Skip to content

Commit 2688803

Browse files
authored
Arithmetic shortenings + Prove 5ne0 to 9ne0 (#5078)
* move subrecd up and shorten * move 2halves, halfthird up and shorten * shorten/add 1-9ne0, shorten lsubswap23d
1 parent 8d31ae9 commit 2688803

File tree

1 file changed

+65
-51
lines changed

1 file changed

+65
-51
lines changed

set.mm

Lines changed: 65 additions & 51 deletions
Original file line numberDiff line numberDiff line change
@@ -135274,13 +135274,25 @@ Ordering on reals (cont.)
135274135274
( cr wcel cc0 wne cdiv co redivcl syl3anc ) ABGHCGHCIJBCKLGHDEFBCMN $.
135275135275
$}
135276135276

135277+
${
135278+
subrecd.1 $e |- ( ph -> A e. CC ) $.
135279+
subrecd.2 $e |- ( ph -> B e. CC ) $.
135280+
subrecd.3 $e |- ( ph -> A =/= 0 ) $.
135281+
subrecd.4 $e |- ( ph -> B =/= 0 ) $.
135282+
$( Subtraction of reciprocals. (Contributed by Scott Fenton,
135283+
9-Jan-2017.) $)
135284+
subrecd $p |- ( ph ->
135285+
( ( 1 / A ) - ( 1 / B ) ) = ( ( B - A ) / ( A x. B ) ) ) $=
135286+
( c1 cdiv co cmin cmul 1cnd divsubdivd mullidd oveq12d oveq1d eqtrd ) AHB
135287+
IJHCIJKJHCLJZHBLJZKJZBCLJZIJCBKJZUBIJAHBHCAMZDUDEFGNAUAUCUBIASCTBKACEOABD
135288+
OPQR $.
135289+
$}
135290+
135277135291
$( Subtraction of reciprocals. (Contributed by Scott Fenton, 9-Jul-2015.) $)
135278135292
subrec $p |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) ->
135279135293
( ( 1 / A ) - ( 1 / B ) ) = ( ( B - A ) / ( A x. B ) ) ) $=
135280-
( cc wcel cc0 wne wa c1 cdiv cmin cmul 1cnd simpll simprl simplr divsubdivd
135281-
co simprr mullidd oveq12d oveq1d eqtrd ) ACDZAEFZGZBCDZBEFZGZGZHAIQHBIQJQHB
135282-
KQZHAKQZJQZABKQZIQBAJQZUMIQUIHAHBUILZUCUDUHMZUOUEUFUGNZUCUDUHOUEUFUGRPUIULU
135283-
NUMIUIUJBUKAJUIBUQSUIAUPSTUAUB $.
135294+
( cc wcel cc0 wne wa simpll simprl simplr simprr subrecd ) ACDZAEFZGZBCDZBE
135295+
FZGZGABMNRHOPQIMNRJOPQKL $.
135284135296

135285135297
${
135286135298
subreci.1 $e |- A e. CC $.
@@ -135294,19 +135306,6 @@ Ordering on reals (cont.)
135294135306
LMKBLMNMBANMABOMLMPCEDFABQR $.
135295135307
$}
135296135308

135297-
${
135298-
subrecd.1 $e |- ( ph -> A e. CC ) $.
135299-
subrecd.2 $e |- ( ph -> B e. CC ) $.
135300-
subrecd.3 $e |- ( ph -> A =/= 0 ) $.
135301-
subrecd.4 $e |- ( ph -> B =/= 0 ) $.
135302-
$( Subtraction of reciprocals. (Contributed by Scott Fenton,
135303-
9-Jan-2017.) $)
135304-
subrecd $p |- ( ph ->
135305-
( ( 1 / A ) - ( 1 / B ) ) = ( ( B - A ) / ( A x. B ) ) ) $=
135306-
( cc wcel cc0 wne c1 cdiv co cmin cmul wceq subrec syl22anc ) ABHIBJKCHIC
135307-
JKLBMNLCMNONCBONBCPNMNQDFEGBCRS $.
135308-
$}
135309-
135310135309
${
135311135310
mvllmuld.1 $e |- ( ph -> A e. CC ) $.
135312135311
mvllmuld.2 $e |- ( ph -> B e. CC ) $.
@@ -138118,7 +138117,7 @@ of the complex number axiom system (see ~ df-0 and ~ df-1 ).
138118138117

138119138118
$( The number 2 is nonzero. (Contributed by NM, 9-Nov-2007.) $)
138120138119
2ne0 $p |- 2 =/= 0 $=
138121-
( c2 2re 2pos gt0ne0ii ) ABCD $.
138120+
( c2 2nn nnne0i ) ABC $.
138122138121

