From 749e452d69c91ee98fcd0dfb90293753b1eaf338 Mon Sep 17 00:00:00 2001 From: GinoGiotto <73717712+GinoGiotto@users.noreply.github.com> Date: Mon, 14 Oct 2024 14:10:40 +0200 Subject: [PATCH 1/4] remove DV conditions --- set.mm | 156 +++++++++++++++++++++++++++++++-------------------------- 1 file changed, 84 insertions(+), 72 deletions(-) diff --git a/set.mm b/set.mm index 709f42cd12..887d9ff1cd 100644 --- a/set.mm +++ b/set.mm @@ -30175,7 +30175,7 @@ generally appear in a single form (either definitional, but more often $} ${ - $d z A $. $d z B $. $d x y C $. $d x y z $. + $d z A $. $d z B $. $d x C $. $d y C $. $d x z $. $d y z $. $( Rotate three restricted universal quantifiers. (Contributed by AV, 3-Dec-2021.) $) ralrot3 $p |- ( A. x e. A A. y e. B A. z e. C ph @@ -30185,7 +30185,8 @@ generally appear in a single form (either definitional, but more often $} ${ - $d w z A $. $d w z B $. $d w x y C $. $d x y z D $. + $d w z A $. $d w z B $. $d w x C $. $d w y C $. $d x z D $. + $d y z D $. $( Rotate four restricted existential quantifiers twice. (Contributed by NM, 8-Apr-2015.) $) rexrot4 $p |- ( E. x e. A E. y e. B E. z e. C E. w e. D ph @@ -30221,7 +30222,7 @@ generally appear in a single form (either definitional, but more often NBDCMOAIJK $. ${ - $d y A $. $d x B $. $d x y $. + $d y A $. $d x y $. reeanlem.1 $e |- ( E. x E. y ( ( x e. A /\ ph ) /\ ( y e. B /\ ps ) ) <-> ( E. x ( x e. A /\ ph ) /\ E. y ( y e. B /\ ps ) ) ) $. $( Lemma factoring out common proof steps of ~ reeanv and ~ reean . @@ -31200,8 +31201,8 @@ generally appear in a single form (either definitional, but more often $} ${ - $d w ph $. $d z ps $. $d x ch $. $d v ch $. $d y u th $. $d x A $. - $d w A $. $d x y B $. $d w y B $. $d v B $. $d x y z C $. + $d w ph $. $d z ps $. $d x ch $. $d v ch $. $d y th $. $d u th $. + $d x A $. $d w A $. $d x y B $. $d w y B $. $d v B $. $d x y z C $. $d w y z C $. $d v z C $. $d z y C $. $d z C $. $d u C $. cbvral3v.1 $e |- ( x = w -> ( ph <-> ch ) ) $. cbvral3v.2 $e |- ( y = v -> ( ch <-> th ) ) $. @@ -31493,7 +31494,7 @@ generally appear in a single form (either definitional, but more often $} ${ - $d A x y $. $d ph x $. $d ch y $. + $d x y $. $d A y $. $d ch y $. rabrabi.1 $e |- ( x = y -> ( ch <-> ph ) ) $. $( Abstract builder restricted to another restricted abstract builder with implicit substitution. (Contributed by AV, 2-Aug-2022.) Avoid @@ -32401,7 +32402,7 @@ general is seen either by substitution (when the variable ` V ` has no $} ${ - $d x y A $. $d x y B $. $d x y ps $. + $d x y $. $d x A $. $d x y B $. $d x y ps $. vtocl2.1 $e |- A e. _V $. vtocl2.2 $e |- B e. _V $. vtocl2.3 $e |- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) $. @@ -32414,7 +32415,7 @@ general is seen either by substitution (when the variable ` V ` has no $} ${ - $d x y z A $. $d x y z B $. $d x y z C $. $d x y z ps $. + $d x y $. $d x A $. $d