diff --git a/docs/source/en/_toctree.yml b/docs/source/en/_toctree.yml
index 0775290de9e2..93d9886d85ea 100644
--- a/docs/source/en/_toctree.yml
+++ b/docs/source/en/_toctree.yml
@@ -441,6 +441,10 @@
title: Encoder Decoder Models
- local: model_doc/ernie
title: ERNIE
+ - local: model_doc/ernie4_5
+ title: Ernie4_5
+ - local: model_doc/ernie4_5_moe
+ title: Ernie4_5_MoE
- local: model_doc/ernie_m
title: ErnieM
- local: model_doc/esm
diff --git a/docs/source/en/model_doc/ernie4_5.md b/docs/source/en/model_doc/ernie4_5.md
new file mode 100644
index 000000000000..b350b9d429ae
--- /dev/null
+++ b/docs/source/en/model_doc/ernie4_5.md
@@ -0,0 +1,99 @@
+
+
+
+
+# Ernie 4.5
+
+## Overview
+
+The Ernie 4.5 model was released in the [Ernie 4.5 Model Family](https://ernie.baidu.com/blog/posts/ernie4.5/) release by baidu.
+This family of models contains multiple different architectures and model sizes. This model in specific targets the base text
+model without mixture of experts (moe) with 0.3B parameters in total. It uses the standard [Llama](./llama.md) at its core.
+
+Other models from the family can be found at [Ernie 4.5 MoE](./ernie4_5_moe.md).
+
+
+

+
+
+
+## Usage Tips
+
+### Generate text
+
+```python
+import torch
+from transformers import AutoModelForCausalLM, AutoTokenizer
+
+model_name = "baidu/ERNIE-4.5-0.3B-PT"
+
+# load the tokenizer and the model
+tokenizer = AutoTokenizer.from_pretrained(model_name)
+model = AutoModelForCausalLM.from_pretrained(
+ model_name,
+ device_map="auto",
+ torch_dtype=torch.bfloat16,
+)
+
+# prepare the model input
+inputs = tokenizer("Hey, are you conscious? Can you talk to me?", return_tensors="pt")
+prompt = "Hey, are you conscious? Can you talk to me?"
+messages = [
+ {"role": "user", "content": prompt}
+]
+text = tokenizer.apply_chat_template(
+ messages,
+ tokenize=False,
+ add_generation_prompt=True
+)
+model_inputs = tokenizer([text], add_special_tokens=False, return_tensors="pt").to(model.device)
+
+# conduct text completion
+generated_ids = model.generate(
+ **model_inputs,
+ max_new_tokens=32,
+)
+output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
+
+# decode the generated ids
+generate_text = tokenizer.decode(output_ids, skip_special_tokens=True)
+```
+
+This model was contributed by [Anton Vlasjuk](https://huggingface.co/AntonV).
+The original code can be found [here](https://github.com/PaddlePaddle/ERNIE).
+
+
+## Ernie4_5Config
+
+[[autodoc]] Ernie4_5Config
+
+## Ernie4_5Model
+
+[[autodoc]] Ernie4_5Model
+ - forward
+
+## Ernie4_5ForCausalLM
+
+[[autodoc]] Ernie4_5ForCausalLM
+ - forward
diff --git a/docs/source/en/model_doc/ernie4_5_moe.md b/docs/source/en/model_doc/ernie4_5_moe.md
new file mode 100644
index 000000000000..9d8703e5929d
--- /dev/null
+++ b/docs/source/en/model_doc/ernie4_5_moe.md
@@ -0,0 +1,183 @@
+
+
+
+
+# Ernie 4.5 MoE
+
+## Overview
+
+The Ernie 4.5 MoE model was released in the [Ernie 4.5 Model Family](https://ernie.baidu.com/blog/posts/ernie4.5/) release by baidu.
+This family of models contains multiple different architectures and model sizes. This model in specific targets the base text
+model with mixture of experts (moe) - one with 21B total, 3B active parameters and another one with 300B total, 47B active parameters.
+It uses the standard [Llama](./llama.md) at its core combined with a specialized MoE based on [Mixtral](./mixtral.md) with additional shared
+experts.
+
+Other models from the family can be found at [Ernie 4.5](./ernie4_5.md).
+
+
+

+
+
+
+## Usage Tips
+
+### Generate text
+
+```python
+import torch
+from transformers import AutoModelForCausalLM, AutoTokenizer
+
+model_name = "baidu/ERNIE-4.5-21B-A3B-PT"
+
+# load the tokenizer and the model
+tokenizer = AutoTokenizer.from_pretrained(model_name)
+model = AutoModelForCausalLM.from_pretrained(
+ model_name,
+ device_map="auto",
+ torch_dtype=torch.bfloat16,
+)
+
+# prepare the model input
+inputs = tokenizer("Hey, are you conscious? Can you talk to me?", return_tensors="pt")
+prompt = "Hey, are you conscious? Can you talk to me?"
+messages = [
+ {"role": "user", "content": prompt}
+]
+text = tokenizer.apply_chat_template(
+ messages,
+ tokenize=False,
+ add_generation_prompt=True
+)
+model_inputs = tokenizer([text], add_special_tokens=False, return_tensors="pt").to(model.device)
+
+# conduct text completion
+generated_ids = model.generate(
+ **model_inputs,
+ max_new_tokens=32,
+)
+output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
+
+# decode the generated ids
+generate_text = tokenizer.decode(output_ids, skip_special_tokens=True)
+```
+
+### Distributed Generation with Tensor Parallelism
+
+```python
+import torch
+from transformers import AutoModelForCausalLM, AutoTokenizer
+
+model_name = "baidu/ERNIE-4.5-21B-A3B-PT"
+
+# load the tokenizer and the model
+tokenizer = AutoTokenizer.from_pretrained(model_name)
+model = AutoModelForCausalLM.from_pretrained(
+ model_name,
+ device_map="auto",
+ torch_dtype=torch.bfloat16,
+ tp_plan="auto",
+)
+
+# prepare the model input
+inputs = tokenizer("Hey, are you conscious? Can you talk to me?", return_tensors="pt")
+prompt = "Hey, are you conscious? Can you talk to me?"
+messages = [
+ {"role": "user", "content": prompt}
+]
+text = tokenizer.apply_chat_template(
+ messages,
+ tokenize=False,
+ add_generation_prompt=True
+)
+model_inputs = tokenizer([text], add_special_tokens=False, return_tensors="pt").to(model.device)
+
+# conduct text completion
+generated_ids = model.generate(
+ **model_inputs,
+ max_new_tokens=32,
+)
+output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
+
+# decode the generated ids
+generate_text = tokenizer.decode(output_ids, skip_special_tokens=True)
+```
+
+### Quantization with Bitsandbytes
+
+```python
+import torch
+from transformers import BitsAndBytesConfig, AutoModelForCausalLM, AutoTokenizer
+
+model_name = "baidu/ERNIE-4.5-21B-A3B-PT"
+
+# load the tokenizer and the model
+tokenizer = AutoTokenizer.from_pretrained(model_name)
+model = AutoModelForCausalLM.from_pretrained(
+ model_name,
+ device_map="auto",
+ quantization_config=BitsAndBytesConfig(load_in_4bit=True),
+)
+
+# prepare the model input
+inputs = tokenizer("Hey, are you conscious? Can you talk to me?", return_tensors="pt")
+prompt = "Hey, are you conscious? Can you talk to me?"
+messages = [
+ {"role": "user", "content": prompt}
+]
+text = tokenizer.apply_chat_template(
+ messages,
+ tokenize=False,
+ add_generation_prompt=True
+)
+model_inputs = tokenizer([text], add_special_tokens=False, return_tensors="pt").to(model.device)
+
+# conduct text completion
+generated_ids = model.generate(
+ **model_inputs,
+ max_new_tokens=32,
+)
+output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
+
+# decode the generated ids
+generate_text = tokenizer.decode(output_ids, skip_special_tokens=True)
+```
+
+This model was contributed by [Anton Vlasjuk](https://huggingface.co/AntonV).
+The original code can be found [here](https://github.com/PaddlePaddle/ERNIE).
+
+
+## Ernie4_5_MoEConfig
+
+[[autodoc]] Ernie4_5_MoEConfig
+
+## Ernie4_5_MoEModel
+
+[[autodoc]] Ernie4_5_MoEModel
+ - forward
+
+## Ernie4_5_MoEForCausalLM
+
+[[autodoc]] Ernie4_5_MoEForCausalLM
+ - forward
+ - generate
diff --git a/src/transformers/modeling_utils.py b/src/transformers/modeling_utils.py
index e20f4c0fe728..44229e21c40a 100644
--- a/src/transformers/modeling_utils.py
+++ b/src/transformers/modeling_utils.py
@@ -2977,6 +2977,17 @@ def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
else:
output_embeddings.weight = input_embeddings.weight
+ # Passing hooks over to the embeddings if needed
+ # (currently limited to tensor parallel hooks and flags only)
+ if hasattr(input_embeddings, "_is_hooked") and getattr(input_embeddings, "_hf_tp_plan", None):
+ output_embeddings._is_hooked = input_embeddings._is_hooked
+ output_embeddings._hf_tp_plan = input_embeddings._hf_tp_plan
+ output_embeddings._forward_hooks = input_embeddings._forward_hooks
+ output_embeddings._forward_pre_hooks = input_embeddings._forward_pre_hooks
+ output_embeddings.__repr__ = (
+ lambda: f"{output_embeddings.__repr__()}\nTP Plan: {output_embeddings._hf_tp_plan}"
+ )
+
if getattr(output_embeddings, "bias", None) is not None:
output_embeddings.bias.data = nn.functional.pad(
output_embeddings.bias.data,
diff --git a/src/transformers/models/auto/configuration_auto.py b/src/transformers/models/auto/configuration_auto.py
index e5a615f63396..b4642b9cafb2 100644
--- a/src/transformers/models/auto/configuration_auto.py
+++ b/src/transformers/models/auto/configuration_auto.py
@@ -128,6 +128,8 @@
("encoder-decoder", "EncoderDecoderConfig"),
("eomt", "EomtConfig"),
("ernie", "ErnieConfig"),
+ ("ernie4_5", "Ernie4_5Config"),
+ ("ernie4_5_moe", "Ernie4_5_MoEConfig"),
("ernie_m", "ErnieMConfig"),
("esm", "EsmConfig"),
("falcon", "FalconConfig"),
@@ -520,6 +522,8 @@
("encoder-decoder", "Encoder decoder"),
("eomt", "EoMT"),
("ernie", "ERNIE"),
+ ("ernie4_5", "Ernie4_5"),
+ ("ernie4_5_moe", "Ernie4_5_MoE"),
("ernie_m", "ErnieM"),
("esm", "ESM"),
("falcon", "Falcon"),
diff --git a/src/transformers/models/auto/modeling_auto.py b/src/transformers/models/auto/modeling_auto.py
index 08d1113d409e..36aaec4d53c2 100644
--- a/src/transformers/models/auto/modeling_auto.py
+++ b/src/transformers/models/auto/modeling_auto.py
@@ -119,6 +119,8 @@
("emu3", "Emu3Model"),
("encodec", "EncodecModel"),
("ernie", "ErnieModel"),
+ ("ernie4_5", "Ernie4_5Model"),
+ ("ernie4_5_moe", "Ernie4_5_MoEModel"),
("ernie_m", "ErnieMModel"),
("esm", "EsmModel"),
("falcon", "FalconModel"),
@@ -594,6 +596,8 @@
("electra", "ElectraForCausalLM"),
("emu3", "Emu3ForCausalLM"),
("ernie", "ErnieForCausalLM"),
+ ("ernie4_5", "Ernie4_5ForCausalLM"),
+ ("ernie4_5_moe", "Ernie4_5_MoEForCausalLM"),
("falcon", "FalconForCausalLM"),
("falcon_h1", "FalconH1ForCausalLM"),
("falcon_mamba", "FalconMambaForCausalLM"),
diff --git a/src/transformers/models/auto/tokenization_auto.py b/src/transformers/models/auto/tokenization_auto.py
index 0a66a1b97915..eda3d29ae777 100644
--- a/src/transformers/models/auto/tokenization_auto.py
+++ b/src/transformers/models/auto/tokenization_auto.py
@@ -212,6 +212,8 @@
("electra", ("ElectraTokenizer", "ElectraTokenizerFast" if is_tokenizers_available() else None)),
("emu3", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
("ernie", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
+ ("ernie4_5", (None, "LlamaTokenizerFast" if is_tokenizers_available() else None)),
+ ("ernie4_5_moe", (None, "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("ernie_m", ("ErnieMTokenizer" if is_sentencepiece_available() else None, None)),
("esm", ("EsmTokenizer", None)),
("falcon", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)),
diff --git a/src/transformers/models/ernie4_5/__init__.py b/src/transformers/models/ernie4_5/__init__.py
new file mode 100644
index 000000000000..5d6e69432c9a
--- /dev/null
+++ b/src/transformers/models/ernie4_5/__init__.py
@@ -0,0 +1,27 @@
+# Copyright 2025 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import _LazyModule
+from ...utils.import_utils import define_import_structure
+
+
+if TYPE_CHECKING:
+ from .configuration_ernie4_5 import *
+ from .modeling_ernie4_5 import *
+else:
+ import sys
+
+ _file = globals()["__file__"]
+ sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
diff --git a/src/transformers/models/ernie4_5/configuration_ernie4_5.py b/src/transformers/models/ernie4_5/configuration_ernie4_5.py
new file mode 100644
index 000000000000..e6e2795b5daa
--- /dev/null
+++ b/src/transformers/models/ernie4_5/configuration_ernie4_5.py
@@ -0,0 +1,202 @@
+# Copyright (c) 2025 Baidu, Inc. and HuggingFace Inc. team. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Ernie 4.5 model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...modeling_rope_utils import rope_config_validation
+
+
+class Ernie4_5Config(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`Ernie4_5Model`]. It is used to instantiate an Ernie 4.5
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
+ defaults will yield a similar configuration to that of the Ernie 4.5 0.3B.
