set_xlabel(\"label\")\n", + " ax.set_ylabel(\"Count\")\n", + "\n", + " # 여백 자동 조정\n", + " plt.tight_layout()\n", + " # 그래프 출력\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAABUOCAYAAADLzxwcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZgU5bk/7meGgQGBGfZNdlFBEYNoEFdEFIkSURKjiUeMWzRoFDQqRkWNJ5CcuAdJzFFQE2LUr0tMXKKoeFRwIeK+AGIkIrgFECIDgff3hz86jgM4QE/NDHPf11XXZVc9/fbbQ3X146erqwtSSikAAAAAIEOF1T0BAAAAAOoeoRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRSQiXfeeScKCgril7/8Zd7GfPzxx6OgoCAef/zxvI1ZGy1YsCAaNmwYTz311Cbf97XXXouioqJ45ZVXqmBmAMCm0C9VnS3plz7++ONo3Lhx3H///VUwM6jbhFLABk2ZMiUKCgri+eefr+6p5MW8efPiBz/4QXTv3j0aNmwYJSUlsffee8c111wTn332WXVPLyIirr/++pgyZcom3eeyyy6L/v37x957711u/XvvvRdHHXVUNGvWLEpKSuLwww+Pt99+u1zNTjvtFIceemhcfPHFWzp1AKiT9EvZy1e/9Oabb8bo0aNjr732ioYNG0ZBQUG88847Fe7bsmXLOOmkk+Kiiy7awpkDX1ZU3RMAyMJf/vKX+Pa3vx3FxcVx3HHHRe/evWPVqlXx5JNPxo9//ON49dVX44Ybbqjuacb1118frVq1iuOPP75S9R9++GHcfPPNcfPNN5dbv3z58jjggANi6dKlccEFF0T9+vXjqquuiv333z9mz54dLVu2zNWeeuqp8Y1vfCPmzZsX2223XT6fDgBQi9S1fmnGjBlx7bXXxk477RS9evWK2bNnb3CMU089Na699tp49NFHY9CgQVswe+CLhFLAVm/+/Plx9NFHR5cuXeLRRx+N9u3b57aNGjUq5s6dG3/5y1+qcYab73e/+10UFRXFsGHDyq2//vrrY86cOfHss8/GHnvsERERQ4cOjd69e8cVV1wRP/vZz3K1gwcPjubNm8fNN98cl112WabzBwBqhrrYL33zm9+MJUuWRNOmTeOXv/zlRkOpXr16Re/evWPKlClCKcgjX98DtsiqVavi4osvjn79+kVpaWk0btw49t1333jsscc2eJ+rrroqunTpEo0aNYr9999/vdczeuONN+Jb3/pWtGjRIho2bBi77757/OlPf9qsOf7iF7+I5cuXx4033liuwVqnR48eceaZZ+Zu//vf/46f/vSnsd1220VxcXF07do1LrjggigrKyt3v4KCgrjkkksqjNe1a9dyn9ytO63/qaeeijFjxkTr1q2jcePGccQRR8SHH35Y7n6vvvpqTJ8+PQoKCqKgoCAGDhy40ed2zz33RP/+/aNJkybl1t95552xxx575AKpiIiePXvGgQceGLfffnu52vr168fAgQPj3nvv3ehjAQCbR790SYXxakK/1KJFi2jatOlG7/tFBx10UNx3332RUqr0fYCNE0oBW2TZsmXxv//7vzFw4MD4+c9/Hpdcckl8+OGHMWTIkPV+2nTLLbfEtddeG6NGjYqxY8fGK6+8EoMGDYrFixfnal599dXYc8894/XXX4/zzz8/rrjiimjcuHEMHz487r777k2e43333Rfdu3ePvfbaq1L1J510Ulx88cWx22675b7yNn78+Dj66KM3+bG/6IwzzogXX3wxxo0bF6eddlrcd999cfrpp+e2X3311dGxY8fo2bNn3HrrrXHrrbfGT37ykw2Ot3r16njuuedit912K7d+7dq18dJLL8Xuu+9e4T5f//rXY968efHpp5+WW9+vX7945ZVXYtmyZVv0HAGAivRLlZdVv7Q5+vXrF0uWLIlXX311i8cCPufre8AWad68ebzzzjvRoEGD3LqTTz45evbsGdddd13ceOON5ernzp0bc+bMiW233TYiIg455JDo379//PznP48rr7wyIiLOPPPM6Ny5czz33HNRXFwcERE//OEPY5999onzzjsvjjjiiErPb9myZfHee+/F4YcfXqn6F198MW6++eY46aST4re//W3usdu0aRO//OUv47HHHosDDjig0o//RS1btoy//vWvUVBQEBGfh0fXXnttLF26NEpLS2P48OFx4YUXRqtWreLYY4/9yvHefffd+Oyzz6Jbt27l1n/yySdRVla23k85161buHBh7Ljjjrn13bt3j7Vr18Ybb7wRX//61zfr+QEA66dfqrys+qXN0b1794j4/NeLe/fuvcXjAc6UArZQvXr1cg3W2rVr45NPPol///vfsfvuu8ff/va3CvXDhw/PNVgRn5+5079//9xP7H7yySfx6KOPxlFHHRWffvppfPTRR/HRRx/Fxx9/HEOGDIk5c+bEe++9V+n5rTvzp7KnZq+bx5gxY8qtP/vssyMituhaCqecckquwYqI2HfffWPNmjXx97//fbPG+/jjjyPi80b3i9b9Ms66BvWLGjZsWK5mnXVjfPTRR5s1FwBgw/RLlZdVv7Q59EuQf0IpYIvdfPPN0adPn2jYsGG0bNkyWrduHX/5y19i6dKlFWq33377Cut22GGH3M/vzp07N1JKcdFFF0Xr1q3LLePGjYuIiA8++KDScyspKYmIqPB1tQ35+9//HoWFhdGjR49y69u1axfNmjXb7IYoIqJz587lbq9rbP75z39u9pgRUeG6Bo0aNYqIqHBNh4iIlStXlqv58hhfbAIBgPzRL1VOVv3SloyhX4L88fU9YIv87ne/i+OPPz6GDx8eP/7xj6NNmzZRr169GD9+fMybN2+Tx1u7dm1ERJxzzjkxZMiQ9dZ8uQHamJKSkujQocN6Lw66MVvSbKxZs2a96+vVq7fe9ZvbJLVs2TIiKjZpLVq0iOLi4nj//fcr3Gfdug4dOpRbv26MVq1abdZcAIAN0y9VVN390ubQL0H+CaWALXLnnXdG9+7d46677irXmKz7lO7L5syZU2HdW2+9FV27do2I/3xXv379+jF48OC8zPGwww6LG264IWbMmBEDBgzYaG2XLl1i7dq1MWfOnOjVq1du/eLFi2PJkiXRpUuX3LrmzZvHkiVLyt1/1apV6w2DKmtTmrvOnTtHo0aNYv78+eXWFxYWxi677BLPP/98hfs888wz0b179wqn58+fPz8KCwtjhx122LyJAwAbpF9aUu7+NaFf2hzrxvjicwa2jK/vAVtk3adZX/z06plnnokZM2ast/6ee+4pd42DZ599Np555pkYOnRoRES0adMmBg4cGL/5zW/W26x88SeBK+vcc8+Nxo0bx0knnVTuV2vWmTdvXlxzzTUREfGNb3wjIj7/ZZcvWndR0UMPPTS3brvttosnnniiXN0NN9ywwU/+KqNx48YVGrcNqV+/fuy+++7rDZ++9a1vxXPPPVdu25tvvhmPPvpofPvb365QP2vWrNh5552jtLR0s+cOAKyffqlm9kubatasWVFaWho777zzFo8FfM6ZUsBXuummm+LBBx+ssP7MM8+Mww47LO6666444ogj4tBDD4358+fHr3/969hpp51i+fLlFe7To0eP2GeffeK0006LsrKyuPrqq6Nly5Zx7rnn5momTpwY++yzT+yyyy5x8sknR/fu3WPx4sUxY8aM+Mc//hEvvvjiJs1/u+22i6lTp8Z3vvOd6NWrVxx33HHRu3fvWLVqVTz99NNxxx13xPHHHx8REbvuumuMHDkybrjhhliyZEnsv//+8eyzz8bNN98cw4cPL/dLMieddFKceuqpMWLEiDjooIPixRdfjIceemiLTunu169fTJo0KS6//PLo0aNHtGnTJgYNGrTB+sMPPzx+8pOfxLJly3LXg4j4/Bdwfvvb38ahhx4a55xzTtSvXz+uvPLKaNu2be4ipOusXr06pk+fHj/84Q83e94AUNfpl2pfv7R06dK47rrrIiLiqaeeioiIX/3qV9GsWbNo1qxZnH766eXGefjhh2PYsGGuKQX5lAA2YPLkySkiNrgsWLAgrV27Nv3sZz9LXbp0ScXFxalv377pz3/+cxo5cmTq0qVLbqz58+eniEj/8z//k6644orUqVOnVFxcnPbdd9/04osvVnjsefPmpeOOOy61a9cu1a9fP2277bbpsMMOS3feeWeu5rHHHksRkR577LFKPZ+33nornXzyyalr166pQYMGqWnTpmnvvfdO1113XVq5cmWubvXq1enSSy9N3bp1S/Xr10+dOnVKY8eOLVeTUkpr1qxJ5513XmrVqlXaZptt0pAhQ9LcuXNTly5d0siRIyv8HZ977rly91/f/BctWpQOPfTQ1LRp0xQRaf/999/oc1q8eHEqKipKt956a4VtCxYsSN/61rdSSUlJatKkSTrssMPSnDlzKtQ98MADKSLWuw0A2Dj9Uu3tl9b9vde3fPHfJaWUXn/99RQR6ZFHHvnqPyJQaQUp5eFnCACoNieeeGK89dZb8X//93+bdf/hw4dHQUFB3H333XmeGQBAzbCl/dJZZ50VTzzxRMyaNcuZUpBHQimAWu7dd9+NHXbYIaZNmxZ77733Jt339ddfj1122SVmz54dvXv3rqIZAgBUry3plz7++OPo0qVL3H777bnraQH5IZQCAAAAIHN+fQ8AAACAzAmlAAAAAMicUAoAAACAzAmlAAAAAMhcUXVPoCZYu3ZtLFy4MJo2bernPQGAClJK8emnn0aHDh2isLBufqanXwIANmZz+iWhVEQsXLgwOnXqVN3TAABquAULFkTHjh2rexrVQr8EAFTGpvRLQqmIaNq0aUR8/ocrKSmp5tkAADXNsmXLolOnTrmeoS7SLwEAG7M5/ZJQKiJ3CnpJSYkmCwDYoLr8tTX9EgBQGZvSL9XNiyIAAAAAUK2EUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaKqnsCAABVacILH1VYd37fVtUwEwCoOfL5/ui9ls3lTCkAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAgFpu0qRJ0adPnygpKYmSkpIYMGBAPPDAA7ntAwcOjIKCgnLLqaeeWo0zBgCIKKruCQAAsGU6duwYEyZMiO233z5SSnHzzTfH4YcfHi+88ELsvPPOERFx8sknx2WXXZa7zzbbbFNd0wUAiAihFABArTds2LByt//7v/87Jk2aFDNnzsyFUttss020a9euOqYHALBevr4HALAVWbNmTdx2222xYsWKGDBgQG7973//+2jVqlX07t07xo4dG//617+qcZYAAM6UAgDYKrz88ssxYMCAWLlyZTRp0iTuvvvu2GmnnSIi4rvf/W506dIlOnToEC+99FKcd9558eabb8Zdd921wfHKysqirKwsd3vZsmVV/hwAgLpFKAUAsBXYcccdY/bs2bF06dK48847Y+TIkTF9+vTYaaed4pRTTsnV7bLLLtG+ffs48MADY968ebHddtutd7zx48fHpZdemtX0AYA6yNf3AAC2Ag0aNIgePXpEv379Yvz48bHrrrvGNddcs97a/v37R0TE3LlzNzje2LFjY+nSpbllwYIFVTJvAKDucqYUAMBWaO3ateW+fvdFs2fPjoiI9u3bb/D+xcXFUVxcXBVTAwCICKEUAECtN3bs2Bg6dGh07tw5Pv3005g6dWo8/vjj8dBDD8W8efNi6tSp8Y1vfCNatmwZL730UowePTr222+/6NOnT3VPHQCow4RSAAC13AcffBDHHXdcvP/++1FaWhp9+vSJhx56KA466KBYsGBBPPLII3H11VfHihUrolOnTjFixIi48MILq3vaAEAdV+NDqffeey/OO++8eOCBB+Jf//pX9OjRIyZPnhy77757RESklGLcuHHx29/+NpYsWRJ77713TJo0KbbffvtqnjkAQDZuvPHGDW7r1KlTTJ8+PcPZAABUTo2+0Pk///nP2HvvvaN+/frxwAMPxGuvvRZXXHFFNG/ePFfzi1/8Iq699tr49a9/Hc8880w0btw4hgwZEitXrqzGmQMAAACwMTX6TKmf//zn0alTp5g8eXJuXbdu3XL/nVKKq6++Oi688MI4/PDDIyLilltuibZt28Y999wTRx99dOZzBgAAAOCr1egzpf70pz/F7rvvHt/+9rejTZs20bdv3/jtb3+b2z5//vxYtGhRDB48OLeutLQ0+vfvHzNmzNjguGVlZbFs2bJyCwAAAADZqdGh1Ntvv527PtRDDz0Up512WvzoRz+Km2++OSIiFi1aFBERbdu2LXe/tm3b5ratz/jx46O0tDS3dOrUqeqeBAAAAAAV1OhQau3atbHbbrvFz372s+jbt2+ccsopcfLJJ8evf/3rLRp37NixsXTp0tyyYMGCPM0YAAAAgMqo0aFU+/btY6eddiq3rlevXvHuu+9GRES7du0iImLx4sXlahYvXpzbtj7FxcVRUlJSbgEAAAAgOzU6lNp7773jzTffLLfurbfeii5dukTE5xc9b9euXUybNi23fdmyZfHMM8/EgAEDMp0rAAAAAJVXo399b/To0bHXXnvFz372szjqqKPi2WefjRtuuCFuuOGGiIgoKCiIs846Ky6//PLYfvvto1u3bnHRRRdFhw4dYvjw4dU7eQAAAAA2qEaHUnvssUfcfffdMXbs2LjsssuiW7ducfXVV8f3vve9XM25554bK1asiFNOOSWWLFkS++yzTzz44IPRsGHDapw5AAAAABtTo0OpiIjDDjssDjvssA1uLygoiMsuuywuu+yyDGcFAAAAwJao0deUAgAAAGDrJJQCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNF1T0BAAAAYOs34YWPyt0+v2+rGjEW1ceZUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAFDLTZo0Kfr06RMlJSVRUlISAwYMiAceeCC3feXKlTFq1Kho2bJlNGnSJEaMGBGLFy+uxhkDAAilAABqvY4dO8aECRNi1qxZ8fzzz8egQYPi8MMPj1dffTUiIkaPHh333Xdf3HHHHTF9+vRYuHBhHHnkkdU8awCgriuq7gkAALBlhg0bVu72f//3f8ekSZNi5syZ0bFjx7jxxhtj6tSpMWjQoIiImDx5cvTq1StmzpwZe+65Z3VMGQDAmVIAAFuTNWvWxG233RYrVqyIAQMGxKxZs2L16tUxePDgXE3Pnj2jc+fOMWPGjGqcKQBQ1zlTCgBgK/Dyyy/HgAEDYuXKldGkSZO4++67Y6eddorZs2dHgwYNolmzZuXq27ZtG4sWLdrgeGVlZVFWVpa7vWzZsqqaOgBQRwmlAAC2AjvuuGPMnj07li5dGnfeeWeMHDkypk+fvtnjjR8/Pi699NI8zhAAyLcJL3xUYd35fVtVw0w2j6/vAQBsBRo0aBA9evSIfv36xfjx42PXXXeNa665Jtq1axerVq2KJUuWlKtfvHhxtGvXboPjjR07NpYuXZpbFixYUMXPAACoa4RSAABbobVr10ZZWVn069cv6tevH9OmTctte/PNN+Pdd9+NAQMGbPD+xcXFUVJSUm4BAMgnX98DAKjlxo4dG0OHDo3OnTvHp59+GlOnTo3HH388HnrooSgtLY0TTzwxxowZEy1atIiSkpI444wzYsCAAX55DwCoVkIpAIBa7oMPPojjjjsu3n///SgtLY0+ffrEQw89FAcddFBERFx11VVRWFgYI0aMiLKyshgyZEhcf/311TxrAKCuE0oBANRyN95440a3N2zYMCZOnBgTJ07MaEYAAF/NNaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyFxRdU8AAACgKkx44aMK687v26oaZgJQvb58PKwpx8IafabUJZdcEgUFBeWWnj175ravXLkyRo0aFS1btowmTZrEiBEjYvHixdU4YwAAAAAqo0aHUhERO++8c7z//vu55cknn8xtGz16dNx3331xxx13xPTp02PhwoVx5JFHVuNsAQAAAKiMGv/1vaKiomjXrl2F9UuXLo0bb7wxpk6dGoMGDYqIiMmTJ0evXr1i5syZseeee2Y9VQAAAAAqqcafKTVnzpzo0KFDdO/ePb73ve/Fu+++GxERs2bNitWrV8fgwYNztT179ozOnTvHjBkzqmu6AAAAAFRCjT5Tqn///jFlypTYcccd4/33349LL7009t1333jllVdi0aJF0aBBg2jWrFm5+7Rt2zYWLVq00XHLysqirKwsd3vZsmVVMX0AAAAANqBGh1JDhw7N/XefPn2if//+0aVLl7j99tujUaNGmz3u+PHj49JLL83HFAEAAADYDDX+63tf1KxZs9hhhx1i7ty50a5du1i1alUsWbKkXM3ixYvXew2qLxo7dmwsXbo0tyxYsKAKZw0AAADAl9WqUGr58uUxb968aN++ffTr1y/q168f06ZNy21/88034913340BAwZsdJzi4uIoKSkptwAAAACQnRr99b1zzjknhg0bFl26dImFCxfGuHHjol69enHMMcdEaWlpnHjiiTFmzJho0aJFlJSUxBlnnBEDBgzwy3sAAAAANVyNDqX+8Y9/xDHHHBMff/xxtG7dOvbZZ5+YOXNmtG7dOiIirrrqqigsLIwRI0ZEWVlZDBkyJK6//vpqnjUAAAAAX6VGh1K33XbbRrc3bNgwJk6cGBMnTsxoRgAAAADkQ626phQAAAAAW4cafaYUAAAAdduEFz6qsO78vq2qYSZAvjlTCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMFVX3BAAAgOxNeOGjCuvO79uqGmZCTWGfYGuTz33a66NqOFMKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAarHx48fHHnvsEU2bNo02bdrE8OHD48033yxXM3DgwCgoKCi3nHrqqdU0YwCAzwmlAABqsenTp8eoUaNi5syZ8fDDD8fq1avj4IMPjhUrVpSrO/nkk+P999/PLb/4xS+qacYAAJ8rqu4JAACw+R588MFyt6dMmRJt2rSJWbNmxX777Zdbv80220S7du2ynh4AwAY5UwoAYCuydOnSiIho0aJFufW///3vo1WrVtG7d+8YO3Zs/Otf/9roOGVlZbFs2bJyCwBAPjlTCgBgK7F27do466yzYu+9947evXvn1n/3u9+NLl26RIcOHeKll16K8847L95888246667NjjW+PHj49JLL13vtgkvfFRh3fl9W235EwCoIRznIBtCKQCArcSoUaPilVdeiSeffLLc+lNOOSX337vssku0b98+DjzwwJg3b15st9126x1r7NixMWbMmNztZcuWRadOnapm4gBAnSSUAgDYCpx++unx5z//OZ544ono2LHjRmv79+8fERFz587dYChVXFwcxcXFeZ8nAMA6QikAgFospRRnnHFG3H333fH4449Ht27dvvI+s2fPjoiI9u3bV/HsAAA2TCgFAFCLjRo1KqZOnRr33ntvNG3aNBYtWhQREaWlpdGoUaOYN29eTJ06Nb7xjW9Ey5Yt46WXXorRo0fHfvvtF3369Knm2QMAdZlQCgCgFps0aVJERAwcOLDc+smTJ8fxxx8fDRo0iEceeSSuvvrqWLFiRXTq1ClGjBgRF154YTXMFgDgP4RSAAC1WEppo9s7deoU06dPz2g2AACVV1jdEwAAAACg7hFKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmSuq7gkAAABQtSa88FGFdef3bVUNMwH4D2dKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJC5WhVKTZgwIQoKCuKss87KrVu5cmWMGjUqWrZsGU2aNIkRI0bE4sWLq2+SAAAAAHylWhNKPffcc/Gb3/wm+vTpU2796NGj47777os77rgjpk+fHgsXLowjjzyymmYJAAAAQGXUilBq+fLl8b3vfS9++9vfRvPmzXPrly5dGjfeeGNceeWVMWjQoOjXr19Mnjw5nn766Zg5c2Y1zhgAAACAjSmq7glUxqhRo+LQQw+NwYMHx+WXX55bP2vWrFi9enUMHjw4t65nz57RuXPnmDFjRuy5557VMV0AANhqTHjho3K3z+/bqppmAlQHx4DqUxf+9jU+lLrtttvib3/7Wzz33HMVti1atCgaNGgQzZo1K7e+bdu2sWjRog2OWVZWFmVlZbnby5Yty9t8AQAAAPhqNTqUWrBgQZx55pnx8MMPR8OGDfM27vjx4+PSSy/N23gAUJW+/ClZxNb5SRkAAHVLjb6m1KxZs+KDDz6I3XbbLYqKiqKoqCimT58e1157bRQVFUXbtm1j1apVsWTJknL3W7x4cbRr126D444dOzaWLl2aWxYsWFDFzwQAAACAL6rRZ0odeOCB8fLLL5db9/3vfz969uwZ5513XnTq1Cnq168f06ZNixEjRkRExJtvvhnvvvtuDBgwYIPjFhcXR3FxcZXOHQAAAIANq9GhVNOmTaN3797l1jVu3DhatmyZW3/iiSfGmDFjokWLFlFSUhJnnHFGDBgwwEXOAQAAAGqwGh1KVcZVV10VhYWFMWLEiCgrK4shQ4bE9ddfX93TAgAAAGAjal0o9fjjj5e73bBhw5g4cWJMnDixeiYEAAAAwCar0Rc6BwAAAGDrJJQCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyV+t+fQ8AAICabcILH1VYd37fVtUwk/Jq6rz4j+r4N/ryY9onsuNMKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNVFkp17949Pv744wrrlyxZEt27d6+qhwUAqDXy0S+NHz8+9thjj2jatGm0adMmhg8fHm+++Wa5mpUrV8aoUaOiZcuW0aRJkxgxYkQsXrw4L88BAGBzVVko9c4778SaNWsqrC8rK4v33nuvqh4WAKDWyEe/NH369Bg1alTMnDkzHn744Vi9enUcfPDBsWLFilzN6NGj47777os77rgjpk+fHgsXLowjjzwyb88DAGBzFOV7wD/96U+5/37ooYeitLQ0d3vNmjUxbdq06Nq1a74fFgCg1shnv/Tggw+Wuz1lypRo06ZNzJo1K/bbb79YunRp3HjjjTF16tQYNGhQRERMnjw5evXqFTNnzow999xzy58QAMBmyHsoNXz48IiIKCgoiJEjR5bbVr9+/ejatWtcccUV+X5YAIBaoyr7paVLl0ZERIsWLSIiYtasWbF69eoYPHhwrqZnz57RuXPnmDFjxgZDqbKysigrK8vdXrZs2WbNBwBgQ/IeSq1duzYiIrp16xbPPfdctGrVKt8PAQBbhQkvfFRh3fl9vW9WVm3++1VVv7R27do466yzYu+9947evXtHRMSiRYuiQYMG0axZs3K1bdu2jUWLFm1wrPHjx8ell16al3lROV/ep2vL/lxX1OZjDkBNVWXXlJo/f75ACgBgI/LdL40aNSpeeeWVuO2227Z4rLFjx8bSpUtzy4IFC/IwQwCA/8j7mVJfNG3atJg2bVp88MEHuU8E17npppuq8qEBAGqFfPVLp59+evz5z3+OJ554Ijp27Jhb365du1i1alUsWbKk3NlSixcvjnbt2m1wvOLi4iguLq78EwEA2ERVdqbUpZdeGgcffHBMmzYtPvroo/jnP/9ZbgEAqOvy0S+llOL000+Pu+++Ox599NHo1q1bue39+vWL+vXrx7Rp03Lr3nzzzXj33XdjwIABeX0+AACbosrOlPr1r38dU6ZMif/6r/+qqocAAKjV8tEvjRo1KqZOnRr33ntvNG3aNHedqNLS0mjUqFGUlpbGiSeeGGPGjIkWLVpESUlJnHHGGTFgwAC/vAcAVKsqC6VWrVoVe+21V1UNDwBQ6+WjX5o0aVJERAwcOLDc+smTJ8fxxx8fERFXXXVVFBYWxogRI6KsrCyGDBkS119//RY9LgDAlqqyr++ddNJJMXXq1KoaHgCg1stHv5RSWu+yLpCKiGjYsGFMnDgxPvnkk1ixYkXcddddG72eFABAFqrsTKmVK1fGDTfcEI888kj06dMn6tevX277lVdeWVUPDQBQK+iXAIC6rMpCqZdeeim+9rWvRUTEK6+8Um5bQUFBVT0sAECtoV8CAOqyKgulHnvssaoaGgBgq6BfAgDqsiq7phQAAAAAbEiVnSl1wAEHbPS080cffbSqHhoAoFbQLwEAdVmVhVLrro+wzurVq2P27NnxyiuvxMiRI6vqYQEAag39EgBQl1VZKHXVVVetd/0ll1wSy5cvr6qHBQCoNfRLdcOEFz6qsO78vq2qfSzYXPbDz+X77/Dl8eri35S6J/NrSh177LFx0003Zf2wAAC1hn4JAKgLquxMqQ2ZMWNGNGzYMOuHhSrjkyKombw2qc30SwBAXVBlodSRRx5Z7nZKKd5///14/vnn46KLLqqqhwUAqDX0SwBAXVZloVRpaWm524WFhbHjjjvGZZddFgcffHBVPSwAQK2hXwIA6rIqC6UmT55cVUMDAGwV9EsAQF1W5deUmjVrVrz++usREbHzzjtH3759q/ohAQBqFf0SAFAXVVko9cEHH8TRRx8djz/+eDRr1iwiIpYsWRIHHHBA3HbbbdG6deuqemgAgFpBvwQA1GWFVTXwGWecEZ9++mm8+uqr8cknn8Qnn3wSr7zySixbtix+9KMfVdXDAgDUGvolAKAuq7IzpR588MF45JFHolevXrl1O+20U0ycONGFOwEAQr8EANRtVRZKrV27NurXr19hff369WPt2rVV9bAAUO0mvPBRhXXn921VDTOhptMvAQB1WZV9fW/QoEFx5plnxsKFC3Pr3nvvvRg9enQceOCBVfWwAAC1hn4JAKjLqiyU+tWvfhXLli2Lrl27xnbbbRfbbbdddOvWLZYtWxbXXXddVT0sAECtoV8CAOqyKvv6XqdOneJvf/tbPPLII/HGG29ERESvXr1i8ODBVfWQAAC1in4JAKjL8h5KPfroo3H66afHzJkzo6SkJA466KA46KCDIiJi6dKlsfPOO8evf/3r2HffffP90AAAtYJ+ia1NZa+l55p7m8bfC9ja5f3re1dffXWcfPLJUVJSUmFbaWlp/OAHP4grr7wy3w8LAFBr6JcAAKoglHrxxRfjkEMO2eD2gw8+OGbNmpXvhwUAqDX0SwAAVRBKLV68eL0/bbxOUVFRfPjhh/l+WACAWkO/BABQBaHUtttuG6+88soGt7/00kvRvn37fD8sAECtoV8CAKiCUOob3/hGXHTRRbFy5coK2z777LMYN25cHHbYYfl+WACAWkO/BABQBb++d+GFF8Zdd90VO+ywQ5x++umx4447RkTEG2+8ERMnTow1a9bET37yk3w/LABAraFfAgCogjOl2rZtG08//XT07t07xo4dG0cccUQcccQRccEFF0Tv3r3jySefjLZt21ZqrEmTJkWfPn2ipKQkSkpKYsCAAfHAAw/ktq9cuTJGjRoVLVu2jCZNmsSIESNi8eLF+X5KAAB5lc9+CQCgtsr7mVIREV26dIn7778//vnPf8bcuXMjpRTbb799NG/efJPG6dixY0yYMCG23377SCnFzTffHIcffni88MILsfPOO8fo0aPjL3/5S9xxxx1RWloap59+ehx55JHx1FNPVcXTAgDIm3z1SwAAtVWVhFLrNG/ePPbYY4/Nvv+wYcPK3f7v//7vmDRpUsycOTM6duwYN954Y0ydOjUGDRoUERGTJ0+OXr16xcyZM2PPPffcorkDAGRhS/slAIDaKu9f36sqa9asidtuuy1WrFgRAwYMiFmzZsXq1atj8ODBuZqePXtG586dY8aMGRsdq6ysLJYtW1ZuAQAAACA7VXqmVD68/PLLMWDAgFi5cmU0adIk7r777thpp51i9uzZ0aBBg2jWrFm5+rZt28aiRYs2Oub48ePj0ksvrcJZA7A1mvDCRxXWnd+3VTXMBAAAar8af6bUjjvuGLNnz45nnnkmTjvttBg5cmS89tprWzTm2LFjY+nSpbllwYIFeZotAAAAAJVR48+UatCgQfTo0SMiIvr16xfPPfdcXHPNNfGd73wnVq1aFUuWLCl3ttTixYujXbt2Gx2zuLg4iouLq3LaAAB13pfPLnRmIZVR289Kre3zB8hSjT9T6svWrl0bZWVl0a9fv6hfv35MmzYtt+3NN9+Md999NwYMGFCNMwQAAADgq9ToM6XGjh0bQ4cOjc6dO8enn34aU6dOjccffzweeuihKC0tjRNPPDHGjBkTLVq0iJKSkjjjjDNiwIABfnkPAAAAoIar0aHUBx98EMcdd1y8//77UVpaGn369ImHHnooDjrooIiIuOqqq6KwsDBGjBgRZWVlMWTIkLj++uuredYAAAAAfJUaHUrdeOONG93esGHDmDhxYkycODGjGQEAAACQD7XumlIAAAAA1H5CKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyV1TdEwAAgK8y4YWPyt0+v2+rapoJNcWX94mIzd8v8jlW1mrz3CNq//wroy48R/6jNr9fVce+6kwpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADJXVN0TADbPhBc+qrDu/L6tqmEmkC37PgAAbB2cKQUAUMs98cQTMWzYsOjQoUMUFBTEPffcU2778ccfHwUFBeWWQw45pHomCwDw/xNKAQDUcitWrIhdd901Jk6cuMGaQw45JN5///3c8oc//CHDGQIAVOTrewAAtdzQoUNj6NChG60pLi6Odu3aZTQjAICv5kwpAIA64PHHH482bdrEjjvuGKeddlp8/PHH1T0lAKCOc6YUAMBW7pBDDokjjzwyunXrFvPmzYsLLrgghg4dGjNmzIh69eqt9z5lZWVRVlaWu71s2bKspgsA1BFCKQCArdzRRx+d++9ddtkl+vTpE9ttt108/vjjceCBB673PuPHj49LL720yufmFzWBfKkLx5PKPscv121tfwe2Hr6+BwBQx3Tv3j1atWoVc+fO3WDN2LFjY+nSpbllwYIFGc4QAKgLnCkFAKxXXfjEua76xz/+ER9//HG0b99+gzXFxcVRXFyc4awAgLpGKAUAUMstX7683FlP8+fPj9mzZ0eLFi2iRYsWcemll8aIESOiXbt2MW/evDj33HOjR48eMWTIkGqcNQBQ1wmlAABqueeffz4OOOCA3O0xY8ZERMTIkSNj0qRJ8dJLL8XNN98cS5YsiQ4dOsTBBx8cP/3pT50JBQBUK6EUAEAtN3DgwEgpbXD7Qw89lOFsAAAqx4XOAQAAAMicUAoAAACAzAmlAAAAAMica0oB1HITXviowrrz+7aqhplQ3Sq7L9hnAACoCZwpBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmiqp7AkDtMuGFjyqsO79vq1r52NX5XKg57AcAAFA9nCkFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaKqnsCAACQDxNe+KjCuvP7tqqGmVS/L/8t6urfoaayrwJ8zplSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5lzonDqnui4sWdMf1wU3gc3l+AEAwOZwphQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmSuq7glATTXhhY8qrDu/b6ut9nEBagrHQQBga6bX+Q9nSgEAAACQOaEUAAAAAJmr0aHU+PHjY4899oimTZtGmzZtYvjw4fHmm2+Wq1m5cmWMGjUqWrZsGU2aNIkRI0bE4sWLq2nGAAAAAFRGjQ6lpk+fHqNGjYqZM2fGww8/HKtXr46DDz44VqxYkasZPXp03HfffXHHHXfE9OnTY+HChXHkkUdW46wBAAAA+Co1+kLnDz74YLnbU6ZMiTZt2sSsWbNiv/32i6VLl8aNN94YU6dOjUGDBkVExOTJk6NXr14xc+bM2HPPPatj2gAAAAB8hRp9ptSXLV26NCIiWrRoERERs2bNitWrV8fgwYNzNT179ozOnTvHjBkzqmWOAAAAAHy1Gn2m1BetXbs2zjrrrNh7772jd+/eERGxaNGiaNCgQTRr1qxcbdu2bWPRokUbHKusrCzKyspyt5ctW1YlcwYAAABg/WpNKDVq1Kh45ZVX4sknn9ziscaPHx+XXnppHmYFbMiEFz6qsO78vq0qVbeh2nw/dnWNV9PVtecLAABUj1rx9b3TTz89/vznP8djjz0WHTt2zK1v165drFq1KpYsWVKufvHixdGuXbsNjjd27NhYunRpblmwYEFVTR0AAACA9ajRoVRKKU4//fS4++6749FHH41u3bqV296vX7+oX79+TJs2LbfuzTffjHfffTcGDBiwwXGLi4ujpKSk3AIAAABAdmr01/dGjRoVU6dOjXvvvTeaNm2au05UaWlpNGrUKEpLS+PEE0+MMWPGRIsWLaKkpCTOOOOMGDBggF/eAwAAAKjBanQoNWnSpIiIGDhwYLn1kydPjuOPPz4iIq666qooLCyMESNGRFlZWQwZMiSuv/76jGcKAAAAwKao0aFUSukraxo2bBgTJ06MiRMnZjAjAAAAAPKhRl9TCgAAAICtU40+U4qaxc/EAwAAAPniTCkAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAgFruiSeeiGHDhkWHDh2ioKAg7rnnnnLbU0px8cUXR/v27aNRo0YxePDgmDNnTvVMFgDg/1dU3ROAfJnwwkcV1p3ft1U1zAQ2rrr2Va8R2HqtWLEidt111zjhhBPiyCOPrLD9F7/4RVx77bVx8803R7du3eKiiy6KIUOGxGuvvRYNGzashhkDAAilAABqvaFDh8bQoUPXuy2lFFdffXVceOGFcfjhh0dExC233BJt27aNe+65J44++ugspwoAkOPrewAAW7H58+fHokWLYvDgwbl1paWl0b9//5gxY0Y1zgwAqOucKQUAsBVbtGhRRES0bdu23Pq2bdvmtq1PWVlZlJWV5W4vW7asaiYIANRZzpQCAKCC8ePHR2lpaW7p1KlTdU8JANjKCKUAALZi7dq1i4iIxYsXl1u/ePHi3Lb1GTt2bCxdujS3LFiwoErnCQDUPUIpAICtWLdu3aJdu3Yxbdq03Lply5bFM888EwMGDNjg/YqLi6OkpKTcAgCQT64pBVBDTXjhowrrzu/bqhpmAtR0y5cvj7lz5+Zuz58/P2bPnh0tWrSIzp07x1lnnRWXX355bL/99tGtW7e46KKLokOHDjF8+PDqmzQAUOcJpQAAarnnn38+DjjggNztMWPGRETEyJEjY8qUKXHuuefGihUr4pRTToklS5bEPvvsEw8++GA0bNiwuqYMACCUAgCo7QYOHBgppQ1uLygoiMsuuywuu+yyDGcFALBxrikFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOb8+h7VZsILH1VYd37fVtUwE8iPurZP17XnCwAA5JczpQAAAADInDOlAACoU758pqezPAGgejhTCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyFxRdU+AqjHhhY8qrDu/b6tqmAlA5ThuATWJYxIAVD1nSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQuaLqnkBNM+GFjyqsO79vq632cWsDfxsAAADY+jhTCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDM+fU9AADYTF/+lWC/EAwAledMKQAAAAAy50ypzfTlT8Uiau8nY1vTcwFqHscY1rEvAADwRc6UAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzNT6UeuKJJ2LYsGHRoUOHKCgoiHvuuafc9pRSXHzxxdG+ffto1KhRDB48OObMmVM9kwUAAACgUmp8KLVixYrYddddY+LEievd/otf/CKuvfba+PWvfx3PPPNMNG7cOIYMGRIrV67MeKYAAAAAVFZRdU/gqwwdOjSGDh263m0ppbj66qvjwgsvjMMPPzwiIm655ZZo27Zt3HPPPXH00UdnOVUAAAAAKqnGnym1MfPnz49FixbF4MGDc+tKS0ujf//+MWPGjGqcGQAAAAAbU+PPlNqYRYsWRURE27Zty61v27Ztbtv6lJWVRVlZWe72smXLqmaCAAAAAKxXrT5TanONHz8+SktLc0unTp2qe0oAAAAAdUqtDqXatWsXERGLFy8ut37x4sW5beszduzYWLp0aW5ZsGBBlc4TAAAAgPJqdSjVrVu3aNeuXUybNi23btmyZfHMM8/EgAEDNni/4uLiKCkpKbcAAAAAkJ0af02p5cuXx9y5c3O358+fH7Nnz44WLVpE586d46yzzorLL788tt9+++jWrVtcdNFF0aFDhxg+fHj1TRoAAACAjarxodTzzz8fBxxwQO72mDFjIiJi5MiRMWXKlDj33HNjxYoVccopp8SSJUtin332iQcffDAaNmxYXVMGAAAA4CvU+K/vDRw4MFJKFZYpU6ZERERBQUFcdtllsWjRoli5cmU88sgjscMOO1TvpAEAapBLLrkkCgoKyi09e/as7mkBAHVcjT9TCgCALbfzzjvHI488krtdVKQNBACql24EAKAOKCoq2uivEwMAZK3Gf30PAIAtN2fOnOjQoUN07949vve978W777670fqysrJYtmxZuQUAIJ+EUgAAW7n+/fvHlClT4sEHH4xJkybF/PnzY999941PP/10g/cZP358lJaW5pZOnTplOGMAoC4QSgEAbOWGDh0a3/72t6NPnz4xZMiQuP/++2PJkiVx++23b/A+Y8eOjaVLl+aWBQsWZDhjAKAucE0pAIA6plmzZrHDDjvE3LlzN1hTXFwcxcXFGc4KAKhrnCkFAFDHLF++PObNmxft27ev7qkAAHWYUAoAYCt3zjnnxPTp0+Odd96Jp59+Oo444oioV69eHHPMMdU9NQCgDvP1PQCArdw//vGPOOaYY+Ljjz+O1q1bxz777BMzZ86M1q1bV/fUAIA6TChVy0x44aMK687v26oaZgIA1Ba33XZbdU8BAKACX98DAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNF1T2Brd2EFz6qsO78vq2qYSYAAAAAW+bLOceWZBzOlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADJXVN0TYOvz5Z+HjNiyn4gEAAAAtj7OlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADJXVN0TAACoCSa88FGFdef3bVUNMwEAqBucKQUAAABA5oRSAAAAAGRuqwmlJk6cGF27do2GDRtG//7949lnn63uKQEA1Cj6JQCgJtkqQqk//vGPMWbMmBg3blz87W9/i1133TWGDBkSH3zwQXVPDQCgRtAvAQA1zVYRSl155ZVx8sknx/e///3Yaaed4te//nVss802cdNNN1X31AAAagT9EgBQ09T6X99btWpVzJo1K8aOHZtbV1hYGIMHD44ZM2as9z5lZWVRVlaWu7106dKIiFi2bFmsXL66Qv2yZQ0qrFu5/NOtoq42zFFd3aurDXNUV/fqasMc1VVd3bJlyyIiIqVUoaY2qCn9Uj7/fYy1dYy1vjpjGasujrW+OmMZq7aNtVn9Uqrl3nvvvRQR6emnny63/sc//nH6+te/vt77jBs3LkWExWKxWCwWyyYtCxYsyKK9yTv9ksVisVgslqyWTemXav2ZUptj7NixMWbMmNzttWvXxieffBItW7aMgoKCiPg84evUqVMsWLAgSkpKNjiWOnXV/djq1G1KXW2Yo7qtu642zHF9dSml+PTTT6NDhw4bfW5bk6/ql/L5d6+Of2tjGctYxjKWsWrDY9amsTanX6r1oVSrVq2iXr16sXjx4nLrFy9eHO3atVvvfYqLi6O4uLjcumbNmq23tqSk5Cuba3XqasJjq1O3KXW1YY7qtu662jDHL9eVlpZ+5X1qqqrsl/L5d6+Of2tjGctYxjKWsWrDY9aWsTa1X6r1Fzpv0KBB9OvXL6ZNm5Zbt3bt2pg2bVoMGDCgGmcGAFAz6JcAgJqo1p8pFRExZsyYGDlyZOy+++7x9a9/Pa6++upYsWJFfP/736/uqQEA1Aj6JQCgptkqQqnvfOc78eGHH8bFF18cixYtiq997Wvx4IMPRtu2bTd7zOLi4hg3blyF09bVqatpj61O3abU1YY5qtu662rDHDfludQm+e6X8vn3rI5/Q2MZy1jGMpaxasNj1vaxvkpBSrX0t40BAAAAqLVq/TWlAAAAAKh9hFIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFJ1wPz58+Pf//533sbL51jr+BFIqpPXCGyc1whbq3zu2/ner+3TVBX7PXWR/b7mEkp9hQULFsQJJ5yQu/3aa6/FD3/4w+jbt2+0b98+2rdvH3379o0f/vCH8dprr1VqzHnz5sWgQYMiIuL999+P3/3ud3H//ffHqlWrytWtWLEiLrvssoiIePjhh2PcuHHx6KOPRkTEE088EUOHDo1BgwbF5MmTN/p4O+64Y8yZM2eD2xcuXBjjxo2L733ve3HOOefEG2+8ERERDz74YLz88ssREbF27dr46U9/Gttuu20UFxdHx44dY8KECZFSimHDhsWtt94an3322UbnUVZWFuecc07st99+8fOf/zwiIi6//PJo0qRJNG3aNL773e/GsmXLIiLixRdfjOOOOy66d+8ejRo1isaNG8cuu+wSF110Ua5mQ49RVla20XnUBI8//vhX/r0qq6ysLObNm5fX57148eJYtGjReretWbMmFi9eHB9++OF6t3uN1OzXSG2xNYcgXiNeI1ujL/ZLW7qPb+r+XVX79pbs1/nep7fWvihf/VC+e6EN9UEb64HyeWyv6uP65hzT83k8r8vH8q0tGLHf2+/zIrFRs2fPToWFhSmllO6///7UoEGDtOeee6Zx48al66+/Pl1//fVp3Lhxaa+99krFxcXpwQcfrPSYzz77bGrWrFkqKSlJjRo1Sj169EivvPJKrm7RokWpsLAw3XrrramoqCjttttuqUmTJmny5MmpWbNm6aSTTkonnHBCatCgQbrjjjvSEUccsd6lsLAwDR48OHe7UaNG6YMPPkgppfTqq6+m0tLS1KNHj/Ttb3879ezZM22zzTbpxRdfTDvuuGN64oknUkop/exnP0stW7ZMV155ZXrggQfS1Vdfndq2bZsmTJiQCgoKUlFRUSotLU2nnnpqev7559f7vEePHp06dOiQzj777NSrV6/0wx/+MHXu3Dn97ne/S1OnTk09evRIZ5xxRnrwwQdTo0aN0ogRI9Kxxx6bttlmm3T66aen8847L/Xo0SNtt9126f3338+N+9e//jUNHTo0NWvWLBUWFqbCwsLUrFmzNHTo0PTwww9X6t/5tddeS926dcv9+/z0pz9NEydOTB9++GG5uqVLl6bvf//7KaWUfvvb36bjjjsu3XTTTSmllG677bbUs2fP1K1bt3TxxRdv9PHq16+fXnvttdztxYsXl9v+wgsvpOOOOy7ttddeacSIEemxxx5LKaU0efLk9PTTT6eUUvrss8/SCSeckOrVq5cKCwtTUVFR+sEPfpBWrlyZevfunS677LL07rvvbnQeH3/8cRoxYkTq1KlTOvXUU9O///3vdOKJJ6aCgoJUWFiYBgwYkBYuXJhSSunPf/5z2nfffVNxcXHu71xaWpqOPfbY9Pe//z2l5DVSU18jr776ajrttNPS1772tdSuXbvUrl279LWvfS2ddtpp6dVXX/3Kf4+UUpo7d2464IADUkopLVy4MN16663pL3/5SyorKytXt3z58nTppZemlD5/bV588cVp2rRpKaWUpk+fng455JB0wAEH5F43G/Ll18iXvffee+niiy9O3/3ud9PZZ5+dXn/99ZRSSg888EB66aWXUkoprVmzJl122WWpQ4cOqbCwMG277bZp/Pjxae3atemwww5Lt9xyS/rXv/610XmsXLkynX322WnfffdNEyZMSCml9NOf/jQ1btw4NW7cOB1zzDFp6dKlKaXP99v/+q//St26dUsNGzZM22yzTerdu3e68MILczVeI1vva6SuW7dP5mMf35T9e92+k499u169ennbr/O5T3/zm9/MtC/a1J4oX/1QPnuhnXfeOa990Ff1QPk8thcUFOTtuP71r389b8f0rl275u14nu9jeT77nKrucTanv8lnb5PPvsZ+X737/bp5b8m+v6n9/Zb09htT50Ope++9d6PLVVddlQul+vTpky666KINjjVu3Li0yy67pGuuuWajy7nnnpt7UXz/+99Pa9asScuWLUunnXZaatmyZfrb3/6WUvrPi+9rX/tauuaaa1JKKT3yyCOpUaNG6corr8w97i9/+cu09957p4KCgrT//vun448/vtxSWFiYhg8fnrtdUFCQe+M//PDD07Bhw9Lq1atTSp8f6I4++uh02GGHpeLi4lzY0Lt373T77beXe75//vOfU48ePVJBQUF69dVX01VXXZV22WWXVFhYmHbdddd03XXXpU8++SRX36lTp1wzNG/evFRYWJjuueee3Pa//vWvqUuXLulrX/tamjRpUrn1PXv2TCmltGrVqnTggQem448/PqWU0pQpU1JRUVE6+uij0+TJk9P999+f7r///jR58uR0zDHHpPr166dbbrnlK/eDdQ3wQw89lBo0aJB23nnn1Llz59SyZcv06KOP5urW/ZtcddVVqXHjxunII49M7du3T5dffnlq2bJluvzyy9Oll16aSkpK0m9+85vUt2/f9S4FBQWpV69euduFhYW5f5Onnnoq1a9fP+2///7pxz/+cTrooINSUVFRmj59eurWrVuaOXNmSimlc845J3Xt2jXddddd6fXXX0/33HNP2mGHHdKPf/zjVFBQkFq2bJnq1auXhgwZku68887cv/EXnXDCCal3797puuuuS/vvv386/PDDU58+fdKTTz6Znn766bTHHnuk4447Lt1yyy2padOm6eyzz04/+clPUrt27dL555+fJk2alPbff//UqlWr9NZbb3mN1MDXiBCkZoUgXiNb72tka1fZfqky+3j79u3ztn9HRN727YjI234dEXnbp+vXr59pX7QpPVFBQUHe+qEv/v23tBeKiLz1QXvvvfdX9kA77rhj3o7tEZG343pE5O2YXlhYmLfjeT6P5YMHDxaMVFMwstNOO9nvq2m/P/7442vsh0Cbo86HUus+CSkoKNjgsi6UatiwYXrjjTc2ONYbb7yRGjZsmAoKClKHDh1S165d17usS7abN2+e3nzzzXJjjB8/PjVv3jw9++yzuRdf48aN09tvv52rqV+/fnrxxRdzt19//fXUsmXL9Ic//CF17NixQkpZVFRULin94guwU6dOuYPcOn/7299S+/btU/v27dOMGTNSSim1bds2d1BY56233kqNGjUqN15KKT3zzDPplFNOSaWlpalRo0bpmGOOSdOmTUuNGjXKvajXPY8v7uzz589P22yzTWrYsGGaP39+bv3atWtT/fr1c2fsPPHEE6l169YppZS233779Ktf/WpD/yRp4sSJqUePHmn06NEbXY499tjcJ2IXXHBB7nF//vOfpyZNmqQHHnggpfSfA2LPnj3T73//+9zfq6ioKP3v//5v7nH/93//N/Xr1y8VFRWlQw45JF1yySW5Zdy4camwsDD98Ic/zK374t/woIMOSieccEK553HmmWemQYMGlWuEd9hhh9y81pk+fXrq3LlzKigoSO+99166++6707Bhw1JRUVFq3bp1Ovvss8t9OtO+ffv01FNP5Z5bQUFB+utf/5rb/uSTT6Ztt9029ezZM91222259c8991zq2LFjWrt2bUoppe985zvpiCOO8Bqpga8RIUjNCkG8Rmrva6Suq2y/VJl9PCLytn9HRN727Xzu118MWFLasn06IvLaF5WWluatJ4qIvPVDX/ybbWkvFBF564OKioq+sgcqLCzM27E9IvJ2XG/SpEnejumFhYV5O55/8d9w3dw391her149wUg1BSP16tWz31fTft+6desa+yHQ5qjzoVSHDh3KvRC/7IUXXsiFUj179kxXXHHFBmuvuOKKtOOOO6auXbumP/7xj185ZvPmzcu9iNb5n//5n9SsWbN011135U65/uILvkmTJmnevHm522+//XbaZpttUkqf78x77713OvLII3MHny+/AAsLC3OJfJcuXSrM4e23304NGzZMP/zhD9Nhhx2W/v3vf6dTTjklnXTSSbk34JRSOuOMM9KAAQMqvAjXWbFiRZo8eXLaZ599UmFhYdpxxx1zb+rPPvtsatCgQbmDxW233Za23377tN1225VLdefMmZPq1auXO43w7bffTo0aNUoppVRcXFypg2FhYWHabbfd0sCBA9e77L777qmwsDCVlJSkuXPnlhvj97//fWrcuHG67777cgfELzeRxcXF5Q4qc+bMSc2aNUtPPvlk2m677dLFF1+c1qxZk9u+sYPiF5vddV555ZXUqlWr1KVLl9ynlNtuu2167rnnytW99tprqXHjxhX+TRYuXJh+9rOfpe233z7XaN54441pm222Se+8806urn79+unll1/O3X777bdT48aNU6NGjcodHNc9h/feey+l9PmBt1mzZl4jNfA1IgSpWSGI10jtfY3UdZXtlyqzj9evXz9v+3dE5G3fzud+/eVQap3N2afr16+f174oIvLWE0VE3vqhfPZCX/77b0kf9OVQcN28v9gDFRYW5u3YHhF5Pa7n65her169vB3PIyJvx/IvHwO+TDBStYGg/b569vtGjRrV2A+BNkedD6WGDRu20YRx3amcKaV0++23p6KiojRs2LB0zTXXpNtuuy3ddttt6Zprrknf/OY3U4MGDdKdd96ZRowYkc4999yvHHPfffctl0B/0c9//vPc99Z33333co3g0qVLy70YHn744bTDDjvkbq9ZsyZdfPHFqVOnTunBBx9M9evXr3Dwa9asWWrevHmqX79+uvXWW8s99l//+tfUtWvXtGTJkrT77runHj16pP/6r/9KDRs2TF26dEkHHXRQ6tatWyotLU0zZ87c4Ivwi95888101VVXpYYNG6bBgwen5s2bp2uvvTa1a9cunXvuuen8889PpaWl6bLLLkuXXnpp6tixY5o0aVK66aabUu/evdMRRxyRG+uuu+5KO+20U0oppd122y39+Mc/3uDjnnvuuWm33XZLO+ywQ4Xn+UXrGuDWrVuv91TXP/zhD2mbbbZJkyZNSoWFhally5blPmnr2LFjuaZmzpw5qUmTJimllJYsWZKOPvro1L9//1xzt743pLlz56alS5embt26VXizmTt3btpmm23SBRdckAYMGJD++c9/pvPPPz8NGzYsffrppymlzw96Rx11VDr44IPLfR3wyx577LF07LHHpsaNG6ddd90194nq/fffn5o2bVruzWXSpEmpd+/eqVevXuVOx5w1a1Zq0KBB+ve//517vo0bN/YaqYGvESFIzQpBvEZq72ukrqtsv1SZfXzPPffM2/4dEXnbt/O5X+dznz7ggAPy2hcVFxfnrSeKiLz1Q/nshTYUCqa06X1QcXHxV/ZAxcXFeTu2R0Tej+v5OKZ37tw5b8fzsWPH5u1Y3qBBA8FINQUjDRo0sN9X036/00471egPgTZVnQ+lnnjiiQqn/X7R8uXL0+OPP567/dRTT6XvfOc7qXPnzqlBgwapQYMGqXPnzuk73/lO7qKLr776aoVPbb5o1apV6Z133km//e1v07HHHrvBugkTJuS+Jz99+vQN1o0fPz5deOGFFdb/3//9X+rWrVsqLCws9wKcMmVKueXLn0RddtllafTo0bm5Tpo0KX3jG99IPXv2TDvssEPaf//90wUXXJAWLFiQUkpp4MCB6Z///OcG5/dFv//979Ppp5+epk6dmlL6vDHYd999U79+/dIll1yS1qxZk1avXp3OPffc1KFDh9SyZcv03e9+t9zFNZ955pnc3+Oxxx5LjRs3TrvssksaPXp0mjBhQpowYUIaPXp06tOnT2rSpEmaPn16+u53v5vOOuusDc5rXQN80EEHpf/5n/9Zb83UqVNT/fr1U2FhYdp7773Lncr9Zffdd1/q3bt3uXU33XRTateuXfrNb36z3oNiYWFh7qsRN9xwQ7n73nvvvalHjx6prKwsffOb30zNmzdPBx10UO6ig9tvv31q3Lhx6ty5c3rzzTcrdWBcunRp+t3vfpfq1auXevTokWu6OnTokI466qh09NFHpwYNGqRf/epX6Ve/+lUqLS1N5557brr44otThw4d0oknnpgb63e/+13q27dvSslrpKa9RoQgNS8E8Rqpna+Rum5T+qWv2sfzuX+3bt06b/t2PvfrfO7TZWVlee2LBg8enLee6Iv/g7s+m9IP5bMXymcf9O1vf7tSPVC+ju0TJkyosuP6lh7T83k8z9ex/JJLLhGMVGMwYr+vnv1++vTpNf5DoE1R50Oprd2nn36aZs+eXeEK+luT+fPnp3PPPTftt99+aYcddkg77LBD2m+//dJ5552XO+30/fffL/fJ3YbcddddG23Ufv/736eBAwemJ598Mr3wwgsbrJs4cWK67rrrKqx/66230h577JH7zvc6jz/+eLnly6dPXn311ekXv/hF7vYDDzyQfvjDH6ZDDjkkHXzwwWnkyJHphhtuSMuXL08ppXT88cenZcuWfeXzTenz6yX88pe/zF1T4dVXX03/9V//lUaMGJGmTJmSq7v++uvTXnvtlfr165cuuOCC9Nlnn5V7Xut+/ay2qQuvESFIzQpBahuvkaere3pUka113/6qviifPVHfvn3z1g/lsxfKdx+0NfVAW+N+LxipvmCkttga9/uUaseHQJVRkFJKAWRm7dq18emnn0ZJSUkUFBRU93Sgxlm+fHnMmzcvevXqFQ0aNKju6QBQBfRD1DX6G1i/wuqeQE13/fXXx2WXXVap2gsuuCBOOOEEdTWkrqYqLCyM0tLSOtmA1fR9pq7V1VRNmjSJXXfdtU42bDV9n6lrdVReZfulyvzt8/nvaKyaqy71Q7V936nNY9Ukda2/qan7RF0Yq7YRSn2F//f//l9MmTKlUrX/+Mc/4p133lFXQ+oiIkaOHBmDBg1SV0Pq3nvvvUr926nLpi6i5ocCda2upu8zda0uYuts/qpCZfulyryH57MfMFZ5lXm/zud7v7E+l89jk7E2ra6mhgZ1Yayauk/UhbEiau6+sz5Fm3WvOmTatGmVrr3lllvU1aC6iIgOHTpEYeFXZ6/qsqm7+eabv7JGXXZ1EZ//z8w//vEPddVcl1KKgoKCr/y3U5dN3RdV9t+4rqtsv1SZ9/B89gPGKq8y79f5fO831ufy+f5trE2ry+f7ubEqV5fP92RjbXrdOjV131kf15TaRB999FHcdNNNMWPGjFi0aFFERLRr1y722muvOP7446N169bqMqwD2Bo0aNAgXnzxxejVq5e6GlDHlqnMe3g++wFj6YuAmiOf78nG2vS62kgoFRGrVq2Ke+65Z71v9Icffnjue7/PPfdcDBkyJLbZZpsYPHhwtG3bNiIiFi9eHNOmTYt//etf8dBDD0VKSV0GdbvvvvtX/tsuWLAgxo0bFzfddJO6jOo+++yzmDVrVrRo0SJ22mmncnUrV66M22+/PY477jh1GdVFRLz++usxc+bMGDBgQPTs2TPeeOONuOaaa6KsrCyOPfbY3NcO1FV93ZgxY2J9rrnmmjj22GOjZcuW692urmrqrrzyygo1K1asiNtvvz3mzp0b7du3j2OOOeYrx60rKtMvVaZXuvLKK2P06NF56QeMlf++KJ89Ql0aa+LEiXl7//72t79trE0Ya4899sjb+3Q+3/O39rH+/Oc/x/psznvy9OnTY//99zdWJceKqNjDVKZ/qWyPk8+xKmWzfrNvKzJnzpzUvXv31LBhw7T//vuno446Kh111FFp//33Tw0bNkw9evRIc+bMSSml1L9//3TKKaektWvXVhhn7dq16ZRTTkl77rmnuozqKmP27NmpsLBQXUZ1b775ZurSpUsqKChIhYWFab/99ksLFy7M1S1atEhdhnUpff6T2Q0aNEgtWrRIDRs2TA888EBq3bp1Gjx4cBo0aFCqV69emjZtmrqM6goKCtLXvva1NHDgwHJLQUFB2mOPPdLAgQPTAQccoC6jupRS6tWrV/r4449TSim9++67qWvXrqm0tDTtscceqUWLFqlNmzbp7bff/srj4Nausv1SZd7DmzRpkrd+wFj574vy2SPUlbEKCgry9v5trE0fK1/v0+PHjzfWJoyVz/fkiDDWJvYwlelfevToUakeJ59jbY46H0oNHjw4HX744Wnp0qUVti1dujQdfvjh6eCDD04ppdSwYcP0+uuvb3Cs119/PTVs2FBdRnUppXTvvfdudLnqqqtSYWGhuozqhg8fng499ND04Ycfpjlz5qRDDz00devWLf39739PKf2nyVCXTV1KKQ0YMCD95Cc/SSml9Ic//CE1b948XXDBBbnX0/nnn58OOuggdRnVjR8/PnXr1i1NmzYtfVFRUVF69dVXc7fVZVOXUkoFBQVp8eLFKaWUvve976W99torLVmyJKWU0qeffpoGDx6cjjnmmFTXVbZfqsx7eETkrR8w1qb3RQUFBXl77zfW5zURkbf3b2Nt+lj5ep8uLS011iaM1aNHj7y9J+fz/b0ujJVS5fqXiKhUj5PPsTZHnQ+lGjVqlF5++eUNbn/ppZdSo0aNUkopde3aNd18880brL355ptTly5d1GVUl1LKfXJSUFCwwWXddnVVX9emTZv00ksv5f6t1q5dm0499dTUuXPnNG/evFyToS6bupRSKikpyZ3tuWbNmlRUVJT+9re/5e778ssvp7Zt26rLqC6llJ599tm0ww47pLPPPjutWrUqpbT+sERdNnVfbMS6d++e/vrXv5bb/tRTT6VOnTqluq6y/VJl3sPr1auXt37AWJveF0VE3t77jfWfmny9fxtr08fK1/t0QUGBsTaxr8nne7KxNm2syvQvXwySNtbj5HOszVHnQ6n27dun++67b4Pb//SnP6X27dunlFL61a9+lYqLi9OPfvSjdO+996aZM2emmTNnpnvvvTf96Ec/So0aNUoTJ05Ul1FdSil16NAh3XPPPRv893vhhRdSYWGhuozqmjZtml577bUK20eNGpU6duyYnnjiCXUZ1qX0eSg1d+7cXE2TJk3SvHnzcrffeeed1LBhQ3UZ1a3z6aefpuOOOy716dMnvfzyy6l+/foVGhJ12dQVFBSkDz74IKX0+XvKl4OXL//b1VWV7Zcq8x5+1FFH5a0fMNam90URkbf3fmP9pyZf79/G2vSx8vU+bazN62vy+Z5srMrXVaZ/iYhK9Tj5HGtz1PlQ6qKLLkrNmzdPV155ZXrxxRfTokWL0qJFi9KLL76YrrzyytSiRYs0bty4XP1tt92W+vfvn4qKinKfjhQVFaX+/funP/7xj+oyrhs2bFi66KKLNvjvu+57/uqyqdtjjz3SLbfcst6aUaNGpWbNmqXCwkJ1GdWllFKfPn3SAw88kNv+8ssvp9WrV+duP/HEE6lbt27qMqr7sj/84Q+pbdu2qbCwcL0NibqqrysoKEi77LJL6tu3b2rSpEm68847y22fPn162nbbbTc4dl2xKf1SZd7D89kPGGvT+qKIyNt7v7H+U5Ov929jbfpY+XqfbtCggbG2oK/J53u3sb66rjL9S0RUqsfJ51ibo86HUimlNGHChNS+ffvcKbzrTtFt3759+vnPf77e+6xatSotXLgwLVy4MHdKnbrs65544olyB8wvW758eXr88cfVZVT3s5/9LA0dOnSDdaeddloqKChQl1FdSilNmjQp/fnPf95g7dixY9OJJ56oLqO69VmwYEG655570vLlyzd4f3VVV3fJJZeUWx588MFy288555x09NFHb3TsumJT+6XKvNfns28wVuX6omuvvTZv7/3G+rzm5JNPztv7d0QYaxPHytf79F577WWsLexr8vnebayN11Wmf+ndu3elepx8jrU5ClJKafN+t2/rM3/+/Fi0aFGsXr06WrVqVeFnRwEA6jr9EgCQL0Kp9SgpKYnZs2dH9+7dq3sqAAA1kn4JANhShdU9gZpITgcAsHH6JQBgSwmlAAAAAMicUGo9fvOb30Tbtm2rexoAADWWfgkA2FKuKQUAAABA5pwpBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFLAVmvgwIFx1llnVar28ccfj4KCgliyZMkWPWbXrl3j6quv3qIxAACyol8CqpNQCgAAAIDMCaUAAAAAyJxQCqgTbr311th9992jadOm0a5du/jud78bH3zwQYW6p556Kvr06RMNGzaMPffcM1555ZVy25988snYd999o1GjRtGpU6f40Y9+FCtWrMjqaQAAVBn9EpA1oRRQJ6xevTp++tOfxosvvhj33HNPvPPOO3H88cdXqPvxj38cV1xxRTz33HPRunXrGDZsWKxevToiIubNmxeHHHJIjBgxIl566aX44x//GE8++WScfvrpGT8bAID80y8BWSuq7gkAZOGEE07I/Xf37t3j2muvjT322COWL18eTZo0yW0bN25cHHTQQRERcfPNN0fHjh3j7rvvjqOOOirGjx8f3/ve93IXA91+++3j2muvjf333z8mTZoUDRs2zPQ5AQDkk34JyJozpYA6YdasWTFs2LDo3LlzNG3aNPbff/+IiHj33XfL1Q0YMCD33y1atIgdd9wxXn/99YiIePHFF2PKlCnRpEmT3DJkyJBYu3ZtzJ8/P7snAwBQBfRLQNacKQVs9VasWBFDhgyJIUOGxO9///to3bp1vPvuuzFkyJBYtWpVpcdZvnx5/OAHP4gf/ehHFbZ17tw5n1MGAMiUfgmoDkIpYKv3xhtvxMcffxwTJkyITp06RUTE888/v97amTNn5hqmf/7zn/HWW29Fr169IiJit912i9deey169OiRzcQBADKiXwKqg6/vAVu9zp07R4MGDeK6666Lt99+O/70pz/FT3/60/XWXnbZZTFt2rR45ZVX4vjjj49WrVrF8OHDIyLivPPOi6effjpOP/30mD17dsyZMyfuvfdeF+4EAGo9/RJQHYRSwFavdevWMWXKlLjjjjtip512igkTJsQvf/nL9dZOmDAhzjzzzOjXr18sWrQo7rvvvmjQoEFERPTp0yemT58eb731Vuy7777Rt2/fuPjii6NDhw5ZPh0AgLzTLwHVoSCllKp7EgAAAADULc6UAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikgE++8804UFBTEL3/5y7yN+fjjj0dBQUE8/vjjeRuzNlqwYEE0bNgwnnrqqU2+78cffxyNGzeO+++/vwpmBgBsCv1S1dEvQc0klAI2aMqUKVFQUBDPP/98dU8lL+bNmxc/+MEPonv37tGwYcMoKSmJvffeO6655pr47LPPqnt6ERFx/fXXx5QpUzbpPpdddln0798/9t5779y6u+66K77zne9E9+7dY5tttokdd9wxzj777FiyZEm5+7Zs2TJOOumkuOiii/IwewCoe/RL2ctXv3T33XfHkCFDokOHDlFcXBwdO3aMb33rW/HKK6+Uu69+CapOUXVPACALf/nLX+Lb3/52FBcXx3HHHRe9e/eOVatWxZNPPhk//vGP49VXX40bbrihuqcZ119/fbRq1SqOP/74StV/+OGHcfPNN8fNN99cbv0pp5wSHTp0iGOPPTY6d+4cL7/8cvzqV7+K+++/P/72t79Fo0aNcrWnnnpqXHvttfHoo4/GoEGD8vl0AIBapK71Sy+//HI0b948zjzzzGjVqlUsWrQobrrppvj6178eM2bMiF133TVXq1+CqiGUArZ68+fPj6OPPjq6dOkSjz76aLRv3z63bdSoUTF37tz4y1/+Uo0z3Hy/+93voqioKIYNG1Zu/Z133hkDBw4st65fv34xcuTI+P3vfx8nnXRSbn2vXr2id+/eMWXKFE0WANRRdbFfuvjiiyvUnnTSSdGxY8eYNGlS/PrXv86t1y9B1fD1PWCLrFq1Ki6++OLo169flJaWRuPGjWPfffeNxx57bIP3ueqqq6JLly7RqFGj2H///SucIh0R8cYbb8S3vvWtaNGiRTRs2DB23333+NOf/rRZc/zFL34Ry5cvjxtvvLFcg7VOjx494swzz8zd/ve//x0//elPY7vttovi4uLo2rVrXHDBBVFWVlbufgUFBXHJJZdUGK9r167lPrlbd1r/U089FWPGjInWrVtH48aN44gjjogPP/yw3P1effXVmD59ehQUFERBQUGFYOnL7rnnnujfv380adKk3Pr13e+II46IiIjXX3+9wraDDjoo7rvvvkgpbfTxAIBNp1+6pMJ4NaFfWp82bdrENttsU+GSBxH6JagKQilgiyxbtiz+93//NwYOHBg///nP45JLLokPP/wwhgwZErNnz65Qf8stt8S1114bo0aNirFjx8Yrr7wSgwYNisWLF+dqXn311dhzzz3j9ddfj/PPPz+uuOKKaNy4cQwfPjzuvvvuTZ7jfffdF927d4+99tqrUvUnnXRSXHzxxbHbbrvFVVddFfvvv3+MHz8+jj766E1+7C8644wz4sUXX4xx48bFaaedFvfdd1+cfvrpue1XX311dOzYMXr27Bm33npr3HrrrfGTn/xkg+OtXr06nnvuudhtt90q9fiLFi2KiIhWrVpV2NavX79YsmRJvPrqq5v4rACAr6Jfqrzq6JeWLFkSH374Ybz88stx0kknxbJly+LAAw+sUKdfgiqQADZg8uTJKSLSc889t8Gaf//736msrKzcun/+85+pbdu26YQTTsitmz9/foqI1KhRo/SPf/wjt/6ZZ55JEZFGjx6dW3fggQemXXbZJa1cuTK3bu3atWmvvfZK22+/fW7dY489liIiPfbYYxuc39KlS1NEpMMPP7wyTznNnj07RUQ66aSTyq0/55xzUkSkRx99NLcuItK4ceMqjNGlS5c0cuTI3O11f8fBgwentWvX5taPHj061atXLy1ZsiS3buedd077779/peY6d+7cFBHpuuuuq1T9iSeemOrVq5feeuutCtuefvrpFBHpj3/8Y6XGAgA+p1/6j9raL+24444pIlJEpCZNmqQLL7wwrVmzpkKdfgnyz5lSwBapV69eNGjQICIi1q5dG5988kn8+9//jt133z3+9re/VagfPnx4bLvttrnbX//616N///65n9j95JNP4tFHH42jjjoqPv300/joo4/io48+io8//jiGDBkSc+bMiffee6/S81u2bFlERDRt2rRS9evmMWbMmHLrzz777IiILbqWwimnnBIFBQW52/vuu2+sWbMm/v73v2/WeB9//HFERDRv3vwra6dOnRo33nhjnH322bH99ttX2L5ujI8++miz5gIAbJh+qfKqo1+aPHlyPPjgg3H99ddHr1694rPPPos1a9ZUqNMvQf650DmwxW6++ea44oor4o033ojVq1fn1nfr1q1C7foCkR122CFuv/32iIiYO3dupJTioosu2uDP7n7wwQflGrWNKSkpiYiITz/9tFL1f//736OwsDB69OhRbn27du2iWbNmm90QRUR07ty53O11jc0///nPzR4zIr7yugb/93//FyeeeGIMGTIk/vu//3ujY3yxCQQA8ke/VDnV0S8NGDAg999HH3109OrVKyIifvnLX653DP0S5I9QCtgiv/vd7+L444+P4cOHx49//ONo06ZN1KtXL8aPHx/z5s3b5PHWrl0bERHnnHNODBkyZL01X26ANqakpCQ6dOiw3ouDbsyWNBvr+2Qt4vNPSdfnq0KlDWnZsmVEbLxJe/HFF+Ob3/xm9O7dO+68884oKlr/YX/dGOu73hQAsGX0SxXVpH7pi5o3bx6DBg2K3//+9xVCKf0S5J9QCtgid955Z3Tv3j3uuuuuco3JuHHj1ls/Z86cCuveeuut6Nq1a0REdO/ePSIi6tevH4MHD87LHA877LC44YYbYsaMGeU+CVufLl26xNq1a2POnDm5T8kiIhYvXhxLliyJLl265NY1b968wi+zrFq1Kt5///3NnuumNHedO3eORo0axfz589e7fd68eXHIIYdEmzZt4v7779/oL86sG+OLzxkAyA/90pJy969J/dL6fPbZZ7F06dIK6/VLkH+uKQVskXWfZn3x06tnnnkmZsyYsd76e+65p9w1Dp599tl45plnYujQoRHx+c/wDhw4MH7zm9+st1n54k8CV9a5554bjRs3jpNOOqncr9asM2/evLjmmmsiIuIb3/hGRHz+yy5fdOWVV0ZExKGHHppbt91228UTTzxRru6GG27Y4Cd/ldG4ceP1/gTx+tSvXz923333eP755ytsW7RoURx88MFRWFgYDz30ULRu3XqjY82aNStKS0tj55133pxpAwAboV+qmf3SBx98UGHdO++8E9OmTYvdd9+9wjb9EuSfM6WAr3TTTTfFgw8+WGH9mWeeGYcddljcddddccQRR8Shhx4a8+fPj1//+tex0047xfLlyyvcp0ePHrHPPvvEaaedFmVlZXH11VdHy5Yt49xzz83VTJw4MfbZZ5/YZZdd4uSTT47u3bvH4sWLY8aMGfGPf/wjXnzxxU2a/3bbbRdTp06N73znO9GrV6847rjjonfv3rFq1ap4+umn44477ojjjz8+IiJ23XXXGDlyZNxwww2xZMmS2H///ePZZ5+Nm2++OYYPHx4HHHBAbtyTTjopTj311BgxYkQcdNBB8eKLL8ZDDz20Rad09+vXLyZNmhSXX3559OjRI9q0aRODBg3aYP3hhx8eP/nJT2LZsmW560FERBxyyCHx9ttvx7nnnhtPPvlkPPnkk7ltbdu2jYMOOqjcOA8//HAMGzbMNRIAYDPpl2pfv7TLLrvEgQceGF/72teiefPmMWfOnLjxxhtj9erVMWHChArj6JegClTXz/4BNd+6n+bd0LJgwYK0du3a9LOf/Sx16dIlFRcXp759+6Y///nPaeTIkalLly65sdb9xPH//M//pCuuuCJ16tQpFRcXp3333Te9+OKLFR573rx56bjjjkvt2rVL9evXT9tuu2067LDD0p133pmrqcxPHH/RW2+9lU4++eTUtWvX1KBBg9S0adO09957p+uuu67czymvXr06XXrppalbt26pfv36qVOnTmns2LHlalJKac2aNem8885LrVq1Sttss00aMmRImjt37gZ/4vjLPxW9vvkvWrQoHXrooalp06YpIr7y544XL16cioqK0q233lpu/cb+3b485uuvv54iIj3yyCNf/UcEAMrRL9XefmncuHFp9913T82bN09FRUWpQ4cO6eijj04vvfRShTH0S1A1ClLazCvGAVAjnHjiifHWW2/F//3f/23W/c8666x44oknYtasWT75AwC2SvolqJmEUgC13Lvvvhs77LBDTJs2Lfbee+9Nuu/HH38cXbp0idtvvz13fQgAgK2NfglqJqEUAAAAAJnz63sAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZK6ouidQE6xduzYWLlwYTZs2jYKCguqeDgBQw6SU4tNPP40OHTpEYWHd/ExPvwQAbMzm9EtCqYhYuHBhdOrUqbqnAQDUcAsWLIiOHTtW9zSqhX4JAKiMTemXhFIR0bRp04j4/A9XUlJSzbMBAGqaZcuWRadOnXI9Q12kXwIANmZz+iWhVETuFPSSkhJNFgCwQXX5a2v6JQCgMjalX6qbF0UAAAAAoFoJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwVVfcEAABqggkvfFRh3fl9W1XDTAAAaqZ890vOlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAqOW6du0aBQUFFZZRo0ZFRMTKlStj1KhR0bJly2jSpEmMGDEiFi9eXM2zBgDqOqEUAEAt99xzz8X777+fWx5++OGIiPj2t78dERGjR4+O++67L+64446YPn16LFy4MI488sjqnDIAQBRV9wQAANgyrVu3Lnd7woQJsd1228X+++8fS5cujRtvvDGmTp0agwYNioiIyZMnR69evWLmzJmx5557VseUAQCcKQUAsDVZtWpV/O53v4sTTjghCgoKYtasWbF69eoYPHhwrqZnz57RuXPnmDFjxgbHKSsri2XLlpVbAADySSgFALAVueeee2LJkiVx/PHHR0TEokWLokGDBtGsWbNydW3bto1FixZtcJzx48dHaWlpbunUqVMVzhoAqItqdCh1ySWXVLhgZ8+ePXPbXbQTAKC8G2+8MYYOHRodOnTYonHGjh0bS5cuzS0LFizI0wwBAD5X468ptfPOO8cjjzySu11U9J8pjx49Ov7yl7/EHXfcEaWlpXH66afHkUceGU899VR1TBUAoFr9/e9/j0ceeSTuuuuu3Lp27drFqlWrYsmSJeXOllq8eHG0a9dug2MVFxdHcXFxVU4XAKjjanwoVVRUtN6GyUU7AQDKmzx5crRp0yYOPfTQ3Lp+/fpF/fr1Y9q0aTFixIiIiHjzzTfj3XffjQEDBlTXVAEAavbX9yIi5syZEx06dIju3bvH9773vXj33XcjIjb7op0RLtwJAGx91q5dG5MnT46RI0eWO7O8tLQ0TjzxxBgzZkw89thjMWvWrPj+978fAwYM8CEeAFCtanQo1b9//5gyZUo8+OCDMWnSpJg/f37su+++8emnn272RTsjXLgTANj6PPLII/Huu+/GCSecUGHbVVddFYcddliMGDEi9ttvv2jXrl25r/gBAFSHGv31vaFDh+b+u0+fPtG/f//o0qVL3H777dGoUaPNHnfs2LExZsyY3O1ly5YJpgCAWu3ggw+OlNJ6tzVs2DAmTpwYEydOzHhWAAAbVqPPlPqyZs2axQ477BBz584td9HOL/qqi3ZGfH7hzpKSknILAAAAANmpVaHU8uXLY968edG+fftyF+1cx0U7AQAAAGqHGv31vXPOOSeGDRsWXbp0iYULF8a4ceOiXr16ccwxx5S7aGeLFi2ipKQkzjjjDBftBAAAAKgFanQo9Y9//COOOeaY+Pjjj6N169axzz77xMyZM6N169YR8flFOwsLC2PEiBFRVlYWQ4YMieuvv76aZw0AAADAV6nRodRtt9220e0u2gkAAABQO9Wqa0oBAAAAsHUQSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEU/H/s/Xt4VOW5P/7fiYEEgYSTcpCDKCogUhHdGK2KiFKrfrTy2fVY0WptLaKCrUrrCXoAu1vxUEDtRtRWyq79eqht1VYUrAqKKJ7PxQ1bJGhbiLBLoPD8/vDHfIwc1WRNJnm9rmtdF7PWM+u5JzNrcvPOmjUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAUODefffdOP3006N9+/bRokWL2GeffeKZZ57JbU8pxZVXXhmdO3eOFi1axNChQ+PNN9/MY8UAAEIpAICC9o9//CMOPvjgaNasWTzwwAPxyiuvxM9+9rNo27ZtbsxPfvKTuOGGG+Kmm26Kp556Klq2bBnDhg2LNWvW5LFyAKCpK8l3AQAAfHbXXHNNdOvWLaZPn55b17Nnz9y/U0px3XXXxeWXXx7HH398RETccccd0bFjx7j33nvj5JNPzrxmAIAIZ0oBABS03/3ud7H//vvHv//7v8fOO+8cAwYMiF/84he57YsWLYply5bF0KFDc+sqKipi0KBBMXfu3HyUDAAQEUIpAICC9te//jWmTp0ae+yxRzz00ENx3nnnxQUXXBC33357REQsW7YsIiI6duxY634dO3bMbducmpqaqK6urrUAANQlH98DAChgGzZsiP333z9+/OMfR0TEgAED4qWXXoqbbropRowY8Zn3O2HChBg3blxdlQkAsAlnSgEAFLDOnTtH3759a63r06dPLF68OCIiOnXqFBERVVVVtcZUVVXltm3O2LFjY+XKlbllyZIldVw5ANDUCaUAAArYwQcfHK+//nqtdW+88Ub06NEjIj666HmnTp1i1qxZue3V1dXx1FNPRWVl5Rb3W1paGuXl5bUWAIC65ON7AAAFbPTo0XHQQQfFj3/84/jqV78aTz/9dNxyyy1xyy23REREUVFRXHTRRfHDH/4w9thjj+jZs2dcccUV0aVLlzjhhBPyWzwA0KQJpQAACtgBBxwQ99xzT4wdOzbGjx8fPXv2jOuuuy5OO+203JhLLrkkVq9eHeeee26sWLEivvjFL8aDDz4YZWVleawcAGjqhFIAAAXu2GOPjWOPPXaL24uKimL8+PExfvz4DKsCANg615QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHMl+S4AAJqaic99sMm6ywZ0yEMlAACQP86UAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMldQodTEiROjqKgoLrrooty6NWvWxMiRI6N9+/bRqlWrGD58eFRVVeWvSAAAAAC2qWBCqfnz58fNN98c/fv3r7V+9OjRcf/998ddd90Vc+bMiaVLl8aJJ56YpyoBAAAA2B4FEUqtWrUqTjvttPjFL34Rbdu2za1fuXJlTJs2La699toYMmRIDBw4MKZPnx5PPvlkzJs3L48VAwAAALA1BRFKjRw5Mo455pgYOnRorfULFiyIdevW1Vrfu3fv6N69e8ydOzfrMgEAAADYTiX5LmBbZs6cGc8++2zMnz9/k23Lli2L5s2bR5s2bWqt79ixYyxbtmyL+6ypqYmamprc7erq6jqrFwAAAIBta9Ch1JIlS+LCCy+MP//5z1FWVlZn+50wYUKMGzeuzvYHAPk08bkPNll32YAOeagEAAC2X4P++N6CBQti+fLlsd9++0VJSUmUlJTEnDlz4oYbboiSkpLo2LFjrF27NlasWFHrflVVVdGpU6ct7nfs2LGxcuXK3LJkyZJ6fiQAAAAAfFyDPlPqiCOOiBdffLHWurPOOit69+4dl156aXTr1i2aNWsWs2bNiuHDh0dExOuvvx6LFy+OysrKLe63tLQ0SktL67V2AIDGytl5AEBdaNChVOvWraNfv3611rVs2TLat2+fW3/22WfHmDFjol27dlFeXh6jRo2KysrKOPDAA/NRMgAAAADboUGHUttj0qRJUVxcHMOHD4+ampoYNmxYTJkyJd9lAQAAALAVBRdKzZ49u9btsrKymDx5ckyePDk/BQEAAADwqTXoC50DAAAA0DgJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADIXEm+CwCAxmDicx9ssu6yAR3yUAkAABQGZ0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBABS4q6++OoqKimotvXv3zm1fs2ZNjBw5Mtq3bx+tWrWK4cOHR1VVVR4rBgAQSgEANAp77713vPfee7nl8ccfz20bPXp03H///XHXXXfFnDlzYunSpXHiiSfmsVoAgIiSfBcAAMDnV1JSEp06ddpk/cqVK2PatGkxY8aMGDJkSERETJ8+Pfr06RPz5s2LAw88MOtSAQAiwplSAACNwptvvhldunSJ3XbbLU477bRYvHhxREQsWLAg1q1bF0OHDs2N7d27d3Tv3j3mzp2br3IBAJwpBQBQ6AYNGhS33XZb7LXXXvHee+/FuHHj4pBDDomXXnopli1bFs2bN482bdrUuk/Hjh1j2bJlW9xnTU1N1NTU5G5XV1fXV/kAQBMllAIAKHBHH3107t/9+/ePQYMGRY8ePeI3v/lNtGjR4jPtc8KECTFu3Li6KhEAYBM+vgcA0Mi0adMm9txzz3jrrbeiU6dOsXbt2lixYkWtMVVVVZu9BtVGY8eOjZUrV+aWJUuW1HPVAEBTI5QCAGhkVq1aFW+//XZ07tw5Bg4cGM2aNYtZs2bltr/++uuxePHiqKys3OI+SktLo7y8vNYCAFCXfHwPAKDAfec734njjjsuevToEUuXLo