Skip to content

Commit 78b3efc

Browse files
TaskerJangTaskerJangahnjj
authored andcommitted
🌐 [i18n-KO] Translated main_classes/processors.md to Korean (huggingface#39519)
* docs: ko: processors.md * feat: nmt draft * fix: manual edits * Update docs/source/ko/main_classes/processors.md Co-authored-by: Ahnjj_DEV <[email protected]> * Update docs/source/ko/main_classes/processors.md Co-authored-by: Ahnjj_DEV <[email protected]> --------- Co-authored-by: TaskerJang <[email protected]> Co-authored-by: Ahnjj_DEV <[email protected]>
1 parent bdb2946 commit 78b3efc

File tree

2 files changed

+149
-2
lines changed

2 files changed

+149
-2
lines changed

docs/source/ko/_toctree.yml

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -420,12 +420,14 @@
420420
title: PEFT
421421
- local: in_translation
422422
title: (번역중) Pipelines
423-
- local: main_classes/tokenizer
424-
title: 토크나이저
423+
- local: main_classes/processors
424+
title: 프로세서
425425
- local: main_classes/quantization
426426
title: 양자화
427427
- local: in_translation
428428
title: (번역중) Tokenizer
429+
- local: main_classes/tokenizer
430+
title: 토크나이저
429431
- local: main_classes/trainer
430432
title: Trainer
431433
- local: in_translation
Lines changed: 145 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,145 @@
1+
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
2+
3+
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
4+
the License. You may obtain a copy of the License at
5+
6+
http://www.apache.org/licenses/LICENSE-2.0
7+
8+
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
9+
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
10+
specific language governing permissions and limitations under the License.
11+
12+
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
13+
rendered properly in your Markdown viewer.
14+
15+
-->
16+
17+
# 프로세서[[processors]]
18+
19+
Transformers 라이브러리에서 프로세서는 두 가지 의미로 사용됩니다:
20+
- [Wav2Vec2](../model_doc/wav2vec2) (음성과 텍스트) 또는 [CLIP](../model_doc/clip) (텍스트와 비전)과 같은 멀티모달 모델의 입력을 전처리하는 객체
21+
- GLUE 또는 SQUAD 데이터를 전처리하기 위해 라이브러리의 이전 버전에서 사용되었던 사용 중단된 객체
22+
23+
## 멀티모달 프로세서[[transformers.ProcessorMixin]]
24+
25+
모든 멀티모달 모델은 여러 모달리티(텍스트, 비전, 오디오)를 그룹화하는 데이터를 인코딩하거나 디코딩하는 객체가 필요한데, 이것은 프로세서라고 불리는 객체가 담당합니다. 프로세서는 토크나이저(텍스트 모달리티용), 이미지 프로세서(비전용), 특성 추출기(오디오용) 같이 두 개 이상의 처리 객체를 하나로 묶습니다.
26+
27+
이러한 프로세서는 저장 및 로딩 기능을 구현하는 다음 기본 클래스를 상속받습니다:
28+
29+
[[autodoc]] ProcessorMixin
30+
31+
## 사용 중단된 프로세서[[transformers.DataProcessor]]
32+
33+
모든 프로세서는 [`~data.processors.utils.DataProcessor`]와 같은 동일한 아키텍처를 따릅니다. 프로세서는 [`~data.processors.utils.InputExample`]의 목록을 반환합니다. 이 [`~data.processors.utils.InputExample`]들은 모델에 입력하기 위해 [`~data.processors.utils.InputFeatures`]로 변환될 수 있습니다.
34+
35+
[[autodoc]] data.processors.utils.DataProcessor
36+
37+
[[autodoc]] data.processors.utils.InputExample
38+
39+
[[autodoc]] data.processors.utils.InputFeatures
40+
41+
## GLUE[[transformers.glue_convert_examples_to_features]]
42+
43+
[General Language Understanding Evaluation (GLUE)](https://gluebenchmark.com/)는 다양한 기존 NLU 작업에서 모델의 성능을 평가하는 벤치마크입니다. [GLUE: A multi-task benchmark and analysis platform for natural language understanding](https://openreview.net/pdf?id=rJ4km2R5t7) 논문과 함께 발표되었습니다.
44+
45+
이 라이브러리는 MRPC, MNLI, MNLI (불일치), CoLA, SST2, STSB, QQP, QNLI, RTE, WNLI 총 10개 작업에 대한 프로세서를 제공합니다.
46+
47+
이러한 프로세서들은 다음과 같습니다:
48+
49+
- [`~data.processors.utils.MrpcProcessor`]
50+
- [`~data.processors.utils.MnliProcessor`]
51+
- [`~data.processors.utils.MnliMismatchedProcessor`]
52+
- [`~data.processors.utils.Sst2Processor`]
53+