x y B $. $d x y z C $. $d x y z ps $. vtocl3.1 $e |- A e. _V $. vtocl3.2 $e |- B e. _V $. vtocl3.3 $e |- C e. _V $. @@ -32427,7 +32428,7 @@ general is seen either by substitution (when the variable ` V ` has no vtocl3 $p |- ps $= ( cv wceq a1i wi wa wb 3expa pm5.74da vtocl2 2thd vtocl ) ABEHKENHOZABAUE MPZUEAQUEBQCDFGIJCNFOZDNGOZRUEABUGUHUEABSLTUAUFUBUCMUD $. - $( $j usage 'vtocl3' avoids 'ax-10' 'ax-11'; $) + $( $j usage 'vtocl3' avoids 'ax-10' 'ax-11' 'ax-12'; $) $} ${ @@ -32689,6 +32690,23 @@ general is seen either by substitution (when the variable ` V ` has no ( nfcv nfv vtocl3gaf ) ABCDEFGHIJKLMEHRFHRGHRFIRGIRGJRBESCFSDGSNOPQT $. $} + ${ + $d A x $. $d A y $. $d B y $. $d ps x $. $d ch y $. $d C z $. + $d C w $. $d D w $. $d A z $. $d Q z $. $d B z $. $d R z $. + $d rh z $. $d A w $. $d Q w $. $d B w $. $d R w $. $d th w $. + vtocl4g.1 $e |- ( x = A -> ( ph <-> ps ) ) $. + vtocl4g.2 $e |- ( y = B -> ( ps <-> ch ) ) $. + vtocl4g.3 $e |- ( z = C -> ( ch <-> rh ) ) $. + vtocl4g.4 $e |- ( w = D -> ( rh <-> th ) ) $. + vtocl4g.5 $e |- ph $. + $( Implicit substitution of 4 classes for 4 setvar variables. + (Contributed by AV, 22-Jan-2019.) $) + vtocl4g $p |- ( ( ( A e. Q /\ B e. R ) + /\ ( C e. S /\ D e. T ) ) -> th ) $= + ( wcel wa wi cv wceq imbi2d vtocl2g impcom ) LPUCMQUCUDJNUCKOUCUDZDUKCU + EUKEUEUKDUEHILMPQHUFLUGCEUKTUHIUFMUGEDUKUAUHABCFGJKNORSUBUIUIUJ $. + $} + ${ $d w x y z A $. $d w y z B $. $d w z C $. $d w D $. $d w x y z R $. $d w x y z S $. $d w x y z T $. $d w x y z Q $. $d x ps $. $d z rh $. @@ -32697,16 +32715,6 @@ general is seen either by substitution (when the variable ` V ` has no vtocl4ga.2 $e |- ( y = B -> ( ps <-> ch ) ) $. vtocl4ga.3 $e |- ( z = C -> ( ch <-> rh ) ) $. vtocl4ga.4 $e |- ( w = D -> ( rh <-> th ) ) $. - ${ - vtocl4g.5 $e |- ph $. - $( Implicit substitution of 4 classes for 4 setvar variables. - (Contributed by AV, 22-Jan-2019.) $) - vtocl4g $p |- ( ( ( A e. Q /\ B e. R ) - /\ ( C e. S /\ D e. T ) ) -> th ) $= - ( wcel wa wi cv wceq imbi2d vtocl2g impcom ) LPUCMQUCUDJNUCKOUCUDZDUKCU - EUKEUEUKDUEHILMPQHUFLUGCEUKTUHIUFMUGEDUKUAUHABCFGJKNORSUBUIUIUJ $. - $} - vtocl4ga.5 $e |- ( ( ( x e. Q /\ y e. R ) /\ ( z e. S /\ w e. T ) ) -> ph ) $. $( Implicit substitution of 4 classes for 4 setvar variables. (Contributed @@ -34435,7 +34443,7 @@ general is seen either by substitution (when the variable ` V ` has no ( wreu wrmo wi wral reurmo rmoim syl5 ) BCDEBCDFABGCDHACDFBCDIABCDJK $. ${ - $d x y A $. $d x B $. + $d x y $. $d y A $. $d x B $. $( A condition allowing swap of uniqueness and existential quantifiers. (Contributed by Thierry Arnoux, 7-Apr-2017.) (Revised by NM, 16-Jun-2017.) $) @@ -34451,7 +34459,7 @@ general is seen either by substitution (when the variable ` V ` has no $} ${ - $d x y A $. $d x B $. + $d x y $. $d y A $. $d x B $. $( A condition allowing swap of uniqueness and existential