@@ -135274,13 +135274,25 @@ Ordering on reals (cont.)
135274135274      ( cr wcel cc0 wne cdiv co redivcl syl3anc ) ABGHCGHCIJBCKLGHDEFBCMN $.
135275135275  $}
135276135276
135277+   ${
135278+     subrecd.1 $e |- ( ph -> A e. CC ) $.
135279+     subrecd.2 $e |- ( ph -> B e. CC ) $.
135280+     subrecd.3 $e |- ( ph -> A =/= 0 ) $.
135281+     subrecd.4 $e |- ( ph -> B =/= 0 ) $.
135282+     $( Subtraction of reciprocals.  (Contributed by Scott Fenton,
135283+        9-Jan-2017.) $)
135284+     subrecd $p |- ( ph ->
135285+       ( ( 1 / A ) - ( 1 / B ) ) = ( ( B - A ) / ( A x. B ) ) ) $=
135286+       ( c1 cdiv co cmin cmul 1cnd divsubdivd mullidd oveq12d oveq1d eqtrd ) AHB
135287+       IJHCIJKJHCLJZHBLJZKJZBCLJZIJCBKJZUBIJAHBHCAMZDUDEFGNAUAUCUBIASCTBKACEOABD
135288+       OPQR $.
135289+   $}
135290+ 
135277135291  $( Subtraction of reciprocals.  (Contributed by Scott Fenton, 9-Jul-2015.) $)
135278135292  subrec $p |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) ->
135279135293    ( ( 1 / A ) - ( 1 / B ) ) = ( ( B - A ) / ( A x. B ) ) ) $=
135280-     ( cc wcel cc0 wne wa c1 cdiv cmin cmul 1cnd simpll simprl simplr divsubdivd
135281-     co simprr mullidd oveq12d oveq1d eqtrd ) ACDZAEFZGZBCDZBEFZGZGZHAIQHBIQJQHB
135282-     KQZHAKQZJQZABKQZIQBAJQZUMIQUIHAHBUILZUCUDUHMZUOUEUFUGNZUCUDUHOUEUFUGRPUIULU
135283-     NUMIUIUJBUKAJUIBUQSUIAUPSTUAUB $.
135294+     ( cc wcel cc0 wne wa simpll simprl simplr simprr subrecd ) ACDZAEFZGZBCDZBE
135295+     FZGZGABMNRHOPQIMNRJOPQKL $.
135284135296
135285135297  ${
135286135298    subreci.1 $e |- A e. CC $.
@@ -135294,19 +135306,6 @@ Ordering on reals (cont.)
135294135306      LMKBLMNMBANMABOMLMPCEDFABQR $.
135295135307  $}
135296135308
135297-   ${
135298-     subrecd.1 $e |- ( ph -> A e. CC ) $.
135299-     subrecd.2 $e |- ( ph -> B e. CC ) $.
135300-     subrecd.3 $e |- ( ph -> A =/= 0 ) $.
135301-     subrecd.4 $e |- ( ph -> B =/= 0 ) $.
135302-     $( Subtraction of reciprocals.  (Contributed by Scott Fenton,
135303-        9-Jan-2017.) $)
135304-     subrecd $p |- ( ph ->
135305-       ( ( 1 / A ) - ( 1 / B ) ) = ( ( B - A ) / ( A x. B ) ) ) $=
135306-       ( cc wcel cc0 wne c1 cdiv co cmin cmul wceq subrec syl22anc ) ABHIBJKCHIC
135307-       JKLBMNLCMNONCBONBCPNMNQDFEGBCRS $.
135308-   $}
135309- 
135310135309  ${
135311135310    mvllmuld.1 $e |- ( ph -> A e. CC ) $.
135312135311    mvllmuld.2 $e |- ( ph -> B e. CC ) $.
@@ -138118,7 +138117,7 @@ of the complex number axiom system (see ~ df-0 and ~ df-1 ).
138118138117
138119138118  $( The number 2 is nonzero.  (Contributed by NM, 9-Nov-2007.) $)
138120138119  2ne0 $p |- 2 =/= 0 $=
138121-     ( c2 2re 2pos gt0ne0ii ) ABCD  $.
138120+     ( c2 2nn nnne0i ) ABC  $.
138122138121
138123138122  $( The number 3 is positive.  (Contributed by NM, 27-May-1999.) $)
138124138123  3pos $p |- 0 < 3 $=
@@ -138128,7 +138127,7 @@ of the complex number axiom system (see ~ df-0 and ~ df-1 ).
