@@ -7,216 +7,223 @@ pub fn main() {
77}
88
99pub fn arithmetic_addition_add_two_positive_rational_numbers_test ( ) {
10- assert RationalNumber ( 7 , 6 ) =
10+ let assert RationalNumber ( 7 , 6 ) =
1111 rational_numbers . add ( RationalNumber ( 1 , 2 ) , RationalNumber ( 2 , 3 ) )
1212}
1313
1414pub fn arithmetic_addition_add_a_positive_rational_number_and_a_negative_rational_number_test ( ) {
15- assert RationalNumber ( - 1, 6 ) =
15+ let assert RationalNumber ( - 1, 6 ) =
1616 rational_numbers . add ( RationalNumber ( 1 , 2 ) , RationalNumber ( - 2, 3 ) )
1717}
1818
1919pub fn arithmetic_addition_add_two_negative_rational_numbers_test ( ) {
20- assert RationalNumber ( - 7, 6 ) =
20+ let assert RationalNumber ( - 7, 6 ) =
2121 rational_numbers . add ( RationalNumber ( - 1, 2 ) , RationalNumber ( - 2, 3 ) )
2222}
2323
2424pub fn arithmetic_addition_add_a_rational_number_to_its_additive_inverse_test ( ) {
25- assert RationalNumber ( 0 , 1 ) =
25+ let assert RationalNumber ( 0 , 1 ) =
2626 rational_numbers . add ( RationalNumber ( 1 , 2 ) , RationalNumber ( - 1, 2 ) )
2727}
2828
2929pub fn arithmetic_subtraction_subtract_two_positive_rational_numbers_test ( ) {
30- assert RationalNumber ( - 1, 6 ) =
30+ let assert RationalNumber ( - 1, 6 ) =
3131 rational_numbers . subtract ( RationalNumber ( 1 , 2 ) , RationalNumber ( 2 , 3 ) )
3232}
3333
3434pub fn arithmetic_subtraction_subtract_a_positive_rational_number_and_a_negative_rational_number_test ( ) {
35- assert RationalNumber ( 7 , 6 ) =
35+ let assert RationalNumber ( 7 , 6 ) =
3636 rational_numbers . subtract ( RationalNumber ( 1 , 2 ) , RationalNumber ( - 2, 3 ) )
3737}
3838
3939pub fn arithmetic_subtraction_subtract_two_negative_rational_numbers_test ( ) {
40- assert RationalNumber ( 1 , 6 ) =
40+ let assert RationalNumber ( 1 , 6 ) =
4141 rational_numbers . subtract ( RationalNumber ( - 1, 2 ) , RationalNumber ( - 2, 3 ) )
4242}
4343
4444pub fn arithmetic_subtraction_subtract_a_rational_number_from_itself_test ( ) {
45- assert RationalNumber ( 0 , 1 ) =
45+ let assert RationalNumber ( 0 , 1 ) =
4646 rational_numbers . subtract ( RationalNumber ( 1 , 2 ) , RationalNumber ( 1 , 2 ) )
4747}
4848
4949pub fn arithmetic_multiplication_multiply_two_positive_rational_numbers_test ( ) {
50- assert RationalNumber ( 1 , 3 ) =
50+ let assert RationalNumber ( 1 , 3 ) =
5151 rational_numbers . multiply ( RationalNumber ( 1 , 2 ) , RationalNumber ( 2 , 3 ) )
5252}
5353
5454pub fn arithmetic_multiplication_multiply_a_negative_rational_number_by_a_positive_rational_number_test ( ) {
55- assert RationalNumber ( - 1, 3 ) =
55+ let assert RationalNumber ( - 1, 3 ) =
5656 rational_numbers . multiply ( RationalNumber ( - 1, 2 ) , RationalNumber ( 2 , 3 ) )
5757}
5858
5959pub fn arithmetic_multiplication_multiply_two_negative_rational_numbers_test ( ) {
60- assert RationalNumber ( 1 , 3 ) =
60+ let assert RationalNumber ( 1 , 3 ) =
6161 rational_numbers . multiply ( RationalNumber ( - 1, 2 ) , RationalNumber ( - 2, 3 ) )
6262}
6363
6464pub fn arithmetic_multiplication_multiply_a_rational_number_by_its_reciprocal_test ( ) {
65- assert RationalNumber ( 1 , 1 ) =
65+ let assert RationalNumber ( 1 , 1 ) =
