|
| 1 | +/* |
| 2 | + * #%L |
| 3 | + * ImgLib2: a general-purpose, multidimensional image processing library. |
| 4 | + * %% |
| 5 | + * Copyright (C) 2009 - 2016 Tobias Pietzsch, Stephan Preibisch, Stephan Saalfeld, |
| 6 | + * John Bogovic, Albert Cardona, Barry DeZonia, Christian Dietz, Jan Funke, |
| 7 | + * Aivar Grislis, Jonathan Hale, Grant Harris, Stefan Helfrich, Mark Hiner, |
| 8 | + * Martin Horn, Steffen Jaensch, Lee Kamentsky, Larry Lindsey, Melissa Linkert, |
| 9 | + * Mark Longair, Brian Northan, Nick Perry, Curtis Rueden, Johannes Schindelin, |
| 10 | + * Jean-Yves Tinevez and Michael Zinsmaier. |
| 11 | + * %% |
| 12 | + * Redistribution and use in source and binary forms, with or without |
| 13 | + * modification, are permitted provided that the following conditions are met: |
| 14 | + * |
| 15 | + * 1. Redistributions of source code must retain the above copyright notice, |
| 16 | + * this list of conditions and the following disclaimer. |
| 17 | + * 2. Redistributions in binary form must reproduce the above copyright notice, |
| 18 | + * this list of conditions and the following disclaimer in the documentation |
| 19 | + * and/or other materials provided with the distribution. |
| 20 | + * |
| 21 | + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 22 | + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 23 | + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 24 | + * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE |
| 25 | + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 26 | + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 27 | + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 28 | + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 29 | + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 30 | + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 31 | + * POSSIBILITY OF SUCH DAMAGE. |
| 32 | + * #L% |
| 33 | + */ |
| 34 | +package net.imglib2.algorithm.hough; |
| 35 | + |
| 36 | +import java.util.ArrayList; |
| 37 | + |
| 38 | +import net.imglib2.Cursor; |
| 39 | +import net.imglib2.img.Img; |
| 40 | +import net.imglib2.img.ImgFactory; |
| 41 | +import net.imglib2.type.Type; |
| 42 | +import net.imglib2.type.numeric.RealType; |
| 43 | +import net.imglib2.type.NativeType; |
| 44 | +import net.imglib2.type.numeric.integer.IntType; |
| 45 | +import net.imglib2.type.numeric.integer.LongType; |
| 46 | +import net.imglib2.type.numeric.integer.ShortType; |
| 47 | + |
| 48 | +/** |
| 49 | + * A class that extends {@link HoughTransform} to handle Hough Line voting over an edge map. |
| 50 | + * This implementation uses a threshold to determine whether a pixel at a certain point is |
| 51 | + * an edge or not. Comparison is strictly-greater-than. This implementation is fairly dumb |
| 52 | + * in that it does not take gradients into account. The threshold used is the default value |
| 53 | + * returned by calling the constructor for the {@link Type} of the input {@link Img}. |
| 54 | + * |
| 55 | + * Vote space here has two dimensions: rho and theta. Theta is measured in radians |
| 56 | + * [-pi/2 pi/2), rho is measured in [-rhoMax, rhoMax). |
| 57 | + * |
| 58 | + * Lines are modeled as |
| 59 | + * |
| 60 | + * l(t) = | x | = rho * | cos(theta) | + t * | sin(theta) | |
| 61 | + * | y | | -sin(theta) | | cos(theta) | |
| 62 | + * |
