|
| 1 | +/* |
| 2 | +* Copyright 2019-2022, Synopsys, Inc. |
| 3 | +* All rights reserved. |
| 4 | +* |
| 5 | +* This source code is licensed under the BSD-3-Clause license found in |
| 6 | +* the LICENSE file in the root directory of this source tree. |
| 7 | +* |
| 8 | +*/ |
| 9 | +#include "examples_aux.h" |
| 10 | + |
| 11 | +#include <assert.h> |
| 12 | +#include <stdlib.h> |
| 13 | + |
| 14 | +#include "mli_api.h" |
| 15 | +#include "idx_file.h" |
| 16 | +#include "tensor_transform.h" |
| 17 | + |
| 18 | +/* |
| 19 | + * Find maximum value in the whole tensor and return it's argument (index) |
| 20 | + * Tensor data considered as linear array. Index corresponds to number of element in this array |
| 21 | + */ |
| 22 | +static inline int arg_max(mli_tensor * net_output_); |
| 23 | + |
| 24 | +/* |
| 25 | + * Return label (int) stored in label container. |
| 26 | + * Function casts label_container_ to appropriate type, |
| 27 | + * according to type_ and return it's value as integer |
| 28 | + * It returns -1 if type is unknown. |
| 29 | + */ |
| 30 | +static inline int get_label(void * label_container_, enum tIdxDataType type_); |
| 31 | + |
| 32 | +static FAST_TYPE(int32_t) pred_label = 0; |
| 33 | + |
| 34 | +/* -------------------------------------------------------------------------- */ |
| 35 | +/* Single vector processing for debug */ |
| 36 | +/* -------------------------------------------------------------------------- */ |
| 37 | +enum test_status model_run_single_in(const void *data_in, const float *ref_out, |
| 38 | + mli_tensor *model_input, |
| 39 | + mli_tensor *model_output, preproc_func_t preprocess, |
| 40 | + model_inference_t inference, const char *inf_param) |
| 41 | +{ |
| 42 | + enum test_status ret_val = TEST_PASSED; |
| 43 | + size_t output_elements = mli_hlp_count_elem_num(model_output, 0); |
| 44 | + |
| 45 | + float * pred_data = malloc(output_elements * sizeof(float)); |
| 46 | + if (pred_data == NULL) { |
| 47 | + printf("ERROR: Can't allocate memory for output\n"); |
| 48 | + return TEST_NOT_ENOUGH_MEM; |
| 49 | + } |
| 50 | + |
| 51 | + // Data preprocessing and model inference |
| 52 | + preprocess(data_in, model_input); |
| 53 | + inference(inf_param); |
| 54 | + |
| 55 | + // Check result |
| 56 | + if (MLI_STATUS_OK == mli_hlp_fx_tensor_to_float(model_output, pred_data, output_elements)) { |
| 57 | + struct ref_to_pred_output err; |
| 58 | + measure_err_vfloat(ref_out, pred_data, output_elements, &err); |
| 59 | + printf("Result Quality: S/N=%-10.1f (%-4.1f db)\n", err.ref_vec_length / err.noise_vec_length, err.ref_to_noise_snr); |
| 60 | + } else { |
| 61 | + printf("ERROR: Can't transform out tensor to float\n"); |
| 62 | + ret_val = TEST_SUIT_ERROR; |
| 63 | + } |
| 64 | + free(pred_data); |
| 65 | + return ret_val; |
| 66 | +} |
| 67 | + |
| 68 | +/* Multiple inputs from IDX file processing. Writes output for each tensor into output file */ |
| 69 | +enum test_status model_run_idx_base_to_idx_out(const char *input_idx_path, |
| 70 | + const char *output_idx_path, |
| 71 | + mli_tensor *model_input, mli_tensor *model_output, |
| 72 | + preproc_func_t preprocess, model_inference_t inference, |
| 73 | + const char *inf_param) |
| 74 | +{ |
| 75 | + enum test_status ret_val = TEST_PASSED; |
| 76 | + struct tIdxDescr descr_in = {0, 0, 0, NULL}; |
| 77 | + struct tIdxDescr descr_out = {0, 0, 0, NULL}; |
| 78 | + uint32_t shape[4] = {0, 0, 0, 0}; |
| 79 | + void * input_data = NULL; |
| 80 | + float * output_data = NULL; |