+ e.g. [baidu/ERNIE-4.5-0.3B-PT](https://huggingface.co/baidu/ERNIE-4.5-0.3B-PT)
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 103424):
+ Vocabulary size of the Ernie 4.5 model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`Ernie4_5Model`]
+ hidden_size (`int`, *optional*, defaults to 1024):
+ Dimension of the hidden representations.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimension of the MLP representations.
+ num_hidden_layers (`int`, *optional*, defaults to 18):
+ Number of hidden layers in the Transformer decoder.
+ num_attention_heads (`int`, *optional*, defaults to 16):
+ Number of attention heads for each attention layer in the Transformer decoder.
+ num_key_value_heads (`int`, *optional*, defaults to 2):
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
+ by meanpooling all the original heads within that group. For more details, check out [this
+ paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
+ `num_attention_heads`.
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
+ The non-linear activation function (function or string) in the decoder.
+ max_position_embeddings (`int`, *optional*, defaults to 131072):
+ The maximum sequence length that this model might ever be used with.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
+ The epsilon used by the rms normalization layers.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions.
+ pad_token_id (`int`, *optional*, defaults to 0):
+ Padding token id.
+ bos_token_id (`int`, *optional*, defaults to 1):
+ Beginning of stream token id.
+ eos_token_id (`int`, *optional*, defaults to 2):
+ End of stream token id.
+ tie_word_embeddings (`bool`, *optional*, defaults to `True`):
+ Whether to tie weight embeddings
+ rope_theta (`float`, *optional*, defaults to 500000.0):
+ The base period of the RoPE embeddings.
+ rope_scaling (`Dict`, *optional*):
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
+ accordingly.
+ Expected contents:
+ `rope_type` (`str`):
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
+ 'llama3'], with 'default' being the original RoPE implementation.
+ `factor` (`float`, *optional*):
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
+ original maximum pre-trained length.
+ `original_max_position_embeddings` (`int`, *optional*):
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
+ pretraining.
+ `attention_factor` (`float`, *optional*):
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
+ `factor` field to infer the suggested value.
+ `beta_fast` (`float`, *optional*):
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
+ ramp function. If unspecified, it defaults to 32.
+ `beta_slow` (`float`, *optional*):
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
+ ramp function. If unspecified, it defaults to 1.
+ `short_factor` (`list[float]`, *optional*):
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
+ size divided by the number of attention heads divided by 2
+ `long_factor` (`list[float]`, *optional*):
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
+ size divided by the number of attention heads divided by 2
+ `low_freq_factor` (`float`, *optional*):
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
+ `high_freq_factor` (`float`, *optional*):
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
+ use_bias (`bool`, *optional*, defaults to `False`):
+ Whether to use a bias in any of the projections including mlp and attention for example.
+ head_dim (`int`, *optional*, defaults to 128):
+ The attention head dimension. If None, it will default to hidden_size // num_attention_heads
+
+ ```python
+ >>> from transformers import Ernie4_5Model, Ernie4_5Config
+
+ >>> # Initializing a Ernie4_5 0.3B style configuration
+ >>> configuration = Ernie4_5Config()
+
+ >>> # Initializing a model from the 0.3B style configuration
+ >>> model = Ernie4_5Model(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "ernie4_5"
+ keys_to_ignore_at_inference = ["past_key_values"]
+ # Default tensor parallel plan for base model `Ernie4_5Model`
+ base_model_tp_plan = {
+ "layers.*.self_attn.q_proj": "colwise",
+ "layers.*.self_attn.k_proj": "colwise",
+ "layers.*.self_attn.v_proj": "colwise",
+ "layers.*.self_attn.o_proj": "rowwise",
+ "layers.*.mlp.gate_proj": "colwise",
+ "layers.*.mlp.up_proj": "colwise",
+ "layers.*.mlp.down_proj": "rowwise",
+ }
+ base_model_pp_plan = {
+ "embed_tokens": (["input_ids"], ["inputs_embeds"]),
+ "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
+ "norm": (["hidden_states"], ["hidden_states"]),
+ }
+
+ def __init__(
+ self,
+ vocab_size=103424,
+ hidden_size=1024,
+ intermediate_size=3072,
+ num_hidden_layers=18,
+ num_attention_heads=16,
+ num_key_value_heads=2,
+ hidden_act="silu",
+ max_position_embeddings=131072,
+ initializer_range=0.02,
+ rms_norm_eps=1e-05,
+ use_cache=True,
+ pad_token_id=0,
+ bos_token_id=1,
+ eos_token_id=2,
+ tie_word_embeddings=True,
+ rope_theta=500000.0,
+ rope_scaling=None,
+ use_bias=False,
+ head_dim=128,
+ **kwargs,
+ ):
+ self.vocab_size = vocab_size
+ self.max_position_embeddings = max_position_embeddings
+ self.hidden_size = hidden_size
+ self.intermediate_size = intermediate_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+
+ # for backward compatibility
+ if num_key_value_heads is None:
+ num_key_value_heads = num_attention_heads
+
+ self.num_key_value_heads = num_key_value_heads
+ self.hidden_act = hidden_act
+ self.initializer_range = initializer_range
+ self.rms_norm_eps = rms_norm_eps
+ self.use_cache = use_cache
+ self.rope_theta = rope_theta
+ self.rope_scaling = rope_scaling
+ self.use_bias = use_bias
+ self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
+ # Validate the correctness of rotary position embeddings parameters
+ # BC: if there is a 'type' field, copy it it to 'rope_type'.
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
+ rope_config_validation(self)
+
+ super().__init__(
+ pad_token_id=pad_token_id,
+ bos_token_id=bos_token_id,
+ eos_token_id=eos_token_id,
+ tie_word_embeddings=tie_word_embeddings,
+ **kwargs,
+ )
+
+
+__all__ = ["Ernie4_5Config"]
diff --git a/src/transformers/models/ernie4_5/convert_ernie4_5_tokenizer.py b/src/transformers/models/ernie4_5/convert_ernie4_5_tokenizer.py
new file mode 100644
index 000000000000..25994bb1436f
--- /dev/null
+++ b/src/transformers/models/ernie4_5/convert_ernie4_5_tokenizer.py
@@ -0,0 +1,72 @@
+# Copyright (c) 2025 HuggingFace Inc. team. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import argparse
+
+from transformers import LlamaTokenizer, LlamaTokenizerFast
+
+
+DEFAULT_CHAT_TEMPLATE = '{%- if not add_generation_prompt is defined -%}\n {%- set add_generation_prompt = true -%}\n{%- endif -%}\n{%- if not cls_token is defined -%}\n {%- set cls_token = "<|begin_of_sentence|>" -%}\n{%- endif -%}\n{%- if not sep_token is defined -%}\n {%- set sep_token = "<|end_of_sentence|>" -%}\n{%- endif -%}\n{{- cls_token -}}\n{%- for message in messages -%}\n {%- if message["role"] == "user" -%}\n {{- "User: " + message["content"] + "\n" -}}\n {%- elif message["role"] == "assistant" -%}\n {{- "Assistant: " + message["content"] + sep_token -}}\n {%- elif message["role"] == "system" -%}\n {{- message["content"] + "\n" -}}\n {%- endif -%}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{- "Assistant: " -}}\n{%- endif -%}'
+DEFAULT_TEXT_ADD_TOKENS = [
+ "",
+ "",
+ "",
+ "",
+]
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ "--repo_name",
+ help="Name of the repo where the tokenizer is located at.",
+ default="baidu/ERNIE-4.5-0.3B-Base-PT",
+ )
+ parser.add_argument(
+ "--push_to_hub",
+ help="Whether or not to push the model to the hub at `output_dir` instead of saving it locally.",
+ action="store_true",
+ default=False,
+ )
+ parser.add_argument(
+ "--output_dir",
+ help="Location to write the tokenizer",
+ )
+ args = parser.parse_args()
+
+ hf_tok = LlamaTokenizer.from_pretrained(
+ args.repo_name,
+ pad_token="",
+ cls_token="<|begin_of_sentence|>",
+ sep_token="<|end_of_sentence|>",
+ mask_token="",
+ add_bos_token=False,
+ add_prefix_space=False,
+ chat_template=DEFAULT_CHAT_TEMPLATE,
+ legacy=True,
+ )
+ hf_tok.model_max_length = 131072
+ hf_tok.init_kwargs.pop("auto_map", None)
+ # special tokens which we need to map as additional special tokens instead
+ hf_tok.init_kwargs.pop("header_start_token", None)
+ hf_tok.init_kwargs.pop("header_end_token", None)
+ hf_tok.init_kwargs.pop("sys_start_token", None)
+ hf_tok.init_kwargs.pop("sys_end_token", None)
+ for token in DEFAULT_TEXT_ADD_TOKENS:
+ hf_tok.add_tokens([token], special_tokens=True)
+
+ # save slow model and convert on load time
+ hf_tok.save_pretrained("/tmp/ernie4_5_tokenizer")
+ hf_tok_fast = LlamaTokenizerFast.from_pretrained("/tmp/ernie4_5_tokenizer", from_slow=True)
+ hf_tok_fast.save_pretrained(args.output_dir, push_to_hub=args.push_to_hub)
diff --git a/src/transformers/models/ernie4_5/modeling_ernie4_5.py b/src/transformers/models/ernie4_5/modeling_ernie4_5.py
new file mode 100644
index 000000000000..aab89aa0a261
--- /dev/null
+++ b/src/transformers/models/ernie4_5/modeling_ernie4_5.py
@@ -0,0 +1,503 @@
+# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
+# This file was automatically generated from src/transformers/models/ernie4_5/modular_ernie4_5.py.
+# Do NOT edit this file manually as any edits will be overwritten by the generation of
+# the file from the modular. If any change should be done, please apply the change to the
+# modular_ernie4_5.py file directly. One of our CI enforces this.
+# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
+# Copyright (c) 2025 Baidu, Inc. and HuggingFace Inc. team. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import Callable, Optional, Union
+
+import torch
+from torch import nn
+
+from ...activations import ACT2FN
+from ...cache_utils import Cache, DynamicCache
+from ...generation import GenerationMixin
+from ...integrations import use_kernel_forward_from_hub
+from ...masking_utils import create_causal_mask
+from ...modeling_layers import GradientCheckpointingLayer
+from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
+from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
+from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
+from ...processing_utils import Unpack
+from ...utils import TransformersKwargs, auto_docstring, can_return_tuple
+from ...utils.generic import check_model_inputs
+from .configuration_ernie4_5 import Ernie4_5Config
+
+
+class Ernie4_5RotaryEmbedding(nn.Module):
+ def __init__(self, config: Ernie4_5Config, device=None):
+ super().__init__()
+ # BC: "rope_type" was originally "type"
+ if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
+ else:
+ self.rope_type = "default"
+ self.max_seq_len_cached = config.max_position_embeddings
+ self.original_max_seq_len = config.max_position_embeddings
+
+ self.config = config
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
+
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
+ self.original_inv_freq = self.inv_freq
+
+ @torch.no_grad()
+ @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
+ def forward(self, x, position_ids):
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
+ position_ids_expanded = position_ids[:, None, :].float()
+
+ device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
+ with torch.autocast(device_type=device_type, enabled=False): # Force float32
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
+ emb = torch.cat((freqs, freqs), dim=-1)
+ cos = emb.cos() * self.attention_scaling
+ sin = emb.sin() * self.attention_scaling
+
+ # keeping it in full precision
+ return cos, sin
+
+
+class Ernie4_5MLP(nn.Module):
+ def __init__(self, config: Ernie4_5Config):
+ super().__init__()
+ self.config = config
+ self.hidden_size = config.hidden_size
+ self.intermediate_size = config.intermediate_size
+
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.use_bias)
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.use_bias)
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
+ self.act_fn = ACT2FN[config.hidden_act]
+
+ def forward(self, x):
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
+ return down_proj
+
+
+def rotate_half(x):
+ """Rotates half the hidden dims of the input."""
+ x1 = x[..., 0::2]
+ x2 = x[..., 1::2]
+ return torch.stack((-x2, x1), dim=-1).flatten(-2)
+
+
+def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
+ """
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
+ """
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
+ if n_rep == 1:
+ return hidden_states
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
+
+
+def eager_attention_forward(
+ module: nn.Module,
+ query: torch.Tensor,
+ key: torch.Tensor,
+ value: torch.Tensor,
+ attention_mask: Optional[torch.Tensor],
+ scaling: float,
+ dropout: float = 0.0,
+ **kwargs: Unpack[TransformersKwargs],
+):
+ key_states = repeat_kv(key, module.num_key_value_groups)
+ value_states = repeat_kv(value, module.num_key_value_groups)
+
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
+ if attention_mask is not None:
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
+ attn_weights = attn_weights + causal_mask
+
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
+ attn_output = torch.matmul(attn_weights, value_states)
+ attn_output = attn_output.transpose(1, 2).contiguous()
+
+ return attn_output, attn_weights
+
+
+def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
+ """Applies Rotary Position Embedding to the query and key tensors.
+
+ Args:
+ q (`torch.Tensor`): The query tensor.
+ k (`torch.Tensor`): The key tensor.
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
+ position_ids (`torch.Tensor`, *optional*):
+ Deprecated and unused.
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
+ Returns:
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
+ """
+ # glm rope style (with full dim) and full precision
+ original_dtype = q.dtype
+
+ cos = cos.unsqueeze(unsqueeze_dim)
+ sin = sin.unsqueeze(unsqueeze_dim)
+
+ # Interleave them instead of usual shape
+ cos = cos[..., : cos.shape[-1] // 2].repeat_interleave(2, dim=-1)
+ sin = sin[..., : sin.shape[-1] // 2].repeat_interleave(2, dim=-1)
+
+ q_embed = (q.float() * cos) + (rotate_half(q).float() * sin)
+ k_embed = (k.float() * cos) + (rotate_half(k).float() * sin)
+
+ return q_embed.to(original_dtype), k_embed.to(original_dtype)
+
+
+class Ernie4_5Attention(nn.Module):
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
+
+ def __init__(self, config: Ernie4_5Config, layer_idx: int):
+ super().__init__()
+ self.config = config
+ self.layer_idx = layer_idx
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
+ self.scaling = self.head_dim**-0.5
+
+ self.attention_dropout = 0.0
+ self.is_causal = True
+
+ self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.use_bias)
+ self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias)
+ self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias)
+ self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.use_bias)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ position_embeddings: tuple[torch.Tensor, torch.Tensor],
+ attention_mask: Optional[torch.Tensor],
+ past_key_value: Optional[Cache] = None,
+ cache_position: Optional[torch.LongTensor] = None,
+ **kwargs: Unpack[TransformersKwargs],
+ ) -> tuple[torch.Tensor, torch.Tensor]:
+ input_shape = hidden_states.shape[:-1]
+ hidden_shape = (*input_shape, -1, self.head_dim)
+
+ query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
+ key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
+ value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
+
+ cos, sin = position_embeddings
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
+
+ if past_key_value is not None:
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
+
+ attention_interface: Callable = eager_attention_forward
+ if self.config._attn_implementation != "eager":
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
+
+ attn_output, attn_weights = attention_interface(
+ self,
+ query_states,
+ key_states,
+ value_states,
+ attention_mask,
+ dropout=0.0 if not self.training else self.attention_dropout,
+ scaling=self.scaling,
+ **kwargs,
+ )
+
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
+ attn_output = self.o_proj(attn_output)
+ return attn_output, attn_weights
+
+
+@use_kernel_forward_from_hub("RMSNorm")
+class Ernie4_5RMSNorm(nn.Module):
+ def __init__(self, hidden_size, eps=1e-6):
+ """
+ Ernie4_5RMSNorm is equivalent to T5LayerNorm
+ """
+ super().__init__()
+ self.weight = nn.Parameter(torch.ones(hidden_size))
+ self.variance_epsilon = eps
+
+ def forward(self, hidden_states):
+ input_dtype = hidden_states.dtype
+ hidden_states = hidden_states.to(torch.float32)
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
+ return self.weight * hidden_states.to(input_dtype)
+
+ def extra_repr(self):
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
+
+
+class Ernie4_5DecoderLayer(GradientCheckpointingLayer):
+ def __init__(self, config: Ernie4_5Config, layer_idx: int):
+ super().__init__()
+ self.hidden_size = config.hidden_size
+
+ self.self_attn = Ernie4_5Attention(config=config, layer_idx=layer_idx)
+
+ self.mlp = Ernie4_5MLP(config)
+ self.input_layernorm = Ernie4_5RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+ self.post_attention_layernorm = Ernie4_5RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[Cache] = None,
+ use_cache: Optional[bool] = False,
+ cache_position: Optional[torch.LongTensor] = None,
+ position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
+ **kwargs: Unpack[TransformersKwargs],
+ ) -> tuple[torch.Tensor]:
+ residual = hidden_states
+ hidden_states = self.input_layernorm(hidden_states)
+ # Self Attention
+ hidden_states, _ = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_value=past_key_value,
+ use_cache=use_cache,
+ cache_position=cache_position,
+ position_embeddings=position_embeddings,
+ **kwargs,
+ )
+ hidden_states = residual + hidden_states
+
+ # Fully Connected
+ residual = hidden_states
+ hidden_states = self.post_attention_layernorm(hidden_states)
+ hidden_states = self.mlp(hidden_states)
+ hidden_states = residual + hidden_states
+ return hidden_states
+
+
+@auto_docstring
+class Ernie4_5PreTrainedModel(PreTrainedModel):
+ config: Ernie4_5Config
+ base_model_prefix = "model"
+ supports_gradient_checkpointing = True
+ _no_split_modules = ["Ernie4_5DecoderLayer"]
+ _skip_keys_device_placement = ["past_key_values"]
+ _supports_flash_attn = True
+ _supports_sdpa = True
+ _supports_flex_attn = True
+
+ _supports_static_cache = True
+ _supports_attention_backend = True
+ _can_record_outputs = {
+ "hidden_states": Ernie4_5DecoderLayer,
+ "attentions": Ernie4_5Attention,
+ }
+
+ def _init_weights(self, module):
+ std = self.config.initializer_range
+ if isinstance(module, nn.Linear):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, Ernie4_5RMSNorm):
+ module.weight.data.fill_(1.0)
+
+
+@auto_docstring
+class Ernie4_5Model(Ernie4_5PreTrainedModel):
+ def __init__(self, config: Ernie4_5Config):
+ super().__init__(config)
+ self.padding_idx = config.pad_token_id
+ self.vocab_size = config.vocab_size
+
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
+ self.layers = nn.ModuleList(
+ [Ernie4_5DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
+ )
+ self.norm = Ernie4_5RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+ self.rotary_emb = Ernie4_5RotaryEmbedding(config=config)
+ self.gradient_checkpointing = False
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.embed_tokens = value
+
+ @check_model_inputs
+ @auto_docstring
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[Cache] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ cache_position: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ **kwargs: Unpack[TransformersKwargs],
+ ) -> BaseModelOutputWithPast:
+ if (input_ids is None) ^ (inputs_embeds is not None):
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
+
+ if inputs_embeds is None:
+ inputs_embeds: torch.Tensor = self.embed_tokens(input_ids)
+
+ if use_cache and past_key_values is None:
+ past_key_values = DynamicCache()
+
+ if cache_position is None:
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
+ cache_position: torch.Tensor = torch.arange(
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
+ )
+
+ if position_ids is None:
+ position_ids = cache_position.unsqueeze(0)
+
+ causal_mask = create_causal_mask(
+ config=self.config,
+ input_embeds=inputs_embeds,
+ attention_mask=attention_mask,
+ cache_position=cache_position,
+ past_key_values=past_key_values,
+ position_ids=position_ids,
+ )
+
+ hidden_states = inputs_embeds
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
+
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
+ hidden_states = decoder_layer(
+ hidden_states,
+ attention_mask=causal_mask,
+ position_ids=position_ids,
+ past_key_value=past_key_values,
+ cache_position=cache_position,
+ position_embeddings=position_embeddings,
+ **kwargs,
+ )
+
+ hidden_states = self.norm(hidden_states)
+ return BaseModelOutputWithPast(
+ last_hidden_state=hidden_states,
+ past_key_values=past_key_values,
+ )
+
+
+@auto_docstring
+class Ernie4_5ForCausalLM(Ernie4_5PreTrainedModel, GenerationMixin):
+ _tied_weights_keys = ["lm_head.weight"]
+ _tp_plan = {"lm_head": "colwise_rep"}
+ _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.model = Ernie4_5Model(config)
+ self.vocab_size = config.vocab_size
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.model.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.model.embed_tokens = value
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ def set_decoder(self, decoder):
+ self.model = decoder
+
+ def get_decoder(self):
+ return self.model
+
+ @can_return_tuple
+ @auto_docstring
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[Cache] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ cache_position: Optional[torch.LongTensor] = None,
+ logits_to_keep: Union[int, torch.Tensor] = 0,
+ **kwargs: Unpack[TransformersKwargs],
+ ) -> CausalLMOutputWithPast:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+ """
+ outputs: BaseModelOutputWithPast = self.model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ cache_position=cache_position,
+ **kwargs,
+ )
+
+ hidden_states = outputs.last_hidden_state
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
+
+ loss = None
+ if labels is not None:
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
+
+ return CausalLMOutputWithPast(
+ loss=loss,
+ logits=logits,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+__all__ = ["Ernie4_5ForCausalLM", "Ernie4_5Model", "Ernie4_5PreTrainedModel"]
diff --git a/src/transformers/models/ernie4_5/modular_ernie4_5.py b/src/transformers/models/ernie4_5/modular_ernie4_5.py
new file mode 100644
index 000000000000..f76c7c6bdae7
--- /dev/null
+++ b/src/transformers/models/ernie4_5/modular_ernie4_5.py
@@ -0,0 +1,123 @@
+# Copyright (c) 2025 Baidu, Inc. and HuggingFace Inc. team. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""PyTorch Ernie 4.5 model"""
+
+import torch
+from torch import nn
+
+from ...modeling_rope_utils import dynamic_rope_update
+from ...utils import auto_docstring, can_return_tuple
+from ..glm.modeling_glm import rotate_half
+from ..llama.modeling_llama import (
+ LlamaAttention,
+ LlamaForCausalLM,
+ LlamaMLP,
+ LlamaRotaryEmbedding,
+)
+from .configuration_ernie4_5 import Ernie4_5Config
+
+
+class Ernie4_5RotaryEmbedding(LlamaRotaryEmbedding):
+ @torch.no_grad()
+ @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
+ def forward(self, x, position_ids):
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
+ position_ids_expanded = position_ids[:, None, :].float()
+
+ device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
+ with torch.autocast(device_type=device_type, enabled=False): # Force float32
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
+ emb = torch.cat((freqs, freqs), dim=-1)
+ cos = emb.cos() * self.attention_scaling
+ sin = emb.sin() * self.attention_scaling
+
+ # keeping it in full precision
+ return cos, sin
+
+
+def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
+ """Applies Rotary Position Embedding to the query and key tensors.