138128138127  $( The number 3 is nonzero.  (Contributed by FL, 17-Oct-2010.)  (Proof
138129138128     shortened by Andrew Salmon, 7-May-2011.) $)
138130138129  3ne0 $p |- 3 =/= 0 $=
138131-     ( c3 3re 3pos gt0ne0ii ) ABCD  $.
138130+     ( c3 3nn nnne0i ) ABC  $.
138132138131
138133138132  $( The number 4 is positive.  (Contributed by NM, 27-May-1999.) $)
138134138133  4pos $p |- 0 < 4 $=
@@ -138138,7 +138137,7 @@ of the complex number axiom system (see ~ df-0 and ~ df-1 ).
138138138137  $( The number 4 is nonzero.  (Contributed by David A. Wheeler,
138139138138     5-Dec-2018.) $)
138140138139  4ne0 $p |- 4 =/= 0 $=
138141-     ( c4 4re 4pos gt0ne0ii ) ABCD  $.
138140+     ( c4 4nn nnne0i ) ABC  $.
138142138141
138143138142  $( The number 5 is positive.  (Contributed by NM, 27-May-1999.) $)
138144138143  5pos $p |- 0 < 5 $=
@@ -138672,12 +138671,17 @@ ordinal natural numbers (finite integers starting at 0), so that proof
138672138671    ( c1 cdiv co clt wbr 1div1e1 1lt2 eqbrtri 1re 2re 0lt1 2pos ltdiv23ii mpbi
138673138672    c2 ) AABCZODEAOBCADEPAODFGHAAOIIJKLMN $.
138674138673
138675-   $( Prove that 1 - 1/2 = 1/2.  (Contributed by David A. Wheeler,
138676-      4-Jan-2017.) $)
138674+   $( Two halves make a whole.  (Contributed by NM, 11-Apr-2005.) $)
138675+   2halves $p |- ( A e. CC -> ( ( A / 2 ) + ( A / 2 ) ) = A ) $=
138676+     ( cc wcel c2 cmul co cdiv caddc 2times oveq1d cc0 wne wceq 2cn 2ne0 divcan3
138677+     mp3an23 wa 2cnne0 divdir mp3an3 anidms 3eqtr3rd ) ABCZDAEFZDGFZAAHFZDGFZAAD
138678+     GFZUIHFZUDUEUGDGAIJUDDBCZDKLZUFAMNOADPQUDUHUJMZUDUDUKULRUMSAADTUAUBUC $.
138679+ 
138680+   $( Prove that 1 - 1/2 = 1/2.  (Contributed by David A. Wheeler, 4-Jan-2017.)
138681+      (Proof shortened by SN, 22-Oct-2025.) $)
138677138682  1mhlfehlf $p |- ( 1 - ( 1 / 2 ) ) = ( 1 / 2 ) $=
138678-     ( c2 c1 cmin co cdiv cc wcel cc0 wne wceq 2cn ax-1cn 2cnne0 divsubdir mp3an
138679-     wa 2m1e1 oveq1i 2div2e1 3eqtr3ri ) ABCDZAEDZAAEDZBAEDZCDZUDBUDCDAFGZBFGUFAH
138680-     IPUBUEJKLMABANOUABAEQRUCBUDCSRT $.
138683+     ( c1 c2 cdiv co ax-1cn halfcn cc wcel caddc wceq 2halves ax-mp subaddrii )
138684+     AABCDZNEFFAGHNNIDAJEAKLM $.
138681138685
138682138686  $( An eighth of four thirds is a sixth.  (Contributed by Paul Chapman,
138683138687     24-Nov-2007.) $)
@@ -138689,20 +138693,23 @@ ordinal natural numbers (finite integers starting at 0), so that proof
138689138693    VHEFNGDZGDZVDEFGDNGDZVHVJENGDZFGDVKVHENFLRQUCVLBFGUDUEOEFNLQRUFOVIHEGUGUHPU
138690138694    KPHSTZHULUMZESTZEULUMZVEVFUNZHUOKHUOUPMLUQASTVMVNURVOVPURVQIAHEUSUTVAP $.
138691138695
138696+   $( Half minus a third.  (Contributed by Scott Fenton, 8-Jul-2015.) $)
138697+   halfthird $p |- ( ( 1 / 2 ) - ( 1 / 3 ) ) = ( 1 / 6 ) $=
138698+     ( c1 c2 cdiv co c3 cmin cmul c6 2cn 3cn 2ne0 subreci ax-1cn 2p1e3 subaddrii
138699+     3ne0 3t2e6 mulcomli oveq12i eqtri ) ABCDAECDFDEBFDZBEGDZCDAHCDBEIJKPLUAAUBH
138700+     CEBAJIMNOEBHJIQRST $.