138123138122
$( The number 3 is positive. (Contributed by NM, 27-May-1999.) $)
138124138123
3pos $p |- 0 < 3 $=
@@ -138128,7 +138127,7 @@ of the complex number axiom system (see ~ df-0 and ~ df-1 ).
138128138127
$( The number 3 is nonzero. (Contributed by FL, 17-Oct-2010.) (Proof
138129138128
shortened by Andrew Salmon, 7-May-2011.) $)
138130138129
3ne0 $p |- 3 =/= 0 $=
138131-
( c3 3re 3pos gt0ne0ii ) ABCD $.
138130+
( c3 3nn nnne0i ) ABC $.
138132138131

138133138132
$( The number 4 is positive. (Contributed by NM, 27-May-1999.) $)
138134138133
4pos $p |- 0 < 4 $=
@@ -138138,7 +138137,7 @@ of the complex number axiom system (see ~ df-0 and ~ df-1 ).
138138138137
$( The number 4 is nonzero. (Contributed by David A. Wheeler,
138139138138
5-Dec-2018.) $)
138140138139
4ne0 $p |- 4 =/= 0 $=
138141-
( c4 4re 4pos gt0ne0ii ) ABCD $.
138140+
( c4 4nn nnne0i ) ABC $.
138142138141

138143138142
$( The number 5 is positive. (Contributed by NM, 27-May-1999.) $)
138144138143
5pos $p |- 0 < 5 $=
@@ -138672,12 +138671,17 @@ ordinal natural numbers (finite integers starting at 0), so that proof
138672138671
( c1 cdiv co clt wbr 1div1e1 1lt2 eqbrtri 1re 2re 0lt1 2pos ltdiv23ii mpbi
138673138672
c2 ) AABCZODEAOBCADEPAODFGHAAOIIJKLMN $.
138674138673

138675-
$( Prove that 1 - 1/2 = 1/2. (Contributed by David A. Wheeler,
138676-
4-Jan-2017.) $)
138674+
$( Two halves make a whole. (Contributed by NM, 11-Apr-2005.) $)
138675+
2halves $p |- ( A e. CC -> ( ( A / 2 ) + ( A / 2 ) ) = A ) $=
138676+
( cc wcel c2 cmul co cdiv caddc 2times oveq1d cc0 wne wceq 2cn 2ne0 divcan3
138677+
mp3an23 wa 2cnne0 divdir mp3an3 anidms 3eqtr3rd ) ABCZDAEFZDGFZAAHFZDGFZAAD
138678+
GFZUIHFZUDUEUGDGAIJUDDBCZDKLZUFAMNOADPQUDUHUJMZUDUDUKULRUMSAADTUAUBUC $.
138679+
138680+
$( Prove that 1 - 1/2 = 1/2. (Contributed by David A. Wheeler, 4-Jan-2017.)
138681+
(Proof shortened by SN, 22-Oct-2025.) $)
138677138682
1mhlfehlf $p |- ( 1 - ( 1 / 2 ) ) = ( 1 / 2 ) $=
138678-
( c2 c1 cmin co cdiv cc wcel cc0 wne wceq 2cn ax-1cn 2cnne0 divsubdir mp3an
138679-
wa 2m1e1 oveq1i 2div2e1 3eqtr3ri ) ABCDZAEDZAAEDZBAEDZCDZUDBUDCDAFGZBFGUFAH
138680-
IPUBUEJKLMABANOUABAEQRUCBUDCSRT $.
138683+
( c1 c2 cdiv co ax-1cn halfcn cc wcel caddc wceq 2halves ax-mp subaddrii )
138684+
AABCDZNEFFAGHNNIDAJEAKLM $.
138681138685

138682138686
$( An eighth of four thirds is a sixth. (Contributed by Paul Chapman,
138683138687
24-Nov-2007.) $)
@@ -138689,20 +138693,23 @@ ordinal natural numbers (finite integers starting at 0), so that proof
138689138693
VHEFNGDZGDZVDEFGDNGDZVHVJENGDZFGDVKVHENFLRQUCVLBFGUDUEOEFNLQRUFOVIHEGUGUHPU
138690138694
KPHSTZHULUMZESTZEULUMZVEVFUNZHUOKHUOUPMLUQASTVMVNURVOVPURVQIAHEUSUTVAP $.
138691138695