6666 rational_numbers . multiply ( RationalNumber ( 1 , 2 ) , RationalNumber ( 2 , 1 ) )
6767}
6868
6969pub fn arithmetic_multiplication_multiply_a_rational_number_by_1_test ( ) {
70- assert RationalNumber ( 1 , 2 ) =
70+ let assert RationalNumber ( 1 , 2 ) =
7171 rational_numbers . multiply ( RationalNumber ( 1 , 2 ) , RationalNumber ( 1 , 1 ) )
7272}
7373
7474pub fn arithmetic_multiplication_multiply_a_rational_number_by_0_test ( ) {
75- assert RationalNumber ( 0 , 1 ) =
75+ let assert RationalNumber ( 0 , 1 ) =
7676 rational_numbers . multiply ( RationalNumber ( 1 , 2 ) , RationalNumber ( 0 , 1 ) )
7777}
7878
7979pub fn arithmetic_division_divide_two_positive_rational_numbers_test ( ) {
80- assert RationalNumber ( 3 , 4 ) =
80+ let assert RationalNumber ( 3 , 4 ) =
8181 rational_numbers . divide ( RationalNumber ( 1 , 2 ) , RationalNumber ( 2 , 3 ) )
8282}
8383
8484pub fn arithmetic_division_divide_a_positive_rational_number_by_a_negative_rational_number_test ( ) {
85- assert RationalNumber ( - 3, 4 ) =
85+ let assert RationalNumber ( - 3, 4 ) =
8686 rational_numbers . divide ( RationalNumber ( 1 , 2 ) , RationalNumber ( - 2, 3 ) )
8787}
8888
8989pub fn arithmetic_division_divide_two_negative_rational_numbers_test ( ) {
90- assert RationalNumber ( 3 , 4 ) =
90+ let assert RationalNumber ( 3 , 4 ) =
9191 rational_numbers . divide ( RationalNumber ( - 1, 2 ) , RationalNumber ( - 2, 3 ) )
9292}
9393
9494pub fn arithmetic_division_divide_a_rational_number_by_1_test ( ) {
95- assert RationalNumber ( 1 , 2 ) =
95+ let assert RationalNumber ( 1 , 2 ) =
9696 rational_numbers . divide ( RationalNumber ( 1 , 2 ) , RationalNumber ( 1 , 1 ) )
9797}
9898
9999pub fn absolute_value_absolute_value_of_a_positive_rational_number_test ( ) {
100- assert RationalNumber ( 1 , 2 ) =
100+ let assert RationalNumber ( 1 , 2 ) =
101101 rational_numbers . absolute_value ( RationalNumber ( 1 , 2 ) )
102102}
103103
104104pub fn absolute_value_absolute_value_of_a_positive_rational_number_with_negative_numerator_and_denominator_test ( ) {
105- assert RationalNumber ( 1 , 2 ) =
105+ let assert RationalNumber ( 1 , 2 ) =
106106 rational_numbers . absolute_value ( RationalNumber ( - 1, - 2) )
107107}
108108
109109pub fn absolute_value_absolute_value_of_a_negative_rational_number_test ( ) {
110- assert RationalNumber ( 1 , 2 ) =
110+ let assert RationalNumber ( 1 , 2 ) =
111111 rational_numbers . absolute_value ( RationalNumber ( - 1, 2 ) )
112112}
113113
114114pub fn absolute_value_absolute_value_of_a_negative_rational_number_with_negative_denominator_test ( ) {
115- assert RationalNumber ( 1 , 2 ) =
115+ let assert RationalNumber ( 1 , 2 ) =
116116 rational_numbers . absolute_value ( RationalNumber ( 1 , - 2) )
117117}
118118
119119pub fn absolute_value_absolute_value_of_zero_test ( ) {
120- assert RationalNumber ( 0 , 1 ) =
120+ let assert RationalNumber ( 0 , 1 ) =
121121 rational_numbers . absolute_value ( RationalNumber ( 0 , 1 ) )
122122}
123123
124124pub fn absolute_value_absolute_value_of_a_rational_number_is_reduced_to_lowest_terms_test ( ) {
125- assert RationalNumber ( 1 , 2 ) =
125+ let assert RationalNumber ( 1 , 2 ) =
126126 rational_numbers . absolute_value ( RationalNumber ( 2 , 4 ) )