+
+ Args:
+ q (`torch.Tensor`): The query tensor.
+ k (`torch.Tensor`): The key tensor.
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
+ position_ids (`torch.Tensor`, *optional*):
+ Deprecated and unused.
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
+ Returns:
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
+ """
+ # glm rope style (with full dim) and full precision
+ original_dtype = q.dtype
+
+ cos = cos.unsqueeze(unsqueeze_dim)
+ sin = sin.unsqueeze(unsqueeze_dim)
+
+ # Interleave them instead of usual shape
+ cos = cos[..., : cos.shape[-1] // 2].repeat_interleave(2, dim=-1)
+ sin = sin[..., : sin.shape[-1] // 2].repeat_interleave(2, dim=-1)
+
+ q_embed = (q.float() * cos) + (rotate_half(q).float() * sin)
+ k_embed = (k.float() * cos) + (rotate_half(k).float() * sin)
+
+ return q_embed.to(original_dtype), k_embed.to(original_dtype)
+
+
+class Ernie4_5MLP(LlamaMLP):
+ def __init__(self, config: Ernie4_5Config):
+ super().__init__()
+
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.use_bias)
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.use_bias)
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
+
+
+class Ernie4_5Attention(LlamaAttention):
+ def __init__(self, config: Ernie4_5Config, layer_idx: int):
+ super().__init__(config, layer_idx)
+
+ self.attention_dropout = 0.0
+
+ self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.use_bias)
+ self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias)
+ self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias)
+ self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.use_bias)
+
+
+class Ernie4_5ForCausalLM(LlamaForCausalLM):
+ @can_return_tuple
+ @auto_docstring
+ def forward(self, **super_kwargs):
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+ """
+ super().forward(**super_kwargs)
+
+
+__all__ = [
+ "Ernie4_5ForCausalLM",
+ "Ernie4_5Model", # noqa: F822
+ "Ernie4_5PreTrainedModel", # noqa: F822
+]
diff --git a/src/transformers/models/ernie4_5_moe/__init__.py b/src/transformers/models/ernie4_5_moe/__init__.py
new file mode 100644
index 000000000000..eb30318fa25e
--- /dev/null
+++ b/src/transformers/models/ernie4_5_moe/__init__.py
@@ -0,0 +1,27 @@
+# Copyright 2025 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import _LazyModule
+from ...utils.import_utils import define_import_structure
+
+
+if TYPE_CHECKING:
+ from .configuration_ernie4_5_moe import *
+ from .modeling_ernie4_5_moe import *
+else:
+ import sys
+
+ _file = globals()["__file__"]
+ sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
diff --git a/src/transformers/models/ernie4_5_moe/configuration_ernie4_5_moe.py b/src/transformers/models/ernie4_5_moe/configuration_ernie4_5_moe.py
new file mode 100644
index 000000000000..cec4f4661a77
--- /dev/null
+++ b/src/transformers/models/ernie4_5_moe/configuration_ernie4_5_moe.py
@@ -0,0 +1,254 @@
+# Copyright (c) 2025 Baidu, Inc. and HuggingFace Inc. team. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Ernie 4.5 MoE model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...modeling_rope_utils import rope_config_validation
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+class Ernie4_5_MoEConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`Ernie4_5_MoEModel`]. It is used to instantiate a
+ Ernie 4.5 MoE model according to the specified arguments, defining the model architecture. Instantiating a configuration
+ with the defaults will yield a similar configuration to that of [baidu/ERNIE-4.5-21B-A3B-PT](https://huggingface.co/baidu/ERNIE-4.5-21B-A3B-PT).
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 103424):
+ Vocabulary size of the Ernie 4.5 MoE model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`Ernie4_5_MoEModel`]
+ pad_token_id (`int`, *optional*, defaults to 0):
+ Padding token id.
+ bos_token_id (`int`, *optional*, defaults to 1):
+ Beginning of stream token id.
+ eos_token_id (`int`, *optional*, defaults to 2):
+ End of stream token id.
+ hidden_size (`int`, *optional*, defaults to 2560):
+ Dimension of the hidden representations.
+ intermediate_size (`int`, *optional*, defaults to 12288):
+ Dimension of the MLP representations.
+ num_hidden_layers (`int`, *optional*, defaults to 28):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 20):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ num_key_value_heads (`int`, *optional*, defaults to 4):
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
+ by meanpooling all the original heads within that group. For more details, check out [this
+ paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `32`.
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
+ The non-linear activation function (function or string) in the decoder.
+ max_position_embeddings (`int`, *optional*, defaults to 131072):
+ The maximum sequence length that this model might ever be used with.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
+ The epsilon used by the rms normalization layers.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
+ relevant if `config.is_decoder=True`.
+ tie_word_embeddings (`bool`, *optional*, defaults to `True`):
+ Whether the model's input and output word embeddings should be tied.
+ rope_theta (`float`, *optional*, defaults to 500000.0):
+ The base period of the RoPE embeddings.
+ rope_scaling (`Dict`, *optional*):
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
+ accordingly.
+ Expected contents:
+ `rope_type` (`str`):
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
+ 'llama3'], with 'default' being the original RoPE implementation.
+ `factor` (`float`, *optional*):
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
+ original maximum pre-trained length.
+ `original_max_position_embeddings` (`int`, *optional*):
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
+ pretraining.
+ `attention_factor` (`float`, *optional*):
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
+ `factor` field to infer the suggested value.
+ `beta_fast` (`float`, *optional*):
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
+ ramp function. If unspecified, it defaults to 32.
+ `beta_slow` (`float`, *optional*):
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
+ ramp function. If unspecified, it defaults to 1.
+ `short_factor` (`list[float]`, *optional*):
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
+ size divided by the number of attention heads divided by 2
+ `long_factor` (`list[float]`, *optional*):
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
+ size divided by the number of attention heads divided by 2
+ `low_freq_factor` (`float`, *optional*):
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
+ `high_freq_factor` (`float`, *optional*):
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
+ use_bias (`bool`, *optional*, defaults to `False`):
+ Whether to use a bias in any of the projections including mlp and attention for example.
+ moe_intermediate_size (`int`, *optional*, defaults to 1536):
+ Intermediate size of the routed expert.
+ moe_k (`int`, *optional*, defaults to 6):
+ Number of selected experts.
+ moe_num_experts (`int`, *optional*, defaults to 64):
+ Number of routed experts.
+ moe_num_shared_experts (`int`, *optional*, defaults to 2):
+ The number of experts that are shared for all MoE forwards.
+ moe_layer_start_index (`int`, *optional*, defaults to 1):
+ The first index at which MoE layers start to appear.
+ moe_layer_end_index (`int`, *optional*, defaults to -1):
+ The last possible index for a MoE layer.
+ moe_layer_interval (`int`, *optional*, defaults to 1):
+ The intervals between MoE layers to appear.
+ moe_norm_min (`float`, *optional*, defaults to 1e-12):
+ Minimum division value during routing normalization.
+ output_router_logits (`bool`, *optional*, defaults to `False`):
+ Whether or not the router logits should be returned by the model. Enabling this will also
+ allow the model to output the auxiliary loss, including load balancing loss and router z-loss.
+ router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
+ The aux loss factor for the total loss.
+
+ ```python
+ >>> from transformers import Ernie4_5_MoEModel, Ernie4_5_MoEConfig
+
+ >>> # Initializing a Ernie4_5_MoE style configuration
+ >>> configuration = Ernie4_5_MoEConfig()
+
+ >>> # Initializing a model from the ERNIE-4.5-21B-A3B style configuration
+ >>> model = Ernie4_5_MoEModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "ernie4_5_moe"
+ keys_to_ignore_at_inference = ["past_key_values"]
+ attribute_map = {"num_experts": "moe_num_experts", "num_experts_per_tok": "moe_k"}
+
+ # Default tensor parallel plan for base model `Ernie4_5_MoE`
+ base_model_tp_plan = {
+ "layers.*.self_attn.q_proj": "colwise",
+ "layers.*.self_attn.k_proj": "colwise",
+ "layers.*.self_attn.v_proj": "colwise",
+ "layers.*.self_attn.o_proj": "rowwise",
+ # sequence parallel is pretty slow
+ # "norm.weight": "sequence_parallel",
+ # "layers.*.input_layernorm.weight": "sequence_parallel",
+ # "layers.*.post_attention_layernorm.weight": "sequence_parallel",
+ "layers.*.mlp.shared_experts.gate_proj": "local_colwise",
+ "layers.*.mlp.shared_experts.up_proj": "local_colwise",
+ "layers.*.mlp.shared_experts.down_proj": "local_rowwise",
+ "layers.*.mlp.experts.*.gate_proj": "local_colwise",
+ "layers.*.mlp.experts.*.up_proj": "local_colwise",
+ "layers.*.mlp.experts.*.down_proj": "local_rowwise",
+ "layers.*.mlp.experts": "local",
+ "layers.*.mlp.gate_proj": "local_colwise",
+ "layers.*.mlp.up_proj": "local_colwise",
+ "layers.*.mlp.down_proj": "local_rowwise",
+ "layers.*.mlp": "gather",
+ }
+ base_model_pp_plan = {
+ "embed_tokens": (["input_ids"], ["inputs_embeds"]),
+ "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
+ "norm": (["hidden_states"], ["hidden_states"]),
+ }
+
+ def __init__(
+ self,
+ vocab_size=103424,
+ pad_token_id=0,
+ bos_token_id=1,
+ eos_token_id=2,
+ hidden_size=2560,
+ intermediate_size=12288,
+ num_hidden_layers=28,
+ num_attention_heads=20,
+ num_key_value_heads=4,
+ hidden_act="silu",
+ max_position_embeddings=131072,
+ initializer_range=0.02,
+ rms_norm_eps=1e-5,
+ use_cache=True,
+ tie_word_embeddings=True,
+ rope_theta=500000.0,
+ rope_scaling=None,
+ use_bias=False,
+ moe_intermediate_size=1536,
+ moe_k=6,
+ moe_num_experts=64,
+ moe_num_shared_experts=2,
+ moe_layer_start_index=1,
+ moe_layer_end_index=-1,
+ moe_layer_interval=1,
+ moe_norm_min=1e-12,
+ output_router_logits=False,
+ router_aux_loss_coef=0.001,
+ **kwargs,
+ ):
+ self.vocab_size = vocab_size
+ self.hidden_size = hidden_size
+ self.intermediate_size = intermediate_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.num_key_value_heads = num_key_value_heads
+ self.hidden_act = hidden_act
+ self.max_position_embeddings = max_position_embeddings
+ self.initializer_range = initializer_range
+ self.rms_norm_eps = rms_norm_eps
+ self.use_cache = use_cache
+ self.use_bias = use_bias
+
+ self.rope_theta = rope_theta
+ self.rope_scaling = rope_scaling
+ # Validate the correctness of rotary position embeddings parameters
+ # BC: if there is a 'type' field, move it to 'rope_type'.
