Skip to content

Commit 5ab99c2

Browse files
committed
šŸ”minor formatting
1 parent 03464e6 commit 5ab99c2

File tree

3 files changed

+16
-69
lines changed

3 files changed

+16
-69
lines changed

ā€Žtest/Classical/quasi-cyclic_code_test.jlā€Ž

Lines changed: 3 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -29,21 +29,9 @@
2929
3,
3030
5,
3131
[
32-
x,
33-
x^2,
34-
x^4,
35-
x^8,
36-
x^16,
37-
x^5,
38-
x^10,
39-
x^20,
40-
x^9,
41-
x^18,
42-
x^25,
43-
x^19,
44-
x^7,
45-
x^14,
46-
x^28,
32+
x x^2 x^4 x^8 x^16;
33+
x^5 x^10 x^20 x^9 x^18;
34+
x^25 x^19 x^7 x^14 x^28
4735
],
4836
)
4937
# A = matrix(R, 3, 5,

ā€Žtest/testcases.jlā€Ž

Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -123,3 +123,10 @@ C ∩ B == C
123123
B = BCHCode(q, n, Ī“ - 1, b + 4)
124124
D = C ∩ B # check later that this is == repetition code
125125
C + B
126+
127+
# Remove?
128+
# We will only be concerned with cyclic Reed-Solomon codes, but the more general, and original, definition of Reed-Solomon codes will lead us into the final family of codes we will use in this work. Let $\mathcal{P}_k(x)$ denote the set of polynomials of degree less than $k$ in $\mathbb{F}_{p^m}[x]$. The Reed-Solomon code of length $n \leq p^m$ and dimension $k < n$ is given by
129+
#
130+
# $$\mathrm{RS}_{p^m}(n, k) = \{ (f(\alpha_1), \dots, f(\alpha_n)) \mid f(x) \in \mathcal{P}_k(x)\},$$
131+
#
132+
# where $\alpha_i \in \mathbb{F}_{p^m}$. The most common case $n = p^m$ is the extended code of the cyclic definition, but only the case $n = p^m -1$ is, in general, cyclic. The proof of this is direct application of the Chinese Remainder Theorem.

ā€Žtest/utils_test.jlā€Ž

Lines changed: 6 additions & 54 deletions
Original file line numberDiff line numberDiff line change
@@ -278,60 +278,12 @@
278278
6,
279279
9,
280280
[
281-
1,
282-
0,
283-
0,
284-
0,
285-
0,
286-
0,
287-
1,
288-
1,
289-
0,
290-
0,
291-
1,
292-
0,
293-
0,
294-
0,
295-
0,
296-
0,
297-
1,
298-
1,
299-
0,
300-
0,
301-
1,
302-
0,
303-
0,
304-
0,
305-
1,
306-
0,
307-
1,
308-
1,
309-
0,
310-
1,
311-
1,
312-
1,
313-
1,
314-
0,
315-
1,
316-
0,
317-
1,
318-
1,
319-
0,
320-
1,
321-
1,
322-
1,
323-
0,
324-
0,
325-
1,
326-
0,
327-
1,
328-
1,
329-
1,
330-
1,
331-
1,
332-
1,
333-
0,
334-
0,
281+
1 0 0 0 0 0 1 1 0;
282+
0 1 0 0 0 0 0 1 1;
283+
0 0 1 0 0 0 1 0 1;
284+
1 0 1 1 1 1 0 1 0;
285+
1 1 0 1 1 1 0 0 1;
286+
0 1 1 1 1 1 1 0 0
335287
],
336288
)
337289
@test weight_matrix(A) == [1 0 2; 2 3 1]

0 commit comments

Comments
Ā (0)