127127}
128128
129129pub fn exponentiation_of_a_rational_number_raise_a_positive_rational_number_to_a_positive_integer_power_test ( ) {
130- assert Ok ( RationalNumber ( 1 , 8 ) ) =
130+ let assert RationalNumber ( 1 , 8 ) =
131131 rational_numbers . power_of_rational ( number : RationalNumber ( 1 , 2 ) , to : 3 )
132132}
133133
134134pub fn exponentiation_of_a_rational_number_raise_a_negative_rational_number_to_a_positive_integer_power_test ( ) {
135- assert Ok ( RationalNumber ( - 1, 8 ) ) =
135+ let assert RationalNumber ( - 1, 8 ) =
136136 rational_numbers . power_of_rational ( number : RationalNumber ( - 1, 2 ) , to : 3 )
137137}
138138
139139pub fn exponentiation_of_a_rational_number_raise_a_positive_rational_number_to_a_negative_integer_power_test ( ) {
140- assert Ok ( RationalNumber ( 25 , 9 ) ) =
140+ let assert RationalNumber ( 25 , 9 ) =
141141 rational_numbers . power_of_rational ( number : RationalNumber ( 3 , 5 ) , to : - 2)
142142}
143143
144144pub fn exponentiation_of_a_rational_number_raise_a_negative_rational_number_to_an_even_negative_integer_power_test ( ) {
145- assert Ok ( RationalNumber ( 25 , 9 ) ) =
145+ let assert RationalNumber ( 25 , 9 ) =
146146 rational_numbers . power_of_rational ( number : RationalNumber ( - 3, 5 ) , to : - 2)
147147}
148148
149149pub fn exponentiation_of_a_rational_number_raise_a_negative_rational_number_to_an_odd_negative_integer_power_test ( ) {
150- assert Ok ( RationalNumber ( - 125, 27 ) ) =
150+ let assert RationalNumber ( - 125, 27 ) =
151151 rational_numbers . power_of_rational ( number : RationalNumber ( - 3, 5 ) , to : - 3)
152152}
153153
154154pub fn exponentiation_of_a_rational_number_raise_zero_to_an_integer_power_test ( ) {
155- assert Ok ( RationalNumber ( 0 , 1 ) ) =
155+ let assert RationalNumber ( 0 , 1 ) =
156156 rational_numbers . power_of_rational ( number : RationalNumber ( 0 , 1 ) , to : 5 )
157157}
158158
159159pub fn exponentiation_of_a_rational_number_raise_one_to_an_integer_power_test ( ) {
160- assert Ok ( RationalNumber ( 1 , 1 ) ) =
160+ let assert RationalNumber ( 1 , 1 ) =
161161 rational_numbers . power_of_rational ( number : RationalNumber ( 1 , 1 ) , to : 4 )
162162}
163163
164164pub fn exponentiation_of_a_rational_number_raise_a_positive_rational_number_to_the_power_of_zero_test ( ) {
165- assert Ok ( RationalNumber ( 1 , 1 ) ) =
165+ let assert RationalNumber ( 1 , 1 ) =
166166 rational_numbers . power_of_rational ( number : RationalNumber ( 1 , 2 ) , to : 0 )
167167}
168168
169169pub fn exponentiation_of_a_rational_number_raise_a_negative_rational_number_to_the_power_of_zero_test ( ) {
170- assert Ok ( RationalNumber ( 1 , 1 ) ) =
170+ let assert RationalNumber ( 1 , 1 ) =
171171 rational_numbers . power_of_rational ( number : RationalNumber ( - 1, 2 ) , to : 0 )
172172}
173173
174174pub fn exponentiation_of_a_real_number_to_a_rational_number_raise_a_real_number_to_a_positive_rational_number_test ( ) {
175- assert Ok ( power ) =
175+ let assert Ok ( power ) =
176176 rational_numbers . power_of_real ( number : 8.0 , to : RationalNumber ( 4 , 3 ) )
177177
178- assert True = float . loosely_equals ( power , with : 16.0 , tolerating : 0.001 )