| 63 | + * In other words, rho represents the signed minimum distance from the image origin to the line, |
| 64 | + * and theta indicates the angle between the row-axis and the minimum offset vector. |
| 65 | + * |
| 66 | + * For a given point, then, votes are placed along the curve |
| 67 | + * |
| 68 | + * rho = y * sin(theta) + x * cos(theta) |
| 69 | + * @Override |
| 70 | + * |
| 71 | + */ |
| 72 | +public class HoughLineTransform<S extends RealType<S> & NativeType<S>, T extends Type<T> & Comparable<T>> |
| 73 | + extends HoughTransform<S, T> { |
| 74 | + public static final int DEFAULT_THETA = 180; |
| 75 | + public final double dTheta; |
| 76 | + public final double dRho; |
| 77 | + private final T threshold; |
| 78 | + private final int nRho; |
| 79 | + private final int nTheta; |
| 80 | + private final double[] rho; |
| 81 | + private final double[] theta; |
| 82 | + private ArrayList<double[]> rtPeaks; |
| 83 | + |
| 84 | + final private static float computeLength(final long[] position) { |
| 85 | + float dist = 0; |
| 86 | + |
| 87 | + for (int d = 0; d < position.length; ++d) { |
| 88 | + final long pos = position[d]; |
| 89 | + |
| 90 | + dist += pos * pos; |
| 91 | + } |
| 92 | + |
| 93 | + return (float) Math.sqrt(dist); |
| 94 | + } |
| 95 | + |
| 96 | + /** |
| 97 | + * Calculates a default number of rho bins, which corresponds to a resolution of one pixel. |
| 98 | + * |
| 99 | + * @param inputImage the {@link Img} in question. |
| 100 | + * @return default number of rho bins. |
| 101 | + */ |
| 102 | + public static int defaultRho(final Img<?> inputImage) { |
| 103 | + final long[] dims = new long[inputImage.numDimensions()]; |
| 104 | + inputImage.dimensions(dims); |
| 105 | + return (int) (2 * computeLength(dims)); |
| 106 | + } |
| 107 | + |
| 108 | + |
| 109 | + /** |
| 110 | + * Creates a default {@link HoughLineTransform} with {@ShortType} vote space. |
| 111 | + * |
| 112 | + * @param <T> the {@link Type} of the {@link Img} in question. |
| 113 | + * @param inputImage the {@link Img} to perform the Hough Line Transform against. |
| 114 | + * @return a default {@link HoughLineTransform} with {@link IntType} vote space. |
| 115 | + */ |
| 116 | + public static <T extends Type<T> & Comparable<T>> HoughLineTransform<ShortType, T> shortHoughLine(final Img<T> inputImage) { |
| 117 | + return new HoughLineTransform<>(inputImage, new ShortType()); |
| 118 | + } |
| 119 | + |
| 120 | + /** |
| 121 | + * Creates a default {@link HoughLineTransform} with {@IntType} vote space. |
| 122 | + * |
| 123 | + * @param <T> the {@link Type} of the {@link Img} in question. |
| 124 | + * @param inputImage the {@link Img} to perform the Hough Line Transform against. |
| 125 | + * @return a default {@link HoughLineTransform} with {@link IntType} vote space. |
| 126 | + */ |
| 127 | + public static <T extends Type<T> & Comparable<T>> HoughLineTransform<IntType, T> integerHoughLine(final Img<T> inputImage) { |
| 128 | + return new HoughLineTransform<>(inputImage, new IntType()); |
| 129 | + } |
| 130 | + |
| 131 | + /** |
| 132 | + * Creates a default {@link HoughLineTransform} with {@link LongType} vote space. |
| 133 | + * |
| 134 | + * @param <T> the {@link Type} of the {@link Img} in question. |
| 135 | + * @param inputImage the {@link Img} to perform the Hough Line Transform against. |
| 136 | + * @return a default {@link HoughLineTransform} with {@link LongType} vote space. |