138701+ 
138692138702  $( One half plus or minus one sixth.  (Contributed by Paul Chapman,
138693-      17-Jan-2008.) $)
138703+      17-Jan-2008.)  (Proof shortened by SN, 22-Oct-2025.)  $)
138694138704  halfpm6th $p |- ( ( ( 1 / 2 ) - ( 1 / 6 ) ) = ( 1 / 3 ) /\
138695138705                       ( ( 1 / 2 ) + ( 1 / 6 ) ) = ( 2 / 3 ) ) $=
138696-     ( c1 c2 cdiv co c6 cmin wceq caddc cmul 3cn ax-1cn 2cn 3ne0 2ne0 divmuldivi
138697-     c3 oveq1i mulridi 3t2e6 oveq12i dividi halfcn mullidi eqtri 3eqtr3i cc wcel
138698-     cc0 wne wa 6cn 6re 6pos gt0ne0ii pm3.2i divsubdir mp3an 3m1e2 oveq2i reccli
138699-     3eqtr2i c4 divdiri df-4 3eqtr4ri 2t2e4 divcli ) ABCDZAECDZFDZAPCDZGVHVIHDZB
138700-     PCDZGVJPECDZVIFDZPAFDZECDZVKVHVNVIFPPCDZVHIDZPAIDZPBIDZCDVHVNPPABJJKLMNOVSA
138701-     VHIDVHVRAVHIPJMUAQVHUBUCUDVTPWAECPJRSTUEZQPUFUGAUFUGEUFUGZEUHUIZUJVQVOGJKWC
138702-     WDUKEULUMUNZUOPAEUPUQVQBECDABIDZWACDZVKVPBECURQWFBWAECBLUCSTVKBBCDZIDVKAIDW
138703-     GVKWHAVKIBLNUAZUSAPBBKJLLMNOVKPJMUTRUEVAVAVLVBECDZBBIDZWACDZVMPAHDZECDVNVIH
138704-     DWJVLPAEJKUKWEVCVBWMECVDQVHVNVIHWBQVEWKVBWAECVFSTVMWHIDVMAIDWLVMWHAVMIWIUSB
138705-     PBBLJLLMNOVMBPLJMVGRUEVAUO $.
138706+     ( c1 c2 cdiv co c6 cmin c3 wceq 3cn 3ne0 reccli 6cn halfcn halfthird oveq2i
138707+     caddc eqtr3i mvrraddi 2cn ax-1cn 6pos gt0ne0ii pncan3i addsubassi divcli cc
138708+     6re wcel 2halves ax-mp 2p1e3 oveq1i dividi eqtri divdiri 3eqtr2i pm3.2i ) A
138709+     BCDZAECDZFDAGCDZHURUSPDZBGCDZHURUTUSGIJKZELEUGUAUBKUTURUTFDZPDURUTUSPDUTURV
138710+     CMUCVDUSUTPNOQRURVDPDZVAVBVDUSURPNOURURPDZUTFDVEVBURURUTMMVCUDVFVBUTBGSIJUE
138711+     VCVFABAPDZGCDZVBUTPDAUFUHVFAHTAUIUJVHGGCDAVGGGCUKULGIJUMUNBAGSTIJUOUPRQQUQ
138712+     $.
138706138713
138707138714  $( i times 0 equals 0.  (Contributed by David A. Wheeler, 8-Dec-2018.) $)
138708138715  it0e0 $p |- ( _i x. 0 ) = 0 $=
@@ -138739,12 +138746,6 @@ ordinal natural numbers (finite integers starting at 0), so that proof
138739138746    ( cc wcel c2 cc0 wne cdiv co wceq wb 2cn 2ne0 diveq0 mp3an23 ) ABCDBCDEFADG
138740138747    HEIAEIJKLADMN $.
138741138748
138742-   $( Two halves make a whole.  (Contributed by NM, 11-Apr-2005.) $)
138743-   2halves $p |- ( A e. CC -> ( ( A / 2 ) + ( A / 2 ) ) = A ) $=
138744-     ( cc wcel c2 cmul co cdiv caddc 2times oveq1d cc0 wne wceq 2cn 2ne0 divcan3
138745-     mp3an23 wa 2cnne0 divdir mp3an3 anidms 3eqtr3rd ) ABCZDAEFZDGFZAAHFZDGFZAAD
138746-     GFZUIHFZUDUEUGDGAIJUDDBCZDKLZUFAMNOADPQUDUHUJMZUDUDUKULRUMSAADTUAUBUC $.