2rrroqdthhhzjllFOioqIizj777BgzZky0a9cuysvLY9SoUVFZWemb9wCAvBJKAQAUuP/5n/+JU045Jf72t7/FTjvtFF/84hdj3rx5sdNOO0VExKRJk6K4uDiGDx8eNTU1MWzYsJgyZUqeqwYAmjqhFABAgZs5c+ZWt5eVlcXkyZNj8uTJGVUEALBtrikFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOZK8l0AAOTDxOc+2GTdZQM6fOZxAADAp+NMKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHMl+S4AANi8ic99sMm6ywZ0yEMlAABQ95wpBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmGnQoNXXq1Ojfv3+Ul5dHeXl5VFZWxgMPPJDbvmbNmhg5cmS0b98+WrVqFcOHD4+qqqo8VgwAAADA9mjQoVTXrl1j4sSJsWDBgnjmmWdiyJAhcfzxx8fLL78cERGjR4+O+++/P+66666YM2dOLF26NE488cQ8Vw0AAADAtpTku4CtOe6442rd/tGPfhRTp06NefPmRdeuXWPatGkxY8aMGDJkSERETJ8+Pfr06RPz5s2LAw88MB8lAwAAALAdGvSZUh+3fv36mDlzZqxevToqKytjwYIFsW7duhg6dGhuTO/evaN79+4xd+7cre6rpqYmqquray0AAAAAZKdBnykVEfHiiy9GZWVlrFmzJlq1ahX33HNP9O3bNxYuXBjNmzePNm3a1BrfsWPHWLZs2Vb3OWHChBg3btxmt0187oNN1l02oMNnrp+6s73PjecQAAAAGr4Gf6bUXnvtFQsXLoynnnoqzjvvvBgxYkS88sorn2ufY8eOjZUrV+aWJUuW1FG1AAAAAGyPBn+mVPPmzaNXr14RETFw4MCYP39+XH/99XHSSSfF2rVrY8WKFbXOlqqqqopOnTptdZ+lpaVRWlpan2UDAAAAsBUN/kypT9qwYUPU1NTEwIEDo1mzZjFr1qzcttdffz0WL14clZWVeawQAAAAgG1p0GdKjR07No4++ujo3r17fPjhhzFjxoyYPXt2PPTQQ1FRURFnn312jBkzJtq1axfl5eUxatSoqKys9M17AAAAAA1cgw6lli9fHmeccUa89957UVFREf3794+HHnoojjzyyIiImDRpUhQXF8fw4cOjpqYmhg0bFlOmTMlz1QAAAABsS4P++N60adPinXfeiZqamli+fHk8/PDDuUAqIqKsrCwmT54cf//732P16tVx9913b/N6UgAAjdnEiROjqKgoLrrooty6NWvWxMiRI6N9+/bRqlWrGD58eFRVVeWvSACAqMdQarfddou//e1vm6xfsWJF7LbbbvU1LQBAwajrfmn+/Plx8803R//+/WutHz16dNx///1x1113xZw5c2Lp0qVx4oknfua6AQDqQr2FUu+8806sX79+k/U1NTXx7rvv1te0AAAFoy77pVWrVsVpp50Wv/jFL6Jt27a59StXroxp06bFtddeG0OGDImBAwfG9OnT48knn4x58+Z97scAAPBZ1fk1pX73u9/l/r3xguQbrV+/PmbNmhW77rprXU8LAGzDxOc+2GTdZQM65KES6qNfGjlyZBxzzDExdOjQ+OEPf5hbv2DBgli3bl0MHTo0t653797RvXv3mDt37ha/IKampiZqampyt6urqz9VPQAA21LnodQJJ5wQERFFRUUxYsSIWtuaNWsWu+66a/zsZz+r62kBAApGXfdLM2fOjGeffTbmz5+/ybZly5ZF8+bNo02bNrXWd+zYMZYtW7bFfU6YMCHGjRu33TUAAHxadR5KbdiwISIievbsGfPnz48OHfwFFgDg4+qyX1qyZElceOGF8ec//znKysrqqsQYO3ZsjBkzJne7uro6unXrVmf7BwCo81Bqo0WLFtXXrgEAGoW66JcWLFgQy5cvj/322y+3bv369fHYY4/Fz3/+83jooYdi7dq1sWLFilpnS1VVVW31W4tLS0ujtLT0c9cHALAl9RZKRUTMmjUrZs2aFcuXL8/9RXCjW2+9tT6nBgAoCJ+3XzriiCPixRdfrLXurLPOit69e8ell14a3bp1i2bNmsWsWbNi+PDhERHx+uuvx+LFi6OysrLuHggAwKdUb6HUuHHjYvz48bH//vtH586do6ioqL6mAgAoSHXRL7Vu3Tr69etXa13Lli2jffv2ufVnn312jBkzJtq1axfl5eUxatSoqKys3OJFzgEAslBvodRNN90Ut912W3zta1+rrykAAApaVv3SpEmTori4OIYPHx41NTUxbNiwmDJlSr3OCQCwLfUWSq1duzYOOuig+to9AEDBq69+afbs2bVul5WVxeTJk2Py5Ml1PhcAwGdVXF87Puecc2LGjBn1tXsAgIKnXwIAmrJ6O1NqzZo1ccstt8TDDz8c/fv3j2bNmtXafu2119bX1AAABUG/BAA0ZfUWSr3wwgux7777RkTESy+9VGubi54DAOiXAICmrd5CqUcffbS+dg0A0CjolwCApqzerikFAAAAAFtSb2dKHX744Vs97fyRRx6pr6kBAAqCfgkAaMrqLZTaeH2EjdatWxcLFy6Ml156KUaMGFFf0wIAFAz9EgDQlNVbKDVp0qTNrr/66qtj1apV9TUtAEDB0C8BAE1Z5teUOv300+PWW2/NeloAgIKhXwIAmoLMQ6m5c+dGWVlZ1tMCABQM/RIA0BTU28f3TjzxxFq3U0rx3nvvxTPPPBNXXHFFfU0LAFAw9EsAQFNWb6FURUVFrdvFxcWx1157xfjx4+Ooo46qr2kBCtLE5z7Y7PrLBnTIuBIgS/olAKApq7dQavr06fW1awCARkG/BAA0ZfUWSm20YMGCePXVVyMiYu+9944BAwbU95QAAAVFvwQANEX1FkotX748Tj755Jg9e3a0adMmIiJWrFgRhx9+eMycOTN22mmn+poaAKAg6JcAgKas3r59b9SoUfHhhx/Gyy+/HH//+9/j73//e7z00ktRXV0dF1xwQX1NCwBQMPRLAEBTVm9nSj344IPx8MMPR58+fXLr+vbtG5MnT3bhTgCA0C8BAE1bvZ0ptWHDhmjWrNkm65s1axYbNmyor2kBAAqGfgkAaMrqLZQaMmRIXHjhhbF06dLcunfffTdGjx4dRxxxRH1NCwBQMPRLAEBTVm+h1M9//vOorq6OXXfdNXbffffYfffdo2fPnlFdXR033nhjfU0LAFAw9EsAQFNWb9eU6tatWzz77LPx8MMPx2uvvRYREX369ImhQ4fW15QAAAVFv0S+THzug03WXTagQx4qAaApq/MzpR555JHo27dvVFdXR1FRURx55JExatSoGDVqVBxwwAGx9957x1/+8pe6nhYAoGDolwAA6iGUuu666+Ib3/hGlJeXb7KtoqIivvnNb8a1115b19MCABQM/RIAQD2EUs8//3x86Utf2uL2o446KhYsWFDX0wIAFAz9EgBAPYRSVVVVm/1q441KSkri/fffr+tpAQAKhn4JAKAeQqlddtklXnrppS1uf+GFF6Jz5851PS0AQMHQLwEA1EMo9eUvfzmuuOKKWLNmzSbb/vnPf8ZVV10Vxx57bF1PCwBQMPRLAAARJXW9w8svvzzuvvvu2HPPPeP888+PvfbaKyIiXnvttZg8eXKsX78+vv/979f1tAAABUO/RKGY+NwHm6y7bECHPFQCQGNU56FUx44d48knn4zzzjsvxo4dGymliIgoKiqKYcOGxeTJk6Njx451PS0AQMHQLwEA1EMoFRHRo0eP+OMf/xj/+Mc/4q233oqUUuyxxx7Rtm3b+piOAucvcND4OK5h2/RLAEBTVy+h1EZt27aNAw44oD6nAAAoaPolAKCpqvMLnQMAAADAtgilAAAAAMicUAoAAACAzAmlAAAAAMicUAoAAACAzAmlAAAAAMicUAoAAACAzAmlAAAAAMhcSb4LgHyZ+NwHm6y7bECHPFQCAAAATY9QCgAAAGjUnJTQMPn4HgAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZK8l3AcCWTXzug03WXTagQx4q4ZM8NwAAAJ+PM6UAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMudA5AAAAwKfky48+P2dKAQAAAJA5oRQAAAAAmRNKAQAUuKlTp0b//v2jvLw8ysvLo7KyMh544IHc9jVr1sTIkSOjffv20apVqxg+fHhUVVXlsWIAANeUgu1SCJ8VLoQaKWybe41FeJ1BQ9C1a9eYOHFi7LHHHpFSittvvz2OP/74eO6552LvvfeO0aNHxx/+8Ie46667oqKiIs4///w48cQT44knnsh36QBAEyaUAgAocMcdd1yt2z/60Y9i6tSpMW/evOjatWtMmzYtZsyYEUOGDImIiOnTp0efPn1i3rx5ceCBB+ajZAAAH98DAGhM1q9fHzNnzozVq1dHZWVlLFiwINatWxdDhw7Njendu3d079495s6du8X91NTURHV1da0FAKAuOVMKAKARePHFF6OysjLWrFkTrVq1invuuSf69u0bCxcujObNm0ebNm1qje/YsWMsW7Zsi/ubMGFCjBs3rp6rpq75OD8AhcSZUgAAjcBee+0VCxcujKeeeirOO++8GDFiRLzyyiufeX9jx46NlStX5pYlS5bUYbUAAM6UAgBoFJo3bx69evWKiIiBAwfG/Pnz4/rrr4+TTjop1q5dGytWrKh1tlRVVVV06tRpi/srLS2N0tLS+i4bAGjCnCkFANAIbdiwIWpqamLgwIHRrFmzmDVrVm7b66+/HosXL47Kyso8VggANHXOlAIAKHBjx46No48+Orp37x4ffvhhzJgxI2bPnh0PPfRQVFRUxNlnnx1jxoyJdu3aRXl5eYwaNSoqKyt98x4AkFdCKQCAArd8+fI444wz4r333ouKioro379/PPTQQ3HkkUdGRMSkSZOiuLg4hg8fHjU1NTFs2LCYMmVKnqsGAJo6oRSfim90obFrTK/xQngsdV3j5vb3efcJhWDatGlb3V5WVhaTJ0+OyZMnZ1QRAMC2CaUAAIAGpxD+uELd8FxD0+VC5wAAAABkTigFAAAAQOaEUgAAAABkrkGHUhMmTIgDDjggWrduHTvvvHOccMIJ8frrr9cas2bNmhg5cmS0b98+WrVqFcOHD4+qqqo8VQwAAADA9mjQodScOXNi5MiRMW/evPjzn/8c69ati6OOOipWr16dGzN69Oi4//7746677oo5c+bE0qVL48QTT8xj1QAAAABsS4P+9r0HH3yw1u3bbrstdt5551iwYEEceuihsXLlypg2bVrMmDEjhgwZEhER06dPjz59+sS8efPiwAMPzEfZAAAAAGxDgw6lPmnlypUREdGuXbuIiFiwYEGsW7cuhg4dmhvTu3fv6N69e8ydO1coBQAAQJMw8bkPNll32YAOeagEtl/BhFIbNmyIiy66KA4++ODo169fREQsW7YsmjdvHm3atKk1tmPHjrFs2bIt7qumpiZqampyt6urq+ulZgAAAAA2r2BCqZEjR8ZLL70Ujz/++Ofe14QJE2LcuHF1UFXjUdepupR+6/x8AAAAaOoa9IXONzr//PPj97//fTz66KPRtWvX3PpOnTrF2rVrY8WKFbXGV1VVRadOnba4v7Fjx8bKlStzy5IlS+qrdAAAAAA2o0GHUimlOP/88+Oee+6JRx55JHr27Flr+8CBA6NZs2Yxa9as3LrXX389Fi9eHJWVlVvcb2lpaZSXl9daAAAAAMhOg/743siRI2PGjBlx3333RevWrXPXiaqoqIgWLVpERUVFnH322TFmzJho165dlJeXx6hRo6KystJFzgEAAAAasAYdSk2dOjUiIgYPHlxr/fTp0+PMM8+MiIhJkyZFcXFxDB8+PGpqamLYsGExZcqUjCsFAAAA2JRrCm9Zgw6lUkrbHFNWVhaTJ0+OyZMnZ1ARAAAAAHWhQV9TCgAAAIDGSSgFAAAAQOaEUgAAAABkrkFfUwqATblQIg2J1yMAAJ+VM6UAAAAAyJwzpQAAoIFzViINiddj4fMc0lA4UwoAAACAzAmlAAAAAMicUAoAAACAzAmlAAAAAMicUAoAAACAzAmlAAAAAMhcSb4LoH75qk8APgu/PwCApkgPlC1nSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOd++BwAAAA1UY/o2uPp4LI3p59MUOVMKAAAAgMwJpQAAAADInI/vQR1qTKeONqbHkk9+jnXDzxEAABofZ0oBAAAAkDmhFAAAAACZE0oBAAAAkDnXlAIAgDxwvTwaO69xYFucKQUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5nz7HkAT55txAACAfBBKAQAAQMb8YXDr/HyaBh/fAwAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzvn0PAACgwPhmsmz5eUP9cKYUAAAAAJlzptRntLmkPEJaTtNTCH81crwCjdmECRPi7rvvjtdeey1atGgRBx10UFxzzTWx11575casWbMmLr744pg5c2bU1NTEsGHDYsqUKdGxY8c8Vg4ANHXOlAIAKGBz5syJkSNHxrx58+LPf/5zrFu3Lo466qhYvXp1bszo0aPj/vvvj7vuuivmzJkTS5cujRNPPDGPVQMAOFMKAKCgPfjgg7Vu33bbbbHzzjvHggUL4tBDD42VK1fGtGnTYsaMGTFkyJCIiJg+fXr06dMn5s2bFwceeGA+ygYAcKYUAEBjsnLlyoiIaNeuXURELFiwINatWxdDhw7Njendu3d079495s6dm5caAQAinCkFANBobNiwIS666KI4+OCDo1+/fhERsWzZsmjevHm0adOm1tiOHTvGsmXLtrivmpqaqKmpyd2urq6ul5oBgKZLKAUA0EiMHDkyXnrppXj88cc/974mTJgQ48aNq4OqAOpGoXx5TSF8ERA0FD6+BwDQCJx//vnx+9//Ph599NHo2rVrbn2nTp1i7dq1sWLFilrjq6qqolOnTlvc39ixY2PlypW5ZcmSJfVVOgDQRAmlAAAKWEopzj///LjnnnvikUceiZ49e9baPnDgwGjWrFnMmjUrt+7111+PxYsXR2Vl5Rb3W1paGuXl5bUWAIC65ON7AAAFbOTIkTFjxoy47777onXr1rnrRFVUVESLFi2ioqIizj777BgzZky0a9cuysvLY9SoUVFZWemb9wCAvBJKZcBnimlICuH1WAg1AjQUU6dOjYiIwYMH11o/ffr0OPPMMyMiYtKkSVFcXBzDhw+PmpqaGDZsWEyZMiXjSgEAahNKAQAUsJTSNseUlZXF5MmTY/LkyRlUBACwfVxTCgAAAIDMOVMKAAD43Arh4/fbW2MhPBa2znNIIWqKr1tnSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOd++V4Ca4hX5aRy8dgFoiPx+gqbL8b91vrGS+uZMKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHMl+S4AAAAaE1+NvnVN8eezuccc0fgfN8C2OFMKAAAAgMwJpQAAAADInI/vAQWrKZ7+DwAA0Fg4UwoAAACAzAmlAAAAAMicUAoAAACAzLmmFAAAQAPhmplAU+JMKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHMudN6AuKghAE2d34UAAE2HUAoAAOAzEKQDfD4+vgcAAABA5oRSAAAAAGROKAUAAABA5hp8KPXYY4/FcccdF126dImioqK49957a21PKcWVV14ZnTt3jhYtWsTQoUPjzTffzE+xAAAAAGyXBh9KrV69Or7whS/E5MmTN7v9Jz/5Sdxwww1x0003xVNPPRUtW7aMYcOGxZo1azKuFAAAAIDt1eC/fe/oo4+Oo48+erPbUkpx3XXXxeWXXx7HH398RETccccd0bFjx7j33nvj5JNPzrJUAAAAALZTgw+ltmbRokWxbNmyGDp0aG5dRUVFDBo0KObOnbvFUKqmpiZqampyt6urq+u9VgAAgKxNfO6DTdZdNqBDHioB2FRBh1LLli2LiIiOHTvWWt+xY8fcts2ZMGFCjBs3rl5rAwD+n3z+p8h/yAAAGqYGf02p+jB27NhYuXJlblmyZEm+SwIAAABoUgo6lOrUqVNERFRVVdVaX1VVldu2OaWlpVFeXl5rAQAAACA7BR1K9ezZMzp16hSzZs3Krauuro6nnnoqKisr81gZAAAAAFvT4K8ptWrVqnjrrbdytxctWhQLFy6Mdu3aRffu3eOiiy6KH/7wh7HHHntEz54944orroguXbrECSeckL+iAQAAANiqBh9KPfPMM3H44Yfnbo8ZMyYiIkaMGBG33XZbXHLJJbF69eo499xzY8WKFfHFL34xHnzwwSgrK8tXyQAAAABsQ4MPpQYPHhwppS1uLyoqivHjx8f48eMzrAoAAACAz6OgrykFAAAAQGESSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAECBe+yxx+K4446LLl26RFFRUdx77721tqeU4sorr4zOnTtHixYtYujQofHmm2/mp1gAgP8/oRQAQIFbvXp1fOELX4jJkydvdvtPfvKTuOGGG+Kmm26Kp556Klq2bBnDhg2LNWvWZFwpAMD/U5LvAgAA+HyOPvroOProoze7LaUU1113XVx++eVx/PHHR0TEHXfcER07dox77703Tj755CxLBQDIcaYUAEAjtmjRoli2bFkMHTo0t66ioiIGDRoUc+fOzWNlAEBT50wpAIBGbNmyZRER0bFjx1rrO3bsmNu2OTU1NVFTU5O7XV1dXT8FAgBNllAKAIBNTJgwIcaNG5fvMhqUic99sMm6ywZ0yEMlfNzmnpcIzw3QeNXH+16+fsf5+B4AQCPWqVOniIioqqqqtb6qqiq3bXPGjh0bK1euzC1Lliyp1zoBgKbHmVIAQEFy1sr26dmzZ3Tq1ClmzZoV++67b0R89FG8p556Ks4777wt3q+0tDRKS0szqhIAaIqEUgAABW7VqlXx1ltv5W4vWrQoFi5cGO3atYvu3bvHRRddFD/84Q9jjz32iJ49e8YVV1wRXbp0iRNOOCF/RQMATZ5QCgCgwD3zzDNx+OGH526PGTMmIiJGjBgRt912W1xyySWxevXqOPfcc2PFihXxxS9+MR588MEoKyvLV8kAAEIpAIBCN3jw4EgpbXF7UVFRjB8/PsaPH59hVQAAWyeUAgAAaOJ8iyGQD759DwAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyFxJvgsAAKDx2tzXzGfxFfP5mhcAGpKG/vvQmVIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmSvJdAAAATHzug03WXTagw2ceBwA0fM6UAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzjSaUmjx5cuy6665RVlYWgwYNiqeffjrfJQEANCj6JQCgIWkUodR//dd/xZgxY+Kqq66KZ599Nr7whS/EsGHDYvny5fkuDQCgQdAvAQANTaMIpa699tr4xje+EWeddVb07ds3brrppthxxx3j1ltvzXdpAAANgn4JAGhoCj6UWrt2bSxYsCCGDh2aW1dcXBxDhw6NuXPn5rEyAICGQb8EADREJfku4PP64IMPYv369dGxY8da6zt27BivvfbaZu9TU1MTNTU1udsrV66MiIjq6upYs2rdJuOrq5tvsm7Nqg83u+/tHZvFuHzOrUY1NvQa8zm3Gpt2jfmcW42ffVx1dXVERKSUNltLQ5evfinCa0mN3vvV2LRqzOfcamzaNeZz7s/VL6UC9+6776aISE8++WSt9d/97nfTv/3bv232PldddVWKCIvFYrFYLJZPtSxZsiSL9qbO6ZcsFovFYrFktXyafqngz5Tq0KFD7LDDDlFVVVVrfVVVVXTq1Gmz9xk7dmyMGTMmd3vDhg3x97//Pdq3bx9FRUUR8VHC161bt1iyZEmUl5dvcf66HpfPudWoxoY0txoLf241qrEhzf15a0wpxYcffhhdunTZ6n0bKv2SGhva3Gos/LnVqMaGNLcaG0aNn6VfKvhQqnnz5jFw4MCYNWtWnHDCCRHxUdM0a9asOP/88zd7n9LS0igtLa21rk2bNpsdW15evs0noz7G5XNuNaqxIc2txsKfW41qbEhzf54aKyoqtut+DZF+SY0NdW41Fv7calRjQ5pbjfmv8dP2SwUfSkVEjBkzJkaMGBH7779//Nu//Vtcd911sXr16jjrrLPyXRoAQIOgXwIAGppGEUqddNJJ8f7778eVV14Zy5Yti3333TcefPDBTS7mCQDQVOmXAICGplGEUhER559//hZPP/8sSktL46qrrtrktPX6HpfPudWoxoY0txoLf241qrEhzV0fNRYi/ZIaG8rcaiz8udWoxoY0txobbo3bUpRSgX63MQAAAAAFqzjfBQAAAADQ9AilAAAAAMicUAoAAACAzAmlAAAAAMicUKrALVq0KP71r3/V2f7qcl8f53r6NBSOGfh0HDM0Bl7H8OnU9TETUT/HjWOGhsLvmc9OKBURH3zwQfzkJz+Jr3zlK1FZWRmVlZXxla98Jf7jP/4j3n///e3ez9tvvx1DhgyJiIj33nsvfvWrX8Uf//jHWLt2ba1xq1evjvHjx0dExJ///Oe46qqr4pFHHomIiMceeyyOPvroGDJkSEyfPn2bc+61117x5ptvbnH70qVL46qrrorTTjstvvOd78Rrr70WEREPPvhgvPjiixERsWHDhvjBD34Qu+yyS5SWlkbXrl1j4sSJkVKK4447Ln75y1/GP//5z23WUlNTE9/5znfi0EMPjWuuuSYiIn74wx9Gq1atonXr1nHqqadGdXV1REQ8//zzccYZZ8Ruu+0WLVq0iJYtW8Y+++wTV1xxRW7MluaoqanZZi0NwezZs7fr57Y9ampq4u23367zx15VVRXLli3b7Lb169dHVVXVFo+BV155Jb797W/HgAEDonPnztG5c+cYMGBAfPvb345XXnllu+b/LMdMxOc7bur7mImI7T5usjhmCklj/2XumHHMNAb5eh039H4pomG9jptqvxRRPz1TQ+qXIrI5bj7rMRNR9//P8N5fm35p2/RLBXbMpCbu6aefTm3btk277LJLGjFiRLrkkkvSJZdckkaMGJG6du2a2rVrl+bPn79d+1q4cGEqLi5OTz/9dGrTpk0qLy9PLVq0SL169UovvfRSbtyyZctScXFx+uUvf5lKSkrSfvvtl1q1apWmT5+e2rRpk84555z09a9/PTVv3jzdddddKaWUvvKVr2x2KS4uTkOHDs3dbtGiRVq+fHlKKaWXX345VVRUpF69eqV///d/T71790477rhjev7559Nee+2VHnvssZRSSj/+8Y9T+/bt07XXXpseeOCBdN1116WOHTumiRMnpqKiolRSUpIqKirSt771rfTMM89s8fGPHj06denSJV188cWpT58+6dvf/nbq3r17+tWvfpVmzJiRevXqlUaNGpUefPDB1KJFizR8+PB0+umnpx133DGdf/756dJLL029evVKu+++e3rvvfdy+/3Tn/6Ujj766NSmTZtUXFyciouLU5s2bdLRRx+d/vznP2/Xc/PKK6+knj175p6nH/zgB2ny5Mnp/fffrzVu5cqV6ayzzsrd/sUvfpHOOOOMdOutt6aUUpo5c2bq3bt36tmzZ7ryyiu3OmezZs3SK6+8krtdVVVVa/tzzz2XzjjjjHTQQQel4cOHp0cffTSllNL06dPTk08+mVJK6Z///Gf6+te/nnbYYYdUXFycSkpK0je/+c20Zs2alFJK/fr1S+PHj0+LFy/eai1/+9vf0vDhw1O3bt3St771rfSvf/0rnX322amoqCgVFxenysrKtHTp0pRSSr///e/TIYcckkpLS3M/74qKinT66aen//7v/04ppfTHP/4xNW/ePB144IHpqquuSlOmTElTpkxJV111VTrooINSaWlpevDBB7daU0qf/phJKW33cZOvYyaltN3HTX0dMy+//HI677zz0r777ps6deqUOnXqlPbdd9903nnnpZdffnmbz0tKKb311lvp8MMPTymltHTp0vTLX/4y/eEPf0g1NTW1xq1atSqNGzcupfTRsXrllVemWbNmpZRSmjNnTvrSl76UDj/88NwxtDWfPGY+6d13301XXnllOvXUU9PFF1+cXn311ZRSSg888EB64YUXUkoprV+/Po0fPz516dIlFRcXp1122SVNmDAhbdiwIR177LHpjjvuSP/7v/+7zVrWrFmTLr744nTIIYfkntcf/OAHqWXLlqlly5bplFNOSStXrkwpffQ6/trXvpZ69uyZysrK0o477pj69euXLr/88twYx0zjP2aagny9jguhX0op/6/jptYvpbT9PVNj6ZdSSnV+3NT1MZNSqvP/ZzTk9379kn6pKf2eqa9+qcmHUoMGDUrnnntu2rBhwybbNmzYkM4999x04IEHppRSuv7667e6XHLJJbkX41lnnZXWr1+fqqur03nnnZfat2+fnn322ZTS/3vx77vvvun6669PKaX08MMPpxYtWqRrr702N/9Pf/rTdPDBB6eUPnoBHnbYYenMM8+stRQXF6cTTjghd7uoqCj3y/z4449Pxx13XFq3bl1K6aM3n5NPPjkde+yxqbS0NPcLs1+/fuk3v/lNrcf++9//PvXq1SsVFRWll19+OU2aNCnts88+qbi4OH3hC19IN954Y/r73/9e6z7dunXLNT1vv/12Ki4uTvfee29u+5/+9KfUo0ePtO+++6apU6fWWt+7d++UUkpr165NRxxxRDrzzDNTSinddtttqaSkJJ188slp+vTp6Y9//GP64x//mKZPn55OOeWU1KxZs3THHXds83ne+Mb00EMPpebNm6e99947de/ePbVv3z498sgjuXEff2OaNGlSatmyZTrxxBNT586d0w9/+MPUvn379MMf/jCNGzculZeXp5tvvjkNGDBgs0tRUVHq06dP7nZxcXHuuXniiSdSs2bN0mGHHZa++93vpiOPPDKVlJSkOXPmpJ49e6Z58+allFL6zne+k3bdddd09913p1dffTXde++9ac8990zf/e53c6+L9u3bpx122CENGzYs/fa3v8093x/39a9/PfXr1y/deOON6bDDDkvHH3986t+/f3r88cfTk08+mQ444IB0xhlnpDvuuCO1bt06XXzxxen73/9+6tSpU7rsssvS1KlT02GHHZY6dOiQ3njjjdS/f/90xRVXbPHnfdVVV6V99tmnzo+ZlNJ2Hzf5OmY2Pi/bc9zUxzHjP40NM2R3zDT+Y6YpyNfruBD6pY1z5+t13BT7pZTSdvdMjaVfSinV+XFT18dMSqnO/5/RkN/79Uv6pabye6Y++6UmH0qVlZXl0uPNefXVV1NZWVlK6aMXQZcuXdKuu+662WVj0ty2bdv0+uuv19rPhAkTUtu2bdPTTz+de/G3bNky/fWvf82NadasWe4vDBvnbt++fUoppV//+tepa9eum6TnJSUltVLJj7/4u3Xrlnvj2ejZZ59NnTt3Tp07d05z585NKaXUsWPH3IG50RtvvJFatGhRa38ppfTUU0+lc889N1VUVKQWLVqkU045JZfyt2jRIndAbXw8H38zXrRoUdpxxx1TWVlZWrRoUW79hg0bUrNmzXJ/eXrsscfSTjvtlFJKaY899kg///nP05ZMnjw59erVK40ePXqry+mnn577C9f3vve93LzXXHNNatWqVXrggQdSSrXfmHr37p3uvPPO3M+tpKQk/ed//mdu7v/8z/9MAwcOTCUlJelLX/pSuvrqq3PLVVddlYqLi9O3v/3t3LqP/yyPPPLI9PWvf73WY7nwwgvTkCFDar0x7bnnnrnaNpozZ07q3r17Sumj5/vdd99N99xzTzruuONSSUlJ2mmnndLFF19c6y8onTt3Tk888UTuMRYVFaU//elPue2PP/542mWXXVLv3r3TzJkzc+vnz5+funbtmgttTzrppPSVr3wllZWVpddee22Lz8trr72WysrK6vyYSSlt93GTr2Pmk/tMacvHTX0cM/7T2DBDdsdM4R8zpLy9jguhX/rkPlPK9nXcFPullNJ290yNpV9KKdX5cVPXx8zGn2Nd/j9Dv6Rf2ki/1PCPmc+iyYdSu+66a7r99tu3uP32229PPXr0yI39r//6ry2Ofe6553Iv/o+/gDf6j//4j9SmTZt09913506p/vhB16pVq/T222/nbv/1r39NO+64Y+72okWL0sEHH5xOPPHE3BvCJ1/8xcXFuaS8R48em9Tx17/+NZWVlaVvf/vb6dhjj03/+te/0rnnnpvOOeecWmeLjRo1KlVWVm7ywt9o9erVafr06emLX/xi7kDea6+9cr+gn3766dS8efNaB+vMmTPTHnvskXbfffdaKeqbb76Zdthhh9xprn/9619zB15pael2vTEVFxen/fbbLw0ePHizy/7775+Ki4tTeXl5euutt2rt484770wtW7ZM999/f603pk8ezKWlpbUO5jfffDO1adMmPf7442n33XdPV155ZVq/fn1u+9bemD7+5rPRSy+9lDp06JB69OiR+2vkLrvsssnHR1955ZXUsmXLTfaZ0kenDf/4xz9Oe+yxR66pnDZtWtpxxx3TO++8kxvXrFmz9OKLL+Zu//Wvf00tW7ZMLVq0qPXGtPFxvPvuuymlj9742rRpk3r37p1+9rOfbfY5SSmln/3sZ2mvvfaq82MmpfSpjpt8HDMpbfq8bPTJ46Y+jhn/aWyYIbtjpvCPGVLeXseF0C+llN/XcVPsl1JK290zNZZ+KaVUL8dNXR4zKaU6/3+Gfkm/tJF+qeEfM59Fkw+lfv7zn6fS0tJ0wQUXpPvuuy/NmzcvzZs3L913333pggsuSC1atEiTJ09OKaU0fPjwdMkll2xxXwsXLkxFRUXpkEMOqZUEf9w111yT++z5/vvvXytJXrlyZa0X4J///Oe055571rr/+vXr05VXXpm6deuWHnzwwdSsWbNN3pTatGmT2rZtm5o1a5Z++ctf1rr/n/70p7TrrrumFStWpP333z/16tUrfe1rX0tlZWWpR48e6cgjj0w9e/ZMFRUVad68eVt84X/cxjfgSZMmpbKysjR06NDUtm3bdMMNN6ROnTqlSy65JF122WWpoqIijR8/Po0bNy517do1TZ06Nd16662pX79+6Stf+Upuf3fffXfq27dvSiml/fbbL/dRtc255JJL0n777Zf23HPPTR7rx218Y9ppp502ewrqr3/967TjjjumqVOn5t6Y2rdvX+uvZ127dq3VqLz55pupVatWKaWUVqxYkU4++eQ0aNCgXBO3uV8Yb731Vlq5cmXq2bPnJr8I3nrrrbTjjjum733ve6mysjL94x//SJdddlk67rjj0ocffphS+ugN56tf/Wo66qijUkqp1inun/Too4+m008/PbVs2TJ94QtfyP0F9Y9//GNq3bp1rTf8qVOnpn79+qU+ffrkThlOKaUFCxak5s2bp3/961+5x9yyZcv0m9/8JpWUlKTjjjsuXX/99WnmzJlp5syZ6frrr0//5//8n9S8efP029/+ts6PmZTSpz5usj5mNu5ze46b+jhm/KexYYbsjpnCP2ZIeXsdF0K/tHGf+XodN8V+KaW03T1TY+mXUkr1dtzU1TGTUqrz/2fol/RL+qX8/56pz36pyYdSKX10sAwaNCiVlJSkoqKi3OdoBw0aVOtN6OWXX97qRc/Xrl2b3nnnnfSLX/winX766VscN3HixNxn3jd+Jn5zJkyYkC6//PLNbvvLX/6SevbsmYqLi2u9+G+77bZayyf/ujR+/Pg0evToXL1Tp05NX/7yl1Pv3r3TnnvumQ477LD0ve99Ly1ZsiSllNLgwYPTP/7xjy3W+El33nlnOv/889OMGTNSSh/9oj/kkEPSwIED09VXX53Wr1+f1q1bly655JLUpUuX1L59+3TqqafWuoDmU089lfu5PProo6lly5Zpn332SaNHj04TJ05MEydOTKNHj079+/dPrVq1SnPmzEmnnnpquuiii7ZY18Y3piOPPDL9x3/8x2bHzJgxIzVr1iz3xnTwwQfXOjX7k+6///7Ur1+/WutuvfXW1KlTp3TzzTdv9o2puPijC2EWFRWlW265pdZ977vvvtSrV69UU1OT/s//+T+pbdu26cgjj8xdCHCPPfZILVu2TN27d88FgdvzxrRy5cr0q1/9Ku2www6pV69eqbS0NN11112pS5cu6atf/Wo6+eSTU/PmzdPPf/7z9POf/zxVVFSkSy65JF155ZWpS5cu6eyzz87t61e/+lUaMGBASumj6zycdNJJqXv37ql58+apefPmqXv37umkk07KXXS0ro+ZlNJnPm6yOmZS+nTHTV0fM/7T2HBDdsdMYR8zfCQfr+NC6JdSyu/ruCn2Syml7e6ZGku/lFKq9+OmLo6ZjTXX5f8z9Ev6Jf1SYRwzn4VQ6mPWrl2bli5dmpYuXZrWrl2b73K26cMPP0wLFy7c5NsdGptFixalSy65JB166KFpzz33THvuuWc69NBD06WXXpo7DfS9996r9Ve5Lbn77ru32ozdeeedafDgwSmlj64b8Nxzz21x7OTJk9ONN964yfo33ngjHXDAAbnPY280e/bsWssnT/G97rrr0k9+8pPc7QceeCB9+9vfTl/60pfSUUcdlUaMGJFuueWWtGrVqtyYM888M1VXV2/zcW98PD/96U9z10p4+eWX09e+9rU0fPjwdNttt+XGTZkyJR100EFp4MCB6Xvf+1765z//Weuxbe0abA1dUzlm/KexYYbshcgx8/+OGQpXU3kdN9V+KaVt90z6pU+nqRwz+iX9Ul1xzHy+fqkopZQCqFMbNmyIDz/8MMrLy6OoqCjf5UCDt2rVqnj77bejT58+0bx583yXA0AG9Evw6eiXaIyK811AQzdlypQYP378do393ve+F1//+tczH5fPufNZY0NWXFwcFRUVTbbBakyvs8ZUY0PWqlWr+MIXvtBkG6ym+HoshBr5dLyWGu7cDZV+qfG8zhpbjQ2VfsnrtqHO/XkIpbbh//v//r+47bbbtmvs//zP/8Q777yT+bh8zp3PGiMiRowYEUOGDMl8XD7nLoQa33333e16Dut6XD7nLoQaI/xCbag1NsXXYyHUGNE4/hOTlabYixTK3E2xF8nn3Pnql+pjn021xqbYixRCjV63DXfuz9MvlXymezUhs2bN2u6xd9xxR17G5XPufNYYEdGlS5coLt52tlrX4/I5dyHUePvtt29XfXU9Lp9zF0KNER/9J+Z//ud/Guy4plZjSimKioq2+RzW9bh8zl0INX7cp3ldNHVNsRcplLmbYi+Sz7nz1S/Vxz6bao1NqRcphBqbYi9SCDV+3Ofpl1xT6lP64IMP4tZbb425c+fGsmXLIiKiU6dOcdBBB8WZZ54ZO+20U72My+fc+awRoDFr3rx5PP/889GnT59Mx+Vz7kKokS1rir1IocwN0Fg1xV6kEGqsK0KpiFi7dm3ce++9m/2Ff/zxx+c+szt//vwYNmxY7LjjjjF06NDo2LFjRERUVVXFrFmz4n//93/joYceipRSnY7bf//98zZ3Pmvcf//9t/ncLVmyJK666qq49dZbMx2Xz7kbSo3//Oc/Y8GCBdGuXbvo27dvrXFr1qyJ3/zmN3HGGWfU+biIyNvchVBjRMSrr74a8+bNi8rKyujdu3e89tprcf3110dNTU2cfvrpuY8U5GtcU6xxzJgxsTnXX399nH766dG+ffvNbv+846699tq8zV0INV577bWbjFm9enX85je/ibfeeis6d+4cp5xyyjb321Q0xV6kUObelsbaizTUueuzX4rQB+mXGm+N+qWGWWO990uf+Xv7Gok333wz7bbbbqmsrCwddthh6atf/Wr66le/mg477LBUVlaWevXqld58882UUkqDBg1K5557btqwYcMm+9mwYUM699xz04EHHljn4/I5dz5r3B4LFy5MxcXFmY/L59wNocbXX3899ejRIxUVFaXi4uJ06KGHpqVLl+bGLVu2rF7GpZTyNnch1JjSR1+L3bx589SuXbtUVlaWHnjggbTTTjuloUOHpiFDhqQddtghzZo1K2/jmmqNRUVFad99902DBw+utRQVFaUDDjggDR48OB1++OF1Pi6llLe5C6HGlFLq06dP+tvf/pZSSmnx4sVp1113TRUVFemAAw5I7dq1SzvvvHP661//us33x6agKfYihTL3tjTGXqQhz11f/VJK+iD9UuOusSn2IoVQY0r12y81+VBq6NCh6fjjj08rV67cZNvKlSvT8ccfn4466qiUUkplZWXp1Vdf3eK+Xn311VRWVlbn4/I5dz5rTCml++67b6vLpEmTUnFxcZ2Py+fchVDjCSeckI455pj0/vvvpzfffDMdc8wxqWfPnum///u/U0r/75d+XY9LKeVt7kKoMaWUKisr0/e///2UUkq//vWvU9u2bdP3vve93PF12WWXpSOPPDJv45pqjRMmTEg9e/bMNXEblZSUpJdffjl3u67H1cc+G1ONKX3U4FVVVaWUUjrttNPSQQcdlFasWJFSSunDDz9MQ4cOTaecckqiafYihTJ3U+xF8jl3vvqllPRB+qXGXWNT7EUKocaU6rdfavKhVIsWLdKLL764xe0vvPBCatGiRUoppV133TXdfvvtWxx7++23px49etT5uHzOnc8aU0q5v3QUFRVtcdm4vS7H5XPuQqhx5513Ti+88ELuOduwYUP61re+lbp3757efvvt3C/9uh6XUsrb3IVQY0oplZeX587uXL9+fSopKUnPPvts7r4vvvhi6tixY97GNdUaU0rp6aefTnvuuWe6+OKL09q1a1NKm/+lX9fj8jl3IdT48SZrt912S3/6059qbX/iiSdSt27dNqm3KWqKvUihzN0Ue5F8zp2vfiklfVBd1dgUe5FCqDGlptmLFEKN9dkvNflQqnPnzun+++/f4vbf/e53qXPnzimllH7+85+n0tLSdMEFF6T77rsvzZs3L82bNy/dd9996YILLkgtWrRIkydPrvNx+Zw7nzWmlFKXLl3Svffeu8Xn57nnnkvFxcV1Pi6fcxdCja1bt06vvPLKJttHjhyZunbtmh577LF6GZdSytvchVBjSh81B2+99VZuTKtWrdLbb7+du/3OO++ksrKyvI1rqjVu9OGHH6Yzzjgj9e/fP7344oupWbNmm2046npcPudu6DUWFRWl5cuXp5Q+ek/95B+qPvkcNmVNsRcplLmbYi+Sz7nz1S+lpA+qqxqbYi9SCDVu1NR6kUKosT77pSYfSl1xxRWpbdu26dprr03PP/98WrZsWVq2bFl6/vnn07XXXpvatWuXrrrqqtz4mTNnpkGDBqWSkpLcX0JKSkrSoEGD0n/913/V27h8zp3PGo877rh0xRVXbPH5W7hwYSoqKqrzcfmcuxBqPOCAA9Idd9yx2TEjR45Mbdq0ScXFxXU+LqWUt7kLocaUUurfv3964IEHcttffPHFtG7dutztxx57LPXs2TNv45pqjZ/061//OnXs2DEVFxdvseGoj3H5nLuh1lhUVJT22WefNGDAgNSqVav029/+ttb2OXPmpF122WWr9TYlTbEXKYS5m2Ivks+589UvpaQPqqsam2IvUgg1flJT6UUKocb67JeafCiVUkoTJ05MnTt3zp1qu/F03M6dO6drrrlms/dZu3ZtWrp0aVq6dGnuNLcsxuVz7nzU+Nhjj9V6A/ukVatWpdmzZ9f5uHzOXQg1/vjHP05HH330Fsedd955qaioqM7HpZTyNnch1JhSSlOnTk2///3vtzh27Nix6eyzz87buKZa4+YsWbIk3XvvvWnVqlVbvH99jMvn3A2xxquvvrrW8uCDD9ba/p3vfCedfPLJ26y3qWlKvUghzN0Ue5F8zp2vfiklfVBd1dgUe5FCqHFzmkIvUgg11me/VJRSSp/te/san0WLFsWyZcti3bp10aFDh02+RhQAAACAuiGU2ozy8vJYuHBh7LbbbvkuBQAAAKBRKs53AQ2RnA4AAACgfgmlAAAAAMicUGozbr755ujYsWO+ywAAAABotIRSm3HqqadGy5Yt810GAABAvRo8eHBcdNFF2zV29uzZUVRUFCtWrPhcc+66665x3XXXfa59AI2DUAoAAACAzAmlAAAAAMicUAoAAID45S9/Gfvvv3+0bt06OnXqFKeeemosX758k3FPPPFE9O/fP8rKyuLAAw+Ml156qdb2xx9/PA455JBo0aJFdOvWLS644IJYvXp1Vg8DKCBCKQAAAGLdunXxgx/8IJ5//vm4995745133okzzzxzk3Hf/e5342c/+1nMnz8/dtpppzjuuONi3bp1ERHx9ttvx5e+9KUYPnx4vPDCC/Ff//Vf8fjjj8f555+f8aMBCoFQCmi0XLgTAGD7ff3rX4+jjz46dttttzjwwAPjhhtuiAceeCBWrVpVa9xVV10VRx55ZOyzzz5x++23R1VVVdxzzz0RETFhwoQ47bTT4qKLLoo99tgjDjrooLjhhhvijjvuiDVr1uTjYQENmFAKAACAWLBgQRx33HHRvXv3aN26dRx22GEREbF48eJa4yorK3P/bteuXey1117x6quvRkTE888/H7fddlu0atUqtwwbNiw2bNgQixYtyu7BAAWhJN8FAAAAkF+rV6+OYcOGxbBhw+LOO++MnXbaKRYvXhzDhg2LtWvXbvd+Vq1aFd/85jfjggsu2GRb9+7d67JkoBFwphTQJLhwJwDAlr322mvxt7/9LSZOnBiHHHJI9O7de7O9UkTEvHnzcv/+xz/+EW+88Ub06dMnIiL222+/eOWVV6JXr16bLM2bN8/ksQCFQygFNAku3AkAsGXdu3eP5s2bx4033hh//etf43e/+1384Ac/2OzY8ePHx6xZs+Kll16KM888Mzp06BAnnHBCRERceuml8eSTT8b5558fCxcujDfffDPuu+8+/RKwWUIpoElw4U4AgC3baaed4rbbbou77ror+vbtGxMnToyf/vSnmx07ceLEuPDCC2PgwIGxbNmyuP/++3NnQfXv3z/mzJkTb7zxRhxyyCExYMCAuPLKK6NLly5ZPhygQLimFNAkLFiwIK6++up4/vnn4x//+Eds2LAhIj66cGffvn1z47Z14c4XXngh7rzzztyYlFLuwp0bT1sHACgUs2fPzv37lFNOiVNOOaXW9pRS7t+DBw/O3T722GO3uM8DDjgg/vSnP21x+zvvvPPZigUaHaEU0Oi5cCcAAEDDI5QCGr2PX7izW7duERHxzDPPbHbsvHnzcgHT1i7cCQAAwOfjmlJAo+fCnQAAAA2PUApo9Fy4EwAAoOEpSh+/ch0AAAAAZMCZUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFZOKdd96JoqKi+OlPf1pn+5w9e3YUFRXF7Nmz62yfhWjJkiVRVlYWTzzxxKe+7yuvvBIlJSXx0ksv1UNlAMCnoV+qP/olaJiEUsAW3XbbbVFUVBTPPPNMvkupE2+//XZ885vfjN122y3KysqivLw8Dj744Lj++uvjn//8Z77Li4iIKVOmxG233fap7jN+/PgYNGhQHHzwwVscc+SRR0ZRUVGcf/75tdb37ds3jjnmmLjyyis/S7kA0OTpl7JXV/3S1VdfHUVFRZssZWVlte6rX4L6U5LvAgCy8Ic//CH+/d//PUpLS+OMM86Ifv36xdq1a+Pxxx+P7373u/Hyyy/HLbfcku8yY8qUKdGhQ4c488wzt2v8+++/H7fffnvcfvvtWxxz9913x9y5c7e4/Vvf+lZ8+ctfjrfffjt23333T1syANBINNV+aerUqdGqVavc7R122GGTMfolqB9CKaDRW7RoUZx88snRo0ePeOSRR6Jz5865bSNHjoy33nor/vCHP+Sxws/uV7/6VZSUlMRxxx232e1r1qyJiy++OC699NIt/nVv6NCh0bZt27j99ttj/Pjx9VkuANBANeV+6f/+3/8bHTp02Oo+9EtQP3x8D/hc1q5dG1deeWUMHDgwKioqomXLlnHIIYfEo48+usX7TJo0KXr06BEtWrSIww47bLOfz3/ttdfi//7f/xvt2rWLsrKy2H///eN3v/vdZ6rxJz/5SaxatSqmTZtWq8HaqFevXnHhhRfmbv/rX/+KH/zgB7H77rtHaWlp7LrrrvG9730vampqat2vqKgorr766k32t+uuu9b6y93G0/qfeOKJGDNmTOy0007RsmXL+MpXvhLvv/9+rfu9/PLLMWfOnNzp44MHD97qY7v33ntj0KBBtf6698nHvmHDhvjOd76zxX00a9YsBg8eHPfdd99W5wIAPhv90tWb7K8h9Usppaiuro6U0hb3oV+C+iGUAj6X6urq+M///M8YPHhwXHPNNXH11VfH+++/H8OGDYuFCxduMv6OO+6IG264IUaOHBljx46Nl156KYYMGRJVVVW5MS+//HIceOCB8eqrr8Zll10WP/vZz6Jly5ZxwgknxD333POpa7z//vtjt912i4MOOmi7xp9zzjlx5ZVXxn777ReTJk2Kww47LCZMmBAnn3zyp57740aNGhXPP/98XHXVVXHeeefF/fffX+saT9ddd1107do1evfuHb/85S/jl7/8ZXz/+9/f4v7WrVsX8+fPj/3222+z2xcvXhwTJ06Ma665Jlq0aLHV2gYOHBgvvfRSVFdXf7YHBwBskX5p+2XdL0VE7LbbblFRURGtW7eO008/vdbP+eP0S1D3fHwP+Fzatm0b77zzTjRv3jy37hvf+Eb07t07brzxxpg2bVqt8W+99Va8+eabscsuu0RExJe+9KUYNGhQXHPNNXHttddGRMSFF14Y3bt3j/nz50dpaWlERHz729+OL37xi3HppZfGV77yle2ur7q6Ot599904/vjjt2v8888/H7fffnucc8458Ytf/CI398477xw//elP49FHH43DDz98u+f/uPbt28ef/vSnKCoqioiIDRs2xA033BArV66MioqKOOGEE+Lyyy+PDh06xOmnn77N/S1evDj++c9/Rs+ePTe7/eKLL44BAwZsV3O42267xYYNG+K1116Lf/u3f/t0DwwA2Cr90vbLsl9q27ZtnH/++VFZWRmlpaXxl7/8JSZPnhxPP/10PPPMM1FeXl5rvH4J6p4zpYDPZYcddsg1WBs2bIi///3v8a9//Sv233//ePbZZzcZf8IJJ+QarIiIf/u3f4tBgwbFH//4x4iI+Pvf/x6PPPJIfPWrX40PP/wwPvjgg/jggw/ib3/7WwwbNizefPPNePfdd7e7vo1/yWrduvV2jd9Yx5gxY2qtv/jiiyMiPte1FM4999xcgxURccghh8T69evjv//7vz/T/v72t79FxEcN1Sc9+uij8f/9f/9fXHfdddu1r437+OCDDz5TLQDAlumXtl+W/dKFF14YN954Y5x66qkxfPjwuO666+L222+PN998M6ZMmbLJeP0S1D2hFPC53X777dG/f/8oKyuL9u3bx0477RR/+MMfYuXKlZuM3WOPPTZZt+eee8Y777wTER/9ZTClFFdccUXstNNOtZarrroqIiKWL1++3bVt/AvXhx9+uF3j//u//zuKi4ujV69etdZ36tQp2rRp85kbooiI7t2717q9sbH5xz/+8Zn3GRGbXP/gX//6V1xwwQXxta99LQ444IBPtY+PN4EAQN3RL22frPqlLTn11FOjU6dO8fDDD29xH/olqDs+vgd8Lr/61a/izDPPjBNOOCG++93vxs477xw77LBDTJgwId5+++1Pvb8NGzZERMR3vvOdGDZs2GbHfLIB2pry8vLo0qXLZi8OujWfp9lYv379Ztdv7uuFI7a/Sfqk9u3bR8SmTdodd9wRr7/+etx888255nWjDz/8MN55553YeeedY8cdd8yt37iPbX3zDADw6emXNpXvfmlrunXrFn//+983Wa9fgronlAI+l9/+9rex2267xd13312rMdn4V7pPevPNNzdZ98Ybb8Suu+4aER99Vj/io284GTp0aJ3UeOyxx8Ytt9wSc+fOjcrKyq2O7dGjR2zYsCHefPPN6NOnT259VVVVrFixInr06JFb17Zt21ixYkWt+69duzbee++9z1zrp2nuunfvHi1atIhFixbVWr948eJYt25dHHzwwZvc54477og77rgj7rnnnjjhhBNy6xctWhTFxcWx5557fubaAYDN0y+tqHX/htAvbUlKKd55550YMGDAJtv0S1D3fHwP+Fw2/jXr43+9euqpp2Lu3LmbHX/vvffWusbB008/HU899VQcffTRERGx8847x+DBg+Pmm2/ebLPy8a8E3l6XXHJJtGzZMs4555zNfpvK22+/Hddff31ERHz5y1+OiNjkWkwbLyp6zDHH5Nbtvvvu8dhjj9Uad8stt2zxL3/bo2XLlps0blvSrFmz2H///eOZZ56ptf7kk0+Oe+65Z5Ml4qPHd88998SgQYNq3WfBggWx9957R0VFxWeuHQDYPP1Sw+uXIjb/c5o6dWq8//778aUvfWmTbfolqHvOlAK26dZbb40HH3xwk/UXXnhhHHvssXH33XfHV77ylTjmmGNi0aJFcdNNN0Xfvn1j1apVm9ynV69e8cUvfjHOO++8qKmpieuuuy7at28fl1xySW7M5MmT44tf/GLss88+8Y1vfCN22223qKqqirlz58b//M//xPPPP/+p6t99991jxowZcdJJJ0WfPn3ijDPOiH79+sXatWvjySefjLvuuivOPPPMiIj4whe+ECNGjIhbbrklVqxYEYcddlg8/fTTcfvtt8cJJ5xQ65tkzjnnnPjWt74Vw4cPjyOPPDKef/75eOihhz7XKd0DBw6MqVOnxg9/+MPo1atX7LzzzjFkyJAtjj/++OPj+9//flRXV+euB9G7d+/o3bv3Zsf37Nmz1hlSER99VfKcOXPi29/+9meuGwCaOv1SYfVLER+d8XXSSSfFPvvsE2VlZfH444/HzJkzY999941vfvObtfahX4J6kgC2YPr06SkitrgsWbIkbdiwIf34xz9OPXr0SKWlpWnAgAHp97//fRoxYkTq0aNHbl+LFi1KEZH+4z/+I/3sZz9L3bp1S6WlpemQQw5Jzz///CZzv/322+mMM85InTp1Ss2aNUu77LJLOvbYY9Nvf/vb3JhHH300RUR69NFHt+vxvPHGG+kb3/hG2nXXXVPz5s1T69at08EHH5xuvPHGtGbNmty4devWpXHjxqWePXumZs2apW7duqWxY8fWGpNSSuvXr0+XXnpp6tChQ9pxxx3TsGHD0ltvvZV69OiRRowYscnPcf78+bXuv7n6ly1blo455pjUunXrFBHpsMMO2+pjqqqqSiUlJemXv/zlNh9/RKSRI0dusv6BBx5IEZHefPPNbe4DAKhNv1S4/dI555yT+vbtm1q3bp2aNWuWevXqlS699NJUXV29yT70S1A/ilL6jFeMA6BBOPvss+ONN96Iv/zlL5/p/ieccEIUFRXlPuIHANDY6JegYRJKARS4xYsXx5577hmzZs3a7MXNt+bVV1+NffbZJxYuXBj9+vWrpwoBAPJLvwQNk1AKAAAAgMz59j0AAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzJfkuoCHYsGFDLF26NFq3bh1FRUX5LgcAaGBSSvHhhx9Gly5dori4af5NT78EAGzNZ+mXhFIRsXTp0ujWrVu+ywAAGrglS5ZE165d811GXuiXAIDt8Wn6JaFURLRu3ToiPvrBlZeX57kaAKChqa6ujm7duuV6hqZIvwQAbM1n6ZeEUhG5U9DLy8s1WQDAFjXlj63plwCA7fFp+qWmeVEEAAAAAPJKKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGSuJN8FAADUp4nPfbDJussGdMhDJQBAQ6JHyD9nSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQuYIKpSZOnBhFRUVx0UUX5datWbMmRo4cGe3bt49WrVrF8OHDo6qqKn9FAgAAALBNBRNKzZ8/P26++ebo379/rfWjR4+O+++/P+66666YM2dOLF26NE488cQ8VQkAAADA9iiIUGrVqlVx2mmnxS9+8Yto27Ztbv3KlStj2rRpce2118aQIUNi4MCBMX369HjyySdj3rx5eawYAAAAgK0piFBq5MiRccwxx8TQoUNrrV+wYEGsW7eu1vrevXtH9+7dY+7cuVmXCQAAAMB2Ksl3Adsyc+bMePbZZ2P+/PmbbFu2bFk0b9482rRpU2t9x44dY9myZVvcZ01NTdTU1ORuV1dX11m9AAAAAGxbgz5TasmSJXHhhRfGnXfeGWVlZXW23wkTJkRFRUVu6datW53tGwAAAIBta9Ch1IIFC2L58uWx3377RUlJSZSUlMScOXPihhtuiJKSkujYsWOsXbs2VqxYUet+VVVV0alTpy3ud+zYsbFy5crcsmTJknp+JAAAAAB8XIP++N4RRxwRL774Yq11Z511VvTu3TsuvfTS6NatWzRr1ixmzZoVw4cPj4iI119/PRYvXhyVlZVb3G9paWmUlpbWa+0AAAAAbFmDDqVat24d/fr1q7WuZcuW0b59+9z6s88+O8aMGRPt2rWL8vLyGDVqVFRWVsaBBx6Yj5IBAAAA2A4NOpTaHpMmTYri4uIYPnx41NTUxLBhw2LKlCn5LgsAAACArSi4UGr27Nm1bpeVlcXkyZNj8uTJ+SkIAAAAgE+tQV/oHACAT2fixIlRVFQUF110UW7dmjVrYuTIkdG+ffto1apVDB8+PKqqqvJXJABACKUAABqN+fPnx8033xz9+/evtX706NFx//33x1133RVz5syJpUuXxoknnpinKgEAPiKUAgBoBFatWhWnnXZa/OIXv4i2bdvm1q9cuTKmTZsW1157bQwZMiQGDhwY06dPjyeffDLmzZuXx4oBgKZOKAUA0AiMHDkyjjnmmBg6dGit9QsWLIh169bVWt+7d+/o3r17zJ07N+syAQByCu5C5wAA1DZz5sx49tlnY/78+ZtsW7ZsWTRv3jzatGlTa33Hjh1j2bJlW9xnTU1N1NTU5G5XV1fXWb0AABHOlAIAKGhLliyJCy+8MO68884oKyurs/1OmDAhKioqcku3bt3qbN8AABFCKQCAgrZgwYJYvnx57LffflFSUhIlJSUxZ86cuOGGG6KkpCQ6duwYa9eujRUrVtS6X1VVVXTq1GmL+x07dmysXLkytyxZsqSeHwkA0NT4+B4AQAE74ogj4sUXX6y17qyzzorevXvHpZdeGt26dYtmzZrFrFmzYvjw4RER8frrr8fixYujsrJyi/stLS2N0tLSeq0dAGjahFIAAAWsdevW0a9fv1rrWrZsGe3bt8+tP/vss2PMmDHRrl27KC8vj1GjRkVlZWUceOCB+SgZACAihFIAAI3epEmTori4OIYPHx41NTUxbNiwmDJlSr7LAgCaOKEUAEAjM3v27Fq3y8rKYvLkyTF58uT8FAQAsBkudA4AAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5kryXQAAwMdNfO6DTdZdNqBDHioBAKA+OVMKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADIXIMOpaZOnRr9+/eP8vLyKC8vj8rKynjggQdy2wcPHhxFRUW1lm9961t5rBgAAACA7VGS7wK2pmvXrjFx4sTYY489IqUUt99+exx//PHx3HPPxd577x0REd/4xjdi/PjxufvsuOOO+SoXAAAAgO3UoEOp4447rtbtH/3oRzF16tSYN29eLpTacccdo1OnTvkoDwAAAIDPqEF/fO/j1q9fHzNnzozVq1dHZWVlbv2dd94ZHTp0iH79+sXYsWPjf//3f7e5r5qamqiurq61AAAAAJCdBn2mVETEiy++GJWVlbFmzZpo1apV3HPPPdG3b9+IiDj11FOjR48e0aVLl3jhhRfi0ksvjddffz3uvvvure5zwoQJMW7cuCzKBwAAAGAzGnwotddee8XChQtj5cqV8dvf/jZGjBgRc+bMib59+8a5556bG7fPPvtE586d44gjjoi33347dt999y3uc+zYsTFmzJjc7erq6ujWrVu9Pg4AAAAA/p8GH0o1b948evXqFRERAwcOjPnz58f1118fN9988yZjBw0aFBERb7311lZDqdLS0igtLa2fggEAAADYpoK5ptRGGzZsiJqams1uW7hwYUREdO7cOcOKAAAAAPi0GvSZUmPHjo2jjz46unfvHh9++GHMmDEjZs+eHQ899FC8/fbbMWPGjPjyl78c7du3jxdeeCFGjx4dhx56aPTv3z/fpQMAAACwFQ06lFq+fHmcccYZ8d5770VFRUX0798/HnrooTjyyCNjyZIl8fDDD8d1110Xq1evjm7dusXw4cPj8ssvz3fZAAAAAGxDgw6lpk2btsVt3bp1izlz5mRYDQAAAAB1peCuKQUAAABA4RNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmWvQ374HAIVo4nMfbLLusgEd8lAJAAA0XM6UAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMleS7wIAgIZp4nMfbLLusgEd8lAJAACNkTOlAAAAAMicUAoAAACAzAmlAAAAAMicUAoAAACAzAmlAAAAAMicUAoAAACAzAmlAAAAAMhcSb4LAAAAIFsTn/tgk3WXDeiQh0ooZJ98HXkN8Wk5UwoAAACAzAmlAAAAAMicj+/VM6fFAgAAAGzKmVIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmGnQoNXXq1Ojfv3+Ul5dHeXl5VFZWxgMPPJDbvmbNmhg5cmS0b98+WrVqFcOHD4+qqqo8VgwAAADA9ijJdwFb07Vr15g4cWLssccekVKK22+/PY4//vh47rnnYu+9947Ro0fHH/7wh7jrrruioqIizj///DjxxBPjiSeeyHfpAABN3sTnPthk3WUDOuShEgCgIWrQodRxxx1X6/aPfvSjmDp1asybNy+6du0a06ZNixkzZsSQIUMiImL69OnRp0+fmDdvXhx44IH5KBkAAACA7dCgP773cevXr4+ZM2fG6tWro7KyMhYsWBDr1q2LoUOH5sb07t07unfvHnPnzt3qvmpqaqK6urrWAgAAAEB2Gnwo9eKLL0arVq2itLQ0vvWtb8U999wTffv2jWXLlkXz5s2jTZs2tcZ37Ngxli1bttV9TpgwISoqKnJLt27d6vERAAAAAPBJDT6U2muvvWLhwoXx1FNPxXnnnRcjRoyIV1555XPtc+zYsbFy5crcsmTJkjqqFgAAAIDt0aCvKRUR0bx58+jVq1dERAwcODDmz58f119/fZx00kmxdu3aWLFiRa2zpaqqqqJTp05b3WdpaWmUlpbWZ9kAAAAAbEWDP1PqkzZs2BA1NTUxcODAaNasWcyaNSu37fXXX4/FixdHZWVlHisEAAAAYFsadCg1duzYeOyxx+Kdd96JF198McaOHRuzZ8+O0047LSoqKuLss8+OMWPGxKOPPhoLFiyIs846KyorK33zHgDQpEydOjX69+8f5eXlUV5eHpWVlfHAAw/ktq9ZsyZGjhwZ7du3j1atWsXw4cOjqqoqjxUDADTwj+8tX748zjjjjHjvvfeioqIi+vfvHw899FAceeSRERExadKkKC4ujuHDh0dNTU0MGzYspkyZkueqAQCy1bVr15g4cWLssccekVKK22+/PY4//vh47rnnYu+9947Ro0fHH/7wh7jrrruioqIizj///DjxxBPjiSeeyHfpAEAT1qBDqWnTpm11e1lZWUyePDkmT56cUUUAAA3PcccdV+v2j370o5g6dWrMmzcvunbtGtOmTYsZM2bEkCFDIiJi+vTp0adPn5g3b54zzAGAvGnQH98DAODTWb9+fcycOTNWr14dlZWVsWDBgli3bl0MHTo0N6Z3797RvXv3mDt37hb3U1NTE9XV1bUWAIC61KDPlAIAYPu8+OKLUVlZGWvWrIlWrVrFPffcE3379o2FCxdG8+bNa31bcUREx44dY9myZVvc34QJE2LcuHH1XDXQWEx87oNN1l02oEMeKgEKiTOlAAAagb322isWLlwYTz31VJx33nkxYsSIeOWVVz7z/saOHRsrV67MLUuWLKnDagEAnCkFANAoNG/ePHr16hUREQMHDoz58+fH9ddfHyeddFKsXbs2VqxYUetsqaqqqujUqdMW91daWhqlpaX1XTYA0IQ5UwoAoBHasGFD1NTUxMCBA6NZs2Yxa9as3LbXX389Fi9eHJWVlXmsEABo6pwpBQBQ4MaOHRtHH310dO/ePT788MOYMWNGzJ49Ox566KGoqKiIs88+O8aMGRPt2rWL8vLyGDVqVFRWVvrmPQAgr4RSAAAFbvny5XHGGWfEe++9FxUVFdG/f/946KGH4sgjj4yIiEmTJkVxcXEMHz48ampqYtiwYTFlypQ8Vw0ANHVCKQCAAjdt2rStbi8rK4vJkyfH5MmTM6oIAGDbXFMKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMz59j0AAKDOTHzug03WXTagQx4qAa/HhsBzwNY4UwoAAACAzAmlAAAAAMicj+8BAJ/L9p6WX9en7/s4AABAYXOmFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZK8l3AQAAQP2Y+NwHm6y7bECHPFQCsHXer5omZ0oBAAAAkDmhFAAAAACZE0oBAAAAkDnXlALYhnx9vt3n6gEAgMbMmVIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmSvJdAAAAAEBdmfjcB5usu2xAhwazv7r0ydoaSl3by5lSAAAAAGROKAUAAABA5oRSAAAAAGTONaUAoIlpyNdFAACg6XCmFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkLmSfBewNRMmTIi77747XnvttWjRokUcdNBBcc0118Ree+2VGzN48OCYM2dOrft985vfjJtuuinrcgEAoOBMfO6DTdZdNqBDHiqhrnzyOfV8Ag1Vgz5Tas6cOTFy5MiYN29e/PnPf45169bFUUcdFatXr6417hvf+Ea89957ueUnP/lJnioGAAAAYHs06DOlHnzwwVq3b7vttth5551jwYIFceihh+bW77jjjtGpU6esywMAAADgM2rQZ0p90sqVKyMiol27drXW33nnndGhQ4fo169fjB07Nv73f/83H+UBAAAAsJ0a9JlSH7dhw4a46KKL4uCDD45+/frl1p966qnRo0eP6NKlS7zwwgtx6aWXxuuvvx533333FvdVU1MTNTU1udvV1dX1WjsAAAAAtRVMKDVy5Mh46aWX4vHHH6+1/txzz839e5999onOnTvHEUccEW+//Xbsvvvum93XhAkTYty4cfVaL8CWNJYLyjaWxwEAAORHQXx87/zzz4/f//738eijj0bXrl23OnbQoEEREfHWW29tcczYsWNj5cqVuWXJkiV1Wi8AAAAAW9egz5RKKcWoUaPinnvuidmzZ0fPnj23eZ+FCxdGRETnzp23OKa0tDRKS0vrqkwAAAAAPqUGHUqNHDkyZsyYEffdd1+0bt06li1bFhERFRUV0aJFi3j77bdjxowZ8eUvfznat28fL7zwQowePToOPfTQ6N+/f56rBwAAAGBLGnQoNXXq1IiIGDx4cK3106dPjzPPPDOaN28eDz/8cFx33XWxevXq6NatWwwfPjwuv/zyPFQLAAAAwPZq0KFUSmmr27t16xZz5szJqBoAAAAA6kqDDqUAAICGwbeuAg2B96LGpSC+fQ8AAACAxkUoBQAAAEDmhFIAAAAAZE4oBQAAAEDmXOgcqBcuQJgdP2sAAKAQOVMKAAAAgMwJpQAAAADInFAKAAAAgMzVWyi12267xd/+9rdN1q9YsSJ22223+poWAKBg6JcAgKas3kKpd955J9avX7/J+pqamnj33Xfra1oAgIKhXwIAmrI6//a93/3ud7l/P/TQQ1FRUZG7vX79+pg1a1bsuuuudT0tAEDB0C8B4BuUycr2vtby8Zqs81DqhBNOiIiIoqKiGDFiRK1tzZo1i1133TV+9rOf1fW0AAAFQ78EAFAPodSGDRsiIqJnz54xf/786NBB0gsA8HH6JQCAegilNlq0aFF97RoAoFHQLwEATVm9hVIREbNmzYpZs2bF8uXLc38R3OjWW2+tz6kBAAqCfgkAaKrqLZQaN25cjB8/Pvbff//o3LlzFBUV1ddUAAAFSb8EADRl9RZK3XTTTXHbbbfF1772tfqaIq98UwIb5eu14DVIY+M1TVPU2PslAICtKa6vHa9duzYOOuig+to9AEDB0y8BAE1ZvYVS55xzTsyYMaO+dg8AUPD0SwBAU1ZvH99bs2ZN3HLLLfHwww9H//79o1mzZrW2X3vttfU1NQBAQdAvAQBNWb2FUi+88ELsu+++ERHx0ksv1drmIp4AAPolAKBpq7dQ6tFHH62vXQMANAr6JQCgKau3UAoAAACgKfBN0p9NvYVShx9++FZPO3/kkUfqa2oAgIKgXwIAmrJ6C6U2Xh9ho3Xr1sXChQvjpZdeihEjRtTXtAAABUO/BAA0ZfUWSk2aNGmz66+++upYtWpVfU0LAFAw9EsAQFNWnPWEp59+etx6661ZTwsAUDD0SwBAU5D5hc7nzp0bZWVlWU9LA5SvC8G5AB1kyzEHn55+CQBoCuotlDrxxBNr3U4pxXvvvRfPPPNMXHHFFfU1LQBAwdAvAQBNWb2FUhUVFbVuFxcXx1577RXjx4+Po446qr6mBQAoGPolAKApq7dQavr06fW1awCARkG/BAA0ZfV+TakFCxbEq6++GhERe++9dwwYMKC+pwQAKCj6JQCgKaq3UGr58uVx8sknx+zZs6NNmzYREbFixYo4/PDDY+bMmbHTTjvV19QAAAVBvwQANGX1FkqNGjUqPvzww3j55ZejT58+ERHxyiuvxIgRI+KCCy6IX//61/U1NQBAQdAvQbY++Y2wvg22sPmG39q8vilE9RZKPfjgg/Hwww/nGqyIiL59+8bkyZNduBMAIPRLAEDTVlxfO96wYUM0a9Zsk/XNmjWLDRs21Ne0AAAFQ78EADRl9RZKDRkyJC688MJYunRpbt27774bo0ePjiOOOKK+pgUAKBj6JQCgKau3UOrnP/95VFdXx6677hq777577L777tGzZ8+orq6OG2+8sb6mBQAoGPolAKApq7drSnXr1i2effbZePjhh+O1116LiIg+ffrE0KFD62tKgIhw0cstaWo/l6b2eClM+iUAoCmr8zOlHnnkkejbt29UV1dHUVFRHHnkkTFq1KgYNWpUHHDAAbH33nvHX/7yl7qeFgCgYOiXAADqIZS67v/H3r2HWVWW/QO/ZxiYQWAGQZyB5OQRPB8wxEMeQpGUV5K30vQV07IULLE0MQEhC7XyjJilqCVZ9kvMUspQ8TUBFcVCTUFRUBzMAyAUA8Lz+8OL/TrB4ICbtefw+VzXui72Ws88+14ze+25+c7aa11zTXzta1+L8vLyDbZVVFTE17/+9bjqqqvy/bQAAI2GfgkAYCuEUs8++2wce+yxdW4/5phjYvbs2fl+WgCARkO/BACwFUKpJUuWbPTWxuuVlJTEP//5z3w/LQBAo6FfAgDYCqHUpz71qZg7d26d2//2t79F586d8/20AACNhn4JAGAr3H3vc5/7XIwaNSqOPfbYKCsrq7Xt3//+d4wZMyaOP/74fD8tAECjoV/ik3KHUQCagryfKXXJJZfEu+++G7vuumtceeWVce+998a9994bV1xxRey2227x7rvvxve+9716zTV+/Pg48MADo127drH99tvH4MGD48UXX6w1ZtWqVTFs2LDo2LFjtG3bNoYMGRJLlizJ924BAORNPvslAIDGKu9nSlVWVsbjjz8eZ599dowcOTJSShERUVRUFAMGDIgJEyZEZWVlveaaPn16DBs2LA488MD44IMP4uKLL45jjjkmnn/++WjTpk1ERIwYMSL++Mc/xt133x0VFRUxfPjwOPHEE+Ovf/1rvncNACAv8tkvAQA0VnkPpSIiunfvHvfff3+89957MX/+/EgpxS677BLbbrvtZs0zderUWo9vu+222H777WP27Nnxmc98JpYtWxa33HJLTJ48OY466qiIiJg0aVL07t07Zs6cGQcddFDe9gkAIJ/y1S8BADRWWyWUWm/bbbeNAw88MG/zLVu2LCIiOnToEBERs2fPjjVr1kT//v1zY3r16hXdunWLGTNmCKUAgAYv3/0SAEBjsVVDqXxat25dnHfeeXHIIYfEnnvuGRER1dXV0apVq2jfvn2tsZWVlVFdXV3nXDU1NVFTU5N7vHz58q1SMwAAAAAb12hCqWHDhsXcuXPjscce+8RzjR8/PsaOHZuHqqD+6nuXnOZ2N52N7W9E095nPpmmdIw0pX0BAIDNlfe7720Nw4cPjz/84Q/x8MMPxw477JBbX1VVFatXr46lS5fWGr9kyZKoqqqqc76RI0fGsmXLcsuiRYu2VukAAFuVuxUDAI1Vgw6lUkoxfPjwuOeee+Khhx6Knj171tp+wAEHRMuWLWPatGm5dS+++GIsXLgw+vXrV+e8paWlUV5eXmsBAGiM1t+teObMmfHggw/GmjVr4phjjomVK1fmxowYMSLuu+++uPvuu2P69OmxePHiOPHEEwtYNQBAA//43rBhw2Ly5Mlx7733Rrt27XLXiaqoqIjWrVtHRUVFnHnmmXH++edHhw4dory8PM4999zo16+fi5wDAM2CuxUDAI1Vgw6lJk6cGBERRxxxRK31kyZNitNPPz0iIq6++uooLi6OIUOGRE1NTQwYMCBuvPHGjCsFAGgY8nW3YjeGAQC2tgYdSqWUPnZMWVlZTJgwISZMmJBBRQAADVc+71bsxjA0Jm4csfX43tbW2L8fjb1+mp4GfU0pAADqb/3diu+6665PPJcbwwAAW1uDPlMKAID6WX+34kcffbTOuxV/9Gypj7tbcWlpaZSWlm7NkgGAZs6ZUgAAjdjWulsxAMDW5kwpAIBGzN2KAYDGSigFANCIuVsxANBYCaWAiGgcd+Jo6DU29Pr45Ar1M/baYlPcrRgAaKxcUwoAAACAzAmlAAAAAMicUAoAAACAzAmlAAAAAMicC50DAABsJf95swo3qgD4P86UAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMldS6ALg4/znbXQj3Ep3c+T7++fnAQAAQD44UwoAAACAzAmlAAAAAMicUAoAAACAzAmlAAAAAMicC50DAEAD4YYiADQnzpQCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHPuvtfIuCNLdnyvmz4/YwAAgMJxphQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5FzoHAAAapELclKS5PCdQGI732pwpBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZK6k0AVQeE3llpRNZT+g0BxLjZefHQAAjYkzpQAAAADInFAKAAAAgMwJpQAAAADInGtKAQDAJ+B6bgCwZZwpBQAAAEDmhFIAAAAAZK7Bh1KPPvpoDBo0KLp06RJFRUUxZcqUWttPP/30KCoqqrUce+yxhSkWAAAAgHpp8KHUypUrY5999okJEybUOebYY4+NN998M7f86le/yrBCAAAAADZXg7/Q+cCBA2PgwIGbHFNaWhpVVVUZVQQAAADAJ9Xgz5Sqj0ceeSS233772G233eLss8+Od955Z5Pja2pqYvny5bUWAAAAALLT4M+U+jjHHntsnHjiidGzZ894+eWX4+KLL46BAwfGjBkzokWLFhv9mvHjx8fYsWMzrhSAhsit3FnPawEAIFuNPpQ66aSTcv/ea6+9Yu+9946ddtopHnnkkfjsZz+70a8ZOXJknH/++bnHy5cvj65du271WgEAAAD4UJP4+N5H7bjjjrHddtvF/Pnz6xxTWloa5eXltRYAAAAAstPkQqnXX3893nnnnejcuXOhSwEAAACgDg3+43srVqyoddbTggULYs6cOdGhQ4fo0KFDjB07NoYMGRJVVVXx8ssvx4UXXhg777xzDBgwoIBVAwBQX/95Pa8sruVViOekaXEdOrJSiNea1zdZafCh1FNPPRVHHnlk7vH6a0ENHTo0Jk6cGH/729/i9ttvj6VLl0aXLl3imGOOie9///tRWlpaqJIBAAAA+BgNPpQ64ogjIqVU5/Y//elPGVYDAAAAQD40uWtKAQAAANDwCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMNfi779H4XP7M2xusu2i/7QpQCQAAANBQOVMKAAAAgMwJpQAAAADInI/vAQDQ4DWFywP85z40tvrzqSn8PGlavCZpaJrLa9KZUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOZKCl0AAAAAH+/yZ97eYN1F+21XgEq2ruayn4AzpQAAAAAoAKEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQuZJCF8CHLn/m7Q3WXbTfdgWopG6NoUYAAACgcXCmFAAAAACZE0oBAAAAkDmhFAAAAACZc00pAACaDNfABIDGw5lSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5koKXQAAAABN3+XPvL3Buov2264AlQANhTOlAAAAAMicUAoAAACAzAmlAAAAAMhcgw+lHn300Rg0aFB06dIlioqKYsqUKbW2p5Ri9OjR0blz52jdunX0798/5s2bV5hiAQAAAKiXBh9KrVy5MvbZZ5+YMGHCRrdfeeWVcd1118VNN90Us2bNijZt2sSAAQNi1apVGVcKAAAAQH01+LvvDRw4MAYOHLjRbSmluOaaa+KSSy6JE044ISIi7rjjjqisrIwpU6bESSedlGWpAAAAANRTgz9TalMWLFgQ1dXV0b9//9y6ioqK6Nu3b8yYMaPOr6upqYnly5fXWgAAGiuXOwAAGqNGHUpVV1dHRERlZWWt9ZWVlbltGzN+/PioqKjILV27dt2qdQIAbE0udwAANEYN/uN7W8PIkSPj/PPPzz1evny5YAoAaLRc7gAAaIwa9ZlSVVVVERGxZMmSWuuXLFmS27YxpaWlUV5eXmsBAGiKXO4AAGioGvWZUj179oyqqqqYNm1a7LvvvhHx4VlPs2bNirPPPruwxQEANACf5HIHY8eO3ei2y595e4N1F+233SeoEgBojhr8mVIrVqyIOXPmxJw5cyLiw7/2zZkzJxYuXBhFRUVx3nnnxWWXXRa///3v4+9//3ucdtpp0aVLlxg8eHBB6wYAaMxGjhwZy5Ytyy2LFi0qdEkAQBPT4M+Ueuqpp+LII4/MPV5/LaihQ4fGbbfdFhdeeGGsXLkyzjrrrFi6dGkceuihMXXq1CgrKytUyQAADcZHL3fQuXPn3PolS5bkzjTfmNLS0igtLd3a5QEAzViDD6WOOOKISCnVub2oqCjGjRsX48aNy7AqAIDGweUOAICGqsGHUgAAbNqKFSti/vz5ucfrL3fQoUOH6NatW+5yB7vsskv07NkzRo0a5XIHAEDBCaUAABo5lzsAABojoRQAQCPncgcAQGPU4O++BwAAAEDTI5QCAAAAIHM+vtdEXf7M2xusu2i/7QpQCQAAAMCGnCkFAAAAQOacKQUAABvhzHMA2LqcKQUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGSupNAFAAAAQFNy+TNv13p80X7bFagSaNicKQUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5hp9KHXppZdGUVFRraVXr16FLgsAAACATSgpdAH5sMcee8Rf/vKX3OOSkiaxWwAAAABNVpNIb0pKSqKqqqrQZQAAAABQT43+43sREfPmzYsuXbrEjjvuGKecckosXLiw0CUBAAAAsAmN/kypvn37xm233Ra77bZbvPnmmzF27Ng47LDDYu7cudGuXbuNfk1NTU3U1NTkHi9fvjyrcgEAAACIJhBKDRw4MPfvvffeO/r27Rvdu3eP3/zmN3HmmWdu9GvGjx8fY8eOzapEAAAAAP5Dk/j43ke1b98+dt1115g/f36dY0aOHBnLli3LLYsWLcqwQgAAAACaXCi1YsWKePnll6Nz5851jiktLY3y8vJaCwAAAADZafSh1He+852YPn16vPrqq/H444/H5z//+WjRokWcfPLJhS4NAAAAgDo0+mtKvf7663HyySfHO++8E506dYpDDz00Zs6cGZ06dSp0aQAAAADUodGHUnfddVehSwAAAABgMzX6j+8BAAAA0PgIpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADIXEmhCwAAAACgcbj8mbdrPb5ov+22eC5nSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkrKXQBDc3lz7y9wbqL9tuuAJUAAAAANF3OlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADLXZEKpCRMmRI8ePaKsrCz69u0bTzzxRKFLAgBoUPRLAEBD0iRCqV//+tdx/vnnx5gxY+Lpp5+OffbZJwYMGBBvvfVWoUsDAGgQ9EsAQEPTJEKpq666Kr72ta/FV77yldh9993jpptuim222SZuvfXWQpcGANAg6JcAgIam0YdSq1evjtmzZ0f//v1z64qLi6N///4xY8aMAlYGANAw6JcAgIaopNAFfFJvv/12rF27NiorK2utr6ysjH/84x8b/ZqampqoqanJPV62bFlERCxfvjxWrVizwfjly1ttsG7VivebxLjGUKNxzW9cY6jRuOY3rjHUaNzWG7d8+fKIiEgpbTCmMWhs/VIhft7N5Tk3Nq65POfGxnnOrfecGxvXXJ5zY+M859Z7zo2Nay7PubFxhXzOLeqXUiP3xhtvpIhIjz/+eK31F1xwQfr0pz+90a8ZM2ZMigiLxWKxWCyWzVoWLVqURXuTd/oli8VisVgsWS2b0y81+jOltttuu2jRokUsWbKk1volS5ZEVVXVRr9m5MiRcf755+cer1u3Lt59993o2LFjFBUVRcSHCV/Xrl1j0aJFUV5eXufzG2dcoZ/bOOM2Z1xjqNG4pj2uMdS4sXEppXj//fejS5cum9y3hqqQ/VIhfo6es2k9Z0OuzXM2redsyLV5zqb1nA25tqz7pUYfSrVq1SoOOOCAmDZtWgwePDgiPmyapk2bFsOHD9/o15SWlkZpaWmtde3bt9/o2PLy8o9tro0zriE8t3HGbc64xlCjcU17XGOo8T/HVVRUfOzXNFQNoV8qxM/Rczat52zItXnOpvWcDbk2z9m0nrMh15ZVv9ToQ6mIiPPPPz+GDh0affr0iU9/+tNxzTXXxMqVK+MrX/lKoUsDAGgQ9EsAQEPTJEKpL33pS/HPf/4zRo8eHdXV1bHvvvvG1KlTN7iYJwBAc6VfAgAamiYRSkVEDB8+vM7Tz7dEaWlpjBkzZoPT1o0zrqE9t3HGbc64xlCjcU17XGOocXP2pbEpRL9UiJ+P52xaz9mQa/OcTes5G3JtnrNpPWdDri3rfqkopUZ6b2MAAAAAGq3iQhcAAAAAQPMjlAIAAAAgc0IpAAAAADInlAIAAAAgc0KpZmDBggXxwQcfFLoMaLAcI7BpjhGaMq9vcByAY6BwhFIfY9GiRXHGGWfkHj///PNxzjnnxH777RedO3eOzp07x3777RfnnHNOPP/885s9/5tvvhm//OUv4/7774/Vq1fX2rZy5coYN25cREQ8+OCDMWbMmHjooYciIuLRRx+NgQMHxlFHHRWTJk3a5HPstttuMW/evDq3L168OMaMGROnnHJKfOc734l//OMfm5zvPw/WQYMGxS9+8Yv497//vcmv2xQ3gWw6HCOOkXxoyo2BY8Qx0hR9tF96++2348orr4zPf/7z0a9fv+jXr198/vOfjx/96Efxz3/+c7PmbWyvb69t1svne32hj4NCv8c3l2OgqfU+heh3Gsrvgojax4HfBR8jsUlz5sxJxcXFKaWU7r///tSqVat00EEHpTFjxqQbb7wx3XjjjWnMmDHp4IMPTqWlpWnq1KkfO+f8+fPTkUcemZ544onUvn37VF5enlq3bp123nnnNHfu3Ny46urqVFxcnH7xi1+kkpKStP/++6e2bdumSZMmpfbt26evfvWr6YwzzkitWrVKd999d/r85z+/0aW4uDj1798/97h169bprbfeSiml9Nxzz6WKioq08847py984QupV69eaZtttknPPvtseuCBB9Lf/va3lFJKa9euTePGjUtdunRJxcXF6VOf+lQaP358WrduXSoqKkolJSWpoqIifeMb30hPPfXURvd71apV6dvf/nY67LDD0uWXX55SSun73/9+atOmTWrTpk06+eST07Jly3Lf9//5n/9JPXv2TGVlZWmbbbZJe+65Z7rkkktyY+p6jlWrVtXjJ1tYDz/8cPrXv/6Vl7lWrVqV5s+fn9f9rq6uTm+++eZGt33wwQepuro69xr6KMdIwzxGnnvuuXT22WenfffdN1VVVaWqqqq07777prPPPjs999xzH/vz+E+LFy9Ov/jFL9If//jHVFNTU2vbihUr0tixY1NKKf35z39Oo0ePTtOmTUsppTR9+vR07LHHpiOPPDLdeuutm3yOli1bpueff77O7W+88UYaPXp0+vKXv5y+/e1vpxdeeGGT861Zs6bW4+OPPz7dcccdn+g4XLdu3WZ/jWOkeRwjzdH6fumJJ55I2267bfrUpz6Vhg4dmi688MJ04YUXpqFDh6YddtghdejQIT355JMfO9/8+fPTAQcc0GBf3zfeeGNBXttNtT9qyH3RlvRE+XyvL8Rx0KJFi8zf47fG+3s+39sL3fsUuu/Z3J6nEP3O+tdZQ+x1CtnnFOI42FzNPpS69957N7lcffXVuVBq7733TqNGjapzrjFjxqS99trrY59zfePWv3//9JWvfCWtXbs2LV++PJ199tmpY8eO6emnn04p/d8vmX333Tdde+21KaWU/vKXv6TWrVunq666Kjffj3/843TIIYekoqKidPjhh6fTTz+91lJcXJwGDx6ce1xUVJSWLFmSUkrphBNOSIMGDcq9ca1duzaddNJJ6fjjj0+77bZbevTRR1NKKf3whz9MHTt2TFdddVV64IEH0jXXXJMqKyvT5ZdfnoqKitJzzz2Xrr766rTXXnul4uLitM8++6Trr78+vfvuu7k6R4wYkbp06ZK+/e1vp969e6dzzjkndevWLf3yl79MkydPTjvvvHM699xz09SpU1Pr1q3TkCFD0qmnnpq22WabNHz48PTd73437bzzzmmnnXaq1Rz8+c9/TgMHDkzt27dPxcXFqbi4OLVv3z4NHDgwPfjgg/V6HTz//POpZ8+euZ/P97///TRhwoT0z3/+s9a4ZcuWpa985SsppZR+9rOfpdNOOy33C+auu+5KvXr1Sj179kyjR4/e5PP95y+d9T+P9Z555pl02mmnpYMPPjgNGTIkPfzwwymllCZNmpQef/zxlFJK//73v9MZZ5yRWrRokYqLi1NJSUn6+te/nlatWpX23HPPNG7cuLRw4cJN1vHOO++kIUOGpK5du6ZvfOMb6YMPPkhnnnlmKioqSsXFxalfv35p8eLFKaWU/vCHP6TDDjsslZaW5r7PFRUV6dRTT02vvfZaSskx0hCPESFIwwpBHCNN9xhp6urbL/Xt2zedddZZG/0PzLp169JZZ52VDjrooI991YAU6AABAABJREFUvjlz5qSIaLCv7zZt2mT+2v6v//qvTPujLHujrdkX7bHHHpn3RPl8ry/EcRARmb/H5/v9XTBY2GCwEP1ORDTYXqdQfU4+joPN/T/Almj2odT6XzRFRUV1Luu/uWVlZekf//hHnXP94x//SGVlZenaa6/d5HLhhRem4uLitO2226YXX3yx1hzjx49P2267bXriiSdyP9g2bdqkV155JTemZcuW6dlnn809fuGFF1LHjh3Tr371q7TDDjtskMKXlJTUSkE/eoB17do1dxCt9/TTT6fOnTun0tLSXNiw5557pt/85je1xv3hD39IO++8c635Ukpp1qxZ6ayzzkoVFRWpdevW6eSTT07Tpk1LXbt2zTVBL7/8ciouLk5TpkzJfd2f//zn1L1797TvvvumiRMn1lrfq1evlFJKq1evTp/97GfT6aefnlJK6bbbbkslJSXppJNOSpMmTUr3339/uv/++9OkSZPSySefnFq2bJnuuOOOOn9m661/w/vTn/6UWrVqlfbYY4/UrVu31LFjx/TQQw/lxq3/mVx99dWpTZs26cQTT0ydO3dOl112WerYsWO67LLL0tixY1N5eXn66U9/mvbbb7+NLkVFRal37965x8XFxbnv4V//+tfUsmXLdPjhh6cLLrggHX300amkpCRNnz499ezZM82cOTOllNJ3vvOd1KNHj/S73/0uvfDCC2nKlClp1113TRdccEEqKipKHTt2TC1atEgDBgxIv/3tbzf4i0lKKZ1xxhlpzz33TNdff306/PDD0wknnJD23nvv9Nhjj6XHH388HXjggem0005Ld9xxR2rXrl369re/nb73ve+lqqqqdNFFF6WJEyemww8/PG233XbppZdecow0wGNECNKwQhDHSNM9Rpq6+vZLZWVlm/wL/gsvvFDv13hENNjXd0Rk/tpu2bJlpv3R1uiNunbtmnlfFBGZ90SlpaV5e68vxHFQiPf47bffPq/v74LBwgaDheh3IqLB9jof/XmmlF2fk4/jYHP/D7Almn0o1aVLl1o/6P/0zDPP5L65vXr1Sj/5yU/qHPuTn/wk7bbbbqmoqCh16dIl9ejRY6PL+vR62223rXWgrPejH/0otW/fPv3ud7/L/VXrowd127Zt08svv5x7/Morr6RtttkmpZTSggUL0iGHHJJOPPHE3BvMfx5gxcXFueS9e/fuG9TwyiuvpLKystS5c+c0Y8aMlFJKlZWVuRfcei+99FJq3br1Br9o1lu5cmWaNGlSOvTQQ1NxcXFq3bp17oBN6cM3io+mqwsWLEjbbLNNKisrSwsWLMitX7duXWrZsmXur1OPPvpo6tSpU0oppV122SXdcMMNGzz3ehMmTEg777xzGjFixCaXU089NfdXsIsvvjj3vFdccUVq27ZteuCBB1JK/3ew9erVK915550ppQ/fkEpKStLPf/7z3PP+/Oc/TwcccEAqKSlJxx57bLr00ktzy5gxY1JxcXE655xzcus++j08+uij0xlnnFFrP771rW+lo446qtab3q677pqra73p06enbt26paKiovTGG2+ke+65Jw0aNCiVlJSkTp06pW9/+9u1/hLZuXPn9Ne//jW3b0VFRenPf/5zbvtjjz2WPvWpT6VevXqlu+66K7f+ySefTDvssEPuL+Ff+tKX0uc//3nHSAM8RoQgDSsEcYw03mOkuatvv9SjR490++231znu9ttvT927d6/XazwiGuzrOyIyf21HRF77o4qKisx7o4jIvC+KiMx7orZt2+btvb4Qx0Eh3uM/GvSm9Mnf3/PZ/wgGP7Q5PU9FRUXm/U5ENNhe5z9DqfW2dp9Tn+OgpKQkr/8H2BLNPpQaNGjQJtPDOXPmpKKiopRSSr/5zW9SSUlJGjRoULr22mvTXXfdle6666507bXXpv/6r/9KrVq1Sr/97W9Tjx490q9//es651zfuB122GG1DuiPuuKKK3KnBPfp06fWG8KyZctqnRb/4IMPpl133TX3eO3atWn06NGpa9euaerUqally5Yb/Oeuffv2adttt00tW7ZMv/jFL2o995///OfUo0ePdM4556Tjjz8+ffDBB+mss85KX/3qV2s977nnnpv69etX5y+aj3rxxRfTbrvtlvsl/sQTT6RWrVrVejO+66670i677JJ22mmnWqcRzps3L7Vo0SL3udVXXnkltW7dOqWU6v2XqOLi4rT//vunI444YqNLnz59UnFxcSovL0/z58+vNcedd96Z2rRpk+67777cwfafbxilpaW13jDmzZuX2rdvnx577LG00047pdGjR6e1a9fmtm/qP9wffWNbb+7cuWm77bZL3bt3z/118lOf+tQG1+V4/vnnU5s2bTb4mSxevDj98Ic/TLvsskuuwbzlllvSNttsk1599dXcuJYtW6a///3vucevvPJKatOmTWrdunWtN771+/DGG2+klD78xda+fXvHSAM8RoQgDSsEcYw03mOkuatvv3TDDTek0tLS9M1vfjPde++9aebMmWnmzJnp3nvvTd/85jdT69at04QJE+r1Go+IBvv6bteuXeav7ZYtW+a1P4qIzHujtm3bZt4X/ed/BrPoibbZZpu8vdcX4jgoxHt8z5498/r+ns/+RzCYcjXXt+cpLy/PvN+JiAbb69QVSn3U1uhz6nMcRERe/w+wJZp9KPXoo49u8FeVj1qxYkV65JFHco//+te/pi996UupW7duqVWrVqlVq1apW7du6Utf+lLuM+1DhgxJF154YZ1zrm/cfvazn6VTTz21znGXX3557jTk6dOn1zlu/Pjx6ZJLLtlg/f/+7/+mnj17puLi4loH2G233VZr+c9f9OPGjUsjRoxIS5cuTX369Ek777xz+p//+Z9UVlaWunfvno4++ujUs2fPVFFRkWbOnJmOOOKI9N5779VZ33pXX311KisrS/3790/bbrttuu6661JVVVW68MIL00UXXZQqKirSuHHj0tixY9MOO+yQJk6cmG699da05557ps9//vO5eX73u9+l3XffPaWU0v77758uuOCCOp/zwgsvTPvvv3/addddN3gj+aj1b3idOnXa6Gesf/WrX6VtttkmTZw4MRUXF6eOHTvW+uvaDjvsUKuRWd94pZTS0qVL00knnZT69u2ba+o21nzNnz8/LVu2LPXs2XODXyjz589P22yzTbr44otTv3790nvvvZcuuuiiNGjQoPT++++nlD78pfLFL34xHXPMMbVOe/9PDz/8cDr11FNTmzZt0j777JP7S+r999+f2rVrV+uNa+LEiWnPPfdMvXv3TnfffXdu/ezZs1OrVq3SBx98kNvfNm3apJQcIw3tGBGCNLwQxDHSOI+R5m5z+qW77ror9e3bN5WUlOQ+2ldSUpL69u2be5+pz2s8Ihrs6/ucc87J/LV95JFH5rU/Ki0tLUhvlHVftKn/DG7Nnihf7/WFOA4K8R6f7/f3fPY/gsEPbW7Pk3W/06lTpwbb6+y///4F6XPqcxxsv/32ef0/wJZo9qHU1vDcc89t8s4yq1evrvVLemt6//3305w5cza4On59rV69Ok2cODF97nOfS7169Uq77rprOvzww9PFF1+cFi1atNnz3XnnnWn48OFp8uTJKaUPm4HDDjssHXDAAenSSy9Na9euTWvWrEkXXnhh6tKlS+rYsWP68pe/XOuimrNmzcq94Tz88MOpTZs2aa+99kojRoxIl19+ebr88svTiBEj0t57753atm2bpk+fnr785S+n8847r8661r/hHX300elHP/rRRsdMnjw5tWzZMhUXF6dDDjmk1qnb/+m+++5Le+65Z611t956a6qqqko//elPN/of7vUXyiwqKko333xzra+99957084775xqamrSf/3Xf6Vtt902HX300bkLC+6yyy6pTZs2qVu3bunFF1+s1y+eZcuWpV/+8pepRYsWaeedd06lpaXp7rvvTl26dElf/OIX00knnZRatWqVbrjhhnTDDTekioqKdOGFF6bRo0enLl26pDPPPDM31y9/+cu03377bfL5PsoxUrd8HyMpCUEaWghSH46RuhXqGGHzrV69Oi1evDgtXrw4rV69uta2hvIa/ySv76xf2zU1NXntj/r371/Q3iirvqgh90SOg9ry/f4uGCxsMFgfTeEYSKlxHwf5/j/AlihKKaWARuzVV1+NiRMnxsyZM6O6ujoiIqqqqqJfv37xjW98I3r06BHV1dVRU1MT3bt33+Rc99xzTzz66KNx9dVXb3T75MmT42c/+1lcdtll0aZNm9h33303Ou7GG2+MdevWxfDhw2utnzdvXpxyyinx1FNPxdy5c2P33XePiIjp06fXGte5c+fYddddc4+vvfbaWL16dVxwwQURETF16tS477774pVXXol169ZF586d45BDDokvf/nL0aZNm/jKV74S1113XbRr126T+xsR8de//jVmzpwZ/fr1i4MPPjief/75uPzyy+Nf//pXDBo0KIYOHRoRERMnToxf/vKXUVNTEwMGDIhRo0ZFWVlZbr/Wrl0bvXr1+tjno2F6/vnn41//+lf06dNno9vXrFkTixcv/thjKB9WrFgRL7/8cvTu3TtatWq12V+/Zs2auOWWWzZ6jJx99tmxww47bNZ8kydPjhkzZsTBBx8cJ598cjzyyCMxevTo3DEyatSoWLduXXzve9+rdYxce+21sd1220VExBNPPBGrVq2Kz3zmM5u9PwBb4uP6o7KysoL3Rln0RcOHD9cTUaeG0v98kt4nn32Pnqf5aQjHgFDqY9x4443x9ttvx+jRoz927MUXXxzV1dVx66235uW56ztfocbVV77na+zWrVsX77//fpSXl0dRUVGhy8mUYySb+Wi8HCPZzEf+1bdf2py+6uM0hde313bz7IsK8RrK5zjv8XxShXgN+V3QcBUXuoCG7v/9v/8Xt912W73Gvv766/Hqq69+7LiLL744zjjjjLzNV6hx+d6P+s5X33ENVXFxcVRUVDSbxuuj3njjjby+Fuo7X6HG5Xs/tsYxku/jKd81Fup9oVDvM46RbOYr5DHSVNW3X6rvuPp83xtyn1SIHqmxvlabY1+Uz/e0Qrx/F+I9viH3DYWorbH3PYV4DTXkXqdQfU4hjoONKclLBU3YtGnT6j32jjvuqNe4119/PV5//fW8zVeocfnej/rOV99xERFDhw6NRYsWxUMPPWRcAxh3++23b3L7em+88UYsWrToY8fVd75Cjcv3ftR3vvqOi6j/8VTfv+Dk+zjO97h870e+/pqWUoqioqK8vRbqO1+hxq2Xr/2o73ybOy5i837nNGf17ZfqO64+3/eG3CcVokfKd39UiF6huTxnPt/TCtHjFKIPyvf7ez5/zxeipylE35OPnqcQfUJD7nUK3efk8+f+SfolodRmevvtt+PWW2+NGTNm1Pp8/sEHHxynn356dOrU6WPn+GgDUt/5CjUu3/tR3/nyMS4iokuXLlFc/PEnBBqXzbj6qu8bc0OX7/3Id+MZIUzPar6PG1daWhrPPvts9O7de5Pz1Ld5qe98hRqX7/3YWo1kxOb9ziF/1n/fG2ufVIgeKd/9USF6hebynPXV2PuhfNaf7x4on7/nC9HTFKLvyUfPU4g+oSH3OoXucwrxR5aNcU2piFi9enVMmTJlo83CCSeckLvY3JNPPhkDBgyIbbbZJvr37x+VlZUREbFkyZKYNm1a/Otf/4o//elP0adPn3o1IPWdL6VUkHH53o/6zheRnwaOwvj3v/8ds2fPjg4dOuQuWLreqlWr4je/+U2cdtppeZ+vUOPyvR9bwwsvvJC7cGuvXr3iH//4R1x77bVRU1MTp556ahx11FFbZb5CjSvU96U+zj///I2uv/baa+PUU0+Njh07RkTEVVddtdFxrVq1qtW81He+umztcfnej/rOV5f6jFu5cmX85je/ifnz50fnzp3j5JNP/tj9bi7q2y/Vd9zH/a5/9dVXG3Sf1KNHj8x7JP1R45HP3/uF6HG+8IUvNPo+KJ+/5wvR0zTmvqcQ/c706dPj8MMP/9jnrMvW7HUaSp+Tzx4nn3M1+1Bq/vz5MWDAgFi8eHH07du3VrMwa9as2GGHHeKBBx6InXfeOQ466KDYZ5994qabbtrgc+8ppfjGN74Rf/vb3+K6666rVwMyfPjwes2XUirIuHzvR33n25zQ7OMsWrQoxowZ87GnGxqXn3EXXXRRHHPMMbFw4cIoKiqKQw89NO66667o3LlzRHz4M+zSpUusXbu2Xs3JQQcdVK/5XnjhhYKMy/d+1He+zWk8p06dGieccEK0bds2/vWvf8U999wTp512Wuyzzz6xbt26mD59evz5z3+ud/NT3/lWr15dkHH53o/NaQrrM664uDj22WefaN++fa2f2fTp06NPnz7Rpk2bKCoqqvPuVf/ZvFxzzTX1mu+RRx4pyLh870d956vLxpq/3XffPR577LHo0KFDLFq0KD7zmc/Ee++9F7vuumu8/PLLUVJSEjNnzoyePXtucu6mrr79UkTUa9x77733sb/ru3TpEgcffHCD7JMef/zxeOONNzLtka666qoYMWJEZv1RIXqKpvKc5513XsyePTsvv/evu+66uPHGGzPtcTp37hzdunXLvA9asWJF3nqg7bffPm+/5wvR01x22WUxZsyYzPuezp0756Xn6d+/f+Z9wiOPPBL77rtvg+x1rr766nrVlu8+Z+rUqZvd49QVNm3Vfik1c/37908nnHBCWrZs2Qbbli1blk444YR0zDHHpJRSKisrSy+88EKdc73wwguprKws9e3bN5111llp3bp1G4xZt25dOuuss9JBBx1U7/kKNS7f+1Hf+eo7rj7mzJmTiouLjcto3ODBg9Nxxx2X/vnPf6Z58+al4447LvXs2TO99tprKaWUqqurU3FxcXrxxRdT9+7dU1FRUSouLk6f+cxn0uLFi3PzrR9X3/kKNS7f+1Hf+eo7LqWU+vXrl773ve+llFL61a9+lbbddtt08cUX58ZedNFF6eijj04PPPBAatWqVerQoUMqKytLDzzwQOrUqVPq379/Ouqoo1KLFi3StGnT6j1focblez/qO199x40fPz717NkzTZs2rdYxVFJSkp577rnc46KiorTvvvumI444otZSVFSUDjzwwHTEEUekI488st7zFWpcvvejvvPVd9z6OZcsWZJSSumUU05JBx98cFq6dGlKKaX3338/9e/fP5188smpuatvv1TfcfX5XV9UVNRg+6SioqLMe6S2bdtm2h8VoqdoKs8ZEXn7vV/fufLZ4+Sz/vo+Z1FRUV57oHz+nt99990z72kqKioy73v222+/vPU8X/3qVzPvExpyr7PjjjsWpM+pT49TXl6e3nnnnZRSSgsXLkw9evRIFRUV6cADD0wdOnRI22+/fXrllVe2ar/U7EOp1q1bp7///e91bv/b3/6WWrdunVJKqUePHun222+vc+ztt9+eunfvXu8GpL7zFWpcvvcj301jSinde++9m1yuvvrqVFxcbFxG47bffvv0t7/9LfezWrduXfrGN76RunXrll5++eXNbpzqO1+hxuV7P/IdmqWUUnl5eZo3b15KKaW1a9emkpKS9PTTT+dq+fvf/54qKyvr3UjVd75Cjcv3fuQ7NEsppSeeeCLtuuuu6dvf/nZavXp1SmnLG6H6zleocfnej3w3kinVDqV23HHH9Oc//7nW9r/+9a+pa9euqbmrb79U33H1DX4aap9U38Asnz1SROS1PyoqKsq8V2guzxkRefu9X9+58tnj5LP+zXnOfPZA+fw9X1JSknlPU1RUlHnf07Jly7z2PIXoExpyr1OIPqc+PU5E1Cts2pr9UrMPpTp37pzuu+++Orf//ve/T507d04ppXTDDTek0tLS9M1vfjPde++9aebMmWnmzJnp3nvvTd/85jdT69at04QJE+rdgNR3vkKNy/d+5LtpTCnl/kpSVFRU57J+u3Fbf1y7du3S888/v8HPbNiwYWmHHXZIjz766GY1TvWdr1Dj8r0f+Q7NUvowlJo/f35ubNu2bdPLL7+ce/zqq6+msrKyzWqk6jtfocblez/y2Yiu9/7776fTTjst7b333rlGcEsbpvrOV6hx+d6PfDecRUVF6a233koppdSlS5cNApX1r4Xmrr79Un3H1ed3fYcOHRpsn9SxY8fMe6QWLVrktT+KiMx7heb0nPn6vV/fufLZ4+Sz/s15znz2QPn8PV9UVJR5TxMRmfc9EZH3nqcQfUJD7nWy7nPq0+N8NJTaVNi0NfulZh9KjRo1Km277bbpqquuSs8++2yqrq5O1dXV6dlnn01XXXVV6tChQxozZkxu/F133ZX69u2bSkpKcr94SkpKUt++fdOvf/3rlFL9w6v6zleocfnej3w3jSl9eEBMmTKlzp/vM888k4qLi43LaNyBBx6Y7rjjjo2OGTZsWGrfvv1mNU71na9Q4/K9H/kOzVJKae+9904PPPBAbszf//73tGbNmtzjRx99NPXs2bPejVR95yvUuHzvR75Ds//0q1/9KlVWVqbi4uJP1DDVd75Cjcv3fuSzkSwqKkp77bVX2m+//VLbtm3Tb3/721rbp0+fnj71qU/VWWtzUd9+qb7j6vu7vqH2SYXokb74xS/mtT+KiMx7heb0nPn6vV/fufLZ4+Sz/s15znz2QPn8PV9UVJR5T9OqVavM+558h28fVYh+pyH3Oln1OfXpcSKiXmHT1uyXmn0olVJKl19+eercuXPuLx/r//rRuXPndMUVV2z0a1avXp0WL16cFi9enEsmP6q+TU995yvUuHzvR76bxkGDBqVRo0bVuX9z5sxJRUVFxmU07oc//GEaOHBgnePOPvvsVFRUVO/Gqb7zFWpcvvcj36FZSilNnDgx/eEPf6jzuUeOHJnOPPPMejdS9Z2vUOPyvR/5Ds02ZtGiRWnKlClpxYoVddZT34apvvMValy+9yMfjeSll15aa5k6dWqt7d/5znfSSSedtMlam4v69kv1Hbc5PUZD7JMK0SPlsz+KiMx7heb0nPn6vV9UVJR5j5PP+uvbB+U7fMvn7/mOHTtm3tMcfPDBmfc9HTp02Ko9TyH6hIbc62TR59Snx4mIeoVNW7NfavZ33/uoBQsWRHV1daxZsya22267De7msCXWrFkTb7/9dkREbLfddtGyZctPPGch5Hs/6jvfx4373//931i5cmUce+yxG/36lStXxlNPPRXFxcXGZTBuY7dh3Zjx48fH//7v/8b999+/0e3nnHNO3HTTTbFu3bp6zVco+d6P+s73gx/8IO/fv5tuuim6du0axx133Ea3X3zxxfHWW2/Fz3/+83rPWQj53o/6ztenT5+t/v17/fXXY/bs2dG/f/9o06bNFs9TaPnej/rO11S+fw1Bfful+o5r7L1SIXqkfPRHt956a+yyyy6Z9grN5Tnr2xM19n4on/UXqgdq7P1PPutvKD1PU/h9nc992Np9ztixY2s9Puigg2LAgAG5xxdccEG8/vrr8atf/Wrzi68nodRGlJeXx5w5c2LHHXcsdCkAAA1SffslfRUAUJfiQhfQEMnpAAA2rb79kr4KAKiLUAoAAACAzAmlNuKnP/1pVFZWFroMAIAGq779kr4KAKiLa0oBAAAAkDlnSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgFN1hFHHBHnnXdevcY+8sgjUVRUFEuXLv1Ez9mjR4+45pprPtEcAABZ0S8BhSSUAgAAACBzQikAAAAAMieUApqFX/ziF9GnT59o165dVFVVxZe//OV46623Nhj317/+Nfbee+8oKyuLgw46KObOnVtr+2OPPRaHHXZYtG7dOrp27Rrf/OY3Y+XKlVntBgDAVqNfArImlAKahTVr1sT3v//9ePbZZ2PKlCnx6quvxumnn77BuAsuuCB+8pOfxJNPPhmdOnWKQYMGxZo1ayIi4uWXX45jjz02hgwZEn/729/i17/+dTz22GMxfPjwjPcGACD/9EtA1koKXQBAFs4444zcv3fccce47rrr4sADD4wVK1ZE27Ztc9vGjBkTRx99dERE3H777bHDDjvEPffcE1/84hdj/Pjxccopp+QuBrrLLrvEddddF4cffnhMnDgxysrKMt0nAIB80i8BWXOmFNAszJ49OwYNGhTdunWLdu3axeGHHx4REQsXLqw1rl+/frl/d+jQIXbbbbd44YUXIiLi2Wefjdtuuy3atm2bWwYMGBDr1q2LBQsWZLczAABbgX4JyJozpYAmb+XKlTFgwIAYMGBA3HnnndGpU6dYuHBhDBgwIFavXl3veVasWBFf//rX45vf/OYG27p165bPkgEAMqVfAgpBKAU0ef/4xz/inXfeicsvvzy6du0aERFPPfXURsfOnDkz1zC999578dJLL0Xv3r0jImL//feP559/PnbeeedsCgcAyIh+CSgEH98Dmrxu3bpFq1at4vrrr49XXnklfv/738f3v//9jY4dN25cTJs2LebOnRunn356bLfddjF48OCIiPjud78bjz/+eAwfPjzmzJkT8+bNi3vvvdeFOwGARk+/BBSCUApo8jp16hS33XZb3H333bH77rvH5ZdfHj/+8Y83Ovbyyy+Pb33rW3HAAQdEdXV13HfffdGqVauIiNh7771j+vTp8dJLL8Vhhx0W++23X4wePTq6dOmS5e4AAOSdfgkohKKUUip0EQAAAAA0L86UAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikgE6+++moUFRXFj3/847zN+cgjj0RRUVE88sgjeZuzMVq0aFGUlZXFX//6183+2ueffz5KSkpi7ty5W6EyAGBz6Je2Hv0SNExCKaBOt912WxQVFcVTTz1V6FLy4uWXX46vf/3rseOOO0ZZWVmUl5fHIYccEtdee238+9//LnR5ERFx4403xm233bZZXzNu3Ljo27dvHHLIIRts+/Wvfx39+vWLNm3aRPv27ePggw+Ohx56KLd99913j+OOOy5Gjx79SUsHgGZJv5S9fPVLPXr0iKKioo0uu+yyS26cfgm2npJCFwCQhT/+8Y/xhS98IUpLS+O0006LPffcM1avXh2PPfZYXHDBBfHcc8/FzTffXOgy48Ybb4ztttsuTj/99HqN/+c//xm333573H777Rtsu/TSS2PcuHHx3//933H66afHmjVrYu7cufHGG2/UGveNb3wjPve5z8XLL78cO+20Uz52AwBohJpbv3TNNdfEihUraq177bXX4pJLLoljjjmm1nr9EmwdQimgyVuwYEGcdNJJ0b1793jooYeic+fOuW3Dhg2L+fPnxx//+McCVrjlfvnLX0ZJSUkMGjSo1vqZM2fGuHHj4ic/+UmMGDFik3P0798/tt1227j99ttj3LhxW7NcAKCBao790uDBgzcYe9lll0VExCmnnFJrvX4Jtg4f3wM+kdWrV8fo0aPjgAMOiIqKimjTpk0cdthh8fDDD9f5NVdffXV07949WrduHYcffvhGP5//j3/8I/77v/87OnToEGVlZdGnT5/4/e9/v0U1XnnllbFixYq45ZZbajVY6+28887xrW99K/f4gw8+iO9///ux0047RWlpafTo0SMuvvjiqKmpqfV1RUVFcemll24wX48ePWr95W79af1//etf4/zzz49OnTpFmzZt4vOf/3z885//rPV1zz33XEyfPj136vgRRxyxyX2bMmVK9O3bN9q2bVtr/TXXXBNVVVXxrW99K1JKG/wV8KNatmwZRxxxRNx7772bfC4AYMvoly7dYL6G0C9tzOTJk6Nnz55x8MEH11qvX4KtQygFfCLLly+Pn//853HEEUfEFVdcEZdeemn885//jAEDBsScOXM2GH/HHXfEddddF8OGDYuRI0fG3Llz46ijjoolS5bkxjz33HNx0EEHxQsvvBAXXXRR/OQnP4k2bdrE4MGD45577tnsGu+7777YcccdN2gu6vLVr341Ro8eHfvvv39cffXVcfjhh8f48ePjpJNO2uzn/qhzzz03nn322RgzZkycffbZcd9998Xw4cNz26+55prYYYcdolevXvGLX/wifvGLX8T3vve9Oudbs2ZNPPnkk7H//vtvsG3atGlx4IEHxnXXXRedOnWKdu3aRefOneOGG27Y6FwHHHBAzJ07N5YvX/6J9hEA2JB+qf6y7Jf+0zPPPBMvvPBCfPnLX97odv0SbAUJoA6TJk1KEZGefPLJOsd88MEHqaampta69957L1VWVqYzzjgjt27BggUpIlLr1q3T66+/nls/a9asFBFpxIgRuXWf/exn01577ZVWrVqVW7du3bp08MEHp1122SW37uGHH04RkR5++OE661u2bFmKiHTCCSfUZ5fTnDlzUkSkr371q7XWf+c730kRkR566KHcuohIY8aM2WCO7t27p6FDh+Yer/8+9u/fP61bty63fsSIEalFixZp6dKluXV77LFHOvzww+tV6/z581NEpOuvv77W+nfffTdFROrYsWNq27Zt+tGPfpR+/etfp2OPPTZFRLrppps2mGvy5MkpItKsWbPq9dwAwIf0S/+nMfVLG/Ptb387RUR6/vnnN7pdvwT550wp4BNp0aJFtGrVKiIi1q1bF++++2588MEH0adPn3j66ac3GD948OD41Kc+lXv86U9/Ovr27Rv3339/RES8++678dBDD8UXv/jFeP/99+Ptt9+Ot99+O955550YMGBAzJs3b4MLdW/K+r9ktWvXrl7j19dx/vnn11r/7W9/OyLiE11L4ayzzoqioqLc48MOOyzWrl0br7322hbN984770RExLbbbltr/fqP6r3zzjvx85//PL7zne/EF7/4xfjjH/8Yu+++e+5aCR+1fo633357i2oBAOqmX6q/rPql/7Ru3bq46667Yr/99ovevXtvdIx+CfJPKAV8YrfffnvsvffeUVZWFh07doxOnTrFH//4x1i2bNkGYz96e931dt1113j11VcjImL+/PmRUopRo0ZFp06dai1jxoyJiIi33nqr3rWVl5dHRMT7779fr/GvvfZaFBcXx84771xrfVVVVbRv336LG6KIiG7dutV6vL6xee+997Z4zoiIlFKtx61bt46ID6998N///d+59cXFxfGlL30pXn/99Vi4cOFG5/hoEwgA5I9+qX6y6pf+0/Tp0+ONN97Y4ALnG5tDvwT54+57wCfyy1/+Mk4//fQYPHhwXHDBBbH99ttHixYtYvz48fHyyy9v9nzr1q2LiIjvfOc7MWDAgI2O+c8GaFPKy8ujS5cuG7046KZ8kmZj7dq1G13fokWLja7/uCapLh07doyIDZu09Rc7bd++/QbPuf322+e+5qNN3/o5tttuuy2qBQCom35pQ4Xul/7TnXfeGcXFxXHyySfXOUa/BPknlAI+kd/+9rex4447xu9+97tajcn6v9L9p3nz5m2w7qWXXooePXpERMSOO+4YER+e5dO/f/+81Hj88cfHzTffHDNmzIh+/fptcmz37t1j3bp1MW/evFqnbi9ZsiSWLl0a3bt3z63bdtttY+nSpbW+fvXq1fHmm29uca2b09x169YtWrduHQsWLKi1vri4OPbdd9948sknY/Xq1bmPC0RELF68OCIiOnXqVOtrFixYEMXFxbHrrrtuce0AwMbpl5bW+vqG0C99VE1NTfy///f/4ogjjoguXbrUOU6/BPnn43vAJ7L+r1kf/evVrFmzYsaMGRsdP2XKlFrXOHjiiSdi1qxZMXDgwIj48EyeI444In76059utFn56C2B6+vCCy+MNm3axFe/+tVad61Z7+WXX45rr702IiI+97nPRcSHd3b5qKuuuioiIo477rjcup122ikeffTRWuNuvvnmOv/yVx9t2rTZoHGrS8uWLaNPnz7x1FNPbbDtS1/6UqxduzZuv/323LpVq1bFnXfeGbvvvvsGDdfs2bNjjz32iIqKii2uHQDYOP1Sw+yX1rv//vtj6dKlm/zoXoR+CbYGZ0oBH+vWW2+NqVOnbrD+W9/6Vhx//PHxu9/9Lj7/+c/HcccdFwsWLIibbropdt9999wFtz9q5513jkMPPTTOPvvsqKmpiWuuuSY6duwYF154YW7MhAkT4tBDD4299torvva1r8WOO+4YS5YsiRkzZsTrr78ezz777GbVv9NOO8XkyZPjS1/6UvTu3TtOO+202HPPPWP16tXx+OOPx9133x2nn356RETss88+MXTo0Lj55ptj6dKlcfjhh8cTTzwRt99+ewwePDiOPPLI3Lxf/epX4xvf+EYMGTIkjj766Hj22WfjT3/60yc6pfuAAw6IiRMnxmWXXRY777xzbL/99nHUUUfVOf6EE06I733ve7F8+fLc9SAiIr7+9a/Hz3/+8xg2bFi89NJL0a1bt/jFL34Rr732Wtx333215lizZk1Mnz49zjnnnC2uGwCaO/1S4+uX1rvzzjujtLQ0hgwZUucc+iXYSgp12z+g4Vt/a966lkWLFqV169alH/7wh6l79+6ptLQ07bfffukPf/hDGjp0aOrevXturvW3OP7Rj36UfvKTn6SuXbum0tLSdNhhh6Vnn312g+d++eWX02mnnZaqqqpSy5Yt06c+9al0/PHHp9/+9re5MfW5xfFHvfTSS+lrX/ta6tGjR2rVqlVq165dOuSQQ9L1119f63bKa9asSWPHjk09e/ZMLVu2TF27dk0jR46sNSallNauXZu++93vpu222y5ts802acCAAWn+/Pl13uL4P28VvbH6q6ur03HHHZfatWuXIuJjb3e8ZMmSVFJSkn7xi19sdNvQoUNThw4dUmlpaerbt2+aOnXqBuMeeOCBFBFp3rx5m3wuAGBD+qXG3S8tW7YslZWVpRNPPHGTc+iXYOsoSmkLrxgHQINw5plnxksvvRT/+7//u0VfP3jw4CgqKop77rknz5UBADQM+iVomIRSAI3cwoULY9ddd41p06bFIYccsllf+8ILL8Ree+0Vc+bMiT333HMrVQgAUFj6JWiYhFIAAAAAZM7d9wAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMyVFLqAhmDdunWxePHiaNeuXRQVFRW6HACggUkpxfvvvx9dunSJ4uLm+Tc9/RIAsClb0i8JpSJi8eLF0bVr10KXAQA0cIsWLYoddtih0GUUhH4JAKiPzemXhFIR0a5du4j48BtXXl5e4GoAgIZm+fLl0bVr11zP0BzplwCATdmSfkkoFZE7Bb28vFyTBQDUqTl/bE2/BADUx+b0S83zoggAAAAAFJRQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgCgEVu7dm2MGjUqevbsGa1bt46ddtopvv/970dKKTcmpRSjR4+Ozp07R+vWraN///4xb968AlYNACCUAgBo1K644oqYOHFi3HDDDfHCCy/EFVdcEVdeeWVcf/31uTFXXnllXHfddXHTTTfFrFmzok2bNjFgwIBYtWpVASsHAJq7kkIXAADAlnv88cfjhBNOiOOOOy4iInr06BG/+tWv4oknnoiID8+Suuaaa+KSSy6JE044ISIi7rjjjqisrIwpU6bESSedVLDaAYDmzZlSAACN2MEHHxzTpk2Ll156KSIinn322Xjsscdi4MCBERGxYMGCqK6ujv79++e+pqKiIvr27RszZsyoc96amppYvnx5rQUAIJ+cKQUAEBGXP/P2Busu2m+7AlSyeS666KJYvnx59OrVK1q0aBFr166NH/zgB3HKKadERER1dXVERFRWVtb6usrKyty2jRk/fnyMHTt26xUOADQ6+e6XnCkFANCI/eY3v4k777wzJk+eHE8//XTcfvvt8eMf/zhuv/32TzTvyJEjY9myZbll0aJFeaoYAOBDzpQCAGjELrjggrjoooty14baa6+94rXXXovx48fH0KFDo6qqKiIilixZEp07d8593ZIlS2Lfffetc97S0tIoLS3dqrUDAM2bM6UAABqxf/3rX1FcXLula9GiRaxbty4iInr27BlVVVUxbdq03Pbly5fHrFmzol+/fpnWCgDwUc6UAgBoxAYNGhQ/+MEPolu3brHHHnvEM888E1dddVWcccYZERFRVFQU5513Xlx22WWxyy67RM+ePWPUqFHRpUuXGDx4cGGLBwCaNaEUAEAjdv3118eoUaPinHPOibfeeiu6dOkSX//612P06NG5MRdeeGGsXLkyzjrrrFi6dGkceuihMXXq1CgrKytg5QBAc1eUUkqFLqLQli9fHhUVFbFs2bIoLy8vdDkAQAFs6m4yegXfAwAg//2Sa0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZK2go9eijj8agQYOiS5cuUVRUFFOmTMltW7NmTXz3u9+NvfbaK9q0aRNdunSJ0047LRYvXlxrjnfffTdOOeWUKC8vj/bt28eZZ54ZK1asyHhPAAAAANgcBQ2lVq5cGfvss09MmDBhg23/+te/4umnn45Ro0bF008/Hb/73e/ixRdfjP/6r/+qNe6UU06J5557Lh588MH4wx/+EI8++micddZZWe0CAAAAAFugpJBPPnDgwBg4cOBGt1VUVMSDDz5Ya90NN9wQn/70p2PhwoXRrVu3eOGFF2Lq1Knx5JNPRp8+fSIi4vrrr4/Pfe5z8eMf/zi6dOmy1fcBAAAAgM3XqK4ptWzZsigqKor27dtHRMSMGTOiffv2uUAqIqJ///5RXFwcs2bNKlCVAAAAAHycgp4ptTlWrVoV3/3ud+Pkk0+O8vLyiIiorq6O7bffvta4kpKS6NChQ1RXV9c5V01NTdTU1OQeL1++fOsUDQAAAMBGNYozpdasWRNf/OIXI6UUEydO/MTzjR8/PioqKnJL165d81AlAAAAAPXV4EOp9YHUa6+9Fg8++GDuLKmIiKqqqnjrrbdqjf/ggw/i3XffjaqqqjrnHDlyZCxbtiy3LFq0aKvVDwAAAMCGGvTH99YHUvPmzYuHH344OnbsWGt7v379YunSpTF79uw44IADIiLioYceinXr1kXfvn3rnLe0tDRKS0u3au0AAAAA1K2godSKFSti/vz5uccLFiyIOXPmRIcOHaJz587x3//93/H000/HH/7wh1i7dm3uOlEdOnSIVq1aRe/evePYY4+Nr33ta3HTTTfFmjVrYvjw4XHSSSe58x4AAABAA1bQUOqpp56KI488Mvf4/PPPj4iIoUOHxqWXXhq///3vIyJi3333rfV1Dz/8cBxxxBEREXHnnXfG8OHD47Of/WwUFxfHkCFD4rrrrsukfgAAAAC2TEFDqSOOOCJSSnVu39S29Tp06BCTJ0/OZ1kAAAAAbGUN/kLnAAAAADQ9QikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgBo5Hr06BFFRUUbLMOGDYuIiFWrVsWwYcOiY8eO0bZt2xgyZEgsWbKkwFUDAM2dUAoAoJF78skn480338wtDz74YEREfOELX4iIiBEjRsR9990Xd999d0yfPj0WL14cJ554YiFLBgCIkkIXAADAJ9OpU6dajy+//PLYaaed4vDDD49ly5bFLbfcEpMnT46jjjoqIiImTZoUvXv3jpkzZ8ZBBx1UiJIBAJwpBQDQlKxevTp++ctfxhlnnBFFRUUxe/bsWLNmTfTv3z83plevXtGtW7eYMWNGnfPU1NTE8uXLay0AAPkklAIAaEKmTJkSS5cujdNPPz0iIqqrq6NVq1bRvn37WuMqKyujurq6znnGjx8fFRUVuaVr165bsWoAoDkSSgEANCG33HJLDBw4MLp06fKJ5hk5cmQsW7YstyxatChPFQIAfMg1pQAAmojXXnst/vKXv8Tvfve73LqqqqpYvXp1LF26tNbZUkuWLImqqqo65yotLY3S0tKtWS4A0Mw5UwoAoImYNGlSbL/99nHcccfl1h1wwAHRsmXLmDZtWm7diy++GAsXLox+/foVokwAgIhwphQAQJOwbt26mDRpUgwdOjRKSv6vxauoqIgzzzwzzj///OjQoUOUl5fHueeeG/369XPnPQCgoIRSAABNwF/+8pdYuHBhnHHGGRtsu/rqq6O4uDiGDBkSNTU1MWDAgLjxxhsLUCUAwP8RSgEANAHHHHNMpJQ2uq2srCwmTJgQEyZMyLgqAIC6uaYUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQuYKGUo8++mgMGjQounTpEkVFRTFlypRa21NKMXr06OjcuXO0bt06+vfvH/Pmzas15t13341TTjklysvLo3379nHmmWfGihUrMtwLAAAAADZXQUOplStXxj777BMTJkzY6PYrr7wyrrvuurjpppti1qxZ0aZNmxgwYECsWrUqN+aUU06J5557Lh588MH4wx/+EI8++micddZZWe0CAAAAAFugpJBPPnDgwBg4cOBGt6WU4pprrolLLrkkTjjhhIiIuOOOO6KysjKmTJkSJ510UrzwwgsxderUePLJJ6NPnz4REXH99dfH5z73ufjxj38cXbp0yWxfAAAAAKi/BntNqQULFkR1dXX0798/t66ioiL69u0bM2bMiIiIGTNmRPv27XOBVERE//79o7i4OGbNmlXn3DU1NbF8+fJaCwAAAADZabChVHV1dUREVFZW1lpfWVmZ21ZdXR3bb799re0lJSXRoUOH3JiNGT9+fFRUVOSWrl275rl6AAAAADalwYZSW9PIkSNj2bJluWXRokWFLgkAAACgWWmwoVRVVVVERCxZsqTW+iVLluS2VVVVxVtvvVVr+wcffBDvvvtubszGlJaWRnl5ea0FAAAAgOw02FCqZ8+eUVVVFdOmTcutW758ecyaNSv69esXERH9+vWLpUuXxuzZs3NjHnrooVi3bl307ds385oBAAAAqJ+C3n1vxYoVMX/+/NzjBQsWxJw5c6JDhw7RrVu3OO+88+Kyyy6LXXbZJXr27BmjRo2KLl26xODBgyMionfv3nHsscfG1772tbjppptizZo1MXz48DjppJPceQ8AAACgAStoKPXUU0/FkUcemXt8/vnnR0TE0KFD47bbbosLL7wwVq5cGWeddVYsXbo0Dj300Jg6dWqUlZXlvubOO++M4cOHx2c/+9koLi6OIUOGxHXXXZf5vgAAAABQfwUNpY444ohIKdW5vaioKMaNGxfjxo2rc0yHDh1i8uTJW6M8AAAAALaSBntNKQAAAACaLqEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEANHJvvPFGnHrqqdGxY8do3bp17LXXXvHUU0/ltqeUYvTo0dG5c+do3bp19O/fP+bNm1fAigEAhFIAAI3ae++9F4cccki0bNkyHnjggXj++efjJz/5SWy77ba5MVdeeWVcd911cdNNN8WsWbOiTZs2MWDAgFi1alUBKwcAmruSQhcAAMCWu+KKK6Jr164xadKk3LqePXvm/p1SimuuuSYuueSSOOGEEyIi4o477ojKysqYMmVKnHTSSZnXDAAQ4UwpAIBG7fe//3306dMnvvCFL8T2228f++23X/zsZz/LbV+wYEFUV1dH//79c+sqKiqib9++MWPGjEKUDAAQEUIpAIBG7ZVXXomJEyfGLrvsEn/605/i7LPPjm9+85tx++23R0REdXV1RERUVlbW+rrKysrcto2pqamJ5cuX11oAAPLJx/cAABqxdevWRZ8+feKHP/xhRETst99+MXfu3Ljpppti6NChWzzv+PHjY+zYsfkqEwBgA86UAgBoxDp37hy77757rXW9e/eOhQsXRkREVVVVREQsWbKk1pglS5bktm3MyJEjY9myZbll0aJFea4cAGjuhFIAAI3YIYccEi+++GKtdS+99FJ07949Ij686HlVVVVMmzYtt3358uUxa9as6NevX53zlpaWRnl5ea0FACCffHwPAKARGzFiRBx88MHxwx/+ML74xS/GE088ETfffHPcfPPNERFRVFQU5513Xlx22WWxyy67RM+ePWPUqFHRpUuXGDx4cGGLBwCaNaEUAEAjduCBB8Y999wTI0eOjHHjxkXPnj3jmmuuiVNOOSU35sILL4yVK1fGWWedFUuXLo1DDz00pk6dGmVlZQWsHABo7oRSAACN3PHHHx/HH398nduLiopi3LhxMW7cuAyrAgDYNNeUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzDTqUWrt2bYwaNSp69uwZrVu3jp122im+//3vR0opNyalFKNHj47OnTtH69ato3///jFv3rwCVg0AAADAx2nQodQVV1wREydOjBtuuCFeeOGFuOKKK+LKK6+M66+/PjfmyiuvjOuuuy5uuummmDVrVrRp0yYGDBgQq1atKmDlAAAAAGxKSaEL2JTHH388TjjhhDjuuOMiIqJHjx7xq1/9Kp544omI+PAsqWuuuSYuueSSOOGEEyIi4o477ojKysqYMmVKnHTSSQWrHQAAAIC6NegzpQ4++OCYNm1avPTSSxER8eyzz8Zjjz0WAwcOjIiIBQsWRHV1dfTv3z/3NRUVFdG3b9+YMWNGQWoGAAAA4OM16DOlLrrooli+fHn06tUrWrRoEWvXro0f/OAHccopp0RERHV1dUREVFZW1vq6ysrK3LaNqampiZqamtzj5cuXb4XqAQAAAKhLgz5T6je/+U3ceeedMXny5Hj66afj9ttvjx//+Mdx++23f6J5x48fHxUVFbmla9eueaoYAAAAgPpo0KHUBRdcEBdddFGcdNJJsddee8X//M//xIgRI2L8+PEREVFVVRUREUuWLKn1dUuWLMlt25iRI0fGsmXLcsuiRYu23k4AAAAAsIEGHUr961//iuLi2iW2aNEi1q1bFxERPXv2jKqqqpg2bVpu+/Lly2PWrFnRr1+/OuctLS2N8vLyWgsAAAAA2WnQ15QaNGhQ/OAHP4hu3brFHnvsEc8880xcddVVccYZZ0RERFFRUZx33nlx2WWXxS677BI9e/aMUaNGRZcuXWLw4MGFLR4AAACAOjXoUOr666+PUaNGxTnnnBNvvfVWdOnSJb7+9a/H6NGjc2MuvPDCWLlyZZx11lmxdOnSOPTQQ2Pq1KlRVlZWwMoBAAAA2JQG/fG9du3axTXXXBOvvfZa/Pvf/46XX345LrvssmjVqlVuTFFRUYwbNy6qq6tj1apV8Ze//CV23XXXAlYNAJCtSy+9NIqKimotvXr1ym1ftWpVDBs2LDp27Bht27aNIUOGbHBNTgCArDXoUAoAgPrZY4894s0338wtjz32WG7biBEj4r777ou77747pk+fHosXL44TTzyxgNUCADTwj+8BAFA/JSUlG7378LJly+KWW26JyZMnx1FHHRUREZMmTYrevXvHzJkz46CDDsq6VACAiHCmFABAkzBv3rzo0qVL7LjjjnHKKafEwoULIyJi9uzZsWbNmujfv39ubK9evaJbt24xY8aMQpULAOBMKQCAxq5v375x2223xW677RZvvvlmjB07Ng477LCYO3duVFdXR6tWraJ9+/a1vqaysjKqq6vrnLOmpiZqampyj5cvX761ygcAmimhFABAIzdw4MDcv/fee+/o27dvdO/ePX7zm99E69att2jO8ePHx9ixY/NVIgDABnx8DwCgiWnfvn3suuuuMX/+/KiqqorVq1fH0qVLa41ZsmTJRq9Btd7IkSNj2bJluWXRokVbuWoAoLkRSgEANDErVqyIl19+OTp37hwHHHBAtGzZMqZNm5bb/uKLL8bChQujX79+dc5RWloa5eXltRYAgHzy8T0AgEbuO9/5TgwaNCi6d+8eixcvjjFjxkSLFi3i5JNPjoqKijjzzDPj/PPPjw4dOkR5eXmce+650a9fP3feAwAKSigFANDIvf7663HyySfHO++8E506dYpDDz00Zs6cGZ06dYqIiKuvvjqKi4tjyJAhUVNTEwMGDIgbb7yxwFUDAM2dUAoAoJG76667Nrm9rKwsJkyYEBMmTMioIgCAj+eaUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkbotCqR133DHeeeedDdYvXbo0dtxxx09cFABAc6CnAgCasy0KpV599dVYu3btButramrijTfe+MRFAQA0B3oqAKA5K9mcwb///e9z//7Tn/4UFRUVucdr166NadOmRY8ePfJWHABAU6SnAgDYzFBq8ODBERFRVFQUQ4cOrbWtZcuW0aNHj/jJT36St+IAAJoiPRUAwGaGUuvWrYuIiJ49e8aTTz4Z22233VYpCgCgKdNTAQBsZii13oIFC/JdBwBAs6OnAgCasy0KpSIipk2bFtOmTYu33nor99e+9W699dZPXBgAQHOgpwIAmqstCqXGjh0b48aNiz59+kTnzp2jqKgo33UBADR5eioAoDnbolDqpptuittuuy3+53/+J9/1AAA0G3oqAKA5K96SL1q9enUcfPDB+a4FAKBZ0VMBAM3ZFoVSX/3qV2Py5Mn5rgUAoFnRUwEAzdkWfXxv1apVcfPNN8df/vKX2HvvvaNly5a1tl911VV5KQ4AoCnTUwEAzdkWhVJ/+9vfYt99942IiLlz59ba5gKdAAD1o6cCAJqzLQqlHn744XzXAQDQ7OipAIDmbIuuKQUAAAAAn8QWnSl15JFHbvKU8oceemiLCwIAaC70VABAc7ZFodT6ax+st2bNmpgzZ07MnTs3hg4dmo+6AACaPD0VANCcbVEodfXVV290/aWXXhorVqz4RAUBADQXeioAoDnL6zWlTj311Lj11lvzOSUAQLOjpwIAmoO8hlIzZsyIsrKyfE4JANDs6KkAgOZgiz6+d+KJJ9Z6nFKKN998M5566qkYNWpUXgoDAGjq9FQAQHO2RaFURUVFrcfFxcWx2267xbhx4+KYY47JS2EAAE2dngoAaM62KJSaNGlSvusAAGh29FQAQHO2RaHUerNnz44XXnghIiL22GOP2G+//fJSFABAc6KnAgCaoy0Kpd5666046aST4pFHHon27dtHRMTSpUvjyCOPjLvuuis6deqUzxoBAJokPRUA0Jxt0d33zj333Hj//ffjueeei3fffTfefffdmDt3bixfvjy++c1v5rtGAIAmSU8FAI3X5c+8vcHC5tmiUGrq1Klx4403Ru/evXPrdt9995gwYUI88MADeSsOAKAp2xo91eWXXx5FRUVx3nnn5datWrUqhg0bFh07doy2bdvGkCFDYsmSJZ+0fACAT2SLQql169ZFy5YtN1jfsmXLWLdu3ScuCgCgOch3T/Xkk0/GT3/609h7771rrR8xYkTcd999cffdd8f06dNj8eLFceKJJ25x3QAA+bBFodRRRx0V3/rWt2Lx4sW5dW+88UaMGDEiPvvZz+atOACApiyfPdWKFSvilFNOiZ/97Gex7bbb5tYvW7YsbrnllrjqqqviqKOOigMOOCAmTZoUjz/+eMycOTNv+wIAsLm2KJS64YYbYvny5dGjR4/YaaedYqeddoqePXvG8uXL4/rrr893jQAATVI+e6phw4bFcccdF/3796+1fvbs2bFmzZpa63v16hXdunWLGTNm5GU/AAC2xBbdfa9r167x9NNPx1/+8pf4xz/+ERERvXv33qAJAgCgbvnqqe666654+umn48knn9xgW3V1dbRq1Sp3d7/1Kisro7q6us45a2pqoqamJvd4+fLlm1UTAMDH2axQ6qGHHorhw4fHzJkzo7y8PI4++ug4+uijI+LDU8P32GOPuOmmm+Kwww7bKsVmoa6r5V+033YZVwIANFX57KkWLVoU3/rWt+LBBx+MsrKyvNU4fvz4GDt2bN7mAwA2bWN5RFPPIjbr43vXXHNNfO1rX4vy8vINtlVUVMTXv/71uOqqq/JWHABAU5TPnmr27Nnx1ltvxf777x8lJSVRUlIS06dPj+uuuy5KSkqisrIyVq9eHUuXLq31dUuWLImqqqo65x05cmQsW7YstyxatGiz9hEA4ONsVij17LPPxrHHHlvn9mOOOSZmz579iYsCAGjK8tlTffazn42///3vMWfOnNzSp0+fOOWUU3L/btmyZUybNi33NS+++GIsXLgw+vXrV+e8paWlUV5eXmsBAMinzQqllixZstHbFq9XUlIS//znPz9xUR/1xhtvxKmnnhodO3aM1q1bx1577RVPPfVUbntKKUaPHh2dO3eO1q1bR//+/WPevHl5rQEAIJ/y2VO1a9cu9txzz1pLmzZtomPHjrHnnntGRUVFnHnmmXH++efHww8/HLNnz46vfOUr0a9fvzjooIPytUsAAJtts0KpT33qUzF37tw6t//tb3+Lzp07f+Ki1nvvvffikEMOiZYtW8YDDzwQzz//fPzkJz+pdZvjK6+8Mq677rq46aabYtasWdGmTZsYMGBArFq1Km91AADkU9Y91dVXXx3HH398DBkyJD7zmc9EVVVV/O53v8vb/AAAW2KzLnT+uc99LkaNGhXHHnvsBhfS/Pe//x1jxoyJ448/Pm/FXXHFFdG1a9eYNGlSbl3Pnj1z/04pxTXXXBOXXHJJnHDCCRERcccdd0RlZWVMmTIlTjrppLzVAgCQL1u7p3rkkUdqPS4rK4sJEybEhAkTtnhOAIB826wzpS655JJ49913Y9ddd40rr7wy7r333rj33nvjiiuuiN122y3efffd+N73vpe34n7/+99Hnz594gtf+EJsv/32sd9++8XPfvaz3PYFCxZEdXV1rdsmV1RURN++fWPGjBl5qwMAIJ+y7qkAABqizTpTqrKyMh5//PE4++yzY+TIkZFSioiIoqKiGDBgQEyYMCEqKyvzVtwrr7wSEydOjPPPPz8uvvjiePLJJ+Ob3/xmtGrVKoYOHRrV1dW5uv6zzvXbNqampiZqampyj5cvX563mgEAPk7WPRUAQEO0WaFURET37t3j/vvvj/feey/mz58fKaXYZZddal3nKV/WrVsXffr0iR/+8IcREbHffvvF3Llz46abboqhQ4du8bzjx4+PsWPH5qtMAIDNlmVPBQDQEG3Wx/c+atttt40DDzwwPv3pT2+15qlz586x++6711rXu3fvWLhwYUREVFVVRcSHd7D5qCVLluS2bczIkSNj2bJluWXRokV5rhwAoH6y6KkAABqiLQ6lsnDIIYfEiy++WGvdSy+9FN27d4+IDy96XlVVFdOmTcttX758ecyaNSv69etX57ylpaVRXl5eawEAAAAgO5v98b0sjRgxIg4++OD44Q9/GF/84hfjiSeeiJtvvjluvvnmiPjwugvnnXdeXHbZZbHLLrtEz549Y9SoUdGlS5cYPHhwYYsHAAAAoE4NOpQ68MAD45577omRI0fGuHHjomfPnnHNNdfEKaeckhtz4YUXxsqVK+Oss86KpUuXxqGHHhpTp07d4PbKAAAAADQcDTqUiog4/vjj4/jjj69ze1FRUYwbNy7GjRuXYVUAAAAAfBIN+ppSAAAAADRNQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMldS6AIAAAAAtsTlz7y9wbqL9tuuAJXUrTHUWCjOlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAaOQmTpwYe++9d5SXl0d5eXn069cvHnjggdz2VatWxbBhw6Jjx47Rtm3bGDJkSCxZsqSAFQMACKUAABq9HXbYIS6//PKYPXt2PPXUU3HUUUfFCSecEM8991xERIwYMSLuu+++uPvuu2P69OmxePHiOPHEEwtcNQDQ3JUUugAAAD6ZQYMG1Xr8gx/8ICZOnBgzZ86MHXbYIW655ZaYPHlyHHXUURERMWnSpOjdu3fMnDkzDjrooEKUDAAglAKApujyZ97e6PqL9tsu40rI2tq1a+Puu++OlStXRr9+/WL27NmxZs2a6N+/f25Mr169olu3bjFjxgyhFABQMEIpAIAm4O9//3v069cvVq1aFW3bto177rkndt9995gzZ060atUq2rdvX2t8ZWVlVFdX1zlfTU1N1NTU5B4vX758a5UOADRTQikAgCZgt912izlz5sSyZcvit7/9bQwdOjSmT5++xfONHz8+xo4dm8cKAaDh29jZ5s4033pc6BwAoAlo1apV7LzzznHAAQfE+PHjY5999olrr702qqqqYvXq1bF06dJa45csWRJVVVV1zjdy5MhYtmxZblm0aNFW3gMAoLkRSgEANEHr1q2LmpqaOOCAA6Jly5Yxbdq03LYXX3wxFi5cGP369avz60tLS6O8vLzWAgCQTz6+BwDQyI0cOTIGDhwY3bp1i/fffz8mT54cjzzySPzpT3+KioqKOPPMM+P888+PDh06RHl5eZx77rnRr18/FzkHAApKKAUA0Mi99dZbcdppp8Wbb74ZFRUVsffee8ef/vSnOProoyMi4uqrr47i4uIYMmRI1NTUxIABA+LGG28scNUAQHMnlAIAaORuueWWTW4vKyuLCRMmxIQJEzKqCADg47mmFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZa1Sh1OWXXx5FRUVx3nnn5datWrUqhg0bFh07doy2bdvGkCFDYsmSJYUrEgAAAICP1WhCqSeffDJ++tOfxt57711r/YgRI+K+++6Lu+++O6ZPnx6LFy+OE088sUBVAgAAAFAfjSKUWrFiRZxyyinxs5/9LLbddtvc+mXLlsUtt9wSV111VRx11FFxwAEHxKRJk+Lxxx+PmTNnFrBiAAAAADalpNAF1MewYcPiuOOOi/79+8dll12WWz979uxYs2ZN9O/fP7euV69e0a1bt5gxY0YcdNBBG52vpqYmampqco+XL1++9YoHAKBZufyZtzdYd9F+2xWgkk+uKe0L0Lx5P2uYGnwoddddd8XTTz8dTz755Abbqquro1WrVtG+ffta6ysrK6O6urrOOcePHx9jx47Nd6kA0ChtrEmL0KgBALB1NeiP7y1atCi+9a1vxZ133hllZWV5m3fkyJGxbNmy3LJo0aK8zQ0AAADAx2vQodTs2bPjrbfeiv333z9KSkqipKQkpk+fHtddd12UlJREZWVlrF69OpYuXVrr65YsWRJVVVV1zltaWhrl5eW1FgAAAACy06A/vvfZz342/v73v9da95WvfCV69eoV3/3ud6Nr167RsmXLmDZtWgwZMiQiIl588cVYuHBh9OvXrxAlAwAAAFAPDTqUateuXey555611rVp0yY6duyYW3/mmWfG+eefHx06dIjy8vI499xzo1+/fnVe5BwAAACAwmvQoVR9XH311VFcXBxDhgyJmpqaGDBgQNx4442FLgsAoMlyByOy4HUG0PQ1ulDqkUceqfW4rKwsJkyYEBMmTChMQQAAAABstgZ9oXMAAAAAmqZGd6YUADQ1PqICAEBz5EwpAAAAADInlAIAAAAgcz6+BwAA0EAU6iPdG3verJ67kHyEHgrLmVIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZM7d9wAAABqZ+t41zt3lgIbMmVIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZM7d9wCgkdjYHZQi3EUJGit3RcsP743QeHjf4z85UwoAAACAzAmlAAAAAMicUAoAAACAzLmmFABsBa6ZAAAAm+ZMKQAAAAAy50wpAABo4PJ99mUhz+Zsrs/dHPl+Nx9b42ft9dM8OFMKAKARGz9+fBx44IHRrl272H777WPw4MHx4osv1hqzatWqGDZsWHTs2DHatm0bQ4YMiSVLlhSoYgCADwmlAAAasenTp8ewYcNi5syZ8eCDD8aaNWvimGOOiZUrV+bGjBgxIu677764++67Y/r06bF48eI48cQTC1g1AICP7wEANGpTp06t9fi2226L7bffPmbPnh2f+cxnYtmyZXHLLbfE5MmT46ijjoqIiEmTJkXv3r1j5syZcdBBBxWibAAAZ0oBADQly5Yti4iIDh06RETE7NmzY82aNdG/f//cmF69ekW3bt1ixowZBakRACDCmVIAAE3GunXr4rzzzotDDjkk9txzz4iIqK6ujlatWkX79u1rja2srIzq6uo656qpqYmamprc4+XLl2+VmgGA5ksoBQDQRAwbNizmzp0bjz322Ceea/z48TF27Ng8VAWNT33v+uXuYDR1XuNsbT6+BwDQBAwfPjz+8Ic/xMMPPxw77LBDbn1VVVWsXr06li5dWmv8kiVLoqqqqs75Ro4cGcuWLcstixYt2lqlAwDNlFAKAKARSynF8OHD45577omHHnooevbsWWv7AQccEC1btoxp06bl1r344ouxcOHC6NevX53zlpaWRnl5ea0FACCffHwPAKARGzZsWEyePDnuvffeaNeuXe46URUVFdG6deuoqKiIM888M84///zo0KFDlJeXx7nnnhv9+vVz5z0AoKCEUlCHjX1+OsJnqPPB9xYgfyZOnBgREUcccUSt9ZMmTYrTTz89IiKuvvrqKC4ujiFDhkRNTU0MGDAgbrzxxowrBQCoTSgFANCIpZQ+dkxZWVlMmDAhJkyYkEFFAAD1I5QCAACABsod8GjKXOgcAAAAgMw5U4pMSfkBAACACGdKAQAAAFAAQikAAAAAMieUAgAAACBzrilFo7ex61RFbPxaVZszFgBovJrrdSyb6343dHrQTdsar1vHAjQOzpQCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHPuvgcAAPXgbl7QfDn+aUia0h09hVIAUE8aUgAAyB8f3wMAAAAgc0IpAAAAADL3/9m78+go6nT/458OWUlIAgGySAJhDQgoIkLcQAwio1yR/K7iMoDiOCowCiqCoyDonWQWWdSAOoPghigexNFRXFBgUEBAUAFBQBxQTBAdEmAkAfL8/uDSlzYJJNBd1Z28X+fUOXTVN1VPp6u6Hj6priaUAgAAAAAAgOO4pxRQS3CvGwAAAABAKCGUAgAAQMDwRxMAAIKfW+drPr4HAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAx/HtewAAAACAoFfZt4NJfKPnMXzbKUIRV0oBAAAAAADAcYRSAAAAAAAAcByhFAAAAAAAABxHKAUAAAAAAADHcaNzAH4Rajee5EaQAAAAAOAuQikAAAAAAPyEP34C1cfH9wAAAAAAAOC4oA6l8vLy1K1bNzVo0EBNmzbVgAEDtHnzZp8xBw8e1PDhw5WUlKS4uDjl5uaqqKjIpYoBAAAAAABQHUH98b0lS5Zo+PDh6tatmw4fPqz7779fl112mTZu3KjY2FhJ0qhRo/SPf/xD8+bNU0JCgkaMGKGBAwfqo48+crn60Ob2Jaehdn8iINA4JgEAAADUNkEdSi1cuNDn8ezZs9W0aVOtWbNGF198sYqLizVz5kzNmTNHvXv3liTNmjVL7du314oVK9SjRw83ygYAAAAAAMBJBPXH936puLhYktSoUSNJ0po1a3To0CHl5OR4x2RlZSkjI0PLly93pUYAAAAAAACcXFBfKXW88vJy3XXXXbrgggvUsWNHSVJhYaEiIyOVmJjoMzY5OVmFhYVVrqu0tFSlpaXexyUlJQGpGQAAAP7l9seZAXAcAvCfkAmlhg8frvXr12vZsmWnva68vDxNnDjRD1UBNRcMJ/FgqCEQuO/RUbX19QUAAABQu4TEx/dGjBihN998Ux9++KGaNWvmnZ+SkqKysjLt3bvXZ3xRUZFSUlKqXN+4ceNUXFzsnXbu3Bmo0gEAAAAAAFCJoA6lzEwjRozQa6+9pg8++ECZmZk+y7t27aqIiAgtWrTIO2/z5s3asWOHsrOzq1xvVFSU4uPjfSYAAAAAAAA4J6g/vjd8+HDNmTNHr7/+uho0aOC9T1RCQoJiYmKUkJCgYcOGafTo0WrUqJHi4+M1cuRIZWdn8817AAAAAAAAQSyoQ6kZM2ZIknr16uUzf9asWRo6dKgkacqUKQoLC1Nubq5KS0vVt29fTZ8+3eFKAQAAAAAAUBNBHUqZ2UnHREdHq6CgQAUFBQ5UBAAAAKAyfNEGEDo4XhEsgvqeUgAAAAAAAKidgvpKKaCuC4a/YLhdQ2XbD4YaasNfkgL1u63Jenl9Q08wvGYAAACoHbhSCgAAAAAAAI4jlAIAAAAAAIDjCKUAAAAAAADgOO4pBQAAAACAw7ivJcCVUgAAAAAAAHABoRQAAECIW7p0qfr376+0tDR5PB4tWLDAZ7mZafz48UpNTVVMTIxycnK0ZcsWd4oFAAD4X4RSAAAAIe7AgQM666yzVFBQUOnyP/3pT3rsscf05JNPauXKlYqNjVXfvn118OBBhysFAAD4P9xTCvCDyj4PLvGZ8LqIewMAcEO/fv3Ur1+/SpeZmaZOnaoHHnhAV111lSTpueeeU3JyshYsWKBBgwY5WSoAAIAXV0oBAADUYtu3b1dhYaFycnK88xISEtS9e3ctX768yp8rLS1VSUmJzwQAAOBPXCkFAABQixUWFkqSkpOTfeYnJyd7l1UmLy9PEydODGhtx3PzSlOucgUAwB1cKQUAAIAKxo0bp+LiYu+0c+dOt0sCAAC1DKEUAABALZaSkiJJKioq8plfVFTkXVaZqKgoxcfH+0wAAAD+RCgFAABQi2VmZiolJUWLFi3yzispKdHKlSuVnZ3tYmUAAKCu455SAAAAIW7//v3aunWr9/H27du1bt06NWrUSBkZGbrrrrv0yCOPqE2bNsrMzNSDDz6otLQ0DRgwwL2iAQBAnUcoBQAAEOJWr16tSy65xPt49OjRkqQhQ4Zo9uzZGjNmjA4cOKBbb71Ve/fu1YUXXqiFCxcqOjrarZIBAAAIpQAAoYFvxwKq1qtXL5lZlcs9Ho8mTZqkSZMmOVgVAABwW7D30NxTCgAAAAAAAI4jlAIAAAAAAIDjCKUAAAAAAADgOEIpAAAAAAAAOI5QCgAAAAAAAI4jlAIAAAAAAIDjCKUAAAAAAADguHC3C0BF+Wv3VDp/bJfGDldSPZXVG6y1AsGEYwcAAABAXcaVUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAx3FPqdNQk3s/Beo+UTW5Jw33rwFQV/B+BwAAAAQ/rpQCAAAAAACA4wilAAAAAAAA4DhCKQAAAAAAADiOUAoAAAAAAACOI5QCAAAAAACA4wilAAAAAAAA4LhwtwsAAAC1U/7aPRXmje3S2IVKAAAAEIy4UgoAAAAAAACOI5QCAAAAAACA4wilAAAAAAAA4DhCKQAAAAAAADiOUAoAAAAAAACOI5QCAAAAAACA4wilAAAAAAAA4DhCKQAAAAAAADiOUAoAAAAAAACOI5QCAAAAAACA4wilAAAAAAAA4DhCKQAAAAAAADiOUAoAAAAAAACOI5QCAAAAAACA4wilAAAAAAAA4LhwtwsAAACoify1eyrMG9ulsQuVAAAA4HRwpRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHHhbhcAAAAQKPlr91SYN7ZLYxcqAQAAwC9xpRQAAAAAAAAcRygFAAAAAAAAx/HxPQAA4Do+ZgcAAFD3cKUUAAAAAAAAHEcoBQAAAAAAAMcRSgEAAAAAAMBxtSaUKigoUIsWLRQdHa3u3bvrk08+cbskAACAoEK/BAAAgkmtCKVefvlljR49WhMmTNCnn36qs846S3379tXu3bvdLg0AACAo0C8BAIBgUytCqcmTJ+s3v/mNbrrpJnXo0EFPPvmk6tevr2eeecbt0gAAAIIC/RIAAAg24W4XcLrKysq0Zs0ajRs3zjsvLCxMOTk5Wr58eaU/U1paqtLSUu/j4uJiSVJJSYkO7j9U6c+UlERWmHdw/76gHFvZuFAbG6y/20CNDdbXoSZjg/V3W5Oxwfq7DdTYYH0dajI2WH+3gRobrK9DTcYG6+/2ZGNLSkokSWZW6c8GOyf6pUDs306Mo8baWaOb26bGul2jm9umxrpdo5vbPq1+yULcd999Z5Ls448/9pl/77332nnnnVfpz0yYMMEkMTExMTExMTHVaNq5c6cT7Y3f0S8xMTExMTExOTXVpF8K+SulTsW4ceM0evRo7+Py8nL99NNPSkpKksfjkXQ04UtPT9fOnTsVHx9/wvXV1rFub5+xNR/r9vYZW/Oxbm+fsTUf6/b2GVvzsf5Yp5lp3759SktLO+HP1yb+7JfcPL6okRprc41ubpsaqTGYtk2NwVHjqfRLIR9KNW7cWPXq1VNRUZHP/KKiIqWkpFT6M1FRUYqKivKZl5iYWOnY+Pj4k74YtX2s29tnbM3Hur19xtZ8rNvbZ2zNx7q9fcbWfOzprjMhIaFaPxuMgqVfcvP4osbg3DY1hv62qZEag2nb1Oh+jTXtl0L+RueRkZHq2rWrFi1a5J1XXl6uRYsWKTs728XKAAAAggP9EgAACEYhf6WUJI0ePVpDhgzRueeeq/POO09Tp07VgQMHdNNNN7ldGgAAQFCgXwIAAMGmVoRS1157rX744QeNHz9ehYWFOvvss7Vw4UIlJyef8jqjoqI0YcKECpet16Wxbm+fsTUf6/b2GVvzsW5vn7E1H+v29hlb87GB2n6ocbNfcvO1okZqrM01urltaqTGYNo2NQZvjSfjMQvR7zYGAAAAAABAyAr5e0oBAAAAAAAg9BBKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKuWD79u06fPiw39cbiHVKEl/QiFDEcQYEXiCOs0AdYxLHWV3m732VcwFqu1B5f+eYQbDgPHPqCKX+1/fff68XXnhBb731lsrKynyWHThwQJMmTfI+fu+99zRhwgR98MEHkqSlS5eqX79+6t27t2bNmnXSbbVr105btmw54Zhdu3ZpwoQJuuGGG3TPPfdo06ZN3mULFy7UF198IUkqLy/Xww8/rDPOOENRUVFq1qyZ8vPzZWbq37+/nn/+ef38888nram0tFT33HOPLr74Yv3xj3+UJD3yyCOKi4tTgwYNdP3116ukpMQ7/rPPPtPgwYPVsmVLxcTEKDY2Vp06ddKDDz7oM66qbZWWlp60pmCyePHiav0ea6K0tFTbtm0LyO+iqKhIhYWFVS4/cuSIioqK9MMPP1S6fOPGjbrjjjvUpUsXpaamKjU1VV26dNEdd9yhjRs3VruObdu2qXfv3t7HtfE4k1TtY83J4ywUhVqQKJ3eib0uHGdOH2NSzY8z1Iw/9tvj99nq7q9u7atunwtO9TwQSr2Wv3usQPRXJ+qrnOipTvV9/nSOGyfe34PpmAkltT38cOs8I7lzzITqecavDPbJJ59YYmKixcfHW0xMjLVu3drWr1/vXV5YWGhhYWFmZvb8889beHi4nXPOORYXF2ezZs2yxMREu+WWW+zmm2+2yMhImzdvnpmZXX311ZVOYWFhlpOT431sZhYTE2O7d+82M7MNGzZYQkKCtW7d2v77v//bsrKyrH79+vbZZ5+ZmVm7du1s6dKlZmb2hz/8wZKSkmzy5Mn29ttv29SpUy05Odny8/PN4/FYeHi4JSQk2G233WarV6+u8ncwatQoS0tLs7vvvtvat29vd9xxh2VkZNgLL7xgc+bMsdatW9vIkSPNzGzhwoUWExNjubm5duONN1r9+vVtxIgRdt9991nr1q2tVatW9v333/us/91337V+/fpZYmKihYWFWVhYmCUmJlq/fv3svffeq/ZrtXHjRsvMzPQ+XrdunT388MNWUFBgP/zwg8/Y4uJiu+mmm7yP//rXv9rgwYPtmWeeMTOzuXPnWlZWlmVmZtr48eNPuN2IiAjbuHGjz7yioiKfx2vXrrXBgwfb+eefb7m5ufbhhx96l82aNcs+/vhjMzP7+eef7eabb7Z69epZWFiYhYeH229/+1s7ePCgmZl17NjRJk2aZDt27Djp7+PHH3+03NxcS09Pt9tuu80OHz5sw4YNM4/HY2FhYZadnW27du3yjn/zzTftoosusqioKO/rkJCQYDfeeKP961//MjOzt956yyIjI61Hjx42YcIEmz59uk2fPt0mTJhg559/vkVFRdnChQtPWpvZ0dfn2LFTW48zM6v2sRbI42zDhg12++2329lnn20pKSmWkpJiZ599tt1+++22YcOGar1eZmZbt261Sy65xPt4165d9vzzz9s//vEPKy0t9Rm7f/9+mzhxovfxu+++a+PHj7dFixaZmdmSJUvs8ssvt0suucR73J1IZcfZL3333Xc2fvx4u/766+3uu++2L7/80rvs7bffts8//9zMzI4cOWKTJk2ytLQ0CwsLszPOOMPy8vKsvLzczMyuvPJKe+655+w///nPSes6ePCg3X333XbRRRd5X/OHH37YYmNjLTY21q677jorLi42s6P7/K9//WvLzMy06Ohoq1+/vnXs2NEeeOAB7xiz2nucuX2MmdXsODtWpz+OnbrAX/vtsX22uvurm/uqm+eCmp4H/NFrHd9nudVjBaK/qm5vVZO+ysme6lTe56t73Lj5/u72MeOP9//j+6bq9kyB7peq6pWq2ye52SO5dZ4xq35fVJfPM4HqmQilzCwnJ8duuukmO3LkiJWUlNjtt99uSUlJ9umnn5qZ78569tln27Rp08zM7P3337eYmBibPHmyd11/+ctf7IILLjCzoztNz549bejQoT5TWFiYDRgwwPv42NhjJ+GrrrrK+vfvb4cOHTKzo28agwYNsiuvvNLMzKKiorwnu44dO9orr7zi83zefPNNa926tXk8HtuwYYNNmTLFOnXqZGFhYXbWWWfZ448/bj/99JPPz6Snp3sblm3btllYWJgtWLDAu/zdd9+15s2be38HM2bM8FmWlZVlZmZlZWV26aWXep+Xmdns2bMtPDzcBg0aZLNmzbK33nrL3nrrLZs1a5Zdd911FhERYc8991y1XqvjT8rvvPOORUZG2plnnmkZGRmWlJRkH3zwgXfs8a/blClTLDY21gYOHGipqan2yCOPWFJSkj3yyCM2ceJEi4+Pt6eeesq6dOlS6eTxeKx9+/bex2ZmYWFh3tfso48+soiICOvZs6fde++91qdPHwsPD7clS5aYmVlmZqatWLHCzMzuuecea9Gihc2fP9++/PJLW7BggbVt29buvfde776QlJRk9erVs759+9qrr77q3Rd+6eabb7aOHTva448/bj179rSrrrrKOnfubMuWLbOPP/7YunXrZoMHDzYzs+eee84aNGhgd999t/3+97+3lJQUGzt2rM2YMcN69uxpjRs3tq+++so6d+5sDz74YJWvwYQJE6xTp05mZjZt2rQTTmPGjPG+BrX1ODu23uoca4E6zmprwGHmfpBoFpgTe209ztw+xsxqdpz589ipC6q731Z3n63u/urmvurmuaAm5wF/9VrHzgFu9liB6K+q21tVt6/yd08ViPf56h43br6/u3nMELI7e2FDdXskt84zZtXvi+rqeSaQPROhlJk1bNjQNm/e7DMvLy/PGjZsaJ988onPzhobG2tff/21d1xERIT3P0RmZl9++aUlJSWZmdlLL71kzZo1q5B4h4eHV0gSj99p09PTvW8Yx3z66aeWmppqZmapqam2fPlyMzNLTk72HlTHfPXVVxYTE+OzTjOzlStX2q233moJCQkWExNj1113nTehj4mJ8R4Mx57X8W+k27dvt/r165uZWXR0tG3fvt27rLy83CIiIrx/OVq6dKk1adLEu7xNmzb2xBNPWFUKCgq8B9qoUaNOON14443e1yI7O9vuv/9+bw1//OMfLS4uzt5++20z832TycrKshdffNH7uwwPD7e//e1v3hr+9re/WdeuXS08PNwuv/xye+ihh7zThAkTLCwszO644w7vvF++Zn369LGbb77Z53ndeeed1rt3bzPzPTm3bdvWW+MxS5YssYyMDO96v/vuO3vttdesf//+Fh4ebk2aNLG77767wl9FUlNT7aOPPvI+X4/HY++++653+bJly+yMM87w/g7mzp3rXbZq1Spr1qyZ98qRa6+91q6++mqLjo62TZs2Vfl6bdq0yaKjo721pqWlWYsWLSqdjv31xaz2Hme/XK9Z1cdaoI6z2hpw/PJ3G+whR01O7LX1OHP7GDOr2fmsJscOqr/fVnefre7+6ua+6ua5oCbnger2WtXts9zssQLRX1W3t6puX+XvnioQ7/PVPW7cfH9385ghZHf2wobq9khunWfMqt8X1dXzTCB7JkIpO/rmfvwOd8yf//xnS0xMtPnz53t31sTERJ8DJS4uzrZt2+Z9/PXXX3ubXbOjL/gFF1xgAwcO9B7Elf1nOSwszJtwN2/evEI9X3/9tfc/KHfccYddeeWVdvjwYbv11lvtlltu8Z4EzcxGjhxp2dnZFXbaYw4cOGCzZs2yCy+80Pu82rVr5z25fvLJJxYZGelzoM2dO9fatGljZmatWrXySUG3bNli9erV816m+vXXX3sPHLOjDUN1//MVFhZm55xzjvXq1avS6dxzz/XWHB8fb1u3bvVZ14svvmixsbH2xhtv+LzJ/PLAjIqK8jkwt2zZYomJibZs2TJr1aqVjR8/3o4cOeJdfrKA4/g3k2PWr19vjRs3NrOjr+mxvzCeccYZtmrVKp+xGzdutNjY2ArrNTt6KfAf/vAHa9OmjbdRnDlzppmZ1a9f37755hvv2IiICPviiy+8j7/++mvvemNiYnzedI49r++++87Mjr6pJSYmWlZWlj366KNWlUcffdTatWtnZmYtWrSwl19+ucqxa9eu9WmiauNxZlbxNTvml8daoI6z2hpw/PJ3G+whR01O7LX1OHP7GDOr2fmsJscOqr/fVnefre7+6ua+6ua5oCbnger2WtXts9zssQLRX1W3t6puX+XvnioQ7/M1OW7cen9385ghZHf2wobq9khunWfMatYX1cXzTCB7JkIpM7vooot8ktvj/fGPf/R+VtzM7Nxzz/VJf4uLi312mvfee8/atm3rs44jR47Y+PHjLT093RYuXGgRERGV/scrMTHRGjZsaBEREfb888/7LH/33XetRYsWZma2d+9eO/fcc61169b261//2qKjo6158+bWp08fy8zMtISEBFuxYkWVO+3xjr15TpkyxaKjoy0nJ8caNmxojz32mKWkpNiYMWNs7NixlpCQYJMmTTIzs4kTJ1qzZs1sxowZ9swzz1jHjh29H7UxM5s/f7516NDB+/icc87xfjStMmPGjLFzzjnHzI7+leuXz/14x5+UmzRpUunlpC+99JLVr1/fZsyY4R2blJTk85ewZs2a+TQdW7Zssbi4ODM7+vsdNGiQde/e3duQVfWf5a1bt1pxcbFlZmZWeGPfunWr943r/vvvt+zsbPv3v/9tY8eOtf79+9u+ffvM7OibyDXXXGOXXXaZmfl+LPCXPvzwQ7vxxhu9QdNZZ53l/cvoW2+9ZQ0aNPB5I58xY4Z17NjRzMzat2/vvRzYzGzNmjUWGRlphw8f9v4OYmNj7ZVXXrHw8HDr37+/TZs2zebOnWtz5861adOm2X/9139ZZGSkvfrqq2Zmlpuba2PGjKm0VrOjlzR7PB4zq73H2bH1VudYC9RxVlsDDrPQCjlqcmKvrceZ28eYWc3OZzU5dlD9/ba6+2x191c391U3zwU1OQ9Ut9eqbp/lZo8ViP6qur1Vdfsqf/dUgXifr+lx48b7u5vHDCG7sxc2VLdHcus8Y1bzvqiunWcC2TMRStnRmzPeeOONVS7Pz8/3vsnOnz/f+zn2yuTl5dkDDzxQ6bJ//vOflpmZaWFhYRX+4zV79myf6Zd/FZo0aZKNGjXK+7isrMxmzJhhv/rVrywrK8vatm1rPXv2tPvvv9927txpZma9evWyf//73yd87sd78cUXbcSIETZnzhwzO3qSvuiii6xr16720EMPef+qdejQIRszZoylpaVZUlKSXX/99T43wFy5cqXP7+jDDz+02NhY69Spk40aNcry8/MtPz/fRo0aZZ07d7a4uDjv+Ouvv97uuuuuKms8/qTcp08f+/Of/1zpuDlz5lhERIT3TeaCCy7wucz6l9544w1veHPMM888YykpKfbUU09VGXCEhR29saXH47Gnn37aZ/nrr7/u/ahQaWmp/dd//Zc1bNjQ+vTp4725X5s2bSw2NtYyMjK8/6GqzpvNsZsBvvDCC1avXj1r3bq1RUVF2bx58ywtLc2uueYaGzRokEVGRnqbqyeeeMISEhJszJgxNn78eEtLS7Nhw4Z51/nCCy9475f10Ucf2bXXXmsZGRkWGRlpkZGRlpGRYddee633hqJmRz+3/su/Sh6vrKzM25jW1uPMrGbHWiCOs9oacJiFVshR08C+Nh5nwXCMmVX/OKvJsYOjqrPfVnefre7+6va+6ta5oCbnger2WtXts9zssQLRX1W3t6puX+XvnioQ7/Onetw4+f7u5jFDyO7shQ016ZHcOM8cq8GtYyYUzjOB7JkIpRy2b98+W7duXYVvZKjttm/fbmPGjLGLL77Y2rZta23btrWLL77Y7rvvPp9LOb///nufv66dyPz580/YWL344ovWq1cvMzt6D4C1a9dWObagoMAef/zxCvO/+uor69atm/ez1cdbvHixz/TLS3anTp1qf/rTn3zmvf3223bHHXfY5ZdfbpdddpkNGTLEnn76adu/f793zNChQ62kpKTKWn9p2bJl9pe//MV7D4QNGzbYr3/9a8vNzbXZs2f7jJ0+fbqdf/751rVrV7v//vvt559/