quantifiers. (Contributed by Thierry Arnoux, 7-Apr-2017.) $) 2reuswap2 $p |- ( A. x e. A E* y ( y e. B /\ ph ) -> @@ -34568,7 +34576,10 @@ general is seen either by substitution (when the variable ` V ` has no ( wrex wrmo nfcv nfre1 nfrmow wi wral cv wcel rmoim rspe ex syl11 ralrimi ralrimivw ) ACEFZBDGZABDGZCEUACBDCDHACEIJAUAKZBDLUBUCCMENZAUABDOUEUDBDUEA UAACEPQTRS $. + $} + ${ + $d y A $. $d x y $. $( Lemma for ~ 2reu5 . Note that ` E! x e. A E! y e. B ph ` does not mean "there is exactly one ` x ` in ` A ` and exactly one ` y ` in ` B ` such that ` ph ` holds"; see comment for ~ 2eu5 . (Contributed by Alexander @@ -34628,6 +34639,13 @@ that existential restriction in the last conjunct (the "at most one" BCDEFGUNVQVOVBVQVKVPJZDLVOVPDFTWFVNDWFVLEGHVNVKVHEGUOVLEGTUPUQURUSUT $. $} + $( Double restricted quantification with restricted existential uniqueness + and restricted "at most one", analogous to ~ 2eumo . (Contributed by + Alexander van der Vekens, 24-Jun-2017.) $) + 2reurmo $p |- ( E! x e. A E* y e. B ph -> E* x e. A E! y e. B ph ) $= + ( wreu wrmo wi reuimrmo cv wcel reurmo a1i mprg ) ACEFZACEGZHZPBDFOBDGHBD + OPBDIQBJDKACELMN $. + ${ $d y A $. $d x y $. $d x B $. $( Double restricted quantification with existential uniqueness, analogous @@ -34639,13 +34657,6 @@ that existential restriction in the last conjunct (the "at most one" LCOEPZUOUMQZULUPIABDHZUQUPULURUPAUJQZBDRULURQUPUSBDUPAUJACEUATUBAUJBDUCUD SABDUEUFTUGUHSUI $. - $( Double restricted quantification with restricted existential uniqueness - and restricted "at most one", analogous to ~ 2eumo . (Contributed by - Alexander van der Vekens, 24-Jun-2017.) $) - 2reurmo $p |- ( E! x e. A E* y e. B ph -> E* x e. A E! y e. B ph ) $= - ( wreu wrmo wi reuimrmo cv wcel reurmo a1i mprg ) ACEFZACEGZHZPBDFOBDGHBD - OPBDIQBJDKACELMN $. - $( A condition allowing to swap restricted "at most one" and restricted existential quantifiers, analogous to ~ 2moswap . (Contributed by Alexander van der Vekens, 25-Jun-2017.) $) @@ -34820,7 +34831,7 @@ something like (wi (wceq (cv vx) (cv vy)) wph) ) into just (wcdeq vx vy $} ${ - $d x ps $. $d y ph $. + $d x ps $. nfcdeq.1 $e |- F/ x ph $. nfcdeq.2 $e |- CondEq ( x = y -> ( ph <-> ps ) ) $. $( If we have a conditional equality proof, where ` ph ` is ` ph ( x ) ` @@ -34835,7 +34846,7 @@ something like (wi (wceq (cv vx) (cv vy)) wph) ) into just (wcdeq vx vy $} ${ - $d x z B $. $d y z A $. + $d x z B $. $d y z $. $d z A $. nfccdeq.1 $e |- F/_ x A $. nfccdeq.2 $e |- CondEq ( x = y -> A = B ) $. $( Variation of ~ nfcdeq for classes. Usage of this theorem is discouraged @@ -36047,7 +36058,7 @@ practical reasons (to avoid having to prove sethood of ` A ` in every use $} ${ - $d x y A $. + $d x y $. $d y A $. rmo2.1 $e |- F/ y ph $. $( Alternate definition of restricted "at most one." Note that ` E* x e. A ph ` is not equivalent to @@ -36065,6 +36076,7 @@ practical reasons (to avoid having to prove sethood of ` A ` in every use ( weq wi wral wrex wex wrmo rexex rmo2 sylibr ) ABCFGBDHZCDIOCJABDKOCDLAB CDEMN $. + $d x A $. $( Restricted "at most one" using explicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.) Avoid ~ ax-13 . (Revised by Wolf Lammen, 30-Apr-2023.) $) @@ -36122,7 +36134,7 @@ practical reasons (to avoid having to prove sethood of ` A ` in every use $} ${ - $d x y A $. $d y ph $. $d y ps $. + $d x y $. $d y A $. $d y ph $. $d y ps $. rmoanim.1 $e |- F/ x ph $. $( Introduction of a conjunct into restricted "at most one" quantifier, analogous to ~ moanim . (Contributed by Alexander van der Vekens, @@ -36158,7 +36170,7 @@ practical reasons (to avoid having to prove sethood of ` A ` in every use $} ${ - $d x y A $. $d x B $. + $d x y $. $d y A $. $d x B $. $( Double restricted existential uniqueness. This theorem shows a condition under which a "naive" definition matches the correct one, analogous to ~ 2eu1 . (Contributed by Alexander van der Vekens, @@ -36553,7 +36565,7 @@ practical reasons (to avoid having to prove sethood of ` A ` in every use $} ${ - $d x A $. $d x V $. + $d x A $. csbiegf.1 $e |- ( A e. V -> F/_ x C ) $. csbiegf.2 $e |- ( x = A -> B = C ) $. $( Conversion of implicit substitution to explicit substitution into a @@ -39659,6 +39671,15 @@ technically classes despite morally (and provably) being sets, like ` 1 ` -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- $) + $( Transfer uniqueness to a smaller or larger class. (Contributed by NM, + 21-Oct-2005.) $) + reuun2 $p |- ( -. E. x e. B ph -> + ( E! x e. ( A u. B ) ph <-> E! x e. A ph ) ) $= + ( wrex wn cv wcel wa wo weu cun wreu wex df-rex euor2 sylnbi df-reu bitri + wb elun anbi1i andir orcom eubii 3bitr4g ) ABDEZFBGZDHZAIZUHCHZAIZJZBKZUL + BKZABCDLZMZABCMUGUJBNUNUOTABDOUJULBPQUQUHUPHZAIZBKUNABUPRUSUMBUSUKUIJZAIZ + UMURUTAUHCDUAUBVAULUJJUMUKUIAUCULUJUDSSUESABCRUF $. + ${ $d x A $. $d x B $. $( Transfer uniqueness to a smaller subclass. (Contributed by NM, @@ -39686,15 +39707,6 @@ technically classes despite morally (and provably) being sets, like ` 1 ` ( cun wss wo wi wral wrex wreu wa ssun1 orc rgenw reuss2 mpanl12 ) DDEFZG AABHZIZCDJACDKTCSLMACDLDENUACDABOPATCDSQR $. - $( Transfer uniqueness to a smaller or larger class. (Contributed by NM, - 21-Oct-2005.) $) - reuun2 $p |- ( -. E. x e. B ph -> - ( E! x e. ( A u. B ) ph <-> E! x e. A ph ) ) $= - ( wrex wn cv wcel wa wo weu cun wreu wex df-rex euor2 sylnbi df-reu bitri - wb elun anbi1i andir orcom eubii 3bitr4g ) ABDEZFBGZDHZAIZUHCHZAIZJZBKZUL - BKZABCDLZMZABCMUGUJBNUNUOTABDOUJULBPQUQUHUPHZAIZBKUNABUPRUSUMBUSUKUIJZAIZ - UMURUTAUHCDUAUBVAULUJJUMUKUIAUCULUJUDSSUESABCRUF $. - $( Restricted uniqueness "picks" a member of a subclass. (Contributed by NM, 21-Aug-1999.) $) reupick $p |- ( ( ( A C_ B /\ ( E. x e. A ph /\ E! x e. B ph ) ) /\ ph ) -> @@ -40297,14 +40309,14 @@ among classes ( ~ eq0 , as opposed to the weaker uniqueness among sets, rabxm $p |- A = ( { x e. A | ph } u. { x e. A | -. ph } ) $= ( wn wo crab cun wceq rabid2 cv wcel exmidd mprgbir unrab eqtr4i ) CAADZE ZBCFZABCFPBCFGCRHQBCQBCIBJCKALMAPBCNO $. - - $( Law of noncontradiction, in terms of restricted class abstractions. - (Contributed by Jeff Madsen, 20-Jun-2011.) $) - rabnc $p |- ( { x e. A | ph } i^i { x e. A | -. ph } ) = (/) $= - ( crab wn cin wa c0 inrab wceq wral pm3.24 rgenw rabeq0 mpbir eqtri ) ABC - DAEZBCDFAQGZBCDZHAQBCISHJREZBCKTBCALMRBCNOP $. $} + $( Law of noncontradiction, in terms of restricted class abstractions. + (Contributed by Jeff Madsen, 20-Jun-2011.) $) + rabnc $p |- ( { x e. A | ph } i^i { x e. A | -. ph } ) = (/) $= + ( crab wn cin wa c0 inrab wceq wral pm3.24 rgenw rabeq0 mpbir eqtri ) ABC + DAEZBCDFAQGZBCDZHAQBCISHJREZBCKTBCALMRBCNOP $. + ${ $d A s $. elneldisj.e $e |- E = { s e. A | B e. C } $. @@ -41404,17 +41416,17 @@ disjoint classes (see ~ disjdif ). Part of proof of Corollary 6K of ( wrex c0 wn wral wceq dfrex2 rzal con3i sylbi neqned ) ABCDZCENAFZBCGZFC EHZFABCIQPOBCJKLM $. $( $j usage 'rexn0' avoids 'df-clel' 'ax-8'; $) - - $( Idempotent law for restricted quantifier. (Contributed by NM, - 28-Mar-1997.) Reduce axiom usage. (Revised by Gino Giotto, - 2-Sep-2024.) $) - ralidm $p |- ( A. x e. A A. x e. A ph <-> A. x e. A ph ) $= - ( wral cv wcel wi wal df-ral ax-1 axc4i pm2.21 sp ja impbii bicomi imbi2i - alimi albii 3bitrri bitri ) ABCDZBCDBECFZUBGZBHZUBUBBCIUBUCAGZBHZUCUGGZBH - ZUEABCIZUGUIUFUHBUGUCJKUHUFBUCUGUFUCALUFBMNROUHUDBUGUBUCUBUGUJPQSTUA $. - $( $j usage 'ralidm' avoids 'df-clel' 'df-cleq' 'ax-8' 'ax-9' 'ax-ext'; $) $} + $( Idempotent law for restricted quantifier. (Contributed by NM, + 28-Mar-1997.) Reduce axiom usage. (Revised by Gino Giotto, + 2-Sep-2024.) $) + ralidm $p |- ( A. x e. A A. x e. A ph <-> A. x e. A ph ) $= + ( wral cv wcel wi wal df-ral ax-1 axc4i pm2.21 sp ja impbii bicomi imbi2i + alimi albii 3bitrri bitri ) ABCDZBCDBECFZUBGZBHZUBUBBCIUBUCAGZBHZUCUGGZBH + ZUEABCIZUGUIUFUHBUGUCJKUHUFBUCUGUFUCALUFBMNROUHUDBUGUBUCUBUGUJPQSTUA $. + $( $j usage 'ralidm' avoids 'df-clel' 'df-cleq' 'ax-8' 'ax-9' 'ax-ext'; $) + $( Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) Avoid ~ df-clel , ~ ax-8 . (Revised by Gino Giotto, 2-Sep-2024.) $) @@ -41538,7 +41550,7 @@ disjoint classes (see ~ disjdif ). Part of proof of Corollary 6K of $} ${ - $d x y A $. $d x y B $. + $d x y $. $d x A $. $d x y B $. raaan2.1 $e |- F/ y ph $. raaan2.2 $e |- F/ x ps $. $( Rearrange restricted quantifiers with two different restricting classes, @@ -44084,17 +44096,14 @@ will do (e.g., ` O = (/) ` and ` T = { (/) } ` , see ~ 0nep0 ). wa imbi2i 3bitri ralbii2 ) AEZABFZDGZHZBCDIJZCUDUGKZUCHUDCKZUDDLZSZUCHUIUJU CHZHUIUFHUHUKUCUDCDMNUIUJUCOULUFUIULUEEZUCHUFUJUMUCUDDPNAUEQRTUAUB $. - ${ - $d x Y $. - $( Restricted