| 81 | + size_t output_elements = mli_hlp_count_elem_num(model_output, 0); |
| 82 | + size_t input_elements = mli_hlp_count_elem_num(model_input, 0); |
| 83 | + |
| 84 | + // Step 1: Resources preparations |
| 85 | + //================================================ |
| 86 | + //Open and check input file |
| 87 | + if ((descr_in.opened_file = fopen(input_idx_path, "rb")) == NULL || |
| 88 | + (idx_file_check_and_get_info(&descr_in)) != IDX_ERR_NONE || |
| 89 | + descr_in.num_dim != model_input->rank + 1) { |
| 90 | + printf("ERROR: Problems with input idx file format.\n Requirements:\n" |
| 91 | + "\t tensor rank must be equal to model input rank + 1\n"); |
| 92 | + ret_val = TEST_SUIT_ERROR; |
| 93 | + goto free_ret_lbl; |
| 94 | + } |
| 95 | + |
| 96 | + // Read test base shape |
| 97 | + descr_in.num_elements = 0; |
| 98 | + if (idx_file_read_data(&descr_in, NULL, shape) != IDX_ERR_NONE) { |
| 99 | + printf("ERROR: Can't read input file shape\n"); |
| 100 | + ret_val = TEST_SUIT_ERROR; |
| 101 | + goto free_ret_lbl; |
| 102 | + } |
| 103 | + |
| 104 | + // Check compatibility between shapes of idx file and model input |
| 105 | + printf("IDX test file shape: ["); |
| 106 | + for (int i = 0; i < descr_in.num_dim; i++) printf("%d,", shape[i]); |
| 107 | + printf("]\nModel input shape: ["); |
| 108 | + for (int i = 0; i < model_input->rank; i++) printf("%d,", model_input->shape[i]); |
| 109 | + printf("]\n\n"); |
| 110 | + for (int i = 1; i < descr_in.num_dim; i++) |
| 111 | + if ( shape[i] != model_input->shape[i-1]) { |
| 112 | + printf("ERROR: Shapes mismatch.\n"); |
| 113 | + ret_val = TEST_SUIT_ERROR; |
| 114 | + goto free_ret_lbl; |
| 115 | + } |
| 116 | + |
| 117 | + // Memory allocation for input/output (for it's external representations) |
| 118 | + input_data = malloc((input_elements * data_elem_size(descr_in.data_type)) + (output_elements * sizeof(float))); |
| 119 | + output_data = (float *)((char*)input_data + input_elements * data_elem_size(descr_in.data_type)); |
| 120 | + if (input_data == NULL) { |
| 121 | + printf("ERROR: Can't allocate memory for input and output\n"); |
| 122 | + ret_val = TEST_NOT_ENOUGH_MEM; |
| 123 | + goto free_ret_lbl; |
| 124 | + } |
| 125 | + |
| 126 | + // Open output file |
| 127 | + if ( (descr_out.opened_file = fopen(output_idx_path, "wb")) == NULL) { |
| 128 | + printf("ERROR: Can't open output idx file\n"); |
| 129 | + ret_val = TEST_SUIT_ERROR; |
| 130 | + goto free_ret_lbl; |
| 131 | + } |
| 132 | + |
| 133 | + |
| 134 | + // Step 2: Process vectors from input file one-by-another |
| 135 | + //================================================ |
| 136 | + descr_out.data_type = IDX_DT_FLOAT_4B; |
| 137 | + descr_out.num_dim = model_output->rank + 1; |
| 138 | + uint32_t test_idx = 0; |
| 139 | + for (; test_idx < shape[0]; test_idx++) { |
| 140 | + // Get next input vector from file |
| 141 | + descr_in.num_elements = input_elements; |
| 142 | + if (idx_file_read_data(&descr_in, input_data, NULL) != IDX_ERR_NONE) { |
| 143 | + printf("ERROR: While reading test vector %u\n", test_idx); |
| 144 | + ret_val = TEST_SUIT_ERROR; |
| 145 | + goto free_ret_lbl; |
| 146 | + } |
| 147 | + |
| 148 | + // Model inference for the vector |
| 149 | + preprocess(input_data, model_input); |
| 150 | + inference(inf_param); |
| 151 | + |
| 152 | + // Output results to idx file |
| 153 | + descr_out.num_elements = output_elements; |
| 154 | + if (mli_hlp_fx_tensor_to_float(model_output, output_data, output_elements) != MLI_STATUS_OK || |