9nmux3+TWSiri8dZbQw4zEIr5KhpYB/qastxVt1jB6GrtuyrJ1OdXqu6fZabPVYg+qua9FbV7atqc09VV44ZQnbnLmyo7T0Sx8zp9UweMzMBqFJ5ebn27dun+Ph4eTwet8sBaqX9+/dr27Ztat++vSIjI90uBwDgAHosoGbol1AbhbldQCi4//77dfPNN9e6sW5vP1SEhYUpISGBZul/BcN+U1vH1uXjLC4uTmeddRYN1v9ye18M1Fi3t1/TsagZf+8Hbu5XtW3bwaqu91i1aT+rbTUGq7reL7HfBu+2TwehVDV8++23+uabb2rdWLe3f8yQIUPUu3fvkBjr9vaDYex3331X7deXsTUbG6jtB8N/7hlbs3W6vS8Gaqzb26/p2NrwHxgn+bv/cLOfqW3b9nef42aPFQrb9ndP5eb7cV2tkQAiOGtkvw3ebZ9OzxR+Sj9Vxzz33HO1cqzb2z8mLS1NYWHVy0fdHuv29oNh7LPPPlut9TG25mMDtf1vv/1W3377LWNdHludcWYmj8dTrdc3lMa6vf2ajj2mJvsB/N9/uNnP1LZt+7vPcbPHCoVt+7uncrPnqKs1+vPcHohxda1Gf/cbbvY6tanG451Oz8Q9pf7Xnj179Mwzz2j58uUqLCyUJKWkpOj888/X0KFD1aRJk5Ac6/b2AQDVFxkZqc8++0zt27evVWPd3n5Nx6Jq/u4/3Oxnatu2AaC28ne/4WavU5tq9BdCKUmrVq1S3759Vb9+feXk5Cg5OVmSVFRUpEWLFuk///mP3nnnHZ177rkhNdbMXK+1Onbu3KkJEybomWeeCfqxbm/fqbE///yz1qxZo0aNGqlDhw4+4w4ePKhXXnlFgwcPliTG1nBsoLb/5ZdfasWKFcrOzlZWVpY2bdqkadOmqbS0VDfeeKPPxwgYG7ix1R03evRoVWbatGm68cYblZSUJEmaPHlySI2tSjDWOnny5ApjDhw4oFdeeUVbt25VamqqrrvuupM+t7rE3/2Hv8cFokcKlW2fjL/7HDd7rFDY9qn0VG72HHW1Rn+f2/09ri7W6O9+o7rjAtHr1KYaA94znfL39tUi3bt3t1tvvdXKy8srLCsvL7dbb73VevToEXJj3d5+da1bt87CwsJCYqzb23di7ObNm6158+bm8XgsLCzMLr74Ytu1a5d3XGFhoXedjK3Z2EBt/+2337bIyEhr1KiRRUdH29tvv21NmjSxnJwc6927t9WrV88WLVrE2ACPrck6PR6PnX322darVy+fyePxWLdu3axXr152ySWXhNxYt7df07Ht27e3H3/80czMduzYYS1atLCEhATr1q2bNWrUyJo2bWpff/214Sh/9x9u9jO1bdsn4+8+x80eKxS2XdOeys2eo67W6O9zeyB6hbpYo7/7DTd7ndpUo1lgeyZCKTOLjo62L7/8ssrlX375pUVHR4fcWLe3f8zrr79+wmnKlCneE4TbY93efjCMHTBggF1xxRX2ww8/2JYtW+yKK66wzMxM+9e//mVmvid0xtZsbKC2n52dbb///e/NzOyll16yhg0b2v333+89BseOHWt9+vRhbIDH1mSdeXl5lpmZ6W3qjgkPD7cNGzb4zAulsW5vv6ZjPR6PFRUVmZnZDTfcYOeff77t3bvXzMz27dtnOTk5dt111xmO8nf/4WY/U9u27e8+x80eKxS27e+eys2eo67W6O9zeyB6hbpYo7/7DTd7ndpUo1lgeyZCKTNr0aKFPfvss1Uuf/bZZ6158+YhN9bt7R9z7K8VHo+nyunYCcLtsW5vPxjGNm3a1D7//HPv61deXm633XabZWRk2LZt23xO6Iyt2dhAbT8+Pt62bNliZmZHjhyx8PBw+/TTT70/+8UXX1hycjJjAzy2Jus0M/vkk0+sbdu2dvfdd1tZWZmZVd4EhNpYt7dfk7HHN1gtW7a0d99912f5Rx99ZOnp6RXWX1f5u/9ws5+pbdv2d5/jZo8VCtv2d0/lZs9RV2v097k9EL1CXazRzP/9hpu9Tm2qMZA9E6GUmT3xxBMWFRVlv/vd7+z111+3FStW2IoVK+z111+33/3udxYTE2MFBQUhN9bt7R+TlpZmCxYsqPL3v3btWu8Jwu2xbm8/GMY2aNDANm7cWGH58OHDrVmzZrZ06VLvOhlbs7GB2n58fLxt3brVOyYuLs62bdvmffzNN994/5rO2MCNrck6j9m3b58NHjzYOnfubF988YVFRERU2oCE2li3t1/dsR6Px3bv3m1mR98jv/jiC5/llb1mdZm/+w83+5natm1/9zlu9lihsG1/91Ru9hx1tUZ/n9sD0SvUxRqP8Xe/4WavU1tqDGTPRCj1v+bOnWvdu3e38PBw7184wsPDrXv37vbyyy+H7Fi3t29m1r9/f3vwwQer/N2vW7fOPB5PUIx1e/vBMLZbt2723HPPVTpm+PDhlpiY6D2hM7ZmYwO1/c6dO9vbb7/tXf7FF1/YoUOHvI+XLl1qmZmZjA3w2Jqs85deeuklS05OtrCwsCobkFAc6/b2TzbW4/FYp06drEuXLhYXF2evvvqqz/IlS5bYGWecccL11zX+7j/c7Gdq07b93ee42WOFwrb93VO52XPU1Rr9fW4PRK9QF2v8JX/3G272OqFeYyB7JkKpXygrK7Ndu3bZrl27vJev1Yaxbm5/6dKlPm9Cv7R//35bvHhxUIx1e/vBMPYPf/iD9evXr8pxt99+u7cZZGzNxgZq+zNmzLA333yzyrHjxo2zYcOGMTbAY2uyzsrs3LnTFixYYPv3769yTCiOdXv7Jxr70EMP+UwLFy70WX7PPffYoEGDTrr+usjf/Yeb/Uxt2La/+xw3e6xQ2La/eyo3e466WqO/z+2B6BXqYo2V8Xe/4WavE8o1BrJn8piZndr39gEAAAAAAACnJsztAgAAAAAAAFD3EEoBAAAAAADAcYRSAAAAAAAAcByhFAAAAAAAABxHKAWg1urVq5fuuuuuao1dvHixPB6P9u7de1rbbNGihaZOnXpa6wAAAHAK/RIANxFKAQAAAAAAwHGEUgAAAAAAAHAcoRSAOuH555/XueeeqwYNGiglJUXXX3+9du/eXWHcRx99pM6dOys6Olo9evTQ+vXrfZYvW7ZMF110kWJiYpSenq7f/e53OnDggFNPAwAAIGDolwA4jVAKQJ1w6NAhPfzww/rss8+0YMECffPNNxo6dGiFcffee68effRRrVq1Sk2aNFH//v116NAhSdK2bdt0+eWXKzc3V59//rlefvllLVu2TCNGjHD42QAAAPgf/RIAp4W7XQAAOOHmm2/2/rtly5Z67LHH1K1bN+3fv19xcXHeZRMmTFCfPn0kSc8++6yaNWum1157Tddcc43y8vJ0ww03eG8G2qZNGz322GPq2bOnZsyYoejoaEefEwAAgD/RLwFwGldKAagT1qxZo/79+ysjI0MNGjRQz549JUk7duzwGZedne39d6NGjdSuXTt9+eWXkqTPPvtMs2fPVlxcnHfq27evysvLtX37dueeDAAAQADQLwFwGldKAaj1Dhw4oL59+6pv37568cUX1aRJE+3YsUN9+/ZVWVlZtdezf/9+/fa3v9Xvfve7CssyMjL8WTIAAICj6JcAuIFQCkCtt2nTJv3444/Kz89Xenq6JGn16tWVjl2xYoW3Yfr3v/+tr776Su3bt5cknXPOOdq4caNat27tTOEAAAAOoV8C4AY+vgeg1svIyFBkZKQef/xxff311/r73/+uhx9+uNKxkyZN0qJFi7R+/XoNHTpUjRs31oABAyRJ9913nz7++GONGDFC69at05YtW/T6669z404AABDy6JcAuIFQCkCt16RJE82ePVvz5s1Thw4dlJ+fr7/85S+Vjs3Pz9edd96prl27qrCwUG+88YYiIyMlSZ07d9aSJUv01Vdf6aKLLlKXLl00fvx4paWlOfl0AAAA/I5+CYAbPGZmbhcBAAAAAACAuoUrpQAAAAAAAOA4QikAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA4QikAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA4QikAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA4QikAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA4QikAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA4QikAjvjmm2/k8Xj0l7/8xW/rXLx4sTwejxYvXuy3dYainTt3Kjo6Wh999FGNf3bjxo0KDw/X+vXrA1AZAACoCfqlwKFfAoIToRSAKs2ePVsej0erV692uxS/2LZtm37729+qZcuWio6OVnx8vC644AJNmzZNP//8s9vlSZKmT5+u2bNn1+hnJk2apO7du+uCCy7wmf/+++/rkksuUePGjZWYmKjzzjtPzz//vM+YDh066IorrtD48eNPt3QAAOok+iXn+bNfmjt3rs455xxFR0erSZMmGjZsmPbs2eMzhn4JCJxwtwsAACf84x//0H//938rKipKgwcPVseOHVVWVqZly5bp3nvv1YYNG/T000+7XaamT5+uxo0ba+jQodUa/8MPP+jZZ5/Vs88+6zP/73//uwYMGKDs7Gw99NBD8ng8euWVVzR48GDt2bNHo0aN8o697bbb9Ktf/Urbtm1Tq1at/Pl0AABACKlr/dKMGTN0xx136NJLL9XkyZP17bffatq0aVq9erVWrlyp6Oho71j6JSAwCKUA1Hrbt2/XoEGD1Lx5c33wwQdKTU31Lhs+fLi2bt2qf/zjHy5WeOpeeOEFhYeHq3///j7zn3jiCaWmpuqDDz5QVFSUJOm3v/2tsrKyNHv2bJ9QKicnRw0bNtSzzz6rSZMmOVo/AAAIDnWtXyorK9P999+viy++WO+99548Ho8k6fzzz1f//v3117/+VSNHjvSOp18CAoOP7wE4LWVlZRo/fry6du2qhIQExcbG6qKLLtKHH35Y5c9MmTJFzZs3V0xMjHr27Fnp5/M3bdqk//f//p8aNWqk6OhonXvuufr73/9+SjX+6U9/0v79+zVz5kyfBuuY1q1b68477/Q+Pnz4sB5++GG1atVKUVFRatGihe6//36Vlpb6/JzH49FDDz1UYX0tWrTw+cvdscv6P/roI40ePVpNmjRRbGysrr76av3www8+P7dhwwYtWbJEHo9HHo9HvXr1OuFzW7Bggbp37664uDif+SUlJWrYsKE3kJKk8PBwNW7cWDExMT5jIyIi1KtXL73++usn3BYAADg19EsPVVif2/3S+vXrtXfvXl177bXeQEqSrrzySsXFxWnu3Lk+66BfAgKDUArAaSkpKdHf/vY39erVS3/84x/10EMP6YcfflDfvn21bt26CuOfe+45PfbYYxo+fLjGjRun9evXq3fv3ioqKvKO2bBhg3r06KEvv/xSY8eO1aOPPqrY2FgNGDBAr732Wo1rfOONN9SyZUudf/751Rp/yy23aPz48TrnnHM0ZcoU9ezZU3l5eRo0aFCNt328kSNH6rPPPtOECRN0++2364033tCIESO8y6dOnapmzZopKytLzz//vJ5//nn9/ve/r3J9hw4d0qpVq3TOOedUWNarVy9t2LBBDz74oLZu3apt27bp4Ycf1urVqzVmzJgK47t27ar169erpKTktJ4jAACoiH6p+pzql46FZ7/8Y92xeWvXrlV5ebnPfPolIAAMAKowa9Ysk2SrVq2qcszhw4ettLTUZ96///1vS05Otptvvtk7b/v27SbJYmJi7Ntvv/XOX7lypUmyUaNGeeddeuml1qlTJzt48KB3Xnl5uZ1//vnWpk0b77wPP/zQJNmHH35YZX3FxcUmya666qrqPGVbt26dSbJbbrnFZ/4999xjkuyDDz7wzpNkEyZMqLCO5s2b25AhQ7yPj/0ec3JyrLy83Dt/1KhRVq9ePdu7d6933plnnmk9e/asVq1bt241Sfb4449XWLZ//3675pprzOPxmCSTZPXr17cFCxZUuq45c+aYJFu5cmW1tg0AAI6iX/o/odQv/fDDD+bxeGzYsGE+8zdt2uTtnfbs2eOzjH4J8D+ulAJwWurVq6fIyEhJUnl5uX766ScdPnxY5557rj799NMK4wcMGKAzzjjD+/i8885T9+7d9dZbb0mSfvrpJ33wwQe65pprtG/fPu3Zs0d79uzRjz/+qL59+2rLli367rvvql3fsb9kNWjQoFrjj9UxevRon/l33323JJ3WvRRuvfVWn8vDL7roIh05ckT/+te/Tml9P/74oySpYcOGFZZFRUWpbdu2+n//7//ppZde0gsvvKBzzz1XN954o1asWFFh/LF1/PLbZgAAwOmjX6o+p/qlxo0b65prrtGzzz6rRx99VF9//bX++c9/6tprr1VERIQkVfi2QfolwP+40TmA03bsZL5p0yYdOnTIOz8zM7PC2DZt2lSY17ZtW73yyiuSpK1bt8rM9OCDD+rBBx+sdHu7d+/2adROJD4+XpK0b9++ao3/17/+pbCwMLVu3dpnfkpKihITE0+5IZKkjIwMn8fHGpt///vfp7xOSTKzCvNGjBihFStW6NNPP1VY2NG/P1xzzTU688wzdeedd2rlypWVruP4JhAAAPgP/VL1ONkvPfXUU/r55591zz336J577pEk3XjjjWrVqpXmz59f4Z6d9EuA/xFKATgtL7zwgoYOHaoBAwbo3nvvVdOmTVWvXj3l5eVp27ZtNV7fsc/u33PPPerbt2+lY37ZAJ1IfHy80tLSKr056ImcTrNx5MiRSufXq1ev0vmVNUnVkZSUJKlik1ZWVqaZM2dqzJgx3kBKOnqDzn79+umJJ55QWVmZ9y+2x6+jcePGp1QLAACoGv1SRW73S5KUkJCg119/XTt27NA333yj5s2bq3nz5jr//PPVpEkTJSYm+oynXwL8j1AKwGl59dVX1bJlS82fP9+nMZkwYUKl47ds2VJh3ldffaUWLVpIklq2bCnpaICSk5PjlxqvvPJKPf3001q+fLmys7NPOLZ58+YqLy/Xli1b1L59e+/8oqIi7d27V82bN/fOa9iwofbu3evz82VlZfr+++9PudaaNHcZGRmKiYnR9u3bfeb/+OOPOnz4cKXN3qFDh1ReXl5h2fbt2xUWFqa2bdueWuEAAKBK9Et7fX4+GPqlX445doXW3r17tWbNGuXm5lYYR78E+B/3lAJwWo79Nev4v16tXLlSy5cvr3T8ggULfO5x8Mknn2jlypXq16+fJKlp06bq1auXnnrqqUqbleO/Eri6xowZo9jYWN1yyy0+31pzzLZt2zRt2jRJ0q9+9StJR7/Z5XiTJ0+WJF1xxRXeea1atdLSpUt9xj399NNV/uWvOmJjYys0blWJiIjQueeeq9WrV/vMb9q0qRITE/Xaa6+prKzMO3///v164403lJWVVeGbZtasWaMzzzxTCQkJp1w7AACoHP1S8PVLVRk3bpwOHz6sUaNGVVhGvwT4H1dKATipZ555RgsXLqww/84779SVV16p+fPn6+qrr9YVV1yh7du368knn1SHDh20f//+Cj/TunVrXXjhhbr99ttVWlqqqVOnKikpSWPGjPGOKSgo0IUXXqhOnTrpN7/5jVq2bKmioiItX75c3377rT777LMa1d+qVSvNmTNH1157rdq3b6/BgwerY8eOKisr08cff6x58+Zp6NChkqSzzjpLQ4YM0dNPP629e/eqZ8+e+uSTT/Tss89qwIABuuSSS7zrveWWW3TbbbcpNzdXffr00WeffaZ33nnntC7p7tq1q2bMmKFHHnlErVu3VtOmTdW7d+8qx1911VX6/e9/r5KSEu/9IOrVq6d77rlHDzzwgHr06KHBgwfryJEjmjlzpr799lu98MILPus4dOiQlixZojvuuOOU6wYAoK6jXwqtfkmS8vPztX79enXv3l3h4eFasGCB3n33XT3yyCPq1q2bzzrol4AAcetr/wAEv2NfzVvVtHPnTisvL7c//OEP1rx5c4uKirIuXbrYm2++aUOGDLHmzZt713XsK47//Oc/26OPPmrp6ekWFRVlF110kX322WcVtr1t2zYbPHiwpaSkWEREhJ1xxhl25ZVX2quvvuodU52vOD7eV199Zb/5zW+sRYsWFhkZaQ0aNLALLrjAHn/8cZ+vUz506JBNnDjRMjMzLSIiwtLT023cuHE+Y8zMjhw5Yvfdd581btzY6tevb3379rWtW7dW+RXHv/yq6MrqLywstCuuuMIaNGhgkk76dcdFRUUWHh5uzz//fIVlL774op133nmWmJhoMTEx1r17d5/f3zFvv/22SbItW7accFsAAKAi+qXQ7ZfefPNNO++886xBgwZWv35969Gjh73yyiuVroN+CQgMj9kp3jEOABAUhg0bpq+++kr//Oc/T+nnBwwYII/Ho9dee83PlQEAAAQH+iUgOBFKAUCI27Fjh9q2batFixbpggsuqNHPfvnll+rUqZPWrVunjh07BqhCAAAAd9EvAcGJUAoAAAAAAACO49v3AAAAAAAA4DhCKQAAAAAAADiOUAoAAAAAAACOI5QCAAAAAACA4wilAAAAAAAA4LhwtwsIBuXl5dq1a5caNGggj8fjdjkAACDImJn27duntLQ0hYXVzb/p0S8BAIATOZV+iVBK0q5du5Senu52GQAAIMjt3LlTzZo1c7sMV9AvAQCA6qhJv0QoJalBgwaSjv7i4uPjXa4GAAAEm5KSEqWnp3t7hrqIfgkAAJzIqfRLhFKS9xL0+Ph4miwAAFCluvyxNfolAABQHTXpl+rmTREAAAAAAADgKkIpAAAAAAAAOI5QCgAAAAAAAI4jlAIAAAAAAIDjQiqUys/Pl8fj0V133eWdd/DgQQ0fPlxJSUmKi4tTbm6uioqK3CsSAAAAAAAAJxUyodSqVav01FNPqXPnzj7zR40apTfeeEPz5s3TkiVLtGvXLg0cONClKgEAAAAAAFAdIRFK7d+/XzfccIP++te/qmHDht75xcXFmjlzpiZPnqzevXura9eumjVrlj7++GOtWLHCxYoBAAAAAABwIiERSg0fPlxXXHGFcnJyfOavWbNGhw4d8pmflZWljIwMLV++vMr1lZaWqqSkxGcCAAAAAACAc8LdLuBk5s6dq08//VSrVq2qsKywsFCRkZFKTEz0mZ+cnKzCwsIq15mXl6eJEyf6u1QAAAAAAABUU1BfKbVz507deeedevHFFxUdHe239Y4bN07FxcXeaefOnX5bNwAAAAAAAE4uqEOpNWvWaPfu3TrnnHMUHh6u8PBwLVmyRI899pjCw8OVnJyssrIy7d271+fnioqKlJKSUuV6o6KiFB8f7zMBAAAAAADAOUH98b1LL71UX3zxhc+8m266SVlZWbrvvvuUnp6uiIgILVq0SLm5uZKkzZs3a8eOHcrOznajZAAAAAAAAFRDUIdSDRo0UMeOHX3mxcbGKikpyTt/2LBhGj16tBo1aqT4+HiNHDlS2dnZ6tGjhxslAwAAAAAAoBqCOpSqjilTpigsLEy5ubkqLS1V3759NX36dLfLAgAAAAAAwAl4zMzcLsJtJSUlSkhIUHFxMfeXAgAAFdAr8DsAAAAndiq9QlDf6BwAAAAAAAC1E6EUAAAAAAAAHEcoBQAAAAAAAMcRSgEAAAAAAMBxhFIAAAAAAABwHKEUAAAAAAAAHBfudgEAAKB68tfu8Xk8tktjlyoBAADwv1/2OsfQ89ReXCkFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAACHuoYceksfj8ZmysrK8yw8ePKjhw4crKSlJcXFxys3NVVFRkYsVAwAAEEoBAADUCmeeeaa+//5777Rs2TLvslGjRumNN97QvHnztGTJEu3atUsDBw50sVoAAAAp3O0CAAAAcPrCw8OVkpJSYX5xcbFmzpypOXPmqHfv3pKkWbNmqX379lqxYoV69OjhdKkAAACSuFIKAACgVtiyZYvS0tLUsmVL3XDDDdqxY4ckac2aNTp06JBycnK8Y7OyspSRkaHly5dXub7S0lKVlJT4TAAAAP5EKAUAABDiunfvrtmzZ2vhwoWaMWOGtm/frosuukj79u1TYWGhIiMjlZiY6PMzycnJKiwsrHKdeXl5SkhI8E7p6ekBfhYAAKCu4eN7AAAAIa5fv37ef3fu3Fndu3dX8+bN9corrygmJuaU1jlu3DiNHj3a+7ikpIRgCgAA+BWhFAAANZS/dk+FeWO7NHahEqByiYmJatu2rbZu3ao+ffqorKxMe/fu9blaqqioqNJ7UB0TFRWlqKgoB6oFAAB1FR/fAwAAqGX279+vbdu2KTU1VV27dlVERIQWLVrkXb5582bt2LFD2dnZLlYJAADqOq6UAgAACHH33HOP+vfvr+bNm2vXrl2aMGGC6tWrp+uuu04JCQkaNmyYRo8erUaNGik+Pl4jR45UdnY237wHAABcRSgFAAAQ4r799ltdd911+vHHH9WkSRNdeOGFWrFihZo0aSJJmjJlisLCwpSbm6vS0lL17dtX06dPd7lqAABQ1xFKAQAAhLi5c+eecHl0dLQKCgpUUFDgUEUAAAAnxz2lAAAAAAAA4DhCKQAAAAAAADiOUAoAAAAAAACOC+pQasaMGercubPi4+MVHx+v7Oxsvf32297lvXr1ksfj8Zluu+02FysGAAAAAABAdQT1jc6bNWum/Px8tWnTRmamZ599VldddZXWrl2rM888U5L0m9/8RpMmTfL+TP369d0qFwAAAAAAANUU1KFU//79fR7/z//8j2bMmKEVK1Z4Q6n69esrJSXFjfIAAAAAAABwioL643vHO3LkiObOnasDBw4oOzvbO//FF19U48aN1bFjR40bN07/+c9/Trqu0tJSlZSU+EwAAAAAAABwTlBfKSVJX3zxhbKzs3Xw4EHFxcXptddeU4cOHSRJ119/vZo3b660tDR9/vnnuu+++7R582bNnz//hOvMy8vTxIkTnSgfAAAAAAAAlQj6UKpdu3Zat26diouL9eqrr2rIkCFasmSJOnTooFtvvdU7rlOnTkpNTdWll16qbdu2qVWrVlWuc9y4cRo9erT3cUlJidLT0wP6PAAAAAAAAPB/gj6UioyMVOvWrSVJXbt21apVqzRt2jQ99dRTFcZ2795dkrR169YThlJRUVGKiooKTMEAAAAAAAA4qZC5p9Qx5eXlKi0trXTZunXrJEmpqakOVgQAAAAAAICaCuorpcaNG6d+/fopIyND+/bt05w5c7R48WK988472rZtm+bMmaNf/epXSkpK0ueff65Ro0bp4osvVufOnd0uHQAAAAAABEj+2j0V5o3t0tiFSnA6gjqU2r17twYPHqzvv/9eCQkJ6ty5s9555x316dNHO3fu1Pvvv6+pU6fqwIEDSk9PV25urh544AG3ywYAAAAAAMBJBHUoNXPmzCqXpaena8mSJQ5WAwAAAAAAAH8JuXtKAQAAAAAAIPQRSgEAAAAAAMBxhFIAAAAAAABwHKEUAAAAAAAAHEcoBQAAAAAAAMcRSgEAAAAAAMBxhFIAAAAAAABwHKEUAAAAAAAAHEcoBQAAAAAAAMcRSgEAAAAAAMBxhFIAAAAAAABwHKEUAAAAAAAAHEcoBQAAAAAAAMcRSgEAAAAAAMBxhFIAAAAAAABwHKEUAAAAAAAAHEcoBQAAAAAAAMcRSgEAAAAAAMBxhFIAAAAAAABwHKEUAAAAAAAAHEcoBQAAAAAAAMcRSgEAAAAAAMBxhFIAAAAAAABwHKEUAAAAAAAAHEcoBQAAAAAAAMcRSgEAAAAAAMBxhFIAAAAAAABwHKEUAAAAAAAAHEcoBQAAAAAAAMcRSgEAAAAAAMBx4W4XAABAbZW/dk+FeWO7NHahEgAAACD4cKUUAAAAAAAAHEcoBQAAAAAAAMcRSgEAAAAAAMBxhFIAAAAAAABwHKEUAAAAAAAAHEcoBQAAAAAAAMcRSgEAAAAAAMBxhFIAAAAAAABwHKEUAAAAAAAAHEcoBQAAAAAAAMcRSgEAAAAAAMBxhFIAAAAAAABwHKEUAAAAAAAAHEcoBQAAAAAAAMcRSgEAAAAAAMBxhFIAAAAAAABwHKEUAAAAAAAAHEcoBQAAAAAAAMcRSgEAAAAAAMBxQR1KzZgxQ507d1Z8fLzi4+OVnZ2tt99+27v84MGDGj58uJKSkhQXF6fc3FwVFRW5WDEAAAAAAACqI6hDqWbNmik/P19r1qzR6tWr1bt3b1111VXasGGDJGnUqFF64403NG/ePC1ZskS7du3SwIEDXa4aAAAAAAAAJxPudgEn0r9/f5/H//M//6MZM2ZoxYoVatasmWbOnKk5c+aod+/ekqRZs2apffv2WrFihXr06OFGyQAAAAAAAKiGoL5S6nhHjhzR3LlzdeDAAWVnZ2vNmjU6dOiQcnJyvGOysrKUkZGh5cuXu1gpAAAAAAAATiaor5SSpC+++ELZ2dk6ePCg4uLi9Nprr6lDhw5at26dIiMjlZiY6DM+OTlZhYWFJ1xnaWmpSktLvY9LSkoCUToAAAAAAACqEPRXSrVr107r1q3TypUrdfvtt2vIkCHauHHjaa0zLy9PCQkJ3ik9Pd1P1QIAAAAAAKA6gj6UioyMVOvWrdW1a1fl5eXprLPO0rRp05SSkqKysjLt3bvXZ3xRUZFSUlJOuM5x48apuLjYO+3cuTOAzwAAAAAAAAC/FPSh1C+Vl5ertLRUXbt2VUREhBYtWuRdtnnzZu3YsUPZ2dknXEdUVJTi4+N9JgAAAAAAADgnqO8pNW7cOPXr108ZGRnat2+f5syZo8WLF+udd95RQkKChg0bptGjR6tRo0aKj4/XyJEjlZ2dzTfvAQAAAAAABLmgDqV2796twYMH6/vvv1dCQoI6d+6sd955R3369JEkTZkyRWFhYcrNzVVpaan69u2r6dOnu1w1AAAAAAC1W/7aPZXOH9ulscOVIJQFdSg1c+bMEy6Pjo5WQUGBCgoKHKoIAAAAAAAA/hBy95QCAAAAAABA6COUAgAAAAAAgOMIpQAAAAAAAOA4QikAAIBaJD8/Xx6PR3fddZd33sGDBzV8+HAlJSUpLi5Oubm5Kioqcq9IAAAAEUoBAADUGqtWrdJTTz2lzp07+8wfNWqU3njjDc2bN09LlizRrl27NHDgQJeqBAAAOIpQCgAAoBbYv3+/brjhBv31r39Vw4YNvfOLi4s1c+ZMTZ48Wb1791bXrl01a9Ysffzxx1qxYoWLFQMAgLou3O0CAAAItPy1eyrMG9ul8SmPQ+j55WtbG1/X4cOH64orrlBOTo4eeeQR7/w1a9bo0KFDysnJ8c7LyspSRkaGli9frh49elS6vtLSUpWWlnofl5SUBK54AABQJxFKAQAAhLi5c+fq008/1apVqyosKywsVGRkpBITE33mJycnq7CwsMp15uXlaeLEif4uFQAAwIuP7wEAAISwnTt36s4779SLL76o6Ohov6133LhxKi4u9k47d+7027oBAAAkQikAAICQtmbNGu3evVvnnHOOwsPDFR4eriVLluixxx5TeHi4kpOTVVZWpr179/r8XFFRkVJSUqpcb1RUlOLj430mAAAAf+LjewAAACHs0ksv1RdffOEz76abblJWVpbuu+8+paenKyIiQosWLVJubq4kafPmzdqxY4eys7PdKBkAAEASoRQAAEBIa9CggTp27OgzLzY2VklJSd75w4YN0+jRo9WoUSPFx8dr5MiRys7OrvIm5wAAAE4glAIAAKjlpkyZorCwMOXm5qq0tFR9+/bV9OnT3S4LAADUcYRSAAAAtczixYt9HkdHR6ugoEAFBQXuFAQAAFAJbnQOAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcx43OAYS0/LV7Kswb26WxC5UAAAAAAGqCK6UAAAAAAADgOEIpAAAAAAAAOI5QCgAAAAAAAI4jlAIAAAAAAIDjCKUAAAAAAADgOEIpAAAAAAAAOC7c7QIAAAAAAEDtlb92T4V5Y7s0dqESBBuulAIAAAAAAIDjCKUAAAAAAADgOEIpAAAAAAAAOI5QCgAAAAAAAI4jlAIAAAAAAIDj+PY9AI7imzeAwOIYAwAAQKjgSikAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA4QikAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA4QikAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgOPC3S4AAIC6Ln/tngrzxnZp7EIldRuvAwAAgLO4UgoAAAAAAACOI5QCAAAAAACA4wilAAAAAAAA4DhCKQAAAAAAADiOUAoAAAAAAACOI5QCAAAAAACA4wilAAAAAAAA4LigDqXy8vLUrVs3NWjQQE2bNtWAAQO0efNmnzG9evWSx+PxmW677TaXKgYAAAAAAEB1hLtdwIksWbJEw4cPV7du3XT48GHdf//9uuyyy7Rx40bFxsZ6x/3mN7/RpEmTvI/r16/vRrkAAAAAAIS0/LV7Kswb26WxC5WgLgjqUGrhwoU+j2fPnq2mTZtqzZo1uvjii73z69evr5SUFKfLAwAAAAAAwCkK6o/v/VJxcbEkqVGjRj7zX3zxRTVu3FgdO3bUuHHj9J///OeE6yktLVVJSYnPBAAAAAAAAOcE9ZVSxysvL9ddd92lCy64QB07dvTOv/7669W8eXOlpaXp888/13333afNmzdr/vz5Va4rLy9PEydOdKJsAAAAAAAAVCJkQqnhw4dr/fr1WrZsmc/8W2+91fvvTp06KTU1VZdeeqm2bdumVq1aVbqucePGafTo0d7HJSUlSk9PD0zhAAAAAAAAqCAkQqkRI0bozTff1NKlS9WsWbMTju3evbskaevWrVWGUlFRUYqKivJ7nQAAAAAAAKieoA6lzEwjR47Ua6+9psWLFyszM/OkP7Nu3TpJUmpqaoCrAwAAAAAAwKkK6lBq+PDhmjNnjl5//XU1aNBAhYWFkqSEhATFxMRo27ZtmjNnjn71q18pKSlJn3/+uUaNGqWLL75YnTt3drl6AAAAAAAAVCWoQ6kZM2ZIknr16uUzf9asWRo6dKgiIyP1/vvva+rUqTpw4IDS09OVm5urBx54wIVqAQAAAAAAUF1BHUqZ2QmXp6ena8mSJQ5VAwAAAAAAAH8Jc7sAAAAAAAAA1D2EUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHBcuNsFoO7JX7unwryxXRq7UEno4XdXOwX76xrs9QEAAAAITVwpBQAAAAAAAMcRSgEAAAAAAMBxhFIAAAAAAABwHKEUAAAAAAAAHEcoBQAAAAAAAMcRSgEAAAAAAMBxhFIAAAAAAABwHKEUAAAAAAAAHEcoBQAAAAAAAMcRSgEAAAAAAMBx4W4XAAAAAACAE/LX7qkwb2yXxi5U4ry6/NwRvAilgFNQW97Qa8vzQGjx537HPnzq+N0BAADAbXx8DwAAAAAAAI4jlAIAAAAAAIDjCKUAAAAAAADgOEIpAAAAAAAAOI5QCgAAAAAAAI4jlAIAAAAAAIDjCKUAAAAAAADgOEIpAAAAAAAAOI5QCgAAAAAAAI4jlAIAAAAAAIDjCKUAAAAAAADguHC3CwCCSf7aPRXmje3S2IVKEOzYVyridwK4Z8aMGZoxY4a++eYbSdKZZ56p8ePHq1+/fpKkgwcP6u6779bcuXNVWlqqvn37avr06UpOTnaxagAAUNcF7Eqpli1b6scff6wwf+/evWrZsmWgNgsAABAy/NUvNWvWTPn5+VqzZo1Wr16t3r1766qrrtKGDRskSaNGjdIbb7yhefPmacmSJdq1a5cGDhzot+cBAABwKgJ2pdQ333yjI0eOVJhfWlqq7777LlCbBQAACBn+6pf69+/v8/h//ud/NGPGDK1YsULNmjXTzJkzNWfOHPXu3VuSNGvWLLVv314rVqxQjx49Tu9JAAAAnCK/h1J///vfvf9+5513lJCQ4H185MgRLVq0SC1atPD3ZgEAAEJGIPulI0eOaN68eTpw4ICys7O1Zs0aHTp0SDk5Od4xWVlZysjI0PLly6sMpUpLS1VaWup9XFJSckr1AAAAVMXvodSAAQMkSR6PR0OGDPFZFhERoRYtWujRRx/192YBAABCRiD6pS+++ELZ2dk6ePCg4uLi9Nprr6lDhw5at26dIiMjlZiY6DM+OTlZhYWFVa4vLy9PEydOrFENQKBw30IAqJ38HkqVl5dLkjIzM7Vq1So1bszJAgAA4HiB6JfatWundevWqbi4WK+++qqGDBmiJUuWnPL6xo0bp9GjR3sfl5SUKD09/bTrBAAAOCZg95Tavn17oFYNAABQK/izX4qMjFTr1q0lSV27dtWqVas0bdo0XXvttSorK9PevXt9rpYqKipSSkpKleuLiopSVFSU3+oDAAD4pYCFUpK0aNEiLVq0SLt37/b+RfCYZ555JpCbBgAACAmB6pfKy8tVWlqqrl27KiIiQosWLVJubq4kafPmzdqxY4eys7NPq3YAAIDTEbBQauLEiZo0aZLOPfdcpaamyuPxBGpTAAAAIclf/dK4cePUr18/ZWRkaN++fZozZ44WL17svYn6sGHDNHr0aDVq1Ejx8fEaOXKksrOz+eY9AADgqoCFUk8++aRmz56tX//614HaBAAAQEjzV7+0e/duDR48WN9//70SEhLUuXNnvfPOO+rTp48kacqUKQoLC1Nubq5KS0vVt29fTZ8+3R9PAQAA4JQFLJQqKyvT+eefH6jVAwAAhDx/9UszZ8484fLo6GgVFBSooKDgtLcFAADgL2GBWvEtt9yiOXPmBGr1AAAAIY9+CQAA1GUBu1Lq4MGDevrpp/X++++rc+fOioiI8Fk+efLkQG0aAAAgJNAvAQCAuixgodTnn3+us88+W5K0fv16n2XBfNPz/LV7Kswb26WxC5WgLmG/gxvY7wD3hWq/BAAA4A8BC6U+/PDDQK0aAACgVqBfAgAAdVnA7ikFAAAAAAAAVCVgV0pdcsklJ7zs/IMPPgjUpgEAAEIC/RIAAKjLAhZKHbs/wjGHDh3SunXrtH79eg0ZMiRQmwUAAAgZ9EsAAKAuC1goNWXKlErnP/TQQ9q/f3+gNgsAABAy6JcAAEBd5vg9pW688UY988wzTm8WAAAgZNAvAQCAusDxUGr58uWKjo6u1ti8vDx169ZNDRo0UNOmTTVgwABt3rzZZ8zBgwc1fPhwJSUlKS4uTrm5uSoqKgpE6QAAAI6oSb8EAAAQqgL28b2BAwf6PDYzff/991q9erUefPDBaq1jyZIlGj58uLp166bDhw/r/vvv12WXXaaNGzcqNjZWkjRq1Cj94x//0Lx585SQkKARI0Zo4MCB+uijj/z+nAAAAPzJH/0SAABAqApYKJWQkODzOCwsTO3atdOkSZN02WWXVWsdCxcu9Hk8e/ZsNW3aVGvWrNHFF1+s4uJizZw5U3PmzFHv3r0lSbNmzVL79u21YsUK9ejRwz9PBgAAIAD80S8BAICq5a/dU+n8sV0aO1wJKhOwUGrWrFl+X2dxcbEkqVGjRpKkNWvW6NChQ8rJyfGOycrKUkZGhpYvX04oBQAAglog+iUAAIBQEbBQ6pg1a9boyy+/lCSdeeaZ6tKlyymtp7y8XHfddZcuuOACdezYUZJUWFioyMhIJSYm+oxNTk5WYWFhlesqLS1VaWmp93FJSckp1QQAAOAP/uqXAAAAQknAQqndu3dr0KBBWrx4sTc02rt3ry655BLNnTtXTZo0qdH6hg8frvXr12vZsmWnXVteXp4mTpx4Wuuo7BJALv/zL37HweOXrwWvAwD4h7/7JQAAgFASsG/fGzlypPbt26cNGzbop59+0k8//aT169erpKREv/vd72q0rhEjRujNN9/Uhx9+qGbNmnnnp6SkqKysTHv37vUZX1RUpJSUlCrXN27cOBUXF3unnTt31qgeAAAAf/BnvwQAABBqAnal1MKFC/X++++rffv23nkdOnRQQUFBtW/caWYaOXKkXnvtNS1evFiZmZk+y7t27aqIiAgtWrRIubm5kqTNmzdrx44dys7OrnK9UVFRioqKOoVnBQAA4D/+6JcAAABCVcBCqfLyckVERFSYHxERofLy8mqtY/jw4ZozZ45ef/11NWjQwHufqISEBMXExCghIUHDhg3T6NGj1ahRI8XHx2vkyJHKzs7mJucAACDo+aNfAgAACFUB+/he7969deedd2rXrl3eed99951GjRqlSy+9tFrrmDFjhoqLi9WrVy+lpqZ6p5dfftk7ZsqUKbryyiuVm5uriy++WCkpKZo/f77fnw8AAIC/+aNfAgAACFUBu1LqiSee0H/913+pRYsWSk9PlyTt3LlTHTt21AsvvFCtdZjZScdER0eroKBABQUFp1UvAACA0/zRLwEAAISqgIVS6enp+vTTT/X+++9r06ZNkqT27dsrJycnUJsEAAAIKfRLAACgLvP7x/c++OADdejQQSUlJfJ4POrTp49GjhypkSNHqlu3bjrzzDP1z3/+09+bBQAACBn0SwAAAAEIpaZOnarf/OY3io+Pr7AsISFBv/3tbzV58mR/bxYAACBk0C8BAAAEIJT67LPPdPnll1e5/LLLLtOaNWv8vVkAAICQQb8EAAAQgFCqqKio0q82PiY8PFw//PCDvzcLAAAQMuiXAAAAAhBKnXHGGVq/fn2Vyz///HOlpqb6e7MAAAAhg34JAAAgAN++96tf/UoPPvigLr/8ckVHR/ss+/nnnzVhwgRdeeWV/t4sgOPkr91TYd7YLo1r3TbrGn7HcAP7XWDQLwEAAAQglHrggQc0f/58tW3bViNGjFC7du0kSZs2bVJBQYGOHDmi3//+9/7eLAAAQMigXwIAAAhAKJWcnKyPP/5Yt99+u8aNGyczkyR5PB717dtXBQUFSk5O9vdmAQAAQgb9EgAAQABCKUlq3ry53nrrLf373//W1q1bZWZq06aNGjZsGIjNAQAAhBz6pdrPzY+/Btu2ndw+ACB0BCSUOqZhw4bq1q1bIDcBAAAQ0uiXAABAXeX3b98DAAAAAAAAToZQCgAAAAAAAI4jlAIAAAAAAIDjCKUAAAAAAADgOEIpAAAAAAAAOI5QCgAAAAAAAI4jlAIAAAAAAIDjwt0uAAAAAEDwy1+7p8K8sV0au1AJEFwCcWxwvLmD37vzCKUQ8oL5jSOYawt2teF3VxueA+BvHBcAAAA4ho/vAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcF+52AQAAAADckb92T6Xzx3Zp7HAlCEZu7x+VbZ99E6hduFIKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA47imFk6otn+WuLc8DAPB/eG8HAAAIXVwpBQAAAAAAAMcRSgEAAAAAAMBxhFIAAAAAAABwHKEUAAAAAAAAHMeNzgEAAAC4gi8rAIDQ4u/3ba6UAgAAAAAAgOMIpQAAAAAAAOA4QikAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOC4cLcLgP/x1bpARdU9Ljh+AAAAAMAZXCkFAAAAAAAAx3GlFAAAAIBaIxBXPYfKOhHceM2BirhSCgAAAAAAAI4jlAIAAAAAAIDjCKUAAAAAAADgOEIpAAAAAAAAOI5QCgAAAAAAAI4L+lBq6dKl6t+/v9LS0uTxeLRgwQKf5UOHDpXH4/GZLr/8cneKBQAAAAAAQLUEfSh14MABnXXWWSooKKhyzOWXX67vv//eO7300ksOVggAAAAAAICaCne7gJPp16+f+vXrd8IxUVFRSklJcagiAAAAAAAAnK6gD6WqY/HixWratKkaNmyo3r1765FHHlFSUpLbZQEAAAAAEDD5a/dUmDe2S2MXKgFOTciHUpdffrkGDhyozMxMbdu2Tffff7/69eun5cuXq169epX+TGlpqUpLS72PS0pKnCoXAAAAAAAAqgWh1KBBg7z/7tSpkzp37qxWrVpp8eLFuvTSSyv9mby8PE2cONGpEusMUnoAAAAAAFBdQX+j85pq2bKlGjdurK1bt1Y5Zty4cSouLvZOO3fudLBCAAAAAAAA1LpQ6ttvv9WPP/6o1NTUKsdERUUpPj7eZwIAAAhFeXl56tatmxo0aKCmTZtqwIAB2rx5s8+YgwcPavjw4UpKSlJcXJxyc3NVVFTkUsUAAABHBX0otX//fq1bt07r1q2TJG3fvl3r1q3Tjh07tH//ft17771asWKFvvnmGy1atEhXXXWVWrdurb59+7pbOAAAgAOWLFmi4cOHa8WKFXrvvfd06NAhXXbZZTpw4IB3zKhRo/TGG29o3rx5WrJkiXbt2qWBAwe6WDUAAEAI3FNq9erVuuSSS7yPR48eLUkaMmSIZsyYoc8//1zPPvus9u7dq7S0NF122WV6+OGHFRUV5VbJAAAAjlm4cKHP49mzZ6tp06Zas2aNLr74YhUXF2vmzJmaM2eOevfuLUmaNWuW2rdvrxUrVqhHjx5ulA0AABD8oVSvXr1kZlUuf+eddxysBgAAILgVFxdLkho1aiRJWrNmjQ4dOqScnBzvmKysLGVkZGj58uVVhlJ8WzEAAAi0oA+lAAAAUD3l5eW66667dMEFF6hjx46SpMLCQkVGRioxMdFnbHJysgoLC6tcF99W7By+wRj+Ut19KRD7HPsxgFMR9PeUAgAAQPUMHz5c69ev19y5c097XXxbMQAACDSulAIAAKgFRowYoTfffFNLly5Vs2bNvPNTUlJUVlamvXv3+lwtVVRUpJSUlCrXFxUVxT06AQBAQHGlFAAAQAgzM40YMUKvvfaaPvjgA2VmZvos79q1qyIiIrRo0SLvvM2bN2vHjh3Kzs52ulwAAAAvrpQCAAAIYcOHD9ecOXP0+uuvq0GDBt77RCUkJCgmJkYJCQkaNmyYRo8erUaNGik+Pl4jR45UdnY237wHAABcRSgFAAAQwmbMmCHp6DcWH2/WrFkaOnSoJGnKlCkKCwtTbm6uSktL1bdvX02fPt3hSgEAAHwRSgEAgg7f4ANUn5mddEx0dLQKCgpUUFDgQEUAAADVwz2lAAAAAAAA4DhCKQAAAAAAADiOj+8BAAAAgB8E4uPnfKT95Cr7HUn8nhA4HJf+w5VSAAAAAAAAcByhFAAAAAAAABxHKAUAAAAAAADHEUoBAAAAAADAcYRSAAAAAAAAcByhFAAAAAAAABxHKAUAAAAAAADHEUoBAAAAAADAceFuF4Cj8tfuqTBvbJfGLlQCAID7OC8iWLFv1h68lu6o7Pcu8bsH6iqulAIAAAAAAIDjCKUAAAAAAADgOEIpAAAAAAAAOI5QCgAAAAAAAI4jlAIAAAAAAIDjCKUAAAAAAADgOEIpAAAAAAAAOI5QCgAAAAAAAI4jlAIAAAAAAIDjCKUAAAAAAADgOEIpAAAAAAAAOI5QCgAAAAAAAI4Ld7uA2i5/7Z4K88Z2aexCJQAAAAAAAMGDK6UAAAAAAADgOEIpAAAAAAAAOI5QCgAAAAAAAI4jlAIAAAAAAIDjCKUAAAAAAADgOEIpAAAAAAAAOI5QCgAAAAAAAI4jlAIAAAAAAIDjCKUAAAAAAADgOEIpAAAAAAAAOI5QCgAAAAAAAI4Ld7sA1Ez+2j0V5o3t0tj1dQEA6jbOKQAAAKgprpQCAAAAAACA47hSCgAAAAHDVXQAQhHvXYAzuFIKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA4QikAAAAAAAA4jlAKAAAAAAAAjgv6UGrp0qXq37+/0tLS5PF4tGDBAp/lZqbx48crNTVVMTExysnJ0ZYtW9wpFgAAAAAAANUS9KHUgQMHdNZZZ6mgoKDS5X/605/02GOP6cknn9TKlSsVGxurvn376uDBgw5XCgAAAAAAgOoKd7uAk+nXr5/69etX6TIz09SpU/XAAw/oqquukiQ999xzSk5O1oIFCzRo0CAnSwUAAAAAAEA1BX0odSLbt29XYWGhcnJyvPMSEhLUvXt3LV++vMpQqrS0VKWlpd7HJSUlAa8VAAAAwSt/7Z4K88Z2aexCJQCA2oTzy4kF/cf3TqSwsFCSlJyc7DM/OTnZu6wyeXl5SkhI8E7p6ekBrRMAAAAAAAC+QjqUOlXjxo1TcXGxd9q5c6fbJQEAAAAAANQpIR1KpaSkSJKKiop85hcVFXmXVSYqKkrx8fE+EwAAAAAAAJwT0qFUZmamUlJStGjRIu+8kpISrVy5UtnZ2S5WBgAAAAAAgBMJ+hud79+/X1u3bvU+3r59u9atW6dGjRopIyNDd911lx555BG1adNGmZmZevDBB5WWlqYBAwa4VzQAAAAAAABOKOhDqdWrV+uSSy7xPh49erQkaciQIZo9e7bGjBmjAwcO6NZbb9XevXt14YUXauHChYqOjnarZAAAAAAAAJxE0IdSvXr1kplVudzj8WjSpEmaNGmSg1UBAAAAAADgdIT0PaUAAAAAAAAQmoL+SikAAADgePlr91SYN7ZLYxcqcVZlz1uqG88dABBYbp1buVIKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA4QikAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA4QikAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA4QikAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA4QikAAAAAAAA4jlAKAAAAAAAAjgt3uwAAAAAgf+2eCvPGdmkcdOsEAAD+w5VSAAAAAAAAcByhFAAAAAAAABxHKAUAAAAAAADHEUoBAACEuKVLl6p///5KS0uTx+PRggULfJabmcaPH6/U1FTFxMQoJydHW7ZscadYAACA/0UoBQAAEOIOHDigs846SwUFBZUu/9Of/qTHHntMTz75pFauXKnY2Fj17dtXBw8edLhSAACA/8O37wEAAIS4fv36qV+/fpUuMzNNnTpVDzzwgK666ipJ0nPPPafk5GQtWLBAgwYNcrJUAAAAL66UAgAAqMW2b9+uwsJC5eTkeOclJCSoe/fuWr58eZU/V1paqpKSEp8JAADAnwilAAAAarHCwkJJUnJyss/85ORk77LK5OXlKSEhwTulp6cHtE4AAFD3EEoBAACggnHjxqm4uNg77dy50+2SAABALUMoBQAAUIulpKRIkoqKinzmFxUVeZdVJioqSvHx8T4TAACAP3GjcwCoZfLX7qkwb2yXxi5UAiAYZGZmKiUlRYsWLdLZZ58tSSopKdHKlSt1++23u1scAACo0wilAAAAQtz+/fu1detW7+Pt27dr3bp1atSokTIyMnTXXXfpkUceUZs2bZSZmakHH3xQaWlpGjBggHtFAwCAOo9QCgAAIMStXr1al1xyiffx6NGjJUlDhgzR7NmzNWbMGB04cEC33nqr9u7dqwsvvFALFy5UdHS0WyUDAAAQSgEAAIS6Xr16ycyqXO7xeDRp0iRNmjTJwaoAAABOjBudAwAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcF+52AQAAAAgt+Wv3VDp/bJfGDlcCAEDtUNm5tS6cV7lSCgAAAAAAAI4jlAIAAAAAAIDjCKUAAAAAAADgOEIpAAAAAAAAOC7kQ6mHHnpIHo/HZ8rKynK7LAAAAAAAAJxArfj2vTPPPFPvv/++93F4eK14WgAAAAAAALVWrUhvwsPDlZKS4nYZAAAAAAAAqKaQ//ieJG3ZskVpaWlq2bKlbrjhBu3YscPtkgAAAAAAAHACIX+lVPfu3TV79my1a9dO33//vSZOnKiLLrpI69evV4MGDSr9mdLSUpWWlnofl5SUOFUuAAAAAADAKctfu6fCvLFdGrtQyekL+VCqX79+3n937txZ3bt3V/PmzfXKK69o2LBhlf5MXl6eJk6c6FSJAAAAAAAA+IVa8fG94yUmJqpt27baunVrlWPGjRun4uJi77Rz504HKwQAAAAAAECtC6X279+vbdu2KTU1tcoxUVFRio+P95kAAAAAAADgnJAPpe655x4tWbJE33zzjT7++GNdffXVqlevnq677jq3SwMAAAAAAEAVQv6eUt9++62uu+46/fjjj2rSpIkuvPBCrVixQk2aNHG7NAAAAAAAAFQh5EOpuXPnul0CAAAAAAAAaijkP74HAAAAAACA0EMoBQAAAAAAAMcRSgEAAAAAAMBxhFIAAAAAAABwHKEUAAAAAAAAHEcoBQAAAAAAAMcRSgEAAAAAAMBxhFIAAAAAAABwHKEUAAAAAAAAHEcoBQAAAAAAAMcRSgEAAAAAAMBx4W4XAAAAAAAAAP/KX7unwryxXRq7UEnVuFIKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA4QikAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA4QikAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA4QikAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA4QikAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA4QikAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA4QikAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA4QikAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA4QikAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA4QikAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOC4WhNKFRQUqEWLFoqOjlb37t31ySefuF0SAABAUKFfAgAAwaRWhFIvv/yyRo8erQkTJujTTz/VWWedpb59+2r37t1ulwYAABAU6JcAAECwqRWh1OTJk/Wb3/xGN910kzp06KAnn3xS9evX1zPPPON2aQAAAEGBfgkAAASbkA+lysrKtGbNGuXk5HjnhYWFKScnR8uXL3exMgAAgOBAvwQAAIJRuNsFnK49e/boyJEjSk5O9pmfnJysTZs2VfozpaWlKi0t9T4uLi6WJJWUlOjg/kMVxpeURFaYd3D/vqAdF8y1Bfu4YK4tmMYFc23BNC6Yawv2ccFcWzCNC+bagn1cTddVUlIiSTKzCmNCgRP90tFlgX8t6/I6KxtXl9cZyq9lqKwzlPePQKwzlF/LQKwzlF/LQKwzlF9Lf63zlPolC3HfffedSbKPP/7YZ/69995r5513XqU/M2HCBJPExMTExMTExFSjaefOnU60N35Hv8TExMTExMTk1FSTfinkr5Rq3Lix6tWrp6KiIp/5RUVFSklJqfRnxo0bp9GjR3sfl5eX66efflJSUpI8Ho+kowlfenq6du7cqfj4+ErXU50xjON35+9xwVybW+OCubZgHxfMtQX7uGCuLdjHBXNtVY0zM+3bt09paWlV/lwwc7Nfqsk41hn866xtz4d1Bv86a9vzYZ3sH7V5nafSL4V8KBUZGamuXbtq0aJFGjBggKSjTdOiRYs0YsSISn8mKipKUVFRPvMSExMrHRsfH3/SF6M6YxgXPNusLeOCuTa3xgVzbcE+LphrC/ZxwVxbsI8L5toqG5eQkHDSnwlWwdAv1WQc6wz+dda258M6g3+dte35sE72j9q6zpr2SyEfSknS6NGjNWTIEJ177rk677zzNHXqVB04cEA33XST26UBAAAEBfolAAAQbGpFKHXttdfqhx9+0Pjx41VYWKizzz5bCxcurHAzTwAAgLqKfgkAAASbWhFKSdKIESOqvPz8VERFRWnChAkVLluv6RjGBc82a8u4YK7NrXHBXFuwjwvm2oJ9XDDXFuzjgrm2mowLRW70SzUZxzqDf5217fmwzuBfZ217PqyT/aOurfNkPGYh+t3GAAAAAAAACFlhbhcAAAAAAACAuodQCgAAAAAAAI4jlAIAAAAAAIDjCKUAAAAAAADgOEKpELV9+3YdPnzYb+vz57okifvnw2nBfkxIHBdwnj+PC44JOMnf7+lSYPZhif0YwYljCDg9HEPOIZSStHHjRt1xxx3q0qWLUlNTlZqaqi5duuiOO+7Qxo0bq7WObdu2qXfv3pKk77//Xi+88ILeeustlZWV+Yw7cOCAJk2aJEl67733NGHCBH3wwQeSpKVLl6pfv37q3bu3Zs2adcLttWvXTlu2bKly+a5duzRhwgTdcMMNuueee7Rp0yZJ0sKFC/XFF19IksrLy/Xwww/rjDPOUFRUlJo1a6b8/HyZmfr376/nn39eP//8c5XbKC0t1T333KOLL75Yf/zjHyVJjzzyiOLi4tSgQQNdf/31KikpkSR99tlnGjx4sFq2bKmYmBjFxsaqU6dOevDBB71jqtpGaWnpCX8Xblu8ePEJf081UVpaqm3btvn1ORcVFamwsLDSZUeOHFFRUZF++OGHCstC7bgIhmNCcua4CHa1NSAMtWNCOvFxwTGBU+HEfiud+nu65P99WKLnqYw/+x8pMD2QdOp9kOSf933p1N77pcD+X0E6/fOAJM4Fp6EuhB4cQ6F1HnKN1XFvvfWWRUZGWo8ePWzChAk2ffp0mz59uk2YMMHOP/98i4qKsoULF550PevWrbOwsDD75JNPLDEx0eLj4y0mJsZat25t69ev944rLCy0sLAwe/755y08PNzOOecci4uLs1mzZlliYqLdcsstdvPNN1tkZKTNmzfPrr766kqnsLAwy8nJ8T6OiYmx3bt3m5nZhg0bLCEhwVq3bm3//d//bVlZWVa/fn377LPPrF27drZ06VIzM/vDH/5gSUlJNnnyZHv77bdt6tSplpycbPn5+ebxeCw8PNwSEhLstttus9WrV1d4zqNGjbK0tDS7++67rX379nbHHXdYRkaGvfDCCzZnzhxr3bq1jRw50hYuXGgxMTGWm5trN954o9WvX99GjBhh9913n7Vu3dpatWpl33//vXe97777rvXr188SExMtLCzMwsLCLDEx0fr162fvvfdetV7XjRs3WmZmpve1efjhh62goMB++OEHn3HFxcV200032V//+lcbPHiwPfPMM2ZmNnfuXMvKyrLMzEwbP378CbcVERFhGzdu9D4uKiryWb527VobPHiwnX/++Zabm2sffvihmZnNmjXLPv74YzMz+/nnn+3mm2+2evXqWVhYmIWHh9tvf/tbO3jwoHXs2NEmTZpkO3bsOGEdP/74o+Xm5lp6errddtttdvjwYRs2bJh5PB4LCwuz7Oxs27Vrl5mZvfnmm3bRRRdZVFSU93eckJBgN954o/3rX/8K6uPivPPOC9pjwiwwx8WGDRvs9ttvt7PPPttSUlIsJSXFzj77bLv99tttw4YNJ30dzMy2bt1ql1xyiZmZ7dq1y55//nn7xz/+YaWlpT7j9u/fbxMnTrR3333Xxo8fb4sWLTIzsyVLltjll19ul1xyifc4qcovj4lf+u6772z8+PF2/fXX2913321ffvmlmZm9/fbb9vnnn5uZ2ZEjR2zSpEmWlpZmYWFhdsYZZ1heXp6Vl5fblVdeac8995z95z//OWEdBw8etLvvvtsuuugiy8/PNzOzhx9+2GJjYy02Ntauu+46Ky4uNrOj++qvf/1ry8zMtOjoaKtfv7517NjRHnjgASsuLg7qY6K654p69epxTBynpscEzO/7rZn5vc8xM7/vw2bB3fOY1bzvOcaf/Y+Zez2QmX/7IDP//R/BrObv/Wbm9/8rmJnfeyMzc/VccOx5+PN8YFb9c8Lp9Epmp94vmfm/ZzLzb99kxjEUKuchfxxDZhWPo5qo86FU586d7cEHH6xy+YQJE6xTp042bdq0E05jxozx7rg33XSTHTlyxEpKSuz222+3pKQk+/TTT83s/w6Us88+26ZNm2ZmZu+//77FxMTY5MmTvdv9y1/+YhdccIF5PB7r2bOnDR061GcKCwuzAQMGeB97PB5vI3DVVVdZ//797dChQ2Z29I1q0KBBduWVV1pUVJT3ZNuxY0d75ZVXfJ7vm2++aa1btzaPx2MbNmywKVOmWKdOnSwsLMzOOusse/zxx+2nn34yM7P09HRvw7Rt2zYLCwuzBQsWeNf17rvvWvPmze3ss8+2GTNm+MzPysoyM7OysjK79NJLbejQoWZmNnv2bAsPD7dBgwbZrFmz7K233rK33nrLZs2aZdddd51FRETYc889d9LX9dgb1zvvvGORkZF25plnWkZGhiUlJdkHH3zgHVdYWGgej8diY2Nt4MCBlpqaao888oglJSXZI488YhMnTrT4+Hh76qmnrEuXLpVOHo/H2rdv730cFhbmfS0++ugji4iIsJ49e9q9995rffr0sfDwcFuyZIllZmbaihUrzMzsnnvusRYtWtj8+fPtyy+/tAULFljbtm3t3nvvNY/HY0lJSVavXj3r27evvfrqq97X9ng333yzdezY0R5//HHr2bOnXXXVVda5c2dbtmyZffzxx9atWzcbPHiwPffcc9agQQO7++677fe//72lpKTY2LFjbcaMGdazZ09r3LixtWvXLmiPC0lBe0yY+f+4cCMMOXaCDOXQ3My/J+8OHToE7TFR3XOFJI6J45xKg1vX+Xu/NTO/9zlm5vd92Cy4ex6zmvU9x/bnKVOm+LX/MTPXeiAz//ZBX331VbX/j2Bmfn/vNzO//1/BzPzeGx1bpxvnAjP/X1xgRvjuz9CDYyj4z0OBCA5PRZ0PpaKjo23Tpk1VLt+0aZNFR0ebx+OxtLQ0a9GiRaXTsWS6YcOGtnnzZp915OXlWcOGDe2TTz7xHiixsbH29ddfe8dERER432TMzL788ktLSkqyl156yZo1a1YhbQ8PD/dJLo8/QNLT071vUsd8+umnlpqaaqmpqbZ8+XIzM0tOTvYewMd89dVXFhMT47M+M7OVK1farbfeagkJCRYTE2PXXXedz8F27Dkc/6a9fft2q1+/vkVHR9v27du988vLyy0iIsL716qlS5dakyZNzMysTZs29sQTT1T1clhBQYG1bt3aRo0adcLpxhtv9P5V7P777/du949//KPFxcXZ22+/bWZH37gk2Ysvvuj9PYWHh9vf/vY37zb/9re/WdeuXS08PNwuv/xye+ihh7zThAkTLCwszO644w7vvON/d3369LGbb77Z5znceeed1rt3b5/fX9u2bb01HbNkyRLLyMgwj8dj3333nb322mvWv39/Cw8PtyZNmtjdd9/t89eV1NRU++ijj7zPy+Px2LvvvutdvmzZMjvjjDMsKyvL5s6d652/atUqa9asmZWXl5uZ2bXXXmthYWFBe1zExcUF7TGxaNEii4mJ8etx4UZwLinkQ/Njr7u/Tt716tUL2mOiuucKjonTb3DrOn/vt2bm9z7HzPy+D5uZ3/djs+r3PGbm177n2P6clZXl1/7nl6+Tkz2QmX/7oKuvvrra/0c49rz9+d5vZn7/v8KxOv15HvjlOs2cOxeY+f/iAjPCd3+GHhxDwX8eCkRweCrqfCiVlZVljz76aJXLH330UWvXrp21aNHCXn755SrHrV271nugHL+zH/PnP//ZEhMTbf78+d5Ls48/SOPi4mzbtm3ex19//bXVr1/fzI7uYBdccIENHDjQ++bxy4MkLCzMm6w3b968Qg1ff/21RUdH2x133GFXXnmlHT582G699Va75ZZbvCdhM7ORI0dadnZ2hQPkmAMHDtisWbPswgsvNEnek/onn3xikZGRPgfz3LlzrU2bNtaqVSufhHXLli1Wr1497+WwX3/9tffEFhUVVa03r7CwMDvnnHOsV69elU7nnnuuhYWFWXx8vG3dutVnHS+++KLFxsbaG2+84f0P+PEHeFRUlM8BvmXLFktMTLRly5ZZq1atbPz48XbkyBHv8hM1zse/IR2zfv3/Z+/Ow6Mos//vf7rJSiAJAUyIJBAEBEWUbSAggkwwMoqizCgqI7jhAqjgiIAKgo5BR1llUYdVRVweBXEUF0TcAAEF2URAEBQT3JIASoLkPH/wo7+2SaATOtWd9Pt1XXVddNXp+z6VdHUdTleqN1qdOnWsQYMGnk8vTz31VFu9erVX3ObNmy0mJqbY72Lv3r328MMPW5MmTTwF6MyZM6169eq2a9cuT1x4eLht2LDB8/jrr7+2mJgYi46O9nqjOrYP3333nZkdfTN0u91BfVwE6zHhdrvt9NNP9+txEYjGuaRK3zT3dwFcrVq1oD4mju3P8Y4LjomTL3BDXUW8bs38W+eYmd9fw2bm99exme81z7H991fdc2yf/vweebL1j1ngaiAz82sdFB8f7/P/EczM7+/9Zub3/yuY+f88YFa8KXVMRZ8LzPx/cYEZzXd/Nj04hoL/PFQRjcPyCPmm1IsvvmhhYWHWs2dPmzRpki1YsMAWLFhgkyZNsksuucQiIiLs5Zdftt69e9uwYcNKHWfdunXmcrmsc+fOXp3jP3rkkUc8f7vetm1br85zXl6e1wv1nXfesaZNm3oeHzlyxEaNGmUpKSm2ZMkSCw8PL/YmFh8fb7Vq1bLw8HB75plnvOZ+++23rWHDhpabm2tt27a1xo0b2z//+U+LioqyBg0aWPfu3S0tLc3i4uJs5cqVpR4gfzRixAiLioqyjIwMq1Wrlk2ePNmSkpJs2LBhNnz4cIuLi7OxY8famDFjrH79+jZ9+nSbNWuWtWjRwvN3uWZmr7zyip1xxhlmZta6dWu7++67S51z2LBh1rp1a2vatGmxffyjY29cdevWLfEy1eeff96qV69u06dPN0len7bVr1/fq6jZtm2b1ahRw8zMcnNzrU+fPta+fXtP0VfSCWX79u2Wl5dnaWlpxU4S27dvt+rVq9vIkSMtPT3dfvnlFxs+fLj17NnT9u/fb2ZH34iuuOIKu+CCC7wuhf+zZcuWWd++fS0mJsbOPvtszyeub7zxhtWsWdPrRDB9+nRr0aKFNW/e3HM5sZnZ2rVrLSIiwn7//XfP/kZGRgb9cRGMx8TWrVttwoQJfj0uAtE4l1Tpm+b+LoAjIiKC/pgwO/5xwTHhrTwFbqirqNetmf/e083M769hM/P769jM95rHzPxa9xx7PdeuXduv9Y9Z4GogM/NrHRQTE+Pz/xHMzO/v/Wbm9/8rmPn/PHBszECcC8z8f3GBGc13fzY9OIaC/zxUEY3D8gj5ppTZ0b95v/LKKy01NdUiIiIsIiLCUlNT7corr/TchHHTpk3FPsX5o8LCQtu1a5c9/fTT1rdv31Ljxo0b5/m7+eXLl5cal5WVZffdd1+x9R9++KGlpaWZ2+32OkjmzJnjtfz5k6mxY8fakCFDPLlOnz7d/va3v1mzZs2sadOm1qVLFxs5cqTt2bPHzMy6du1qv/zyS6n5HfPcc8/ZoEGDbP78+WZ2tEDo3LmztWnTxh544AE7cuSIHT582IYNG2bJyclWu3Ztu/rqq71uvLlq1SrPz2LZsmUWExNjZ511lg0ZMsTGjRtn48aNsyFDhljLli2tRo0atnz5crv66qvtzjvvLDWvY29c3bt3t//85z8lxsyfP9/Cw8O9rvgqyeLFi61FixZe62bNmmVJSUn25JNPllg4u91Hb5rpcrnsqaee8nruokWLrHHjxlZQUGCXXHKJ1apVy7p37+65SWCTJk0sJibGUlNTbevWrT69WeXl5dmzzz5r1apVs8aNG1tkZKS99NJLlpycbFdccYX16dPHIiIi7IknnrAnnnjC4uLibNiwYTZq1ChLTk62G264wTPWs88+a61atao0x0WwHRNm/j0uAtE4l1Tpm+YVUQBXlmPCrOTjgmPCW3kK3FBX0a9bM/+8p5v5/zVsFriax8z8Wvccez136tTJr/WPWeBqIDPzex1k5tv/Ecz8/95vZn7/v4KZ/88DZoE7F5j5/+ICM5rv/m56cAwF93moIhqH5UFTqhLav3+/rVu3rti3QVQVO3futGHDhtl5551nTZs2taZNm9p5551n99xzj+dS0e+//97r07zSvPLKK8ct4p577jlr1aqVff7556XGTJ061aZMmVJs/VdffWXt2rXz/K32Me+//77X8udLgCdOnGiPPvqo5/Gbb75pt912m1144YV2wQUXWL9+/eypp56yAwcOmJlZ//79LT8//4T7anb0fgmPPfaY554KmzZtsn/+85/Wu3dvmzNnjidu2rRp1rFjR2vTpo2NHDnSfvvtN6/9+uO3e1QGVf2YcLoZUrdu3SrRNDfz/8m7MqnKx0UgGoRwTlV+7f6ZLzWPmX/rnq5du5rZ0ZrBn/WPWWBroGP7FIp10J+F0jHkz/OBGc33UK6b/ohjqPyNw/JwmZkJQLkUFRVp//79io2NlcvlCnQ6QMAdOHBAO3bsUPPmzRURERHodAAAFYD6Bzg51EvA/3EHOoFgN3LkSF1//fXElSPO33MGI7fbrbi4uJAryELpdRfsccGmRo0aOvvss0OuwAr210koHTsInIr4XYbymMEsVOufPwr06yNUx6wqx1Co1kt/VNVemxUxZqD3xyk0pU7g22+/1a5du4grR5y/55Skfv36qVu3bo7GBWLOYI/77rvvfPqdBSIumHOriDiaF8ERF+yvk1A6dvgPUOBUxHk/lMf09bxdltiqNmYg5/b1PakssYzp37kry3/8Q3XMqvbarIgxA70/FfH6KElYuZ4VQubNm0dcOeP8PackJScny+0+cS/Vn3GBmDPY4+bOnXvCcQIVF8y5VUTct99+q2+//dbRuEDMGaxxZiaXy3XC31cwxwVzbmWJOyZQrxNUzHk/lMf09bxdltiqNmYg5/b1PakssYzp37kr4n2eMU9+zLKc1yuiVqgMYwZ6f46piNdHSbinlKQff/xRs2bN0ooVK5SdnS1JSkpKUseOHdW/f3/VrVuXuFLi/D0nAFQmERERWr9+vZo3b15p44I5t7LEwRkVcd4P5TEBINSU5bxeEbVCZRgz0PvjtJBvSq1evVqZmZmqXr26MjIylJiYKEnKycnR0qVL9euvv+qtt96SmRH3p7jx48dryJAhfpuzbdu2J/x97dmzR6NHj9asWbMciwvEnMEQN3XqVK1du1YJCQk644wzvGIOHTqkF198Uddee61+++03x+P+8Y9/BG1uFRG3ZcsWrVy5Uunp6WrWrJm+/PJLTZo0SQUFBerbt6/nzwz8GReIOYM57vXXX1dJJk2apL59+6p27dolbg+muOXLl6tLly5BmVtZ4saPH++1/eDBg3rxxRe1fft21atXT1dddVWJY/o7LhT5u2Zq27ZtSI95Ir6et8sSW9XGrOi5fT1PS/L7uT+UxyzL3P6uBxjTf2MOHTpUJSnpvO5rbGkq65iB3p8/K0sN5Nd6qVzf2VeFtG/f3gYMGGBFRUXFthUVFdmAAQOsQ4cOxJUQV6NGDb/O6Yt169aZ2+12NC4QcwY6zuVyWYMGDczlcpnb7bbzzjvP9u7d64nJzs42t9ttW7dudTwumHOriLg333zTIiIiLCEhwaKiouzNN9+0unXrWkZGhnXr1s2qVatmS5cu9WtcVlaW43MGe5zL5bJzzjnHunbt6rW4XC5r166dde3a1c4///ygjpMUtLmVJa558+b2008/mZnZ7t27rWHDhhYXF2ft2rWzhIQEO+WUU+zrr7/2exz8XzOF+pgn4ut5uyyxVW3Mipzb1/O0mfn93B/KY5Zlbn/XA4zp3zF9Pa+bmd9rhcoyZqD3pyw1UEXWSyHflIqKirItW7aUun3Lli0WFRVFXAlxkvw6p5nZokWLjrtMmDDB3G63X+NcLpfjcwZ7nCS76KKL7IcffrBt27bZRRddZGlpafbNN9+Y2f8VBL169XI8Lphzq4i49PR0u/fee83M7Pnnn7datWrZyJEjPcfP8OHDrXv37n6Ni4uLc3zOYI9r3LixpaWleQq3Y8LCwmzTpk2ex1lZWUEbF8y5lSXO5XJZTk6OmZldc8011rFjR8vNzTUzs/3791tGRoZdddVVfo+D/2umUB/T1/N2WWKr2piBnNvX87SZ+f3cH8pjlmVuf9cDjOnfMX09r5v5v1aoLGMGen/KUgNVZL0U8k2phg0b2ty5c0vdPnfuXGvQoAFxJcRVq1bNr3OamedTEZfLVepybLu/4iQ5Pmewx0myL774wvM7KioqsltuucVSU1Ntx44dnoLglFNOcTwumHOriLjY2Fjbtm2bmZkdOXLEwsLC7LPPPvM8b8OGDZaYmOjXOJfL5ficlSHu008/taZNm9pdd91lhYWFZlbyCT6Y44I5N1/j/lgUNWrUyN5++22vMT7++GNLSUnxexz8XzOF+pi+nrfLElvVxgzk3L6ep83M7+f+UB6zLHP7+zzPmP4f09fzf1liq9qYgZy7LDVQRdZLId+UeuKJJywyMtJuv/12W7Roka1cudJWrlxpixYtsttvv92io6Nt6tSpxJUQd8UVV/h1TjOz5ORkW7hwYam/r88//9zcbrdf4yQ5Pmewx0myzZs3F9s2cOBAq1+/vn3wwQfmdrutZs2ajscFc24VERcbG2vbt2/3bK9Ro4bt2LHD83jXrl0WFRXl1zhJjs9ZGeLMjn4SdO2111rLli1tw4YNFh4eXmLREMxxwZybL3Eul8v27dtnZkfPGRs2bPB6/rHfl7/j4P+aKdTH9PW8XZbYqjZmIOf29TxtZn4/94fymGWZuyLO84zp3zHNfD//lyW2qo0ZqLnLUgNVZL0U8k0pM7MFCxZY+/btLSwszPMJSVhYmLVv395eeOEF4o4T5+85e/bsaffff3+pv6tj9zvyZ5wkx+cM9jhJNm/evBK3Dxw40OLj483tdlu7du0cjwvm3CoirmXLlvbmm296tm3YsMEOHz7sefzBBx9YWlqaX+MiIiIcn7MyxP3R888/b4mJieZ2u0stGoI9LphzO16cy+Wys846y1q1amU1atSwl19+2et5y5cvt1NPPdXvcTjK3+f9UB7T1/N2WWKr2piBnNvX87SZ+f3cH8pjlmXuijjPM2bF1E1mvp//yxJb1cZ0eu6y1EAVWS+F/Lfv/dHhw4f1448/SpLq1Kmj8PBw4nyM89dYH374oQ4ePKgLL7ywxOcfPHhQa9askdvt9lvcrFmz1KRJE0fnDPa4IUOG6Ntvv9Ubb7xRYsxtt92mGTNm6N///rc+/PBDR+OmT5+uHj16BGVuFRE3bdo0paSk6KKLLioxbuTIkdq3b5/atm3rt7jly5dr5MiRjs5ZGeL++9//eq3/9ttvtXbtWmVkZCgmJqbE5wZ7XDDnVlrcmDFjvGI6dOigzMxMz+O7775b3377rZo1a+bXuOeff77UPEORv2uNUBzT15qnS5cufq+PKsuYgZz7k08+8ek8XVRUpKysLL+e+0N5zLLMPWPGDL+f5xmz4uomyffzf1liq9qYTs7ta031/PPPlym2rGhKAQAAAAAAwHHuQCcAAAAAAACA0ENTCgAAAAAAAI6jKQUAAAAAAADH0ZQCAAAAAACA42hKAaiyunbtqjvvvNOn2Pfff18ul0u5ubknNWfDhg01ceLEkxoDAADAKdRLAAKJphQAAAAAAAAcR1MKAAAAAAAAjqMpBSAkPPPMM2rbtq1q1qyppKQkXX311dq3b1+xuI8//lgtW7ZUVFSUOnTooI0bN3pt/+ijj9S5c2dFR0crJSVFt99+uw4ePOjUbgAAAFQY6iUATqMpBSAkHD58WA8++KDWr1+vhQsXateuXerfv3+xuLvvvluPP/64Vq9erbp166pnz546fPiwJGnHjh268MIL1bt3b33xxRd64YUX9NFHH2nQoEEO7w0AAID/US8BcFpYoBMAACdcf/31nn83atRIkydPVrt27XTgwAHVqFHDs2306NHq3r27JGnu3LmqX7++Xn31VV1xxRXKysrSNddc47kZaJMmTTR58mR16dJF06dPV1RUlKP7BAAA4E/USwCcxpVSAELC2rVr1bNnT6WmpqpmzZrq0qWLJGn37t1ecenp6Z5/JyQk6PTTT9eWLVskSevXr9ecOXNUo0YNz5KZmamioiLt3LnTuZ0BAACoANRLAJzGlVIAqryDBw8qMzNTmZmZeu6551S3bl3t3r1bmZmZKiws9HmcAwcO6Oabb9btt99ebFtqaqo/UwYAAHAU9RKAQKApBaDK+/LLL/XTTz9p3LhxSklJkSStWbOmxNiVK1d6CqZffvlFX331lZo3by5Jat26tTZv3qzGjRs7kzgAAIBDqJcABAJ/vgegyktNTVVERISmTJmir7/+Wq+99poefPDBEmPHjh2rpUuXauPGjerfv7/q1KmjXr16SZLuueceffLJJxo0aJDWrVunbdu2adGiRdy4EwAAVHrUSwACgaYUgCqvbt26mjNnjl566SWdccYZGjdunB577LESY8eNG6c77rhDbdq0UXZ2thYvXqyIiAhJUsuWLbV8+XJ99dVX6ty5s1q1aqVRo0YpOTnZyd0BAADwO+olAIHgMjMLdBIAAAAAAAAILVwpBQAAAAAAAMfRlAIAAAAAAIDjaEoBAAAAAADAcTSlAAAAAAAA4DiaUgAAAAAAAHAcTSkAAAAAAAA4jqYUAAAAAAAAHEdTCgAAAAAAAI6jKQUAAAAAAADH0ZQCAAAAAACA42hKAQAAAAAAwHE0pQAAAAAAAOA4mlIAAAAAAABwHE0pAAAAAAAAOI6mFAAAAAAAABxHUwoAAAAAAACOoykFAAAAAAAAx9GUAgAAAAAAgONoSgEAAAAAAMBxNKUAAAAAAADgOJpSAAAAAAAAcBxNKQAAAAAAADiOphQAv9u1a5dcLpcee+wxv435/vvvy+Vy6f333/fbmJXRnj17FBUVpY8//rhC5xk+fLjat29foXMAABDKqJcqjlP10owZM5SamqqCgoIKnQeoymhKAZAkzZkzRy6XS2vWrAl0Kn6xY8cO3XzzzWrUqJGioqIUGxurTp06adKkSfrtt98CnZ4kadq0aZozZ06ZnjN27Fi1b99enTp18qzbunWrhgwZoo4dOyoqKkoul0u7du0qdYzXXntNrVu3VlRUlFJTUzV69Gj9/vvvXjF33nmn1q9fr9dee61M+QEAUJVRLzkvEPXSCy+8oL59+6pJkyZyuVzq2rVriXH9+/dXYWGhnnzyyTLlB+D/0JQCUOX873//01lnnaUXX3xRPXv21JQpU5SVlaXU1FTdfffduuOOOwKdoqSyF1k//PCD5s6dq1tuucVr/YoVKzR58mTt379fzZs3P+4Yb775pnr16qX4+HhNmTJFvXr10kMPPaTBgwd7xSUlJenSSy/166e3AAAgeFAvlW769OlatGiRUlJSVKtWrVLjoqKi1K9fP40fP15m5nOOAP5PWKATAAB/2rlzp/r06aMGDRrovffeU7169TzbBg4cqO3bt+t///tfADMsv2effVZhYWHq2bOn1/pLLrlEubm5qlmzph577DGtW7eu1DH+9a9/qWXLlnr77bcVFnb0FBAbG6uHH35Yd9xxh5o1a+aJveKKK/SPf/xDX3/9tRo1alQh+wQAAJxHvXT8eumZZ57RqaeeKrfbrRYtWhx3viuuuEKPPvqoli1bpm7duvljF4CQwpVSAHxWWFioUaNGqU2bNoqLi1NMTIw6d+6sZcuWlfqcCRMmqEGDBoqOjlaXLl20cePGYjFffvml/v73vyshIUFRUVFq27Ztuf9s7NFHH9WBAwc0c+ZMrwLrmMaNG3t98vf777/rwQcf1GmnnabIyEg1bNhQI0eOLHZvAJfLpQceeKDYeA0bNlT//v09j49d1v/xxx9r6NChqlu3rmJiYnTZZZfphx9+8Hrepk2btHz5crlcruNeGn7MwoUL1b59e9WoUcNrfUJCgmrWrHnc50rS5s2btXnzZg0YMMDTkJKk2267TWaml19+2Ss+IyNDkrRo0aITjg0AAI6iXnqg2HiVqV6SpJSUFLndvv1XuU2bNkpISKBeAsqJphQAn+Xn5+u///2vunbtqkceeUQPPPCAfvjhB2VmZpb4adO8efM0efJkDRw4UCNGjNDGjRvVrVs35eTkeGI2bdqkDh06aMuWLRo+fLgef/xxxcTEqFevXnr11VfLnOPixYvVqFEjdezY0af4G2+8UaNGjVLr1q01YcIEdenSRVlZWerTp0+Z5/6jwYMHa/369Ro9erRuvfVWLV68WIMGDfJsnzhxourXr69mzZrpmWee0TPPPKN777231PEOHz6s1atXq3Xr1uXO6fPPP5cktW3b1mt9cnKy6tev79l+TFxcnE477bQKv0koAABVCfWS74KxXiqP1q1bUy8B5cSf7wHwWa1atbRr1y5FRER41t10001q1qyZpkyZopkzZ3rFb9++Xdu2bdOpp54qSbrwwgvVvn17PfLIIxo/frwk6Y477lBqaqpWr16tyMhISUev3Dn33HN1zz336LLLLvM5v/z8fH333Xe69NJLfYpfv3695s6dqxtvvFFPP/20Z+5TTjlFjz32mJYtW6bzzz/f5/n/qHbt2nr77bflcrkkSUVFRZo8ebLy8vIUFxenXr166b777lOdOnXUt2/fE463e/du/fbbb0pLSytXPpL0/fffS1KJn4jWq1dPe/fuLba+UaNG2rx5c7nnBAAg1FAv+S4Y66XyaNSokZ555hlH5wSqCq6UAuCzatWqeQqsoqIi/fzzz/r999/Vtm1bffbZZ8Xie/Xq5SmwJOkvf/mL2rdvrzfeeEOS9PPPP+u9997TFVdcof379+vHH3/Ujz/+qJ9++kmZmZnatm2bvvvuO5/zy8/PlySfL80+lsfQoUO91t91112SdFL3UhgwYICnwJKkzp0768iRI/rmm2/KNd5PP/0kSce92eaJHPsWnWPF7B9FRUWV+C07tWrV0o8//ljuOQEACDXUS74LxnqpPGrVqqXffvtNv/76q6PzAlUBTSkAZTJ37ly1bNlSUVFRql27turWrav//e9/ysvLKxbbpEmTYuuaNm3q+frd7du3y8x0//33q27dul7L6NGjJUn79u3zObfY2FhJ0v79+32K/+abb+R2u9W4cWOv9UlJSYqPjy93QSRJqampXo+PFUe//PJLuceUdFLf7BIdHS1Jxe7/IEmHDh3ybP/zfH8sFgEAwIlRL/kmGOulk5mPmgkoO/58D4DPnn32WfXv31+9evXS3XffrVNOOUXVqlVTVlaWduzYUebxioqKJB39RrjMzMwSY/5cAB1PbGyskpOTS7w56PGcTAFx5MiREtdXq1atxPXlLZJq164t6eSKtGN/tvf9998rJSXFa9v333+vv/zlL8We88svv6hOnTrlnhMAgFBDvVRcZaqXyuOXX35R9erVS/yAD8Dx0ZQC4LOXX35ZjRo10iuvvOJVmBz7lO7Ptm3bVmzdV199pYYNG0o6+vf3khQeHu75preTdfHFF+upp57SihUrlJ6eftzYBg0aqKioSNu2bVPz5s0963NycpSbm6sGDRp41tWqVUu5ublezy8sLPTcp6k8ylLcpaamKjo6Wjt37iz3fOecc44kac2aNV4NqL179+rbb7/VgAEDij1n586dOvvss8s9JwAAoYZ6Kdfr+ZWtXiqPnTt3ev1sAPiOP98D4LNjn2b98dOrVatWacWKFSXGL1y40OseB59++qlWrVqlHj16SJJOOeUUde3aVU8++WSJxcofvxLYV8OGDVNMTIxuvPFGr2+tOWbHjh2aNGmSJOlvf/ubpKPf7PJHx24qetFFF3nWnXbaafrggw+84p566qlSP/nzRUxMTLHCrTTh4eFq27at1qxZU+75zjzzTDVr1qxY3tOnT5fL5dLf//53r/i8vDzt2LHD52/mAQAA1EuVvV4qj88++4x6CSgnrpQC4GXWrFlasmRJsfV33HGHLr74Yr3yyiu67LLLdNFFF2nnzp2aMWOGzjjjDB04cKDYcxo3bqxzzz1Xt956qwoKCjRx4kTVrl1bw4YN88RMnTpV5557rs466yzddNNNatSokXJycrRixQp9++23Wr9+fZnyP+200zR//nxdeeWVat68ua699lq1aNFChYWF+uSTT/TSSy+pf//+kqSzzz5b/fr101NPPaXc3Fx16dJFn376qebOnatevXp5fZPMjTfeqFtuuUW9e/dW9+7dtX79er311lsn9adtbdq00fTp0/XQQw+pcePGOuWUU9StW7dS4y+99FLde++9ys/P99wPQjraPJoyZYokeb6O+IknnlB8fLzi4+O9vlr5P//5jy655BJdcMEF6tOnjzZu3KgnnnhCN954Y7FP+N59912Zmc/fzgMAQKigXqra9dIHH3zgaa798MMPOnjwoB566CFJ0nnnnafzzjvPE7t27Vr9/PPP1EtAeRkAmNns2bNNUqnLnj17rKioyB5++GFr0KCBRUZGWqtWrez111+3fv36WYMGDTxj7dy50yTZf/7zH3v88cctJSXFIiMjrXPnzrZ+/fpic+/YscOuvfZaS0pKsvDwcDv11FPt4osvtpdfftkTs2zZMpNky5Yt82l/vvrqK7vpppusYcOGFhERYTVr1rROnTrZlClT7NChQ564w4cP25gxYywtLc3Cw8MtJSXFRowY4RVjZnbkyBG75557rE6dOla9enXLzMy07du3W4MGDaxfv37Ffo6rV6/2en5J+WdnZ9tFF11kNWvWNEnWpUuX4+5TTk6OhYWF2TPPPOO1/tjPu6Tlj7+XY1599VU755xzLDIy0urXr2/33XefFRYWFou78sor7dxzzz1uTgAAhBLqpdCol0aPHl1q7OjRo71i77nnHktNTbWioqLj5gWgZC4zh7+aAABQbjfccIO++uorffjhhxU6T3Z2ttLS0rRgwQI++QMAAJWKU/VSQUGBGjZsqOHDh+uOO+6o0LmAqoqmFABUIrt371bTpk21dOlSderUqcLmGT58uN577z19+umnFTYHAABARXCqXpoxY4Yefvhhbdu2TZGRkRU2D1CV0ZQCAAAAAACA4/j2PQAAAAAAADiOphQAAAAAAAAcR1MKAAAAAAAAjqMpBQAAAAAAAMeFBTqBYFBUVKS9e/eqZs2acrlcgU4HAAAEGTPT/v37lZycLLc7ND/To14CAADHU556iaaUpL179yolJSXQaQAAgCC3Z88e1a9fP9BpBAT1EgAA8EVZ6iWaUpJq1qwp6egPLjY2NsDZAACAYJOfn6+UlBRPzRCKqJcAAMDxlKdeoikleS5Bj42NpcgCAAClCuU/W6NeAgAAvihLvRSaN0UAAAAAAABAQNGUAgAAAAAAgONoSgEAAAAAAMBxNKUAAAAAAADgOJpSAAAAAAAAcBxNKQAAAAAAADiOphQAAAAAAAAcR1MKAAAAAAAAjqMpBQAAAAAAAMfRlAIAAAAAAIDjaEoBAABUcg0bNpTL5Sq2DBw4UJJ06NAhDRw4ULVr11aNGjXUu3dv5eTkBDhrAAAQ6mhKAQAAVHKrV6/W999/71neeecdSdI//vEPSdKQIUO0ePFivfTSS1q+fLn27t2ryy+/PJApAwAAKCzQCQAAAODk1K1b1+vxuHHjdNppp6lLly7Ky8vTzJkzNX/+fHXr1k2SNHv2bDVv3lwrV65Uhw4dApEyAAAAV0oBAABUJYWFhXr22Wd1/fXXy+Vyae3atTp8+LAyMjI8Mc2aNVNqaqpWrFhR6jgFBQXKz8/3WgAAAPyJphQAAEAVsnDhQuXm5qp///6SpOzsbEVERCg+Pt4rLjExUdnZ2aWOk5WVpbi4OM+SkpJSgVkDAIBQRFMKAACgCpk5c6Z69Oih5OTkkxpnxIgRysvL8yx79uzxU4YAAABHcU8pAACAKuKbb77Ru+++q1deecWzLikpSYWFhcrNzfW6WionJ0dJSUmljhUZGanIyMiKTBcAAIQ4rpQCAACoImbPnq1TTjlFF110kWddmzZtFB4erqVLl3rWbd26Vbt371Z6enog0gQAAJDElVIAAABVQlFRkWbPnq1+/fopLOz/Sry4uDjdcMMNGjp0qBISEhQbG6vBgwcrPT2db94DAAABRVMKAACgCnj33Xe1e/duXX/99cW2TZgwQW63W71791ZBQYEyMzM1bdq0AGQJAADwf1xmZoFOItDy8/MVFxenvLw8xcbGBjodAAAQZKgV+BkAAIDjK0+tENB7Sn3wwQfq2bOnkpOT5XK5tHDhQq/tZqZRo0apXr16io6OVkZGhrZt2+YV8/PPP+uaa65RbGys4uPjdcMNN+jAgQMO7gUAAKgKxn3+Y7EFAAAA/8ff9VJAm1IHDx7U2WefralTp5a4/dFHH9XkyZM1Y8YMrVq1SjExMcrMzNShQ4c8Mddcc402bdqkd955R6+//ro++OADDRgwwKldAAAAAAAAQDkE9J5SPXr0UI8ePUrcZmaaOHGi7rvvPl166aWSpHnz5ikxMVELFy5Unz59tGXLFi1ZskSrV69W27ZtJUlTpkzR3/72Nz322GNKTk52bF8AAAAAAADgu4BeKXU8O3fuVHZ2tjIyMjzr4uLi1L59e61YsUKStGLFCsXHx3saUpKUkZEht9utVatWOZ4zAAAAAAAAfBO0376XnZ0tSUpMTPRan5iY6NmWnZ2tU045xWt7WFiYEhISPDElKSgoUEFBgedxfn6+v9IGAAAAAACAD4L2SqmKlJWVpbi4OM+SkpIS6JQAAAAAAABCStA2pZKSkiRJOTk5XutzcnI825KSkrRv3z6v7b///rt+/vlnT0xJRowYoby8PM+yZ88eP2cPAAAAAACA4wnaplRaWpqSkpK0dOlSz7r8/HytWrVK6enpkqT09HTl5uZq7dq1npj33ntPRUVFat++faljR0ZGKjY21msBAAAAAACAcwJ6T6kDBw5o+/btnsc7d+7UunXrlJCQoNTUVN1555166KGH1KRJE6Wlpen+++9XcnKyevXqJUlq3ry5LrzwQt10002aMWOGDh8+rEGDBqlPnz588x4AAAAAAEAQC2hTas2aNTr//PM9j4cOHSpJ6tevn+bMmaNhw4bp4MGDGjBggHJzc3XuuedqyZIlioqK8jznueee06BBg/TXv/5VbrdbvXv31uTJkx3fFwAAAAAAAPguoE2prl27ysxK3e5yuTR27FiNHTu21JiEhATNnz+/ItIDAAAAAABABQnae0oBAAAAAACg6qIpBQAAAAAAAMfRlAIAAAAAAIDjaEoBAAAAAADAcTSlAAAAAAAA4DiaUgAAAAAAAHAcTSkAAAAAAAA4jqYUAAAAAAAAHEdTCgAAAAAAAI6jKQUAAAAAAADH0ZQCAAAAAACA42hKAQAAAAAAwHE0pQAAAAAAAOA4mlIAAAAAAABwHE0pAAAAAAAAOI6mFAAAAAAAABxHUwoAAAAAAACOoykFAAAAAAAAx9GUAgAAAAAAgONoSgEAAAAAAMBxNKUAAAAAAADgOJpSAAAAAAAAcBxNKQAAAAAAADiOphQAAAAAAAAcR1MKAAAAAAAAjqMpBQAAAAAAAMfRlAIAAAAAAIDjaEoBAAAAAADAcTSlAAAAAAAA4DiaUgAAAAAAAHAcTSkAAAAAAAA4jqYUAAAAAAAAHEdTCgAAAAAAAI6jKQUAAAAAAADH0ZQCAAAAAACA42hKAQAAAAAAwHE0pQAAAAAAAOA4mlIAAAAAAABwHE0pAAAAAAAAOI6mFAAAAAAAABxHUwoAAAAAAACOoykFAAAAAAAAx9GUAgAAAAAAgONoSgEAAAAAAMBxNKUAAAAAAADgOJpSAAAAAAAAcBxNKQAAAAAAADiOphQAAEAl991336lv376qXbu2oqOjddZZZ2nNmjWe7WamUaNGqV69eoqOjlZGRoa2bdsWwIwBAABoSgEAAFRqv/zyizp16qTw8HC9+eab2rx5sx5//HHVqlXLE/Poo49q8uTJmjFjhlatWqWYmBhlZmbq0KFDAcwcAACEurBAJwAAAIDye+SRR5SSkqLZs2d71qWlpXn+bWaaOHGi7rvvPl166aWSpHnz5ikxMVELFy5Unz59HM8ZAABA4kopAACASu21115T27Zt9Y9//EOnnHKKWrVqpaefftqzfefOncrOzlZGRoZnXVxcnNq3b68VK1YEImUAAABJNKUAAAAqta+//lrTp09XkyZN9NZbb+nWW2/V7bffrrlz50qSsrOzJUmJiYlez0tMTPRsK0lBQYHy8/O9FgAAAH/iz/cAAAAqsaKiIrVt21YPP/ywJKlVq1bauHGjZsyYoX79+pV73KysLI0ZM8ZfaQIAABTDlVIAAACVWL169XTGGWd4rWvevLl2794tSUpKSpIk5eTkeMXk5OR4tpVkxIgRysvL8yx79uzxc+YAACDU0ZQCAACoxDp16qStW7d6rfvqq6/UoEEDSUdvep6UlKSlS5d6tufn52vVqlVKT08vddzIyEjFxsZ6LQAAAP7En+8BAABUYkOGDFHHjh318MMP64orrtCnn36qp556Sk899ZQkyeVy6c4779RDDz2kJk2aKC0tTffff7+Sk5PVq1evwCYPAABCGk0pAACASqxdu3Z69dVXNWLECI0dO1ZpaWmaOHGirrnmGk/MsGHDdPDgQQ0YMEC5ubk699xztWTJEkVFRQUwcwAAEOpoSgEAAFRyF198sS6++OJSt7tcLo0dO1Zjx451MCsAAIDj455SAAAAAAAAcBxNKQAAAAAAADiOphQAAAAAAAAcR1MKAAAAAAAAjqMpBQAAAAAAAMfRlAIAAAAAAIDjaEoBAAAAAADAcTSlAAAAAAAA4DiaUgAAAAAAAHAcTSkAAAAAAAA4jqYUAAAAAAAAHEdTCgAAAAAAAI6jKQUAAAAAAADH0ZQCAAAAAACA42hKAQAAAAAAwHE0pQAAAAAAAOA4mlIAAAAAAABwHE0pAAAAAAAAOI6mFAAAAAAAABxHUwoAAAAAAACOoykFAAAAAAAAx9GUAgAAAAAAgONoSgEAAAAAAMBxNKUAAAAAAADgOJpSAAAAAAAAcBxNKQAAAAAAADiOphQAAAAAAAAcF9RNqSNHjuj+++9XWlqaoqOjddppp+nBBx+UmXlizEyjRo1SvXr1FB0drYyMDG3bti2AWQMAAAAAAOBEgrop9cgjj2j69Ol64okntGXLFj3yyCN69NFHNWXKFE/Mo48+qsmTJ2vGjBlatWqVYmJilJmZqUOHDgUwcwAAAAAAABxPWKATOJ5PPvlEl156qS666CJJUsOGDfX888/r008/lXT0KqmJEyfqvvvu06WXXipJmjdvnhITE7Vw4UL16dMnYLkDAAAAAACgdEF9pVTHjh21dOlSffXVV5Kk9evX66OPPlKPHj0kSTt37lR2drYyMjI8z4mLi1P79u21YsWKUsctKChQfn6+1wIAAAAAAADnBPWVUsOHD1d+fr6aNWumatWq6ciRI/r3v/+ta665RpKUnZ0tSUpMTPR6XmJiomdbSbKysjRmzJiKSxwAAAAAAADHFdRXSr344ot67rnnNH/+fH322WeaO3euHnvsMc2dO/ekxh0xYoTy8vI8y549e/yUMQAAAAAAAHwR1FdK3X333Ro+fLjn3lBnnXWWvvnmG2VlZalfv35KSkqSJOXk5KhevXqe5+Xk5Oicc84pddzIyEhFRkZWaO4AAAAAAAAoXVBfKfXrr7/K7fZOsVq1aioqKpIkpaWlKSkpSUuXLvVsz8/P16pVq5Senu5orgAAAAAAAPBdUF8p1bNnT/373/9WamqqzjzzTH3++ecaP368rr/+ekmSy+XSnXfeqYceekhNmjRRWlqa7r//fiUnJ6tXr16BTR4AAAAAAAClCuqm1JQpU3T//ffrtttu0759+5ScnKybb75Zo0aN8sQMGzZMBw8e1IABA5Sbm6tzzz1XS5YsUVRUVAAzBwAAAAAAwPG4zMwCnUSg5efnKy4uTnl5eYqNjQ10OgAAIADGff5jsXXDW9WRRK0g8TMAAAD+r5eC+p5SAAAAAAAAqJpoSgEAAAAAAMBxNKUAAAAAAADgOJpSAAAAAAAAcBxNKQAAAAAAADiOphQAAAAAAAAcR1MKAAAAAAAAjqMpBQAAAAAAAMfRlAIAAAAAAIDjaEoBAAAAAADAcTSlAAAAAAAA4DiaUgAAAAAAAHAcTSkAAAAAAAA4jlC0Gj8AAQAASURBVKYUAAAAAAAAHEdTCgAAAAAAAI6jKQUAAAAAAADH0ZQCAAAAAACA42hKAQAAAAAAwHE0pQAAAAAAAOA4mlIAAAAAAABwHE0pAAAAAAAAOI6mFAAAQCX3wAMPyOVyeS3NmjXzbD906JAGDhyo2rVrq0aNGurdu7dycnICmDEAAABNKQAAgCrhzDPP1Pfff+9ZPvroI8+2IUOGaPHixXrppZe0fPly7d27V5dffnkAswUAAJDCAp0AAAAATl5YWJiSkpKKrc/Ly9PMmTM1f/58devWTZI0e/ZsNW/eXCtXrlSHDh2cThUAAEASV0oBAABUCdu2bVNycrIaNWqka665Rrt375YkrV27VocPH1ZGRoYntlmzZkpNTdWKFStKHa+goED5+fleCwAAgD/RlAIAAKjk2rdvrzlz5mjJkiWaPn26du7cqc6dO2v//v3Kzs5WRESE4uPjvZ6TmJio7OzsUsfMyspSXFycZ0lJSangvQAAAKGGP98DAACo5Hr06OH5d8uWLdW+fXs1aNBAL774oqKjo8s15ogRIzR06FDP4/z8fBpTAADAr7hSCgAAoIqJj49X06ZNtX37diUlJamwsFC5ubleMTk5OSXeg+qYyMhIxcbGei0AAAD+RFMKAACgijlw4IB27NihevXqqU2bNgoPD9fSpUs927du3ardu3crPT09gFkCAIBQx5/vAQAAVHL/+te/1LNnTzVo0EB79+7V6NGjVa1aNV111VWKi4vTDTfcoKFDhyohIUGxsbEaPHiw0tPT+eY9AAAQUDSlAAAAKrlvv/1WV111lX766SfVrVtX5557rlauXKm6detKkiZMmCC3263evXuroKBAmZmZmjZtWoCzBgAAoY6mFAAAQCW3YMGC426PiorS1KlTNXXqVIcyAgAAODHuKQUAAAAAAADH0ZQCAAAAAACA42hKAQAAAAAAwHE0pQAAAAAAAOA4mlIAAAAAAABwHE0pAAAAAAAAOI6mFAAAAAAAABxHUwoAAAAAAACOoykFAAAAAAAAx9GUAgAAAAAAgONoSgEAAAAAAMBxNKUAAAAAAADgOJpSAAAAAAAAcBxNKQAAAAAAADiOphQAAAAAAAAcR1MKAAAAAAAAjqMpBQAAAAAAAMfRlAIAAAAAAIDjaEoBAAAAAADAcTSlAAAAAAAA4DiaUgAAAAAAAHAcTSkAAAAAAAA4jqYUAAAAAAAAHEdTCgAAAAAAAI6jKQUAAAAAAADH0ZQCAAAAAACA42hKAQAAAAAAwHE0pQAAAAAAAOA4mlIAAAAAAABwHE0pAAAAAAAAOI6mFAAAAAAAABxHUwoAAAAAAACOoykFAAAAAAAAx9GUAgAAAAAAgONoSgEAAAAAAMBxNKUAAAAAAADgOJpSAAAAAAAAcBxNKQAAAAAAADiOphQAAAAAAAAcR1MKAAAAAAAAjqMpBQAAAAAAAMfRlAIAAAAAAIDjaEoBAAAAAADAcTSlAAAAAAAA4DiaUgAAAAAAAHAcTSkAAAAAAAA4jqYUAAAAAAAAHEdTCgAAAAAAAI6jKQUAAAAAAADH0ZQCAAAAAACA42hKAQAAAAAAwHE0pQAAAAAAAOC4oG9Kfffdd+rbt69q166t6OhonXXWWVqzZo1nu5lp1KhRqlevnqKjo5WRkaFt27YFMGMAAAAAAACcSFA3pX755Rd16tRJ4eHhevPNN7V582Y9/vjjqlWrlifm0Ucf1eTJkzVjxgytWrVKMTExyszM1KFDhwKYOQAAAAAAAI4nLNAJHM8jjzyilJQUzZ4927MuLS3N828z08SJE3Xffffp0ksvlSTNmzdPiYmJWrhwofr06eN4zgAAAAAAADixoL5S6rXXXlPbtm31j3/8Q6eccopatWqlp59+2rN9586dys7OVkZGhmddXFyc2rdvrxUrVpQ6bkFBgfLz870WAAAAAAAAOCeom1Jff/21pk+friZNmuitt97Srbfeqttvv11z586VJGVnZ0uSEhMTvZ6XmJjo2VaSrKwsxcXFeZaUlJSK2wkAAAAAAAAUE9RNqaKiIrVu3VoPP/ywWrVqpQEDBuimm27SjBkzTmrcESNGKC8vz7Ps2bPHTxkDAAAAAADAF0HdlKpXr57OOOMMr3XNmzfX7t27JUlJSUmSpJycHK+YnJwcz7aSREZGKjY21msBAAAAAACAc4K6KdWpUydt3brVa91XX32lBg0aSDp60/OkpCQtXbrUsz0/P1+rVq1Senq6o7kCAAAEg3HjxsnlcunOO+/0rDt06JAGDhyo2rVrq0aNGurdu3exD/UAAACcFtRNqSFDhmjlypV6+OGHtX37ds2fP19PPfWUBg4cKEmeguuhhx7Sa6+9pg0bNujaa69VcnKyevXqFdjkAQAAHLZ69Wo9+eSTatmypdf6IUOGaPHixXrppZe0fPly7d27V5dffnmAsgQAADgqqJtS7dq106uvvqrnn39eLVq00IMPPqiJEyfqmmuu8cQMGzZMgwcP1oABA9SuXTsdOHBAS5YsUVRUVAAzBwAAcNaBAwd0zTXX6Omnn1atWrU86/Py8jRz5kyNHz9e3bp1U5s2bTR79mx98sknWrlyZQAzBgAAoS6om1KSdPHFF2vDhg06dOiQtmzZoptuuslru8vl0tixY5Wdna1Dhw7p3XffVdOmTQOULQAAQGAMHDhQF110kTIyMrzWr127VocPH/Za36xZM6WmpmrFihWljldQUKD8/HyvBQAAwJ/CAp0AAAAATs6CBQv02WefafXq1cW2ZWdnKyIiQvHx8V7rExMTlZ2dXeqYWVlZGjNmjL9TBQAA8Aj6K6UAAABQuj179uiOO+7Qc88959fbF4wYMUJ5eXmeZc+ePX4bGwAAQKIpBQAAUKmtXbtW+/btU+vWrRUWFqawsDAtX75ckydPVlhYmBITE1VYWKjc3Fyv5+Xk5CgpKanUcSMjIxUbG+u1AAAA+BN/vgcAAFCJ/fWvf9WGDRu81l133XVq1qyZ7rnnHqWkpCg8PFxLly5V7969JUlbt27V7t27lZ6eHoiUAQAAJNGUAgAAqNRq1qypFi1aeK2LiYlR7dq1PetvuOEGDR06VAkJCYqNjdXgwYOVnp6uDh06BCJlAAAASTSlAAAAqrwJEybI7Xard+/eKigoUGZmpqZNmxbotAAAQIijKQUAAFDFvP/++16Po6KiNHXqVE2dOjUwCQEAAJSAG50DAAAAAADAceVqSjVq1Eg//fRTsfW5ublq1KjRSScFAAAQCqipAABAKCtXU2rXrl06cuRIsfUFBQX67rvvTjopAACAUEBNBQAAQlmZ7in12muvef791ltvKS4uzvP4yJEjWrp0qRo2bOi35AAAAKoiaioAAIAyNqV69eolSXK5XOrXr5/XtvDwcDVs2FCPP/6435IDAACoiqipAAAAytiUKioqkiSlpaVp9erVqlOnToUkBQAAUJVRUwEAAJSxKXXMzp07/Z0HAABAyKGmAgAAoaxcTSlJWrp0qZYuXap9+/Z5Pu07ZtasWSedGAAAQCigpgIAAKGqXE2pMWPGaOzYsWrbtq3q1asnl8vl77wAAACqPGoqAAAQysrVlJoxY4bmzJmjf/7zn/7OBwAAIGRQUwEAgFDmLs+TCgsL1bFjR3/nAgAAEFKoqQAAQCgrV1Pqxhtv1Pz58/2dCwAAQEihpgIAAKGsXH++d+jQIT311FN699131bJlS4WHh3ttHz9+vF+SAwAAqMqoqQAAQCgrV1Pqiy++0DnnnCNJ2rhxo9c2btAJAADgG2oqAAAQysrVlFq2bJm/8wAAAAg51FQAACCUleueUgAAAAAAAMDJKNeVUueff/5xLyl/7733yp0QAABAqKCmAgAAoaxcTalj9z445vDhw1q3bp02btyofv36+SMvAACAKo+aCgAAhLJyNaUmTJhQ4voHHnhABw4cOKmEAAAAQgU1FQAACGV+vadU3759NWvWLH8OCQAAEHKoqQAAQCjwa1NqxYoVioqK8ueQAAAAIYeaCgAAhIJy/fne5Zdf7vXYzPT9999rzZo1uv/++/2SGAAAQFVHTQUAQMnGff5jsXXDW9UJQCaoSOVqSsXFxXk9drvdOv300zV27FhdcMEFfkkMAACgqqOmAgAAoaxcTanZs2f7Ow8AAICQQ00FAABCWbmaUsesXbtWW7ZskSSdeeaZatWqlV+SAgAACCXUVAAAIBSVqym1b98+9enTR++//77i4+MlSbm5uTr//PO1YMEC1a1b1585AgAAVEnUVAAAIJSV69v3Bg8erP3792vTpk36+eef9fPPP2vjxo3Kz8/X7bff7u8cAQAAqiRqKgAAEMrKdaXUkiVL9O6776p58+aedWeccYamTp3KTTkBAAB8RE0FAABCWbmulCoqKlJ4eHix9eHh4SoqKjrppAAAAEIBNRUAAAhl5WpKdevWTXfccYf27t3rWffdd99pyJAh+utf/+q35AAAAKoyaioAABDKytWUeuKJJ5Sfn6+GDRvqtNNO02mnnaa0tDTl5+drypQp/s4RAACgSqKmAgAAoaxc95RKSUnRZ599pnfffVdffvmlJKl58+bKyMjwa3IAAABVGTUVAAAIZWW6Uuq9997TGWecofz8fLlcLnXv3l2DBw/W4MGD1a5dO5155pn68MMPKypXAACAKoGaCgAAoIxNqYkTJ+qmm25SbGxssW1xcXG6+eabNX78eL8lBwAAUBVRUwEAAJSxKbV+/XpdeOGFpW6/4IILtHbt2pNOCgAAoCqjpgIAAChjUyonJ6fEry0+JiwsTD/88MNJJwUAAFCVUVMBAACUsSl16qmnauPGjaVu/+KLL1SvXr2TTgoAAKAqo6YCAAAoY1Pqb3/7m+6//34dOnSo2LbffvtNo0eP1sUXX+y35AAAAKoiaioAAAAprCzB9913n1555RU1bdpUgwYN0umnny5J+vLLLzV16lQdOXJE9957b4UkCgAAUFVQUwEAAJSxKZWYmKhPPvlEt956q0aMGCEzkyS5XC5lZmZq6tSpSkxMrJBEAQAAqgpqKgAAgDI2pSSpQYMGeuONN/TLL79o+/btMjM1adJEtWrVqoj8AAAAqiRqKgAAEOrK3JQ6platWmrXrp0/cwEAAAg51FQAACBUlbspBQAAAADHjPv8x2LrhreqE4BMAACVRZm+fQ8AAAAAAADwB5pSAAAAAAAAcBxNKQAAAAAAADiOphQAAAAAAAAcR1MKAAAAAAAAjqMpBQAAAAAAAMeFBToBAAAAAPizcZ//WGzd8FZ1ApAJgKqA95TgxJVSAAAAAAAAcBxNKQAAAAAAADiOphQAAAAAAAAcR1MKAAAAAAAAjqMpBQAAAAAAAMfRlAIAAAAAAIDjaEoBAAAAAADAcTSlAAAAAAAA4DiaUgAAAJXc9OnT1bJlS8XGxio2Nlbp6el68803PdsPHTqkgQMHqnbt2qpRo4Z69+6tnJycAGYMAABAUwoAAKDSq1+/vsaNG6e1a9dqzZo16tatmy699FJt2rRJkjRkyBAtXrxYL730kpYvX669e/fq8ssvD3DWAAAg1IUFOgEAAACcnJ49e3o9/ve//63p06dr5cqVql+/vmbOnKn58+erW7dukqTZs2erefPmWrlypTp06BCIlAEAALhSCgAAoCo5cuSIFixYoIMHDyo9PV1r167V4cOHlZGR4Ylp1qyZUlNTtWLFigBmCgAAQh1XSgEAAFQBGzZsUHp6ug4dOqQaNWro1Vdf1RlnnKF169YpIiJC8fHxXvGJiYnKzs4udbyCggIVFBR4Hufn51dU6gAAIERxpRQAAEAVcPrpp2vdunVatWqVbr31VvXr10+bN28u93hZWVmKi4vzLCkpKX7MFgAAgKYUAABAlRAREaHGjRurTZs2ysrK0tlnn61JkyYpKSlJhYWFys3N9YrPyclRUlJSqeONGDFCeXl5nmXPnj0VvAcAACDU0JQCAACogoqKilRQUKA2bdooPDxcS5cu9WzbunWrdu/erfT09FKfHxkZqdjYWK8FAADAn7inFAAAQCU3YsQI9ejRQ6mpqdq/f7/mz5+v999/X2+99Zbi4uJ0ww03aOjQoUpISFBsbKwGDx6s9PR0vnkPAAAEFE0pAACASm7fvn269tpr9f333ysuLk4tW7bUW2+9pe7du0uSJkyYILfbrd69e6ugoECZmZmaNm1agLMGAAChjqYUAABAJTdz5szjbo+KitLUqVM1depUhzICAAA4Me4pBQAAAAAAAMdxpRQAAADKZNznPxZbN7xVnQBkAgAAKjOulAIAAAAAAIDjaEoBAAAAAADAcTSlAAAAAAAA4DiaUgAAAAAAAHAcTSkAAAAAAAA4jqYUAAAAAAAAHFepmlLjxo2Ty+XSnXfe6Vl36NAhDRw4ULVr11aNGjXUu3dv5eTkBC5JAAAAAKUa9/mPxRYAwYnjFRWt0jSlVq9erSeffFItW7b0Wj9kyBAtXrxYL730kpYvX669e/fq8ssvD1CWAAAAAAAA8EWlaEodOHBA11xzjZ5++mnVqlXLsz4vL08zZ87U+PHj1a1bN7Vp00azZ8/WJ598opUrVwYwYwAAAAAAABxPpWhKDRw4UBdddJEyMjK81q9du1aHDx/2Wt+sWTOlpqZqxYoVpY5XUFCg/Px8rwUAAAAAAADOCQt0AieyYMECffbZZ1q9enWxbdnZ2YqIiFB8fLzX+sTERGVnZ5c6ZlZWlsaMGePvVAEAAAAAAOCjoL5Sas+ePbrjjjv03HPPKSoqym/jjhgxQnl5eZ5lz549fhsbAAAAAAAAJxbUTam1a9dq3759at26tcLCwhQWFqbly5dr8uTJCgsLU2JiogoLC5Wbm+v1vJycHCUlJZU6bmRkpGJjY70WAAAAAAAAOCeo/3zvr3/9qzZs2OC17rrrrlOzZs10zz33KCUlReHh4Vq6dKl69+4tSdq6dat2796t9PT0QKQMAAAA+KSkr1Yf3qpOADIBAGfwvoc/C+qmVM2aNdWiRQuvdTExMapdu7Zn/Q033KChQ4cqISFBsbGxGjx4sNLT09WhQ4dApAwAAAAAAAAfBHVTyhcTJkyQ2+1W7969VVBQoMzMTE2bNi3QaQEAAAAAAOA4Kl1T6v333/d6HBUVpalTp2rq1KmBSQgAAAAAAABlFtQ3OgcAAAAAAEDVRFMKAAAAAAAAjqMpBQAAAAAAAMdVuntKAQAAAKGGr1EPTvxeAODkcKUUAAAAAAAAHEdTCgAAAAAAAI6jKQUAAAAAAADH0ZQCAAAAAACA42hKAQAAAAAAwHE0pQAAAAAAAOC4sEAnAAAAAMA/xn3+Y7F1w1vVCUAmKK9A/Q5LmtepuSsDji2gYnClFAAAAAAAABxHUwoAAAAAAACOoykFAAAAAAAAx9GUAgAAAAAAgONoSgEAAAAAAMBxNKUAAAAAAADguLBAJwAAAAAgOI37/Mdi64a3qhOATCq3kn6OEj9LVB28V6C8uFIKAAAAAAAAjqMpBQAAAAAAAMfRlAIAAAAAAIDjaEoBAAAAAADAcdzo/E+4QRsAoLLh3AUAAIDKiCulAAAAAAAA4DiulAIAAAAABL2SrgyWuDoYqMy4UgoAAAAAAACOoykFAAAAAAAAx9GUAgAAAAAAgONoSgEAAAAAAMBxNKUAAAAAAADgOJpSAAAAAAAAcFxYoBMAAAAAAFSMcZ//WGzd8FZ1ApAJ/szX301F/A55XTiLn3fpaEoBAIBiKJ4AAABQ0fjzPQAAAAAAADiOphQAAAAAAAAcR1MKAAAAAAAAjuOeUgAAhAjuEwUAAIBgwpVSAAAAAAAAcBxXSgEAAAB+VBmuSqwMOQKAL3g/q9y4UgoAAAAAAACOoykFAABQiWVlZaldu3aqWbOmTjnlFPXq1Utbt271ijl06JAGDhyo2rVrq0aNGurdu7dycnIClDEAAMBRNKUAAAAqseXLl2vgwIFauXKl3nnnHR0+fFgXXHCBDh486IkZMmSIFi9erJdeeknLly/X3r17dfnllwcwawAAAO4pBQAAUKktWbLE6/GcOXN0yimnaO3atTrvvPOUl5enmTNnav78+erWrZskafbs2WrevLlWrlypDh06BCJtAAAArpQCAACoSvLy8iRJCQkJkqS1a9fq8OHDysjI8MQ0a9ZMqampWrFiRanjFBQUKD8/32sBAADwJ66UAgAAqCKKiop05513qlOnTmrRooUkKTs7WxEREYqPj/eKTUxMVHZ2dqljZWVlacyYMRWZLuC4qvQtXVVpXwCELq6UAgAAqCIGDhyojRs3asGCBSc91ogRI5SXl+dZ9uzZ44cMAQAA/g9XSgEA4Ad8Yo1AGzRokF5//XV98MEHql+/vmd9UlKSCgsLlZub63W1VE5OjpKSkkodLzIyUpGRkRWZMgAACHFcKQUAAFCJmZkGDRqkV199Ve+9957S0tK8trdp00bh4eFaunSpZ93WrVu1e/dupaenO50uAACAB1dKAQAAVGIDBw7U/PnztWjRItWsWdNzn6i4uDhFR0crLi5ON9xwg4YOHaqEhATFxsZq8ODBSk9P55v3AABAQNGUAgAAqMSmT58uSeratavX+tmzZ6t///6SpAkTJsjtdqt3794qKChQZmampk2b5nCmAAAA3mhKAQAAVGJmdsKYqKgoTZ06VVOnTnUgIwAAAN/QlAIAABWOG8EDAJzEeQdO4HV28rjROQAAAAAAABxHUwoAAAAAAACOoykFAAAAAAAAx9GUAgAAAAAAgONoSgEAAAAAAMBxNKUAAAAAAADguLBAJwAAAABUBnz1d3Aq6fcindzvht/18fn68+HnCOBEuFIKAAAAAAAAjuNKKQBAlVERn5YDAAAAqBhcKQUAAAAAAADH0ZQCAAAAAACA42hKAQAAAAAAwHE0pQAAAAAAAOA4bnQOAOXAVxxXfvwOAQAIDpyT/YOfo3/wc3QWV0oBAAAAAADAcTSlAAAAAAAA4DiaUgAAAAAAAHAcTSkAAAAAAAA4jhudI2SV5QZ2gbrZHTfZOz5+PqjqeI0DAACgKuNKKQAAAAAAADiOphQAAAAAAAAcR1MKAAAAAAAAjuOeUkCI4R41QNlwzAAAAAAVgyulAAAAAAAA4DiaUgAAAAAAAHAcTSkAAAAAAAA4jqYUAAAAAAAAHMeNzlEhKuLGwNxsGEBVwfsZAADBgf+3AIHFlVIAAAAAAABwHE0pAAAAAAAAOI6mFAAAAAAAABxHUwoAAAAAAACOC+obnWdlZemVV17Rl19+qejoaHXs2FGPPPKITj/9dE/MoUOHdNddd2nBggUqKChQZmampk2bpsTExABmDjivMtxQsTLk6G/cPBMoG17fAAAAoSOor5Ravny5Bg4cqJUrV+qdd97R4cOHdcEFF+jgwYOemCFDhmjx4sV66aWXtHz5cu3du1eXX355ALMGAAAAAADAiQT1lVJLlizxejxnzhydcsopWrt2rc477zzl5eVp5syZmj9/vrp16yZJmj17tpo3b66VK1eqQ4cOgUgbAAAAlQhX6AEAEBhBfaXUn+Xl5UmSEhISJElr167V4cOHlZGR4Ylp1qyZUlNTtWLFioDkCAAAAAAAgBML6iul/qioqEh33nmnOnXqpBYtWkiSsrOzFRERofj4eK/YxMREZWdnlzpWQUGBCgoKPI/z8/MrJGcAAAAAAACUrNI0pQYOHKiNGzfqo48+OumxsrKyNGbMGD9khWBUGS7Brww5BpK/fz4ljXeyY1YGVel1VpX2BQAAAMBRleLP9wYNGqTXX39dy5YtU/369T3rk5KSVFhYqNzcXK/4nJwcJSUllTreiBEjlJeX51n27NlTUakDAAAAAACgBEHdlDIzDRo0SK+++qree+89paWleW1v06aNwsPDtXTpUs+6rVu3avfu3UpPTy913MjISMXGxnotAAAAAAAAcE5Q//newIEDNX/+fC1atEg1a9b03CcqLi5O0dHRiouL0w033KChQ4cqISFBsbGxGjx4sNLT0/nmPQAAAAAAgCAW1E2p6dOnS5K6du3qtX727Nnq37+/JGnChAlyu93q3bu3CgoKlJmZqWnTpjmcKYCqgnsXAWXDMQMAAIDyCuqmlJmdMCYqKkpTp07V1KlTHcgIAAAAAAAA/hDU95QCAAAAAABA1URTCgAAAAAAAI6jKQUAAAAAAADHBfU9pQAEP25yjJLwugAAAABwIlwpBQAAAAAAAMdxpRQAAAAAAECAheJfG3ClFAAAAAAAABxHUwoAAAAAAACO48/3AD8KxcstAQAAAAAoD66UAgAAAAAAgONoSgEAAAAAAMBxNKUAAAAAAADgOO4pBQAAgIDz930Zuc8jAKCqKukcJ1XO8xxXSgEAAAAAAMBxNKUAAAAAAADgOJpSAAAAldwHH3ygnj17Kjk5WS6XSwsXLvTabmYaNWqU6tWrp+joaGVkZGjbtm2BSRYAAOD/oSkFAABQyR08eFBnn322pk6dWuL2Rx99VJMnT9aMGTO0atUqxcTEKDMzU4cOHXI4UwAAgP/Djc5RJtw0NHTwu3ZWZbhZYUXkyOsM8I8ePXqoR48eJW4zM02cOFH33XefLr30UknSvHnzlJiYqIULF6pPnz5OpgoAAODBlVIAAABV2M6dO5Wdna2MjAzPuri4OLVv314rVqwo9XkFBQXKz8/3WgAAAPyJK6UAAACqsOzsbElSYmKi1/rExETPtpJkZWVpzJgxFZpbeXCFJQAAvgv28yZXSgEAAKCYESNGKC8vz7Ps2bMn0CkBAIAqhqYUAABAFZaUlCRJysnJ8Vqfk5Pj2VaSyMhIxcbGei0AAAD+xJ/vlVMgb0oc7JffAQCA4JGWlqakpCQtXbpU55xzjiQpPz9fq1at0q233hrY5AAAQEijKQUAAFDJHThwQNu3b/c83rlzp9atW6eEhASlpqbqzjvv1EMPPaQmTZooLS1N999/v5KTk9WrV6/AJQ0AAEIeTSkAAIBKbs2aNTr//PM9j4cOHSpJ6tevn+bMmaNhw4bp4MGDGjBggHJzc3XuuedqyZIlioqKClTKAAAANKUAAAAqu65du8rMSt3ucrk0duxYjR071sGsAAAAjo8bnQMAAAAAAMBxXCkFAAAqJb74AwAAoHLjSikAAAAAAAA4jqYUAAAAAAAAHEdTCgAAAAAAAI6jKQUAAAAAAADH0ZQCAAAAAACA42hKAQAAAAAAwHE0pQAAAAAAAOA4mlIAAAAAAABwXFigE0DFGvf5j8XWDW9VJwCZlK4y5AgAqLw4zwAAAAQnrpQCAAAAAACA42hKAQAAAAAAwHE0pQAAAAAAAOA47ikFAACACsM9vQAAQGloSgWRQBZtFIxA6OL4BwAAABAI/PkeAAAAAAAAHEdTCgAAAAAAAI6jKQUAAAAAAADH0ZQCAAAAAACA42hKAQAAAAAAwHE0pQAAAAAAAOA4mlIAAAAAAABwHE0pAAAAAAAAOI6mFAAAAAAAABwXFugEQsG4z38stm54qzoByAQAAAAAACA4cKUUAAAAAAAAHEdTCgAAAAAAAI6jKQUAAAAAAADH0ZQCAAAAAACA42hKAQAAAAAAwHE0pQAAAAAAAOA4mlIAAAAAAABwHE0pAAAAAAAAOI6mFAAAAAAAABwXFugEAAAAAAAAEDjjPv+x2LrhrepU+LxcKQUAAAAAAADH0ZQCAAAAAACA42hKAQAAAAAAwHE0pQAAAAAAAOA4mlIAAAAAAABwHE0pAAAAAAAAOI6mFAAAAAAAABxHUwoAAAAAAACOoykFAAAAAAAAx9GUAgAAAAAAgONoSgEAAAAAAMBxNKUAAAAAAADgOJpSAAAAAAAAcBxNKQAAAAAAADiOphQAAAAAAAAcR1MKAAAAAAAAjqMpBQAAAAAAAMfRlAIAAAAAAIDjaEoBAAAAAADAcTSlAAAAAAAA4DiaUgAAAAAAAHAcTSkAAAAAAAA4rso0paZOnaqGDRsqKipK7du316effhrolAAAAIIK9RIAAAgmVaIp9cILL2jo0KEaPXq0PvvsM5199tnKzMzUvn37Ap0aAABAUKBeAgAAwaZKNKXGjx+vm266Sdddd53OOOMMzZgxQ9WrV9esWbMCnRoAAEBQoF4CAADBptI3pQoLC7V27VplZGR41rndbmVkZGjFihUBzAwAACA4UC8BAIBgFBboBE7Wjz/+qCNHjigxMdFrfWJior788ssSn1NQUKCCggLP47y8PElSfn6+Dh04XCw+Pz+i2LpDB/aXOLavsU7EBXJuciTHYM8xkHOTY2jnGMi5ybH8cfn5+ZIkMysxl2AXqHpJ4rVEjrz3k2No5RjIuckxtHMM5NwnVS9ZJffdd9+ZJPvkk0+81t999932l7/8pcTnjB492iSxsLCwsLCwsJRp2bNnjxPljd9RL7GwsLCwsLA4tZSlXqr0V0rVqVNH1apVU05Ojtf6nJwcJSUllficESNGaOjQoZ7HRUVF+vnnn1W7dm25XC5JRzt8KSkp2rNnj2JjY0ud399xgZybHMkxmOYmx8o/NzmSYzDNfbI5mpn279+v5OTk4z43WFEvkWOwzU2OlX9uciTHYJqbHIMjx/LUS5W+KRUREaE2bdpo6dKl6tWrl6SjRdPSpUs1aNCgEp8TGRmpyMhIr3Xx8fElxsbGxp7wl1ERcYGcmxzJMZjmJsfKPzc5kmMwzX0yOcbFxfn0vGBEvUSOwTo3OVb+ucmRHINpbnIMfI5lrZcqfVNKkoYOHap+/fqpbdu2+stf/qKJEyfq4MGDuu666wKdGgAAQFCgXgIAAMGmSjSlrrzySv3www8aNWqUsrOzdc4552jJkiXFbuYJAAAQqqiXAABAsKkSTSlJGjRoUKmXn5dHZGSkRo8eXeyy9YqOC+Tc5EiOwTQ3OVb+ucmRHINp7orIsTKiXiLHYJmbHCv/3ORIjsE0NzkGb44n4jKrpN9tDAAAAAAAgErLHegEAAAAAAAAEHpoSgEAAAAAAMBxNKUAAAAAAADgOJpSAAAAAAAAcBxNqUpu586d+v333wOdBlBpcMwAZcMxg6qA1zFQNhwzQNlwzJQfTan/Z/PmzbrtttvUqlUr1atXT/Xq1VOrVq102223afPmzWUe7/vvv9ezzz6rN954Q4WFhV7bDh48qLFjx0qS3nnnHY0ePVrvvfeeJOmDDz5Qjx491K1bN82ePfuE85x++unatm1bqdv37t2r0aNH65prrtG//vUvffnll8cd788HUs+ePfXMM8/ot99+O2Eux8OXPFY9gTpmpJM7bir6mJH8c9yE4jFT1U/mHDNHccxUbtRLR/E6hq/8fcxIzhw3/j5mpIr5f0YoHjPUS2VDveQtKI8Zg73xxhsWERFhHTp0sNGjR9u0adNs2rRpNnr0aOvYsaNFRkbakiVLTjjO9u3b7fzzz7dPP/3U4uPjLTY21qKjo61x48a2ceNGT1x2dra53W575plnLCwszFq3bm01atSw2bNnW3x8vN144412/fXXW0REhL300ktmZnbZZZeVuLjdbsvIyPA8jo6Otn379pmZ2aZNmywuLs4aN25s//jHP6xZs2ZWvXp1W79+vb355pv2xRdfmJnZkSNHbOzYsZacnGxut9tOPfVUy8rKsqKiInO5XBYWFmZxcXF2yy232Jo1a0rd/0OHDtldd91lnTt3tnHjxpmZ2YMPPmgxMTEWExNjV111leXl5ZmZ2bp16+yf//ynpaWlWVRUlFWvXt1atGhh9913nyemtDkOHTp0wt9FMFi2bJn9+uuvfhnr0KFDtn37dr/ve3Z2tn3//fclbvv9998tOzvb83r6o0AdM2bm83ETqGPGzHw+birqmNm0aZPdeuutds4551hSUpIlJSXZOeecY7feeqtt2rTphL+XP9u7d68988wz9r///c8KCgq8th04cMDGjBljZmZvv/22jRo1ypYuXWpmZsuXL7cLL7zQzj//fJs1a9YJ5wkPD7fNmzeXuv27776zUaNG2dVXX2133XWXbdmy5bjjHT582OvxxRdfbPPmzTvp4/LY77ksOGZC65ipqqiXgvt1/Oc5QrFeMquYmilY6iUz8/tx4+9jxsz8/v+MyvLeT73kjXqp6p1nKqpeoillZi1btrT777+/1O2jR4+2s84664TjrFu3zvNivO666+zIkSOWn59vt956q9WuXds+++wzM/u/F/8555xjkyZNMjOzd99916Kjo238+PGe8R577DHr1KmTmR19AXbp0sX69+/vtbjdbuvVq5fnscvlspycHDMzu/TSS61nz56eN5ojR45Ynz597OKLL7bTTz/dPvjgAzMze/jhh6127do2fvx4e/PNN23ixImWmJho48aNM5fLZZs2bbIJEybYWWedZW63284++2ybMmWK/fzzz177P2TIEEtOTra77rrLmjdvbrfddpulpqbas88+a/Pnz7fGjRvb4MGDbcmSJRYdHW29e/e2vn37WvXq1W3QoEF2zz33WOPGje20007zOvG//fbb1qNHD4uPjze3221ut9vi4+OtR48e9s4775zw92JmtnnzZktLS/P8nh588EGbOnWq/fDDD15xeXl5dt1113keP/3003bttdd6ThALFiywZs2aWVpamo0aNeq4c/75hHHs93LM559/btdee6117NjRevfubcuWLTMzs9mzZ9snn3xiZma//fabXX/99VatWjVzu90WFhZmN998s6fQatGihY0dO9Z279593Fx++ukn6927t6WkpNgtt9xiv//+u91www3mcrnM7XZbenq67d2718zMXn/9devcubNFRkZ6ft5xcXHWt29f++abb8wscMeMmfl83ATqmDEzn4+bijhm+E9jcDbZOWaq/jETCqiXgvd1bBZ69ZKZ7zVTVamXzMzvx42/jxkz8/v/M4L5vZ96iXopVM4zFVkv0ZQys6ioKPvyyy9L3f7ll19aVFSUTZo06bjLsGHDzO12W61atWzr1q1eY2RlZVmtWrXs008/9bz4Y2Ji7Ouvv/bEhIeHez5hMDPbsmWL1a5d28zMnn/+eatfv36x7nlYWJhXV/KPL/6UlBTPC/yYzz77zOrVq2eRkZGeE2aLFi3sxRdf9Ip7/fXXrXHjxl7jmZmtWrXKBgwYYHFxcRYdHW1XXXWVp8ufkpLiKXp27NhhbrfbFi5c6Hnu22+/bQ0aNLBzzjnHpk+f7rW+WbNmZmZWWFhof/3rX61///5mZjZnzhwLCwuzPn362OzZs+2NN96wN954w2bPnm1XXXWVhYeH27x580r5zf2fY29Mb731lkVERNiZZ55pqampVrt2bXvvvfc8cX98Y5owYYLFxMTY5ZdfbvXq1bOHHnrIateubQ899JCNGTPGYmNj7cknn7RWrVqVuLhcLmvevLnnsdvt9vwsP/74YwsPD7cuXbrY3Xffbd27d7ewsDBbvny5paWl2cqVK83M7F//+pc1bNjQXnnlFduyZYstXLjQmjZtanfffbfn9127dm2rVq2aZWZm2ssvv1zs0w4zs+uvv95atGhhU6ZMsS5dutill15qLVu2tI8++sg++eQTa9eunV177bU2b948q1mzpt1111127733WlJSkg0fPtymT59uXbp0sTp16thXX30VsGPGzHw+bgJ1zPx5TLPSj5uKOGb4T2NwNtk5Zqr+MRMKqJeC93UcivWSmflcM1WVesnM/H7c+PuYMTO//z8jmN/7qZeol46p6ueZiqyXaEqZWbNmzezxxx8vdfvjjz9up59+urlcLktOTraGDRuWuBzrNNeqVcvrBXzMf/7zH4uPj7dXXnnF8+nVHw+6GjVq2I4dOzyPv/76a6tevbrn8c6dO61Tp052+eWXe94Q/vzid7vdnk55gwYNiuXx9ddfW1RUlNWrV89WrFhhZmaJiYmeN8xjvvrqK4uOji72wj/m4MGDNnv2bDv33HM9B3J0dLTngDI7eiD/8ROCnTt3WvXq1S0qKsp27tzpWV9UVGTh4eGeT54++OADq1u3rpmZNWnSxJ544oli8x8zdepUa9y4sQ0ZMuS4S9++fT2fcI0cOdIz7yOPPGI1atSwN99808y8i6xmzZrZc889Z2ZH3zTCwsLsv//9r2fu//73v9amTRsLCwuzCy+80B544AHPMnr0aHO73Xbbbbd51v3xZ9m9e3e7/vrrvfbljjvusG7dunm9MTVt2tST2zHLly+31NRUMzv6xvTdd9/Zq6++aj179rSwsDCrW7eu3XXXXV6fOtarV88+/vhjzz66XC57++23Pds/+ugjO/XUU61Zs2a2YMECz/rVq1db/fr1PZeMXnnllXbZZZcF7JgxszIdN4E4Zo79Xnw5birimOE/jcHZZOeYqfzHDKiXgvl1HIr1kpn5XDNVlXrJzCrkuPHnMXPs5+jP/2dQL1EvHUO9FPzHTHnQlDKzF1980cLCwqxnz542adIkW7BggS1YsMAmTZpkl1xyiUVERNjLL79sDRs2tBdeeKHUcT7//HNzu93WuXNnr4Pujx555BHPZb5t27b1Omjz8vK8/vb2nXfesaZNm3o9/8iRIzZq1ChLSUmxJUuWWHh4eLE3pfj4eKtVq5aFh4fbM8884/X8t99+2xo2bGi33XabXXzxxfb777/bgAED7MYbb/Sae/DgwZaenl7qC/+Pjr0Bn3766Z4T9KeffmoRERFeb6ILFiywJk2a2GmnneZ1ad+2bdusWrVqnr+9/vrrrz0HXmRkpE8vfrfbba1bt7auXbuWuLRt29bcbrfFxsba9u3bvcZ47rnnLCYmxhYvXuxVZP35YI6MjPQ6mLdt22bx8fH20Ucf2WmnnWajRo2yI0eOeLYf74TxxzefYzZu3Gh16tSxBg0aeD6NPPXUU2316tVecZs3b7aYmJhiY5od/Vv2hx9+2Jo0aeIpKmfOnGnVq1e3Xbt2eeLCw8Ntw4YNnsdff/21xcTEWHR0tNcb07H9+O6778zs6EkpPj4+YMeMmZX5uHH6mDk2pi/HTUUcM/ynMTib7Bwzlf+YAfVSML+OQ7FeMjOfa6aqUi+ZWYUdN/46ZszM7//PoF6iXqJeCvx5piLrJZpS/8/HH39sV155paWmplpERIRFRERYamqqXXnllZ6/Ve/du7cNGzas1DHWrVtnLpfLnn76aevbt2+pcePGjfNcXnzs8uOSZGVl2X333Vfitg8//NDS0tLM7XZ7vfjnzJnjtfz5RD527FgbMmSI5ebmWtu2ba1x48b2z3/+06KioqxBgwbWvXt3S0tLs7i4OFu5cqV17drVfvnll1Jz/KMJEyZYVFSUZWRkWK1atWzy5MmWlJRkw4YNs+HDh1tcXJyNHTvWxowZY/Xr17fp06fbrFmzrEWLFnbZZZd5xnnllVfsjDPOMDOz1q1be/5UrSTDhg2z1q1bW9OmTYsd6H907I2pbt26Jf5d9PPPP2/Vq1e36dOne96Yateu7fXpWf369b0KlW3btlmNGjXMzCw3N9f69Olj7du39xRxJRVZ27dvt7y8PEtLSyt2Iti+fbtVr17dRo4caenp6fbLL7/Y8OHDrWfPnrZ//34zO3oyuOKKK+yCCy4wM/O6xP3Pli1bZn379rWYmBg7++yzPZ+gvvHGG1azZk2vN5Xp06dbixYtrHnz5p6/YzczW7t2rUVERNjvv//u2edjDbFAHDNmVu7jxqljxsx8Pm4q4pjhP43B22TnmKncxwyOol4KztdxKNZLZuZzzVRV6iUzq/Dj5mSPGTPz+/8zqJeol6iXAn+eqch6iaZUGWzatKnYJzB/VFhY6HUSrmj79++3devWFft2B18VFhba9OnT7W9/+5s1a9bMmjZtal26dLGRI0fanj17yjXmc889Z4MGDbL58+eb2dETfefOna1Nmzb2wAMP2JEjR+zw4cM2bNgwS05Ottq1a9vVV1/tdQPNVatWed4Qli1bZjExMXbWWWfZkCFDbNy4cTZu3DgbMmSItWzZ0mrUqGHLly+3q6++2u68885S8zr2xtS9e3f7z3/+U2LM/PnzLTw83FNkderUyevS7D9bvHixtWjRwmvdrFmzLCkpyZ588skSTxjHboTpcrnsqaee8nruokWLrHHjxlZQUGCXXHKJ1apVy7p37+65EWCTJk0sJibGUlNTPScCX04aeXl59uyzz1q1atWscePGFhkZaS+99JIlJyfbFVdcYX369LGIiAh74okn7IknnrC4uDgbNmyYjRo1ypKTk+2GG27wjPXss89aq1atjjvfH3HMnJi/jxkz/tMYrE12X3DMnFigjhn4jtfxiVEvnXy9ZGY+10zUS2VzsseMmf+PG+ol6qU/qmrHTGU4z5hVXL3kMjMTEMR27dql6dOna+XKlcrOzpYkJSUlKT09XbfccosaNmyo7OxsFRQUqEGDBscd69VXX9UHH3ygCRMmlLh9/vz5evrpp7Vs2TJ9/PHHiomJ0TnnnFNi7LRp01RUVKRBgwZ5rd+2bZuuueYarVmzRhs3btQZZ5whSVq+fLlXXL169dS0aVPP40mTJqmwsFB33323JGnJkiVavHixvv76axUVFalevXrq1KmTrr76asXExEiSrrvuOk2ePFk1a9Y87n5L0scff6yVK1cqPT1dHTt21ObNmzVu3Dj9+uuv6tmzp/r16ydJmj59up599lkVFBQoMzNT999/v6Kiojz7duTIETVr1uyE8yG4bd68Wb/++qvatm1b4vbDhw9r7969Jzym/OXAgQPasWOHmjdvroiIiDI///Dhw5o5c2aJx8ytt96q+vXrl3nM+fPna8WKFerYsaOuuuoqvf/++xo1apTnmLn//vtVVFSke++91+uYmTRpkurUqSNJ+vTTT3Xo0CGdd955ZZ4fAMoiVOsl6cQ1E/USyot66cSol3CyaEr5YOTIkcrOztasWbMcHa8s81bEmL7w93hVRVFRkfbv36/Y2Fi5XK5Ap+O4QL7O/H0sVMRrnOMGf8Yx458cEVjUS/6ZO5RQLwXudcZ7Pyoj6iX/5Bhs3IFOoDL49ttvtWvXrhPGjRw5Utdff73fxvM1riLG9Pe+lGVMX+OCmdvtVlxcXEgWWJL03Xff+fV15ut4ZYn1d1xZXrf+HrMsc/v7+ApkjoHal4rAMePsmIE8Zqoy6iVnx6wKr03qpcC9XwYqTvL/uawyvPdTL/kH9ZKzYzp1zISV61khZt68eT7Fffvtt/r222/9Np6vcRUxpr/3pSxj+honSf369dOePXv03nvvORoXyLkrQ45z5849YW7S0TfOPXv2nDDO1/HKEuvvOF/3pSLGLMvcvh5fvn7SUhHHtb/H9Pe+lGXME8WZmVwul99eE2UZz9dYf8cd48vrtiLGLEucVLbXRaijXnJ2TOql4J07UPVSWcYMVJzk//qPesk/cdRLJxdLvVT+eomm1P/z448/atasWVqxYoXX3+F37NhR/fv3V926dU84xh+LDV/HK8u8FTGmP/elLGP6I06SkpOT5Xaf+II/f8cFcu7KkKOvylLABLuK2JeKKAT5T+PJj1eWMU8UFxkZqfXr16t58+bHHcfXYsPX8coS6++4shRO/h6zrEWbVLbXRSigXip9XypqzJONk0K3FqkMtZovqlK9JPl/f6iX/BNHvXRysdRL5a+XuKeUpNWrVyszM1PVq1dXRkaGEhMTJUk5OTlaunSpfv31V7311ltq27atT8WGr+OZmc/zVsSY/tyXYzf/c7IQRGD99ttvWrt2rRISEjw3Jz3m0KFDevHFF3XttddWyHi+xvo7riwqYkxfbdmyxXOT1mbNmunLL7/UpEmTVFBQoL59+6pbt24VMl5Z5q2IMQPxs/HV0KFDS1w/adIk9e3bV7Vr15YkjR8/vsS4iIgIr2KjLOP5Glua8sb5ui9l3R9fxyxv3MGDB/Xiiy9q+/btqlevnq666qoT7nuooF46fs3i75+PRL1UFQSyxqBeOj7qJed+Nr6iXip9X8q6P76OWd44f9ZLNKUkdejQQWeffbZmzJhR7G/azUy33HKLvvjiC02ePNmnYmPQoEE+jWdmPsWtWLHC5xx9HdPf+7JixYoKKQRPZM+ePRo9evQJLwn1d1wg5w6GHIcPH64LLrhAu3fvlsvl0rnnnqsFCxaoXr16ko7+LpOTk3XkyBGfio0OHTr4PN5XX33lU+yWLVv8Gufrvlx77bU+51iWMX2NW7JkiS699FLVqFFDv/76q1599VVde+21Ovvss1VUVKTly5fr7bffVrdu3XwqOHwdr7Cw0Od5K2JMf+5LWQs8X+LcbrfOPvtsxcfHe/3uli9frrZt2yomJkYul6vUb6/6c7ExceJEn8Z77733fJ77/fff92ucr/syfvx4v/98SlPS3GeccYY++ugjJSQkaM+ePTrvvPP0yy+/qGnTptqxY4fCwsK0cuVKpaWlHXfsUEC9dPyaxd8/H+qlyjt3RdVLZakx/F0HlaVeknxrNpWl/qNeol6iXqrC9ZLBoqKibMuWLaVu37Jli0VFRVn79u1twIABVlRUVCymqKjIBgwYYB06dPB5PF/jypJjoPbFzHwe09c4X6xbt87cbrfjcYGcOxhy7NWrl1100UX2ww8/2LZt2+yiiy6ytLQ0++abb8zMLDs729xut23dutUaNGhgLpfL3G63nXfeebZ3717PeMfifB3PzHyO9Xecr/tSlhx9HbMsc6enp9u9995rZmbPP/+81apVy0aOHOmJHT58uHXv3t3efPNNi4iIsISEBIuKirI333zT6tataxkZGdatWzerVq2aLV261OfxfI0rS46B2hcz83lMX+OysrIsLS3Nli5dan8UFhZmmzZt8jx2uVx2zjnnWNeuXb0Wl8tl7dq1s65du9r555/v83hm5nOsv+N83ZeKGLMsc7tcLsvJyTEzs2uuucY6duxoubm5Zma2f/9+y8jIsKuuuspAvXS8fSnL3NRLVX/uiqqXzAJXB5WlVvN3/Ue9RL1EvVS16yWaUmbWsGFDmzt3bqnb586daw0aNPC52PB1PF/jypJjoPbFzP+FoJnZokWLjrtMmDDB3G633+MCOXdlyPGUU06xL774wvM7KyoqsltuucVSU1Ntx44dZS42fB3PzHyO9XdcWYoxf49ZlrljY2Nt27ZtZmZ25MgRCwsLs88++8yTy4YNGywxMdHngsPX8XyNK0uOgdoXM/8XgmZmn376qTVt2tTuuusuKywsNLPyFzC+jlfWWH/GlWVf/D1mWeb+Y5HVqFEje/vtt722f/zxx5aSklIs31BEvVT6vpRlbuqlyj93oOols8DVQWWp1fxd/1EvUS9RL1XMmMFSL9GUMrMnnnjCIiMj7fbbb7dFixbZypUrbeXKlbZo0SK7/fbbLTo62qZOnepzseHreL7GlSXHQO2Lmf8LQTPzfNLhcrlKXY5t92dcIOeuDDnWrFnTNm/eXOx3N3DgQKtfv7598MEHZSo2fB3PzHyO9XdcWYoxf49ZlrljY2Nt+/btntgaNWrYjh07PI937dplUVFRZSp0fB3Pl7iy5hiIfTmWo7+LS7OjnyRde+211rJlS9uwYYOFh4efVPHky3hljfVnXFn2xd9j+hrncrls3759ZmaWnJxsGzZs8Nr+x9dFqKNeKn1fKuLnQ70UvHMHql4yC1wdVJZazd/1H/WSf8akXqJeCtZ6iabU/7NgwQJr3769hYWFeU4mYWFh1r59e3vhhRfMzPdiw9fxyhLn7zErYl8qorhMTk62hQsXlvp7+/zzz83tdvs9LpBzV4Yc27VrZ/PmzSsxZuDAgRYfH1+mYsPX8czM51h/x5WlGPP3mGWZu2XLlvbmm296YjZs2GCHDx/2PP7ggw8sLS3N54LD1/F8jStLjoHaFzP/F4J/9vzzz1tiYqK53e6TLp58Ga88sf6KK+u++HNMX+JcLpedddZZ1qpVK6tRo4a9/PLLXtuXL19up5566nHzDSXUS6Xvi7/HpF4K3rkDVS+ZBa4OKkut5u/6j3rJP2NSL1EvBWu9RFPqTwoLC23v3r22d+9eT6fwj8pSFPkyXlnj/DlmReyLv4vLnj172v3331/qPq5bt85cLpff4wI5d2XI8eGHH7YePXqUGnfrrbeay+XyudjwdTwz8znW33FlKcb8PWZZ5p4+fbq9/vrrpc49YsQIu+GGG3wuOHwdz9e4suQYqH0x838hWJI9e/bYwoUL7cCBA6XmVJbiyZfxyhrrz7iy7Iu/xzxe3AMPPOC1LFmyxGv7v/71L+vTp88J8w011Eul74s/x6ReCs65A1UvmQWuDipLrebv+o96yT9jUi/5Pl5ZY6mXTq5e4tv3yunw4cP68ccfJUl16tRReHh4gDMqv4rYF1/HPFHchx9+qIMHD+rCCy8s8fkHDx7UmjVr5Ha7/RrXpUuXgM1dGXLs0qVLidv/LCsrSx9++KHeeOONErffdtttmjFjhoqKinwaL5AqYl98HfPf//633+eeMWOGUlJSdNFFF5W4feTIkdq3b5/++9//+jxmoFTEvvg6Ztu2bSv85/jtt99q7dq1ysjIUExMTLnHCQYVsS++jlmVfo6VCfWSf8akXgquuamXjs/f+0O95B/US5VHqNVLNKUAAAAAAADgOHegEwAAAAAAAEDooSkFAAAAAAAAx9GUAgAAAAAAgONoSgGosrp27ao777zTp9j3339fLpdLubm5JzVnw4YNNXHixJMaAwAAwCnUSwACiaYUAAAAAAAAHEdTCgAAAAAAAI6jKQUgJDzzzDNq27atatasqaSkJF199dXat29fsbiPP/5YLVu2VFRUlDp06KCNGzd6bf/oo4/UuXNnRUdHKyUlRbfffrsOHjzo1G4AAABUGOolAE6jKQUgJBw+fFgPPvig1q9fr4ULF2rXrl3q379/sbi7775bjz/+uFavXq26deuqZ8+eOnz4sCRpx44duvDCC9W7d2998cUXeuGFF/TRRx9p0KBBDu8NAACA/1EvAXBaWKATAAAnXH/99Z5/N2rUSJMnT1a7du104MAB1ahRw7Nt9OjR6t69uyRp7ty5ql+/vl599VVdccUVysrK0jXXXOO5GWiTJk00efJkdenSRdOnT1dUVJSj+wQAAOBP1EsAnMaVUgBCwtq1a9WzZ0+lpqaqZs2a6tKliyRp9+7dXnHp6emefyckJOj000/Xli1bJEnr16/XnDlzVKNGDc+SmZmpoqIi7dy507mdAQAAqADUSwCcxpVSAKq8gwcPKjMzU5mZmXruuedUt25d7d69W5mZmSosLPR5nAMHDujmm2/W7bffXmxbamqqP1MGAABwFPUSgECgKQWgyvvyyy/1008/ady4cUpJSZEkrVmzpsTYlStXegqmX375RV999ZWaN28uSWrdurU2b96sxo0bO5M4AACAQ6iXAAQCf74HoMpLTU1VRESEpkyZoq+//lqvvfaaHnzwwRJjx44dq6VLl2rjxo3q37+/6tSpo169ekmS7rnnHn3yyScaNGiQ1q1bp23btmnRokXcuBMAAFR61EsAAoGmFIAqr27dupozZ45eeuklnXHGGRo3bpwee+yxEmPHjRunO+64Q23atFF2drYWL16siIgISVLLli21fPlyffXVV+rcubNatWqlUaNGKTk52cndAQAA8DvqJQCB4DIzC3QSAAAAAAAACC1cKQUAAAAAAADH0ZQCAAAAAACA42hKAQAAAAAAwHE0pQAAAAAAAOA4mlIAAAAAAABwHE0pAAAAAAAAOI6mFAAAAAAAABxHUwoAAAAAAACOoykFAAAAAAAAx9GUAgAAAAAAgONoSgEAAAAAAMBxNKUAAAAAAADgOJpSAAAAAAAAcBxNKQAAAAAAADiOphQAAAAAAAAcR1MKAAAAAAAAjqMpBQAAAAAAAMfRlAIAAAAAAIDjaEoBAAAAAADAcTSlAAAAAAAA4DiaUgAAAAAAAHAcTSkAAAAAAAA4jqYUAL/btWuXXC6XHnvsMb+N+f7778vlcun999/325iV0Z49exQVFaWPP/64QueZMWOGUlNTVVBQUKHzAAAQqqiXKg71ElB50JQCIEmaM2eOXC6X1qxZE+hU/GLHjh26+eab1ahRI0VFRSk2NladOnXSpEmT9NtvvwU6PUnStGnTNGfOnDI9Z+zYsWrfvr06derkWbd161YNGTJEHTt2VFRUlFwul3bt2lXsuT/99JP+85//6LzzzlPdunUVHx+vDh066IUXXigW279/fxUWFurJJ58s624BAFBlUS85z+l6SZKGDBmi1q1bKyEhQdWrV1fz5s31wAMP6MCBA15x1EvAyaMpBaDK+d///qezzjpLL774onr27KkpU6YoKytLqampuvvuu3XHHXcEOkVJZS+yfvjhB82dO1e33HKL1/oVK1Zo8uTJ2r9/v5o3b17q81esWKF7771XCQkJuu+++/Tvf/9b1atXV58+fTR69Giv2KioKPXr10/jx4+XmZVpvwAAQPCjXird6tWr1blzZ40ZM0aTJk3S+eefr3HjxunCCy9UUVGRJ456CTh5YYFOAAD8aefOnerTp48aNGig9957T/Xq1fNsGzhwoLZv367//e9/Acyw/J599lmFhYWpZ8+eXusvueQS5ebmqmbNmnrssce0bt26Ep9/5plnatu2bWrQoIFn3W233aaMjAw98sgjGjZsmGJiYjzbrrjiCj366KNatmyZunXrViH7BAAAnEe9VHq9JEkfffRRsXWnnXaa/vWvf+nTTz9Vhw4dPOupl4CTw5VSAHxWWFioUaNGqU2bNoqLi1NMTIw6d+6sZcuWlfqcCRMmqEGDBoqOjlaXLl20cePGYjFffvml/v73vyshIUFRUVFq27atXnvttXLl+Oijj+rAgQOaOXOmV4F1TOPGjb0++fv999/14IMP6rTTTlNkZKQaNmyokSNHFrs3gMvl0gMPPFBsvIYNG6p///6ex8cu6//44481dOhQ1a1bVzExMbrsssv0ww8/eD1v06ZNWr58uVwul1wul7p27XrcfVu4cKHat2+vGjVqeK1PSEhQzZo1j/tcSUpLS/NqSB3br169eqmgoEBff/2117Y2bdooISFBixYtOuHYAADgKOqlB4qNV5nqpdI0bNhQkpSbm+u1nnoJODlcKQXAZ/n5+frvf/+rq666SjfddJP279+vmTNnKjMzU59++qnOOeccr/h58+Zp//79GjhwoA4dOqRJkyapW7du2rBhgxITEyVJmzZtUqdOnXTqqadq+PDhiomJ0YsvvqhevXrp//v//j9ddtllZcpx8eLFatSokTp27OhT/I033qi5c+fq73//u+666y6tWrVKWVlZ2rJli1599dUyzf1HgwcPVq1atTR69Gjt2rVLEydO1KBBgzz3b5o48f9n797DrCrL/oHfMw4wCAxnGVCOooIphmA4HlIJI1OT5K00TSzNN0NSyAOYiphvUKl4CDVL8ZBk2qWW5aFCxUxQxEPiAQExUGQMlUF8Y0Dm+f3hj/06zoADzKyZYT6f61rXxV7rnvU8e2bW7JvvXnutK2PMmDHRunXr+NGPfhQRkfueVGf9+vUxd+7cOP3007d6TpuyYsWKiIjo1KlTlW377rtvnV8kFAC2J/qlmmvI/dKHH34Yq1atinXr1sX8+fPjggsuiDZt2sTnPve5KrX6JdgGCSClNH369BQRae7cuZus+fDDD1N5eXmlde+9917q0qVL+s53vpNbt2TJkhQRqWXLlumNN97IrX/yySdTRKSxY8fm1n3hC19Ie++9d1q7dm1uXUVFRTrggAPSbrvtllv3yCOPpIhIjzzyyCbnV1ZWliIiHXPMMTV5yum5555LEZFOPfXUSuvPPvvsFBHp4Ycfzq2LiDRx4sQq++jZs2caNWpU7vHG7+OwYcNSRUVFbv3YsWPTDjvskFatWpVb95nPfCYdcsghNZrrokWLUkSka665ZrN1P//5z1NEpCVLltRov++8807aaaed0sEHH1zt9tNOOy21bNmyRvsCgO2dfun/bO/90uzZs1NE5JY99thjk99X/RJsPR/fA2pshx12iObNm0dEREVFRbz77rvx4YcfxuDBg+OZZ56pUj9ixIjYeeedc48/97nPxZAhQ+L++++PiIh33303Hn744fj6178e77//fqxcuTJWrlwZ77zzTgwfPjwWLlwYb775Zo3nt3r16oiIGp+avXEe48aNq7T+hz/8YUTENl1L4bTTTou8vLzc44MPPjg2bNgQ//rXv7Zqf++8805ERLRv336r5/RJFRUVccIJJ8SqVavimmuuqbamffv28Z///Cf+93//t9bGBYDtmX6p5hpyv7TnnnvGX//617j33ntz19385N33NtIvwdbz8T1gi9xyyy1x+eWXxyuvvBLr16/Pre/du3eV2t12263Kut133z3uvPPOiIhYtGhRpJTiwgsvjAsvvLDa8d5+++1KjdrmFBUVRUTE+++/X6P6f/3rX5Gfnx99+/attL64uDjatWu31Q1RRESPHj0qPd7YHL333ntbvc+IqNU7u4wZMyYefPDBuPXWW2OfffbZ7HgfbxgBgM3TL9VMQ+6XioqKYtiwYRERccwxx8SMGTPimGOOiWeeeaZK36Rfgq0nlAJq7De/+U2cfPLJMWLEiDjnnHNip512ih122CEmT54cixcv3uL9bbyl7tlnnx3Dhw+vtuaTDdDmFBUVRbdu3aq9OOjmbEsDsWHDhmrX77DDDtWu39omqWPHjhGx7U3aRpMmTYprr702pkyZEt/61rc2Wffee+/FjjvuGC1btqyVcQFge6dfqqqx9ksfd+yxx8a3vvWtuOOOO6qEUvol2HpCKaDGfv/730efPn3i7rvvrtSYTJw4sdr6hQsXVln36quv5u5e0qdPn4iIaNasWe6dqG111FFHxQ033BCzZ8+OkpKSzdb27NkzKioqYuHChdG/f//c+tLS0li1alWlO9W1b9++yt1W1q1bF2+99dZWz3VLmrsePXpEy5YtY8mSJVs93kbTpk2Liy++OM4666w477zzNlu7ZMmSSt8bAGDz9EurKn19Y+2XPqm8vDwqKiqirKysyjb9Emw915QCamzju1kff/fqySefjNmzZ1dbf++991a6xsFTTz0VTz75ZBxxxBEREbHTTjvFoYceGr/85S+rbVY+fkvgmtr4mf9TTz01SktLq2xfvHhxXHXVVRER8eUvfzkiPrqzy8ddccUVERFx5JFH5tbtuuuu8dhjj1Wqu+GGGzb5zl9NtGrVqkrjtinNmjWLwYMHx9NPP73V40VE/O53v4sf/OAHccIJJ+Se5+Y888wzNb4zDwCgX2rs/dKqVasqfeRyo1//+tcRETF48OAq2/RLsPWcKQVUctNNN8WDDz5YZf2ZZ54ZRx11VNx9993x1a9+NY488shYsmRJXH/99bHnnntWe+HHvn37xkEHHRSnn356lJeXx5VXXhkdO3aMc889N1czbdq0OOigg2LvvfeO7373u9GnT58oLS2N2bNnxxtvvBHPP//8Fs1/1113jRkzZsQ3vvGN6N+/f5x00kmx1157xbp16+KJJ56Iu+66K04++eSIiNhnn31i1KhRccMNN8SqVavikEMOiaeeeipuueWWGDFiRBx22GG5/Z566qnxve99L0aOHBmHH354PP/88/HQQw9Fp06dtmh+Hzdo0KC47rrr4tJLL42+ffvGTjvtFEOHDt1k/THHHBM/+tGPYvXq1bnrQURElJWV5S5UvvF2xL/4xS+iXbt20a5duzjjjDMi4qMm96STToqOHTvGF77whbj99tsr7f+AAw7IvRsbETFv3rx4991345hjjtnq5wgA2yP90vbbLz366KPxgx/8IP7rv/4rdtttt1i3bl38/e9/j7vvvjsGDx4cJ554YqXx9Euwjerrtn9Aw7Lx1rybWpYtW5YqKirST37yk9SzZ8/UokWLNHDgwPSnP/0pjRo1KvXs2TO3r423OP75z3+eLr/88tS9e/fUokWLdPDBB6fnn3++ytiLFy9OJ510UiouLk7NmjVLO++8czrqqKPS73//+1xNTW5x/HGvvvpq+u53v5t69eqVmjdvntq0aZMOPPDAdM0111S6nfL69evTpEmTUu/evVOzZs1S9+7d04QJEyrVpJTShg0b0nnnnZc6deqUdtxxxzR8+PC0aNGiTd7i+JO3iq5u/itWrEhHHnlkatOmTYqIT73dcWlpaSooKEi33XZbpfUbv9/VLR//uXzaz3j69OmV9nveeeelHj16VLpVMwA0Zfql7b9fWrRoUTrppJNSnz59UsuWLVNhYWH6zGc+kyZOnJjWrFlTZTz9EmybvJRq8VZOANSpU045JV599dX4+9//XqfjlJeXR69evWL8+PFx5pln1ulYAAC1Sb8EjYdrSgE0IhMnToy5c+fmTjuvK9OnT49mzZrF9773vTodBwCgtumXoPFwphQAAAAAmXOmFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkLmC+p5AQ1BRURHLly+PNm3aRF5eXn1PBwBoYFJK8f7770e3bt0iP79pvqenXwIANmdr+iWhVEQsX748unfvXt/TAAAauGXLlsUuu+xS39OoF/olAKAmtqRfEkpFRJs2bSLio29cUVFRPc8GAGhoVq9eHd27d8/1DE2RfgkA2Jyt6ZeEUhG5U9CLioo0WQDAJjXlj63plwCAmtiSfqlpXhQBAAAAgHollAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADJXUN8TAICmasqzK6usGz+wUz3MBACApqo+e1JnSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEANHIXX3xx5OXlVVr69euX27527doYPXp0dOzYMVq3bh0jR46M0tLSepwxAIBQCgBgu/CZz3wm3nrrrdzy+OOP57aNHTs27rvvvrjrrrti1qxZsXz58jj22GPrcbYAABEF9T0BAAC2XUFBQRQXF1dZX1ZWFjfeeGPMmDEjhg4dGhER06dPj/79+8ecOXNi//33z3qqAAAR4UwpAIDtwsKFC6Nbt27Rp0+fOOGEE2Lp0qURETFv3rxYv359DBs2LFfbr1+/6NGjR8yePbu+pgsA4EwpAIDGbsiQIXHzzTfHHnvsEW+99VZMmjQpDj744Jg/f36sWLEimjdvHu3atav0NV26dIkVK1Zscp/l5eVRXl6ee7x69eq6mj4A0EQJpQAAGrkjjjgi9+8BAwbEkCFDomfPnnHnnXdGy5Ytt2qfkydPjkmTJtXWFAEAqmhUH9+bMmVK5OXlxVlnnZVb524yAACVtWvXLnbfffdYtGhRFBcXx7p162LVqlWVakpLS6u9BtVGEyZMiLKystyybNmyOp41ANDUNJpQau7cufHLX/4yBgwYUGm9u8kAAFS2Zs2aWLx4cXTt2jUGDRoUzZo1i5kzZ+a2L1iwIJYuXRolJSWb3EeLFi2iqKio0gIAUJsaRSi1Zs2aOOGEE+JXv/pVtG/fPrd+491krrjiihg6dGgMGjQopk+fHk888UTMmTOnHmcMAJCds88+O2bNmhWvv/56PPHEE/HVr341dthhhzj++OOjbdu2ccopp8S4cePikUceiXnz5sW3v/3tKCkpcec9AKBeNYpQavTo0XHkkUdWumtMhLvJAABERLzxxhtx/PHHxx577BFf//rXo2PHjjFnzpzo3LlzRERMnTo1jjrqqBg5cmR8/vOfj+Li4rj77rvredYAQFPX4C90fscdd8QzzzwTc+fOrbLN3WQAAD7qlzansLAwpk2bFtOmTctoRgAAn65Bnym1bNmyOPPMM+P222+PwsLCWtvv5MmTo23btrmle/futbZvAAAAAD5dgw6l5s2bF2+//Xbsu+++UVBQEAUFBTFr1qy4+uqro6CgILp06eJuMgAAAACNUIP++N4XvvCFeOGFFyqt+/a3vx39+vWL8847L7p37567m8zIkSMjouZ3k2nRokWdzh0AAACATWvQoVSbNm1ir732qrSuVatW0bFjx9z6jXeT6dChQxQVFcWYMWPcTQYAAACggWvQoVRNTJ06NfLz82PkyJFRXl4ew4cPj2uvvba+pwUAAADAZjS6UOrRRx+t9NjdZAAAAAAanwZ9oXMAAAAAtk9CKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHMF9T0BAKB2THl2ZZV14wd2qoeZAADAp3OmFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZK6jvCQAAmzfl2ZVV1o0f2KkeZgIAALXHmVIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZK6gvicAAABQ36Y8u7LKuvEDO9XDTACaDmdKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQBsR6ZMmRJ5eXlx1lln5datXbs2Ro8eHR07dozWrVvHyJEjo7S0tP4mCQAQQikAgO3G3Llz45e//GUMGDCg0vqxY8fGfffdF3fddVfMmjUrli9fHscee2w9zRIA4CNCKQCA7cCaNWvihBNOiF/96lfRvn373PqysrK48cYb44orroihQ4fGoEGDYvr06fHEE0/EnDlz6nHGAEBTJ5QCANgOjB49Oo488sgYNmxYpfXz5s2L9evXV1rfr1+/6NGjR8yePXuT+ysvL4/Vq1dXWgAAalNBfU8AAIBtc8cdd8QzzzwTc+fOrbJtxYoV0bx582jXrl2l9V26dIkVK1Zscp+TJ0+OSZMm1fZUAQBynCkFANCILVu2LM4888y4/fbbo7CwsNb2O2HChCgrK8sty5Ytq7V9AwBECKUAABq1efPmxdtvvx377rtvFBQUREFBQcyaNSuuvvrqKCgoiC5dusS6deti1apVlb6utLQ0iouLN7nfFi1aRFFRUaUFAKA2+fgeAEAj9oUvfCFeeOGFSuu+/e1vR79+/eK8886L7t27R7NmzWLmzJkxcuTIiIhYsGBBLF26NEpKSupjygAAESGUAgBo1Nq0aRN77bVXpXWtWrWKjh075tafcsopMW7cuOjQoUMUFRXFmDFjoqSkJPbff//6mDIAQEQIpQCgxqY8u7LKuvEDO9XDTGDLTJ06NfLz82PkyJFRXl4ew4cPj2uvvba+pwUANHFCKQCA7cyjjz5a6XFhYWFMmzYtpk2bVj8TAgCohgudAwAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmSuo7wkAdWvKsyurrBs/sFM9zASgYfP3EgAgW0IpAAAAqGXVvdkR4Q0P+Dgf3wMAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADLXoEOp6667LgYMGBBFRUVRVFQUJSUl8cADD+S2r127NkaPHh0dO3aM1q1bx8iRI6O0tLQeZwwAAABATTToUGqXXXaJKVOmxLx58+Lpp5+OoUOHxjHHHBMvvvhiRESMHTs27rvvvrjrrrti1qxZsXz58jj22GPredYAAAAAfJqC+p7A5hx99NGVHv/P//xPXHfddTFnzpzYZZdd4sYbb4wZM2bE0KFDIyJi+vTp0b9//5gzZ07sv//+9TFlAAAAAGqgQZ8p9XEbNmyIO+64Iz744IMoKSmJefPmxfr162PYsGG5mn79+kWPHj1i9uzZ9ThTAAAAAD5Ngz5TKiLihRdeiJKSkli7dm20bt067rnnnthzzz3jueeei+bNm0e7du0q1Xfp0iVWrFix2X2Wl5dHeXl57vHq1avrYuoAAAAAbEKDD6X22GOPeO6556KsrCx+//vfx6hRo2LWrFnbtM/JkyfHpEmTammGNHVTnl1ZZd34gZ3qYSbbZnt5HgAAADQODf7je82bN4++ffvGoEGDYvLkybHPPvvEVVddFcXFxbFu3bpYtWpVpfrS0tIoLi7e7D4nTJgQZWVluWXZsmV1+AwAAAAA+KQGH0p9UkVFRZSXl8egQYOiWbNmMXPmzNy2BQsWxNKlS6OkpGSz+2jRokUUFRVVWgAAAADIToP++N6ECRPiiCOOiB49esT7778fM2bMiEcffTQeeuihaNu2bZxyyikxbty46NChQxQVFcWYMWOipKTEnfcAAAAAGrgGHUq9/fbbcdJJJ8Vbb70Vbdu2jQEDBsRDDz0Uhx9+eERETJ06NfLz82PkyJFRXl4ew4cPj2uvvbaeZw0AAADAp2nQodSNN9642e2FhYUxbdq0mDZtWkYzAgAAAKA2NLprSgEAAADQ+AmlAAAAAMicUAoAAACAzAmlAAAAAMicUAoAAACAzDXou+8BALVvyrMrq6wbP7BTPcwEAICmzJlSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5grqewJA4zLl2ZVV1o0f2KkeZgIAAEBj5kwpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgcy50DgAAQL1yMx1ompwpBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDm3H0PGil3KAEAAKAxc6YUAAAAAJkTSgEAAACQOR/fAwAAGhWXMQDYPjhTCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMFdT3BKChmvLsyirrxg/sVA8zARobfz8AAODTCaUAACAEyjVV3fcpwveqsfP7D9QHH98DAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyV1DfEwAAAKgLU55dWe368QM7NYnxARo6Z0oBAAAAkDlnSgHUkureDfVOKE2B330AALaGM6UAAAAAyJxQCgAAAIDMCaUAABq56667LgYMGBBFRUVRVFQUJSUl8cADD+S2r127NkaPHh0dO3aM1q1bx8iRI6O0tLQeZwwAIJQCAGj0dtlll5gyZUrMmzcvnn766Rg6dGgcc8wx8eKLL0ZExNixY+O+++6Lu+66K2bNmhXLly+PY489tp5nDQA0dS50DgDQyB199NGVHv/P//xPXHfddTFnzpzYZZdd4sYbb4wZM2bE0KFDIyJi+vTp0b9//5gzZ07sv//+9TFlAABnSgEAbE82bNgQd9xxR3zwwQdRUlIS8+bNi/Xr18ewYcNyNf369YsePXrE7NmzN7mf8vLyWL16daUFAKA2CaUAALYDL7zwQrRu3TpatGgR3/ve9+Kee+6JPffcM1asWBHNmzePdu3aVarv0qVLrFixYpP7mzx5crRt2za3dO/evY6fAQDQ1NRZKNWnT5945513qqxftWpV9OnTp66GBQBoNGqzX9pjjz3iueeeiyeffDJOP/30GDVqVLz00ktbPbcJEyZEWVlZblm2bNlW7wsAoDp1dk2p119/PTZs2FBlfXl5ebz55pt1NSwAQKNRm/1S8+bNo2/fvhERMWjQoJg7d25cddVV8Y1vfCPWrVsXq1atqnS2VGlpaRQXF29yfy1atIgWLVps0RwAALZErYdSf/zjH3P/fuihh6Jt27a5xxs2bIiZM2dGr169antYAIBGI4t+qaKiIsrLy2PQoEHRrFmzmDlzZowcOTIiIhYsWBBLly6NkpKSbRoDAGBb1HooNWLEiIiIyMvLi1GjRlXa1qxZs+jVq1dcfvnltT0sNHhTnl1ZZd34gZ3qYSaNV319D/3soHY4lv5PbfdLEyZMiCOOOCJ69OgR77//fsyYMSMeffTRXOB1yimnxLhx46JDhw5RVFQUY8aMiZKSEnfeAwDqVa2HUhUVFRER0bt375g7d2506tQ0m00AgE2p7X7p7bffjpNOOineeuutaNu2bQwYMCAeeuihOPzwwyMiYurUqZGfnx8jR46M8vLyGD58eFx77bXb/DwAALZFnV1TasmSJXW1awCA7UJt9Us33njjZrcXFhbGtGnTYtq0abUyHgBAbaizUCoiYubMmTFz5sx4++23c+8IbnTTTTfV5dAAAI2CfgkAaKrqLJSaNGlSXHLJJTF48ODo2rVr5OXl1dVQAACNkn4JAGjK6iyUuv766+Pmm2+Ob33rW3U1BABAo6ZfAmh83LgDak9+Xe143bp1ccABB9TV7gEAGj39EgDQlNVZKHXqqafGjBkz6mr3AACNnn4JAGjK6uzje2vXro0bbrgh/va3v8WAAQOiWbNmlbZfccUVdTU0AECjoF8CAJqyOgul/vnPf8ZnP/vZiIiYP39+pW0u4gkAoF8CAJq2OgulHnnkkbraNQDAdkG/BAA0ZXUWSkHWanoXDHfLYKPt5Xdhe3keAABA01JnodRhhx222dPOH3744boaGgCgUdAvAQBNWZ2FUhuvj7DR+vXr47nnnov58+fHqFGj6mpYAIBGQ78EADRldRZKTZ06tdr1F198caxZs6auhgUAaDT0S5X5OHLT5udf+6r7nkb4vjYVfv40BvlZD3jiiSfGTTfdlPWwAACNhn4JAGgKMg+lZs+eHYWFhVkPCwDQaOiXAICmoM4+vnfsscdWepxSirfeeiuefvrpuPDCC+tqWACARkO/BAA0ZXUWSrVt27bS4/z8/Nhjjz3ikksuiS9+8Yt1NSwAQKOhXwIAmrI6C6WmT59eV7sGANgu6JcAgKaszkKpjebNmxcvv/xyRER85jOfiYEDB9b1kAAAjYp+CQBoiuoslHr77bfjuOOOi0cffTTatWsXERGrVq2Kww47LO64447o3LlzXQ0NANAo6JcAgKaszkKpMWPGxPvvvx8vvvhi9O/fPyIiXnrppRg1alT84Ac/iN/+9rd1NTRAgzbl2ZVV1o0f2KkeZrJ9q+n32c9j03xv6p5+CQBoyuoslHrwwQfjb3/7W67BiojYc889Y9q0aS7cCQAQ+iUaFkF0/fL9B5qi/LracUVFRTRr1qzK+mbNmkVFRUVdDQsA0GjolwCApqzOQqmhQ4fGmWeeGcuXL8+te/PNN2Ps2LHxhS98oa6GBQBoNPRLAEBTVmeh1C9+8YtYvXp19OrVK3bdddfYddddo3fv3rF69eq45ppr6mpYAIBGQ78EADRldXZNqe7du8czzzwTf/vb3+KVV16JiIj+/fvHsGHD6mpIAIBGRb8EADRltX6m1MMPPxx77rlnrF69OvLy8uLwww+PMWPGxJgxY2K//faLz3zmM/H3v/+9tocFAGg09EsAAHUQSl155ZXx3e9+N4qKiqpsa9u2bfz3f/93XHHFFbU9LABAo6FfAgCog1Dq+eefjy996Uub3P7FL34x5s2bV9vDAgA0GvolAIA6CKVKS0urvbXxRgUFBfHvf/+7tocFAGg09EsAAHVwofOdd9455s+fH3379q12+z//+c/o2rVrbQ8LANBo6JcatynPrqx2/fiBnTKeCQA0brUeSn35y1+OCy+8ML70pS9FYWFhpW3/+c9/YuLEiXHUUUfV9rA0QtU1dJo53xfqjt8tmqqG+LuvXwIAqINQ6oILLoi77747dt999zjjjDNijz32iIiIV155JaZNmxYbNmyIH/3oR7U9LABAo6FfAgCog1CqS5cu8cQTT8Tpp58eEyZMiJRSRETk5eXF8OHDY9q0adGlS5faHhYAoNHQLwEA1EEoFRHRs2fPuP/+++O9996LRYsWRUopdtttt2jfvn1dDAcA0OjolwCApq5OQqmN2rdvH/vtt19dDgEA0KjplwCApiq/vicAAAAAQNMjlAIAAAAgcw06lJo8eXLst99+0aZNm9hpp51ixIgRsWDBgko1a9eujdGjR0fHjh2jdevWMXLkyCgtLa2nGQMAAABQE3V6TaltNWvWrBg9enTst99+8eGHH8b5558fX/ziF+Oll16KVq1aRUTE2LFj489//nPcdddd0bZt2zjjjDPi2GOPjX/84x/1PHsAAADqy5RnV1a7fvzAThnPpHZV97wa+3Oi6WrQodSDDz5Y6fHNN98cO+20U8ybNy8+//nPR1lZWdx4440xY8aMGDp0aERETJ8+Pfr37x9z5syJ/fffvz6mDQAAAMCnaNAf3/uksrKyiIjo0KFDRETMmzcv1q9fH8OGDcvV9OvXL3r06BGzZ8+ulzkCAAAA8Oka9JlSH1dRURFnnXVWHHjggbHXXntFRMSKFSuiefPm0a5du0q1Xbp0iRUrVmxyX+Xl5VFeXp57vHr16jqZMwAAAADVazSh1OjRo2P+/Pnx+OOPb/O+Jk+eHJMmTaqFWQHbanv9rD91x3UUAABg+9AoPr53xhlnxJ/+9Kd45JFHYpdddsmtLy4ujnXr1sWqVasq1ZeWlkZxcfEm9zdhwoQoKyvLLcuWLaurqQMAAABQjQYdSqWU4owzzoh77rknHn744ejdu3el7YMGDYpmzZrFzJkzc+sWLFgQS5cujZKSkk3ut0WLFlFUVFRpAQAAACA7Dfrje6NHj44ZM2bEH/7wh2jTpk3uOlFt27aNli1bRtu2beOUU06JcePGRYcOHaKoqCjGjBkTJSUl7rwHAAAA0IA16FDquuuui4iIQw89tNL66dOnx8knnxwREVOnTo38/PwYOXJklJeXx/Dhw+Paa6/NeKYAAAAAbIkGHUqllD61prCwMKZNmxbTpk3LYEYAAFC/3CQEap8bqUD9aNDXlAIAAABg+ySUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMteg774HQNPhrjcAANC0OFMKAAAAgMwJpQAAAADInFAKAAAAgMy5phQAADQArq1HTfldAbYXzpQCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyV1DfEwC2T25V3HjV9GdX23Wwkd8ZAICmwZlSAAAAAGTOmVIAAECdqO7Mx4jGf/ajMzrrl+8/bD+cKQUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGSuoL4nAFDbpjy7ssq68QM71cNMts328jwAgO2LHqX2+Z7SVDlTCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAABqxyZMnx3777Rdt2rSJnXbaKUaMGBELFiyoVLN27doYPXp0dOzYMVq3bh0jR46M0tLSepoxAMBHhFIAAI3YrFmzYvTo0TFnzpz461//GuvXr48vfvGL8cEHH+Rqxo4dG/fdd1/cddddMWvWrFi+fHkce+yx9ThrAAB33wMAaNQefPDBSo9vvvnm2GmnnWLevHnx+c9/PsrKyuLGG2+MGTNmxNChQyMiYvr06dG/f/+YM2dO7L///vUxbQAAZ0oBAGxPysrKIiKiQ4cOERExb968WL9+fQwbNixX069fv+jRo0fMnj27XuYIABDhTCkAgO1GRUVFnHXWWXHggQfGXnvtFRERK1asiObNm0e7du0q1Xbp0iVWrFixyX2Vl5dHeXl57vHq1avrZM4AQNMllAIA2E6MHj065s+fH48//vg272vy5MkxadKkWphV7Zvy7Mpq148f2CnjmXy66ubaEOcJAPXBx/cAALYDZ5xxRvzpT3+KRx55JHbZZZfc+uLi4li3bl2sWrWqUn1paWkUFxdvcn8TJkyIsrKy3LJs2bK6mjoA0EQ5U+oTvJsFADQmKaUYM2ZM3HPPPfHoo49G7969K20fNGhQNGvWLGbOnBkjR46MiIgFCxbE0qVLo6SkZJP7bdGiRbRo0aJO5w4ANG1CKQCARmz06NExY8aM+MMf/hBt2rTJXSeqbdu20bJly2jbtm2ccsopMW7cuOjQoUMUFRXFmDFjoqSkxJ33AIB6JZQCAGjErrvuuoiIOPTQQyutnz59epx88skRETF16tTIz8+PkSNHRnl5eQwfPjyuvfbajGcKAFCZUAoAoBFLKX1qTWFhYUybNi2mTZuWwYwAAGrGhc4BAAAAyJxQCgAAAIDMCaUAAAAAyJxrSgEAsN2a8uzKKuvGD+xUDzOBpqe64y/CMQj8H2dKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmSuo7wkAAAB1Y8qzK6usGz+wUz3MBGhqqvv7E1H93yB/q5ouZ0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZK6jvCcCncXtQAAAA2P44UwoAAACAzDlTCgAAAGA7Ut0njiIa3qeOnCkFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkrqC+JwAAwPZryrMrq6wbP7BTPcwEAGhonCkFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkrqC+JwAAAAA0DlOeXVll3fiBnephJmwPnCkFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkrqC+JwAAAADUnynPrqyybvzATvUwk0/XmObKp3OmFAAAAACZE0oBAAAAkDmhFAAAAACZc02prbQ9fY51e3ouADQdXr8AABo3Z0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZa/Ch1GOPPRZHH310dOvWLfLy8uLee++ttD2lFBdddFF07do1WrZsGcOGDYuFCxfWz2QBAAAAqJEGH0p98MEHsc8++8S0adOq3f6zn/0srr766rj++uvjySefjFatWsXw4cNj7dq1Gc8UAAAAgJoqqO8JfJojjjgijjjiiGq3pZTiyiuvjAsuuCCOOeaYiIi49dZbo0uXLnHvvffGcccdl+VUAQAAAKihBn+m1OYsWbIkVqxYEcOGDcuta9u2bQwZMiRmz569ya8rLy+P1atXV1oAAAAAyE6DP1Nqc1asWBEREV26dKm0vkuXLrlt1Zk8eXJMmjSpTue2PZry7Moq68YP7LTVdQAAAEDT1ajPlNpaEyZMiLKystyybNmy+p4SAAAAQJPSqEOp4uLiiIgoLS2ttL60tDS3rTotWrSIoqKiSgsAAAAA2WnUoVTv3r2juLg4Zs6cmVu3evXqePLJJ6OkpKQeZwYAAADA5jT4a0qtWbMmFi1alHu8ZMmSeO6556JDhw7Ro0ePOOuss+LSSy+N3XbbLXr37h0XXnhhdOvWLUaMGFF/kwYAAABgsxp8KPX000/HYYcdlns8bty4iIgYNWpU3HzzzXHuuefGBx98EKeddlqsWrUqDjrooHjwwQejsLCwvqYMAAAAwKdo8KHUoYceGimlTW7Py8uLSy65JC655JIMZwUAAADAtmjU15QCAAAAoHESSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJlr8HffAwAAANgSU55dWe368QM7ZTwTNseZUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAjdxjjz0WRx99dHTr1i3y8vLi3nvvrbQ9pRQXXXRRdO3aNVq2bBnDhg2LhQsX1s9kAQD+P6EUAEAj98EHH8Q+++wT06ZNq3b7z372s7j66qvj+uuvjyeffDJatWoVw4cPj7Vr12Y8UwCA/1NQ3xMAAGDbHHHEEXHEEUdUuy2lFFdeeWVccMEFccwxx0RExK233hpdunSJe++9N4477rgspwoAkONMKQCA7diSJUtixYoVMWzYsNy6tm3bxpAhQ2L27Nmb/Lry8vJYvXp1pQUAoDY5UwoAYDu2YsWKiIjo0qVLpfVdunTJbavO5MmTY9KkSXU6NwBobKY8u7LKuvEDO9WoblO1TZkzpQAAqGLChAlRVlaWW5YtW1bfUwIAtjNCKQCA7VhxcXFERJSWllZaX1pamttWnRYtWkRRUVGlBQCgNgmlAAC2Y717947i4uKYOXNmbt3q1avjySefjJKSknqcGQDQ1LmmFABAI7dmzZpYtGhR7vGSJUviueeeiw4dOkSPHj3irLPOiksvvTR222236N27d1x44YXRrVu3GDFiRP1NGgBo8oRSAACN3NNPPx2HHXZY7vG4ceMiImLUqFFx8803x7nnnhsffPBBnHbaabFq1ao46KCD4sEHH4zCwsL6mjIAgFAKAKCxO/TQQyOltMnteXl5cckll8Qll1yS4awAADbPNaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMFdT3BAAAAADqy5RnV1ZZN35gpyYzfn1yphQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5FzpvZGp6AbSmfKE0AAAAoOFzphQAAAAAmRNKAQAAAJA5oRQAAAAAmXNNKQAAAIBGYHu7frQzpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwV1PcE+Mj2dltHAAAAgM1xphQAAAAAmXOmFAAAAACfqrY/5eVMKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHMF9T2B7d2UZ1dWWTd+YKd6mAkAAABAw+FMKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHMF9T0BAAAalynPrqx2/fiBnTKeCQDQmDlTCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMbTeh1LRp06JXr15RWFgYQ4YMiaeeeqq+pwQA0KDolwCAhmS7CKV+97vfxbhx42LixInxzDPPxD777BPDhw+Pt99+u76nBgDQIOiXAICGZrsIpa644or47ne/G9/+9rdjzz33jOuvvz523HHHuOmmm+p7agAADYJ+CQBoaArqewLbat26dTFv3ryYMGFCbl1+fn4MGzYsZs+eXe3XlJeXR3l5ee5xWVlZRESsXr061q5ZX6V+9ermVdatXfP+dlHXGOaorunVNYY5qmt6dY1hjurqrm716tUREZFSqlLTGGTRL320rf6OMeM3nvG3pLa+52p84xvf+Mavee1W9UupkXvzzTdTRKQnnnii0vpzzjknfe5zn6v2ayZOnJgiwmKxWCwWi2WLlmXLlmXR3tQ6/ZLFYrFYLJasli3plxr9mVJbY8KECTFu3Ljc44qKinj33XejY8eOkZeXFxEfJXzdu3ePZcuWRVFR0Sb3pU5dfY+tTt2W1DWGOarbvusawxyrq0spxfvvvx/dunXb7HPbntRmv7QltXWxT+M3nvEb01yNb3zjG7+pjr+p2q3plxp9KNWpU6fYYYcdorS0tNL60tLSKC4urvZrWrRoES1atKi0rl27dtXWFhUVfeoPQ526hjC2OnVbUtcY5qhu+65rDHP8ZF3btm0/9WsaqobSL21JbV3s0/iNZ/wtqTW+8Y1vfOPXz/jV1W5pv9ToL3TevHnzGDRoUMycOTO3rqKiImbOnBklJSX1ODMAgIZBvwQANESN/kypiIhx48bFqFGjYvDgwfG5z30urrzyyvjggw/i29/+dn1PDQCgQdAvAQANzXYRSn3jG9+If//733HRRRfFihUr4rOf/Ww8+OCD0aVLl63eZ4sWLWLixIlVTltXp66hja1O3ZbUNYY5qtu+6xrDHLfkuTQm9dkvbUltXezT+I1n/MY0V+Mb3/jGb6rjb2nt5uSl1EjvbQwAAABAo9XorykFAAAAQOMjlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlGqAlixZEh9++GGt7a8297WRmzZSnxwjsHmOEahebR8bEXVzfEQ4RqhfjhX4dI3pOIlouMeKUKoGFi9eHEOHDo2IiLfeeit+85vfxP333x/r1q2rVPfBBx/EJZdcEhERf/3rX2PixInx8MMPR0TEY489FkcccUQMHTo0pk+fvtnx9thjj1i4cOEmty9fvjwmTpwYJ5xwQpx99tnxyiuvRETEgw8+GC+88EJERFRUVMSPf/zj2HnnnaNFixaxyy67xJQpUyKlFEcffXTcdttt8Z///Gez8ygvL4+zzz47Pv/5z8dPf/rTiIi49NJLo3Xr1tGmTZv45je/GatXr46IiOeffz5OOumk6NOnT7Rs2TJatWoVe++9d1x44YW5mk2NUV5evtl5NASPPvrop36/aqq8vDwWL15cq8+7tLQ0VqxYUe22DRs2RGlpafz73/+udvtLL70U3//+92PgwIHRtWvX6Nq1awwcODC+//3vx0svvVSj8R0jdXeMNBbbcwjiGHGM8H9q43iI2LpjImLbjouIrT82Imp+fEREnRwjEY2/36rNfmqjuuirIjbfW0Vk019FOFY2yupYaWzqIhSJ2LI+bFuCjro4TiKy6bUiPv04idj2niui5sdJRCM9VhKf6rnnnkv5+fnpqaeeSu3atUtFRUWpZcuWqW/fvmn+/Pm5uhUrVqT8/Px02223pYKCgrTvvvum1q1bp+nTp6d27dqlU089NX3nO99JzZs3T3fddVf66le/Wu2Sn5+fhg0blnvcsmXL9Pbbb6eUUnrxxRdT27ZtU9++fdPXvva11K9fv7Tjjjum559/Pu2xxx7pscceSyml9JOf/CR17NgxXXHFFemBBx5IV155ZerSpUuaMmVKysvLSwUFBalt27bpe9/7Xnr66aerfd5jx45N3bp1Sz/84Q9T//790/e///3Uo0eP9Jvf/CbNmDEj9e3bN40ZMyY9+OCDqWXLlmnkyJHpxBNPTDvuuGM644wz0nnnnZf69u2bdt111/TWW2/l9vuXv/wlHXHEEaldu3YpPz8/5efnp3bt2qUjjjgi/fWvf63Rz+Sll15KvXv3zv18fvzjH6dp06alf//735XqysrK0re//e2UUkq/+tWv0kknnZRuuummlFJKd9xxR+rXr1/q3bt3uuiiizY7XrNmzdJLL72Ue1xaWlpp+7PPPptOOumkdMABB6SRI0emRx55JKWU0vTp09MTTzyRUkrpP//5T/rOd76Tdthhh5Sfn58KCgrSf//3f6e1a9emvfbaK11yySVp6dKlm53HO++8k0aOHJm6d++evve976UPP/wwnXLKKSkvLy/l5+enkpKStHz58pRSSn/605/SwQcfnFq0aJH7Prdt2zadeOKJ6V//+ldKKaX7778/NW/ePO2///5p4sSJ6dprr03XXnttmjhxYjrggANSixYt0oMPPrjZOaXkGKnNY+TFF19Mp59+evrsZz+biouLU3FxcfrsZz+bTj/99PTiiy9+6s9io0WLFqXDDjsspZTS8uXL02233Zb+/Oc/p/Ly8kp1a9asSZMmTUopfXRsXnTRRWnmzJkppZRmzZqVvvSlL6XDDjssd9xsyiePkU96880300UXXZS++c1vph/+8Ifp5ZdfTiml9MADD6R//vOfKaWUNmzYkC655JLUrVu3lJ+fn3beeec0efLkVFFRkY466qh06623pv/93//d7DzWrl2bfvjDH6aDDz44TZkyJaWU0o9//OPUqlWr1KpVq3T88censrKylNJHv7ff+ta3Uu/evVNhYWHacccd01577ZUuuOCCXI1jpOEdIxufw7YeJ1tzjDR1tXU8pLTlx0RKqcbHRUqp1o+NlFKNj4+UUq0fIymleum3Uqrcc6VUu/1USjXvqVKq/b4qpS3rrVLKtr9KybGyUV0eK7X9mpLSlr2u1GX/ldKme7CUat6HbUl/lVK2PdbG8Tb+/td2r5VSzY+TlFKt91wp1fw4SanhHyvVEUqllK666qrNLueee27uF+7b3/522rBhQ1q9enU6/fTTU8eOHdMzzzyTUvq/X/DPfvaz6aqrrkoppfS3v/0ttWzZMl1xxRW58S677LJ04IEHpry8vHTIIYekk08+udKSn5+fRowYkXucl5eXe8E+5phj0tFHH53Wr1+fUvroj8dxxx2XjjrqqNSiRYvci+Fee+2V7rzzzkrP809/+lPq27dvysvLSy+++GKaOnVq2nvvvVN+fn7aZ5990jXXXJPefffdXH337t1zTcvixYtTfn5+uvfee3Pb//KXv6SePXumz372s+m6666rtL5fv34ppZTWrVuXvvCFL6STTz45pZTSzTffnAoKCtJxxx2Xpk+fnu6///50//33p+nTp6fjjz8+NWvWLN16662f+jPb+IfnoYceSs2bN0+f+cxnUo8ePVLHjh3Tww8/nKvb+DOZOnVqatWqVTr22GNT165d06WXXpo6duyYLr300jRp0qRUVFSUfvnLX6aBAwdWu+Tl5aX+/fvnHufn5+d+Jv/4xz9Ss2bN0iGHHJLOOeecdPjhh6eCgoI0a9as1Lt37zRnzpyUUkpnn3126tWrV7r77rvTyy+/nO699960++67p3POOSfl5eWljh07ph122CENHz48/f73v8/9jD/uO9/5Ttprr73SNddckw455JB0zDHHpAEDBqTHH388PfHEE2m//fZLJ510Urr11ltTmzZt0g9/+MP0ox/9KBUXF6fx48en6667Lh1yyCGpU6dO6dVXX00DBgxIF1544Sa/zxMnTkx77723YySjY6Q+m1ghSPUvwo6RhnWMpFR/QSGpxsdDSrXfW6WUanxcpJRq/dhIKdX4+Ng4fm0eIxuff9b9VkqV/7NX2/1USqnGPVVKqdb7qpRq3lullGq9v0rJsVLfx0ptv6akVPNQJKWaB4h1EYqkVPMAsS6Cjro4TlJKtd5rpVTz42RjbW32XBv3WZPjJKWGf6xURyiVPvohd+vWLfXq1avaZWNa3L59+7RgwYJKXzt58uTUvn379NRTT+V+wVu1apVee+21XE2zZs1yB35KKb388supY8eO6be//W3aZZddqiTgBQUFlZLGj/9id+/ePfeHY6Nnnnkmde3aNXXt2jXNnj07pZRSly5dcgfeRq+++mpq2bJlpf2llNKTTz6ZTjvttNS2bdvUsmXLdPzxx6eZM2emli1b5g6Ujc/j439QlyxZknbcccdUWFiYlixZkltfUVGRmjVrlntX6bHHHkudO3dOKaW02267pV/84heb+lGkadOmpb59+6axY8dudjnxxBNz716df/75uXF/+tOfptatW6cHHnggpfR/f3T69euXbr/99tz3q6CgIP3617/OjfvrX/86DRo0KBUUFKQvfelL6eKLL84tEydOTPn5+en73/9+bt3Hv4eHH354+s53vlPpeZx55plp6NChlf7Y7L777rl5bTRr1qzUo0ePlJeXl9588810zz33pKOPPjoVFBSkzp07px/+8IeV3v3o2rVr+sc//pF7bnl5eekvf/lLbvvjjz+edt5559SvX790xx135NbPnTs37bLLLqmioiKllNI3vvGN9NWvfjUVFhamV155ZZM/j1deeSUVFhY6RjI6RuqziRWCVP8i7BhpWMdISjUPRuriP3pNXU2Ph5Rqv7dKKdX4uEgp1fqxkVKq8fHxyf2mtO3HSEqpTvqtlFKNe66UUq33U5/8Xm2up0op1XpflVLNe6uNz782+6uNz9+xUn/HSm2/pqRU81AkpZoHiHURiqRU8wCxLoKOujhOUkq13mulVPPj5JPf/9rouT65z5Q2fZyklOr9WNkaQqmUUq9evdLvfve7TW5/9tlncy8GH/9F3ejnP/95ateuXbr77rtzp0Z//ABr3bp1Wrx4ce7xa6+9lvtFWLJkSTrwwAPTsccem/uP1Sd/ufPz83Npd8+ePavM4bXXXkuFhYXp+9//fjrqqKPShx9+mE477bR06qmn5l4kU0ppzJgxqaSkpMov9UYffPBBmj59ejrooINSfn5+2mOPPXIvvE899VRq3rx5pQPxjjvuSLvttlvaddddK6WiCxcuTDvssEPuVNXXXnstd0C1aNGiRn988vPz07777psOPfTQapfBgwen/Pz8VFRUlBYtWlRpH7fffntq1apVuu+++3J/dD55cLZo0aLSwblw4cLUrl279Pjjj6ddd901XXTRRWnDhg257Zt7Yf74H5SN5s+fnzp16pR69uyZO3Nr5513TnPnzq1U99JLL6VWrVpV+ZksX748/eQnP0m77bZbLny78cYb04477phef/31XF2zZs3SCy+8kHv82muvpVatWqWWLVtW+gOz8Tm8+eabKaWP/pC1a9cu9evXL11++eWb/HlcfvnlaY899nCM/H91fYzUZxMrBKn+Rdgx0rCOkZRqHozUxX/0mrqaHg8p1X5vlVLaouMipdo9NlJKNT4+Uqr6H4iNtvYYSSnVSb+18XtQk54rpar/2dnWfuqT36vN9VQppVrvq1JKNe6tNj7/2uyvUnKs1PexUtuvKSnVPBRJqeYBYl2EIinVPECsi6CjLo6TlFKd9Fobn+OnHScp1X7PlVLNj5OUUr0fK1tDKJVSGjlyZDr33HM3uf25555LeXl56eCDD66U+n7cT3/609xnywcPHlwpOS4rK6v0C/bXv/417b777rnHGzZsSBdddFHq3r17evDBB1OzZs2q/OeuXbt2qX379qlZs2bptttuqzT2X/7yl9SrV6+0atWqNHjw4NS3b9/0rW99KxUWFqaePXumww8/PPXu3Tu1bds2zZkzZ5O/1B+3YMGCNHXq1FRYWJiGDRuW2rdvn66++upUXFyczj333DR+/PjUtm3bdMkll6RJkyalXXbZJV133XXppptuSnvttVfu9NGUUrr77rvTnnvumVJKad99903nnHPOJsc999xz07777pt23333Ks/z4zb+4encuXO1H+P57W9/m3bcccd03XXXpfz8/NSxY8dK74ztsssulRqQhQsXptatW6eUUlq1alU67rjj0pAhQ3KBV3X/4V60aFEqKytLvXv3rvIHfNGiRWnHHXdM559/fiopKUnvvfdeGj9+fDr66KPT+++/n1L66I/I17/+9fTFL36x0qnrn/TII4+kE088MbVq1Srts88+uXc+77///tSmTZtKf8yvu+66tNdee6X+/fvnPgOdUkrz5s1LzZs3Tx9++GHu+bZq1SrdeeedqaCgIB199NHpqquuSnfccUe644470lVXXZW+8pWvpObNm6ff//73jpFq1MUxUp9NrBCk+hdhx0jDOkZSqnkwUhf/0Wvqano8pFT7vVVKaYuPi5Rq79hIKdX4+Ni439o8RlJKddJvpZRq3HOllGq9n9r4vapJT5VSqvW+KqVU494qpVTr/VVKjpX6PlZq+zUlpZqHIiltWYBY26FISjUPEOsi6KiL4ySlVGe9VkqffpykVPs918Z91uQ4SSnV+7GyNYRS6aPP2n7ynZaPW7duXXr99dfTr371q3TiiSdusm7KlCm5z7Zv/Ox7dSZPnpwuuOCCKuv//ve/p969e6f8/PxKv9w333xzpeWT7yBdcsklaezYsbm5XnfddenLX/5y6tevX9p9993TIYccks4///y0bNmylFJKhx56aHrvvfc2Ob+Pu/3229MZZ5yRZsyYkVL66IX84IMPToMGDUoXX3xx2rBhQ1q/fn0699xzU7du3VLHjh3TN7/5zUoXHH/yySdz349HHnkktWrVKu29995p7NixacqUKbnPKQ8YMCC1bt06zZo1K33zm99MZ5111ibntfEPz+GHH55+/vOfV1szY8aM1KxZs5Sfn58OPPDASqdbf9J9992Xazg2uummm1JxcXH65S9/We0Lc37+Rxe3zMvLSzfccEOlr/3DH/6Q+vbtm8rLy9NXvvKV1L59+3T44YfnLvS32267pVatWqUePXqkBQsW1OgPTVlZWfrNb36Tdthhh9S3b9/UokWLdNddd6Vu3bqlr3/96+m4445LzZs3T7/4xS/SL37xi9S2bdt07rnnposuuih169YtnXLKKbl9/eY3v8ldy+Ef//hH+sY3vpF69OiRmjdvnpo3b5569OiRvvGNb+QuJuoY2bTaPEbqs4kVgmz6Rdgx0nCOkZRqHozUxX/0qNnxkFLtHxMppa0+LlKqnWNj47w/7fhIqfaPkZRSnfRbKaUa91wppVrvp1KqeU+VUqr1viqlVOPeKqVU6/1VSo6V+j5Wavs1JaWahyIpbXmAWJuhSEo1DxDrKuio7eMkpVTnvVZKmz5OUqr9niulLTtOUqrfY2VrCKUamPfffz8999xzVe7SsD1ZsmRJOvfcc9PnP//5tPvuu6fdd989ff7zn0/nnXde7lTPt956q9I7b5ty9913b7aRuv3229Ohhx6aHn/88fTss89usm7atGnpmmuuqbL+1VdfTfvtt1/uejYbPfroo5WWT56ie+WVV6af/exnuccPPPBA+v73v5++9KUvpS9+8Ytp1KhR6YYbbkhr1qxJKaV08sknp9WrV3/q803po2sbXHbZZbnrH7z44ovpW9/6Vho5cmS6+eabc3XXXnttOuCAA9KgQYPS+eefn/7zn/9Uel4fv/NGY7K9HyP11cQKQTb9ItzYbO/HSEr1ExTS+DWFY+PjatJvpVTzniulVOv9VEpb3lOlVLt91cbnVZPeKqXtt7/6uKZ2rNTma0pKNQ9FUtr6ALG2QpGNc69JMFIXQUdj1tSOk5Rq/v+ULZWXUkoBbFJFRUW8//77UVRUFHl5efU9HWhw1qxZE4sXL47+/ftH8+bN63s6ADRA+imoXfovthf59T2BxuD888+P73znO+rquK6hys/Pj7Zt2zbJBqqh/840tbqGqnXr1rHPPvs0yYaoof/ONLU66teW/Jzq4mdv/IZ9nDTlfuqTGtPvSlMfvyHb3vuv7fV3qrGMv6W120IoVQNvvPFGvP766+rquC4iYtSoUTF06FB1DaTuzTffrNHPTl02dfX5gqeueg39d6ap1UUIxOrTlrze10UPYfza77fqqrapj78lf9Pq4u+k8evvNaWuarfH8bfX36nGMv6W1m5Lv1SwVV/VxNx6663qMqiLiOjWrVvk5396Vqoum7pbbrnlU2vUZVf3xhtvxBtvvFGrteq2ri6lFHl5eZ/6s1OXTd3H1dfvDFv2el8XPYTxa7/fqqvapj7+lvxNq+1ewvhbVlsXrxX12c81hvG35LW/Lmqb+vhbWrvRtvRLrin1/61cuTJuuummmD17dqxYsSIiIoqLi+OAAw6Ik08+OTp37qyuFuoAtgfNmzeP559/Pvr376+uAdSRnS15va+LHsL4+i1g+7Ylr/11UdvUx9/S2toglIqIuXPnxvDhw2PHHXeMYcOGRZcuXSIiorS0NGbOnBn/+7//Gw899FCklNRtQ93gwYM/9WexbNmymDhxYtx0003qMqr7z3/+E/PmzYsOHTrEnnvuWalu7dq1ceedd8ZJJ52kLqO6l19+OebMmRMlJSXRr1+/eOWVV+Kqq66K8vLyOPHEEyt9LKCmteq2vm7cuHFRnauuuipOPPHE6NixY7Xb1dVN3RVXXFGl5oMPPog777wzFi1aFF27do3jjz++2v3Wdl1TVNN+afDgwbXeW23JPo1fe/1WXdU2hfFr+rofEbXeS2zJPo1f+/1FXdVub+PXtMe64oor6qR2U5rK+Fta+0m12i9t9X37tiNDhgxJp512WqqoqKiyraKiIp122mlp//33V7eNdTXx3HPPpfz8fHUZ1S1YsCD17Nkz5eXlpfz8/PT5z38+LV++PFe3YsUKdRnWPfDAA6l58+apQ4cOqbCwMD3wwAOpc+fOadiwYWno0KFphx12SDNnzkwppRrXqtu2ury8vPTZz342HXrooZWWvLy8tN9++6VDDz00HXbYYeoyqksppf79+6d33nknpZTS0qVLU69evVLbtm3Tfvvtlzp06JB22mmn9Nprr9V6HTXvl7akti72afxPV9N+oa5qt/fxa/q6n1Kq9V5iS/Zp/Nrvp7Zkn019/C157a+L2qY+/pbW1mW/JJRKKRUWFqaXX355k9tffvnlVFhYqG4b61JK6Q9/+MNml6lTp6b8/Hx1GdWNGDEiHXnkkenf//53WrhwYTryyCNT796907/+9a+U0v+9aKvLpq6kpCT96Ec/Siml9Nvf/ja1b98+nX/++bljafz48enwww9PKaUa16rbtrrJkyen3r175xqtjQoKCtKLL76Ye6wum7qUPmqgSktLU0opnXDCCemAAw5Iq1atSiml9P7776dhw4al448/vtbrqHm/tCW1dbFP49e836qr2qY+fk1f91NKtd5LbMk+jV/7/dSW7LOpj78lr/11UdvUx9/S2rrsl4RSKaVevXqlW265ZZPbb7nlltSzZ09121iXUsq9Y5GXl7fJZeN2dXVft9NOO6V//vOfuZ9VRUVF+t73vpd69OiRFi9enHvRVpdNXVFRUVq4cGFKKaUNGzakgoKC9Mwzz+S+7oUXXkhdunRJKaUa16rbtrqUUnrqqafS7rvvnn74wx+mdevWpZSqf7FWl03dx5uiPn36pL/85S+Vtv/jH/9I3bt3r/U6at4vbUltXezT+DXvt+qqtqmPX9PX/ZRSrfcSW7JP49d+P7Ul+zR+zV/766q2qY+/JbV12S8JpVJKv/jFL1KLFi3SD37wg/SHP/whzZkzJ82ZMyf94Q9/SD/4wQ9Sy5Yt07Rp09RtY11KKXXr1i3de++9m/xZPPvssyk/P19dRnVt2rRJL730UpXto0ePTrvsskt67LHH1GVYV1RUlBYtWpTb3rp167R48eLc49dffz33LnhNa9VtW91G77//fjrppJPSgAED0gsvvJCaNWtW7Qu7urqvy8vLS2+//XZK6aPXlBdeeKHS9o0/u9quo+b90pbU1sU+jV/zfquuapv6+DV93U8p1XovsSX7NH7t91Nbsk/jf6SmPUJd1Tb18WtaW5f9klDq/7vjjjvSkCFDUkFBQe6djoKCgjRkyJD0u9/9Tl0t1R199NHpwgsv3OTP4bnnnkt5eXnqMqrbb7/90q233lptzejRo1O7du1Sfn6+uozqBgwYkB544IHcthdeeCGtX78+9/ixxx5LvXv3TimlGteq27a6T/rtb3+bunTpkvLz8zf5wq6ubuvy8vLS3nvvnQYOHJhat26dfv/731faPmvWrLTzzjvXeh0fqenr/ZbU1sU+m/r4Ne0D6qq2qY9f09f9lFKt9xJbsk/j134/tSX7NH5lNe0R6qq2qY//abV12S+5+94nrF+/PlauXBkREZ06dYpmzZqpq8W6v//97/HBBx/El770pWq//oMPPoinn3468vPz1WVQ98QTT8Tf//73uP/++6ut+/73vx/XX399/M///I+6DOquvfba6N69exx55JHV1p1//vnx9ttvx69//eu4/vrra1Q7ePBgddtQ9+tf/7rKtjfeeCPmzZsXw4YNi1atWlX79erqrm7SpEmV6vbff/8YPnx47vE555wTb7zxRvTr169W6377299ucq5NUU37gi2prYt9NtXxa9pvHXLIIXVSW9M+ZHsdv6b9VUVFRUyePLlWe4kt2afxK2q9n9qSHq0u+rnGNv4n1bRHqKvapj7+5mpr2n9tTb8klAIAAAAgc/n1PQEAAAAAmh6hFAAAAACZE0oBAAAAkDmhFAAAAACZE0oB261DDz00zjrrrBrVPvroo5GXlxerVq3apjF79eoVV1555TbtAwAgK/oloD4JpQAAAADInFAKAAAAgMwJpYAm4bbbbovBgwdHmzZtori4OL75zW/G22+/XaXuH//4RwwYMCAKCwtj//33j/nz51fa/vjjj8fBBx8cLVu2jO7du8cPfvCD+OCDD7J6GgAAdUa/BGRNKAU0CevXr48f//jH8fzzz8e9994br7/+epx88slV6s4555y4/PLLY+7cudG5c+c4+uijY/369RERsXjx4vjSl74UI0eOjH/+85/xu9/9Lh5//PE444wzMn42AAC1T78EZK2gvicAkIXvfOc7uX/36dMnrr766thvv/1izZo10bp169y2iRMnxuGHHx4REbfcckvssssucc8998TXv/71mDx5cpxwwgm5i4HutttucfXVV8chhxwS1113XRQWFmb6nAAAapN+CciaM6WAJmHevHlx9NFHR48ePaJNmzZxyCGHRETE0qVLK9WVlJTk/t2hQ4fYY4894uWXX46IiOeffz5uvvnmaN26dW4ZPnx4VFRUxJIlS7J7MgAAdUC/BGTNmVLAdu+DDz6I4cOHx/Dhw+P222+Pzp07x9KlS2P48OGxbt26Gu9nzZo18d///d/xgx/8oMq2Hj161OaUAQAypV8C6oNQCtjuvfLKK/HOO+/ElClTonv37hER8fTTT1dbO2fOnFzD9N5778Wrr74a/fv3j4iIfffdN1566aXo27dvNhMHAMiIfgmoDz6+B2z3evToEc2bN49rrrkmXnvttfjjH/8YP/7xj6utveSSS2LmzJkxf/78OPnkk6NTp04xYsSIiIg477zz4oknnogzzjgjnnvuuVi4cGH84Q9/cOFOAKDR0y8B9UEoBWz3OnfuHDfffHPcddddseeee8aUKVPisssuq7Z2ypQpceaZZ8agQYNixYoVcd9990Xz5s0jImLAgAExa9asePXVV+Pggw+OgQMHxkUXXRTdunXL8ukAANQ6/RJQH/JSSqm+JwEAAABA0+JMKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCat3rr78eeXl5cdlll9XaPh999NHIy8uLRx99tNb22RgtW7YsCgsL4x//+EedjjN+/PgYMmRInY4BAE2Zfqnu6Jeg8RBKARERcfPNN0deXl48/fTT9T2VWrF48eL47//+7+jTp08UFhZGUVFRHHjggXHVVVfFf/7zn/qeXkREXHvttXHzzTdv0ddccsklMWTIkDjwwANz6xYsWBBjx46NAw44IAoLCyMvLy9ef/31T93X4sWLc/Wf/LmfddZZ8fzzz8cf//jHLZofAGzP9EvZq49+qVevXpGXl1dl+d73vlepTr8E266gvicAUNv+/Oc/x9e+9rVo0aJFnHTSSbHXXnvFunXr4vHHH49zzjknXnzxxbjhhhvqe5px7bXXRqdOneLkk0+uUf2///3vuOWWW+KWW26ptH727Nlx9dVXx5577hn9+/eP5557rkb7Gzt2bBQUFER5eXmVbcXFxXHMMcfEZZddFl/5yldqtD8AoPHQLz232f189rOfjR/+8IeV1u2+++6VHuuXYNsJpYDtypIlS+K4446Lnj17xsMPPxxdu3bNbRs9enQsWrQo/vznP9fjDLfeb37zmygoKIijjz660vqvfOUrsWrVqmjTpk1cdtllNQqlHnrooXjooYfi3HPPjUsvvbTamq9//evxta99LV577bXo06dPbTwFAKAB0C99er+08847x4knnvip4+mXYNv4+B5QY+vWrYuLLrooBg0aFG3bto1WrVrFwQcfHI888sgmv2bq1KnRs2fPaNmyZRxyyCExf/78KjWvvPJK/Nd//Vd06NAhCgsLY/DgwVt9GvTPfvazWLNmTdx4442VGqyN+vbtG2eeeWbu8Ycffhg//vGPY9ddd40WLVpEr1694vzzz69y9lBeXl5cfPHFVfbXq1evSu/cbTyt/x//+EeMGzcuOnfuHK1atYqvfvWr8e9//7vS17344osxa9as3Cnhhx566Gaf27333htDhgyJ1q1bV1rfoUOHaNOmzWa/9uPWr18fZ555Zpx55pmx6667brJu2LBhERHxhz/8ocb7BoCmTr90cZX9NcZ+KeKjn+UHH3yw2Rr9EmwboRRQY6tXr45f//rXceihh8ZPf/rTuPjii+Pf//53DB8+vNp3m2699da4+uqrY/To0TFhwoSYP39+DB06NEpLS3M1L774Yuy///7x8ssvx/jx4+Pyyy+PVq1axYgRI+Kee+7Z4jned9990adPnzjggANqVH/qqafGRRddFPvuu29MnTo1DjnkkJg8eXIcd9xxWzz2x40ZMyaef/75mDhxYpx++ulx3333xRlnnJHbfuWVV8Yuu+wS/fr1i9tuuy1uu+22+NGPfrTJ/a1fvz7mzp0b++677zbNa+PY7733XlxwwQWbrWvbtm3suuuudX6RUADYnuiXaq4h90sPP/xw7LjjjtG6devo1atXXHXVVdXW6Zdg2/j4HlBj7du3j9dffz2aN2+eW/fd7343+vXrF9dcc03ceOONleoXLVoUCxcujJ133jkiIr70pS/FkCFD4qc//WlcccUVERFx5plnRo8ePWLu3LnRokWLiIj4/ve/HwcddFCcd9558dWvfrXG81u9enW8+eabccwxx9So/vnnn49bbrklTj311PjVr36VG3unnXaKyy67LB555JE47LDDajz+x3Xs2DH+8pe/RF5eXkREVFRUxNVXXx1lZWXRtm3bGDFiRFxwwQXRqVOnGp0avnTp0vjPf/4TvXv33qr5bLRixYr48Y9/HJdddlkUFRV9an2fPn3ipZde2qYxAaAp0S/VXEPtlwYMGBAHHXRQ7LHHHvHOO+/EzTffHGeddVYsX748fvrTn1ap1y/B1nOmFFBjO+ywQ67BqqioiHfffTc+/PDDGDx4cDzzzDNV6keMGJFrsCIiPve5z8WQIUPi/vvvj4iId999Nx5++OH4+te/Hu+//36sXLkyVq5cGe+8804MHz48Fi5cGG+++WaN57d69eqIiBqfmr1xHuPGjau0fuNFLbflWgqnnXZarsGKiDj44INjw4YN8a9//Wur9vfOO+9ExEeN7rY477zzok+fPnHqqafWqL59+/axcuXKbRoTAJoS/VLNNdR+6Y9//GOce+65ccwxx8R3vvOdmDVrVgwfPjyuuOKKeOONN6rU65dg6wmlgC1yyy23xIABA6KwsDA6duwYnTt3jj//+c9RVlZWpXa33Xarsm733XfP3X530aJFkVKKCy+8MDp37lxpmThxYkREvP322zWe28Yzf95///0a1f/rX/+K/Pz86Nu3b6X1xcXF0a5du61uiCIievToUenxxubovffe2+p9RkSklLb6a+fMmRO33XZbTJ06NfLza/bnP6VUqVkEAD6dfqlmGmK/VJ28vLwYO3ZsfPjhh/Hoo49WO55+CbaOj+8BNfab3/wmTj755BgxYkScc845sdNOO8UOO+wQkydPjsWLF2/x/ioqKiIi4uyzz47hw4dXW/PJBmhzioqKolu3btVeHHRztqWJ2LBhQ7Xrd9hhh2rXb22T1LFjx4jYtibt3HPPjYMPPjh69+6da3Q3vqv31ltvxdKlS6s0h++991506tRpq8cEgKZGv1RVY+qXNqV79+4R8dGZa5+kX4KtJ5QCauz3v/999OnTJ+6+++5KjcnGd+k+aeHChVXWvfrqq9GrV6+IiNxtc5s1a5a7c8m2Ouqoo+KGG26I2bNnR0lJyWZre/bsGRUVFbFw4cLo379/bn1paWmsWrUqevbsmVvXvn37WLVqVaWvX7duXbz11ltbPdctae569OgRLVu2jCVLlmz1eEuXLo1//etf1V5n4Stf+Uq0bdu2ynNcsmRJ7LPPPls9JgA0NfqlVZW+vrH1S5vy2muvRURE586dq2zTL8HW8/E9oMY2vpv18XevnnzyyZg9e3a19ffee2+laxw89dRT8eSTT8YRRxwRERE77bRTHHroofHLX/6y2mbl47cErqlzzz03WrVqFaeeemqlu9ZstHjx4tzdU7785S9HxEd3dvm4jRcVPfLII3Prdt1113jssccq1d1www2bfOevJlq1alWlcduUZs2axeDBg+Ppp5/e6vFuuOGGuOeeeyotY8aMiYiIyy67LG6//fZK9WVlZbF48eIa35kHANAvNfZ+6d13360y3/Xr18eUKVOiefPmVS7qrl+CbeNMKaCSm266KR588MEq688888w46qij4u67746vfvWrceSRR8aSJUvi+uuvjz333DPWrFlT5Wv69u0bBx10UJx++ulRXl4eV155ZXTs2DHOPffcXM20adPioIMOir333ju++93vRp8+faK0tDRmz54db7zxRjz//PNbNP9dd901ZsyYEd/4xjeif//+cdJJJ8Vee+0V69atiyeeeCLuuuuuOPnkkyMiYp999olRo0bFDTfcEKtWrYpDDjkknnrqqbjllltixIgRlZqOU089Nb73ve/FyJEj4/DDD4/nn38+HnrooW06VXvQoEFx3XXXxaWXXhp9+/aNnXbaKYYOHbrJ+mOOOSZ+9KMfxerVqyvdOa+srCyuueaaiIjc7Yh/8YtfRLt27aJdu3a5Wyt/8YtfrLLPjU3eIYccEoMHD6607W9/+1uklGp8dx4AaCr0S9tvv/THP/4xLr300viv//qv6N27d7z77rsxY8aMmD9/fvzkJz+J4uLiSuPpl2AbJYCU0vTp01NEbHJZtmxZqqioSD/5yU9Sz549U4sWLdLAgQPTn/70pzRq1KjUs2fP3L6WLFmSIiL9/Oc/T5dffnnq3r17atGiRTr44IPT888/X2XsxYsXp5NOOikVFxenZs2apZ133jkdddRR6fe//32u5pFHHkkRkR555JEaPZ9XX301ffe73029evVKzZs3T23atEkHHnhguuaaa9LatWtzdevXr0+TJk1KvXv3Ts2aNUvdu3dPEyZMqFSTUkobNmxI5513XurUqVPacccd0/Dhw9OiRYtSz54906hRo6p8H+fOnVvp66ub/4oVK9KRRx6Z2rRpkyIiHXLIIZt9TqWlpamgoCDddtttldZv/H5Xt3z851KdTc03pZS+8Y1vpIMOOmizXw8ATYl+afvvl55++ul09NFHp5133jk1b948tW7dOh100EHpzjvvrHY8/RJsm7yUavnWBADUmVNOOSVeffXV+Pvf/16n46xYsSJ69+4dd9xxh3f+AIBGRb8EjYdQCqARWbp0aey+++4xc+bMOPDAA+tsnPHjx8fDDz8cTz31VJ2NAQBQF/RL0HgIpQAAAADInLvvAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJC5gvqeQENQUVERy5cvjzZt2kReXl59TwcAaGBSSvH+++9Ht27dIj+/ab6np18CADZna/oloVRELF++PLp3717f0wAAGrhly5bFLrvsUt/TqBf6JQCgJrakXxJKRUSbNm0i4qNvXFFRUT3PBgBoaFavXh3du3fP9QxNkX4JANicremXhFIRuVPQi4qKNFkAwCY15Y+t6ZcAgJrYkn6paV4UAQAAAIB6JZQCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQCARu7iiy+OvLy8Sku/fv1y29euXRujR4+Ojh07RuvWrWPkyJFRWlpajzMGABBKAQBsFz7zmc/EW2+9lVsef/zx3LaxY8fGfffdF3fddVfMmjUrli9fHscee2w9zhYAIKKgvicAAMC2KygoiOLi4irry8rK4sYbb4wZM2bE0KFDIyJi+vTp0b9//5gzZ07sv//+WU8VACAinCkFALBdWLhwYXTr1i369OkTJ5xwQixdujQiIubNmxfr16+PYcOG5Wr79esXPXr0iNmzZ9fXdAEAnCkFANDYDRkyJG6++ebYY4894q233opJkybFwQcfHPPnz48VK1ZE8+bNo127dpW+pkuXLrFixYpN7rO8vDzKy8tzj1evXl1X0wcAmiihFABAI3fEEUfk/j1gwIAYMmRI9OzZM+68885o2bLlVu1z8uTJMWnSpNqaIgBAFT6+BwCwnWnXrl3svvvusWjRoiguLo5169bFqlWrKtWUlpZWew2qjSZMmBBlZWW5ZdmyZXU8awCgqRFKAQBsZ9asWROLFy+Orl27xqBBg6JZs2Yxc+bM3PYFCxbE0qVLo6SkZJP7aNGiRRQVFVVaAABqk4/vAQA0cmeffXYcffTR0bNnz1i+fHlMnDgxdthhhzj++OOjbdu2ccopp8S4ceOiQ4cOUVRUFGPGjImSkhJ33gMA6pVQCgCgkXvjjTfi+OOPj3feeSc6d+4cBx10UMyZMyc6d+4cERFTp06N/Pz8GDlyZJSXl8fw4cPj2muvredZAwBNXV5KKdX3JOrb6tWro23btlFWVubUdACgCr2C7wEAsHlb0yu4phQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5d98DAIiIKc+urLJu/MBO9TATgIbN30ugtjhTCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyFxBfU8AAAAAoC5NeXZllXXjB3aqh5nwcc6UAgAAACBzQikAAAAAMtfgQ6k333wzTjzxxOjYsWO0bNky9t5773j66adz21NKcdFFF0XXrl2jZcuWMWzYsFi4cGE9zhgAAACAT9OgQ6n33nsvDjzwwGjWrFk88MAD8dJLL8Xll18e7du3z9X87Gc/i6uvvjquv/76ePLJJ6NVq1YxfPjwWLt2bT3OHAAAAIDNadAXOv/pT38a3bt3j+nTp+fW9e7dO/fvlFJceeWVccEFF8QxxxwTERG33nprdOnSJe6999447rjjMp8zAAAAAJ+uQZ8p9cc//jEGDx4cX/va12KnnXaKgQMHxq9+9avc9iVLlsSKFSti2LBhuXVt27aNIUOGxOzZs+tjygAAAADUQIMOpV577bW47rrrYrfddouHHnooTj/99PjBD34Qt9xyS0RErFixIiIiunTpUunrunTpkttWnfLy8li9enWlBQAAAIDsNOiP71VUVMTgwYPjJz/5SUREDBw4MObPnx/XX399jBo1aqv3O3ny5Jg0aVJtTRMAAACALdSgz5Tq2rVr7LnnnpXW9e/fP5YuXRoREcXFxRERUVpaWqmmtLQ0t606EyZMiLKystyybNmyWp45AAAAAJvToEOpAw88MBYsWFBp3auvvho9e/aMiI8uel5cXBwzZ87MbV+9enU8+eSTUVJSssn9tmjRIoqKiiotAAAAAGSnQX98b+zYsXHAAQfET37yk/j6178eTz31VNxwww1xww03REREXl5enHXWWXHppZfGbrvtFr17944LL7wwunXrFiNGjKjfyQMAAACwSQ06lNpvv/3innvuiQkTJsQll1wSvXv3jiuvvDJOOOGEXM25554bH3zwQZx22mmxatWqOOigg+LBBx+MwsLCepw5AAAAAJvToEOpiIijjjoqjjrqqE1uz8vLi0suuSQuueSSDGcFAAAAwLZo0NeUAgAAAGD7JJQCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCANiOTJkyJfLy8uKss87KrVu7dm2MHj06OnbsGK1bt46RI0dGaWlp/U0SACCEUgAA2425c+fGL3/5yxgwYECl9WPHjo377rsv7rrrrpg1a1YsX748jj322HqaJQDAR4RSAADbgTVr1sQJJ5wQv/rVr6J9+/a59WVlZXHjjTfGFVdcEUOHDo1BgwbF9OnT44knnog5c+bU44wBgKZOKAUAsB0YPXp0HHnkkTFs2LBK6+fNmxfr16+vtL5fv37Ro0ePmD179ib3V15eHqtXr660AADUpoL6ngAAANvmjjvuiGeeeSbmzp1bZduKFSuiefPm0a5du0rru3TpEitWrNjkPidPnhyTJk2q7akCAOQ4UwoAoBFbtmxZnHnmmXH77bdHYWFhre13woQJUVZWlluWLVtWa/sGAIgQSgEANGrz5s2Lt99+O/bdd98oKCiIgoKCmDVrVlx99dVRUFAQXbp0iXXr1sWqVasqfV1paWkUFxdvcr8tWrSIoqKiSgsAQG3y8T0AgEbsC1/4QrzwwguV1n3729+Ofv36xXnnnRfdu3ePZs2axcyZM2PkyJEREbFgwYJYunRplJSU1MeUAQAiQigFANCotWnTJvbaa69K61q1ahUdO3bMrT/llFNi3Lhx0aFDhygqKooxY8ZESUlJ7L///vUxZQCAiBBKAQBs96ZOnRr5+fkxcuTIKC8vj+HDh8e1115b39MCAJo4oRQAwHbm0UcfrfS4sLAwpk2bFtOmTaufCQEAVMOFzgEAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADIXIMOpS6++OLIy8urtPTr1y+3fe3atTF69Ojo2LFjtG7dOkaOHBmlpaX1OGMAAAAAaqJBh1IREZ/5zGfirbfeyi2PP/54btvYsWPjvvvui7vuuitmzZoVy5cvj2OPPbYeZwsAAABATRTU9wQ+TUFBQRQXF1dZX1ZWFjfeeGPMmDEjhg4dGhER06dPj/79+8ecOXNi//33z3qqAAAAANRQgz9TauHChdGtW7fo06dPnHDCCbF06dKIiJg3b16sX78+hg0blqvt169f9OjRI2bPnl1f0wUAAACgBhr0mVJDhgyJm2++OfbYY4946623YtKkSXHwwQfH/PnzY8WKFdG8efNo165dpa/p0qVLrFixYrP7LS8vj/Ly8tzj1atX18X0AQAAANiEBh1KHXHEEbl/DxgwIIYMGRI9e/aMO++8M1q2bLnV+508eXJMmjSpNqYIAAAAwFZo8B/f+7h27drF7rvvHosWLYri4uJYt25drFq1qlJNaWlptdeg+rgJEyZEWVlZblm2bFkdzhoAAACAT2pUodSaNWti8eLF0bVr1xg0aFA0a9YsZs6cmdu+YMGCWLp0aZSUlGx2Py1atIiioqJKCwAAAADZadAf3zv77LPj6KOPjp49e8by5ctj4sSJscMOO8Txxx8fbdu2jVNOOSXGjRsXHTp0iKKiohgzZkyUlJS48x4AAABAA9egQ6k33ngjjj/++HjnnXeic+fOcdBBB8WcOXOic+fOERExderUyM/Pj5EjR0Z5eXkMHz48rr322nqeNQAAAACfpkGHUnfcccdmtxcWFsa0adNi2rRpGc0IAAAAgNrQoEMpAAAAgKxMeXZllXXjB3aqh5k0DY3qQucAAAAAbB+EUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOYK6nsCAADQFE15dmWVdeMHdqqHmQBsG3/P2FrOlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgcwX1PQEAAIBPmvLsyirrxg/sVA8zAfh/7N17mFV1vT/wz4wDAwIzCCgXuYiigiGKaDpekVCk5GhyTlqZWpZlSAqVgnkJu0CdEi8hXQ7iJTmWPV7SUksUzAQvCCpeSAiTREaxmEGSgeD7+8Mf+zhyEXH22rNnXq/n2c/DXus76/vZM3vt+fCe71676SvUa66VUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQObKCl0AAAAAwI6YNH/lZtvGDexUgErYEVZKAQAAAJA5oRQAAAAAmRNKAQAAAJC5ogqlJk2aFCUlJXHBBRfktq1duzZGjRoVHTt2jLZt28bIkSOjurq6cEUCAAAA8L6KJpR64okn4mc/+1kMGDCg3vYxY8bE3XffHbfddlvMnj07li9fHqecckqBqgQAAABgexRFKPXWW2/FZz/72fjFL34Ru+yyS257TU1NTJs2La688soYMmRIDBo0KKZPnx6PPvpozJ07t4AVAwBkZ+rUqTFgwICoqKiIioqKqKqqinvvvTe338pyAKAxKopQatSoUfGJT3wihg4dWm/7vHnzYv369fW29+3bN3r27Blz5szJukwAgILo3r17TJo0KebNmxdPPvlkDBkyJE466aR47rnnIsLKcgCgcSordAHv59Zbb42nnnoqnnjiic32rVixIlq2bBnt27evt71z586xYsWKrR6zrq4u6urqcvdra2sbrF4AgKyNGDGi3v3vfe97MXXq1Jg7d2507949pk2bFjNmzIghQ4ZERMT06dOjX79+MXfu3DjssMMKUTIAQONeKbVs2bI4//zz45ZbbolWrVo12HEnTpwYlZWVuVuPHj0a7NgAAIW0YcOGuPXWW2PNmjVRVVW1wyvL6+rqora2tt4NAKAhNepQat68efH666/HQQcdFGVlZVFWVhazZ8+Oa665JsrKyqJz586xbt26WLVqVb2vq66uji5dumz1uOPHj4+amprcbdmyZXl+JAAA+fXss89G27Zto7y8PL7yla/EHXfcEfvtt98Oryz3RzwAIN8a9dv3Pvaxj8Wzzz5bb9vnP//56Nu3b1x00UXRo0ePaNGiRcycOTNGjhwZERGLFi2KV155JaqqqrZ63PLy8igvL89r7QAAWdp3331jwYIFUVNTE7/5zW/izDPPjNmzZ+/w8caPHx9jx47N3a+trRVMAQANqlGHUu3atYv+/fvX29amTZvo2LFjbvvZZ58dY8eOjQ4dOkRFRUWMHj06qqqqXB8BAGhWWrZsGX369ImIiEGDBsUTTzwRV199dZx66qm5leXvXi31fivL/REPAMi3Rv32ve0xefLkOPHEE2PkyJFx9NFHR5cuXeL2228vdFkAAAW1cePGqKuri0GDBuVWlm+yPSvLAQDyrVGvlNqSWbNm1bvfqlWrmDJlSkyZMqUwBQEAFNj48eNj+PDh0bNnz1i9enXMmDEjZs2aFffff39UVlZaWQ4ANEpFF0oBAFDf66+/HmeccUa89tprUVlZGQMGDIj7778/jjvuuIh4Z2V5aWlpjBw5Murq6mLYsGFx3XXXFbhqAKC5E0oBABS5adOmbXO/leUAQGNU9NeUAgAAAKD4CKUAAAAAyJxQCgAAAIDMuaYUAABAEzVp/srNto0b2KkAlQBszkopAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADJXVugCAACAbE2av3KzbeMGdipAJQA0Z0IpaEAaPAAAANg+3r4HAAAAQOaEUgAAAABkLm+h1J577hlvvvnmZttXrVoVe+65Z76mBQAoGvolAKA5y1so9fLLL8eGDRs2215XVxevvvpqvqYFACga+iUAoDlr8Aud//a3v839+/7774/Kysrc/Q0bNsTMmTNjjz32aOhpAQCKhn4JACAPodTJJ58cERElJSVx5pln1tvXokWL2GOPPeLHP/5xQ08LAFA09EsAAHkIpTZu3BgREb17944nnngiOnXq1NBTAAAUNf0SAEAeQqlNli5dmq9DAwA0CfolAKA5y1soFRExc+bMmDlzZrz++uu5vwhucv311+dzagCAoqBfAqC5mDR/5Wbbxg20Wrg5y1soNWHChLjiiivi4IMPjq5du0ZJSUm+pgIAKEr6JQCgOctbKPXTn/40brjhhvjc5z6XrykAAIqafgkAaM5K83XgdevWxeGHH56vwwMAFD39EgDQnOUtlPriF78YM2bMyNfhAQCKnn4JAGjO8vb2vbVr18bPf/7zeOCBB2LAgAHRokWLevuvvPLKfE0NAFAU9EsAQHOWt1DqmWeeiQMPPDAiIhYuXFhvn4t4AgDolwCA5i1vodRDDz2Ur0MDADQJ+iUAoDnL2zWlAAAAAGBr8rZS6thjj93msvMHH3wwX1MDABQF/RJNyaT5KzfbNm5gpwJUAjQFXlOah7yFUpuuj7DJ+vXrY8GCBbFw4cI488wz8zUtAEDR0C8BAM1Z3kKpyZMnb3H7t7/97XjrrbfyNS0AQNHQLwEAzVnm15Q6/fTT4/rrr896WgCAoqFfAgCag7ytlNqaOXPmRKtWrbKeFgCaLNdcaHr0SwBAc5C3UOqUU06pdz+lFK+99lo8+eSTcemll+ZrWgCAoqFfAgCas7yFUpWVlfXul5aWxr777htXXHFFHH/88fmaFgCgaOiXAIDmLG+h1PTp0/N1aACAJkG/BAA0Z3m/ptS8efPihRdeiIiIj3zkIzFw4MB8TwkAUFT0SwBAc5S3UOr111+P0047LWbNmhXt27ePiIhVq1bFscceG7feemvsuuuu+ZoaAKAo6JcAgOasNF8HHj16dKxevTqee+65+Mc//hH/+Mc/YuHChVFbWxtf+9rX8jUtAEDR0C8BNF+T5q/c7AbNTd5WSt13333xwAMPRL9+/XLb9ttvv5gyZYoLdwLQ5GypkRw3sFOjOyaNi34JAGjO8rZSauPGjdGiRYvNtrdo0SI2btyYr2kBAIqGfgkAaM7yFkoNGTIkzj///Fi+fHlu26uvvhpjxoyJj33sY/maFgCgaOiXAIDmLG+h1E9+8pOora2NPfbYI/baa6/Ya6+9onfv3lFbWxvXXnttvqYFACga+iUAoDnL2zWlevToEU899VQ88MAD8eKLL0ZERL9+/WLo0KH5mhIAoKjolwCA5qzBV0o9+OCDsd9++0VtbW2UlJTEcccdF6NHj47Ro0fHIYccEh/5yEfiT3/6U0NPCwBQNPRLAAB5CKWuuuqq+NKXvhQVFRWb7ausrIwvf/nLceWVVzb0tAAARUO/BACQh1Dq6aefjhNOOGGr+48//viYN29eQ08LAFA09EsAAHkIpaqrq7f40cablJWVxRtvvNHQ0wIAFA39EgBAHi50vvvuu8fChQujT58+W9z/zDPPRNeuXRt6WgCAoqFfojmbNH/lZtvGDexUgEqKm+8j7+U5QRYa+nnW4CulPv7xj8ell14aa9eu3Wzf22+/HZdffnmceOKJDT0tAEDR0C8BAORhpdQll1wSt99+e+yzzz5x3nnnxb777hsRES+++GJMmTIlNmzYEN/61rcaeloAgKKhXwIAyEMo1blz53j00Ufj3HPPjfHjx0dKKSIiSkpKYtiwYTFlypTo3LlzQ08LAFA09EsAAHkIpSIievXqFb///e/jn//8ZyxevDhSSrH33nvHLrvsko/pAACKjn4JAGju8hJKbbLLLrvEIYccks8pAACKmn4JAGiu8hpKAQCNh0/lAQCgMWnwT98DAAAAgPcjlAIAAAAgc406lJo6dWoMGDAgKioqoqKiIqqqquLee+/N7V+7dm2MGjUqOnbsGG3bto2RI0dGdXV1ASsGAAAAYHs06lCqe/fuMWnSpJg3b148+eSTMWTIkDjppJPiueeei4iIMWPGxN133x233XZbzJ49O5YvXx6nnHJKgasGAAAA4P006gudjxgxot79733vezF16tSYO3dudO/ePaZNmxYzZsyIIUOGRETE9OnTo1+/fjF37tw47LDDClEyAAAAANuhUa+UercNGzbErbfeGmvWrImqqqqYN29erF+/PoYOHZob07dv3+jZs2fMmTOngJUCAAAA8H4a9UqpiIhnn302qqqqYu3atdG2bdu44447Yr/99osFCxZEy5Yto3379vXGd+7cOVasWLHNY9bV1UVdXV3ufm1tbT5KBwAAAGArGv1KqX333TcWLFgQjz32WJx77rlx5plnxvPPP/+hjjlx4sSorKzM3Xr06NFA1QIAAACwPRp9KNWyZcvo06dPDBo0KCZOnBgHHHBAXH311dGlS5dYt25drFq1qt746urq6NKlyzaPOX78+Kipqcndli1blsdHAAAAAMB7NfpQ6r02btwYdXV1MWjQoGjRokXMnDkzt2/RokXxyiuvRFVV1TaPUV5eHhUVFfVuAAAAAGSnUV9Tavz48TF8+PDo2bNnrF69OmbMmBGzZs2K+++/PyorK+Pss8+OsWPHRocOHaKioiJGjx4dVVVVPnkPAAAAoJFr1KHU66+/HmeccUa89tprUVlZGQMGDIj7778/jjvuuIiImDx5cpSWlsbIkSOjrq4uhg0bFtddd12BqwYAAADg/TTqUGratGnb3N+qVauYMmVKTJkyJaOKAAAAAGgIjTqUAgAAaCiT5q/cbNu4gZ0KUAkAEUV4oXMAAAAAip9QCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyFxZoQsAaEwmzV+52bZxAzsVoBIaC88JAADID6EUAAA0cgLyxsnPBeDD8fY9AAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAKGITJ06MQw45JNq1axe77bZbnHzyybFo0aJ6Y9auXRujRo2Kjh07Rtu2bWPkyJFRXV1doIoBAN5RVugCgMbJRxwDFIfZs2fHqFGj4pBDDol///vfcfHFF8fxxx8fzz//fLRp0yYiIsaMGRO/+93v4rbbbovKyso477zz4pRTTok///nPBa4eAGjOhFIAAEXsvvvuq3f/hhtuiN122y3mzZsXRx99dNTU1MS0adNixowZMWTIkIiImD59evTr1y/mzp0bhx12WCHKBgDw9j0AgKakpqYmIiI6dOgQERHz5s2L9evXx9ChQ3Nj+vbtGz179ow5c+Zs9Th1dXVRW1tb7wYA0JCslAIAaCI2btwYF1xwQRxxxBHRv3//iIhYsWJFtGzZMtq3b19vbOfOnWPFihVbPdbEiRNjwoQJ+SwXGsSWLjkQ4bIDTZGfdcNxqQ4aCyulAACaiFGjRsXChQvj1ltv/dDHGj9+fNTU1ORuy5Yta4AKAQD+j5VSAABNwHnnnRf33HNPPPzww9G9e/fc9i5dusS6deti1apV9VZLVVdXR5cuXbZ6vPLy8igvL89nyQBAM2elFABAEUspxXnnnRd33HFHPPjgg9G7d+96+wcNGhQtWrSImTNn5rYtWrQoXnnllaiqqsq6XACAHCuloJnx/vGG4fuYrXx8v/0MaSpGjRoVM2bMiLvuuivatWuXu05UZWVltG7dOiorK+Pss8+OsWPHRocOHaKioiJGjx4dVVVVPnkPACgooRQAQBGbOnVqREQMHjy43vbp06fHWWedFRERkydPjtLS0hg5cmTU1dXFsGHD4rrrrsu4UgCA+oRSAABFLKX0vmNatWoVU6ZMiSlTpmRQEQDA9nFNKQAAAAAyJ5QCAAAAIHNCKQAAAAAy55pSAAAAjUShPh12S/N+2Ll90i3wfqyUAgAAACBzVkrRbH2Qv9w09F95/NUI3uFcAACA5stKKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyV1boAgAAYHtNmr9ys23jBnYqQCXNg+83vOODnAvOG97Lc2LrrJQCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHM+fY8mxycbFL/t/Rk21591c33cAABA02KlFAAAAACZE0oBAAAAkDmhFAAAAACZc00pAADyxnXwKEaet9nKx/e7KV2jtBhqpPFq7M8fK6UAAAAAyJxQCgAAAIDMCaUAAAAAyJxrSpEXjf19q5AV5wLFynMXAIB8s1IKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMz59D0AAACAAmuOn34slKJoNMcTFD4M5wwAANCYefseAAAAAJkTSgEAAACQuUYdSk2cODEOOeSQaNeuXey2225x8sknx6JFi+qNWbt2bYwaNSo6duwYbdu2jZEjR0Z1dXWBKgYAAABgezTqUGr27NkxatSomDt3bvzxj3+M9evXx/HHHx9r1qzJjRkzZkzcfffdcdttt8Xs2bNj+fLlccoppxSwagAAAADeT6O+0Pl9991X7/4NN9wQu+22W8ybNy+OPvroqKmpiWnTpsWMGTNiyJAhERExffr06NevX8ydOzcOO+ywQpQNAAAAwPto1Cul3qumpiYiIjp06BAREfPmzYv169fH0KFDc2P69u0bPXv2jDlz5hSkRgAAAADeX6NeKfVuGzdujAsuuCCOOOKI6N+/f0RErFixIlq2bBnt27evN7Zz586xYsWKrR6rrq4u6urqcvdra2vzUjMAAAAAW1Y0odSoUaNi4cKF8cgjj3zoY02cODEmTJjQAFUB0JhMmr9yi9vHDeyUcSXbtqU6G1uNwI5zjgNNhdcz8q0o3r533nnnxT333BMPPfRQdO/ePbe9S5cusW7duli1alW98dXV1dGlS5etHm/8+PFRU1OTuy1btixfpQMAAACwBY06lEopxXnnnRd33HFHPPjgg9G7d+96+wcNGhQtWrSImTNn5rYtWrQoXnnllaiqqtrqccvLy6OioqLeDQAAAIDsNOq3740aNSpmzJgRd911V7Rr1y53najKyspo3bp1VFZWxtlnnx1jx46NDh06REVFRYwePTqqqqp88h4AAABAI9aoQ6mpU6dGRMTgwYPrbZ8+fXqcddZZERExefLkKC0tjZEjR0ZdXV0MGzYsrrvuuowrBQAAAOCDaNShVErpfce0atUqpkyZElOmTMmgIgAAAAAaQqO+phQAAAAATVOjXilF45OPjwT1MaNbVwzfm2KosRhs6fsY4XsJAAA0XVZKAQAAAJA5oRQAAAAAmfP2PQAAPhBv54cPxtv0AbbMSikAAAAAMieUAgAAACBzQikAAAAAMueaUjvI+8KBpsK1YQAAgEKwUgoAAACAzAmlAAAAAMicUAoAAACAzAmlAAAAAMicUAoAAACAzPn0PQAAaCJ8+ilAdgr1mrulebOau6FZKQUAAABA5qyUeg9/XaJYee5uXVP6SwIAAEBTYaUUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkrK3QBAADQ0CbNX7nZtnEDOxWgEgBga6yUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMldW6AKA5sPHcwMAALCJlVIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmygpdAP9n0vyVm20bN7BTASoBgO3T0L+7/C4EAGg+rJQCAChyDz/8cIwYMSK6desWJSUlceedd9bbn1KKyy67LLp27RqtW7eOoUOHxksvvVSYYgEA/j+hFABAkVuzZk0ccMABMWXKlC3u/+EPfxjXXHNN/PSnP43HHnss2rRpE8OGDYu1a9dmXCkAwP/x9j0AgCI3fPjwGD58+Bb3pZTiqquuiksuuSROOumkiIi46aabonPnznHnnXfGaaedlmWpAAA5VkoBADRhS5cujRUrVsTQoUNz2yorK+PQQw+NOXPmbPXr6urqora2tt4NAKAhWSkFANCErVixIiIiOnfuXG97586dc/u2ZOLEiTFhwoS81lZsXIgfABqWlVIAAGxm/PjxUVNTk7stW7as0CUBAE2MlVIZ8Fc1AKBQunTpEhER1dXV0bVr19z26urqOPDAA7f6deXl5VFeXp7v8gCAZsxKKQCAJqx3797RpUuXmDlzZm5bbW1tPPbYY1FVVVXAygCA5s5KKQCAIvfWW2/F4sWLc/eXLl0aCxYsiA4dOkTPnj3jggsuiO9+97ux9957R+/evePSSy+Nbt26xcknn1y4ogGAZk8oBQBQ5J588sk49thjc/fHjh0bERFnnnlm3HDDDXHhhRfGmjVr4pxzzolVq1bFkUceGffdd1+0atWqUCUDAAilAACK3eDBgyOltNX9JSUlccUVV8QVV1yRYVUAANvmmlIAAAAAZE4oBQAAAEDmhFIAAAAAZM41pYrQpPkrN9s2bmCnAlQCNCdbeu2J8PoDAADsGCulAAAAAMicUAoAAACAzAmlAAAAAMicUAoAAACAzAmlAAAAAMicUAoAAACAzJUVugDya0sf4b6lj2/f3nEAAAAADcFKKQAAAAAyJ5QCAAAAIHONPpR6+OGHY8SIEdGtW7coKSmJO++8s97+lFJcdtll0bVr12jdunUMHTo0XnrppcIUCwAAAMB2afSh1Jo1a+KAAw6IKVOmbHH/D3/4w7jmmmvipz/9aTz22GPRpk2bGDZsWKxduzbjSgEAAADYXo3+QufDhw+P4cOHb3FfSimuuuqquOSSS+Kkk06KiIibbropOnfuHHfeeWecdtppWZYKAAAAwHZq9CultmXp0qWxYsWKGDp0aG5bZWVlHHrooTFnzpwCVgYAAADAtjT6lVLbsmLFioiI6Ny5c73tnTt3zu3bkrq6uqirq8vdr62tzU+BAAAAAGxRUYdSO2rixIkxYcKEQpcBAM3GpPkrN9s2bmCnAlQCAEBjUdRv3+vSpUtERFRXV9fbXl1dndu3JePHj4+amprcbdmyZXmtEwAAAID6ijqU6t27d3Tp0iVmzpyZ21ZbWxuPPfZYVFVVbfXrysvLo6Kiot4NAAAAgOw0+rfvvfXWW7F48eLc/aVLl8aCBQuiQ4cO0bNnz7jgggviu9/9buy9997Ru3fvuPTSS6Nbt25x8sknF65oAAAAALap0YdSTz75ZBx77LG5+2PHjo2IiDPPPDNuuOGGuPDCC2PNmjVxzjnnxKpVq+LII4+M++67L1q1alWokgEAAAB4H40+lBo8eHCklLa6v6SkJK644oq44oorMqwKAICmwoX4AaAwivqaUgAAAAAUJ6EUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkrK3QBAAA7YtL8lZttGzew0w6PAwAgW1ZKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmWsyodSUKVNijz32iFatWsWhhx4ajz/+eKFLAgBoVPRLAEBj0iRCqV/96lcxduzYuPzyy+Opp56KAw44IIYNGxavv/56oUsDAGgU9EsAQGPTJEKpK6+8Mr70pS/F5z//+dhvv/3ipz/9aey8885x/fXXF7o0AIBGQb8EADQ2RR9KrVu3LubNmxdDhw7NbSstLY2hQ4fGnDlzClgZAEDjoF8CABqjskIX8GGtXLkyNmzYEJ07d663vXPnzvHiiy9u8Wvq6uqirq4ud7+mpiYiImpra2PtW+s3G19b23KzbWvfWr3FY2/v2CzGFXJuNaqxsddYyLnV2LxrLOTcatzxcbW1tRERkVLaYi2NXaH6pQjPJTV67Vdj86qxkHOrsXnXWMi5P1S/lIrcq6++miIiPfroo/W2f/Ob30wf/ehHt/g1l19+eYoINzc3Nzc3N7cPdFu2bFkW7U2D0y+5ubm5ubm5ZXX7IP1S0a+U6tSpU+y0005RXV1db3t1dXV06dJli18zfvz4GDt2bO7+xo0b4x//+Ed07NgxSkpKIuKdhK9Hjx6xbNmyqKio2Or8DT2ukHOrUY2NaW41Fv/calRjY5r7w9aYUorVq1dHt27dtvm1jZV+SY2NbW41Fv/calRjY5pbjY2jxh3pl4o+lGrZsmUMGjQoZs6cGSeffHJEvNM0zZw5M84777wtfk15eXmUl5fX29a+ffstjq2oqHjfH0Y+xhVybjWqsTHNrcbin1uNamxMc3+YGisrK7fr6xoj/ZIaG+vcaiz+udWoxsY0txoLX+MH7ZeKPpSKiBg7dmyceeaZcfDBB8dHP/rRuOqqq2LNmjXx+c9/vtClAQA0CvolAKCxaRKh1KmnnhpvvPFGXHbZZbFixYo48MAD47777tvsYp4AAM2VfgkAaGyaRCgVEXHeeedtdfn5jigvL4/LL798s2Xr+R5XyLnVqMbGNLcai39uNaqxMc2djxqLkX5JjY1lbjUW/9xqVGNjmluNjbfG91OSUpF+tjEAAAAARau00AUAAAAA0PwIpQAAAADInFAKAAAAgMwJpQAAAADInFCqyC1dujT+/e9/N9jxGvJY7+Z6+jQWzhn4YJwzNAWex/DBNPQ5E5Gf88Y5Q2Ph98yOE0r9f88//3x89atfjYEDB0bXrl2ja9euMXDgwPjqV78azz///HYdY8mSJTFkyJCIiHjttdfil7/8Zfz+97+PdevW1Ru3Zs2auOKKKyIi4o9//GNcfvnl8eCDD0ZExMMPPxzDhw+PIUOGxPTp0993zn333Tdeeumlre5fvnx5XH755fHZz342vvGNb8SLL74YERH33XdfPPvssxERsXHjxvjOd74Tu+++e5SXl0f37t1j0qRJkVKKESNGxM033xxvv/32+9ZSV1cX3/jGN+Loo4+OH/zgBxER8d3vfjfatm0b7dq1i8985jNRW1sbERFPP/10nHHGGbHnnntG69ato02bNrH//vvHpZdemhuztTnq6uret5bGYNasWdv1fdsedXV1sWTJkgZ/7NXV1bFixYot7tuwYUNUV1fHG2+8scX9hTpnIj7ceZPvcyYitvu8yeKcKSZN/Ze5c8Y50xTol4rjedxc+6WI/PRMjalfisjmvNnRcyai4f+f4bW/Pv3S+9MvFdk5k0i///3vU8uWLdNhhx2WLr/88nTdddel6667Ll1++eXp8MMPT+Xl5em+++573+MsWLAglZaWpscffzy1b98+VVRUpNatW6c+ffqkhQsX5satWLEilZaWpptvvjmVlZWlgw46KLVt2zZNnz49tW/fPn3xi19MX/jCF1LLli3TbbfdllJK6ZOf/OQWb6WlpWno0KG5+61bt06vv/56Siml5557LlVWVqY+ffqk//qv/0p9+/ZNO++8c3r66afTvvvumx5++OGUUkrf//73U8eOHdOVV16Z7r333nTVVVelzp07p0mTJqWSkpJUVlaWKisr01e+8pX05JNPbvXxjxkzJnXr1i19/etfT/369Utf/epXU8+ePdMvf/nLNGPGjNSnT580evTodN9996XWrVunkSNHptNPPz3tvPPO6bzzzksXXXRR6tOnT9prr73Sa6+9ljvuH/7whzR8+PDUvn37VFpamkpLS1P79u3T8OHD0x//+Mft+hk///zzqXfv3rmf03e+8500ZcqU9MYbb9QbV1NTkz7/+c/n7v/iF79IZ5xxRrr++utTSindeuutqW/fvql3797psssu2+acLVq0SM8//3zufnV1db398+fPT2eccUY6/PDD08iRI9NDDz2UUkpp+vTp6dFHH00ppfT222+nL3zhC2mnnXZKpaWlqaysLH35y19Oa9euTSml1L9//3TFFVekV155ZZu1vPnmm2nkyJGpR48e6Stf+Ur697//nc4+++xUUlKSSktLU1VVVVq+fHlKKaV77rknHXXUUam8vDz3/a6srEynn356+tvf/pZSKtw5k1La7vOmUOdMSmm7z5t8nTPPPfdcOvfcc9OBBx6YunTpkrp06ZIOPPDAdO6556bnnnvufX8uKaW0ePHidOyxx6aUUlq+fHm6+eab0+9+97tUV1dXb9xbb72VJkyYkFJ651y97LLL0syZM1NKKc2ePTudcMIJ6dhjj82dQ9vy3nPmvV599dV02WWXpc985jPp61//enrhhRdSSinde++96ZlnnkkppbRhw4Z0xRVXpG7duqXS0tK0++67p4kTJ6aNGzemE088Md10003pX//61/vWsnbt2vT1r389HXXUUbmf63e+853Upk2b1KZNm/TpT3861dTUpJTeeR5/7nOfS717906tWrVKO++8c+rfv3+65JJLcmOcM03/nGkO9EuN+3nc3PqllLa/Z2oq/VJKqcHPm4Y+Z1JKDf7/jMb82q9f0i81p98z+eqXhFIppQEDBqRLL710q/svv/zytP/++6err756m7cLL7ww92T8/Oc/nzZs2JBqa2vTueeemzp27JieeuqplNL/PfkPPPDAdPXVV6eUUnrggQdS69at05VXXpmb90c/+lE64ogjUkrvPAGPOeaYdNZZZ9W7lZaWppNPPjl3v6SkJPfL/KSTTkojRoxI69evTym98+Jz2mmnpRNPPDGVl5fnfmH2798//frXv673mO+5557Up0+fVFJSkp577rk0efLktP/++6fS0tJ0wAEHpGuvvTb94x//qPc1PXr0yDU9S5YsSaWlpenOO+/M7f/DH/6QevXqlQ488MA0derUetv79u2bUkpp3bp16WMf+1g666yzUkop3XDDDamsrCyddtppafr06en3v/99+v3vf5+mT5+ePv3pT6cWLVqkm2666X1/xptemO6///7UsmXL9JGPfCT17NkzdezYMT344IO5ce9+YZo8eXJq06ZNOuWUU1LXrl3Td7/73dSxY8f03e9+N02YMCFVVFSkn/3sZ2ngwIFbvJWUlKR+/frl7peWluZ+Nn/+859TixYt0jHHHJO++c1vpuOOOy6VlZWl2bNnp969e6e5c+emlFL6xje+kfbYY490++23pxdeeCHdeeedaZ999knf/OY3c8+Ljh07pp122ikNGzYs/eY3v8n9vN/tC1/4Qurfv3+69tpr0zHHHJNOOumkNGDAgPTII4+kRx99NB1yyCHpjDPOSDfddFNq165d+vrXv56+9a1vpS5duqRx48alqVOnpmOOOSZ16tQp/eUvfynYOZNS2u7zplDnzKafy/acN/k4Z/ynsXGG7M6Zpn/ONAf6pcb7PG6O/VJKabt7pqbSL6WUGvy8aehzJqXU4P/PaMyv/fol/VJz+T2Tz35JKJVSatWqVXrxxRe3uv/FF19MrVq1SiUlJalbt25pjz322OJtU9K8yy67pEWLFtU7xsSJE9Muu+ySHn/88dyTv02bNumvf/1rbkyLFi1yf2FIKaUXXnghdezYMaWU0v/+7/+m7t27b5ael5WV1Usl3/3k79GjR+6FZ5Onnnoqde3aNXXt2jXNmTMnpZRS586dcyfmJn/5y19S69at6x0vpZQee+yxdM4556TKysrUunXr9OlPfzqX8rdu3Tp3Qm16PO9+MV66dGnaeeedU6tWrdLSpUtz2zdu3JhatGiR+8vTww8/nHbdddeUUkp77713+slPfrL5D+X/mzJlSurTp08aM2bMNm+nn3567i9cF198cW7eH/zgB6lt27bp3nvvTSnVf2Hq27dvuuWWW3Lft7KysvQ///M/ubn/53/+Jw0aNCiVlZWlE044IX3729/O3S6//PJUWlqavvrVr+a2vft7edxxx6UvfOEL9R7L+eefn4YMGVLvhWmfffbJ1bbJ7NmzU8+ePVNK7/y8X3311XTHHXekESNGpLKysrTrrrumr3/96/X+gtK1a9f05z//OfcYS0pK0h/+8Ifc/kceeSTtvvvuqW/fvunWW2/NbX/iiSdS9+7d08aNG1NKKZ166qnpk5/8ZMHOmZTSdp83hTpn3nvMlLZ+3uTjnPGfxsYZsjtniv+cQb/UmJ/HzbFfSiltd8/UVPqllFKDnzcNfc5s+j425P8z9Ev6pU30S43/nNkRQqn0zi/TH//4x1vd/+Mf/zjtu+++aY899ki/+tWvtjpu/vz5uSf/u5/Am/z3f/93at++fbr99ttzS6rffdK1bds2LVmyJHf/r3/9a9p5551z95cuXZqOOOKIdMopp+ReEN775C8tLc0l5b169dqsjr/+9a+pVatW6atf/Wo68cQT07///e90zjnnpC9+8Yu5X6QppTR69OhUVVW12RN/kzVr1qTp06enI488Mnci77vvvrlf0I8//nhq2bJlvZP11ltvTXvvvXfaa6+96qWoL730Utppp51yy1z/+te/5k688vLy7XphKi0tTQcddFAaPHjwFm8HH3xwKi0tTRUVFWnx4sX1jnHLLbekNm3apLvvvrveC9N7T+by8vJ6J/NLL72U2rdvnx555JG01157pcsuuyxt2LAht39bL0zvfvHZZOHChalTp06pV69eub9G7r777umJJ56oN+75559Pbdq02eyYKb2zbPj73/9+2nvvvXNN5bRp09LOO++cXn755dy4Fi1apGeffTZ3/69//Wtq06ZNat26db0Xpk2P49VXX00pvfPC1759+4KdMymlD3TeFOKcSWnzn8sm7z1v8nHO+E9j4wzZnTPFf86gX2rMz+Pm2C+llLa7Z2oq/VJKKS/nTUOeMymlBv9/hn5Jv7SJfqnxnzM7QiiVUvr1r3+dysrK0ogRI9LVV1+dbr311nTrrbemq6++Ov3Hf/xHatmyZfrNb36TRo4cmS688MKtHmfBggWppKQkHXXUUfWS4Hf7wQ9+kHvv+cEHH1wvSa6pqan3BPzjH/+Y9tlnn3pfv2HDhnTZZZelHj16pPvuuy+1aNFisxel9u3bp1122SW1aNEi3XzzzfW+/g9/+EPaY4890qpVq9LBBx+c+vTpkz73uc+lVq1apV69eqXjjjsu9e7dO1VWVqa5c+du9Yn/bptegCdPnpxatWqVhg4dmnbZZZd0zTXXpC5duqQLL7wwjRs3LlVWVqYrrrgiTZgwIXXv3j1NnTo1XX/99al///7pk5/8ZO54t99+e9pvv/1SSikddNBBubeqbcmFF16YDjrooLTPPvts9ljfbdML06677rrFJaj/+7//m3beeec0derU3AtTx44d6/31rHv37vUalZdeeim1bds2pZTSqlWr0mmnnZYOPfTQXBO3pV8YixcvTjU1Nal3796b/SJYvHhx2nnnndPFF1+cqqqq0j//+c80bty4NGLEiLR69eqU0jsvOJ/61KfS8ccfn1JK9Za4v9dDDz2UTj/99NSmTZt0wAEH5P6C+vvf/z61a9eu3gv+1KlTU//+/VO/fv1yS4ZTSmnevHmpZcuW6d///nfuMbdp06Zg50xK6QOfN1mfM5uOuT3nTT7OGf9pbJwhu3Om+M8Z9EuN+XncHPullNJ290xNpV9KKeXtvGmocyal1OD/z9Av6Zf0S4X/PZPPfkko9f/9+c9/Tqeeemrq2bNnatmyZWrZsmXq2bNnOvXUU3MXUHzuuec2+wvMu61bty69/PLL6Re/+EU6/fTTtzpu0qRJufe8b3pP/JZMnDgxXXLJJVvc96c//Sn17t07lZaW1nvy33DDDfVu7/3r0hVXXJHGjBmTq3fq1Knp4x//eOrbt2/aZ5990jHHHJMuvvjitGzZspRSSoMHD07//Oc/t1rje91yyy3pvPPOSzNmzEgpvfOL/qijjkqDBg1K3/72t9OGDRvS+vXr04UXXpi6deuWOnbsmD7zmc/Uu4DmY489lvu+PPTQQ6lNmzZp//33T2PGjEmTJk1KkyZNSmPGjEkDBgxIbdu2TbNnz06f+cxn0gUXXLDVuja9MB133HHpv//7v7c4ZsaMGalFixa5F6Yjjjii3tLs97r77rtT//796227/vrrU5cuXdLPfvazLb4wlZa+cyHMkpKS9POf/7ze1951112pT58+qa6uLv3Hf/xH2mWXXdJxxx2XuxDg3nvvndq0aZN69uyZCwK354WppqYm/fKXv0w77bRT6tOnTyovL0+33XZb6tatW/rUpz6VTjvttNSyZcv0k5/8JP3kJz9JlZWV6cILL0yXXXZZ6tatWzr77LNzx/rlL3+ZBg4cmFIqzDmTUtrh8yarcyalD3beNPQ54z+NjTdkd84U9znDO/RLjfN53Bz7pZTSdvdMTaVfSinl/bxpiHNmU80N+f8M/ZJ+Sb9UHOfMjhBKFbHVq1enBQsWbPbpDk3N0qVL04UXXpiOPvrotM8++6R99tknHX300emiiy7KLQN97bXX6v1Vbmtuv/32bTZjt9xySxo8eHBK6Z3rBsyfP3+rY6dMmZKuvfbazbb/5S9/SYccckju/dibzJo1q97tvUt8r7rqqvTDH/4wd//ee+9NX/3qV9MJJ5yQjj/++HTmmWemn//85+mtt97KjTnrrLNSbW3t+z7uTY/nRz/6Ue5aCc8991z63Oc+l0aOHJluuOGG3LjrrrsuHX744WnQoEHp4osvTm+//Xa9x7bpEzyKUXM5Z/ynsXGG7MXIOfN/5wzFq7k8j5trv5TS+/dM+qUPprmcM/ol/VJDcc58uH6pJKWUAmhQGzdujNWrV0dFRUWUlJQUuhxo9N56661YsmRJ9OvXL1q2bFnocgDIgH4JPhj9Ek1RaaELKAYXX3xxfOELX2i045prjY1ZaWlpVFZWNtsGqyk9z5pSjY1Z27Zt44ADDmi2DVZzfD4WQ418MJ5LjXfuxkq/1HSeZ02txsZKv+R521jn/jCEUtvh73//e7z88suNdlwh5y5kjRERZ555ZgwZMiTzcYWcuxhqfPXVV7frZ9jQ4wo5dzHUGOEXamOtsTk+H4uhxoim8Z+YrDTHXqRY5m6OvUgh5y5Uv5SPYzbXGptjL1IMNXreNt65P0y/VLZDX9XM3HTTTY16XCHnLmSNERHdunWL0tL3z1Ybelwh5y6GGm+88cbtqq+hxxVy7mKoMeKd/8T8/e9/b7TjmluNKaUoKSl5359hQ48r5NzFUOO7fZDnRXPXHHuRYpm7OfYihZy7UP1SPo7ZXGtsTr1IMdTYHHuRYqjx3T5Mv+SaUv/fypUr4/rrr485c+bEihUrIiKiS5cucfjhh8dZZ50Vu+66a0HHNdcaAZqyli1bxtNPPx39+vXLdFwh5y6GGtm65tiLFMvcAE1Vc+xFiqHGhiKUiognnngihg0bFjvvvHMMHTo0OnfuHBER1dXVMXPmzPjXv/4V999/f6SUCjLu4IMPbpY1Hnzwwe/7s1u2bFlcfvnlcf3112c6rpBzN5Ya33777Zg3b1506NAh9ttvv3rj1q5dG7/+9a/jjDPOaPBxEVGwuYuhxoiIF154IebOnRtVVVXRt2/fePHFF+Pqq6+Ourq6OP3003NvKSjUuOZY49ixY2NLrr766jj99NOjY8eOW9z/YcddeeWVBZu7GGq88sorNxuzZs2a+PWvfx2LFy+Orl27xqc//en3PW5z0Rx7kWKZ+/001V6ksc6dz34pQh+kX2q6NeqXGmeNee+Xdvhz+5qQQw89NJ1zzjlp48aNm+3buHFjOuecc9Jhhx1WsHHNtcbtsWDBglRaWpr5uELO3RhqXLRoUerVq1cqKSlJpaWl6eijj07Lly/PjVuxYkVexqWUCjZ3MdSY0jsfi92yZcvUoUOH1KpVq3TvvfemXXfdNQ0dOjQNGTIk7bTTTmnmzJkFG9dcaywpKUkHHnhgGjx4cL1bSUlJOuSQQ9LgwYPTscce2+DjUkoFm7sYakwppX79+qU333wzpZTSK6+8kvbYY49UWVmZDjnkkNShQ4e02267pb/+9a/v+/rYHDTHXqRY5n4/TbEXacxz56tfSkkfpF9q2jU2x16kGGpMKb/9klAqpdSqVav0wgsvbHX/Cy+8kFq1alWwcc21xpRSuuuuu7Z5mzx5ciotLW3wcYWcuxhqPPnkk9MnPvGJ9MYbb6SXXnopfeITn0i9e/dOf/vb31JK//dLv6HHpZQKNncx1JhSSlVVVelb3/pWSiml//3f/0277LJLuvjii3Pn17hx49Jxxx1XsHHNtcaJEyem3r1755q4TcrKytJzzz2Xu9/Q4/JxzKZUY0rvNHjV1dUppZQ++9nPpsMPPzytWrUqpZTS6tWr09ChQ9OnP/3pRPPsRYpl7ubYixRy7kL1Synpg/RLTbvG5tiLFEONKeW3XxJKpZT22GOPdOONN251/4033ph69epVsHHNtcaUUu4vHSUlJVu9bdrfkOMKOXcx1LjbbrulZ555Jvcz27hxY/rKV76SevbsmZYsWZL7pd/Q41JKBZu7GGpMKaWKior00ksvpZRS2rBhQyorK0tPPfVU7mufffbZ1Llz54KNa641ppTS448/nvbZZ5/09a9/Pa1bty6ltOVf+g09rpBzF0ON726y9txzz/SHP/yh3v4///nPqUePHpvV2xw1x16kWOZujr1IIecuVL+Ukj6ooWpsjr1IMdSYUvPsRYqhxnz2S0KplNJPfvKTVF5enr72ta+lu+66K82dOzfNnTs33XXXXelrX/taat26dZoyZUrBxjXXGlNKqVu3bunOO+/c6s9u/vz5qbS0tMHHFXLuYqixXbt26fnnn99s/6hRo1L37t3Tww8/nJdxKaWCzV0MNab0TnOwePHi3Ji2bdumJUuW5O6//PLLqVWrVgUb11xr3GT16tXpjDPOSAMGDEjPPvtsatGixRYbjoYeV8i5G3uNJSUl6fXXX08pvfOa+uyzz9bb/96fYXPWHHuRYpm7OfYihZy7UP1SSvqghqqxOfYixVDjJs2tFymGGvPZLwml/r9bb701HXrooamsrCz3F46ysrJ06KGHpl/96lcFH9dcaxwxYkS69NJLt/pzW7BgQSopKWnwcYWcuxhqPOSQQ9JNN920xTGjRo1K7du3T6WlpQ0+LqVUsLmLocaUUhowYEC69957c/ufffbZtH79+tz9hx9+OPXu3btg45prje/1v//7v6lz586ptLR0qw1HPsYVcu7GWmNJSUnaf//908CBA1Pbtm3Tb37zm3r7Z8+enXbfffdt1tucNMdepBjmbo69SCHnLlS/lJI+qKFqbI69SDHU+F7NpRcphhrz2S8Jpd5j3bp1afny5Wn58uW55WuNaVxzq/Hhhx+u9wL2Xm+99VaaNWtWg48r5NzFUOP3v//9NHz48K2OO/fcc1NJSUmDj0spFWzuYqgxpZSmTp2a7rnnnq2OHT9+fDr77LMLNq651rgly5YtS3feeWd66623tvr1+RhXyLkbY43f/va3693uu+++evu/8Y1vpNNOO+19621umlMvUgxzN8depJBzF6pfSkkf1FA1NsdepBhq3JLm0IsUQ4357JdKUkppxz63DwAAAAB2TGmhCwAAAACg+RFKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRTQZA0ePDguuOCC7Ro7a9asKCkpiVWrVn2oOffYY4+46qqrPtQxAACyol8CCkkoBQAAAEDmhFIAAAAAZE4oBTQLN998cxx88MHRrl276NKlS3zmM5+J119/fbNxf/7zn2PAgAHRqlWrOOyww2LhwoX19j/yyCNx1FFHRevWraNHjx7xta99LdasWZPVwwAAyBv9EpA1oRTQLKxfvz6+853vxNNPPx133nlnvPzyy3HWWWdtNu6b3/xm/PjHP44nnngidt111xgxYkSsX78+IiKWLFkSJ5xwQowcOTKeeeaZ+NWvfhWPPPJInHfeeRk/GgCAhqdfArJWVugCALLwhS98IffvPffcM6655po45JBD4q233oq2bdvm9l1++eVx3HHHRUTEjTfeGN27d4877rgjPvWpT8XEiRPjs5/9bO5ioHvvvXdcc801ccwxx8TUqVOjVatWmT4mAICGpF8CsmalFNAszJs3L0aMGBE9e/aMdu3axTHHHBMREa+88kq9cVVVVbl/d+jQIfbdd9944YUXIiLi6aefjhtuuCHatm2buw0bNiw2btwYS5cuze7BAADkgX4JyJqVUkCTt2bNmhg2bFgMGzYsbrnllth1113jlVdeiWHDhsW6deu2+zhvvfVWfPnLX46vfe1rm+3r2bNnQ5YMAJAp/RJQCEIpoMl78cUX480334xJkyZFjx49IiLiySef3OLYuXPn5hqmf/7zn/GXv/wl+vXrFxERBx10UDz//PPRp0+fbAoHAMiIfgkoBG/fA5q8nj17RsuWLePaa6+Nv/71r/Hb3/42vvOd72xx7BVXXBEzZ86MhQsXxllnnRWdOnWKk08+OSIiLrroonj00UfjvPPOiwULFsRLL70Ud911lwt3AgBFT78EFIJQCmjydt1117jhhhvitttui/322y8mTZoUP/rRj7Y4dtKkSXH++efHoEGDYsWKFXH33XdHy5YtIyJiwIABMXv27PjLX/4SRx11VAwcODAuu+yy6NatW5YPBwCgwemXgEIoSSmlQhcBAAAAQPNipRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRQAAAAAmRNKAQAAAJA5oRTQ4F5++eUoKSmJH/3oRw12zFmzZkVJSUnMmjWrwY5ZjJYtWxatWrWKP//5z3mdZ9y4cXHooYfmdQ4AaM70S/mjX4LiIZQCIiLihhtuiJKSknjyyScLXUqDWLJkSXz5y1+OPffcM1q1ahUVFRVxxBFHxNVXXx1vv/12ocuLiIjrrrsubrjhhg/0NVdccUUceuihccQRR+S2LVq0KMaMGROHH354tGrVKkpKSuLll1/e6jFWr14dF154YfTu3TvKy8tj9913j//8z/+Mf/3rX7kxF1xwQTz99NPx29/+9oM+LABosvRL2cu6X9oU7G3t9r3vfS83Vr8EH15ZoQsAaGi/+93v4r/+67+ivLw8zjjjjOjfv3+sW7cuHnnkkfjmN78Zzz33XPz85z8vdJlx3XXXRadOneKss87arvFvvPFG3HjjjXHjjTfW2z5nzpy45pprYr/99ot+/frFggULtnqMmpqaOOaYY+Lvf/97nHPOOdGnT59444034k9/+lPU1dXFzjvvHBERXbp0iZNOOil+9KMfxX/8x3/s6EMEABop/dKCLX59v3794uabb95s+8033xx/+MMf4vjjj89t0y/BhyeUApqUpUuXxmmnnRa9evWKBx98MLp27ZrbN2rUqFi8eHH87ne/K2CFO+6Xv/xllJWVxYgRI+pt/4//+I9YtWpVtGvXLn70ox9tM5QaP358/O1vf4unnnoqevfundt+0UUXbTb2U5/6VPzXf/1X/PWvf40999yzwR4HAFBY+qWt90udO3eO008/fbPtEyZMiL333jsOOeSQetv1S/DhePsesN3WrVsXl112WQwaNCgqKyujTZs2cdRRR8VDDz201a+ZPHly9OrVK1q3bh3HHHNMLFy4cLMxL774Yvznf/5ndOjQIVq1ahUHH3zwDi+D/uEPfxhvvfVWTJs2rV6DtUmfPn3i/PPPz93/97//Hd/5zndir732ivLy8thjjz3i4osvjrq6unpfV1JSEt/+9rc3O94ee+xR7y93m5b1//nPf46xY8fGrrvuGm3atIlPfvKT8cYbb9T7uueeey5mz56dWw4+ePDgbT62O++8Mw499NBo27Ztve0dOnSIdu3abfNrIyJWrVoV06dPj3POOSd69+4d69at2+xxvtvQoUMjIuKuu+5632MDAO/QL317s+MVU7+0JY8//ngsXrw4PvvZz262T78EH45QCthutbW18T//8z8xePDg+MEPfhDf/va344033ohhw4Zt8a9NN910U1xzzTUxatSoGD9+fCxcuDCGDBkS1dXVuTHPPfdcHHbYYfHCCy/EuHHj4sc//nG0adMmTj755Ljjjjs+cI1333137LnnnnH44Ydv1/gvfvGLcdlll8VBBx0UkydPjmOOOSYmTpwYp5122gee+91Gjx4dTz/9dFx++eVx7rnnxt133x3nnXdebv9VV10V3bt3j759+8bNN98cN998c3zrW9/a6vHWr18fTzzxRBx00EE7XNMjjzwSa9eujT59+sR//ud/xs477xytW7eOI444Yos/v8rKythrr73yfpFQAGhK9EvbrzH2S1tyyy23RERsMZTSL8GH4+17wHbbZZdd4uWXX46WLVvmtn3pS1+Kvn37xrXXXhvTpk2rN37x4sXx0ksvxe677x4RESeccEIceuih8YMf/CCuvPLKiIg4//zzo2fPnvHEE09EeXl5RER89atfjSOPPDIuuuii+OQnP7nd9dXW1sarr74aJ5100naNf/rpp+PGG2+ML37xi/GLX/wiN/duu+0WP/rRj+Khhx6KY489drvnf7eOHTvGH/7whygpKYmIiI0bN8Y111wTNTU1UVlZGSeffHJccskl0alTpy0uEX+vV155Jd5+++16b7n7oF566aWIeOctfHvttVfcdNNNUVNTExMmTIghQ4bEc889t9lfS/fcc894/vnnd3hOAGhu9EvbrzH2S++1YcOG+NWvfhUf/ehHo0+fPlsco1+CHWelFLDddtppp1yDtXHjxvjHP/4R//73v+Pggw+Op556arPxJ598cq7Bioj46Ec/Goceemj8/ve/j4iIf/zjH/Hggw/Gpz71qVi9enWsXLkyVq5cGW+++WYMGzYsXnrppXj11Ve3u77a2tqIiO1emr2pjrFjx9bb/vWvfz0i4kNdS+Gcc87JNVgREUcddVRs2LAh/va3v+3Q8d58882IeKfR3VFvvfVWRLyztH7mzJnxmc98Js4999y4884745///GdMmTJls6/ZZZddYuXKlTs8JwA0N/ql7dcY+6X3mjlzZlRXV29xldQm+iXYcUIp4AO58cYbY8CAAdGqVavo2LFj7LrrrvG73/0uampqNhu79957b7Ztn332yX387uLFiyOlFJdeemnsuuuu9W6XX355RES8/vrr211bRUVFRESsXr16u8b/7W9/i9LS0s3+6tWlS5do3779DjdEERE9e/asd39Tc/TPf/5zh48ZEZFS2uGvbd26dUREjBgxot51Fg477LDo3bt3PProo1uc793NIgDw/vRL26cx9kvvdcstt8ROO+0Up5566jbn0y/BjvH2PWC7/fKXv4yzzjorTj755PjmN78Zu+22W+y0004xceLEWLJkyQc+3saNGyMi4hvf+EYMGzZsi2O2tkx6SyoqKqJbt25bvDjotnyYJmLDhg1b3L7TTjttcfuONklADLwQAABdvUlEQVQdO3aMiA/XpHXr1i0i3vlUmffabbfdtnjsf/7zn9GpU6cdnhMAmhv90uaKqV96t7fffjvuuOOOGDp06Bb7p030S7DjhFLAdvvNb34Te+65Z9x+++31GpNNf6V7r03XMHq3v/zlL7HHHntEROQ+NrdFixa5Ty75sE488cT4+c9/HnPmzImqqqptju3Vq1ds3LgxXnrppejXr19ue3V1daxatSp69eqV27bLLrvEqlWr6n39unXr4rXXXtvhWj9Ic9ezZ89o3bp1LF26dIfnGzRoUETEFpf4L1++PPr27bvZ9qVLl8YBBxyww3MCQHOjX1pV7+uLrV96t9/+9rexevXqbb51L0K/BB+Gt+8B223TX7Pe/derxx57LObMmbPF8XfeeWe9AOTxxx+Pxx57LIYPHx4R76zOGTx4cPzsZz/bYrPy7o8E3l4XXnhhtGnTJr74xS/W+9SaTZYsWRJXX311RER8/OMfj4h3Ptnl3TZdVPQTn/hEbttee+0VDz/8cL1xP//5z7f6l7/t0aZNm80at61p0aJFHHzwwfHkk0/u8Hz77rtvHHDAAXHXXXfVu+7BH/7wh1i2bFkcd9xx9cbX1NTEkiVLtvuTeQAA/VKx90vvNmPGjNh55523eSF5/RJ8OFZKAfVcf/31cd999222/fzzz48TTzwxbr/99vjkJz8Zn/jEJ2Lp0qXx05/+NPbbb7/cRbTfrU+fPnHkkUfGueeeG3V1dXHVVVdFx44d48ILL8yNmTJlShx55JGx//77x5e+9KXYc889o7q6OubMmRN///vf4+mnn/5A9e+1114xY8aMOPXUU6Nfv35xxhlnRP/+/WPdunXx6KOPxm233RZnnXVWREQccMABceaZZ8bPf/7zWLVqVRxzzDHx+OOPx4033hgnn3xyvU+S+eIXvxhf+cpXYuTIkXHcccfF008/Hffff/+HWqo9aNCgmDp1anz3u9+NPn36xG677RZDhgzZ6viTTjopvvWtb0VtbW3uehAR7zRD1157bURE7uOIf/KTn0T79u2jffv29T5aefLkyXHcccfFkUceGV/+8pejpqYmrrzyythnn33i3HPPrTffAw88ECml7f50HgBoLvRLTbtfinjnAvP33ntvjBw5st61ON9LvwQfUgJIKU2fPj1FxFZvy5YtSxs3bkzf//73U69evVJ5eXkaOHBguueee9KZZ56ZevXqlTvW0qVLU0Sk//7v/04//vGPU48ePVJ5eXk66qij0tNPP73Z3EuWLElnnHFG6tKlS2rRokXafffd04knnph+85vf5MY89NBDKSLSQw89tF2P5y9/+Uv60pe+lPbYY4/UsmXL1K5du3TEEUeka6+9Nq1duzY3bv369WnChAmpd+/eqUWLFqlHjx5p/Pjx9caklNKGDRvSRRddlDp16pR23nnnNGzYsLR48eLUq1evdOaZZ272fXziiSfqff2W6l+xYkX6xCc+kdq1a5ciIh1zzDHbfEzV1dWprKws3XzzzfW2b/p+b+n27p/LJn/84x/TYYcdllq1apU6dOiQPve5z6XXXntts3GnnnpqOvLII7dZEwA0J/ql5tMv/fSnP00RkX77299ucz79Enw4JSk14EcTAJBXZ599dvzlL3+JP/3pT3mdZ8WKFdG7d++49dZb/eUPACgq+iUoHkIpgCLyyiuvxD777BMzZ86MI444Im/zjBs3Lh588MF4/PHH8zYHAEA+6JegeAilAAAAAMicT98DAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyV1boAhqDjRs3xvLly6Ndu3ZRUlJS6HIAgEYmpRSrV6+Obt26RWlp8/ybnn4JANiWHemXhFIRsXz58ujRo0ehywAAGrlly5ZF9+7dC11GQeiXAIDt8UH6JaFURLRr1y4i3vnGVVRUFLgaAKCxqa2tjR49euR6huZIvwQAbMuO9EtCqYjcEvSKigpNFgCwVc35bWv6JQBge3yQfql5XhQBAAAAgIISSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJlr1KHUt7/97SgpKal369u3b27/2rVrY9SoUdGxY8do27ZtjBw5MqqrqwtYMQAAAADbo1GHUhERH/nIR+K1117L3R555JHcvjFjxsTdd98dt912W8yePTuWL18ep5xySgGrBQAAAGB7lBW6gPdTVlYWXbp02Wx7TU1NTJs2LWbMmBFDhgyJiIjp06dHv379Yu7cuXHYYYdlXSoAAAAA26nRr5R66aWXolu3brHnnnvGZz/72XjllVciImLevHmxfv36GDp0aG5s3759o2fPnjFnzpxtHrOuri5qa2vr3QAAAADITqMOpQ499NC44YYb4r777oupU6fG0qVL46ijjorVq1fHihUromXLltG+fft6X9O5c+dYsWLFNo87ceLEqKyszN169OiRx0cBAAAAwHs16rfvDR8+PPfvAQMGxKGHHhq9evWKX//619G6desdPu748eNj7Nixufu1tbWCKQAAAIAMNeqVUu/Vvn372GeffWLx4sXRpUuXWLduXaxataremOrq6i1eg+rdysvLo6Kiot4NAAAAgOwUVSj11ltvxZIlS6Jr164xaNCgaNGiRcycOTO3f9GiRfHKK69EVVVVAasEAAAA4P006rfvfeMb34gRI0ZEr169Yvny5XH55ZfHTjvtFJ/+9KejsrIyzj777Bg7dmx06NAhKioqYvTo0VFVVeWT9wAAAAAauUYdSv3973+PT3/60/Hmm2/GrrvuGkceeWTMnTs3dt1114iImDx5cpSWlsbIkSOjrq4uhg0bFtddd12BqwYAAADg/ZSklFKhiyi02traqKysjJqaGteXAgA2o1fwPQAAtm1HeoWiuqYUAAAAAE2DUAoAAACAzAmlAAAAAMhco77QOQDQeE2av3KzbeMGdipAJQBAc6H/aFqslAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADInlAIAAAAgc0IpAAAAADJXVugCAKA5mDR/5Ra3jxvYKeNKAACgcbBSCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAIrc1KlTY8CAAVFRUREVFRVRVVUV9957b27/4MGDo6SkpN7tK1/5SgErBgBwoXMAgKLXvXv3mDRpUuy9996RUoobb7wxTjrppJg/f3585CMfiYiIL33pS3HFFVfkvmbnnXcuVLkAABEhlAIAKHojRoyod/973/teTJ06NebOnZsLpXbeeefo0qVLIcoDANgib98DAGhCNmzYELfeemusWbMmqqqqcttvueWW6NSpU/Tv3z/Gjx8f//rXvwpYJQCAlVIAAE3Cs88+G1VVVbF27dpo27Zt3HHHHbHffvtFRMRnPvOZ6NWrV3Tr1i2eeeaZuOiii2LRokVx++23b/V4dXV1UVdXl7tfW1ub98cAADQvQikAgCZg3333jQULFkRNTU385je/iTPPPDNmz54d++23X5xzzjm5cfvvv3907do1Pvaxj8WSJUtir7322uLxJk6cGBMmTMiqfABotCbNX7nZtnEDOxWgkqZHKAUAFB3N4eZatmwZffr0iYiIQYMGxRNPPBFXX311/OxnP9ts7KGHHhoREYsXL95qKDV+/PgYO3Zs7n5tbW306NEjD5UDAM2VUAoAoAnauHFjvbffvduCBQsiIqJr165b/fry8vIoLy/PR2kAABEhlAIAKHrjx4+P4cOHR8+ePWP16tUxY8aMmDVrVtx///2xZMmSmDFjRnz84x+Pjh07xjPPPBNjxoyJo48+OgYMGFDo0gGAZkwoBQBQ5F5//fU444wz4rXXXovKysoYMGBA3H///XHcccfFsmXL4oEHHoirrroq1qxZEz169IiRI0fGJZdcUuiyAYBmTigFAFDkpk2bttV9PXr0iNmzZ2dYDQDA9iktdAEAAAAAND9CKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNlhS4AAAAAaN4mzV+52bZxAzsVoBKyZKUUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkrK3QBAAAAQOMxaf7KzbaNG9ipAJXQ1FkpBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZK6s0AUAAABAIU2av3KzbeMGdipAJfnV0I/zvcdrLN+z5vLzbAqslAIAAAAgc0IpAAAAADLn7XsAQF5ZQg8AwJZYKQUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGSuqEKpSZMmRUlJSVxwwQW5bWvXro1Ro0ZFx44do23btjFy5Miorq4uXJEAAAAAvK+iCaWeeOKJ+NnPfhYDBgyot33MmDFx9913x2233RazZ8+O5cuXxymnnFKgKgEAAADYHkURSr311lvx2c9+Nn7xi1/ELrvsktteU1MT06ZNiyuvvDKGDBkSgwYNiunTp8ejjz4ac+fOLWDFAAAAAGxLUYRSo0aNik984hMxdOjQetvnzZsX69evr7e9b9++0bNnz5gzZ85Wj1dXVxe1tbX1bgAAAABkp6zQBbyfW2+9NZ566ql44oknNtu3YsWKaNmyZbRv377e9s6dO8eKFSu2esyJEyfGhAkTGrpUAOBDmjR/5Wbbxg3sVIBKAADIt0a9UmrZsmVx/vnnxy233BKtWrVqsOOOHz8+ampqcrdly5Y12LEBAAAAeH+NOpSaN29evP7663HQQQdFWVlZlJWVxezZs+Oaa66JsrKy6Ny5c6xbty5WrVpV7+uqq6ujS5cuWz1ueXl5VFRU1LsBAAAAkJ1G/fa9j33sY/Hss8/W2/b5z38++vbtGxdddFH06NEjWrRoETNnzoyRI0dGRMSiRYvilVdeiaqqqkKUDAAAAMB2aNShVLt27aJ///71trVp0yY6duyY23722WfH2LFjo0OHDlFRURGjR4+OqqqqOOywwwpRMgAAAADboVGHUttj8uTJUVpaGiNHjoy6uroYNmxYXHfddYUuCwAAAIBtKLpQatasWfXut2rVKqZMmRJTpkwpTEEAAAAAfGCN+kLnAAAAADRNQikAAAAAMieUAgAoclOnTo0BAwZERUVFVFRURFVVVdx77725/WvXro1Ro0ZFx44do23btjFy5Miorq4uYMUAAEIpAICi171795g0aVLMmzcvnnzyyRgyZEicdNJJ8dxzz0VExJgxY+Luu++O2267LWbPnh3Lly+PU045pcBVAwDNXdFd6BwAgPpGjBhR7/73vve9mDp1asydOze6d+8e06ZNixkzZsSQIUMiImL69OnRr1+/mDt3bhx22GGFKBkAwEopAICmZMOGDXHrrbfGmjVroqqqKubNmxfr16+PoUOH5sb07ds3evbsGXPmzNnqcerq6qK2trbeDQCgIVkpBQDQBDz77LNRVVUVa9eujbZt28Ydd9wR++23XyxYsCBatmwZ7du3rze+c+fOsWLFiq0eb+LEiTFhwoQ8Vw0AhTNp/srNto0b2KkAlTRfVkoBADQB++67byxYsCAee+yxOPfcc+PMM8+M559/foePN378+Kipqcndli1b1oDVAgBYKQUA0CS0bNky+vTpExERgwYNiieeeCKuvvrqOPXUU2PdunWxatWqequlqquro0uXLls9Xnl5eZSXl+e7bACgGbNSCgCgCdq4cWPU1dXFoEGDokWLFjFz5szcvkWLFsUrr7wSVVVVBawQAGjurJQCAChy48ePj+HDh0fPnj1j9erVMWPGjJg1a1bcf//9UVlZGWeffXaMHTs2OnToEBUVFTF69OioqqryyXsAQEEJpQAAitzrr78eZ5xxRrz22mtRWVkZAwYMiPvvvz+OO+64iIiYPHlylJaWxsiRI6Ouri6GDRsW1113XYGrBgCaO6EUAECRmzZt2jb3t2rVKqZMmRJTpkzJqCIAgPfnmlIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZE4oBQAAAEDmygpdAAAAALBlk+av3GzbuIGdClAJDcHPsz4rpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADIXFmhCwAA8m/S/JWbbRs3sFMBKgEAgHdYKQUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGSurNAFAACNx6T5KzfbNm5gpwJUAgBAU2elFAAAAACZs1IKAACARsOqXWg+rJQCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyV1boAgAAAIAPZ9L8lfXujxvYqUCV1PfeuiIaT22NWXP5vlkpBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZM6FzgGgkWkuF7YEAKB5s1IKAAAAgMwJpQAAAADInFAKAKCITZw4MQ455JBo165d7LbbbnHyySfHokWL6o0ZPHhwlJSU1Lt95StfKVDFAADvEEoBABSx2bNnx6hRo2Lu3Lnxxz/+MdavXx/HH398rFmzpt64L33pS/Haa6/lbj/84Q8LVDEAwDtc6BwAoIjdd9999e7fcMMNsdtuu8W8efPi6KOPzm3feeedo0uXLlmXBwCwVVZKAQA0ITU1NRER0aFDh3rbb7nllujUqVP0798/xo8fH//6178KUR4AQI6VUgAATcTGjRvjggsuiCOOOCL69++f2/6Zz3wmevXqFd26dYtnnnkmLrrooli0aFHcfvvtWz1WXV1d1NXV5e7X1tbmtXYAoPkRSgEANBGjRo2KhQsXxiOPPFJv+znnnJP79/777x9du3aNj33sY7FkyZLYa6+9tnisiRMnxoQJE/JaL43DpPkrN9s2bmCnAlQCQHPj7XsAAE3AeeedF/fcc0889NBD0b17922OPfTQQyMiYvHixVsdM378+Kipqcndli1b1qD1AgBYKQUARcrqBiIiUkoxevTouOOOO2LWrFnRu3fv9/2aBQsWRERE165dtzqmvLw8ysvLG6pMAIDNCKUAAIrYqFGjYsaMGXHXXXdFu3btYsWKFRERUVlZGa1bt44lS5bEjBkz4uMf/3h07NgxnnnmmRgzZkwcffTRMWDAgAJXDwA0Z0IpAIAiNnXq1IiIGDx4cL3t06dPj7POOitatmwZDzzwQFx11VWxZs2a6NGjR4wcOTIuueSSAlQLAPB/hFIAAEUspbTN/T169IjZs2dnVA0AwPZzoXMAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzQikAAAAAMieUAgAAACBzZYUuAAAAoKmaNH9lvfvjBnYqUCVNz3u/txG+v1BsrJQCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAy16hDqalTp8aAAQOioqIiKioqoqqqKu69997c/rVr18aoUaOiY8eO0bZt2xg5cmRUV1cXsGIAAAAAtkejDqW6d+8ekyZNinnz5sWTTz4ZQ4YMiZNOOimee+65iIgYM2ZM3H333XHbbbfF7NmzY/ny5XHKKacUuGoAAAAA3k9ZoQvYlhEjRtS7/73vfS+mTp0ac+fOje7du8e0adNixowZMWTIkIiImD59evTr1y/mzp0bhx12WCFKBgAAAGA7NOqVUu+2YcOGuPXWW2PNmjVRVVUV8+bNi/Xr18fQoUNzY/r27Rs9e/aMOXPmbPNYdXV1UVtbW+8GAAAAQHYafSj17LPPRtu2baO8vDy+8pWvxB133BH77bdfrFixIlq2bBnt27evN75z586xYsWKbR5z4sSJUVlZmbv16NEjj48AAAAAgPdq9KHUvvvuGwsWLIjHHnsszj333DjzzDPj+eef/1DHHD9+fNTU1ORuy5Yta6BqAQAAANgejfqaUhERLVu2jD59+kRExKBBg+KJJ56Iq6++Ok499dRYt25drFq1qt5qqerq6ujSpcs2j1leXh7l5eX5LBsAAACAbWj0K6Xea+PGjVFXVxeDBg2KFi1axMyZM3P7Fi1aFK+88kpUVVUVsEIAAAAA3k+jXik1fvz4GD58ePTs2TNWr14dM2bMiFmzZsX9998flZWVcfbZZ8fYsWOjQ4cOUVFREaNHj46qqiqfvAcAQFGaNH/lZtvGDexUgEo215C1NebHub2awmMAKLRGHUq9/vrrccYZZ8Rrr70WlZWVMWDAgLj//vvjuOOOi4iIyZMnR2lpaYwcOTLq6upi2LBhcd111xW4agAAAADeT6MOpaZNm7bN/a1atYopU6bElClTMqoIAAAAgIZQdNeUAgAAAKD4CaUAAAAAyJxQCgAAAIDMNeprSgE0Vc35E3ua82MHAAD+j5VSAAAAAGROKAUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGTOp+8BAECR8Umm+eN7C5AdK6UAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyFzeQqk999wz3nzzzc22r1q1Kvbcc898TQsAUDT0SwBAc5a3UOrll1+ODRs2bLa9rq4uXn311XxNCwBQNPRLAEBzVtbQB/ztb3+b+/f9998flZWVufsbNmyImTNnxh577NHQ0wIAFA39EgBAHkKpk08+OSIiSkpK4swzz6y3r0WLFrHHHnvEj3/844aeFgCgaOiXAADyEEpt3LgxIiJ69+4dTzzxRHTq1KmhpwAAKGr6JQCAPIRSmyxdujRfhwYAaBL0SwBAc5a3UCoiYubMmTFz5sx4/fXXc38R3OT666/P59QAAEVBvwQANFd5C6UmTJgQV1xxRRx88MHRtWvXKCkpyddUAABFSb8EADRneQulfvrTn8YNN9wQn/vc5/I1BQBAUdMvAQDNWWm+Drxu3bo4/PDD83V4AICip18CAJqzvIVSX/ziF2PGjBn5OjwAQNHTLwEAzVne3r63du3a+PnPfx4PPPBADBgwIFq0aFFv/5VXXpmvqQEAioJ+CQBozvIWSj3zzDNx4IEHRkTEwoUL6+1zEU8AAP0SANC85S2Ueuihh/J1aACAJqEh+qWJEyfG7bffHi+++GK0bt06Dj/88PjBD34Q++67b27M2rVr4+tf/3rceuutUVdXF8OGDYvrrrsuOnfu/KHnBwDYUXm7phQAAPk3e/bsGDVqVMydOzf++Mc/xvr16+P444+PNWvW5MaMGTMm7r777rjtttti9uzZsXz58jjllFMKWDUAQB5XSh177LHbXHb+4IMP5mtqAICi0BD90n333Vfv/g033BC77bZbzJs3L44++uioqamJadOmxYwZM2LIkCERETF9+vTo169fzJ07Nw477LAP9yAAAHZQ3kKpTddH2GT9+vWxYMGCWLhwYZx55pn5mhaABjRp/srNto0b2KkAlUDTlI9+qaamJiIiOnToEBER8+bNi/Xr18fQoUNzY/r27Rs9e/aMOXPmCKUAgILJWyg1efLkLW7/9re/HW+99Va+pgUAKBoN3S9t3LgxLrjggjjiiCOif//+ERGxYsWKaNmyZbRv377e2M6dO8eKFSu2eqy6urqoq6vL3a+trf3A9QAAbEveQqmtOf300+OjH/1o/OhHP8p6agCAorCj/dKoUaNi4cKF8cgjj3zoGiZOnBgTJkz40McBmgerq6Ew3nvuFdt5l/mFzufMmROtWrXKeloAgKKxI/3SeeedF/fcc0889NBD0b1799z2Ll26xLp162LVqlX1xldXV0eXLl22erzx48dHTU1N7rZs2bIPVA8AwPvJ20qp936iS0opXnvttXjyySfj0ksvzde0AABFoyH6pZRSjB49Ou64446YNWtW9O7du97+QYMGRYsWLWLmzJkxcuTIiIhYtGhRvPLKK1FVVbXV45aXl0d5efkHfEQAANsvb6FUZWVlvfulpaWx7777xhVXXBHHH398vqYFACgaDdEvjRo1KmbMmBF33XVXtGvXLnedqMrKymjdunVUVlbG2WefHWPHjo0OHTpERUVFjB49OqqqqlzkHAAoqLyFUtOnT8/XoQEAmoSG6JemTp0aERGDBw/e7NhnnXVWRLxzQfXS0tIYOXJk1NXVxbBhw+K666770HMDAHwYeb/Q+bx58+KFF16IiIiPfOQjMXDgwHxPCQBQVD5Mv5RSet8xrVq1iilTpsSUKVN2uEYAgIaWt1Dq9ddfj9NOOy1mzZqV+wjiVatWxbHHHhu33npr7LrrrvmaGgCgKOiXAIDmLG+fvjd69OhYvXp1PPfcc/GPf/wj/vGPf8TChQujtrY2vva1r+VrWgCAoqFfAgCas7ytlLrvvvvigQceiH79+uW27bfffjFlyhQXOgc+kEnzV25x+7iBnTKuJHtbeuzN4XHni+8njY1+CQBozvK2Umrjxo3RokWLzba3aNEiNm7cmK9pAQCKhn4JAGjO8hZKDRkyJM4///xYvnx5bturr74aY8aMiY997GP5mhYAoGjolwCA5ixvodRPfvKTqK2tjT322CP22muv2GuvvaJ3795RW1sb1157bb6mBQAoGvolAKA5y9s1pXr06BFPPfVUPPDAA/Hiiy9GRES/fv1i6NCh+ZoSAKCo6Jdoigpx/T7XDMyfhvzeNoWfU1N4DNCYNPhKqQcffDD222+/qK2tjZKSkjjuuONi9OjRMXr06DjkkEPiIx/5SPzpT39q6GkBAIqGfgkAIA+h1FVXXRVf+tKXoqKiYrN9lZWV8eUvfzmuvPLKhp4WAKBo6JcAAPIQSj399NNxwgknbHX/8ccfH/PmzWvoaQEAioZ+CQAgD6FUdXX1Fj/aeJOysrJ44403GnpaAICioV8CAMjDhc533333WLhwYfTp02eL+5955pno2rVrQ08L5JmLOtKcbOn5HrHl57xzgx2hXwIAyMNKqY9//ONx6aWXxtq1azfb9/bbb8fll18eJ554YkNPCwBQNPRLAAB5WCl1ySWXxO233x777LNPnHfeebHvvvtGRMSLL74YU6ZMiQ0bNsS3vvWthp4WAKBo6JcAAPIQSnXu3DkeffTROPfcc2P8+PGRUoqIiJKSkhg2bFhMmTIlOnfu3NDTAgAUDf0SAEAeQqmIiF69esXvf//7+Oc//xmLFy+OlFLsvffescsuu+RjOgCAoqNfAgCau7yEUpvssssuccghh+RzCgCAoqZfAgCaqwa/0DkAAAAAvB+hFAAAAACZy+vb9wAAABqLSfNX1rs/bmCnAlVS33vrimg8tRW7Qn1vG+tzjfxxHu8YK6UAAAAAyJyVUjRZW0qqI7acVku1AQAAIFtWSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQubJCFwDQ2E2av3KzbeMGdipAJQAAAE2HUAoAgGbnvX9w8McGAMiet+8BAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZE0oBAAAAkDmhFAAAAACZKyt0AUDzNWn+ys22jRvYqQCVNA2+nwAAQDGxUgoAAACAzAmlAAAAAMict+8BAAA0Ie99S/+W3s7vbf9AY2ClFAAAAACZa9Sh1MSJE+OQQw6Jdu3axW677RYnn3xyLFq0qN6YtWvXxqhRo6Jjx47Rtm3bGDlyZFRXVxeoYgAAAAC2R6MOpWbPnh2jRo2KuXPnxh//+MdYv359HH/88bFmzZrcmDFjxsTdd98dt912W8yePTuWL18ep5xySgGrBgAAAOD9NOprSt1333317t9www2x2267xbx58+Loo4+OmpqamDZtWsyYMSOGDBkSERHTp0+Pfv36xdy5c+Owww4rRNkAAAAAvI9GvVLqvWpqaiIiokOHDhERMW/evFi/fn0MHTo0N6Zv377Rs2fPmDNnTkFqBAAAAOD9NeqVUu+2cePGuOCCC+KII46I/v37R0TEihUromXLltG+fft6Yzt37hwrVqzY6rHq6uqirq4ud7+2tjYvNQMAAACwZUUTSo0aNSoWLlwYjzzyyIc+1sSJE2PChAkNUBVQrLb0McgRPgq5Mdnej6r2s2RbPD8AABqvonj73nnnnRf33HNPPPTQQ9G9e/fc9i5dusS6deti1apV9cZXV1dHly5dtnq88ePHR01NTe62bNmyfJUOAAAAwBY06lAqpRTnnXde3HHHHfHggw9G79696+0fNGhQtGjRImbOnJnbtmjRonjllVeiqqpqq8ctLy+PioqKejcAgGL18MMPx4gRI6Jbt25RUlISd955Z739Z511VpSUlNS7nXDCCYUpFgDg/2vUb98bNWpUzJgxI+66665o165d7jpRlZWV0bp166isrIyzzz47xo4dGx06dIiKiooYPXp0VFVV+eQ9AKDZWLNmTRxwwAHxhS98IU455ZQtjjnhhBNi+vTpufvl5eVZlQcAsEWNOpSaOnVqREQMHjy43vbp06fHWWedFRERkydPjtLS0hg5cmTU1dXFsGHD4rrrrsu4UgCAwhk+fHgMHz58m2PKy8u3eXkDAICsNepQKqX0vmNatWoVU6ZMiSlTpmRQEQBAcZo1a1bstttuscsuu8SQIUPiu9/9bnTs2HGr431aMQCQb406lAIA4MM74YQT4pRTTonevXvHkiVL4uKLL47hw4fHnDlzYqeddtri1/i04u3/FNAdPZ5PgYTmraFfY6AYCaUAAJq40047Lffv/fffPwYMGBB77bVXzJo1Kz72sY9t8WvGjx8fY8eOzd2vra2NHj165L1WAKD5aNSfvgcAQMPbc889o1OnTrF48eKtjvFpxQBAvlkpBc2cZcPNTz5+5p5HUFz+/ve/x5tvvhldu3YtdCkAQDMmlAIAKHJvvfVWvVVPS5cujQULFkSHDh2iQ4cOMWHChBg5cmR06dIllixZEhdeeGH06dMnhg0bVsCqAYDmTigFAFDknnzyyTj22GNz9zddC+rMM8+MqVOnxjPPPBM33nhjrFq1Krp16xbHH398fOc734ny8vJClQwAIJQCACh2gwcPjpTSVvfff//9GVYDALB9XOgcAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADInFAKAAAAgMwJpQAAAADIXFmhC6BpmzR/5Wbbxg3sVIBKmhffdwCaGr/bwHkAND1WSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQOaEUAAAAAJkTSgEAAACQubJCF0D+TZq/crNt4wZ2KkAlDaOpPR4AAABojqyUAgAAACBzVkoBAMCHYBU3AOwYK6UAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyJxQCgAAAIDMCaUAAAAAyFxZoQuA5m7S/JWbbRs3sNOHHttcFfJ7tKW5s5wfAACgmFgpBQAAAEDmhFIAAAAAZE4oBQAAAEDmhFIAAAAAZM6FzgEAaDJ8KEjT4ucJ0LRZKQUAAABA5oRSAAAAAGROKAUAAABA5oRSAAAAAGTOhc4bGRdzbNy29POJ2PLPqDn/LJvzYwcAAGD7WCkFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQOaEUgAAAABkTigFAAAAQObKCl0AAADN26T5K+vdHzewU4EqAQCyJJQi570NYYSmEAAAAMgPb98DAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAAAAIHNCKQAAAAAyJ5QCAChyDz/8cIwYMSK6desWJSUlceedd9bbn1KKyy67LLp27RqtW7eOoUOHxksvvVSYYgEA/j+hFABAkVuzZk0ccMABMWXKlC3u/+EPfxjXXHNN/PSnP43HHnss2rRpE8OGDYu1a9dmXCkAwP/5f+3deXRUdbbo8V1FZQ5JIEAGISQaJhuZBENQBLzByNUItksFpEHRRwPStIDQiJIIeiW2yqSAXm0mFXG4Cq0XaGzUIENAUFAmTRiaCAbFlgBREiT7/cHLeRSZTsGpU0nl+1nrrEVV7ezf71Sd3zm7diqFy9cTAAAAwOXp16+f9OvXr9LHVFVmz54tjz/+uPTv319ERJYuXSoxMTGyYsUKGThwoJ1TBQAAMPBJKQAAAD928OBBKSwslLS0NOO+yMhISUlJkc2bN1f5cyUlJXLy5Em3DQAAwEo0pQAAAPxYYWGhiIjExMS43R8TE2M8VpkZM2ZIZGSksbVo0cKr8wQAAPUPTSkAAABU8Oijj0pRUZGxFRQU+HpKAADAz9CUAgAA8GOxsbEiInLs2DG3+48dO2Y8VpmgoCCJiIhw2wAAAKxEUwoAAMCPJSUlSWxsrKxbt8647+TJk7JlyxZJTU314cwAAEB9x/++BwAAUMedPn1a8vPzjdsHDx6UHTt2SOPGjSUhIUEefvhheeqpp6RVq1aSlJQkU6dOlfj4eBkwYIDvJg0AAOo9mlIAAAB13LZt26RPnz7G7fHjx4uIyLBhw2Tx4sUyadIkKS4ulhEjRsiJEyfkhhtukDVr1khwcLCvpgwAAEBTCgAAoK7r3bu3qGqVjzscDpk+fbpMnz7dxlkBAABUj++UAgAAAAAAgO1oSgEAAAAAAMB2/PmeDbK/PF7hvsmdm/hgJgAAAAAAALUDn5QCAAAAAACA7WhKAQAAAAAAwHY0pQAAAAAAAGA7vlMKAAAA8FN8tykAoDbjk1IAAAAAAACwHU0pAAAAAAAA2I6mFAAAAAAAAGxHUwoAAAAAAAC2oykFAAAAAAAA2/G/710G/jcT61T2XIrwfAIAAAAA4K/4pBQAAAAAAABsR1MKAAAAAAAAtqMpBQAAAAAAANvRlAIAAAAAAIDtan1Tav369ZKRkSHx8fHicDhkxYoVbo+rqmRmZkpcXJyEhIRIWlqa5OXl+WayAAAAAAAAMKXWN6WKi4ulY8eOMm/evEof/+tf/ypz586Vl156SbZs2SJhYWGSnp4uZ86csXmmAAAAAAAAMMvl6wnUpF+/ftKvX79KH1NVmT17tjz++OPSv39/ERFZunSpxMTEyIoVK2TgwIF2ThUAAAAXyP7yeIX7Jndu4oOZAACA2qjWf1KqOgcPHpTCwkJJS0sz7ouMjJSUlBTZvHmzD2cGAAAAAACA6tT6T0pVp7CwUEREYmJi3O6PiYkxHqtMSUmJlJSUGLdPnjzpnQkCAAAAAACgUnW6KXWpZsyYIdOmTfP1NC4LH4cHAAAAAAB1WZ3+873Y2FgRETl27Jjb/ceOHTMeq8yjjz4qRUVFxlZQUODVeQIAAAAAAMBdnW5KJSUlSWxsrKxbt8647+TJk7JlyxZJTU2t8ueCgoIkIiLCbQMAAAAAAIB9av2f750+fVry8/ON2wcPHpQdO3ZI48aNJSEhQR5++GF56qmnpFWrVpKUlCRTp06V+Ph4GTBggO8mDQAAAAAAgGrV+qbUtm3bpE+fPsbt8ePHi4jIsGHDZPHixTJp0iQpLi6WESNGyIkTJ+SGG26QNWvWSHBwsK+mDAAAAAAAgBrU+qZU7969RVWrfNzhcMj06dNl+vTpNs4KAAAAAAAAl6NOf6cUAAAAAAAA6iaaUgAAAAAAALAdTSkAAAAAAADYjqYUAAAAAAAAbEdTCgAAAAAAALajKQUAAAAAAADb0ZQCAAAAAACA7WhKAQAAAAAAwHY0pQAAAAAAAGA7mlIAAAAAAACwHU0pAAAAAAAA2I6mFAAAAAAAAGxHUwoAAAAAAAC2c/l6Aqibsr88XuG+yZ2b+GAmAAAAAACgLuKTUgAAAAAAALAdTSkAAAAAAADYjj/fAwAAAAAA8FNmv37HF1/TwyelAAAAAAAAYDuaUgAAAAAAALAdTSkAAAAAAADYjqYUAAAAAAAAbEdTCgAAAAAAALajKQUAAAAAAADb0ZQCAAAAAACA7WhKAQAA+LknnnhCHA6H29a2bVtfTwsAANRzLl9PAAAAAN73u9/9Tv75z38at10uykAAAOBbVCMAAAD1gMvlktjYWF9PAwAAwMCf7wEAANQDeXl5Eh8fL1deeaXce++9cvjwYV9PCQAA1HN8UgoAAMDPpaSkyOLFi6VNmzby/fffy7Rp06Rnz56ya9cuadiwYaU/U1JSIiUlJcbtkydP2jVdAABQT9CUAgAA8HP9+vUz/t2hQwdJSUmRli1byttvvy0PPPBApT8zY8YMmTZtml1TBAAAdUT2l8fdbk/u3OSSc/HnewAAAPVMVFSUtG7dWvLz86uMefTRR6WoqMjYCgoKbJwhAACoD2hKAQAA1DOnT5+W/fv3S1xcXJUxQUFBEhER4bYBAABYiaYUAACAn3vkkUckJydHDh06JJs2bZI77rhDGjRoIIMGDfL11AAAQD3Gd0oBAAD4ue+++04GDRokP/30kzRt2lRuuOEGyc3NlaZNm/p6agAAoB6jKQUAAODnli9f7uspAAAAVMCf7wEAAAAAAMB2NKUAAAAAAABgO5pSAAAAAAAAsB1NKQAAAAAAANiOphQAAAAAAABsR1MKAAAAAAAAtqMpBQAAAAAAANvRlAIAAAAAAIDtaEoBAAAAAADAdjSlAAAAAAAAYDuaUgAAAAAAALAdTSkAAAAAAADYjqYUAAAAAAAAbEdTCgAAAAAAALajKQUAAAAAAADb0ZQCAAAAAACA7WhKAQAAAAAAwHY0pQAAAAAAAGA7l68nUNtkf3m8wn2TOzfxwUwAAAAAAAD8F5+UAgAAAAAAgO1oSgEAAAAAAMB2NKUAAAAAAABgO5pSAAAAAAAAsB1NKQAAAAAAANiOphQAAAAAAABsR1MKAAAAAAAAtqMpBQAAAAAAANvRlAIAAAAAAIDtaEoBAAAAAADAdjSlAAAAAAAAYDuaUgAAAAAAALAdTSkAAAAAAADYjqYUAAAAAAAAbEdTCgAAAAAAALajKQUAAAAAAADb0ZQCAAAAAACA7WhKAQAAAAAAwHY0pQAAAAAAAGA7mlIAAAAAAACwHU0pAAAAAAAA2I6mFAAAAAAAAGxHUwoAAAAAAAC2oykFAAAAAAAA29GUAgAAAAAAgO1cvp4AAAAA6pbsL49XuG9y5yY+mAkAAKjL+KQUAAAAAAAAbEdTCgAAAAAAALbjz/cAAACEP0kDAACwG5+UAgAAAAAAgO1oSgEAAAAAAMB2NKUAAAAAAABgO5pSAAAAAAAAsJ3fNKXmzZsniYmJEhwcLCkpKbJ161ZfTwkAAKBWoV4CAAC1iV80pd566y0ZP368ZGVlyRdffCEdO3aU9PR0+eGHH3w9NQAAgFqBegkAANQ2ftGUmjlzpvyf//N/5P7775err75aXnrpJQkNDZWFCxf6emoAAAC1AvUSAACobep8U6q0tFS2b98uaWlpxn1Op1PS0tJk8+bNPpwZAABA7UC9BAAAaiOXrydwuY4fPy7nzp2TmJgYt/tjYmJk3759lf5MSUmJlJSUGLeLiopEROTkyZNy5vTZCvEnTwZWmufM6VOmYs3G1eeclcXV55x1+bX0Rs66/Fp6I2ddfi29kbMuv5beyFmXX0tv5LTqeT958qSIiKhqpflqO1/VS5f6OtmxLurrmJXF1ZcxK4tjTO+NWVlcfRmzsjjG9N6YlcXVlzEri/PlmJdUL2kdd+TIERUR3bRpk9v9EydO1Ouuu67Sn8nKylIRYWNjY2NjY2PzaCsoKLCjvLEc9RIbGxsbGxubXZsn9VKd/6RUkyZNpEGDBnLs2DG3+48dOyaxsbGV/syjjz4q48ePN26XlZXJv//9b4mOjhaHwyEi5zt8LVq0kIKCAomIiKhyfLNx5Kz9Of1tf8jJ8UFO+3L62/6Qs2KsqsqpU6ckPj6+2p+trXxZL/livTGmf41Zm+fGmP41Zm2eG2P615i1eW6Xk+tS6qU635QKDAyUa6+9VtatWycDBgwQkfNF07p162TMmDGV/kxQUJAEBQW53RcVFVVpbERERI3Fqydx5Kz9Of1tf8jJ8UFO+3L62/6Q0z02MjLS1M/VRrWhXvLFemNM/xqzNs+NMf1rzNo8N8b0rzFr89wuNZen9VKdb0qJiIwfP16GDRsmXbt2leuuu05mz54txcXFcv/99/t6agAAALUC9RIAAKht/KIpdc8998iPP/4omZmZUlhYKJ06dZI1a9ZU+DJPAACA+op6CQAA1DZ+0ZQSERkzZkyVHz+/FEFBQZKVlVXhY+uXGkfO2p/T3/aHnBwf5LQvp7/tDznNx9Y1vqiXfLHeGNO/xqzNc2NM/xqzNs+NMf1rzNo8N2/UVtVxqNbR/9sYAAAAAAAAdZbT1xMAAAAAAABA/UNTCgAAAAAAALajKQUAAAAAAADb0ZQCAAAAAACA7WhK1SMHDx6U3377zdfTAOos1hBweVhDqMs4flHfsQYA1oE30JQyoaCgQIYPHy4iIsePH5e//vWvcscdd0hqaqqkpqbKHXfcIc8++6z8+OOPl5T/+++/l9dff11WrVolpaWlbo8VFxfL9OnTjdsfffSRZGVlyccffywiIuvXr5d+/frJTTfdJIsWLap2nDZt2kheXl61MUePHpWsrCy599575ZFHHpF9+/ZVG3/xgszIyJDXXntNfv3112p/rib8p5D+bc+ePTJ69Gjp3LmzxMXFSVxcnHTu3FlGjx4te/bsuaScZtdRbV9DItaso/q6hupLoWD1GvKn65AIa8hbfv31V9mwYUOlx9iZM2dk6dKlNea4sKay8jj29TXA1/UTx2vdVZfWQU3n8MtZB5y3zfHHOqcurQERa9eBN95L18l1oKjRjh071Ol06tatW7VRo0Z6xRVX6LBhw3TSpEk6adIkHTZsmDZv3lwbN26sn3/+uamc+fn52qdPH926datGRUVpRESEhoSEaHJysu7atcuIKywsVKfTqaqqr732mrpcLu3SpYuGh4frokWLNCoqSh988EEdPny4BgYG6jvvvKN33HFHpZvT6dS0tDTjtqpqSEiI/vDDD6qqunv3bo2MjNTk5GS96667tG3bthoaGqo7d+7U1atX61dffaWqqufOndPp06drfHy8Op1OveKKK3TGjBlaVlamDodDXS6XRkZG6siRI3Xbtm1VPgdnzpzRCRMmaM+ePTU7O1tVVZ988kkNCwvTsLAwHTRokBYVFRmvwR/+8AdNSkrS4OBgDQ0N1fbt2+vjjz9uxFQ3zpkzZ0y9Lr72ySef6C+//GJZvjNnzmh+fr7l+19YWKjff/99lY//9ttvWlhYaBxbF1q1apUGBgZq9+7dNSsrS+fPn6/z58/XrKws7dGjhwYFBemaNWtqnEP5GlJV0+uoLqwhVTW9jjxZQ6rm19Hu3bt11KhR2qlTJ42NjdXY2Fjt1KmTjho1Snfv3l3ja1OZo0eP6muvvab/+7//qyUlJW6PnT59WqdNm2bcXrt2rWZmZuq6detUVTUnJ0dvueUW7dOnjy5cuLDacQICAnTPnj3Vxhw5ckQzMzN18ODBOmHCBN27d2+18WfPnq1w32233aZLly69rPVa/np7yuo15G/XIVXvraH67JtvvtGWLVuqw+FQp9OpN954ox49etR4/MLjpDrlNZUVx7Gnx7CVx2+DBg1sr5+8XTfVhXrJqjrJG/VRdbVRVXVRbV0H1113nalzuJXnb2+ct31R95itdy611qmpzrmcGscXtY2VNc21117rk/cDZtbB/PnzLX0vbXYd+LL29wRNKVVduXJltdusWbPU6XRqSkqKjhgxotLFVlZWpiNGjNDu3bubGrO8KEtLS9P7779fz507pydPntRRo0ZpdHS0fvHFF6rqXuR16tRJ58yZo6qq//znPzUkJERnzpxp5Hzuuef0+uuvV4fDob169dL77rvPbXM6nTpgwADjtur5wv3YsWOqqtq/f3/NyMgwTk7nzp3TgQMH6m233aZt2rTR9evXq6rq008/rdHR0Tpz5kxdvXq1zp49W2NiYjQ7O1sdDofu3r1bZ82apddcc406nU7t2LGjvvDCC/rvf//b7TkYN26cxsfH64QJE7Rdu3Y6evRoTUhI0Ndff12XLVumycnJ+qc//UnXrFmjISEheuedd+qQIUM0NDRUx4wZo3/5y180OTlZr7rqqgpFwNq1a7Vfv34aFRWlTqdTnU6nRkVFab9+/fSjjz4y9Rrt2bNHk5KSjNfrySef1Hnz5umPP/7oFldUVKT333+/cfuVV17RoUOHGheU5cuXa9u2bTUpKUkzMzOrHbOyC03561Puyy+/1KFDh2qPHj30zjvv1E8++URVVRctWqSbNm1SVdVff/1Vhw8frg0aNFCn06kul0v/+Mc/GsVX+/btdfr06Xr48OFq5/PTTz/pnXfeqS1atNCRI0fqb7/9pg888IDxpiQ1NdXtTcmHH36oPXv21KCgION5j4yM1CFDhui//vUvVVXt0KGDTp06tcoxs7Ky9Jprrql2Xqr/fw2pqul1VBfWUHlOM+vI7BpSVdPryKriQJWmh6p3imer15C/XYfKc1q9huq7AQMG6K233qo//vij5uXl6a233qpJSUnGub38ODFbU1lxHHt6DFt5/IqI7fWTN+omX9RLVtZJZmoks/WRN2qjmuqi2roORMTUOdzK87fV52076x4ag5de21hZ04iIT94PmFkHYWFhlr6XNrMObr/9dltr/ws/MOApmlKqxkXE4XBUuTmdTg0ODq6227x3714NDg5WVdU5c+ZUu02aNEmdTqc2atRIv/nmG7c8M2bM0EaNGunWrVvd3gyEhYXpgQMHjLiAgADduXOn2/jR0dH65ptvavPmzSt02V0uV4VO54WLqEWLFsZiKffFF19oXFycBgUFGYVn+/bt9e2333aL+/DDDzU5Odktn6rqli1bdMSIERoZGakhISE6aNAg4zcCLVq0MAqe/fv3q9Pp1BUrVhg/u3btWm3ZsqV26tRJFyxY4HZ/27ZtVVW1tLRU/+M//sN4c6OqunjxYnW5XDpw4EBdtGiRrlq1SletWqWLFi3SQYMGaUBAgC5dulRrUn6R/8c//qGBgYH6u9/9ThMSEjQ6Olo//vhjI+7C12jWrFkaFhamv//97zUuLk6feuopjY6O1qeeekqnTZumERER+vLLL2vnzp0r3RwOh7Zr1864rarqdDqN53Tjxo0aEBCgvXr10okTJ2rfvn3V5XJpTk6OJiUlaW5urqqqPvLII5qYmKjvvfee7t27V1esWKGtW7fWiRMnGq97dHS0NmjQQNPT0/Xdd9+t9NMgw4cP1/bt2+sLL7ygvXr10v79+2uHDh10w4YNumnTJu3WrZsOHTpUVVWXLl2qDRs21AkTJuhjjz2msbGxOnnyZF2wYIH26tVLmzRpot9++60GBwfrvn37qnze9+3bp8HBwabXkKqaXkd1YQ1dnFO16nVkdg2pqul1ZFVxoErTQ9U7byKtXkP+dh26OKeqNWuovmvWrJnxhkb1/C/jRo4cqQkJCbp//37jOPGkpqrpOHa5XJYew1Yev76on5o1a2Zp3eSLesnhcFhaJ5mpkeLi4kzVR1bXRmbqoqCgoFq5DsLDw02dw61cBxc2elUv/7xtZ91DY/DSaxsraxoR8cn7ATPrQEQsfS9tZh0EBATYWvtf+IEBT9GUUtX4+Hi3F/FiX375pTqdTk1MTNQlS5ZUGbdkyRKjeHU4HBofH6+JiYmVbuWd6UaNGrktgnLPPvusRkVF6XvvvWe8uFFRUW6LNjw8XPfv32/cPnDggIaGhqqq6sGDB/X666/X3//+98ZJpLI3A06n0+iut2zZssJcDhw4oMHBwRoXF6ebN29WVdWYmBjj5Fru22+/1ZCQkAoLqVxxcbEuWrRIb7jhBmN/QkJCjMWpev6EcOFvEw4ePKihoaEaHBysBw8eNO4vKyvTgIAA47dQ69ev16ZNmxqPt2rVSl988cUKcyg3b948TU5O1nHjxlW7DRkyxPiN15QpU4yxn3nmGQ0PD9fVq1erqvsb6rZt2+obb7yhqudPQC6XS1999VVj7FdffVWvvfZadblcesstt+gTTzxhbFlZWep0OnX06NHGfaruJ7q+ffvq8OHD3fbnz3/+s950001uF/zWrVsb8yuXk5OjCQkJRs4jR47o+++/rxkZGepyubRp06Y6YcIEt99AxsXF6caNG439dDgcunbtWuPxDRs26BVXXGHs+/Lly43HPv/8c23evLnxyZJ77rlH77jjDm3btq0+//zzVb4+zz//vLZp08b0GlJV0+uoLqwh1YpvqMtdvI7MriFVNb2OzBYHqvW3+X5xTlX7imdVtXwN+dt1SNU7a6i+a9iwYaV/MvLQQw9p8+bNdf369ep0Ok3XVGaOYxGx9Bi28vj1Rf104Zsa1cuvm3xRL4mIpXWSmRrJ6XSaqo+sro3M1EXh4eG1dh2YOYdbuQ4ubkqVu9TztpV1D41B79U2kZGRltU0IuKT9wNm1oGIWPpe2sw6EBFLa39PPjDgKZpSqpqRkVFtd3DHjh3qcDj0xRdf1KCgIB07dqyuXLlSc3NzNTc3V1euXKljx47VkJAQnTdvnqqqJiYm6ltvvVVlzvKirGfPnm6L9ULPPPOM8XFfVdWuXbu6LfiioiK3PyX86KOPtHXr1sbtc+fOaWZmprZo0ULXrFmjAQEBlb5Zi4qK0kaNGmlAQIC+9tprbo+vXbtWExMTdfTo0Xrbbbfpb7/9piNGjNAHH3zQbew//elPmpqaWuVCulD5ybpNmzbGxXrr1q0aGBjoduJdvny5tmrVSq+66iq3jwzm5eVpgwYNjL/TPnDggPFGRFVN/dYpODhYnU6ndunSRXv37l3p1rVrV3U6nRoREaH5+fluOd544w0NCwvTDz74wO0N9cUniKCgILcTRF5enkZFRemGDRv0qquu0szMTD137pzxeE1vqC+8qJfbtWuXNmnSRFu2bGn8RvKKK66o8P1me/bs0bCwsAo5Vc///fvTTz+trVq1MgrLv/3tbxoaGqqHDh0y4gICAvTrr782bh84cMDIGRIS4nbiK9+fI0eOqOr5C1tUVJS+/fbb6nK5NCMjQ+fMmaPLly/X5cuX65w5c/T222/XwMBAfffdd02vIVU1vY7qwhoqz2lmHZldQ6pqeh2ZbXiUz5OmhztvF8+qavka8rfrUHlOq9dQfdetW7cqPzXz0EMPGX/+ZbamMnMcN2vWzNJj2Mrj1xf1U1JSkqV1ky/qpYsba5dbJ5mpkZxOp6n6yOrayExdFBoaWqvXQU3ncCvXQVVNqQt5ct62su6hMei92iYiIsKymkZEfPJ+wMw6aNiwoaXvpc2sg4CAAEtrf08+MOApmlJ6fkFc/FuTC50+fVo//fRTVT3/AqekpKjL5TI+hu5yuTQlJcVtodx55506adKkKnOWF2WvvPKKDhkypMq47OxsTUxMVFXV9957T3NycqqMnTFjhj7++OMV7v/ss880KSlJnU5nhTcDixcvdtsuvphPnz5dx40bpydOnNCuXbtqcnKy/uEPf9Dg4GBt2bKl9u3bV5OSkjQyMlJzc3O1d+/e+vPPP1c5xwvNmjVLg4ODNS0tTRs1aqRz587V2NhYnTRpkk6ePFkjIyN1+vTpOm3aNG3evLkuWLBAFy5cqO3btze+K6b8ebn66quN2126dDH+TK0ykyZN0i5dumjr1q0rnDQuVH6Rb9q0aaV/U/3mm29qaGioLliwwFiA0dHRbr9Na968uVvhkpeXp+Hh4aqqeuLECR04cKCmpKQYRVxVTan8/HwtKirSpKSkCheR/Px8DQ0N1SlTpmhqaqr+/PPPOnnyZM3IyNBTp06p6vmLyd13360333yzqrr/SeDFPvnkEx0yZIiGhYVpx44djd+irlq1Shs2bOh20lqwYIG2b99eVVXbtWun77zzjvHY9u3bNTAwUH/77Tdj38sbWBs3btR77rlHExISNDAwUAMDAzUhIUHvuece43sfzK4hVTW9jurCGlJV0+vI7BpSVdPryGzDQ7X+Nt/Lc/qieC5n5Rryt+uQqnfWUH339NNPa79+/ap8fNSoUepwODyqqWo6jq0+hq08fn1RP1ldN/miXhIRS+skMzWSy+UyVR9ZXRuZrYvqwjqo6hxu5Tro0qWLpedtK+seGoP/nzdqG6tqGhHxyfsBM+tg9OjRlr6XNrMO+vTpY2nt78kHBjxFU+oSlZaW6tGjR/Xo0aNaWlpa4fHdu3dX+z/xlZaWul2Eve3UqVO6Y8eOCv8LhCdKS0t1wYIF+p//+Z/atm1bbd26tfbq1UunTJmiBQUFl5TzjTfe0DFjxuiyZctU9fxFv2fPnnrttdfqE088oefOndOzZ8/qpEmTND4+XqOjo3Xw4MFuX565ZcsWtxPLJ598omFhYXrNNdfouHHjNDs7W7Ozs3XcuHHaoUMHDQ8P15ycHB08eLA+/PDDVc6t/CLft29fffbZZyuNWbZsmQYEBBgL8Prrr3f7qPbFPvjgA6OJU27hwoUaGxurL7/8cpVvqJ1Op/EdHf/93//t9vjKlSs1OTlZS0pK9Pbbb9dGjRpp3759jS8TbNWqlYaFhWlCQoLxKTUzb6iLior09ddf1wYNGmhycrIGBQXpO++8o/Hx8Xr33XfrwIEDNTAw0CjMXnzxRY2MjNRJkyZpZmamxsfH6wMPPGDke/31143vyTKDNWSOmTWkqh6tIzPFgSpND18Uz55gDZljdg3BfrXpGL6c49fK49bKuskX9ZKIWFonmamRrrrqKlP1kdW1kVV1UW1ZB5d7Dq+t60C1bjTI/bkxaIY/rAOra5ia1kFJSYmltb8nHxjwlENVVQA/c+jQIVmwYIHk5uZKYWGhiIjExsZKamqqjBw5UhITE6WwsFBKSkqkZcuW1eZ6//33Zf369TJr1qxKH1+2bJm88sor8sknn8jGjRslLCxMOnXqVGns/PnzpaysTMaMGeN2f15entx7772ybds22bVrl1x99dXGYzk5OW6xcXFx0rp1a+P2nDlzpLS0VCZOnCgiImvWrJEPPvhADhw4IGVlZRIXFyfXX3+9DB48WMLCwkRE5P7775e5c+dKw4YNq913EZGNGzdKbm6upKamSo8ePWTPnj2SnZ0tv/zyi2RkZMiwYcOM2AULFsjrr78uJSUlkp6eLlOnTpXg4GBjH8+dOydt27atcUzUDXv27JFffvlFunbtWunjZ8+elaNHj9a4xqxy+vRp2b9/v7Rr104CAwMvKcfZs2flb3/7W6VraNSoUdK8eXOPcy5btkw2b94sPXr0kEGDBsmnn34qmZmZxhqaOnWqlJWVyWOPPea2fubMmSNNmjQREZGtW7fKmTNn5MYbb7yk/QKAythdLz333HOycOFCy+okT2qkmuojb9RG1EX+obbUO5db51hZ41Db1D/eXAc0pUyYP3++HD9+XDIzMy2J88SUKVOksLBQFi5caFmsN3KaZXU+f1JWVianTp2SiIgIcTgcvp6Oz3jjGLF6bfhyDXkrJ/yHL8/brKH6y+paycrXyBfXAOon69XHOqm2rgNvnOtrwhqon2rrGvBGnBn+ug6cvp5AXfA///M/snjxYsviRM4fUMOHD68x7rvvvpNDhw6Zymk21hs5vbE/ZnOajavtnE6nREZG1ptCqypHjhyx9JjzJKfVcZ7EemN/PMnpy/Xm63n6ep+sZvXx4Y3j3R/XUH1nda1kpl6wuvawMs4X9ZO/1031sU4yc66y+lxuJs7qc72ZfbD6vO2L9WLlmLV5/lbyxTHkizir13FtPYaq4vJqdj+xbt06S+NEzhcX3333XY1xS5cuNZ3TbKw3cnpjf8zmNBtXbtiwYVJQUCAff/yxrXHkNBe7ZMmSGnOJnD8pFxQUmIo1m9PqOE9ivbE/nuQ0G+vJejP72xxPcnrjvGA21pPfTlmd00ycqorD4bDs+PAkn9lYb+QsZ+YY9kZOnGd1rWSmXrC69rAyzhf1k9XnR1/US/VlTLNxZs5VZs9TVtY4VtdLZvbB6vO2lXWP1fWOmTir17uZfbCztrHyem11jeKNmsfKmsxMPrMxIt6pky9GU8pHLiwujh8/LgsXLpTNmze7/T1/jx495L777pOmTZt6HOuNnN7YH7M5rYgrFx8fL05nzR8StDqOnOZjzfCkMVQXeGN/vNE880Zj2d+a797IaSYuKChIdu7cKe3atas2zmxhYzafJ7HeyOlJoeaNnLh0l1svXErtYWVcbaufrD4/+qJeqi9jehJXE384T1m5D1Y3zGprg9zq9W5mH+ysbay8Xltdo1gZZ3VNZiafpzWON+rki/GdUv9PaWmprFixotJCoH///saXyZmNEzFXXHz++eeSnp4uoaGhkpaWJjExMSIicuzYMVm3bp388ssv8o9//EO6du1qOlZVLc/ZtWtXy/fH7HPkSRzqhl9//VW2b98ujRs3dvtSdxGRM2fOyNtvvy1Dhw71Sk6r43y9P96wd+9e4wtc27ZtK/v27ZM5c+ZISUmJDBkyRG666Sav5jQb642cvn6ezBg/fnyl98+ZM0eGDBki0dHRIiIyc+bMSuMCAwPdChtP8pmNrcrl5DS7P57uk9mcsLZWMlsvJCYmWlZ7mK2PzMTNnDlTxo0bZ3v9ZOb5EKFuqkusvN5bWePcddddltdLdj4XnrDyem5lDeONesjO58IMK6/XVtcoVsdVtg+XU5NVxkz9UlNMcXGxvP3225Kfny9xcXEyaNCgGvf1ctGUEpH8/HxJT0+Xo0ePSkpKilshsGXLFmnevLmsXr1aRMRUXHJysuniYsyYMdKxY0d56aWXKvyNvKrKyJEj5auvvpLNmzdL9+7dTcWqquU5586da/n+eKPJZkZBQYFkZWXV+NFCq+PIeT528uTJcvPNN8vhw4fF4XDIDTfcIMuXL5e4uDgROf+6xsfHy7lz50wXJ99++62pnHv37rU07ty5c6bH9sb+eJJTxFyx16xZM+nfv7+Eh4fLL7/8Iu+//74MHTpUOnbsKGVlZZKTkyNr1671qBBas2aN6ZxmY0tLSy3P6UkB6I2cZuOcTqd07NhRoqKi3F7DnJwc6dq1q4SFhYnD4ajyf7e6uLCZPXu2qXwff/yx6bE//fRTy3Oa3Z+ZM2d6JWd9Z3WtNGTIkBrrhU2bNsmRI0csqz3M1kdm4pYtWyaDBw+2tX4y+3xYVTf5ol6qL2OWxz388MOyffv2Gq/3p0+frvH63b17d8tqnLi4OElISLC0XqqpBpk7d67Mnz/f0trHyronLi7OsnrHTA3z1FNPSVZWlqX1UE11hpW5zNY2aWlpll2vZ82aJZ06dbKsRrEyLj8/X+66665q5y9iviYz83zk5ORIr169ahxzzZo1smHDBmncuLEUFBTIjTfeKD///LO0bt1a9u/fLy6XS3JzcyUpKcktj6XNK4WmpaVp//79taioqMJjRUVF2r9/f7355ptNx6mqpqSk6IgRI7SsrKxCbFlZmY4YMUK7d++uwcHBunfv3irntnfvXg0ODlZVNR3rjZze2B+zOc3GmbVjxw51Op22x5HzfOyAAQP01ltv1R9//FHz8vL01ltv1aSkJP3Xv/6lqqqFhYXqdDr1m2++0ZYtW6rD4VCn06k33nijHj161MhXHqeqpnNaHefJ2N7YH09ymo1NTU3Vxx57TFVV33zzTW3UqJFOmTLFiJs8ebL27dtXVVVXr16tgYGB2rhxYw0ODtbVq1dr06ZNNS0tTW+66SZt0KCBrlu3zqOcZmO9kdPs/ngjpydjz5gxQ5OSkozb5Vwul+7evdu47XA4tFOnTtq7d2+3zeFwaLdu3bR3797ap08f0/k8GdsbOc3uj7dy1ndW10pm6gWHw2Fp7WFlnIjYXj+ZfT6sqpt8US/VlzHL40Skxuu9w+Ewdf22ssYxMy+razqzY5qtZ6ysezp37mxpvWMmLjIy0tJ6yEydcfXVV9te2zz44IOWXa+vvPJKS2sUK+OsrsnM5BMRU2M6HA49duyYqqree++92qNHDz1x4oSqqp46dUrT0tJ00KBB2q5dO/3pp59UVfXw4cOamJiokZGR2q1bN23cuLE2a9ZMDxw4oJeCppSqhoSE6Ndff13l41999ZWGhISYjlM13+xJTEzUJUuWVBm3ZMkSbdmypaqq6Vhv5PTG/nijyaaqunLlymq3WbNmqdPptDzOG2P7Y85mzZrpV199ZbxeZWVlOnLkSE1ISND9+/dfUmPIbE6r4zwZ2xv7443mWUREhObl5amq6rlz59TlcukXX3xhzOXrr7/WmJgYVTXfmPEkp9lYb+T0pNFldU5PxlZV3bp1q7Zu3VonTJigpaWlqnp5jSEz+TyNtTqnJ/vjrZz1mdW1kpl6weFwWFp7WBnXoEED2+sns8+H2TF9US85HI56MabZOBGp8XpvtlljZY1jZl5W13Rmx7T6F4xmrucBAQGW1jtm4hwOh6X1kJk6w+Vy+aS2sfJ6bXWNYlWc1TWZmXyeNLjKm1JXXnmlrl271i1+48aN2qJFC9PNq0tBU0pV4+Li9IMPPqjy8b///e8aFxdnOk7VfLPnxRdf1KCgIB07dqyuXLlSc3NzNTc3V1euXKljx47VkJAQnTdvnqqq6Vhv5PTG/nijyaaqxm9EHA5HlVv541bGeWNsf8zZsGFD3bNnT4XX8aGHHtLmzZvr+vXrPW4Mmc1pdZwnY3tjf7zRPIuIiND8/HwjLjw8XPfv32/cPnTokNEE9qT48iSnmVhv5fSk0WVlTk/GLnfq1CkdOnSodujQwSiaL6cxZCafp7FW5/Rkf7yVs76yulYyUy9ER0dbWntYGXf33XfbXj+ZfT7MjumLeklE6sWYnsytpuu92WaNlTWOmXlZXdOZHdPqXzCauZ6LiKX1jtkxrayHzDbCfFXbWHm9trpGsSrO6prMTD4zMQ6HQ3/44QdVVY2Pj6/wi6Xy193hMNe8uhQ0pVR16tSp2qhRI505c6bu3LlTCwsLtbCwUHfu3KkzZ87Uxo0ba1ZWluk4VfPNHlXV5cuXa0pKirpcLuMi5XK5NCUlRd966y23uZqNtTqnN/bHG0021fOLacWKFVW+3l9++aU6nU7L47wxtj/m7Natmy5durTSmIceekijoqI8bgyZzWl1nCdje2N/vNE869Chg65evdp4/Ouvv9azZ88at9evX69JSUmqar4x40lOs7HeyOlJo8vqnJ6MfbE333xTY2Ji1Ol0XnZjyEy+S4m1Mqen++OtnPWNN2qlmuoFb9QeVsbZXT9ZXTf5ol4SkXoxpidzq+l6b7ZZY2WNY2ZeVtd0Zse0+heMZq7nZps1VtYwgYGBltZDZuoMh8Ph89rGyuu11TWKFXFW12Rm8tUU43A49JprrtHOnTtreHi4vvvuu24/n5OTo1dccYXp5tWloCn1/2RnZ2tcXJzxW43y32zExcXpM88843GcqmeNIVXV0tJSPXr0qB49etToZFbFbKyVOb2xP95osmVkZOjUqVOr3M8dO3aow+GwPM4bY/tjzqefflr79etXZdyoUaPU4XB41Bgym9PqOE/G9sb+eKN5tmDBAv3www+rHPvRRx/VBx54QFXNN2Y8yWk21hs5PWl0WZ3Tk7ErU1BQoCtWrNDTp09XGeNJY8hMPk9jrc7pyf54K2d9441aSbX6esFbtZSVcXbWT1bWTb6ol0SkXozpydxqut6bbdZYWeOYmZfVNZ3D4bC09rGy7mncuLGl9Y6ZuB49elhaD5mpM6Kjo2tFbWPl9drqGsWqOKtrMjP5qop54okn3LY1a9a4/dwjjzyiAwcONN28uhT873sXOXjwoBQWFsrZs2elSZMmFf6nBk/jRETOnj0rx48fFxGRJk2aSEBAgFfmbhdv7I/ZnGbiPvvsMykuLpZbbrml0hzFxcWybds2cTqdlsb16tXL8rH9MWdl/wtEZWbMmCGfffaZrFq1qtLHR48eLS+99JKUlZWZyudr3tgfT3J6Y/yXXnpJWrRoIbfeemulj0+ZMkV++OEHefXVV03n9CVv7I/ZnF27drXlufzuu+9k+/btkpaWJmFhYZeVqzbwxv7423PkDd6olWriD7WUlftgRd3ki3pp4cKF0qpVK78f09Maqjr+UA9ZuQ9mc/3Xf/2XZWP6Q71j5T7Ultqmrl+vrZ6/mXyXM+a0adPcbnfv3l3S09ON2xMnTpTvvvtO3nzzTY/nTlOqChEREbJjxw658sorLYkDAADwJ9RKAADgcjl9PYHaymyvjp4eAACoj6iVAADA5aIpBQAAAAAAANvRlKrCyy+/LDExMZbFAQAA+BNqJQAAcLn4TikAAAAAAADYjk9KAQAAAAAAwHY0pQAAAAAAAGA7mlIAAAAAAACwHU0pAAAAAAAA2I6mFAC/1bt3b3n44YdNxX766aficDjkxIkTlzVmYmKizJ49+7JyAAAA2IV6CYAv0ZQCAAAAAACA7WhKAQAAAAAAwHY0pQDUC6+99pp07dpVGjZsKLGxsTJ48GD54YcfKsRt3LhROnToIMHBwdK9e3fZtWuX2+MbNmyQnj17SkhIiLRo0ULGjh0rxcXFdu0GAACA11AvAbAbTSkA9cLZs2flySeflJ07d8qKFSvk0KFDct9991WImzhxojz//PPy+eefS9OmTSUjI0POnj0rIiL79++XW265Re6880756quv5K233pINGzbImDFjbN4bAAAA61EvAbCby9cTAAA7DB8+3Pj3lVdeKXPnzpVu3brJ6dOnJTw83HgsKytL+vbtKyIiS5YskebNm8v7778vd999t8yYMUPuvfde48tAW7VqJXPnzpVevXrJggULJDg42NZ9AgAAsBL1EgC78UkpAPXC9u3bJSMjQxISEqRhw4bSq1cvERE5fPiwW1xqaqrx78aNG0ubNm1k7969IiKyc+dOWbx4sYSHhxtbenq6lJWVycGDB+3bGQAAAC+gXgJgNz4pBcDvFRcXS3p6uqSnp8sbb7whTZs2lcOHD0t6erqUlpaaznP69Gn54x//KGPHjq3wWEJCgpVTBgAAsBX1EgBfoCkFwO/t27dPfvrpJ8nOzpYWLVqIiMi2bdsqjc3NzTUKpp9//lm+/fZbadeunYiIdOnSRfbs2SPJycn2TBwAAMAm1EsAfIE/3wPg9xISEiQwMFBeeOEFOXDggPz973+XJ598stLY6dOny7p162TXrl1y3333SZMmTWTAgAEiIvKXv/xFNm3aJGPGjJEdO3ZIXl6erFy5ki/uBAAAdR71EgBfoCkFwO81bdpUFi9eLO+8845cffXVkp2dLc8991ylsdnZ2fLnP/9Zrr32WiksLJQPPvhAAgMDRUSkQ4cOkpOTI99++6307NlTOnfuLJmZmRIfH2/n7gAAAFiOegmALzhUVX09CQAAAAAAANQvfFIKAAAAAAAAtqMpBQAAAAAAANvRlAIAAAAAAIDtaEoBAAAAAADAdjSlAAAAAAAAYDuaUgAAAAAAALAdTSkAAAAAAADYjqYUAAAAAAAAbEdTCgAAAAAAALajKQUAAAAAAADb0ZQCAAAAAACA7WhKAQAAAAAAwHb/F8TtBpWAd9MHAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "result_path_list = [\n", + " \"./results/9017_kakaobank_kf-deberta-base_lr1e-5_batch16_train_augmentV3(minseo)_0.91849.csv\",\n", + " \"./results/9103_lucid-9103-09-15-10-56.csv\",\n", + " \"./results/9112_0921_0302_yeseo_mod.csv\",\n", + " \"./results/9125_klue-roberta-large.csv\",\n", + " \"./results/9128_team-lucid_deberta-v3-base-korean_lr1e-5_batch16_train_v3_01(minseo)_ 0.93010586.csv\",\n", + " \"./results/9150_team-lucid_deberta-v3-base-korean_lr1e-5_batch16_train_01(minseo)_0.93004.csv\",\n", + " \"./results/9166_klue-roberta-large-nnp.csv\",\n", + " \"./results/9179_snunlp-KR-ELECTRA-discriminator-V1.csv\",\n", + " \"./results/9191_snunlp:KR-ELECTRA-discriminator ep9.csv\",\n", + " \"./results/9207_0925_0640_yeseo.csv\",\n", + " \"./results/9215_kykim-electra-kor-base.csv\",\n", + " \"./results/9217_snunlp-KR-ELECTRA-discriminator-V2.csv\",\n", + " \"./results/9236_0924_1313_yeseo.csv\",\n", + " \"./results/9271_0923_0544_yeseo_nom.csv\",\n", + " \"./results/9312_0920_1904_yeseo_mod.csv\",\n", + " \"./results/9316_0922_0611_yeseo_nom.csv\",\n", + " \"./results/9469_KR-SBERT_split_v1.csv\",\n", + " \"./results/9556_KR-SBERT_split_v2.csv\",\n", + "]\n", + "score_list = [\n", + " 9017,\n", + " 9103,\n", + " 9112,\n", + " 9125,\n", + " 9128,\n", + " 9150,\n", + " 9166,\n", + " 9179,\n", + " 9191,\n", + " 9207,\n", + " 9215,\n", + " 9217,\n", + " 9236,\n", + " 9271,\n", + " 9312,\n", + " 9316,\n", + " 9469,\n", + " 9556,\n", + "]\n", + "\n", + "postprocessing_list = [True] * len(result_path_list)\n", + "\n", + "plot_multiple_label_counts(result_path_list)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "from ensemble import ensemble_with_combinations, ensemble_with_metrics, ensemble\n", + "\n", + "# ensemble_with_combinations(result_path_list, score_list, postprocessing_list,5)\n", + "ensemble(result_path_list, score_list, postprocessing_list)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " DataFrame Entropy Gini Coefficient\n", + "0 0 9.800139 0.307980\n", + "1 1 10.103286 0.297423\n", + "2 2 10.103286 0.297130\n", + "3 3 9.816092 0.311022\n" + ] + } + ], + "source": [ + "# 엔트로피는 값이 높을수록 데이터가 고르게 분포되어 있음을 나타내고, 지니 계수는 값이 낮을수록 고른 분포를 의미\n", + "\n", + "def calculate_entropy(data):\n", + " value_counts = data.value_counts(normalize=True)\n", + " entropy = -np.sum(\n", + " value_counts * np.log2(value_counts + 1e-9)\n", + " ) # 작은 값 추가로 로그 계산시 0 방지\n", + " return entropy\n", + "\n", + "\n", + "def calculate_gini(data):\n", + " sorted_data = np.sort(data) # 데이터를 정렬\n", + " n = len(data)\n", + "\n", + " # 지니 계수 계산\n", + " cumulative_values = np.cumsum(sorted_data) # 누적 합계\n", + " gini = (2 * np.sum(cumulative_values) / cumulative_values[-1] - (n + 1)) / n\n", + "\n", + " # 지니 계수는 양수여야 하므로 절대값을 취해 0에서 1 사이로 맞춤\n", + " return np.abs(gini)\n", + "\n", + "\n", + "def compare_datasets(dataframes):\n", + " results = []\n", + "\n", + " for idx, df in enumerate(dataframes):\n", + " if \"target\" not in df.columns:\n", + " print(f\"DataFrame {idx} does not contain 'target' column.