138696+
$( Half minus a third. (Contributed by Scott Fenton, 8-Jul-2015.) $)
138697+
halfthird $p |- ( ( 1 / 2 ) - ( 1 / 3 ) ) = ( 1 / 6 ) $=
138698+
( c1 c2 cdiv co c3 cmin cmul c6 2cn 3cn 2ne0 subreci ax-1cn 2p1e3 subaddrii
138699+
3ne0 3t2e6 mulcomli oveq12i eqtri ) ABCDAECDFDEBFDZBEGDZCDAHCDBEIJKPLUAAUBH
138700+
CEBAJIMNOEBHJIQRST $.
138701+
138692138702
$( One half plus or minus one sixth. (Contributed by Paul Chapman,
138693-
17-Jan-2008.) $)
138703+
17-Jan-2008.) (Proof shortened by SN, 22-Oct-2025.) $)
138694138704
halfpm6th $p |- ( ( ( 1 / 2 ) - ( 1 / 6 ) ) = ( 1 / 3 ) /\
138695138705
( ( 1 / 2 ) + ( 1 / 6 ) ) = ( 2 / 3 ) ) $=
138696-
( c1 c2 cdiv co c6 cmin wceq caddc cmul 3cn ax-1cn 2cn 3ne0 2ne0 divmuldivi
138697-
c3 oveq1i mulridi 3t2e6 oveq12i dividi halfcn mullidi eqtri 3eqtr3i cc wcel
138698-
cc0 wne wa 6cn 6re 6pos gt0ne0ii pm3.2i divsubdir mp3an 3m1e2 oveq2i reccli
138699-
3eqtr2i c4 divdiri df-4 3eqtr4ri 2t2e4 divcli ) ABCDZAECDZFDZAPCDZGVHVIHDZB
138700-
PCDZGVJPECDZVIFDZPAFDZECDZVKVHVNVIFPPCDZVHIDZPAIDZPBIDZCDVHVNPPABJJKLMNOVSA
138701-
VHIDVHVRAVHIPJMUAQVHUBUCUDVTPWAECPJRSTUEZQPUFUGAUFUGEUFUGZEUHUIZUJVQVOGJKWC
138702-
WDUKEULUMUNZUOPAEUPUQVQBECDABIDZWACDZVKVPBECURQWFBWAECBLUCSTVKBBCDZIDVKAIDW
138703-
GVKWHAVKIBLNUAZUSAPBBKJLLMNOVKPJMUTRUEVAVAVLVBECDZBBIDZWACDZVMPAHDZECDVNVIH
138704-
DWJVLPAEJKUKWEVCVBWMECVDQVHVNVIHWBQVEWKVBWAECVFSTVMWHIDVMAIDWLVMWHAVMIWIUSB
138705-
PBBLJLLMNOVMBPLJMVGRUEVAUO $.
138706+
( c1 c2 cdiv co c6 cmin c3 wceq 3cn 3ne0 reccli 6cn halfcn halfthird oveq2i
138707+
caddc eqtr3i mvrraddi 2cn ax-1cn 6pos gt0ne0ii pncan3i addsubassi divcli cc
138708+
6re wcel 2halves ax-mp 2p1e3 oveq1i dividi eqtri divdiri 3eqtr2i pm3.2i ) A
138709+
BCDZAECDZFDAGCDZHURUSPDZBGCDZHURUTUSGIJKZELEUGUAUBKUTURUTFDZPDURUTUSPDUTURV
138710+
CMUCVDUSUTPNOQRURVDPDZVAVBVDUSURPNOURURPDZUTFDVEVBURURUTMMVCUDVFVBUTBGSIJUE
138711+
VCVFABAPDZGCDZVBUTPDAUFUHVFAHTAUIUJVHGGCDAVGGGCUKULGIJUMUNBAGSTIJUOUPRQQUQ
138712+
$.
138706138713

138707138714
$( i times 0 equals 0. (Contributed by David A. Wheeler, 8-Dec-2018.) $)
138708138715
it0e0 $p |- ( _i x. 0 ) = 0 $=
@@ -138739,12 +138746,6 @@ ordinal natural numbers (finite integers starting at 0), so that proof
138739138746
( cc wcel c2 cc0 wne cdiv co wceq wb 2cn 2ne0 diveq0 mp3an23 ) ABCDBCDEFADG
138740138747
HEIAEIJKLADMN $.
138741138748

