|
| 1 | +/*************************************************************************************************** |
| 2 | + * Copyright (c) 2025 - 2025 Codeplay Software Ltd. All rights reserved. |
| 3 | + * SPDX-License-Identifier: BSD-3-Clause |
| 4 | + * |
| 5 | + * Redistribution and use in source and binary forms, with or without |
| 6 | + * modification, are permitted provided that the following conditions are met: |
| 7 | + * |
| 8 | + * 1. Redistributions of source code must retain the above copyright notice, this |
| 9 | + * list of conditions and the following disclaimer. |
| 10 | + * |
| 11 | + * 2. Redistributions in binary form must reproduce the above copyright notice, |
| 12 | + * this list of conditions and the following disclaimer in the documentation |
| 13 | + * and/or other materials provided with the distribution. |
| 14 | + * |
| 15 | + * 3. Neither the name of the copyright holder nor the names of its |
| 16 | + * contributors may be used to endorse or promote products derived from |
| 17 | + * this software without specific prior written permission. |
| 18 | + * |
| 19 | + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 20 | + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 21 | + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 22 | + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
| 23 | + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 24 | + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| 25 | + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| 26 | + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| 27 | + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 28 | + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 29 | + * |
| 30 | + **************************************************************************************************/ |
| 31 | +/*! \file |
| 32 | + \brief CUTLASS Intel BMG Grouped Gemm with mixed input types |
| 33 | +
|
| 34 | + This example demonstrates how to dispatch a mixed precision GEMM (int8 and bfloat16 | half_t) on BMG, with |
| 35 | + optional dequantization. The GemmMode enum describes the 3 modes of operation: |
| 36 | +
|
| 37 | + - ConvertOnly: Narrower type is simply converted to the wider type before MMA |
| 38 | + - ConvertAndScale: Narrower type is converted to wider type, then scaled |
| 39 | + - ConvertAndScaleWithZeroPoint: Narrower type is converted to wider type, scaled and offset |
| 40 | +
|
| 41 | + - Requirements: |
| 42 | + - dequantization group size (options.g) must be multiple of k-block size |
| 43 | + - scales & zeros must be MN-major |
| 44 | +
|
| 45 | + The MMA operation itself takes bfloat16 input for both A and B, and so the narrower type is first |
| 46 | + upcasted (inside the mainloop) prior to being passed into the MMA atom. |
| 47 | +
|
| 48 | + Verification for this example is performed against a standard reference GEMM in the wider type. |
| 49 | + The narrow-type input data are upcasted (or dequantized) externally before executing the |
| 50 | + reference GEMM. |
| 51 | +
|
| 52 | + Note: due to a bug in the IGC compiler, it's currently necessary to build this example with the |
| 53 | + following environment variable set (CMake handles this for AOT compilation; for JIT, please set |
| 54 | + this in your environment): |
| 55 | +
|
| 56 | + export IGC_allowDecompose2DBlockFuncs=0 |
| 57 | +
|
| 58 | + To build & run this example (from your build dir): |
| 59 | +
|
| 60 | + $ ninja 10_bmg_grouped_gemm_bf16_s8 |
| 61 | + $ ./examples/sycl/10_bmg_grouped_gemm_mixed_dtype/10_bmg_grouped_gemm_bf16_s8 |
| 62 | + $ ninja 10_bmg_grouped_gemm_f16_s8_tensorwise |
| 63 | + $ ./examples/sycl/10_bmg_grouped_gemm_mixed_dtype/10_bmg_grouped_gemm_f16_s8_tensorwise |
| 64 | +
|
| 65 | + Call with `--help` for information about available options |
| 66 | +*/ |
| 67 | + |
| 68 | +#include "bmg_grouped_gemm_mixed_dtype_runner.hpp" |
| 69 | + |
| 70 | +/////////////////////////////////////////////////////////////////////////////////////////////////// |
| 71 | + |
| 72 | +int main(int argc, const char** argv) |
| 73 | +{ |
| 74 | + // |
| 75 | + // Parse options |
| 76 | + // |
| 77 | + |
| 78 | + Options options; |