| 137 | + * <p> |
| 138 | + * Use this for voting against large images, but reasonably small vote space. If you need a big |
| 139 | + * voting space, it would be better to create a {@link HoughLineTransform} instantiated with an |
| 140 | + * {@link ImgFactory} capable of handling it. |
| 141 | + */ |
| 142 | + public static <T extends Type<T> & Comparable<T>> HoughLineTransform<LongType, T> longHoughLine(final Img<T> inputImage) { |
| 143 | + return new HoughLineTransform<>(inputImage, new LongType()); |
| 144 | + } |
| 145 | + |
| 146 | + /** |
| 147 | + * Create a {@link HoughLineTransform} to operate against a given {@link Img}, with |
| 148 | + * a specific {@link Type} of vote space. |
| 149 | + * Defaults are used for rho- and theta-resolution. |
| 150 | + * |
| 151 | + * @param inputImage the {@link Img} to operate against. |
| 152 | + * @param type the {@link Type} for the vote space. |
| 153 | + */ |
| 154 | + public HoughLineTransform(final Img<T> inputImage, final S type) { |
| 155 | + this(inputImage, DEFAULT_THETA, type); |
| 156 | + } |
| 157 | + |
| 158 | + /** |
| 159 | + * Create a {@link HoughLineTransform} to operate against a given {@link Img}, with |
| 160 | + * a specific {@link Type} of vote space and theta-resolution. |
| 161 | + * Rho-resolution is set to the default. |
| 162 | + * |
| 163 | + * @param inputImage the {@link Img} to operate against. |
| 164 | + * @param theta the number of bins for theta-resolution. |
| 165 | + * @param type the {@link Type} for the vote space. |
| 166 | + */ |
| 167 | + public HoughLineTransform(final Img<T> inputImage, final int theta, final S type) { |
| 168 | + this(inputImage, defaultRho(inputImage), theta, type); |
| 169 | + } |
| 170 | + |
| 171 | + /** |
| 172 | + * Create a {@link HoughLineTransform} to operate against a given {@link Img}, with |
| 173 | + * a specific {@link Type} of vote space and rho- and theta-resolution. |
| 174 | + * |
| 175 | + * @param inputImage the {@link Img} to operate against. |
| 176 | + * @param inNRho the number of bins for rho resolution. |
| 177 | + * @param inNTheta the number of bins for theta resolution. |
| 178 | + * @param type the {@link Type} for the vote space. |
| 179 | + */ |
| 180 | + public HoughLineTransform(final Img<T> inputImage, final int inNRho, final int inNTheta, final S type) { |
| 181 | + // Call the base constructor |
| 182 | + super(inputImage, new long[]{inNRho, inNTheta}, type); |
| 183 | + |
| 184 | + // Theta by definition is in [0..pi]. |
| 185 | + dTheta = Math.PI / (double) inNTheta; |
| 186 | + |
| 187 | + // The furthest a point can be from the origin is the length calculated from the dimensions of the Image. |
| 188 | + final long[] dims = new long[inputImage.numDimensions()]; |
| 189 | + inputImage.dimensions(dims); |
| 190 | + dRho = 2 * computeLength(dims) / (double) inNRho; |
| 191 | + threshold = inputImage.firstElement().createVariable(); |
| 192 | + nRho = inNRho; |
| 193 | + nTheta = inNTheta; |
| 194 | + theta = new double[inNTheta]; |
| 195 | + rho = new double[inNRho]; |
| 196 | + rtPeaks = null; |
| 197 | + } |
| 198 | + |
| 199 | + /** |
| 200 | + * Create a {@link HoughLineTransform} to operate against a given {@link Img}, with |
| 201 | + * a specific {@link ImgFactory} for the vote space, and specific rho- and theta-resolution. |
| 202 | + * |