\")\n", + " continue\n", + "\n", + " entropy = calculate_entropy(df[\"target\"])\n", + " gini = calculate_gini(df[\"target\"])\n", + " results.append({\"DataFrame\": idx, \"Entropy\": entropy, \"Gini Coefficient\": gini})\n", + "\n", + " results_df = pd.DataFrame(results)\n", + " return results_df\n", + "\n", + "df0 = pd.read_csv(\"./ensemble_results/3peo_v4 + yeseo(7 model).csv\", encoding=\"UTF-8\")\n", + "df1 = pd.read_csv(\"./ensemble_results/ensemble_01.csv\", encoding=\"UTF-8\")\n", + "df2 = pd.read_csv(\"./ensemble_results/ensemble_y8_g5_m3_s2.csv\", encoding=\"UTF-8\")\n", + "df3 = pd.read_csv(\"./ensemble_results/all_ensemble.csv\", encoding=\"UTF-8\")\n", + "\n", + "dataframes = [df0, df1, df2,df3]\n", + "comparison_results = compare_datasets(dataframes)\n", + "print(comparison_results)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+YAAAIjCAYAAACOMgGUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLqklEQVR4nO3de7hWc/4//tfutCu1S9JJKZVTiKZIcgjRYIzGeZzKx2EQE30NNQ6JMTXGECYZI2WMNBgZg3EqRc5SKETJaFAm1C60O+z1+2Ou9q9d+7R2u9aWx+O67uuave51P/frvnvPmvWcdd/3zkmSJAkAAAAgEzWyHgAAAAB+yBRzAAAAyJBiDgAAABlSzAEAACBDijkAAABkSDEHAACADCnmAAAAkCHFHAAAADKkmAMAAECGFHMA+B74+OOPIycnJ2688cYqy5wyZUrk5OTElClTqiwTAEhPMQeATWTcuHGRk5MTb7zxRtajVIl58+bFL37xi2jfvn3UrVs38vLyomfPnnHLLbfEd999l/V4ERFx++23x7hx47IeAwBSqZX1AABA9ff444/HCSecELm5uXHGGWfE7rvvHitXroxp06bFr371q5g9e3bceeedWY8Zt99+ezRt2jT69++f9SgAUGGKOQBQpvnz58fJJ58cbdu2jcmTJ0fLli2L7hswYEDMnTs3Hn/88QwnBIDvN29lB4AMrVy5Mq6++uro2rVrNGrUKLbaaqs44IAD4rnnniv1MTfffHO0bds26tWrFwcddFDMmjVrg33ef//9OP7446NJkyZRt27d6NatWzz66KOVmvGGG26I5cuXx5gxY4qV8rU6duwYAwcOLPp59erVcd1110WHDh0iNzc32rVrF7/+9a+joKCg2ONycnLimmuu2SCvXbt2xa54r/1IwIsvvhiDBg2KbbfdNrbaaqv42c9+Fv/973+LPW727NkxderUyMnJiZycnOjVq1elnjMAbE6umANAhvLz8+Ouu+6Kn//853HOOefEsmXLYsyYMdGnT5947bXXYq+99iq2/1/+8pdYtmxZDBgwIFasWBG33HJLHHLIIfHOO+9E8+bNIyJi9uzZ0bNnz9huu+1i8ODBsdVWW8UDDzwQffv2jb///e/xs5/9LNWM//znP6N9+/ax3377VWj/s88+O+655544/vjj4//9v/8Xr776agwfPjzee++9mDhxYqrfva6LLroott566xg6dGh8/PHHMXLkyLjwwgvjb3/7W0REjBw5Mi666KJo0KBBXHHFFRERRa8JAFRnijkAZGjrrbeOjz/+OOrUqVO07ZxzzolddtklbrvtthgzZkyx/efOnRsffvhhbLfddhER8eMf/zi6d+8ev/vd7+Kmm26KiIiBAwfG9ttvH6+//nrk5uZGRMQFF1wQ+++/f1x++eWpinl+fn58+umnccwxx1Ro/7feeivuueeeOPvss+PPf/5z0e9u1qxZ3HjjjfHcc8/FwQcfXOHfv65tttkmnn766cjJyYmIiMLCwrj11ltj6dKl0ahRo+jbt29ceeWV0bRp0zjttNMq9TsAIAveyg4AGapZs2ZRKS8sLIyvvvoqVq9eHd26dYs333xzg/379u1bVMojIvbZZ5/o3r17PPHEExER8dVXX8XkyZPjxBNPjGXLlsXixYtj8eLF8eWXX0afPn3iww8/jE8//bTC8+Xn50dERMOGDSu0/9o5Bg0aVGz7//t//y8iYqM+i37uuecWlfKIiAMOOCDWrFkT//73vyudCQDVgWIOABm75557onPnzlG3bt3YZpttYtttt43HH388li5dusG+O+644wbbdtppp/j4448j4n9X1JMkiauuuiq23XbbYrehQ4dGRMQXX3xR4dny8vIiImLZsmUV2v/f//531KhRIzp27Fhse4sWLaJx48YbVaK33377Yj9vvfXWERHx9ddfVzoTAKoDb2UHgAz99a9/jf79+0ffvn3jV7/6VTRr1ixq1qwZw4cPj3nz5qXOKywsjIiISy+9NPr06VPiPuuX5rLk5eVFq1atSvyCubKse2U7rTVr1pS4vWbNmiVuT5Kk0r8LAKoDxRwAMvTQQw9F+/bt4+GHHy5WZtde3V7fhx9+uMG2Dz74INq1axcREe3bt4+IiNq1a0fv3r2rZMaf/OQnceedd8bLL78cPXr0KHPftm3bRmFhYXz44Yex6667Fm1ftGhRLFmyJNq2bVu0beutt44lS5YUe/zKlSvj888/r/SsG/N/CABAVryVHQAytPYq8LpXfV999dV4+eWXS9z/kUceKfYZ8ddeey1effXVOOKIIyIiolmzZtGrV6/405/+VGLBXffPi1XUZZddFltttVWcffbZsWjRog3unzdvXtxyyy0REXHkkUdGxP++IX1da7+Y7qijjira1qFDh3j++eeL7XfnnXeWesW8IrbaaqsNyj4AVHeumAPAJnb33XfHk08+ucH2gQMHxk9+8pN4+OGH42c/+1kcddRRMX/+/LjjjjuiU6dOsXz58g0e07Fjx9h///3j/PPPj4KCghg5cmRss802cdlllxXtM2rUqNh///1jjz32iHPOOSfat28fixYtipdffjn+85//xFtvvZVq/g4dOsT48ePjpJNOil133TXOOOOM2H333WPlypXx0ksvxYMPPlj0d8f33HPP6NevX9x5552xZMmSOOigg+K1116Le+65J/r27VvsG9nPPvvsOO+88+K4446Lww47LN5666146qmnomnTpqnmW1fXrl1j9OjR8Zvf/CY6duwYzZo1i0MOOaTSeQCwOSjmALCJjR49usTt/fv3j/79+8fChQvjT3/6Uzz11FPRqVOn+Otf/xoPPvhgTJkyZYPHnHHGGVGjRo0YOXJkfPHFF7HPPvvEH//4x2jZsmXRPp06dYo33ngjhg0bFuPGjYsvv/wymjVrFl26dImrr766Us/hpz/9abz99tvx+9//Pv7xj3/E6NGjIzc3Nzp37hx/+MMf4pxzzina96677or27dvHuHHjYuLEidGiRYsYMmTIBm/PP+ecc2L+/PkxZsyYePLJJ+OAAw6IZ555Jg499NBKzRgRcfXVV8e///3vuOGGG2LZsmVx0EEHKeYAVHs5iW9MAQAAgMz4jDkAAABkSDEHAACADCnmAAAAkCHFHAAAADKkmAMAAECGFHMAAADI0Bb/d8wLCwvjs88+i4YNG0ZOTk7W4wAAALCFS5Ikli1bFq1atYoaNcq/Hr7FF/PPPvss2rRpk/UYAAAA/MAsWLAgWrduXe5+W3wxb9iwYUT87wXJy8vLeBoAAAC2dPn5+dGmTZuiPlqeLb6Yr337el5enmIOAADAZlPRj1P78jcAAADIkGIOAAAAGVLMAQAAIEOKOQAAAGRIMQcAAIAMKeYAAACQIcUcAAAAMqSYAwAAQIYUcwAAAMiQYg4AAAAZUswBAAAgQ4o5AAAAZEgxBwAAgAwp5gAAAJAhxRwAAAAylGkxHz16dHTu3Dny8vIiLy8vevToEf/617+K7u/Vq1fk5OQUu5133nkZTgwAAABVq1aWv7x169YxYsSI2HHHHSNJkrjnnnvimGOOiRkzZsRuu+0WERHnnHNOXHvttUWPqV+/flbjAgAAQJXLtJgfffTRxX6+/vrrY/To0fHKK68UFfP69etHixYtshgPAAAANrlq8xnzNWvWxIQJE+Kbb76JHj16FG2/7777omnTprH77rvHkCFD4ttvvy0zp6CgIPLz84vdAAAAoLrK9Ip5RMQ777wTPXr0iBUrVkSDBg1i4sSJ0alTp4iIOOWUU6Jt27bRqlWrePvtt+Pyyy+POXPmxMMPP1xq3vDhw2PYsGGba3wAqLQRMxaXu8/gLk03wyQAVcNxDSonJ0mSJMsBVq5cGZ988kksXbo0Hnroobjrrrti6tSpReV8XZMnT45DDz005s6dGx06dCgxr6CgIAoKCop+zs/PjzZt2sTSpUsjLy9vkz0PAEjLCSywpXFcg//Jz8+PRo0aVbiHZn7FvE6dOtGxY8eIiOjatWu8/vrrccstt8Sf/vSnDfbt3r17RESZxTw3Nzdyc3M33cAAAABQharNZ8zXKiwsLHbFe10zZ86MiIiWLVtuxokAAABg08n0ivmQIUPiiCOOiO233z6WLVsW48ePjylTpsRTTz0V8+bNi/Hjx8eRRx4Z22yzTbz99ttxySWXxIEHHhidO3fOcmwAAACoMpkW8y+++CLOOOOM+Pzzz6NRo0bRuXPneOqpp+Kwww6LBQsWxLPPPhsjR46Mb775Jtq0aRPHHXdcXHnllVmODAAAAFUq02I+ZsyYUu9r06ZNTJ06dTNOAwAAAJtftfuMOQAAAPyQKOYAAACQIcUcAAAAMqSYAwAAQIYUcwAAAMhQpt/KDgAA8H0wYsbicvcZ3KXpZpiELZEr5gAAAJAhxRwAAAAypJgDAABAhhRzAAAAyJBiDgAAABlSzAEAACBDijkAAABkSDEHAACADCnmAAAAkCHFHAAAADKkmAMAAECGFHMAAADIUK2sBwAAANgURsxYXO4+g7s03QyTQNlcMQcAAIAMKeYAAACQIcUcAAAAMqSYAwAAQIYUcwAAAMiQYg4AAAAZUswBAAAgQ4o5AAAAZEgxBwAAgAwp5gAAAJAhxRwAAAAyVCvrAQAAAKCqjZixuNx9BndpuhkmKZ8r5gAAAJAhxRwAAAAypJgDAABAhhRzAAAAyJBiDgAAABlSzAEAACBDijkAAABkSDEHAACADCnmAAAAkCHFHAAAADKkmAMAAECGFHMAAADIUK2sBwCoiBEzFpe7z+AuTTfDJAAAULVcMQcAAIAMKeYAAACQIcUcAAAAMqSYAwAAQIYUcwAAAMiQYg4AAAAZUswBAAAgQ4o5AAAAZCjTYj569Ojo3Llz5OXlRV5eXvTo0SP+9a9/Fd2/YsWKGDBgQGyzzTbRoEGDOO6442LRokUZTgwAAABVK9Ni3rp16xgxYkRMnz493njjjTjkkEPimGOOidmzZ0dExCWXXBL//Oc/48EHH4ypU6fGZ599Fscee2yWIwMAAECVqpXlLz/66KOL/Xz99dfH6NGj45VXXonWrVvHmDFjYvz48XHIIYdERMTYsWNj1113jVdeeSX23XffLEYGAACAKlVtPmO+Zs2amDBhQnzzzTfRo0ePmD59eqxatSp69+5dtM8uu+wS22+/fbz88sul5hQUFER+fn6xGwAAAFRXmV4xj4h45513okePHrFixYpo0KBBTJw4MTp16hQzZ86MOnXqROPGjYvt37x581i4cGGpecOHD49hw4Zt4qkBqpcRMxZXaL/BXZpu4kkA2Fwc+9lSVWRtb2nrOvMr5jvvvHPMnDkzXn311Tj//POjX79+8e6771Y6b8iQIbF06dKi24IFC6pwWgAAAKhamV8xr1OnTnTs2DEiIrp27Rqvv/563HLLLXHSSSfFypUrY8mSJcWumi9atChatGhRal5ubm7k5uZu6rEBAACgSmR+xXx9hYWFUVBQEF27do3atWvHpEmTiu6bM2dOfPLJJ9GjR48MJwQAAICqk+kV8yFDhsQRRxwR22+/fSxbtizGjx8fU6ZMiaeeeioaNWoUZ511VgwaNCiaNGkSeXl5cdFFF0WPHj18IzsAAABbjEyL+RdffBFnnHFGfP7559GoUaPo3LlzPPXUU3HYYYdFRMTNN98cNWrUiOOOOy4KCgqiT58+cfvtt2c5MgAAAFSpTIv5mDFjyry/bt26MWrUqBg1atRmmggAAAA2r2r3GXMAAAD4IVHMAQAAIEOKOQAAAGRIMQcAAIAMKeYAAACQoUy/lR0AAH5oRsxYXO4+g7s03QyTANWFK+YAAACQIcUcAAAAMqSYAwAAQIYUcwAAAMiQYg4AAAAZUswBAAAgQ4o5AAAAZEgxBwAAgAwp5gAAAJAhxRwAAAAypJgDAABAhhRzAAAAyFCtrAcA2JxGzFhc7j6DuzTdDJMAAMD/uGIOAAAAGVLMAQAAIEOKOQAAAGRIMQcAAIAMKeYAAACQIcUcAAAAMqSYAwAAQIYUcwAAAMiQYg4AAAAZUswBAAAgQ4o5AAAAZKhW1gMAAADZGjFjcbn7DO7SdDNMwveZdVR5rpgDAABAhhRzAAAAyJBiDgAAABlSzAEAACBDijkAAABkSDEHAACADCnmAAAAkCHFHAAAADKkmAMAAECGFHMAAADIkGIOAAAAGVLMAQAAIEO1sh4A4PtoxIzF5e4zuEvTzTAJAADfd66YAwAAQIYUcwAAAMiQYg4AAAAZUswBAAAgQ4o5AAAAZEgxBwAAgAwp5gAAAJAhxRwAAAAylGkxHz58eOy9997RsGHDaNasWfTt2zfmzJlTbJ9evXpFTk5Osdt5552X0cQAAABQtTIt5lOnTo0BAwbEK6+8Es8880ysWrUqDj/88Pjmm2+K7XfOOefE559/XnS74YYbMpoYAAAAqlatLH/5k08+WezncePGRbNmzWL69Olx4IEHFm2vX79+tGjRokKZBQUFUVBQUPRzfn5+1QwLAAAAm0CmxXx9S5cujYiIJk2aFNt+3333xV//+tdo0aJFHH300XHVVVdF/fr1S8wYPnx4DBs2bJPPCrClGjFjcbn7DO7SdDNMQkX5N9t8vNawefjvGj801aaYFxYWxsUXXxw9e/aM3XffvWj7KaecEm3bto1WrVrF22+/HZdffnnMmTMnHn744RJzhgwZEoMGDSr6OT8/P9q0abPJ5wcAAIDKqDbFfMCAATFr1qyYNm1ase3nnntu0X/eY489omXLlnHooYfGvHnzokOHDhvk5ObmRm5u7iafFwAAAKpCtfhzaRdeeGE89thj8dxzz0Xr1q3L3Ld79+4RETF37tzNMRoAAABsUpleMU+SJC666KKYOHFiTJkyJXbYYYdyHzNz5syIiGjZsuUmng4AAAA2vUyL+YABA2L8+PHxj3/8Ixo2bBgLFy6MiIhGjRpFvXr1Yt68eTF+/Pg48sgjY5tttom33347LrnkkjjwwAOjc+fOWY4OAAAAVSLTYj569OiIiOjVq1ex7WPHjo3+/ftHnTp14tlnn42RI0fGN998E23atInjjjsurrzyygymBQAAgKqX+VvZy9KmTZuYOnXqZpoGAAAANr9q8eVvAAAA8EOlmAMAAECGFHMAAADIkGIOAAAAGVLMAQAAIEOZfis7AABsaiNmLC53n8Fdmm6GSQBK5oo5AAAAZEgxBwAAgAwp5gAAAJAhxRwAAAAypJgDAABAhhRzAAAAyJBiDgAAABlSzAEAACBDijkAAABkSDEHAACADCnmAAAAkCHFHAAAADJUK+sBAH7IRsxYXO4+g7s03QyTkIZ/N6oT63Hz8VoDm4or5gAAAJAhxRwAAAAypJgDAABAhhRzAAAAyJBiDgAAABlSzAEAACBDijkAAABkSDEHAACADCnmAAAAkCHFHAAAADKkmAMAAECGamU9wPfdiBmLy91ncJemm2ESvs+qah1Vt/VY3eYBvn8cRwD4IXDFHAAAADKkmAMAAECGFHMAAADIkGIOAAAAGVLMAQAAIEOKOQAAAGRIMQcAAIAMKeYAAACQIcUcAAAAMqSYAwAAQIYUcwAAAMiQYg4AAAAZqpX1AABA9TBixuJy9xncpelmmITvM+sIID1XzAEAACBDijkAAABkSDEHAACADCnmAAAAkCHFHAAAADKkmAMAAECGFHMAAADIUKbFfPjw4bH33ntHw4YNo1mzZtG3b9+YM2dOsX1WrFgRAwYMiG222SYaNGgQxx13XCxatCijiQEAAKBqZVrMp06dGgMGDIhXXnklnnnmmVi1alUcfvjh8c033xTtc8kll8Q///nPePDBB2Pq1Knx2WefxbHHHpvh1AAAAFB1amX5y5988sliP48bNy6aNWsW06dPjwMPPDCWLl0aY8aMifHjx8chhxwSERFjx46NXXfdNV555ZXYd999sxgbAAAAqky1+oz50qVLIyKiSZMmERExffr0WLVqVfTu3bton1122SW23377ePnll0vMKCgoiPz8/GI3AAAAqK4yvWK+rsLCwrj44oujZ8+esfvuu0dExMKFC6NOnTrRuHHjYvs2b948Fi5cWGLO8OHDY9iwYZt6XADKMWLG4nL3Gdyl6WaYBKxHAKq3anPFfMCAATFr1qyYMGHCRuUMGTIkli5dWnRbsGBBFU0IAAAAVa9aXDG/8MIL47HHHovnn38+WrduXbS9RYsWsXLlyliyZEmxq+aLFi2KFi1alJiVm5sbubm5m3pkAAAAqBKVumLevn37+PLLLzfYvmTJkmjfvn2Fc5IkiQsvvDAmTpwYkydPjh122KHY/V27do3atWvHpEmTirbNmTMnPvnkk+jRo0dlRgcAAIBqpVJXzD/++ONYs2bNBtsLCgri008/rXDOgAEDYvz48fGPf/wjGjZsWPS58UaNGkW9evWiUaNGcdZZZ8WgQYOiSZMmkZeXFxdddFH06NHDN7IDAACwRUhVzB999NGi//zUU09Fo0aNin5es2ZNTJo0Kdq1a1fhvNGjR0dERK9evYptHzt2bPTv3z8iIm6++eaoUaNGHHfccVFQUBB9+vSJ22+/Pc3YAAAAUG2lKuZ9+/aNiIicnJzo169fsftq164d7dq1iz/84Q8VzkuSpNx96tatG6NGjYpRo0alGRUAAAC+F1IV88LCwoiI2GGHHeL111+Ppk39WREAAADYGJX6jPn8+fOreg4AAAD4Qar0n0ubNGlSTJo0Kb744ouiK+lr3X333Rs9GAAAAPwQVKqYDxs2LK699tro1q1btGzZMnJycqp6LgAAAPhBqFQxv+OOO2LcuHFx+umnV/U8AAAA8INSozIPWrlyZey3335VPQsAAAD84FTqivnZZ58d48ePj6uuuqqq5wEAtgAjZiwud5/BXfx1l+qkuv2bVWSeCOsI2DJUqpivWLEi7rzzznj22Wejc+fOUbt27WL333TTTVUyHAAAAGzpKlXM33777dhrr70iImLWrFnF7vNFcAAAAFBxlSrmzz33XFXPAQAAAD9IlfryNwAAAKBqVOqK+cEHH1zmW9YnT55c6YEAAADgh6RSxXzt58vXWrVqVcycOTNmzZoV/fr1q4q5AAAA4AehUsX85ptvLnH7NddcE8uXL9+ogQAAAOCHpEo/Y37aaafF3XffXZWRAAAAsEWr0mL+8ssvR926dasyEgAAALZolXor+7HHHlvs5yRJ4vPPP4833ngjrrrqqioZDAAAAH4IKlXMGzVqVOznGjVqxM477xzXXnttHH744VUyGAAAAPwQVKqYjx07tqrnAKqRETMWl7vP4C5NN8MkAACUpKrO15z3VQ+VKuZrTZ8+Pd57772IiNhtt92iS5cuVTIUAAAA/FBUqph/8cUXcfLJJ8eUKVOicePGERGxZMmSOPjgg2PChAmx7bbbVuWMAAAAsMWq1LeyX3TRRbFs2bKYPXt2fPXVV/HVV1/FrFmzIj8/P375y19W9YwAAACwxarUFfMnn3wynn322dh1112LtnXq1ClGjRrly98AAAAghUpdMS8sLIzatWtvsL127dpRWFi40UMBAADAD0WlivkhhxwSAwcOjM8++6xo26effhqXXHJJHHrooVU2HAAAAGzpKlXM//jHP0Z+fn60a9cuOnToEB06dIgddtgh8vPz47bbbqvqGQEAAGCLVanPmLdp0ybefPPNePbZZ+P999+PiIhdd901evfuXaXDAQAAwJYu1RXzyZMnR6dOnSI/Pz9ycnLisMMOi4suuiguuuii2HvvvWO33XaLF154YVPNCgAAAFucVMV85MiRcc4550ReXt4G9zVq1Ch+8YtfxE033VRlwwEAAMCWLlUxf+utt+LHP/5xqfcffvjhMX369I0eCgAAAH4oUhXzRYsWlfhn0taqVatW/Pe//93ooQAAAOCHItWXv2233XYxa9as6NixY4n3v/3229GyZcsqGQwAYEs2YsbicvcZ3KXpZpgEgKylumJ+5JFHxlVXXRUrVqzY4L7vvvsuhg4dGj/5yU+qbDgAAADY0qW6Yn7llVfGww8/HDvttFNceOGFsfPOO0dExPvvvx+jRo2KNWvWxBVXXLFJBgUAAIAtUapi3rx583jppZfi/PPPjyFDhkSSJBERkZOTE3369IlRo0ZF8+bNN8mgAAAAsCVKVcwjItq2bRtPPPFEfP311zF37txIkiR23HHH2HrrrTfFfAAAALBFS13M19p6661j7733rspZAAAA4Acn1Ze/AQAAAFVLMQcAAIAMKeYAAACQIcUcAAAAMqSYAwAAQIYUcwAAAMiQYg4AAAAZqvTfMWfLNmLG4grtN7hL0008SdWryHP7Pj4vAADg+8kVcwAAAMiQYg4AAAAZUswBAAAgQ4o5AAAAZEgxBwAAgAwp5gAAAJAhxRwAAAAylGkxf/755+Poo4+OVq1aRU5OTjzyyCPF7u/fv3/k5OQUu/34xz/OZlgAAADYBDIt5t98803sueeeMWrUqFL3+fGPfxyff/550e3+++/fjBMCAADAplUry19+xBFHxBFHHFHmPrm5udGiRYvNNBEAAABsXtX+M+ZTpkyJZs2axc477xznn39+fPnll2XuX1BQEPn5+cVuAAAAUF1lesW8PD/+8Y/j2GOPjR122CHmzZsXv/71r+OII46Il19+OWrWrFniY4YPHx7Dhg3bzJOyOYyYsbjcfQZ3aboZJvmf6jYPULaK/Hc2wn9vAYDNr1oX85NPPrnoP++xxx7RuXPn6NChQ0yZMiUOPfTQEh8zZMiQGDRoUNHP+fn50aZNm00+KwAAAFRGtX8r+7rat28fTZs2jblz55a6T25ubuTl5RW7AQAAQHX1vSrm//nPf+LLL7+Mli1bZj0KAAAAVIlM38q+fPnyYle/58+fHzNnzowmTZpEkyZNYtiwYXHcccdFixYtYt68eXHZZZdFx44do0+fPhlODQAAAFUn02L+xhtvxMEHH1z089rPhvfr1y9Gjx4db7/9dtxzzz2xZMmSaNWqVRx++OFx3XXXRW5ublYjAwAAQJXKtJj36tUrkiQp9f6nnnpqM04DAAAAm9/36jPmAAAAsKVRzAEAACBDijkAAABkSDEHAACADCnmAAAAkCHFHAAAADKU6Z9LA4DyjJixuNx9BndpuhkmAQDYNFwxBwAAgAwp5gAAAJAhxRwAAAAypJgDAABAhhRzAAAAyJBiDgAAABlSzAEAACBDijkAAABkSDEHAACADCnmAAAAkCHFHAAAADJUK+sBqFojZiwud5/BXZpuhkkAAACoCFfMAQAAIEOKOQAAAGRIMQcAAIAMKeYAAACQIcUcAAAAMqSYAwAAQIYUcwAAAMiQYg4AAAAZUswBAAAgQ4o5AAAAZEgxBwAAgAwp5gAAAJAhxRwAAAAypJgDAABAhhRzAAAAyJBiDgAAABlSzAEAACBDijkAAABkSDEHAACADCnmAAAAkCHFHAAAADKkmAMAAECGFHMAAADIkGIOAAAAGaqV9QBs+UbMWFzuPoO7NN0MkwAAAFQ/rpgDAABAhhRzAAAAyJBiDgAAABlSzAEAACBDijkAAABkSDEHAACADCnmAAAAkCHFHAAAADKUaTF//vnn4+ijj45WrVpFTk5OPPLII8XuT5Ikrr766mjZsmXUq1cvevfuHR9++GE2wwIAAMAmkGkx/+abb2LPPfeMUaNGlXj/DTfcELfeemvccccd8eqrr8ZWW20Vffr0iRUrVmzmSQEAAGDTqJXlLz/iiCPiiCOOKPG+JEli5MiRceWVV8YxxxwTERF/+ctfonnz5vHII4/EySefvDlHBQAAgE2i2n7GfP78+bFw4cLo3bt30bZGjRpF9+7d4+WXXy71cQUFBZGfn1/sBgAAANVVplfMy7Jw4cKIiGjevHmx7c2bNy+6ryTDhw+PYcOGbdLZAAAAKmPEjMXl7jO4S9PNMAnVSbW9Yl5ZQ4YMiaVLlxbdFixYkPVIAAAAUKpqW8xbtGgRERGLFi0qtn3RokVF95UkNzc38vLyit0AAACguqq2xXyHHXaIFi1axKRJk4q25efnx6uvvho9evTIcDIAAACoOpl+xnz58uUxd+7cop/nz58fM2fOjCZNmsT2228fF198cfzmN7+JHXfcMXbYYYe46qqrolWrVtG3b9/shgYAAIAqlGkxf+ONN+Lggw8u+nnQoEEREdGvX78YN25cXHbZZfHNN9/EueeeG0uWLIn9998/nnzyyahbt25WIwMAAECVyrSY9+rVK5IkKfX+nJycuPbaa+Paa6/djFMBAADA5lNtP2MOAAAAPwSKOQAAAGRIMQcAAIAMKeYAAACQIcUcAAAAMqSYAwAAQIYUcwAAAMiQYg4AAAAZUswBAAAgQ4o5AAAAZEgxBwAAgAwp5gAAAJAhxRwAAAAypJgDAABAhhRzAAAAyJBiDgAAABlSzAEAACBDijkAAABkqFbWA/A/I2YsLnefwV2aboZJAAAA2JxcMQcAAIAMKeYAAACQIcUcAAAAMqSYAwAAQIYUcwAAAMiQYg4AAAAZUswBAAAgQ4o5AAAAZEgxBwAAgAwp5gAAAJAhxRwAAAAypJgDAABAhhRzAAAAyJBiDgAAABlSzAEAACBDijkAAABkSDEHAACADCnmAAAAkCHFHAAAADKkmAMAAECGFHMAAADIkGIOAAAAGVLMAQAAIEOKOQAAAGRIMQcAAIAMKeYAAACQIcUcAAAAMqSYAwAAQIYUcwAAAMiQYg4AAAAZUswBAAAgQ4o5AAAAZEgxBwAAgAxV62J+zTXXRE5OTrHbLrvskvVYAAAAUGVqZT1AeXbbbbd49tlni36uVavajwwAAAAVVu1bbq1ataJFixZZjwEAAACbRLV+K3tExIcffhitWrWK9u3bx6mnnhqffPJJmfsXFBREfn5+sRsAAABUV9W6mHfv3j3GjRsXTz75ZIwePTrmz58fBxxwQCxbtqzUxwwfPjwaNWpUdGvTps1mnBgAAADSqdbF/IgjjogTTjghOnfuHH369IknnngilixZEg888ECpjxkyZEgsXbq06LZgwYLNODEAAACkU+0/Y76uxo0bx0477RRz584tdZ/c3NzIzc3djFMBAABA5VXrK+brW758ecybNy9atmyZ9SgAAABQJap1Mb/00ktj6tSp8fHHH8dLL70UP/vZz6JmzZrx85//POvRAAAAoEpU67ey/+c//4mf//zn8eWXX8a2224b+++/f7zyyiux7bbbZj0aAAAAVIlqXcwnTJiQ9QgAAACwSVXrt7IDAADAlk4xBwAAgAwp5gAAAJAhxRwAAAAypJgDAABAhhRzAAAAyJBiDgAAABlSzAEAACBDijkAAABkSDEHAACADCnmAAAAkCHFHAAAADKkmAMAAECGFHMAAADIkGIOAAAAGVLMAQAAIEOKOQAAAGRIMQcAAIAM1cp6gCyMmLG4QvsN7tJ0E08CAADAD50r5gAAAJAhxRwAAAAypJgDAABAhhRzAAAAyJBiDgAAABlSzAEAACBDijkAAABkSDEHAACADCnmAAAAkCHFHAAAADKkmAMAAECGFHMAAADIkGIOAAAAGVLMAQAAIEOKOQAAAGRIMQcAAIAMKeYAAACQIcUcAAAAMqSYAwAAQIYUcwAAAMiQYg4AAAAZUswBAAAgQ4o5AAAAZEgxBwAAgAzVynoAAAAAqK5GzFhc7j6DuzTdqN/hijkAAABkSDEHAACADCnmAAAAkCHFHAAAADKkmAMAAECGFHMAAADIkGIOAAAAGVLMAQAAIEPfi2I+atSoaNeuXdStWze6d+8er732WtYjAQAAQJWo9sX8b3/7WwwaNCiGDh0ab775Zuy5557Rp0+f+OKLL7IeDQAAADZatS/mN910U5xzzjlx5plnRqdOneKOO+6I+vXrx9133531aAAAALDRamU9QFlWrlwZ06dPjyFDhhRtq1GjRvTu3TtefvnlEh9TUFAQBQUFRT8vXbo0IiLy8/OLtq1YvqxCvz8/v065+1Qka0vNqY4zfR9zquNM1S2nOs70fcypjjNVt5zqONP3Mac6zlTdcqrjTN/HnOo4U3XLqY4zfR9zquNM1S2nOs6UZc7a/pkkSbmPjYjISSq6ZwY+++yz2G677eKll16KHj16FG2/7LLLYurUqfHqq69u8Jhrrrkmhg0btjnHBAAAgA0sWLAgWrduXe5+1fqKeWUMGTIkBg0aVPRzYWFhfPXVV7HNNttETk5OiY/Jz8+PNm3axIIFCyIvL6/Sv7u65VTHmapbTnWcqbrlVMeZqltOdZxpS82pjjNVt5zqOFN1y6mOM1W3nOo405aaUx1nqm451XGm6pZTHWeqbjmbe6YkSWLZsmXRqlWrCmVW62LetGnTqFmzZixatKjY9kWLFkWLFi1KfExubm7k5uYW29a4ceMK/b68vLyN/seujjlVmbWl5lRl1paaU5VZW2pOVWbJ2XxZW2pOVWZtqTlVmbWl5lRllpzNl7Wl5lRl1paaU5VZW2pOVWaVl9OoUaMKZ1XrL3+rU6dOdO3aNSZNmlS0rbCwMCZNmlTsre0AAADwfVWtr5hHRAwaNCj69esX3bp1i3322SdGjhwZ33zzTZx55plZjwYAAAAbrdoX85NOOin++9//xtVXXx0LFy6MvfbaK5588slo3rx5lf2O3NzcGDp06AZvgf++51THmapbTnWcqbrlVMeZqltOdZxpS82pjjNVt5zqOFN1y6mOM1W3nOo405aaUx1nqm451XGm6pZTHWeqbjnVdaa1qvW3sgMAAMCWrlp/xhwAAAC2dIo5AAAAZEgxBwAAgAwp5gAAAJChH0wxHzVqVLRr1y7q1q0b3bt3j9dee63M/R988MHYZZddom7durHHHnvEE088kTpn9uzZcdxxx0W7du0iJycnRo4cWal5/vznP8cBBxwQW2+9dWy99dbRu3fvYvunyXr44YejW7du0bhx49hqq61ir732invvvbdSr9FaEyZMiJycnOjbt2/qnHHjxkVOTk6xW926dSs1z5IlS2LAgAHRsmXLyM3NjZ122qlS/269evXaYKacnJw46qijUs80cuTI2HnnnaNevXrRpk2buOSSS2LFihWpclatWhXXXnttdOjQIerWrRt77rlnPPnkk/H888/H0UcfHa1atYqcnJx45JFHypwlImLKlCnxox/9KHJzc6Njx44xbty41Dmff/55nHLKKbHTTjtFjRo14uKLL46ISJ3z8MMPx2GHHRbbbrtt5OXlRY8ePeKpp56qVNa0adOiZ8+esc0220S9evVil112iZtvvrlSr9FaL774YtSqVSv22muv1DlTpkwpcQ1NnDgx9TwFBQVxxRVXRNu2bSM3NzfatWsXd999d+qZ+vfvX+JM7dq1Sz3TfffdF3vuuWfUr18/WrZsGf/3f/8X//znP1PnjBo1KnbdddeoV69e7LzzzvGXv/wlhg8fHnvvvXc0bNgwmjVrFn379o05c+aUm7X+Mbt///6pc0o6ZldmnpKO2RdccEHqnNKO15V9jdZae8zu1KlT6pySjtm1atWq1DzrH7ObNm0aO+20U6qc0o7XO++8c6VmWv+Y3bNnz+jatWuqnJKO2RdeeGF07tw58vLyio53//rXv8rMKek8ZPTo0alyyjoPSZtV2rlI2pzS1nXanHWtex6SNqes85DKzFTSuciAAQNS5ZS2rnfffffU85R0HnLrrbemyintPGR9I0aMiJycnKLzgtKUdo6dJqestZ02q7zz7IrmlHWOnSZnXeufY6fJKWttV2amss6zK5pT1jl22nlKO8dOk1Pa2r7mmms2mHGXXXYpc57y1nWFJD8AEyZMSOrUqZPcfffdyezZs5Nzzjknady4cbJo0aIS93/xxReTmjVrJjfccEPy7rvvJldeeWVSu3bt5Pe//32qnNdeey259NJLk/vvvz9p0aJFcvPNN1dqnlNOOSUZNWpUMmPGjOS9995L+vfvnzRq1Cj5z3/+kzrrueeeSx5++OHk3XffTebOnZuMHDkyqVmzZjJkyJBUOWvNnz8/2W677ZIDDjggOeaYY1LPM3bs2CQvLy/5/PPPi24LFy5MnVNQUJB069YtOfLII5Np06Yl8+fPT6ZMmZLMnDkzddaXX35ZbJ5Zs2YlNWvWTM4777xUOffdd1+Sm5ub3Hfffcn8+fOTp556KmnZsmVy5JFHpsq57LLLklatWiWPP/54Mm/evOT2229P6tatm9x2223JFVdckTz88MNJRCQTJ04s89/qo48+SurXr58MGjQoeffdd5PbbrstqVmzZnLdddelypk/f37yy1/+MrnnnnuSvfbaKxk4cGCSJEnyxBNPpMoZOHBg8rvf/S557bXXkg8++CAZMmRIUrt27eTNN99MnfXmm28m48ePT2bNmpXMnz8/uffee5P69esnF110Uaqctb7++uukffv2yeGHH57sueeeqed57rnnkohI5syZU2wtPfbYY6nn+elPf5p07949eeaZZ5L58+cnL730UjJt2rTUMy1ZsqTYLAsWLEiaNGmSnHLKKalypk2bltSoUSO55ZZbko8++ih54YUXkt122y3p0aNHqpzbb789adiwYTJhwoRk3rx5yf333580aNAg6dKlSzJ27Nhk1qxZycyZM5Mjjzwy2X777ZPly5eXmlXSMTsnJye57rrrUuWUdMzu06dP6nlKOmbXqlUruemmm1LllHa87tq1a+qZ1lr3mN2sWbPUOSUdsw8++ODUOSUds/fee+9k2LBhqXJKO17vvvvuqWcq6Zidm5ubHH744alySjpm165dO7n11luTDz74IJkzZ07y61//Oqldu3Yya9asEjNKOw+57bbbkscff7zCOaWdhyRJkjz66KOpsko7Fxk7dmyqnNLW9TXXXJMqZ631z0PSPq/SzkMq8xqVdi5yyy23pMopbV0PHDgwVU5p5yE//elPU+WUdh7y5ptvFu3z2muvJe3atUs6d+5cdF5QktLW9jvvvJMqp6y1nXamss6z0+SUtraffPLJVDlrrb+20z6vstZ22qyyzrPT5JS2tseOHZsqp7S1fckll6TKKW1tn3vuucluu+1WbNb//ve/peaUt64r6gdRzPfZZ59kwIABRT+vWbMmadWqVTJ8+PAS9z/xxBOTo446qti27t27J82aNUuVs662bdsWHTTSzrO+1atXJw0bNkzuueeejc5KkiTp0qVL0qpVq9Q5q1evTvbbb7/krrvuSvr165ccc8wxqecZO3Zs0qhRow22p80ZPXp00r59+2TlypUbnbW+m2++OWnYsGHSrVu3VDkDBgxIDjnkkGLbBg0alDRo0CBVTsuWLZM//vGPxbYde+yxyamnnlr0c0WK0GWXXZbstttuxbaddNJJSZ8+fVLlrOuggw4q8YCXNmetTp06JcOGDauSrJ/97GfJaaedVqmck046KbnyyiuToUOHJnvuuWfqedYW86+//rrUfSqS869//Stp1KhR8uWXX5a5X2Veo4kTJyY5OTnJxx9/nCrn97//fdK+ffti22699dZku+22S5XTo0eP5NJLLy22bdCgQUnPnj2Lbfviiy+SiEimTp1aalZpx+xf/OIXqXLWte4xO+0861v3mL0xOUnyv+P1lVdeWamZSjpmp80p7ZidNqesY3aanPWtPV6vX5wrklXaMXvdNVmRnIocs5MkSbbeeuvkrrvuKjGjImu6IjnrKm1NVyYrSUpe15XJSZKS13VFcspb0xXJqciarmhWRdZ1RXLWV9q6Li+nImu6Ijnlrelly5YlO+64Y/LMM8+Uel6wVllrO03Oukpa25XNSpLia3tjcpLk/1/baXNKW9tpcspb22myylrbG/Marbu20+SUtbbT5JS2tvfYY48Nzv/KkuaYXZYt/q3sK1eujOnTp0fv3r2LttWoUSN69+4dL7/8comPefnll4vtHxHRu3fv+OKLL1LlVNU86/v2229j1apV0bBhw43KSpIkJk2aFO+//34sXLgwdc61114bzZo1i7POOisiIgoLCys1z/Lly6Nt27bRpk2bOOaYY2LmzJmpcx599NHo0aNHDBgwIJo3bx677757/Pa3v43vvvtuo1/vMWPGxAknnBAzZsxIlbPffvvF9OnTi94O9dFHH8Xjjz8e3377baqcgoKCDd56VK9evZg2bVqF5l+rpHXdp0+fVOt3UyosLIxly5ZFkyZNNjprxowZ8dJLL8VBBx2U+rFjx46Njz76KIYOHbrRc+y1117RsmXLOOyww+LFF19M/fhHH300unXrFjfccENst912sdNOO8Wll14a33333UbPNmbMmOjdu3e0bds21eN69OgRCxYsiCeeeCKSJIlFixbFQw89FEceeWSqnNLW9WuvvRarVq0q2rZ06dKIiDLXRUXWdkVyKqIyOWuP2es+Jm3O2uP1nDlz4sADD6zUTOsfs9dX0Zz1j9mzZ89OnVPaMXvNmjWp51nXmDFj4uSTT46tttoq9UwlHbOfeOKJYmu7IjnlHbPXrFkTEyZMiG+++SZ69OhRYkZF1nRFciqqMlklreu0OaWt64rmlLemK5pT3pquaFZF1nVlXuuS1nVFciqypiuSU96aHjBgQBx11FEbrNmSlLW20+SUZ2Oy1l3blc1Zf22nzSltbafNKWttp8kqa21vzGu97tpOk1PW2k6TU9ra/uSTT+LDDz+MVq1aRfv27ePUU0+NTz75pNScqjrHrpVq7++hxYsXx5o1a6J58+bFtjdv3jzef//9Eh+zcOHCDfavX79+0eMqmlNV86zv8ssvj1atWsWee+5ZqaylS5fGdtttFwUFBVGzZs24/vrr49JLL02VM23atBgzZkzMnDmzaFtBQUHqeXbeeee4++67o3PnzrF06dK48cYb44ADDkid89FHH8XkyZPj1FNPjSeeeCLmzp0bF1xwQXz55Zcb9Xq/9tprMWvWrBgxYkTcfffdqXJOOeWUWLx4cey///6RJEmsXr06Tj/99JgzZ06qnD59+sRNN90UBx54YHTo0CEmTZoUDz/8cLH/oa+IktZ18+bNIz8/P7777ruoV69eqryqduONN8by5cvjxBNPrHRG69at47///W+sXr06rrnmmjj77LNTPf7DDz+MwYMHxwsvvBC1alX+8NiyZcu44447olu3blFQUBB33XVX9OrVK1599dX40Y9+VOGcjz76KKZNmxZ169aNiRMnxuLFi4vW9dixYys932effRb/+te/Yvz48akf27Nnz7jvvvvipJNOihUrVsTq1avj6KOPjlGjRqXK6dOnT9x1113Rt2/f+NGPfhTTp0+Pu+66K1atWhWLFy+Oli1bRmFhYVx88cXRs2fP2H333UvNKm1tL1y4MCKiwjnlqWzO2mP22v/RTpOz/vH69ttvj8MOOyz1TCUdsyvz3Eo6Zu+3334xe/bsaN26dYVzSjtmr1q1KoYOHVqp13rt8XrMmDGVem4lHbPPO++8+PWvf50qp7Rj9qpVq6JBgwaxYsWKaNCgQUycODE6depUYkZZa/qdd96JHj16VCinPBuTte66TptT2rpOk1PWmk6TU96aTpNV1ro+9thjK/Var7+u08xT1ppOk1PWeciECRPizTffjNdff73c5xJR+tr++OOPo7CwsMI5ZUk70/rWru2vvvoqdU5Ja/vLL79MlVPa2k77vMpa29OmTUuVVdrafvPNN2POnDmVeq3XXdtpn1tpa7t9+/Zx//33VzinrOP1+PHjY+edd47PP/88hg0bFgcccEDMmjUrGjZsuEFOeechFbXFF/MtzYgRI2LChAkxZcqUEr/AoSIaNmwYM2fOjOXLl8ekSZNi2LBhqR6/bNmyOP300+PPf/5zNG3atFIzrNWjR49i/w/tfvvtFzvuuGMsX748VU5hYWE0a9Ys7rzzzqhZs2Z07do1Pv300xgxYsRGzTdmzJjYY489okuXLqkfO2XKlPjtb38bt99+e3Tv3j3mzp0bF154YeqcW265Jc4555zYZZddIicnJzp06BBnnnlm3H333amzqqvx48fHsGHD4h//+Ec0a9as0jkvvPBCLF++PF555ZUYPHhwdOzYMX7+859X6LFr1qyJU045JYYNGxY77bRTpWeI+N//GO68885FP++3334xb968uPnmmzf4IpiyFBYWRk5OTtx3333RqFGjiIi46aab4vjjj4/bb7+90v9nyj333BONGzfe4MtkKuLdd9+NgQMHxtVXXx19+vSJzz//PH71q1/Feeedt0EhKstVV10VCxcujH333TeSJInmzZtHv3794oYbbogaNf73Zq4BAwbErFmzUr87ZH1Z5pR0zE6Ts/7xetCgQdG+ffvo1atXhbMqcsyu6EwlHbN33XXX+NOf/hTXXXddhXNKO2b//ve/j6FDh1bqtV57vN5nn30q9dxKOmYPHDgwrrvuurjqqqsqnFPaMXvtifbSpUvjoYcein79+sXUqVNTl+qdd965SnI2Jmv9dZ02p7R1vd9++1Uop7w1nWae8tZ0mqyy1vWQIUMq9Vqvv67TzFPWmr788ssrnFPWmh44cGA888wzlT4njYj4+uuvY9myZXHfffdtVE5ExIIFCzZqprVre8KECXH66aenzll/bV988cVRq1atCp+3l7a2v/vuu9TPq7S1fcMNN8Tf/va3VFklre1Zs2bFb3/725gxY0alXuu1a7tly5Zx9NFHp5qnpLU9YMCAuPfee+Oll16qcE5Z59gnnHBCRER07tw5unfvHm3bto0HHnig1HfoVIlUb3z/HiooKEhq1qy5wecdzzjjjOSnP/1piY9p06bNBp9VueKKK0r83GRZOeta+/mXysyz1u9///ukUaNGyeuvv17p51aS/v37Jzk5ORXOmTFjRhIRSc2aNYtuOTk5SUQkEZGMHj16o+Y59thjU82TJEly4IEHJoceemixbU888UTRnJV5jZYvX57k5eUlI0eOrNRrvf/++2/wGdqxY8cmEZH8/e9/Tz3Pd999l/znP/9JCgsLk8suuyzp1KlT0X0lrc31HXDAARt8zubuu+9O8vLyUuWsqyo+Y37//fcn9erVSx577LES708701rXXXddstNOO1U45+uvvy51XdesWTOZNGnSRs1z6aWXJvvuu2+F50mS/62LDh06FNv27rvvJhGRfPDBB6my1iosLEw6duyYXHzxxRvcV5Gc0047LTn++OOLbXvhhReSiEg+++yz1POsXLkyWbBgQbJ69eqiL4Rbs2ZNMmDAgKR169bJRx99VG5GScfsq6++OuncuXOqnHWt/5nFyuSsf8yubM66zjrrrOTwww9PlVXaMTsnJyepWbNmctppp23UTMcff3xy8sknp3puZR2zzzvvvNTzrHu8XleamUo6Zt97771JvXr1kgsuuCD1TGUds5MkSQ499NDk3HPPLfGxZa3p9ZWVs66KfMa8IlklrevKzrTWuuu6Ijnlrem5c+du1Dxr13RJysoqa10XFBSknqm0dV3RnLLW9Jo1a1LPs/6abt269Qb/DhFR9O+wevXqDTJKWtsnnnhi6px1rbu2J06cWOmsddf2xuSs69BDD02VU9459sbOc/zxxyf7779/6qyS1vaVV15Z6ZnWXduVea1LWtsDBw6s9DzlHa+TJEm6deuWDB48uMTHpzlml2WL/4x5nTp1omvXrjFp0qSibYWFhTFp0qRSP0vTo0ePYvtHREyePDmaNWuWKqeq5omIuOGGG+K6666LJ598Mrp167ZRWevLycmJBg0aVDhnl112iXfeeSdmzpxZdPvpT38ahxxySOyxxx7x9ttvV3qeNWvWxOzZs6N58+apnlfPnj1j7ty5UVhYWLTtgw8+iJYtW1b6NXrwwQejoKAgTjvttEq91t9++23Rlb+1cnNzIycnJyZPnpx6nrp168Z2220Xq1evjr///e9xzDHHlLn/+kpa188888xGfzZxY9x///1x5plnxv3331/sT2VUhcLCwigoKKjw/nl5eRus6/POO6/o6kT37t03ap6ZM2dGy5YtUz2mZ8+e8dlnnxV7B8kHH3wQNWrUiNatW1dqjqlTp8bcuXMr/f/4lrSua9asGRH/+0xdWrVr147WrVtHzZo1Y8KECXHUUUfFL3/5y5g4cWJMnjw5dthhh3IzSlrbTz/9dKxZsyZVTkmSJIkLL7wwdc76x+zK5qyvsLAwVqxYkSqrtGN2r1694oQTTojJkydXeqY1a9bE22+/He+9916q51bSMXvOnDlRv379ePTRR1PPs+7xOqJy/24lre0aNWrEypUr45FHHkk9U3nH7LKOUWmO12mPdWUpL6ukc5HK5FR0/9K2l7amDz744Jg5c2a0adOm0vOsWbMm3nnnnVKP12VllXUuUqdOndQzrb+u086T5nhdkXnWX9MnnnjiBv8O3bp1i1NPPTVmzpxZ9LvWVdLa/vjjj+OEE05IlVOaQw89NPVMERuu7crmrK9ly5bRrVu3CueUtrYPPPDAePjhh+P111+v9Dxr1/aee+6Z+rmVtLYbNGgQTZs2rdRrtO7arsxrXdLa7ty5c+Tm5sb06dNTz1Pe8Xr58uUxb968Uo8LVXaOnarGf09NmDAhyc3NTcaNG5e8++67ybnnnps0bty46E8GnH766cX+H5AXX3wxqVWrVnLjjTcm7733XjJ06NCiP5eWJqegoCCZMWNGMmPGjKRly5bJpZdemsyYMSMZOXJkqpwRI0YkderUSR566KFiX9u/bNmy1M/tt7/9bfL0008n8+bNS959993kxhtvTGrVqpWce+65qXLWt/YbI9POM2zYsOSpp55K5s2bl0yfPj05+eSTk7p16yY33nhjqpxPPvkkadiwYXLhhRcmc+bMSR577LGkWbNmyW9+85vUM621//77JyeddFKl19HQoUOThg0bJvfff3/y0UcfJU8//XTSoUOHZN99902V88orryR///vfk3nz5iXPP/98csghhyQ77LBDsmDBgqL1FRHJTTfdlMyYMSP597//nSRJkgwePDg5/fTTi3LW/rm0X/3qV8l7772XjBo1quhdAGlykiQp2r9r167JKaecksyYMSN57bXXUuXcd999Sa1atZJRo0YVW9dLlixJli1blirrj3/8Y/Loo48mH3zwQfLBBx8kd911V9KwYcPkV7/6Verntq6138qedp6bb745eeSRR5IPP/wweeedd5KBAwcmNWrUSP75z3+mylm2bFnSunXr5Pjjj09mz56dTJ06Ndlxxx2Ts88+O/VMa5122mlJ9+7di/2ONDljx45NatWqldx+++3JvHnzkmnTpiXdunVLunbtmipnzpw5yb333pt88MEHyauvvpqcdNJJSZMmTZLTTjstadSoUTJlypRi6+Lbb78temxFjtk1atRIGjZsmCqnpGP2CSeckDqnpGN2v379Uj+v0o7XvXr1Sp21vn79+iXt2rVLnVPSMbtmzZqpX6OSjtn16tVL6tatW6nntf7x+vzzz0/93Eo6Zufl5SW1a9dOlVPSMbtRo0bJY489lsyfPz95++23k8GDByc5OTnJ008/XWJGaechZ511VjJ16tQK55R2HvLhhx8mgwcPTpVV2rnIoEGDUuWUtq6POOKIVDnrW3sekvZ5lXYeMnv27NRZpZ2LHHjggZV6buuv67TzlHYesssuu6TKKe08pKS/PLL+O+kqurbX/7NS5eWUtbbTzlTWeXaanNLW9p///OdUOesr7S8OlJdT1tpOm1XWeXZlntv6azvtPKWt7RNPPDFVTmlr+8ILL0ymTJmSzJ8/P3nxxReT3r17J02bNk2++OKLEnMquq7L84Mo5kmSJLfddluy/fbbJ3Xq1En22Wef5JVXXim676CDDkr69etXbP8HHngg2WmnnZI6deoku+22W/L444+nzpk/f37RW0/WvR100EGpctq2bVtiztChQ1PPdMUVVyQdO3ZM6tatm2y99dZJjx49kgkTJlTqNVrXugeNNDkXX3xx0b7NmzdPjjzyyKK/i5l2npdeeinp3r17kpubm7Rv3z65/vrri962kjbr/fffTyKi6H+k1kqTs2rVquSaa65JOnTokNStWzdp06ZNcsEFFyRff/11qpwpU6Yku+66a5Kbm5tss802yemnn558+umnRX+Sa/3b2sf269cvOeigg4rN/9xzzyV77bVXUqdOnaR9+/bJ2LFjK5VT0v7NmzdPlXPQQQeVun/amW699dZkt912S+rXr5/k5eUlXbp0SW6//fZk0qRJqZ/butYW87Tz/O53vyv6d2/SpEnSq1evZPLkyZV6rd97772kd+/eSb169ZLWrVsngwYNSr799ttKZS1ZsiSpV69ecueddxZbE2lzbr311qRTp05JvXr1kpYtWyannnpq8sADD6TKeffdd5O99torqVevXpKXl5ccc8wxRf+9K+m29m+crl075R2zK5NT2jE7bU5px+y0OaUdryv7Gq2rX79+lcop6Zhd2XnWP2ZXNqek43Vlsko6Zlcmp6Rj9sknn5y0bds2qVOnTrLtttsmhx56aLF5K3oe8n//93+pcso6D0mbVdq63muvvVLllLau086zvrXnIWlzyjoPqcxMJZ2LnHnmmalzSlrXaecp7TzktNNOS5VT2nlISdYvQmnOsdPklLW202aVd55d0ZyyzrHTvkbrqmgxT7O2KzNTWefZaXJKO8dOk1PWOXaanNLW9kknnZS0bNkyqVOnTrLddtslJ510UrGPyFR2XZcnJ0kq8d5DAAAAoEps8Z8xBwAAgOpMMQcAAIAMKeYAAACQIcUcAAAAMqSYAwAAQIYUcwAAAMiQYg4AAAAZUswBAAAgQ4o5AFDMuHHjonHjxhudk5OTE4888shG5wDAlk4xB4AtUP/+/aNv375ZjwEAVIBiDgAAABlSzAHgB+amm26KPfbYI7baaqto06ZNXHDBBbF8+fIN9nvkkUdixx13jLp160afPn1iwYIFxe7/xz/+ET/60Y+ibt260b59+xg2bFisXr16cz0NANhiKOYA8ANTo0aNuPXWW2P27Nlxzz33xOTJk+Oyyy4rts+3334b119/ffzlL3+JF198MZYsWRInn3xy0f0vvPBCnHHGGTFw4MB49913409/+lOMGzcurr/++s39dADgey8nSZIk6yEAgKrVv3//WLJkSYW+fO2hhx6K8847LxYvXhwR//vytzPPPDNeeeWV6N69e0REvP/++7HrrrvGq6++Gvvss0/07t07Dj300BgyZEhRzl//+te47LLL4rPPPouI/33528SJE33WHQDKUSvrAQCAzevZZ5+N4cOHx/vvvx/5+fmxevXqWLFiRXz77bdRv379iIioVatW7L333kWP2WWXXaJx48bx3nvvxT777BNvvfVWvPjii8WukK9Zs2aDHACgfIo5APyAfPzxx/GTn/wkzj///Lj++uujSZMmMW3atDjrrLNi5cqVFS7Uy5cvj2HDhsWxxx67wX1169at6rEBYIummAPAD8j06dOjsLAw/vCHP0SNGv/7qpkHHnhgg/1Wr14db7zxRuyzzz4RETFnzpxYsmRJ7LrrrhER8aMf/SjmzJkTHTt23HzDA8AWSjEHgC3U0qVLY+bMmcW2NW3aNFatWhW33XZbHH300fHiiy/GHXfcscFja9euHRdddFHceuutUatWrbjwwgtj3333LSrqV199dfzkJz+J7bffPo4//vioUaNGvPXWWzFr1qz4zW9+szmeHgBsMXwrOwBsoaZMmRJdunQpdrv33nvjpptuit/97nex++67x3333RfDhw/f4LH169ePyy+/PE455ZTo2bNnNGjQIP72t78V3d+nT5947LHH4umnn46999479t1337j55pujbdu2m/MpAsAWwbeyAwAAQIZcMQcAAIAMKeYAAACQIcUcAAAAMqSYAwAAQIYUcwAAAMiQYg4AAAAZUswBAAAgQ4o5AAAAZEgxBwAAgAwp5gAAAJAhxRwAAAAy9P8BfcX4nSluCqwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_label_count(\"./ensemble_results/ensemble_01.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/utils/ensemble/ensemble.py b/utils/ensemble/ensemble.py new file mode 100644 index 0000000..4a01406 --- /dev/null +++ b/utils/ensemble/ensemble.py @@ -0,0 +1,164 @@ +import random +import numpy as np +import pandas as pd +import torch +from typing import List +from itertools import combinations + + +## +def seed_everything(SEED=42): + """ + 시드 고정 + """ + deterministic = True + random.seed(SEED) + np.random.seed(SEED) + torch.manual_seed(SEED) + torch.cuda.manual_seed(SEED) + torch.cuda.manual_seed_all(SEED) + if deterministic: + torch.backends.cudnn.deterministic = True + torch.backends.cudnn.benchmark = False + + +def postprocessing(df: pd.DataFrame) -> pd.DataFrame: + """ + 후처리 함수 : 정규화 + """ + # target 컬럼의 최소값과 최대값 + min_val = df["target"].min() + max_val = df["target"].max() + + # 정규화: 0.0~1.0 범위로 변환 + df["target"] = (df["target"] - min_val) / (max_val - min_val) + # 다시 0.0~5.0 범위로 변환 + df["target"] = df["target"] * 5.0 + return df + + # 예측값에 단순 -0.1 뺄셈 + # df["target"] = df["target"].apply(lambda x: max(0, x - 0.1)) + # return df + + +def ensemble( + result_path_list: List[pd.DataFrame], + score_list: List[float], + postprocessing_list: List[bool], + save_path="./ensemble_results/ensemble.csv", +) -> pd.DataFrame: + """ + 점수 가중 평균 Ensemble + """ + df_submission, weight_sum = None, 0 + for i, (path, weight, pp) in enumerate( + zip(result_path_list, score_list, postprocessing_list) + ): + df_now = pd.read_csv(path) + # 후처리를 진행 + if pp: + df_now = postprocessing(df_now) + + # i == 0에서 제출 파일 생성 / 점수 가중 합 + if i == 0: + df_submission = pd.read_csv(path) + df_submission["target"] = weight * df_now["target"] + else: + df_submission["target"] += weight * df_now["target"] + + weight_sum += weight + + # 점수 가중 평균 + df_submission["target"] /= weight_sum + df_submission["target"] = df_submission["target"] + df_submission.to_csv(save_path, index=False) + + +def calculate_entropy(data): + value_counts = data.value_counts(normalize=True) + entropy = -np.sum( + value_counts * np.log2(value_counts + 1e-9) + ) # 작은 값 추가로 로그 계산시 0 방지 + return entropy + + +def calculate_gini(data): + sorted_data = np.sort(data) # 데이터를 정렬 + n = len(data) + + # 지니 계수 계산 + cumulative_values = np.cumsum(sorted_data) # 누적 합계 + gini = (2 * np.sum(cumulative_values) / cumulative_values[-1] - (n + 1)) / n + + # 지니 계수는 양수여야 하므로 절대값을 취해 0에서 1 사이로 맞춤 + return np.abs(gini) + + +def ensemble_with_metrics( + result_path_list: List[str], + score_lists: List[List[float]], + postprocessing_list: List[bool], +): + """ + 주어진 여러 점수 조합에 대해 앙상블을 수행하고, 그 결과의 지니계수와 엔트로피를 계산합니다. + """ + for score_list in score_lists: + save_path = f"./ensemble_results/ensemble_{'_'.join(map(str, score_list))}.csv" + print(f"\n=== 앙상블 결과 (score_list: {score_list}) ===") + + # 앙상블 진행 + df_submission = ensemble( + result_path_list, score_list, postprocessing_list, save_path=save_path + ) + + # 지니 계수 및 엔트로피 계산 + entropy = calculate_entropy(df_submission["target"]) + gini = calculate_gini(df_submission["target"]) + + # 결과 출력 + print(f"Entropy: {entropy:.4f}") + print(f"Gini Coefficient: {gini:.4f}") + + +def ensemble_with_combinations( + result_path_list: List[str], + score_lists: List[List[float]], + postprocessing_list: List[bool], + n: int, +): + """ + 주어진 경로 목록에서 n개 조합을 생성하여 앙상블을 진행한 후, 엔트로피 및 지니계수를 출력합니다. + """ + if len(result_path_list) < n: + print("Error: 경로 목록의 개수가 n보다 적습니다.") + return + + # n개의 조합을 생성 + path_combinations = list(combinations(result_path_list, n)) + score_combinations = list(combinations(score_lists, n)) + + for idx, (path_combination, score_combination) in enumerate( + zip(path_combinations, score_combinations) + ): + print(f"\n=== 조합 {idx + 1}: 선택된 파일들 ===") + for path in path_combination: + print(f"- {path}") + + save_path = f"./ensemble_results/ensemble_combination_{idx + 1}.csv" + + # 선택된 파일 경로와 점수 조합으로 앙상블 수행 + df_submission = ensemble( + path_combination, score_combination, postprocessing_list, save_path + ) + + # 지니 계수 및 엔트로피 계산 + entropy = calculate_entropy(df_submission["target"]) + gini = calculate_gini(df_submission["target"]) + + # 평균 점수 계산 + avg_score = np.mean([np.mean(scores) for scores in score_combination]) + + # 결과 출력 + print(f"Average Score: {avg_score:.4f}") + print(f"Entropy: {entropy:.4f}") + print(f"Gini Coefficient: {gini:.4f}") From 26c26b2ecab25f98aef7cc8f65252cfa7183e361 Mon Sep 17 00:00:00 2001 From: gayeon7877 Date: Mon, 30 Sep 2024 11:54:00 +0900 Subject: [PATCH 22/27] =?UTF-8?q?fix/readme=20=EC=88=98=EC=A0=95?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- README.md | 45 +++++++++++++++++++++++++++++++++++++-------- 1 file changed, 37 insertions(+), 8 deletions(-) diff --git a/README.md b/README.md index 62a50ea..76a60b4 100644 --- a/README.md +++ b/README.md @@ -4,18 +4,24 @@ -## **Abstract** +## **개요** +> 진행 기간: 24년 9월 10일 ~ 24년 9월 26일 -> 네이버 부스트캠프 AI Tech NLP Level1 project -> 진행 기간 : 24년 09월 10일 ~ 24년 09월 26일 +> 데이터셋: +> - 학습 데이터셋 9,324개 +> - 검증 데이터셋 550개 +> - 평가 데이터는 1,100개 +> +> 평가 데이터의 50%는 Public 점수 계산에 활용되어 실시간 리더보드에 표기가 되고, 남은 50%는 Private 결과 계산에 활용되었습니다. -## **Introduction** +부스트캠프AI Tech 7기의 Level1 과정으로 NLP 기초 대회입니다. 주제는 ‘문장 간 유사도 측정’으로, 두 문장이 얼마나 유사한지를 수치화하는 자연어처리 N21 태스크인 의미 유사도 판별(Semantic Text Similarity, 이하 STS)을 진행했습니다. 학습 데이터에 주어진 문장 두 개와 유사도 점수를 기반으로 평가 데이터의 두 문장 간의 유사도를 0과 5 사이의 값으로 예측하는 모델을 구축하였습니다. -## **데이터구조(임시)** +## **데이터구조** +``` ├─.github ├─.idea -├─checkpoint(모델 파라미터 저장예정-현재는 아무것도 안생김) +├─checkpoint(모델 파라미터 저장) ├─config(파라미터 입력) ├─data │ └─raw(데이터 저장) @@ -27,8 +33,7 @@ ├─tb_logs │ └─test1 └─utils - -만약 텐서보드 키려면, 터미널에 tensorboard --logdir=tb_logs +``` ## **Contributors** @@ -72,3 +77,27 @@ + +## 역할분담 + +| 이름 | 역할 | +| ------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| 김민서 | 베이스라인 코드 구현, 텐서보드 기능 구현, 허깅페이스 내 모델 Search, 모델링 및 튜닝(`klue/roberta-large`, `klue/roberta-base`, `team-lucid/deberta-v3-base-korean`, `deliciouscat/kf-deberta-base-cross-sts`, `upskyy/kf-deberta-multitask`, `kakaobank/kf-deberta-base`, `klue/bert-base`), 앙상블(`soft voting`, `weighted voting`) | +| 김수진 | Task에 적합한 모델 Search, 데이터 증강(`swap`), 데이터 분할, 모델링 및 튜닝(`snunlp/KR-ELECTRA-discriminator`), 앙상블(`weighted voting`) | +| 양가연 | 데이터 전처리(`hanspell`, `soynlp`), 데이터 증강(`copied_sentence`, `swap`, `synonym replacement`, `undersampling`, `masking`), 모델링 및 튜닝(`kykim/electra-kor-base`, `snunlp/KR-ELECTRA-discriminator`, `klue/roberta-large`, `WandB`), 앙상블(`weighted voting`) | +| 이예서 | EDA(`Label 분포`, `Source 분포`, `Sentence length 분석`), 데이터 전처리(`특수문자 제거`, `초성 대체`, `띄어쓰기/맞춤법 교정`), 데이터 증강(`sentence swap`, `sentence copy`, `korEDA(SR, RI, RS)`, `K-TACC(BERT_RMR, ADVERB)`), 앙상블(`weighted voting`) | +| 홍성민 | 모델링 및 튜닝(`kykim/KR-ELECTRA-Base`), 앙상블(`weighted voting`), 베이스라인 코드 수정과 기능 추가 | +| 홍성재 | 하이퍼 파라미터 튜닝(`BS`, `Epoch`, `LR`), 모델 최적화 및 앙상블(`Koelectra-base-v3-discriminator`, `roberta-small`, `bert-base-multilingual-cased` / `Soft voting`) | + +## 프로젝트 타임라인 + +Gantt chart template (Community) (3) + +## 프로젝트 수행결과 + +Gantt chart template (Community) (4) + + + +## 리더보드 결과 +![image](https://github.com/user-attachments/assets/e666e639-3bfe-4bed-95b1-4fd3a93ed745) \ No newline at end of file From f02971f1c9ac1c9c40045302fffee5e14ae5c560 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=EA=B9=80=EB=AF=BC=EC=84=9C?= <75977640+luckyvickyricky@users.noreply.github.com> Date: Mon, 28 Oct 2024 20:36:23 +0900 Subject: [PATCH 23/27] Update README.md --- README.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index 76a60b4..eac18db 100644 --- a/README.md +++ b/README.md @@ -52,8 +52,8 @@ - 김민서
- + 김민서
+
badge 김민서 @@ -100,4 +100,4 @@ ## 리더보드 결과 -![image](https://github.com/user-attachments/assets/e666e639-3bfe-4bed-95b1-4fd3a93ed745) \ No newline at end of file +![image](https://github.com/user-attachments/assets/e666e639-3bfe-4bed-95b1-4fd3a93ed745) From 1624d093f8955a43a3d13de2cdddb7b1126c5ba3 Mon Sep 17 00:00:00 2001 From: Sujinkim-625 Date: Mon, 11 Nov 2024 14:08:02 +0900 Subject: [PATCH 24/27] =?UTF-8?q?readme.md=20=EC=88=98=EC=A0=95?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index eac18db..b5769e0 100644 --- a/README.md +++ b/README.md @@ -4,7 +4,7 @@ -## **개요** +## **프로젝트 개요** > 진행 기간: 24년 9월 10일 ~ 24년 9월 26일 > 데이터셋: @@ -17,7 +17,7 @@ 부스트캠프AI Tech 7기의 Level1 과정으로 NLP 기초 대회입니다. 주제는 ‘문장 간 유사도 측정’으로, 두 문장이 얼마나 유사한지를 수치화하는 자연어처리 N21 태스크인 의미 유사도 판별(Semantic Text Similarity, 이하 STS)을 진행했습니다. 학습 데이터에 주어진 문장 두 개와 유사도 점수를 기반으로 평가 데이터의 두 문장 간의 유사도를 0과 5 사이의 값으로 예측하는 모델을 구축하였습니다. -## **데이터구조** +## **프로젝트 구조** ``` ├─.github ├─.idea From 4bc356ec77d5feb70c4dba44cf80abdb76c9e017 Mon Sep 17 00:00:00 2001 From: Sujinkim-625 Date: Mon, 11 Nov 2024 14:17:24 +0900 Subject: [PATCH 25/27] add requirements.txt --- requirements.txt | 16 ++++++++++++++++ 1 file changed, 16 insertions(+) create mode 100644 requirements.txt diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000..8f634bb --- /dev/null +++ b/requirements.txt @@ -0,0 +1,16 @@ +transformers==4.35.2 +wandb==0.18.0 +torchmetrics==1.2.0 +torch==2.1.0 +tokenizers==0.15.0 +seaborn==0.13.2 +pytorch-lightning==2.1.2 +pandas==2.1.3 +matplotlib==3.9.2 +hydra-core==1.3.2 +huggingface-hub==0.19.4 +scikit-learn==1.2.2 +scipy==1.10.1 +numpy==1.24.3 +joblib==1.2.0 +tqdm \ No newline at end of file From 2861868b88317c24e8bdf63fb9d9926555b82d06 Mon Sep 17 00:00:00 2001 From: Sujinkim-625 Date: Mon, 11 Nov 2024 14:29:52 +0900 Subject: [PATCH 26/27] =?UTF-8?q?readme.md=20=EC=88=98=EC=A0=95?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- README.md | 51 +++++++++++++++++++++++++++++++++++---------------- 1 file changed, 35 insertions(+), 16 deletions(-) diff --git a/README.md b/README.md index b5769e0..0e924db 100644 --- a/README.md +++ b/README.md @@ -19,20 +19,21 @@ ## **프로젝트 구조** ``` -├─.github -├─.idea -├─checkpoint(모델 파라미터 저장) -├─config(파라미터 입력) -├─data -│ └─raw(데이터 저장) -├─experiments(모델저장) -├─lightning_logs -├─model -│ └─model(transformer 라이브러리에서 모델 불러오는 부분) -├─output -├─tb_logs -│ └─test1 -└─utils +📦project1 + ┣ 📂config + ┃ ┗ 📜config.yaml + ┣ 📂data + ┣ 📂model + ┃ ┗ 📜model.py + ┣ 📂output + ┣ 📂tb_logs + ┣ 📂utils + ┃ ┣ 📂ensemble + ┃ ┣ 📂preprocess + ┣ 📜README.md + ┣ 📜inference.py + ┣ 📜requirements.txt + ┗ 📜train.py ``` ## **Contributors** @@ -89,6 +90,25 @@ | 홍성민 | 모델링 및 튜닝(`kykim/KR-ELECTRA-Base`), 앙상블(`weighted voting`), 베이스라인 코드 수정과 기능 추가 | | 홍성재 | 하이퍼 파라미터 튜닝(`BS`, `Epoch`, `LR`), 모델 최적화 및 앙상블(`Koelectra-base-v3-discriminator`, `roberta-small`, `bert-base-multilingual-cased` / `Soft voting`) | +## Dependencies +* torch==2.1.0 +* transformers==4.35.2 +* pytorch-lightning==2.1.2 + +## Usage +1. Setting +``` +$ pip install -r requirements.txt +``` +2. Training +```angular2html +$ python3 train.py +``` +3. Inference +```angular2html +$ python3 inference.py +``` + ## 프로젝트 타임라인 Gantt chart template (Community) (3) @@ -97,7 +117,6 @@ Gantt chart template (Community) (4) - - ## 리더보드 결과 ![image](https://github.com/user-attachments/assets/e666e639-3bfe-4bed-95b1-4fd3a93ed745) + From e8aa7c270f65803654156aca66308ed0a200835d Mon Sep 17 00:00:00 2001 From: Minseo Kim <75977640+nevertmr@users.noreply.github.com> Date: Sun, 16 Nov 2025 15:11:59 +0900 Subject: [PATCH 27/27] fix: change team member username --- README.md | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index 0e924db..d4f5bb5 100644 --- a/README.md +++ b/README.md @@ -53,8 +53,8 @@
- 김민서
-
+ 김민서
+
badge 김민서 @@ -65,8 +65,8 @@ - 양가연
- + 양가연
+
badge 양가연