Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
279 changes: 279 additions & 0 deletions docs/en/sdks/python-sdk/adk/index.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,279 @@
---
title: "Adk"
type: docs
weight: 8
description: >
MCP Toolbox ADK SDK for integrating functionalities of MCP Toolbox into your apps.
---

## Overview

The `toolbox-adk` package provides a Python interface to the MCP Toolbox service, enabling you to load and invoke tools from your own applications.

## Installation

```bash
pip install toolbox-adk
```

## Usage

The primary entry point is the `ToolboxToolset`, which loads tools from a remote Toolbox server and adapts them for use with ADK agents.

{{< notice note>}}
The `ToolboxToolset` in this package mirrors the `ToolboxToolset` in the [`adk-python`](https://github.com/google/adk-python) package. The `adk-python` version is a shim that delegates all functionality to this implementation.
{{< /notice >}}

```python
from toolbox_adk import ToolboxToolset
from google.adk.agents import Agent

# Create the Toolset
toolset = ToolboxToolset(
server_url="http://127.0.0.1:5000"
)

# Use in your ADK Agent
agent = Agent(tools=[toolset])
```

## Transport Protocols

The SDK supports multiple transport protocols for communicating with the Toolbox server. By default, the client uses the latest supported version of the **Model Context Protocol (MCP)**.

You can explicitly select a protocol using the `protocol` option during toolset initialization. This is useful if you need to use the native Toolbox HTTP protocol or pin the client to a specific legacy version of MCP.

{{< notice note>}}
* **Native Toolbox Transport**: This uses the service's native **REST over HTTP** API.
* **MCP Transports**: These options use the **Model Context Protocol over HTTP**.
{{< /notice >}}

### Supported Protocols

| Constant | Description |
| :--- | :--- |
| `Protocol.MCP` | **(Default)** Alias for the default MCP version (currently `2025-06-18`). |
| `Protocol.TOOLBOX` | The native Toolbox HTTP protocol. |
| `Protocol.MCP_v20251125` | MCP Protocol version 2025-11-25. |
| `Protocol.MCP_v20250618` | MCP Protocol version 2025-06-18. |
| `Protocol.MCP_v20250326` | MCP Protocol version 2025-03-26. |
| `Protocol.MCP_v20241105` | MCP Protocol version 2024-11-05. |

### Example

If you wish to use the native Toolbox protocol:

```python
from toolbox_adk import ToolboxToolset
from toolbox_core.protocol import Protocol

toolset = ToolboxToolset(
server_url="http://127.0.0.1:5000",
protocol=Protocol.TOOLBOX
)
```

If you want to pin the MCP Version 2025-03-26:

```python
from toolbox_adk import ToolboxToolset
from toolbox_core.protocol import Protocol

toolset = ToolboxToolset(
server_url="http://127.0.0.1:5000",
protocol=Protocol.MCP_v20250326
)
```

{{< notice tip>}}
By default, it uses **Toolbox Identity** (no authentication), which is suitable for local development.

For production environments (Cloud Run, GKE) or accessing protected resources, see the [Authentication](#authentication) section for strategies like Workload Identity or OAuth2.
{{< /notice >}}

## Authentication

The `ToolboxToolset` requires credentials to authenticate with the Toolbox server. You can configure these credentials using the `CredentialStrategy` factory methods.

The strategies handle two main types of authentication:
* **Client-to-Server**: Securing the connection to the Toolbox server (e.g., Workload Identity, API keys).
* **User Identity**: Authenticating the end-user for specific tools (e.g., 3-legged OAuth).

### 1. Workload Identity (ADC)
*Recommended for Cloud Run, GKE, or local development with `gcloud auth login`.*

Uses the agent's Application Default Credentials (ADC) to generate an OIDC token. This is the standard way for one service to authenticate to another on Google Cloud.

```python
from toolbox_adk import CredentialStrategy, ToolboxToolset

# target_audience: The URL of your Toolbox server
creds = CredentialStrategy.workload_identity(target_audience="https://my-toolbox-service.run.app")

toolset = ToolboxToolset(
server_url="https://my-toolbox-service.run.app",
credentials=creds
)
```