| 203 | + * @param inputImage the {@link Img} to operate against. |
| 204 | + * @param factory the {@link ImgFactory} object. |
| 205 | + * @param inNRho the number of bisn for rho resolution. |
| 206 | + * @param inNTheta the number of bins for theta resolution. |
| 207 | + * @param type the {@link Type} for the vote space. |
| 208 | + */ |
| 209 | + public HoughLineTransform(final Img<T> inputImage, final ImgFactory<S> factory, final S type, |
| 210 | + final int inNRho, final int inNTheta) { |
| 211 | + // Call the base constructor |
| 212 | + super(inputImage, new long[]{inNRho, inNTheta}, factory, type); |
| 213 | + |
| 214 | + dTheta = Math.PI / (double) inNTheta; |
| 215 | + |
| 216 | + final long[] dims = new long[inputImage.numDimensions()]; |
| 217 | + inputImage.dimensions(dims); |
| 218 | + dRho = 2 * computeLength(dims) / (double) inNRho; |
| 219 | + threshold = inputImage.firstElement().createVariable(); |
| 220 | + nRho = inNRho; |
| 221 | + nTheta = inNTheta; |
| 222 | + theta = new double[inNTheta]; |
| 223 | + rho = new double[inNRho]; |
| 224 | + rtPeaks = null; |
| 225 | + } |
| 226 | + |
| 227 | + public void setThreshold(final T inThreshold) { |
| 228 | + threshold.set(inThreshold); |
| 229 | + } |
| 230 | + |
| 231 | + @Override |
| 232 | + public boolean process() { |
| 233 | + final Cursor<T> imageCursor = getImage().localizingCursor(); |
| 234 | + final long[] position = new long[getImage().numDimensions()]; |
| 235 | + final double minTheta = -Math.PI / 2; |
| 236 | + |
| 237 | + final long[] dims = new long[getImage().numDimensions()]; |
| 238 | + getImage().dimensions(dims); |
| 239 | + final double minRho = -computeLength(dims); |
| 240 | + |
| 241 | + final long sTime = System.currentTimeMillis(); |
| 242 | + boolean success; |
| 243 | + |
| 244 | + for (int t = 0; t < nTheta; ++t) { |
| 245 | + theta[t] = dTheta * (double) t + minTheta; |
| 246 | + } |
| 247 | + |
| 248 | + for (int r = 0; r < nRho; ++r) { |
| 249 | + rho[r] = dRho * (double) r + minRho; |
| 250 | + } |
| 251 | + |
| 252 | + while (imageCursor.hasNext()) { |
| 253 | + double fRho; |
| 254 | + int r; |
| 255 | + int[] voteLoc = new int[2]; |
| 256 | + |
| 257 | + imageCursor.fwd(); |
| 258 | + imageCursor.localize(position); |
| 259 | + |
| 260 | + for (int t = 0; t < nTheta; ++t) { |
| 261 | + if (imageCursor.get().compareTo(threshold) > 0) { |
| 262 | + fRho = Math.cos(theta[t]) * (double) position[0] + Math.sin(theta[t]) * (double) position[1]; |
| 263 | + r = Math.round((float) ((fRho - minRho) / dRho)); |
| 264 | + voteLoc[0] = r; |
| 265 | + voteLoc[1] = t; |
| 266 | + // place vote |
| 267 | + super.placeVote(voteLoc); |
| 268 | + } |
| 269 | + } |
| 270 | + } |
| 271 | + // pick peaks |
| 272 | + success = super.pickPeaks(); |
| 273 | + super.pTime = System.currentTimeMillis() - sTime; |
| 274 | + return success; |
| 275 | + } |
| 276 | + |
| 277 | + public ArrayList<double[]> getTranslatedPeakList() { |
| 278 | + if (rtPeaks == null) { |
| 279 | + ArrayList<long[]> peaks = getPeakList(); |
| 280 | + rtPeaks = new ArrayList<>(peaks.size()); |
| 281 | + for (long[] irt : peaks) { |
| 282 | + double[] rt = new double[2]; |
| 283 | + rt[0] = rho[(int) irt[0]]; |
| 284 | + rt[1] = theta[(int) irt[1]]; |
| 285 | + rtPeaks.add(rt); |
| 286 | + } |
| 287 | + } |
| 288 | + |
| 289 | + return rtPeaks; |
| 290 | + } |
| 291 | + |
| 292 | +} |
0 commit comments