| 79 | + |
| 80 | + options.parse(argc, argv); |
| 81 | + |
| 82 | + if (options.help) { |
| 83 | + options.print_usage(std::cout) << std::endl; |
| 84 | + return 0; |
| 85 | + } |
| 86 | + |
| 87 | + if (options.error) { |
| 88 | + std::cerr << "Aborting execution." << std::endl; |
| 89 | + return -1; |
| 90 | + } |
| 91 | + |
| 92 | + // |
| 93 | + // Run examples |
| 94 | + // |
| 95 | + |
| 96 | + // The KernelHardwareInfo struct holds the number of EUs on the GPU with a given device ID. This |
| 97 | + // information is used by the underlying kernel. |
| 98 | + cutlass::KernelHardwareInfo hw_info; |
| 99 | + |
| 100 | + // Change device_id to another value if you are running on a machine with multiple GPUs and wish |
| 101 | + // to use a GPU other than that with device ID 0. |
| 102 | + hw_info.sm_count = cutlass::KernelHardwareInfo::query_device_multiprocessor_count(hw_info.device_id); |
| 103 | + |
| 104 | + // The code section below describes datatype for input, output matrices and computation between |
| 105 | + // elements in input matrices. |
| 106 | + using ElementAccumulator = float; // <- data type of accumulator |
| 107 | + using ElementComputeEpilogue = float; // <- data type of epilogue operations |
| 108 | + using ElementInputA = cutlass::QUANT_TYPE; // <- data type of elements in input matrix A |
| 109 | + using ElementInputB = cutlass::MMA_TYPE; // <- data type of elements in input matrix B |
| 110 | + using ElementOutput = float; // <- data type of elements in output matrix D |
| 111 | + |
| 112 | + using LayoutA = cutlass::layout::RowMajor; |
| 113 | + using LayoutB = cutlass::layout::RowMajor; |
| 114 | + using LayoutC = cutlass::layout::RowMajor; |
| 115 | + using LayoutD = cutlass::layout::RowMajor; |
| 116 | + |
| 117 | + using ElementZero = cutlass::MMA_TYPE; |
| 118 | + using ElementScale = cutlass::MMA_TYPE; |
| 119 | + using StrideScale = cute::Stride<_1, int64_t, int64_t>; |
| 120 | + using StrideZero = StrideScale; |
| 121 | + |
| 122 | + using GmemTiledCopyA = XE_2D_U8x32x32_LD_N; // U8 (1-byte) block copy for A (narrower type) |
| 123 | + using GmemTiledCopyB = XE_2D_U16x32x32_LD_V; // U16 (2-byte) block copy for B (wider type) |
| 124 | + static_assert(sizeof(ElementInputA) == 1, "ElementA width must match GmemTiledCopyA U8"); |
| 125 | + |
| 126 | + // Workgroup-level tile |
| 127 | + using TileShape = Shape<_256, _256, _32>; |
| 128 | + |
| 129 | + // Although this is a mixed type example, the actual MMA accepts bf16 input for both A and B: |
| 130 | + using TiledMma = // M=8,N=16,K=16, D=f32,A=bf16,B=bf16,C=f32 |
| 131 | + typename TiledMMAHelper<MMA_Atom<typename helpers::MMAOp<cutlass::MMA_TYPE>::type>, Layout<TileShape>, |
| 132 | + Layout<Shape<_8, _4, _1>, Stride<_4, _1, _0>>>::TiledMMA; |
| 133 | + |
| 134 | + constexpr int PipelineStages = 3; // prefetch 3 iters of data for A and B |
| 135 | + using GEMMDispatchPolicy = cutlass::gemm::MainloopIntelXeXMX16GroupMixedPrecision<PipelineStages>; |
| 136 | + using EpilogueDispatchPolicy = cutlass::epilogue::IntelXeXMX16Group; |
| 137 | + |
| 138 | + // Default (Linear Combination) epilogue |
| 139 | + using EpilogueOp = cutlass::epilogue::fusion::LinearCombination<ElementOutput, ElementComputeEpilogue, |
| 140 | + ElementAccumulator, ElementAccumulator, cutlass::FloatRoundStyle::round_to_nearest>; |
| 141 | + |
| 142 | + using FusionCallBacks = cutlass::epilogue::fusion::FusionCallbacks<EpilogueDispatchPolicy, EpilogueOp, TileShape, |
| 143 | + decltype(tile_shape(TiledMma()))>; |
| 144 | + using CollectiveEpilogue = cutlass::epilogue::collective::CollectiveEpilogue< |
| 145 | + EpilogueDispatchPolicy, |
| 146 | + TileShape, |
| 147 | + ElementAccumulator, |
| 148 | + cutlass::gemm::TagToStrideC_t<LayoutC*>, |
| 149 | + ElementOutput, |
| 150 | + cutlass::gemm::TagToStrideC_t<LayoutD*>, |
| 151 | + FusionCallBacks, |
| 152 | + XE_2D_U32x8x16_LD_N, |
| 153 | + void, void, |
| 154 | + XE_2D_U32x8x16_ST_N, |
| 155 | + void, void>; |
| 156 | + |
| 157 | + // Use the helpers to avoid template arg repetition |
| 158 | + using GemmAdapterBuilder = helpers::MixedGemmUniversalAdapterBuilder<ProblemShape, CollectiveEpilogue>; |
| 159 | + |