138742-
$( Two halves make a whole. (Contributed by NM, 11-Apr-2005.) $)
138743-
2halves $p |- ( A e. CC -> ( ( A / 2 ) + ( A / 2 ) ) = A ) $=
138744-
( cc wcel c2 cmul co cdiv caddc 2times oveq1d cc0 wne wceq 2cn 2ne0 divcan3
138745-
mp3an23 wa 2cnne0 divdir mp3an3 anidms 3eqtr3rd ) ABCZDAEFZDGFZAAHFZDGFZAAD
138746-
GFZUIHFZUDUEUGDGAIJUDDBCZDKLZUFAMNOADPQUDUHUJMZUDUDUKULRUMSAADTUAUBUC $.
138747-
138748138749
$( A number is positive iff its half is positive. (Contributed by NM,
138749138750
10-Apr-2005.) $)
138750138751
halfpos2 $p |- ( A e. RR -> ( 0 < A <-> 0 < ( A / 2 ) ) ) $=
@@ -142066,12 +142067,6 @@ nonnegative integers (cont.)". $)
142066142067
FGEDEZFGEHADEZIGEACIHPJBKLQCGEPABMNON $.
142067142068
$}
142068142069

142069-
$( Half minus a third. (Contributed by Scott Fenton, 8-Jul-2015.) $)
142070-
halfthird $p |- ( ( 1 / 2 ) - ( 1 / 3 ) ) = ( 1 / 6 ) $=
142071-
( c1 c2 cdiv co c3 cmin cmul c6 2cn 3cn 2ne0 subreci ax-1cn 2p1e3 subaddrii
142072-
3ne0 3t2e6 mulcomli oveq12i eqtri ) ABCDAECDFDEBFDZBEGDZCDAHCDBEIJKPLUAAUBH
142073-
CEBAJIMNOEBHJIQRST $.
142074-
142075142070
$( One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017.) $)
142076142071
5recm6rec $p |- ( ( 1 / 5 ) - ( 1 / 6 ) ) = ( 1 / ; 3 0 ) $=
142077142072
( c1 c5 cdiv co c6 cmin cmul cc0 cdc 5cn 6cn 5re 5pos gt0ne0ii 6pos subreci
@@ -699148,6 +699143,26 @@ number axioms (add ~ ax-10 , ~ ax-11 , ~ ax-13 , ~ ax-nul , and remove
699148699143
UJUKTUFBDUOUPUAUPUNUGDCUBUCUD $.
699149699144
$}
699150699145

699146+
$( The number 5 is nonzero. (Contributed by SN, 22-Oct-2025.) $)
699147+
5ne0 $p |- 5 =/= 0 $=
699148+
( c5 5nn nnne0i ) ABC $.
699149+
699150+
$( The number 6 is nonzero. (Contributed by SN, 22-Oct-2025.) $)
699151+
6ne0 $p |- 6 =/= 0 $=
699152+
( c6 6nn nnne0i ) ABC $.
699153+
699154+
$( The number 7 is nonzero. (Contributed by SN, 22-Oct-2025.) $)
699155+
7ne0 $p |- 7 =/= 0 $=
699156+
( c7 7nn nnne0i ) ABC $.
699157+
699158+
$( The number 8 is nonzero. (Contributed by SN, 22-Oct-2025.) $)
699159+
8ne0 $p |- 8 =/= 0 $=
699160+
( c8 8nn nnne0i ) ABC $.
699161+
699162+
$( The number 9 is nonzero. (Contributed by SN, 22-Oct-2025.) $)
699163+
9ne0 $p |- 9 =/= 0 $=
699164+
( c9 9nn nnne0i ) ABC $.
699165+
699151699166
$( A proof of ~ 1ne2 without using ~ ax-mulcom , ~ ax-mulass ,
699152699167
~ ax-pre-mulgt0 . Based on ~ mul02lem2 . (Contributed by SN,
699153699168
13-Dec-2023.) $)
@@ -699365,9 +699380,8 @@ number axioms (add ~ ax-10 , ~ ax-11 , ~ ax-13 , ~ ax-nul , and remove
699365699380
until it would have 7 uses: current additional uses: (none).
699366699381
(Contributed by SN, 23-Aug-2024.) $)
699367699382
lsubswap23d $p |- ( ph -> ( A - C ) = B ) $=
699368-
( cmin co cc subcld eqeltrrd cc0 subeq0bd sub32d subidd 3eqtr4d subcan2d
699369-
) ABDHIZCCABDEABCHIZDJGABCEFKZLZKFFATDHIMSCHICCHIATDUAGNABDCEUBFOACFPQR
699370-
$.
699383+
( cmin co cc subcld eqeltrrd caddc lsubrotld eqcomd mvrraddd ) ABCDFABCHI
699384+
DJGABCEFKLACDMIBABCDEFGNOP $.
699371699385
$}
699372699386

699373699387
$( Relation between sums and differences. (Contributed by Steven Nguyen,

0 commit comments

Comments
 (0)