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
+ rope_config_validation(self)
+
+ # MoE arguments
+ self.moe_intermediate_size = moe_intermediate_size
+ self.moe_k = moe_k
+ self.moe_num_experts = moe_num_experts
+ self.moe_num_shared_experts = moe_num_shared_experts
+ self.moe_layer_start_index = moe_layer_start_index
+ self.moe_layer_end_index = self.num_hidden_layers - 1 if moe_layer_end_index == -1 else moe_layer_end_index
+ self.moe_layer_interval = moe_layer_interval
+ self.moe_norm_min = moe_norm_min
+ self.output_router_logits = output_router_logits
+ self.router_aux_loss_coef = router_aux_loss_coef
+
+ super().__init__(
+ pad_token_id=pad_token_id,
+ bos_token_id=bos_token_id,
+ eos_token_id=eos_token_id,
+ tie_word_embeddings=tie_word_embeddings,
+ **kwargs,
+ )
+
+
+__all__ = ["Ernie4_5_MoEConfig"]
diff --git a/src/transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py b/src/transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py
new file mode 100644
index 000000000000..89b9b7bb1705
--- /dev/null
+++ b/src/transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py
@@ -0,0 +1,779 @@
+# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
+# This file was automatically generated from src/transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py.
+# Do NOT edit this file manually as any edits will be overwritten by the generation of
+# the file from the modular. If any change should be done, please apply the change to the
+# modular_ernie4_5_moe.py file directly. One of our CI enforces this.
+# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
+# Copyright (c) 2025 Baidu, Inc. and HuggingFace Inc. team. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import Callable, Optional, Union
+
+import torch
+import torch.nn.functional as F
+from torch import nn
+
+from ...activations import ACT2FN
+from ...cache_utils import Cache, DynamicCache
+from ...generation import GenerationMixin
+from ...integrations import use_kernel_forward_from_hub
+from ...masking_utils import create_causal_mask
+from ...modeling_flash_attention_utils import FlashAttentionKwargs
+from ...modeling_layers import GradientCheckpointingLayer
+from ...modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast
+from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
+from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
+from ...processing_utils import Unpack
+from ...utils import TransformersKwargs, auto_docstring, can_return_tuple
+from ...utils.generic import OutputRecorder, check_model_inputs
+from .configuration_ernie4_5_moe import Ernie4_5_MoEConfig
+
+
+@use_kernel_forward_from_hub("RMSNorm")
+class Ernie4_5_MoERMSNorm(nn.Module):
+ def __init__(self, hidden_size, eps=1e-6):
+ """
+ Ernie4_5_MoERMSNorm is equivalent to T5LayerNorm
+ """
+ super().__init__()
+ self.weight = nn.Parameter(torch.ones(hidden_size))
+ self.variance_epsilon = eps
+
+ def forward(self, hidden_states):
+ input_dtype = hidden_states.dtype
+ hidden_states = hidden_states.to(torch.float32)
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
+ return self.weight * hidden_states.to(input_dtype)
+
+ def extra_repr(self):
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
+
+
+class Ernie4_5_MoEMLP(nn.Module):
+ def __init__(self, config, intermediate_size=None):
+ super().__init__()
+ self.config = config
+ self.hidden_size = config.hidden_size
+ self.intermediate_size = intermediate_size if intermediate_size is not None else config.intermediate_size
+
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.use_bias)
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.use_bias)
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
+ self.act_fn = ACT2FN[config.hidden_act]
+
+ def forward(self, x):
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
+ return down_proj
+
+
+class Ernie4_5_MoERotaryEmbedding(nn.Module):
+ def __init__(self, config: Ernie4_5_MoEConfig, device=None):
+ super().__init__()
+ # BC: "rope_type" was originally "type"
+ if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
+ else:
+ self.rope_type = "default"
+ self.max_seq_len_cached = config.max_position_embeddings
+ self.original_max_seq_len = config.max_position_embeddings
+
+ self.config = config
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
+
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
+ self.original_inv_freq = self.inv_freq
+
+ @torch.no_grad()
+ @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
+ def forward(self, x, position_ids):
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
+ position_ids_expanded = position_ids[:, None, :].float()
+
+ device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
+ with torch.autocast(device_type=device_type, enabled=False): # Force float32
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
+ emb = torch.cat((freqs, freqs), dim=-1)
+ cos = emb.cos() * self.attention_scaling
+ sin = emb.sin() * self.attention_scaling
+
+ # keeping it in full precision
+ return cos, sin
+
+
+def rotate_half(x):
+ """Rotates half the hidden dims of the input."""
+ x1 = x[..., 0::2]
+ x2 = x[..., 1::2]
+ return torch.stack((-x2, x1), dim=-1).flatten(-2)
+
+
+def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
+ """Applies Rotary Position Embedding to the query and key tensors.
+
+ Args:
+ q (`torch.Tensor`): The query tensor.
+ k (`torch.Tensor`): The key tensor.
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
+ position_ids (`torch.Tensor`, *optional*):
+ Deprecated and unused.
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
+ Returns:
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
+ """
+ # glm rope style (with full dim) and full precision
+ original_dtype = q.dtype
+
+ cos = cos.unsqueeze(unsqueeze_dim)
+ sin = sin.unsqueeze(unsqueeze_dim)
+
+ # Interleave them instead of usual shape
+ cos = cos[..., : cos.shape[-1] // 2].repeat_interleave(2, dim=-1)
+ sin = sin[..., : sin.shape[-1] // 2].repeat_interleave(2, dim=-1)
+
+ q_embed = (q.float() * cos) + (rotate_half(q).float() * sin)
+ k_embed = (k.float() * cos) + (rotate_half(k).float() * sin)
+
+ return q_embed.to(original_dtype), k_embed.to(original_dtype)
+
+
+def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
+ """
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
+ """
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
+ if n_rep == 1:
+ return hidden_states
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
+
+
+def eager_attention_forward(
+ module: nn.Module,
+ query: torch.Tensor,
+ key: torch.Tensor,
+ value: torch.Tensor,
+ attention_mask: Optional[torch.Tensor],
+ scaling: float,
+ dropout: float = 0.0,
+ **kwargs: Unpack[TransformersKwargs],
+):
+ key_states = repeat_kv(key, module.num_key_value_groups)
+ value_states = repeat_kv(value, module.num_key_value_groups)
+
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
+ if attention_mask is not None:
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
+ attn_weights = attn_weights + causal_mask
+
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
+ attn_output = torch.matmul(attn_weights, value_states)
+ attn_output = attn_output.transpose(1, 2).contiguous()
+
+ return attn_output, attn_weights
+
+
+class Ernie4_5_MoEAttention(nn.Module):
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
+
+ def __init__(self, config: Ernie4_5_MoEConfig, layer_idx: int):
+ super().__init__()
+ self.config = config
+ self.layer_idx = layer_idx
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
+ self.scaling = self.head_dim**-0.5
+
+ self.attention_dropout = 0.0
+ self.is_causal = True
+
+ self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.use_bias)
+ self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias)
+ self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias)
+ self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.use_bias)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ position_embeddings: tuple[torch.Tensor, torch.Tensor],
+ attention_mask: Optional[torch.Tensor],
+ past_key_value: Optional[Cache] = None,
+ cache_position: Optional[torch.LongTensor] = None,
+ **kwargs: Unpack[TransformersKwargs],
+ ) -> tuple[torch.Tensor, torch.Tensor]:
+ input_shape = hidden_states.shape[:-1]
+ hidden_shape = (*input_shape, -1, self.head_dim)
+
+ query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
+ key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
+ value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
+
+ cos, sin = position_embeddings
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
+
+ if past_key_value is not None:
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
+
+ attention_interface: Callable = eager_attention_forward
+ if self.config._attn_implementation != "eager":
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
+
+ attn_output, attn_weights = attention_interface(
+ self,
+ query_states,
+ key_states,
+ value_states,
+ attention_mask,
+ dropout=0.0 if not self.training else self.attention_dropout,
+ scaling=self.scaling,
+ **kwargs,
+ )
+
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
+ attn_output = self.o_proj(attn_output)
+ return attn_output, attn_weights
+
+
+class Ernie4_5_MoEStatics(nn.Module):
+ """
+ Stores MoE (Mixture of Experts) statistics
+ - Bias for the gating
+ - Additionally, usage per expert in the original codebase
+ """
+
+ def __init__(self, config):
+ super().__init__()
+
+ num_experts_groups = 1
+ num_experts = config.moe_num_experts
+
+ self.e_score_correction_bias = nn.Parameter(
+ torch.zeros(num_experts_groups, num_experts, dtype=torch.float32),
+ requires_grad=False,
+ )
+
+ def forward(self, hidden_states):
+ # NOTE: This is a workaround to enable TP with a module that only has parameters
+ #
+ # Otherwise, it stays as `DTensor` when called in the "super" forward
+ # 1. All other tensors are local (`torch.Tensor`)
+ # 2. Isolate does not work on `nn.Module` which only has parameters
+ return hidden_states + self.e_score_correction_bias.squeeze()
+
+
+class Ernie4_5_MoESparseMoeBlock(nn.Module):
+ """
+ This implementation is
+ strictly equivalent to standard MoE with full capacity (no
+ dropped tokens). It's faster since it formulates MoE operations
+ in terms of block-sparse operations to accommodate imbalanced
+ assignments of tokens to experts, whereas standard MoE either
+ (1) drop tokens at the cost of reduced performance or (2) set
+ capacity factor to number of experts and thus waste computation
+ and memory on padding.
+
+ Ernie 4.5 MoE's original formula is based on case (2) with
+ (optional) shared experts and a corrections bias during gating.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ self.num_experts = config.moe_num_experts
+ self.top_k = config.moe_k
+
+ # correction bias (yes it seems to be a typo with statics <> statistics)
+ self.moe_statics = Ernie4_5_MoEStatics(config)
+
+ # gating
+ self.gate = nn.Linear(config.hidden_size, config.moe_num_experts, bias=False, dtype=torch.float32)
+ self.experts = nn.ModuleList(
+ [Ernie4_5_MoEMLP(config, config.moe_intermediate_size) for _ in range(config.moe_num_experts)]
+ )
+ self.norm_min = config.moe_norm_min
+
+ # (optional) shared experts for all forwards
+ self.shared_experts = None
+ if config.moe_num_shared_experts > 0:
+ self.shared_experts = Ernie4_5_MoEMLP(config, config.moe_intermediate_size * config.moe_num_shared_experts)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
+ batch_size, sequence_length, hidden_dim = hidden_states.shape
+ hidden_states = hidden_states.view(-1, hidden_dim)
+
+ # (Optional) shared experts
+ if self.shared_experts is not None:
+ shared_output = self.shared_experts(hidden_states)
+
+ device_type = (
+ hidden_states.device.type
+ if isinstance(hidden_states.device.type, str) and hidden_states.device.type != "mps"
+ else "cpu"
+ )
+ with torch.autocast(device_type=device_type, enabled=False): # Force float32
+ # router_logits: (batch * sequence_length, n_experts)
+ router_logits = self.gate(hidden_states.float())
+
+ # NOTE: we are using the original code base at
+ # https://github.com/PaddlePaddle/Paddle/blob/9b40438ce0f6d76b4f08a7837dd1e28b26cf8ee6/python/paddle/incubate/nn/functional/moe_gate_dispatch.py#L109-L116
+ # this might differ from the remote version regarding the bias (see `Ernie4_5_MoEStatics`)
+ routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
+ routing_weights = self.moe_statics(routing_weights)
+ routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
+ routing_weights = routing_weights / torch.clamp(
+ routing_weights.sum(dim=-1, keepdim=True), min=self.norm_min
+ )
+ routing_weights = routing_weights.to(hidden_states.dtype)
+
+ final_hidden_states = torch.zeros(
+ (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
+ )
+
+ # One hot encode the selected experts to create an expert mask
+ # this will be used to easily index which expert is going to be sollicitated
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
+
+ # Loop over all available experts in the model and perform the computation on each expert
+ expert_hitted = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero()
+ for expert_idx in expert_hitted:
+ expert_layer = self.experts[expert_idx]
+ idx, top_x = torch.where(expert_mask[expert_idx].squeeze(0))
+
+ # Index the correct hidden states and compute the expert hidden state for
+ # the current expert. We need to make sure to multiply the output hidden
+ # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
+ current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
+ current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
+
+ # However `index_add_` only support torch tensors for indexing so we'll use
+ # the `top_x` tensor here.
