@@ -747824,6 +747824,37 @@ unification theorem (e.g., the sub-theorem whose assertion is step 5
747824747824 FGBEHMEHIJMBEEFKL $.
747825747825 $( $j usage 'wffr' avoids 'ax-reg'; $)
747826747826
747827+ ${
747828+ $d y z A $.
747829+
747830+ $( A transitive class well-founded by ` e. ` is a subclass of the class of
747831+ well-founded sets. Part of Lemma I.9.21 of [Kunen2] p. 53.
747832+ (Contributed by Eric Schmidt, 26-Oct-2025.) $)
747833+ trfr $p |- ( ( Tr A /\ _E Fr A ) -> A C_ U. ( R1 " On ) ) $=
747834+ ( vy vz cep wfr wtr cr1 con0 cima cuni wss cv wcel wral wi wse epse dfss3
747835+ r19.21v bitr4di cpred wa wb trpred raleq vex r1elss syl biimpd expcom a2d
747836+ wceq biimtrid weq eleq1w imbi2d frins2 mpan2 sylib imbitrrdi impcom ) ADE
747837+ ZAFZAGHIJZKZVBVCBLZVDMZBANZVEVBVCVGOZBANZVCVHOVBADPVJAQVIVCCLVDMZOZBCADVL
747838+ CADVFUAZNVCVKCVMNZOVFAMZVIVCVKCVMSVOVCVNVGVCVOVNVGOVCVOUBZVNVGVPVMVFULZVN
747839+ VGUCAVFUDVQVNVFVDKZVGVQVNVKCVFNVRVKCVMVFUECVFVDRTVFBUFUGTUHUIUJUKUMBCUNVG
747840+ VKVCBCVDUOUPUQURVCVGBASUSBAVDRUTVA $.
747841+ $( $j usage 'trfr' avoids 'ax-reg'; $)
747842+ $}
747843+
747844+ ${
747845+ tcfr.1 $e |- A e. _V $.
747846+ $( A set is well-founded if and only if its transitive closure is
747847+ well-founded by ` e. ` . This characterization of well-founded sets is
747848+ that in Definition I.9.20 of [Kunen2] p. 53. (Contributed by Eric
747849+ Schmidt, 26-Oct-2025.) $)
747850+ tcfr $p |- ( A e. U. ( R1 " On ) <-> _E Fr ( TC ` A ) ) $=
747851+ ( cr1 con0 cima cuni wcel ctc cfv cep wfr wss tcwf r1elssi wffr frss 3syl
747852+ mpi cvv tcid ax-mp wtr tctr trfr mpan sstrid r1elss sylibr impbii ) ACDEF
747853+ ZGZAHIZJKZUKULUJGULUJLZUMAMULNUNUJJKUMOULUJJPRQUMAUJLUKUMAULUJASGAULLBAST
747854+ UAULUBUMUNAUCULUDUEUFABUGUHUI $.
747855+ $( $j usage 'tcfr' avoids 'ax-reg'; $)
747856+ $}
747857+
747827747858 $( The Cartesian product of two well-founded sets is well-founded.
747828747859 (Contributed by Eric Schmidt, 12-Sep-2025.) $)
747829747860 xpwf $p |- ( ( A e. U. ( R1 " On ) /\ B e. U. ( R1 " On ) ) ->
0 commit comments