| 155 | + idx_file_write_data(&descr_out, (const void *)output_data) != IDX_ERR_NONE) { |
| 156 | + printf("ERROR: While writing result for test vector %u\n", test_idx); |
| 157 | + ret_val = TEST_SUIT_ERROR; |
| 158 | + goto free_ret_lbl; |
| 159 | + } |
| 160 | + |
| 161 | + // Notify User on progress (10% step) |
| 162 | + if (test_idx % (shape[0] / 10) == 0) |
| 163 | + printf("%10u of %u test vectors are processed\n", test_idx, shape[0]); |
| 164 | + } |
| 165 | + |
| 166 | + // Step 3: Fill output file header and free resources |
| 167 | + //================================================== |
| 168 | + shape[0] = test_idx; |
| 169 | + for (int i = 0; i < model_output->rank; i++) |
| 170 | + shape[i+1] = model_output->shape[i]; |
| 171 | + if (idx_file_write_header(&descr_out, shape) != IDX_ERR_NONE) { |
| 172 | + printf("ERROR: While final header writing of test out file \n"); |
| 173 | + ret_val = TEST_SUIT_ERROR; |
| 174 | + } |
| 175 | + |
| 176 | +free_ret_lbl: |
| 177 | + if (input_data != NULL) |
| 178 | + free(input_data); |
| 179 | + if (descr_in.opened_file != NULL) |
| 180 | + fclose(descr_in.opened_file); |
| 181 | + if (descr_out.opened_file != NULL) |
| 182 | + fclose(descr_out.opened_file); |
| 183 | + return ret_val; |
| 184 | +} |
| 185 | + |
| 186 | +/* -------------------------------------------------------------------------- */ |
| 187 | +/* Multiple inputs from IDX file processing. Calculate accuracy */ |
| 188 | +/* -------------------------------------------------------------------------- */ |
| 189 | +enum test_status model_run_acc_on_idx_base( |
| 190 | + const char * input_idx_path, |
| 191 | + const char * labels_idx_path, |
| 192 | + mli_tensor * model_input, |
| 193 | + mli_tensor * model_output, |
| 194 | + preproc_func_t preprocess, |
| 195 | + model_inference_t inference, |
| 196 | + const char * inf_param) { |
| 197 | + enum test_status ret = TEST_PASSED; |
| 198 | + struct tIdxDescr descr_in = {0, 0, 0, NULL}; |
| 199 | + struct tIdxDescr descr_labels = {0, 0, 0, NULL}; |
| 200 | +#ifdef _C_ARRAY_ |
| 201 | + struct tIdxArrayFlag t_labels = { 0, LABELS }; |
| 202 | + struct tIdxArrayFlag t_tests = { 0, TESTS }; |
| 203 | +#endif |
| 204 | + uint32_t shape[4] = {0, 0, 0, 0}; |
| 205 | + uint32_t labels_total = 0; |
| 206 | + uint32_t labels_correct = 0; |
| 207 | + int label = 0; |
| 208 | + size_t input_elements = mli_hlp_count_elem_num(model_input, 0); |
| 209 | + void * input_data = NULL; |
| 210 | + |
| 211 | +/* Step 1: Resources preparations */ |
| 212 | +/* Open and check input labels file */ |
| 213 | +#ifndef _C_ARRAY_ |
| 214 | + if ((descr_labels.opened_file = fopen(labels_idx_path, "rb")) == NULL || |
| 215 | + (idx_file_check_and_get_info(&descr_labels)) != IDX_ERR_NONE || |
| 216 | + descr_labels.data_type == IDX_DT_FLOAT_4B || |
| 217 | + descr_labels.data_type == IDX_DT_DOUBLE_8B || |
| 218 | + descr_labels.num_dim != 1) { |
| 219 | + printf("ERROR: Problems with labels idx file format.\n Requirements:\n" |
| 220 | + "\t Non-float format\n" |
| 221 | + "\t 1 dimensional tensor\n" |
| 222 | + ); |
| 223 | + ret = TEST_SUIT_ERROR; |
| 224 | + goto free_ret_lbl; |
| 225 | + } |
| 226 | + |
| 227 | + /* Read labels shape */ |
| 228 | + descr_labels.num_elements = 0; |
| 229 | + if (idx_file_read_data(&descr_labels, NULL, shape) != IDX_ERR_NONE) { |
| 230 | + printf("ERROR: Problems with input idx file format.\n Requirements:\n" |
| 231 | + "\t tensors shape must be [N], where N is amount of tests)\n"); |
| 232 | + ret = TEST_SUIT_ERROR; |