178+ let assert True = float . loosely_equals ( power , with : 16.0 , tolerating : 0.001 )
179179}
180180
181181pub fn exponentiation_of_a_real_number_to_a_rational_number_raise_a_real_number_to_a_negative_rational_number_test ( ) {
182- assert Ok ( power ) =
182+ let assert Ok ( power ) =
183183 rational_numbers . power_of_real ( number : 9.0 , to : RationalNumber ( - 1, 2 ) )
184184
185- assert True =
185+ let assert True =
186186 float . loosely_equals ( power , with : 0.3333333333333333 , tolerating : 0.001 )
187187}
188188
189189pub fn exponentiation_of_a_real_number_to_a_rational_number_raise_a_real_number_to_a_zero_rational_number_test ( ) {
190- assert Ok ( power ) =
190+ let assert Ok ( power ) =
191191 rational_numbers . power_of_real ( number : 2.0 , to : RationalNumber ( 0 , 1 ) )
192192
193- assert True = float . loosely_equals ( power , with : 1.0 , tolerating : 0.001 )
193+ let assert True = float . loosely_equals ( power , with : 1.0 , tolerating : 0.001 )
194194}
195195
196196pub fn reduction_to_lowest_terms_reduce_a_positive_rational_number_to_lowest_terms_test ( ) {
197- assert RationalNumber ( 1 , 2 ) = rational_numbers . reduce ( RationalNumber ( 2 , 4 ) )
197+ let assert RationalNumber ( 1 , 2 ) =
198+ rational_numbers . reduce ( RationalNumber ( 2 , 4 ) )
198199}
199200
200201pub fn reduction_to_lowest_terms_reduce_places_the_minus_sign_on_the_numerator_test ( ) {
201- assert RationalNumber ( - 3, 4 ) = rational_numbers . reduce ( RationalNumber ( 3 , - 4) )
202+ let assert RationalNumber ( - 3, 4 ) =
203+ rational_numbers . reduce ( RationalNumber ( 3 , - 4) )
202204}
203205
204206pub fn reduction_to_lowest_terms_reduce_a_negative_rational_number_to_lowest_terms_test ( ) {
205- assert RationalNumber ( - 2, 3 ) = rational_numbers . reduce ( RationalNumber ( - 4, 6 ) )
207+ let assert RationalNumber ( - 2, 3 ) =
208+ rational_numbers . reduce ( RationalNumber ( - 4, 6 ) )
206209}
207210
208211pub fn reduction_to_lowest_terms_reduce_a_rational_number_with_a_negative_denominator_to_lowest_terms_test ( ) {
209- assert RationalNumber ( - 1, 3 ) = rational_numbers . reduce ( RationalNumber ( 3 , - 9) )
212+ let assert RationalNumber ( - 1, 3 ) =
213+ rational_numbers . reduce ( RationalNumber ( 3 , - 9) )
210214}
211215
212216pub fn reduction_to_lowest_terms_reduce_zero_to_lowest_terms_test ( ) {
213- assert RationalNumber ( 0 , 1 ) = rational_numbers . reduce ( RationalNumber ( 0 , 6 ) )
217+ let assert RationalNumber ( 0 , 1 ) =
218+ rational_numbers . reduce ( RationalNumber ( 0 , 6 ) )
214219}
215220
216221pub fn reduction_to_lowest_terms_reduce_an_integer_to_lowest_terms_test ( ) {
217- assert RationalNumber ( - 2, 1 ) = rational_numbers . reduce ( RationalNumber ( - 14, 7 ) )
222+ let assert RationalNumber ( - 2, 1 ) =
223+ rational_numbers . reduce ( RationalNumber ( - 14, 7 ) )
218224}
219225
220226pub fn reduction_to_lowest_terms_reduce_one_to_lowest_terms_test ( ) {
221- assert RationalNumber ( 1 , 1 ) = rational_numbers . reduce ( RationalNumber ( 13 , 13 ) )
227+ let assert RationalNumber ( 1 , 1 ) =
228+ rational_numbers . reduce ( RationalNumber ( 13 , 13 ) )
222229}
0 commit comments