+ final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
+
+ # Add (optional) shared experts to the result
+ if self.shared_experts is not None:
+ final_hidden_states = final_hidden_states + shared_output
+
+ final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
+ return final_hidden_states, router_logits
+
+
+class Ernie4_5_MoEDecoderLayer(GradientCheckpointingLayer):
+ def __init__(self, config, layer_idx):
+ super().__init__()
+ self.hidden_size = config.hidden_size
+
+ self.self_attn = Ernie4_5_MoEAttention(config, layer_idx)
+
+ if (
+ ((layer_idx + 1) % config.moe_layer_interval == 0)
+ and layer_idx >= config.moe_layer_start_index
+ and layer_idx <= config.moe_layer_end_index
+ ):
+ self.mlp = Ernie4_5_MoESparseMoeBlock(config)
+ else:
+ self.mlp = Ernie4_5_MoEMLP(config)
+
+ self.input_layernorm = Ernie4_5_MoERMSNorm(config.hidden_size, config.rms_norm_eps)
+ self.post_attention_layernorm = Ernie4_5_MoERMSNorm(config.hidden_size, config.rms_norm_eps)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ position_embeddings: tuple[torch.Tensor, torch.Tensor],
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_value: Optional[tuple[torch.Tensor]] = None,
+ cache_position: Optional[torch.LongTensor] = None,
+ **kwargs: Unpack[FlashAttentionKwargs],
+ ) -> torch.FloatTensor:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
+ `(batch, sequence_length)` where padding elements are indicated by 0.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_router_logits (`bool`, *optional*):
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss,
+ and should not be returned during inference.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
+ (see `past_key_values`).
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
+ Indices depicting the position of the input sequence tokens in the sequence.
+ position_embeddings (`tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
+ Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
+ with `head_dim` being the embedding dimension of each attention head.
+ kwargs (`dict`, *optional*):
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
+ into the model
+ """
+ residual = hidden_states
+
+ hidden_states = self.input_layernorm(hidden_states)
+
+ # Self Attention
+ hidden_states, _ = self.self_attn(
+ hidden_states=hidden_states,
+ position_embeddings=position_embeddings,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_value=past_key_value,
+ cache_position=cache_position,
+ **kwargs,
+ )
+ hidden_states = residual + hidden_states
+
+ # Fully Connected
+ residual = hidden_states
+ hidden_states = self.post_attention_layernorm(hidden_states)
+ hidden_states = self.mlp(hidden_states)
+ # For the MoE layers, we need to unpack
+ if isinstance(hidden_states, tuple):
+ hidden_states, _ = hidden_states
+ hidden_states = residual + hidden_states
+
+ return hidden_states
+
+
+@auto_docstring
+class Ernie4_5_MoEPreTrainedModel(PreTrainedModel):
+ config: Ernie4_5_MoEConfig
+ base_model_prefix = "model"
+ supports_gradient_checkpointing = True
+ _no_split_modules = ["Ernie4_5_MoEDecoderLayer"]
+ _skip_keys_device_placement = ["past_key_values"]
+ _supports_flash_attn = True
+ _supports_sdpa = True
+ _supports_flex_attn = True
+ _supports_static_cache = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported)
+ _supports_attention_backend = True
+ _can_record_outputs = {
+ "router_logits": OutputRecorder(Ernie4_5_MoESparseMoeBlock, index=1),
+ "hidden_states": Ernie4_5_MoEDecoderLayer,
+ "attentions": Ernie4_5_MoEAttention,
+ }
+ _keep_in_fp32_modules_strict = ["gate", "moe_statics"]
+
+ def _init_weights(self, module):
+ std = self.config.initializer_range
+ if isinstance(module, nn.Linear):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, Ernie4_5_MoERMSNorm):
+ module.weight.data.fill_(1.0)
+ elif isinstance(module, Ernie4_5_MoEStatics):
+ module.e_score_correction_bias.data.zero_()
+
+
+@auto_docstring
+class Ernie4_5_MoEModel(Ernie4_5_MoEPreTrainedModel):
+ def __init__(self, config: Ernie4_5_MoEConfig):
+ super().__init__(config)
+ self.padding_idx = config.pad_token_id
+ self.vocab_size = config.vocab_size
+
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
+ self.layers = nn.ModuleList(
+ [Ernie4_5_MoEDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
+ )
+ self.norm = Ernie4_5_MoERMSNorm(config.hidden_size, eps=config.rms_norm_eps)
+ self.rotary_emb = Ernie4_5_MoERotaryEmbedding(config=config)
+ self.gradient_checkpointing = False
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.embed_tokens = value
+
+ @check_model_inputs
+ @auto_docstring
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[Cache] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ cache_position: Optional[torch.LongTensor] = None,
+ **kwargs: Unpack[TransformersKwargs],
+ ) -> MoeModelOutputWithPast:
+ if (input_ids is None) ^ (inputs_embeds is not None):
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
+
+ if use_cache and past_key_values is None:
+ past_key_values = DynamicCache()
+
+ if inputs_embeds is None:
+ inputs_embeds = self.embed_tokens(input_ids)
+
+ if cache_position is None:
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
+ cache_position = torch.arange(
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
+ )
+ if position_ids is None:
+ position_ids = cache_position.unsqueeze(0)
+
+ causal_mask = create_causal_mask(
+ config=self.config,
+ input_embeds=inputs_embeds,
+ attention_mask=attention_mask,
+ cache_position=cache_position,
+ past_key_values=past_key_values,
+ position_ids=position_ids,
+ )
+
+ hidden_states = inputs_embeds
+
+ # create position embeddings to be shared across the decoder layers
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
+
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
+ hidden_states = decoder_layer(
+ hidden_states,
+ position_embeddings=position_embeddings,
+ attention_mask=causal_mask,
+ position_ids=position_ids,
+ past_key_value=past_key_values,
+ use_cache=use_cache,
+ cache_position=cache_position,
+ **kwargs,
+ )
+
+ hidden_states = self.norm(hidden_states)
+
+ return MoeModelOutputWithPast( # only diff with Mistral is the output type, we need MoE
+ last_hidden_state=hidden_states,
+ past_key_values=past_key_values,
+ )
+
+
+def load_balancing_loss_func(
+ gate_logits: Union[torch.Tensor, tuple[torch.Tensor], None],
+ num_experts: Optional[int] = None,
+ top_k=2,
+ attention_mask: Optional[torch.Tensor] = None,
+) -> Union[torch.Tensor, int]:
+ r"""
+ Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
+
+ See Switch Transformer (https://huggingface.co/papers/2101.03961) for more details. This function implements the loss
+ function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
+ experts is too unbalanced.
+
+ Args:
+ gate_logits:
+ Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
+ shape [batch_size X sequence_length, num_experts].
+ num_experts:
+ Number of experts
+ top_k:
+ The number of experts to route per-token, can be also interpreted as the `top-k` routing
+ parameter.
+ attention_mask (`torch.Tensor`, *optional*):
+ The attention_mask used in forward function
+ shape [batch_size X sequence_length] if not None.
+
+ Returns:
+ The auxiliary loss.
+ """
+ if gate_logits is None or not isinstance(gate_logits, tuple):
+ return 0
+
+ if isinstance(gate_logits, tuple):
+ compute_device = gate_logits[0].device
+ concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
+
+ routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
+
+ _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
+
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
+
+ if attention_mask is None:
+ # Compute the percentage of tokens routed to each experts
+ tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
+
+ # Compute the average probability of routing to these experts
+ router_prob_per_expert = torch.mean(routing_weights, dim=0)
+ else:
+ batch_size, sequence_length = attention_mask.shape
+ num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
+
+ # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
+ expert_attention_mask = (
+ attention_mask[None, :, :, None, None]
+ .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
+ .reshape(-1, top_k, num_experts)
+ .to(compute_device)
+ )
+
+ # Compute the percentage of tokens routed to each experts
+ tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
+ expert_attention_mask, dim=0
+ )
+
+ # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
+ router_per_expert_attention_mask = (
+ attention_mask[None, :, :, None]
+ .expand((num_hidden_layers, batch_size, sequence_length, num_experts))
+ .reshape(-1, num_experts)
+ .to(compute_device)
+ )
+
+ # Compute the average probability of routing to these experts
+ router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
+ router_per_expert_attention_mask, dim=0
+ )
+
+ overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
+ return overall_loss * num_experts
+
+
+@auto_docstring
+class Ernie4_5_MoEForCausalLM(Ernie4_5_MoEPreTrainedModel, GenerationMixin):
+ _tied_weights_keys = ["lm_head.weight"]
+ _tp_plan = {"lm_head": "colwise_rep"}
+ _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.model = Ernie4_5_MoEModel(config)
+ self.vocab_size = config.vocab_size
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=config.use_bias)
+
+ self.router_aux_loss_coef = config.router_aux_loss_coef
+ self.num_experts = config.moe_num_experts
+ self.num_experts_per_tok = config.moe_k
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.model.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.model.embed_tokens = value
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ def set_decoder(self, decoder):
+ self.model = decoder
+
+ def get_decoder(self):
+ return self.model
+
+ @can_return_tuple
+ @auto_docstring
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[Cache] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_router_logits: Optional[bool] = None,
+ cache_position: Optional[torch.LongTensor] = None,
+ logits_to_keep: Union[int, torch.Tensor] = 0,
+ **kwargs: Unpack[TransformersKwargs],
+ ) -> MoeCausalLMOutputWithPast:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+ """
+
+ output_router_logits = (
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
+ )
+
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
+ outputs: MoeModelOutputWithPast = self.model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_router_logits=output_router_logits,
+ cache_position=cache_position,
+ **kwargs,
+ )
+
+ hidden_states = outputs.last_hidden_state
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
+
+ loss = None
+ if labels is not None:
+ loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
+
+ aux_loss = None
+ if output_router_logits:
+ aux_loss = load_balancing_loss_func(
+ outputs.router_logits,
+ self.num_experts,
+ self.num_experts_per_tok,
+ attention_mask,
+ )
+ if labels is not None:
+ loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
+
+ return MoeCausalLMOutputWithPast(
+ loss=loss,
+ aux_loss=aux_loss,
+ logits=logits,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ router_logits=outputs.router_logits,
+ )
+
+
+__all__ = ["Ernie4_5_MoEForCausalLM", "Ernie4_5_MoEModel", "Ernie4_5_MoEPreTrainedModel"]
diff --git a/src/transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py b/src/transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py
new file mode 100644
index 000000000000..daf122929bc7
--- /dev/null
+++ b/src/transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py
@@ -0,0 +1,333 @@
+# Copyright (c) 2025 Baidu, Inc. and HuggingFace Inc. team. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""PyTorch Ernie 4.5 MoE model."""