| 160 | + using MixedBuilderQuantA = |
| 161 | + helpers::MixedCollectiveMmaBuilder<GEMMDispatchPolicy, TileShape, |
| 162 | + cutlass::gemm::TagToStrideA_t<LayoutA*>, |
| 163 | + cutlass::gemm::TagToStrideB_t<LayoutB*>, |
| 164 | + TiledMma, GmemTiledCopyA, GmemTiledCopyB>; |
| 165 | + |
| 166 | + using MixedBuilderQuantB = |
| 167 | + helpers::MixedCollectiveMmaBuilder<GEMMDispatchPolicy, TileShape, |
| 168 | + cutlass::gemm::TagToStrideA_t<LayoutA*>, |
| 169 | + cutlass::gemm::TagToStrideB_t<LayoutB*>, |
| 170 | + TiledMma, GmemTiledCopyB, GmemTiledCopyA>; |
| 171 | + |
| 172 | + // A-narrow Mainloop & GemmUniversalAdapter |
| 173 | + using MainloopAConvertOnly = |
| 174 | + MixedBuilderQuantA::CollectiveMma<cute::tuple<ElementInputA>, |
| 175 | + ElementInputB>; |
| 176 | + using GemmAConvertOnly = |
| 177 | + GemmAdapterBuilder::GemmUniversalAdapter<MainloopAConvertOnly>; |
| 178 | + |
| 179 | + using MainloopAConvertAndScale = MixedBuilderQuantA::CollectiveMma< |
| 180 | + cute::tuple<ElementInputA, ElementScale, StrideScale*>, ElementInputB>; |
| 181 | + using GemmAConvertAndScale = |
| 182 | + GemmAdapterBuilder::GemmUniversalAdapter<MainloopAConvertAndScale>; |
| 183 | + |
| 184 | + using MainloopAConvertAndScaleWithZeroPoint = |
| 185 | + MixedBuilderQuantA::CollectiveMma< |
| 186 | + cute::tuple<ElementInputA, ElementScale, StrideScale*, ElementZero, StrideZero*>, ElementInputB>; |
| 187 | + using GemmAConvertAndScaleWithZeroPoint = |
| 188 | + GemmAdapterBuilder::GemmUniversalAdapter< |
| 189 | + MainloopAConvertAndScaleWithZeroPoint>; |
| 190 | + |
| 191 | + // B-narrow Mainloop & GemmUniversalAdapter |
| 192 | + using MainloopBConvertOnly = |
| 193 | + MixedBuilderQuantB::CollectiveMma<ElementInputB, |
| 194 | + cute::tuple<ElementInputA>>; |
| 195 | + using GemmBConvertOnly = |
| 196 | + GemmAdapterBuilder::GemmUniversalAdapter<MainloopBConvertOnly>; |
| 197 | + |
| 198 | + using MainloopBConvertAndScale = MixedBuilderQuantB::CollectiveMma< |
| 199 | + ElementInputB, cute::tuple<ElementInputA, ElementScale, StrideScale*>>; |
| 200 | + using GemmBConvertAndScale = |
| 201 | + GemmAdapterBuilder::GemmUniversalAdapter<MainloopBConvertAndScale>; |
| 202 | + |
| 203 | + using MainloopBConvertAndScaleWithZeroPoint = |
| 204 | + MixedBuilderQuantB::CollectiveMma< |
| 205 | + ElementInputB, cute::tuple<ElementInputA, ElementScale, StrideScale*, ElementZero, StrideZero*>>; |
| 206 | + using GemmBConvertAndScaleWithZeroPoint = |
| 207 | + GemmAdapterBuilder::GemmUniversalAdapter< |
| 208 | + MainloopBConvertAndScaleWithZeroPoint>; |
| 209 | + |
| 210 | + if(options.a_narrower){ |
| 211 | + std::cout << "Setting A as narrower type" << std::endl; |
| 212 | + if(options.mode == GemmMode::ConvertOnly) { |
| 213 | + std::cout << "Running in ConvertOnly mode." << std::endl; |
| 214 | + CUTLASS_CHECK(ExampleRunner<GemmAConvertOnly>{}.run(options, hw_info)); |
| 215 | + } else if(options.mode == GemmMode::ConvertAndScale){ |
| 216 | + std::cout << "Running in ConvertAndScale mode." << std::endl; |
| 217 | + CUTLASS_CHECK(ExampleRunner<GemmAConvertAndScale>{}.run(options, hw_info)); |
| 218 | + } else { |
| 219 | + std::cout << "Running in ConvertAndScaleWithZeroPoint mode." << std::endl; |
| 220 | + CUTLASS_CHECK(ExampleRunner<GemmAConvertAndScaleWithZeroPoint>{}.run(options, hw_info)); |
| 221 | + } |
| 222 | + } else { |
| 223 | + std::cout << "Setting B as narrower type" << std::endl; |
| 224 | + if(options.mode == GemmMode::ConvertOnly) { |
| 225 | + std::cout << "Running in ConvertOnly mode." << std::endl; |
| 226 | + CUTLASS_CHECK(ExampleRunner<GemmBConvertOnly>{}.run(options, hw_info)); |
| 227 | + } else if(options.mode == GemmMode::ConvertAndScale){ |
| 228 | + std::cout << "Running in ConvertAndScale mode." << std::endl; |
| 229 | + CUTLASS_CHECK(ExampleRunner<GemmBConvertAndScale>{}.run(options, hw_info)); |
| 230 | + } else { |
| 231 | + std::cout << "Running in ConvertAndScaleWithZeroPoint mode." << std::endl; |
| 232 | + CUTLASS_CHECK(ExampleRunner<GemmBConvertAndScaleWithZeroPoint>{}.run(options, hw_info)); |
| 233 | + } |
| 234 | + } |
| 235 | + |
| 236 | + return 0; |
| 237 | +} |
0 commit comments