### 2. User Identity (OAuth2)
*Recommended for tools that act on behalf of the user.*

Configures the ADK-native interactive 3-legged OAuth flow to get consent and credentials from the end-user at runtime. This strategy is passed to the `ToolboxToolset` just like any other credential strategy.

```python
from toolbox_adk import CredentialStrategy, ToolboxToolset

creds = CredentialStrategy.user_identity(
client_id="YOUR_CLIENT_ID",
client_secret="YOUR_CLIENT_SECRET",
scopes=["https://www.googleapis.com/auth/cloud-platform"]
)

# The toolset will now initiate OAuth flows when required by tools
toolset = ToolboxToolset(
server_url="...",
credentials=creds
)
```

### 3. API Key
*Use a static API key passed in a specific header (default: `X-API-Key`).*

```python
from toolbox_adk import CredentialStrategy

# Default header: X-API-Key
creds = CredentialStrategy.api_key(key="my-secret-key")

# Custom header
creds = CredentialStrategy.api_key(key="my-secret-key", header_name="X-My-Header")
```

### 4. HTTP Bearer Token
*Manually supply a static bearer token.*

```python
from toolbox_adk import CredentialStrategy

creds = CredentialStrategy.manual_token(token="your-static-bearer-token")
```

### 5. Manual Google Credentials
*Use an existing `google.auth.credentials.Credentials` object.*

```python
from toolbox_adk import CredentialStrategy
import google.auth

creds_obj, _ = google.auth.default()
creds = CredentialStrategy.manual_credentials(credentials=creds_obj)
```

### 6. Toolbox Identity (No Auth)
*Use this if your Toolbox server does not require authentication (e.g., local development).*

```python
from toolbox_adk import CredentialStrategy

creds = CredentialStrategy.toolbox_identity()
```

### 7. Native ADK Integration
*Convert ADK-native `AuthConfig` or `AuthCredential` objects.*

```python
from toolbox_adk import CredentialStrategy

# From AuthConfig
creds = CredentialStrategy.from_adk_auth_config(auth_config)

# From AuthCredential + AuthScheme
creds = CredentialStrategy.from_adk_credentials(auth_credential, scheme)
```

### 8. Tool-Specific Authentication
*Resolve authentication tokens dynamically for specific tools.*

Some tools may define their own authentication requirements (e.g., Salesforce OAuth, GitHub PAT) via `authSources` in their schema. You can provide a mapping of getters to resolve these tokens at runtime.

```python
async def get_salesforce_token():
# Fetch token from secret manager or reliable source
return "sf-access-token"

toolset = ToolboxToolset(
server_url="...",
auth_token_getters={
"salesforce-auth": get_salesforce_token, # Async callable
"github-pat": lambda: "my-pat-token" # Sync callable or static lambda
}
)
```

## Advanced Configuration

### Additional Headers

You can inject custom headers into every request made to the Toolbox server. This is useful for passing tracing IDs, API keys, or other metadata.

```python
toolset = ToolboxToolset(
server_url="...",
additional_headers={
"X-Trace-ID": "12345",
"X-My-Header": lambda: get_dynamic_header_value() # Can be a callable
}
)
```

### Global Parameter Binding

Bind values to tool parameters globally across all loaded tools. These values will be **fixed** and **hidden** from the LLM.

* **Schema Hiding**: The bound parameters are removed from the tool schema sent to the model, simplifying the context window.
* **Auto-Injection**: The values are automatically injected into the tool arguments during execution.

```python
toolset = ToolboxToolset(
server_url="...",
bound_params={
# 'region' will be removed from the LLM schema and injected automatically
"region": "us-central1",
"api_key": lambda: get_api_key() # Can be a callable
}
)
```

### Usage with Hooks

You can attach `pre_hook` and `post_hook` functions to execute logic before and after every tool invocation.

{{< notice note>}}
The `pre_hook` can modify `context.arguments` to dynamically alter the inputs passed to the tool.
{{< /notice >}}

```python
from google.adk.tools.tool_context import ToolContext
from typing import Any, Dict, Optional

async def log_start(context: ToolContext, args: Dict[str, Any]):
print(f"Starting tool with args: {args}")
# context is the ADK ToolContext
# Example: Inject or modify arguments
# args["user_id"] = "123"

async def log_end(context: ToolContext, args: Dict[str, Any], result: Optional[Any], error: Optional[Exception]):
print("Finished tool execution")
# Inspect result or error
if error:
print(f"Tool failed: {error}")
else:
print(f"Tool succeeded with result: {result}")

toolset = ToolboxToolset(
server_url="...",
pre_hook=log_start,
post_hook=log_end
)
```
Loading