| 233 | + goto free_ret_lbl; |
| 234 | + } |
| 235 | + labels_total = shape[0]; |
| 236 | +#else |
| 237 | + /* Open and check input labels file */ |
| 238 | + array_file_check_and_get_info(&descr_labels, &t_labels); |
| 239 | + /* Read labels shape */ |
| 240 | + array_file_read_data(&descr_labels, NULL, shape, &t_labels); |
| 241 | + labels_total = shape[0]; |
| 242 | +#endif |
| 243 | + |
| 244 | +/* Open and check input test idxfile */ |
| 245 | +#ifndef _C_ARRAY_ |
| 246 | + if ((descr_in.opened_file = fopen(input_idx_path, "rb")) == NULL || |
| 247 | + (idx_file_check_and_get_info(&descr_in)) != IDX_ERR_NONE || |
| 248 | + descr_in.num_dim != model_input->rank + 1) { |
| 249 | + printf("ERROR: Problems with input idx file format.\n Requirements:\n" |
| 250 | + "\t tensor rank must be equal to model input rank + 1\n"); |
| 251 | + ret = TEST_SUIT_ERROR; |
| 252 | + goto free_ret_lbl; |
| 253 | + } |
| 254 | + |
| 255 | + // Read test base shape |
| 256 | + descr_in.num_elements = 0; |
| 257 | + if (idx_file_read_data(&descr_in, NULL, shape) != IDX_ERR_NONE) { |
| 258 | + printf("ERROR: Can't read input file shape\n"); |
| 259 | + ret = TEST_SUIT_ERROR; |
| 260 | + goto free_ret_lbl; |
| 261 | + } |
| 262 | +#else |
| 263 | + /* Open and check input test idxfile */ |
| 264 | + array_file_check_and_get_info(&descr_in, &t_tests); |
| 265 | + |
| 266 | + /* Read test base shape */ |
| 267 | + array_file_read_data(&descr_in, NULL, shape, &t_tests); |
| 268 | +#endif |
| 269 | + // Check compatibility between shapes of idx file and model input |
| 270 | + printf("IDX test file shape: ["); |
| 271 | + for (int i = 0; i < descr_in.num_dim; i++) printf("%d,", shape[i]); |
| 272 | + printf("]\nModel input shape: ["); |
| 273 | + for (int i = 0; i < model_input->rank; i++) printf("%d,", model_input->shape[i]); |
| 274 | + printf("]\n\n"); |
| 275 | + for (int i = 1; i < descr_in.num_dim; i++) |
| 276 | + if (shape[i] != model_input->shape[i-1]) { |
| 277 | + printf("ERROR: Shapes mismatch.\n"); |
| 278 | + ret = TEST_SUIT_ERROR; |
| 279 | + goto free_ret_lbl; |
| 280 | + } |
| 281 | + |
| 282 | + if (shape[0] != labels_total) { |
| 283 | + printf("ERROR: Amount of labels(%d) and test inputs(%d) are not the same\n", labels_total, shape[0]); |
| 284 | + ret = TEST_SUIT_ERROR; |
| 285 | + goto free_ret_lbl; |
| 286 | + } |
| 287 | + |
| 288 | + // Memory allocation for raw input |
| 289 | + input_data = malloc(input_elements * data_elem_size(descr_in.data_type)); |
| 290 | + if (input_data == NULL) { |
| 291 | + printf("ERROR: Can't allocate memory for input\n"); |
| 292 | + ret = TEST_NOT_ENOUGH_MEM; |
| 293 | + goto free_ret_lbl; |
| 294 | + } |
| 295 | + |
| 296 | + // Step 2: Process vectors from input file one-by-another |
| 297 | + //================================================ |
| 298 | + uint32_t test_idx = 0; |
| 299 | + for (; test_idx < labels_total; test_idx++) { |
| 300 | + // Get next input vector from file and related label |
| 301 | + descr_in.num_elements = input_elements; |
| 302 | + descr_labels.num_elements = 1; |
| 303 | +#ifndef _C_ARRAY_ |
| 304 | + if (idx_file_read_data(&descr_in, input_data, NULL) != IDX_ERR_NONE || |
| 305 | + idx_file_read_data(&descr_labels, (void *)&label, NULL) != IDX_ERR_NONE) { |
| 306 | + printf("ERROR: While reading idx files content #%u\n", test_idx); |
| 307 | + ret = TEST_SUIT_ERROR; |
| 308 | + goto free_ret_lbl; |
| 309 | + } |
| 310 | +#else |
| 311 | + /* read from input data */ |
| 312 | + array_file_read_data(&descr_in, input_data, NULL, &t_tests); |