+
+from typing import Optional
+
+import torch
+import torch.nn.functional as F
+from torch import nn
+
+from ...cache_utils import Cache, DynamicCache
+from ...masking_utils import create_causal_mask
+from ...modeling_outputs import MoeModelOutputWithPast
+from ...processing_utils import Unpack
+from ...utils import TransformersKwargs, auto_docstring, can_return_tuple, logging
+from ...utils.generic import check_model_inputs
+from ..ernie4_5.modeling_ernie4_5 import Ernie4_5RotaryEmbedding, apply_rotary_pos_emb, rotate_half # noqa: F401
+from ..llama.modeling_llama import LlamaAttention, LlamaRMSNorm
+from ..mixtral.modeling_mixtral import (
+ MixtralForCausalLM,
+ MixtralModel,
+ MixtralPreTrainedModel,
+)
+from ..qwen3_moe.modeling_qwen3_moe import Qwen3MoeDecoderLayer, Qwen3MoeMLP
+from .configuration_ernie4_5_moe import Ernie4_5_MoEConfig
+
+
+logger = logging.get_logger(__name__)
+
+
+class Ernie4_5_MoERMSNorm(LlamaRMSNorm):
+ pass
+
+
+class Ernie4_5_MoEMLP(Qwen3MoeMLP):
+ def __init__(self, config, intermediate_size=None):
+ super().__init__(config, intermediate_size)
+
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.use_bias)
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.use_bias)
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
+
+
+class Ernie4_5_MoERotaryEmbedding(Ernie4_5RotaryEmbedding):
+ pass
+
+
+class Ernie4_5_MoEAttention(LlamaAttention):
+ def __init__(self, config: Ernie4_5_MoEConfig, layer_idx: int):
+ super().__init__(config, layer_idx)
+
+ self.attention_dropout = 0.0
+
+ self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.use_bias)
+ self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias)
+ self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias)
+ self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.use_bias)
+
+
+class Ernie4_5_MoEStatics(nn.Module):
+ """
+ Stores MoE (Mixture of Experts) statistics
+ - Bias for the gating
+ - Additionally, usage per expert in the original codebase
+ """
+
+ def __init__(self, config):
+ super().__init__()
+
+ num_experts_groups = 1
+ num_experts = config.moe_num_experts
+
+ self.e_score_correction_bias = nn.Parameter(
+ torch.zeros(num_experts_groups, num_experts, dtype=torch.float32),
+ requires_grad=False,
+ )
+
+ def forward(self, hidden_states):
+ # NOTE: This is a workaround to enable TP with a module that only has parameters
+ #
+ # Otherwise, it stays as `DTensor` when called in the "super" forward
+ # 1. All other tensors are local (`torch.Tensor`)
+ # 2. Isolate does not work on `nn.Module` which only has parameters
+ return hidden_states + self.e_score_correction_bias.squeeze()
+
+
+class Ernie4_5_MoESparseMoeBlock(nn.Module):
+ """
+ This implementation is
+ strictly equivalent to standard MoE with full capacity (no
+ dropped tokens). It's faster since it formulates MoE operations
+ in terms of block-sparse operations to accommodate imbalanced
+ assignments of tokens to experts, whereas standard MoE either
+ (1) drop tokens at the cost of reduced performance or (2) set
+ capacity factor to number of experts and thus waste computation
+ and memory on padding.
+
+ Ernie 4.5 MoE's original formula is based on case (2) with
+ (optional) shared experts and a corrections bias during gating.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ self.num_experts = config.moe_num_experts
+ self.top_k = config.moe_k
+
+ # correction bias (yes it seems to be a typo with statics <> statistics)
+ self.moe_statics = Ernie4_5_MoEStatics(config)
+
+ # gating
+ self.gate = nn.Linear(config.hidden_size, config.moe_num_experts, bias=False, dtype=torch.float32)
+ self.experts = nn.ModuleList(
+ [Ernie4_5_MoEMLP(config, config.moe_intermediate_size) for _ in range(config.moe_num_experts)]
+ )
+ self.norm_min = config.moe_norm_min
+
+ # (optional) shared experts for all forwards
+ self.shared_experts = None
+ if config.moe_num_shared_experts > 0:
+ self.shared_experts = Ernie4_5_MoEMLP(config, config.moe_intermediate_size * config.moe_num_shared_experts)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
+ batch_size, sequence_length, hidden_dim = hidden_states.shape
+ hidden_states = hidden_states.view(-1, hidden_dim)
+
+ # (Optional) shared experts
+ if self.shared_experts is not None:
+ shared_output = self.shared_experts(hidden_states)
+
+ device_type = (
+ hidden_states.device.type
+ if isinstance(hidden_states.device.type, str) and hidden_states.device.type != "mps"
+ else "cpu"
+ )
+ with torch.autocast(device_type=device_type, enabled=False): # Force float32
+ # router_logits: (batch * sequence_length, n_experts)
+ router_logits = self.gate(hidden_states.float())
+
+ # NOTE: we are using the original code base at
+ # https://github.com/PaddlePaddle/Paddle/blob/9b40438ce0f6d76b4f08a7837dd1e28b26cf8ee6/python/paddle/incubate/nn/functional/moe_gate_dispatch.py#L109-L116
+ # this might differ from the remote version regarding the bias (see `Ernie4_5_MoEStatics`)
+ routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
+ routing_weights = self.moe_statics(routing_weights)
+ routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
+ routing_weights = routing_weights / torch.clamp(
+ routing_weights.sum(dim=-1, keepdim=True), min=self.norm_min
+ )
+ routing_weights = routing_weights.to(hidden_states.dtype)
+
+ final_hidden_states = torch.zeros(
+ (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
+ )
+
+ # One hot encode the selected experts to create an expert mask
+ # this will be used to easily index which expert is going to be sollicitated
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
+
+ # Loop over all available experts in the model and perform the computation on each expert
+ expert_hitted = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero()
+ for expert_idx in expert_hitted:
+ expert_layer = self.experts[expert_idx]
+ idx, top_x = torch.where(expert_mask[expert_idx].squeeze(0))
+
+ # Index the correct hidden states and compute the expert hidden state for
+ # the current expert. We need to make sure to multiply the output hidden
+ # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
+ current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
+ current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
+
+ # However `index_add_` only support torch tensors for indexing so we'll use
+ # the `top_x` tensor here.
+ final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
+
+ # Add (optional) shared experts to the result
+ if self.shared_experts is not None:
+ final_hidden_states = final_hidden_states + shared_output
+
+ final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
+ return final_hidden_states, router_logits
+
+
+class Ernie4_5_MoEDecoderLayer(Qwen3MoeDecoderLayer, nn.Module):
+ def __init__(self, config, layer_idx):
+ nn.Module().__init__()
+ self.hidden_size = config.hidden_size
+
+ self.self_attn = Ernie4_5_MoEAttention(config, layer_idx)
+
+ if (
+ ((layer_idx + 1) % config.moe_layer_interval == 0)
+ and layer_idx >= config.moe_layer_start_index
+ and layer_idx <= config.moe_layer_end_index
+ ):
+ self.mlp = Ernie4_5_MoESparseMoeBlock(config)
+ else:
+ self.mlp = Ernie4_5_MoEMLP(config)
+
+ self.input_layernorm = Ernie4_5_MoERMSNorm(config.hidden_size, config.rms_norm_eps)
+ self.post_attention_layernorm = Ernie4_5_MoERMSNorm(config.hidden_size, config.rms_norm_eps)
+
+
+@auto_docstring
+class Ernie4_5_MoEPreTrainedModel(MixtralPreTrainedModel):
+ _keep_in_fp32_modules_strict = ["gate", "moe_statics"]
+
+ def _init_weights(self, module):
+ std = self.config.initializer_range
+ if isinstance(module, nn.Linear):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, Ernie4_5_MoERMSNorm):
+ module.weight.data.fill_(1.0)
+ elif isinstance(module, Ernie4_5_MoEStatics):
+ module.e_score_correction_bias.data.zero_()
+
+
+@auto_docstring
+class Ernie4_5_MoEModel(MixtralModel):
+ @check_model_inputs
+ @auto_docstring
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[Cache] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ cache_position: Optional[torch.LongTensor] = None,
+ **kwargs: Unpack[TransformersKwargs],
+ ) -> MoeModelOutputWithPast:
+ if (input_ids is None) ^ (inputs_embeds is not None):
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
+
+ if use_cache and past_key_values is None:
+ past_key_values = DynamicCache()
+
+ if inputs_embeds is None:
+ inputs_embeds = self.embed_tokens(input_ids)
+
+ if cache_position is None:
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
+ cache_position = torch.arange(
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
+ )
+ if position_ids is None:
+ position_ids = cache_position.unsqueeze(0)
+
+ causal_mask = create_causal_mask(
+ config=self.config,
+ input_embeds=inputs_embeds,
+ attention_mask=attention_mask,
+ cache_position=cache_position,
+ past_key_values=past_key_values,
+ position_ids=position_ids,
+ )
+
+ hidden_states = inputs_embeds
+
+ # create position embeddings to be shared across the decoder layers
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
+
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
+ hidden_states = decoder_layer(
+ hidden_states,
+ position_embeddings=position_embeddings,
+ attention_mask=causal_mask,
+ position_ids=position_ids,
+ past_key_value=past_key_values,
+ use_cache=use_cache,
+ cache_position=cache_position,
+ **kwargs,
+ )
+
+ hidden_states = self.norm(hidden_states)
+
+ return MoeModelOutputWithPast( # only diff with Mistral is the output type, we need MoE
+ last_hidden_state=hidden_states,
+ past_key_values=past_key_values,
+ )
+
+
+@auto_docstring
+class Ernie4_5_MoEForCausalLM(MixtralForCausalLM, Ernie4_5_MoEPreTrainedModel):
+ def __init__(self, config):
+ Ernie4_5_MoEPreTrainedModel().__init__(config)
+ self.model = Ernie4_5_MoEModel(config)
+ self.vocab_size = config.vocab_size
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=config.use_bias)
+
+ self.router_aux_loss_coef = config.router_aux_loss_coef
+ self.num_experts = config.moe_num_experts
+ self.num_experts_per_tok = config.moe_k
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @can_return_tuple
+ @auto_docstring
+ def forward(self, **super_kwargs):
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+ """
+ super().forward(**super_kwargs)
+
+
+__all__ = [
+ "Ernie4_5_MoEForCausalLM",
+ "Ernie4_5_MoEModel",
+ "Ernie4_5_MoEPreTrainedModel",
+]
diff --git a/tests/causal_lm_tester.py b/tests/causal_lm_tester.py
index b13f824bf7f4..b6479524a948 100644
--- a/tests/causal_lm_tester.py
+++ b/tests/causal_lm_tester.py
@@ -104,9 +104,11 @@ def __init__(
is_decoder=False,
scope=None,
expert_interval=1,
+ moe_layer_start_index=0,
moe_intermediate_size=12,
shared_expert_intermediate_size=36,
shared_expert_gate=True,
+ moe_num_shared_experts=2,
num_experts_per_tok=2,
num_experts=8,
mamba_n_groups=1,
@@ -146,9 +148,11 @@ def __init__(
self.head_dim = self.hidden_size // self.num_attention_heads
self.is_decoder = is_decoder
self.expert_interval = expert_interval
+ self.moe_layer_start_index = moe_layer_start_index
self.moe_intermediate_size = moe_intermediate_size
self.shared_expert_intermediate_size = shared_expert_intermediate_size
self.shared_expert_gate = shared_expert_gate
+ self.moe_num_shared_experts = moe_num_shared_experts
self.num_experts_per_tok = num_experts_per_tok
self.num_experts = num_experts
self.mamba_n_groups = mamba_n_groups
diff --git a/tests/models/ernie4_5/__init__.py b/tests/models/ernie4_5/__init__.py
new file mode 100644
index 000000000000..e69de29bb2d1
diff --git a/tests/models/ernie4_5/test_modeling_ernie4_5.py b/tests/models/ernie4_5/test_modeling_ernie4_5.py
new file mode 100644
index 000000000000..1c5bffa2c6d6
--- /dev/null
+++ b/tests/models/ernie4_5/test_modeling_ernie4_5.py
@@ -0,0 +1,122 @@
+# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Testing suite for the PyTorch Ernie4.5 model."""