138747- 
138748138749  $( A number is positive iff its half is positive.  (Contributed by NM,
138749138750     10-Apr-2005.) $)
138750138751  halfpos2 $p |- ( A e. RR -> ( 0 < A <-> 0 < ( A / 2 ) ) ) $=
@@ -142066,12 +142067,6 @@ nonnegative integers (cont.)". $)
142066142067      FGEDEZFGEHADEZIGEACIHPJBKLQCGEPABMNON $.
142067142068  $}
142068142069
142069-   $( Half minus a third.  (Contributed by Scott Fenton, 8-Jul-2015.) $)
142070-   halfthird $p |- ( ( 1 / 2 ) - ( 1 / 3 ) ) = ( 1 / 6 ) $=
142071-     ( c1 c2 cdiv co c3 cmin cmul c6 2cn 3cn 2ne0 subreci ax-1cn 2p1e3 subaddrii
142072-     3ne0 3t2e6 mulcomli oveq12i eqtri ) ABCDAECDFDEBFDZBEGDZCDAHCDBEIJKPLUAAUBH
142073-     CEBAJIMNOEBHJIQRST $.
142074- 
142075142070  $( One fifth minus one sixth.  (Contributed by Scott Fenton, 9-Jan-2017.) $)
142076142071  5recm6rec $p |- ( ( 1 / 5 ) - ( 1 / 6 ) ) = ( 1 / ; 3 0 ) $=
142077142072    ( c1 c5 cdiv co c6 cmin cmul cc0 cdc 5cn 6cn 5re 5pos gt0ne0ii 6pos subreci
@@ -699148,6 +699143,26 @@ number axioms (add ~ ax-10 , ~ ax-11 , ~ ax-13 , ~ ax-nul , and remove
699148699143      UJUKTUFBDUOUPUAUPUNUGDCUBUCUD $.
699149699144  $}
699150699145
699146+   $( The number 5 is nonzero.  (Contributed by SN, 22-Oct-2025.) $)
699147+   5ne0 $p |- 5 =/= 0 $=
699148+     ( c5 5nn nnne0i ) ABC $.
699149+ 
699150+   $( The number 6 is nonzero.  (Contributed by SN, 22-Oct-2025.) $)
699151+   6ne0 $p |- 6 =/= 0 $=
699152+     ( c6 6nn nnne0i ) ABC $.
699153+ 
699154+   $( The number 7 is nonzero.  (Contributed by SN, 22-Oct-2025.) $)
699155+   7ne0 $p |- 7 =/= 0 $=
699156+     ( c7 7nn nnne0i ) ABC $.
699157+ 
699158+   $( The number 8 is nonzero.  (Contributed by SN, 22-Oct-2025.) $)
699159+   8ne0 $p |- 8 =/= 0 $=
699160+     ( c8 8nn nnne0i ) ABC $.
699161+ 
699162+   $( The number 9 is nonzero.  (Contributed by SN, 22-Oct-2025.) $)
699163+   9ne0 $p |- 9 =/= 0 $=
699164+     ( c9 9nn nnne0i ) ABC $.
699165+ 
699151699166  $( A proof of ~ 1ne2 without using ~ ax-mulcom , ~ ax-mulass ,
699152699167     ~ ax-pre-mulgt0 .  Based on ~ mul02lem2 .  (Contributed by SN,
699153699168     13-Dec-2023.) $)
@@ -699365,9 +699380,8 @@ number axioms (add ~ ax-10 , ~ ax-11 , ~ ax-13 , ~ ax-nul , and remove
699365699380       until it would have 7 uses: current additional uses:  (none).
699366699381       (Contributed by SN, 23-Aug-2024.) $)
699367699382    lsubswap23d $p |- ( ph -> ( A - C ) = B ) $=
699368-       ( cmin co cc subcld eqeltrrd cc0 subeq0bd sub32d subidd 3eqtr4d subcan2d
699369-       ) ABDHIZCCABDEABCHIZDJGABCEFKZLZKFFATDHIMSCHICCHIATDUAGNABDCEUBFOACFPQR
699370-       $.
699383+       ( cmin co cc subcld eqeltrrd caddc lsubrotld eqcomd mvrraddd ) ABCDFABCHI
699384+       DJGABCEFKLACDMIBABCDEFGNOP $.
699371699385  $}
699372699386
699373699387  $( Relation between sums and differences.  (Contributed by Steven Nguyen,
0 commit comments