| 313 | + /* read from label */ |
| 314 | + array_file_read_data(&descr_labels, (void *)&label, NULL, &t_labels); |
| 315 | +#endif |
| 316 | + label = get_label(&label, descr_labels.data_type); |
| 317 | + |
| 318 | + // Model inference |
| 319 | + preprocess(input_data, model_input); |
| 320 | + inference(inf_param); |
| 321 | + |
| 322 | + labels_correct += (arg_max(model_output) == label)? 1: 0; |
| 323 | + |
| 324 | + // Notify User on progress (10% step) |
| 325 | + if (((test_idx+1) % (labels_total / 10)) == 0) |
| 326 | + printf("%10u of %u test vectors are processed (%u are correct: %.3f %%)\n", |
| 327 | + test_idx+1, labels_total, labels_correct, (labels_correct*100.f)/(test_idx+1)); |
| 328 | + } |
| 329 | + printf("Final Accuracy: %.3f %% (%u are correct of %u)\n", |
| 330 | + (labels_correct*100.f)/test_idx, labels_correct, labels_total); |
| 331 | + |
| 332 | + // Step 3: Fill output file header and free resources |
| 333 | + //================================================== |
| 334 | +free_ret_lbl: |
| 335 | + if (input_data != NULL) |
| 336 | + free(input_data); |
| 337 | + if (descr_in.opened_file != NULL) |
| 338 | + fclose(descr_in.opened_file); |
| 339 | + if (descr_labels.opened_file != NULL) |
| 340 | + fclose(descr_labels.opened_file); |
| 341 | + return ret; |
| 342 | +} |
| 343 | + |
| 344 | +/* -------------------------------------------------------------------------- */ |
| 345 | +/* Internal routines */ |
| 346 | +/* -------------------------------------------------------------------------- */ |
| 347 | + |
| 348 | +/* -------------------------------------------------------------------------- */ |
| 349 | +/* Find argument (index) of maximum value in tensor */ |
| 350 | +/* -------------------------------------------------------------------------- */ |
| 351 | +static inline int arg_max(mli_tensor * net_output_) { |
| 352 | + |
| 353 | + const mli_argmax_cfg argmax_cfg = { |
| 354 | + /* axis = */ -1, |
| 355 | + /* topk = */ 1 |
| 356 | + }; |
| 357 | + |
| 358 | + mli_tensor out_tensor = { 0 }; |
| 359 | + out_tensor.data.mem.pi32 = (int32_t *)&pred_label; |
| 360 | + out_tensor.data.capacity = sizeof(pred_label); |
| 361 | + out_tensor.el_type = MLI_EL_SA_32; |
| 362 | + out_tensor.rank = 2; |
| 363 | + out_tensor.shape[0] = 1; |
| 364 | + out_tensor.shape[1] = 1; |
| 365 | + out_tensor.mem_stride[0] = 1; |
| 366 | + out_tensor.mem_stride[1] = 1; |
| 367 | + |
| 368 | + if (net_output_->el_type == MLI_EL_SA_8) |
| 369 | + mli_krn_argmax_sa8(net_output_, &argmax_cfg, &out_tensor); |
| 370 | + else |
| 371 | + mli_krn_argmax_fx16(net_output_, &argmax_cfg, &out_tensor); |
| 372 | + |
| 373 | + return pred_label; |
| 374 | +} |
| 375 | + |
| 376 | +//================================================= |
| 377 | +// Label type cast |
| 378 | +//================================================= |
| 379 | +static inline int get_label(void * label_container_, enum tIdxDataType type_) { |
| 380 | + switch(type_) { |
| 381 | + case IDX_DT_UBYTE_1B: |
| 382 | + return (int)*((unsigned char *)label_container_); |
| 383 | + |
| 384 | + case IDX_DT_BYTE_1B: |
| 385 | + return (int)*((char *)label_container_); |
| 386 | + |
| 387 | + case IDX_DT_SHORT_2B: |
| 388 | + return (int)*((short*)label_container_); |
| 389 | + |
| 390 | + case IDX_DT_INT_4B: |
| 391 | + return (int)*((int*)label_container_); |
| 392 | + |
| 393 | + default: |
| 394 | + return -1; |
| 395 | + } |
| 396 | + return -1; |
| 397 | +} |
0 commit comments