- [`~data.processors.utils.StsbProcessor`]
54+
- [`~data.processors.utils.QqpProcessor`]
55+
- [`~data.processors.utils.QnliProcessor`]
56+
- [`~data.processors.utils.RteProcessor`]
57+
- [`~data.processors.utils.WnliProcessor`]
58+
59+
또한, 아래의 메소드들을 사용하여 데이터 파일로부터 값을 가져와 [`~data.processors.utils.InputExample`] 목록으로 변환할 수 있습니다.
60+
61+
[[autodoc]] data.processors.glue.glue_convert_examples_to_features
62+
63+
64+
## XNLI[[xnli]]
65+
66+
[The Cross-Lingual NLI Corpus (XNLI)](https://www.nyu.edu/projects/bowman/xnli/)는 교차언어 텍스트 표현의 품질을 평가하는 벤치마크입니다. XNLI는 [*MultiNLI*](http://www.nyu.edu/projects/bowman/multinli/)를 기반으로 한 크라우드소싱 데이터 세트입니다: 텍스트 쌍은 15개 언어(영어 같은 고자원 언어부터 스와힐리어 같은 저자원 언어까지)에 대해 텍스트 함의 어노테이션으로 레이블링됩니다.
67+
68+
[XNLI: Evaluating Cross-lingual Sentence Representations](https://huggingface.co/papers/1809.05053) 논문과 함께 발표되었습니다.
69+
70+
이 라이브러리는 XNLI 데이터를 가져오는 프로세서를 제공합니다:
71+
72+
- [`~data.processors.utils.XnliProcessor`]
73+
74+
테스트 세트에 골드 레이블이 제공되므로, 평가는 테스트 세트에서 수행됩니다.
75+
76+
이러한 프로세서를 사용하는 예시는 [run_xnli.py](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification/run_xnli.py) 스크립트에 제공되어 있습니다.
77+
78+
79+
## SQuAD[[squad]]
80+
81+
[The Stanford Question Answering Dataset (SQuAD)](https://rajpurkar.github.io/SQuAD-explorer//)는 질문 답변에서 모델의 성능을 평가하는 벤치마크입니다. v1.1과 v2.0 두 가지 버전을 사용할 수 있습니다. 첫 번째 버전(v1.1)은 [SQuAD: 100,000+ Questions for Machine Comprehension of Text](https://huggingface.co/papers/1606.05250) 논문과 함께 발표되었습니다. 두 번째 버전(v2.0)은 [Know What You Don't Know: Unanswerable Questions for SQuAD](https://huggingface.co/papers/1806.03822) 논문과 함께 발표되었습니다.
82+
83+
이 라이브러리는 두 버전 각각에 대한 프로세서를 호스팅합니다:
84+
85+
### 프로세서[[transformers.data.processors.squad.SquadProcessor]]
86+
87+
이러한 프로세서들은 다음과 같습니다:
88+
89+
- [`~data.processors.utils.SquadV1Processor`]
90+
- [`~data.processors.utils.SquadV2Processor`]
91+
92+
둘 다 추상 클래스 [`~data.processors.utils.SquadProcessor`]를 상속받습니다.
93+
94+
[[autodoc]] data.processors.squad.SquadProcessor
95+
- all
96+
97+
또한, 다음 메소드를 사용하여 SQuAD 예시를 모델 입력으로 사용할 수 있는 [`~data.processors.utils.SquadFeatures`]로 변환할 수 있습니다.
98+
99+
[[autodoc]] data.processors.squad.squad_convert_examples_to_features
100+
101+
102+
이러한 프로세서들과 앞서 언급한 메소드는 데이터가 포함된 파일뿐만 아니라 *tensorflow_datasets* 패키지와도 함께 사용할 수 있습니다. 예시는 아래에 제공됩니다.
103+
104+
105+
### 사용 예시[[example-usage]]
106+
107+
다음은 데이터 파일을 사용하여 프로세서와 변환 메소드를 사용하는 예시입니다:
108+
109+
```python
110+
# V2 프로세서 가져오기
111+
processor = SquadV2Processor()
112+
examples = processor.get_dev_examples(squad_v2_data_dir)
113+
114+
# V1 프로세서 가져오기
115+
processor = SquadV1Processor()
116+
examples = processor.get_dev_examples(squad_v1_data_dir)
117+
118+
features = squad_convert_examples_to_features(
119+
examples=examples,
120+
tokenizer=tokenizer,
121+
max_seq_length=max_seq_length,
122+
doc_stride=args.doc_stride,
123+
max_query_length=max_query_length,
124+
is_training=not evaluate,
125+
)
126+
```
127+
128+
*tensorflow_datasets* 사용은 데이터 파일 사용만큼 쉽습니다:
129+
130+
```python
131+
# tensorflow_datasets는 Squad V1만 처리합니다.
132+
tfds_examples = tfds.load("squad")
133+
examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate)
134+
135+
features = squad_convert_examples_to_features(
136+
examples=examples,
137+
tokenizer=tokenizer,
138+
max_seq_length=max_seq_length,
139+
doc_stride=args.doc_stride,
140+
max_query_length=max_query_length,
141+
is_training=not evaluate,
142+
)
143+
```
144+
145+
이러한 프로세서를 사용하는 또 다른 예시는 [run_squad.py](https://github.com/huggingface/transformers/tree/main/examples/legacy/question-answering/run_squad.py) 스크립트에 제공되어 있습니다.

0 commit comments

Comments
 (0)