+
+import unittest
+
+from transformers import is_torch_available
+from transformers.testing_utils import (
+ Expectations,
+ cleanup,
+ require_torch,
+ require_torch_accelerator,
+ slow,
+ torch_device,
+)
+
+from ...causal_lm_tester import CausalLMModelTest, CausalLMModelTester
+
+
+if is_torch_available():
+ import torch
+
+ from transformers import (
+ AutoTokenizer,
+ Ernie4_5Config,
+ Ernie4_5ForCausalLM,
+ Ernie4_5Model,
+ )
+ from transformers.models.ernie4_5.modeling_ernie4_5 import Ernie4_5RotaryEmbedding
+
+
+class Ernie4_5ModelTester(CausalLMModelTester):
+ if is_torch_available():
+ config_class = Ernie4_5Config
+ base_model_class = Ernie4_5Model
+ causal_lm_class = Ernie4_5ForCausalLM
+
+
+@require_torch
+class Ernie4_5ModelTest(CausalLMModelTest, unittest.TestCase):
+ all_model_classes = (
+ (
+ Ernie4_5Model,
+ Ernie4_5ForCausalLM,
+ )
+ if is_torch_available()
+ else ()
+ )
+ pipeline_model_mapping = (
+ {
+ "feature-extraction": Ernie4_5Model,
+ "text-generation": Ernie4_5ForCausalLM,
+ }
+ if is_torch_available()
+ else {}
+ )
+ test_headmasking = False
+ test_pruning = False
+ fx_compatible = False # Broken by attention refactor cc @Cyrilvallez
+ model_tester_class = Ernie4_5ModelTester
+ rotary_embedding_layer = Ernie4_5RotaryEmbedding # Enables RoPE tests if set
+
+ # Need to use `0.8` instead of `0.9` for `test_cpu_offload`
+ # This is because we are hitting edge cases with the causal_mask buffer
+ model_split_percents = [0.5, 0.7, 0.8]
+
+ # used in `test_torch_compile_for_training`
+ _torch_compile_train_cls = Ernie4_5ForCausalLM if is_torch_available() else None
+
+
+@require_torch_accelerator
+class Ernie4_5IntegrationTest(unittest.TestCase):
+ def setup(self):
+ cleanup(torch_device, gc_collect=True)
+
+ def tearDown(self):
+ cleanup(torch_device, gc_collect=True)
+
+ @slow
+ def test_ernie4_5_0p3B(self):
+ """
+ An integration test for Ernie 4.5 0.3B.
+ """
+ expected_texts = Expectations(
+ {
+ ("cuda", None): "User: Hey, are you conscious? Can you talk to me?\nAssistant: Hey! I'm here to help you with whatever you need. Are you feeling a bit overwhelmed or stressed? I'm here to listen and provide support.",
+ }
+ ) # fmt: skip
+ EXPECTED_TEXT = expected_texts.get_expectation()
+
+ tokenizer = AutoTokenizer.from_pretrained("baidu/ERNIE-4.5-0.3B-PT", revision="refs/pr/3")
+ model = Ernie4_5ForCausalLM.from_pretrained(
+ "baidu/ERNIE-4.5-0.3B-PT",
+ revision="refs/pr/3",
+ device_map="auto",
+ torch_dtype=torch.bfloat16,
+ )
+
+ prompt = "Hey, are you conscious? Can you talk to me?"
+ messages = [{"role": "user", "content": prompt}]
+ text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
+ model_inputs = tokenizer([text], add_special_tokens=False, return_tensors="pt").to(model.device)
+
+ generated_ids = model.generate(
+ model_inputs.input_ids,
+ max_new_tokens=128,
+ do_sample=False,
+ )
+
+ generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True).strip("\n")
+ self.assertEqual(generated_text, EXPECTED_TEXT)
diff --git a/tests/models/ernie4_5_moe/__init__.py b/tests/models/ernie4_5_moe/__init__.py
new file mode 100644
index 000000000000..e69de29bb2d1
diff --git a/tests/models/ernie4_5_moe/test_modeling_ernie4_5_moe.py b/tests/models/ernie4_5_moe/test_modeling_ernie4_5_moe.py
new file mode 100644
index 000000000000..63fb00745c62
--- /dev/null
+++ b/tests/models/ernie4_5_moe/test_modeling_ernie4_5_moe.py
@@ -0,0 +1,199 @@
+# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Testing suite for the PyTorch Ernie4.5 MoE model."""
+
+import tempfile
+import unittest
+
+import pytest
+
+from transformers import Ernie4_5_MoEConfig, is_torch_available
+from transformers.testing_utils import (
+ cleanup,
+ is_flaky,
+ require_bitsandbytes,
+ require_flash_attn,
+ require_torch,
+ require_torch_gpu,
+ require_torch_large_accelerator,
+ require_torch_multi_accelerator,
+ slow,
+ torch_device,
+)
+
+
+if is_torch_available():
+ import torch
+
+ from transformers import (
+ AutoTokenizer,
+ Ernie4_5_MoEForCausalLM,
+ Ernie4_5_MoEModel,
+ )
+from ...causal_lm_tester import CausalLMModelTest, CausalLMModelTester
+
+
+class Ernie4_5_MoEModelTester(CausalLMModelTester):
+ config_class = Ernie4_5_MoEConfig
+ if is_torch_available():
+ base_model_class = Ernie4_5_MoEModel
+ causal_lm_class = Ernie4_5_MoEForCausalLM
+
+
+@require_torch
+class Ernie4_5_MoEModelTest(CausalLMModelTest, unittest.TestCase):
+ all_model_classes = (
+ (
+ Ernie4_5_MoEModel,
+ Ernie4_5_MoEForCausalLM,
+ )
+ if is_torch_available()
+ else ()
+ )
+ pipeline_model_mapping = (
+ {
+ "feature-extraction": Ernie4_5_MoEModel,
+ "text-generation": Ernie4_5_MoEForCausalLM,
+ }
+ if is_torch_available()
+ else {}
+ )
+
+ test_headmasking = False
+ test_pruning = False
+ test_all_params_have_gradient = False
+ model_tester_class = Ernie4_5_MoEModelTester
+
+ @require_flash_attn
+ @require_torch_gpu
+ @pytest.mark.flash_attn_test
+ @is_flaky()
+ @slow
+ def test_flash_attn_2_equivalence(self):
+ for model_class in self.all_model_classes:
+ if not model_class._supports_flash_attn_2:
+ self.skipTest(reason="Model does not support Flash Attention 2")
+
+ config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
+ model = model_class(config)
+
+ with tempfile.TemporaryDirectory() as tmpdirname:
+ model.save_pretrained(tmpdirname)
+ model_fa = model_class.from_pretrained(
+ tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
+ )
+ model_fa.to(torch_device)
+
+ model = model_class.from_pretrained(
+ tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="eager"
+ )
+ model.to(torch_device)
+
+ dummy_input = inputs_dict[model_class.main_input_name]
+ dummy_input = dummy_input.to(torch_device)
+ outputs = model(dummy_input, output_hidden_states=True)
+ outputs_fa = model_fa(dummy_input, output_hidden_states=True)
+
+ logits = outputs.hidden_states[-1]
+ logits_fa = outputs_fa.hidden_states[-1]
+
+ # higher tolerance, not sure where it stems from
+ assert torch.allclose(logits_fa, logits, atol=1e-2, rtol=1e-2)
+
+ # Ignore copy
+ def test_load_balancing_loss(self):
+ r"""
+ Let's make sure we can actually compute the loss and do a backward on it.
+ """
+ config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
+ config.num_labels = 3
+ config.num_experts = 8
+ config.expert_interval = 2
+ config.output_router_logits = True
+ input_ids = input_dict["input_ids"]
+ attention_mask = input_ids.ne(1).to(torch_device)
+ model = Ernie4_5_MoEForCausalLM(config)
+ model.to(torch_device)
+ model.eval()
+ result = model(input_ids, attention_mask=attention_mask)
+ self.assertEqual(result.router_logits[0].shape, (91, config.num_experts))
+ torch.testing.assert_close(result.aux_loss.cpu(), torch.tensor(2, dtype=torch.float32), rtol=1e-2, atol=1e-2)
+
+ # First, we make sure that adding padding tokens doesn't change the loss
+ # loss(input_ids, attention_mask=None) == loss(input_ids + padding, attention_mask=attention_mask_with_padding)
+ pad_length = 1000
+ # Add padding tokens (assume that pad_token_id=1) to input_ids
+ padding_block = torch.ones(input_ids.shape[0], pad_length, dtype=torch.int32).to(torch_device)
+ padded_input_ids = torch.cat((padding_block, input_ids), dim=1) # this is to simulate padding to the left
+ padded_attention_mask = padded_input_ids.ne(1).to(torch_device)
+
+ padded_result = model(padded_input_ids, attention_mask=padded_attention_mask)
+ torch.testing.assert_close(result.aux_loss.cpu(), padded_result.aux_loss.cpu(), rtol=1e-4, atol=1e-4)
+
+ # We make sure that the loss of including padding tokens != the loss without padding tokens
+ # if attention_mask=None --> we don't exclude padding tokens
+ include_padding_result = model(padded_input_ids, attention_mask=None)
+
+ # This is to mimic torch.testing.assert_not_close
+ self.assertNotAlmostEqual(include_padding_result.aux_loss.item(), result.aux_loss.item())
+
+
+# Run on runners with larger accelerators (for example A10 instead of T4) with a lot of CPU RAM (e.g. g5-12xlarge)
+@require_torch_multi_accelerator
+@require_torch_large_accelerator
+@require_torch
+class Ernie4_5_MoEIntegrationTest(unittest.TestCase):
+ @classmethod
+ def setUpClass(cls):
+ cls.model = None
+
+ @classmethod
+ def tearDownClass(cls):
+ del cls.model
+ cleanup(torch_device, gc_collect=True)
+
+ def tearDown(self):
+ cleanup(torch_device, gc_collect=True)
+
+ @classmethod
+ def get_model(cls):
+ if cls.model is None:
+ cls.model = Ernie4_5_MoEForCausalLM.from_pretrained(
+ "baidu/ERNIE-4.5-21B-A3B-PT",
+ revision="refs/pr/11",
+ device_map="auto",
+ load_in_4bit=True,
+ )
+
+ return cls.model
+
+ @require_bitsandbytes
+ @slow
+ def test_model_21b_a3b_generation(self):
+ EXPECTED_TEXT_COMPLETION = "User: Hey, are you conscious? Can you talk to me?\nAssistant: Yes, I am conscious and I can communicate with you. How can I assist you with any questions or information you need?" # fmt: skip
+
+ model = self.get_model()
+ tokenizer = AutoTokenizer.from_pretrained("baidu/ERNIE-4.5-21B-A3B-PT", revision="refs/pr/11")
+ prompt = "Hey, are you conscious? Can you talk to me?"
+ messages = [{"role": "user", "content": prompt}]
+ text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
+ model_inputs = tokenizer([text], add_special_tokens=False, return_tensors="pt").to(model.device)
+
+ generated_ids = model.generate(
+ model_inputs.input_ids,
+ max_new_tokens=32,
+ do_sample=False,
+ )
+ text = tokenizer.decode(generated_ids[0], skip_special_tokens=True).strip("\n")
+ self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
diff --git a/tests/test_modeling_common.py b/tests/test_modeling_common.py
index 5a24bcecee1e..5589c8cc0d61 100755
--- a/tests/test_modeling_common.py
+++ b/tests/test_modeling_common.py
@@ -258,10 +258,10 @@ def _test_eager_matches_sdpa_inference(
model_sdpa = model_class.from_pretrained(**model_from_pretrained_kwargs, attn_implementation="sdpa")
except ValueError:
model_sdpa = model_class.from_pretrained(**model_from_pretrained_kwargs)
- model_sdpa = model_sdpa.eval().to(torch_device, dtype=torch_dtype)
+ model_sdpa = model_sdpa.eval().to(torch_device)
model_eager = model_class.from_pretrained(**model_from_pretrained_kwargs, attn_implementation="eager")
- model_eager = model_eager.eval().to(torch_device, dtype=torch_dtype)
+ model_eager = model_eager.eval().to(torch_device)
set_model_for_less_flaky_test(model_eager)
set_model_for_less_flaky_test(model_sdpa)
diff --git a/utils/check_config_attributes.py b/utils/check_config_attributes.py
index 2307b962044f..08e3f26245a3 100644
--- a/utils/check_config_attributes.py
+++ b/utils/check_config_attributes.py
@@ -32,6 +32,8 @@
CONFIG_MAPPING = transformers.models.auto.configuration_auto.CONFIG_MAPPING
SPECIAL_CASES_TO_ALLOW = {
+ "Ernie4_5Config": ["tie_word_embeddings"],
+ "Ernie4_5_MoEConfig": ["tie_word_embeddings"],
"Lfm2Config": ["full_attn_idxs", "tie_word_embeddings"],
# used internally during generation to provide the custom logit processors with their necessary information
"DiaConfig": [