universal quantification on a class difference with a - singleton in terms of an implication. (Contributed by Alexander van der - Vekens, 26-Jan-2018.) $) - raldifsnb $p |- ( A. x e. A ( x =/= Y -> ph ) - <-> A. x e. ( A \ { Y } ) ph ) $= - ( cv wne wi wral csn wnel cdif wcel wceq wn velsn nnel nne con4bii imbi1i - 3bitr4ri ralbii raldifb bitri ) BEZDFZAGZBCHUDDIZJZAGZBCHABCUGKHUFUIBCUEU - HAUEUHUDUGLUDDMUHNUENBDOUDUGPUDDQTRSUAABCUGUBUC $. - $} + $( Restricted universal quantification on a class difference with a + singleton in terms of an implication. (Contributed by Alexander van der + Vekens, 26-Jan-2018.) $) + raldifsnb $p |- ( A. x e. A ( x =/= Y -> ph ) + <-> A. x e. ( A \ { Y } ) ph ) $= + ( cv wne wi wral csn wnel cdif wcel wceq wn velsn nnel nne con4bii imbi1i + 3bitr4ri ralbii raldifb bitri ) BEZDFZAGZBCHUDDIZJZAGZBCHABCUGKHUFUIBCUEU + HAUEUHUDUGLUDDMUHNUENBDOUDUGPUDDQTRSUAABCUGUBUC $. $( A set is an element of the universal class excluding a singleton iff it is not the singleton element. (Contributed by AV, 7-Apr-2019.) $) @@ -44366,7 +44375,7 @@ will do (e.g., ` O = (/) ` and ` T = { (/) } ` , see ~ 0nep0 ). $} ${ - $d A w x y z $. + $d A w x y $. $d A w x z $. $( A sufficient condition for a (nonempty) set to be a singleton. (Contributed by AV, 20-Sep-2020.) $) issn $p |- ( E. x e. A A. y e. A x = y -> E. z A = { z } ) $= @@ -44374,7 +44383,10 @@ will do (e.g., ` O = (/) ` and ` T = { (/) } ` , see ~ 0nep0 ). c0 bitr4d sneq eqeq2d spcegv sylbid rexlimiv ) ABEZBDFZDCGZHZIZCJZADAGZDK ZUHDUMHZIZULUNUHBAEZBDFZUPUNUGUQBDUGUQLUNABMNOUNDTPUPURLDUMQBDUMRSUAUKUPC UMDCAEUJUODUIUMUBUCUDUEUF $. + $} + ${ + $d A w y x $. $d A w y z $. $( A nonempty set is either a singleton or contains at least two different elements. (Contributed by AV, 20-Sep-2020.) $) n0snor2el $p |- ( A =/= (/) @@ -46222,7 +46234,7 @@ same distinct variable group (meaning ` A ` cannot depend on ` x ` ) and $} ${ - $d x ph $. $d x A $. + $d x ph $. iuneq2d.2 $e |- ( ph -> B = C ) $. $( Equality deduction for indexed union. (Contributed by Drahflow, 22-Oct-2015.) $) From 829e375e40922e2709ad4652d75be0da4ed6a52e Mon Sep 17 00:00:00 2001 From: GinoGiotto <73717712+GinoGiotto@users.noreply.github.com> Date: Mon, 14 Oct 2024 14:16:08 +0200 Subject: [PATCH 2/4] rewrap --- set.mm | 30 +++++++++++++++--------------- 1 file changed, 15 insertions(+), 15 deletions(-) diff --git a/set.mm b/set.mm index 887d9ff1cd..e74e86b718 100644 --- a/set.mm +++ b/set.mm @@ -32703,8 +32703,8 @@ general is seen either by substitution (when the variable ` V ` has no (Contributed by AV, 22-Jan-2019.) $) vtocl4g $p |- ( ( ( A e. Q /\ B e. R ) /\ ( C e. S /\ D e. T ) ) -> th ) $= - ( wcel wa wi cv wceq imbi2d vtocl2g impcom ) LPUCMQUCUDJNUCKOUCUDZDUKCU - EUKEUEUKDUEHILMPQHUFLUGCEUKTUHIUFMUGEDUKUAUHABCFGJKNORSUBUIUIUJ $. + ( wcel wa wi cv wceq imbi2d vtocl2g impcom ) LPUCMQUCUDJNUCKOUCUDZDUKCUEU + KEUEUKDUEHILMPQHUFLUGCEUKTUHIUFMUGEDUKUAUHABCFGJKNORSUBUIUIUJ $. $} ${ @@ -34643,8 +34643,8 @@ that existential restriction in the last conjunct (the "at most one" and restricted "at most one", analogous to ~ 2eumo . (Contributed by Alexander van der Vekens, 24-Jun-2017.) $) 2reurmo $p |- ( E! x e. A E* y e. B ph -> E* x e. A E! y e. B ph ) $= - ( wreu wrmo wi reuimrmo cv wcel reurmo a1i mprg ) ACEFZACEGZHZPBDFOBDGHBD - OPBDIQBJDKACELMN $. + ( wreu wrmo wi reuimrmo cv wcel reurmo a1i mprg ) ACEFZACEGZHZPBDFOBDGHBDOP + BDIQBJDKACELMN $. ${ $d y A $. $d x y $. $d x B $. @@ -39676,9 +39676,9 @@ technically classes despite morally (and provably) being sets, like ` 1 ` reuun2 $p |- ( -. E. x e. B ph -> ( E! x e. ( A u. B ) ph <-> E! x e. A ph ) ) $= ( wrex wn cv wcel wa wo weu cun wreu wex df-rex euor2 sylnbi df-reu bitri - wb elun anbi1i andir orcom eubii 3bitr4g ) ABDEZFBGZDHZAIZUHCHZAIZJZBKZUL - BKZABCDLZMZABCMUGUJBNUNUOTABDOUJULBPQUQUHUPHZAIZBKUNABUPRUSUMBUSUKUIJZAIZ - UMURUTAUHCDUAUBVAULUJJUMUKUIAUCULUJUDSSUESABCRUF $. + wb elun anbi1i andir orcom eubii 3bitr4g ) ABDEZFBGZDHZAIZUHCHZAIZJZBKZULBK + ZABCDLZMZABCMUGUJBNUNUOTABDOUJULBPQUQUHUPHZAIZBKUNABUPRUSUMBUSUKUIJZAIZUMUR + UTAUHCDUAUBVAULUJJUMUKUIAUCULUJUDSSUESABCRUF $. ${ $d x A $. $d x B $. @@ -40314,8 +40314,8 @@ among classes ( ~ eq0 , as opposed to the weaker uniqueness among sets, $( Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.) $) rabnc $p |- ( { x e. A | ph } i^i { x e. A | -. ph } ) = (/) $= - ( crab wn cin wa c0 inrab wceq wral pm3.24 rgenw rabeq0 mpbir eqtri ) ABC - DAEZBCDFAQGZBCDZHAQBCISHJREZBCKTBCALMRBCNOP $. + ( crab wn cin wa c0 inrab wceq wral pm3.24 rgenw rabeq0 mpbir eqtri ) ABCDA + EZBCDFAQGZBCDZHAQBCISHJREZBCKTBCALMRBCNOP $. ${ $d A s $. @@ -41422,9 +41422,9 @@ disjoint classes (see ~ disjdif ). Part of proof of Corollary 6K of 28-Mar-1997.) Reduce axiom usage. (Revised by Gino Giotto, 2-Sep-2024.) $) ralidm $p |- ( A. x e. A A. x e. A ph <-> A. x e. A ph ) $= - ( wral cv wcel wi wal df-ral ax-1 axc4i pm2.21 sp ja impbii bicomi imbi2i - alimi albii 3bitrri bitri ) ABCDZBCDBECFZUBGZBHZUBUBBCIUBUCAGZBHZUCUGGZBH - ZUEABCIZUGUIUFUHBUGUCJKUHUFBUCUGUFUCALUFBMNROUHUDBUGUBUCUBUGUJPQSTUA $. + ( wral cv wcel wi df-ral ax-1 axc4i pm2.21 sp ja alimi impbii bicomi imbi2i + wal albii 3bitrri bitri ) ABCDZBCDBECFZUBGZBRZUBUBBCHUBUCAGZBRZUCUGGZBRZUEA + BCHZUGUIUFUHBUGUCIJUHUFBUCUGUFUCAKUFBLMNOUHUDBUGUBUCUBUGUJPQSTUA $. $( $j usage 'ralidm' avoids 'df-clel' 'df-cleq' 'ax-8' 'ax-9' 'ax-ext'; $) $( Vacuous universal quantification is always true. (Contributed by NM, @@ -44101,9 +44101,9 @@ will do (e.g., ` O = (/) ` and ` T = { (/) } ` , see ~ 0nep0 ). Vekens, 26-Jan-2018.) $) raldifsnb $p |- ( A. x e. A ( x =/= Y -> ph ) <-> A. x e. ( A \ { Y } ) ph ) $= - ( cv wne wi wral csn wnel cdif wcel wceq wn velsn nnel nne con4bii imbi1i - 3bitr4ri ralbii raldifb bitri ) BEZDFZAGZBCHUDDIZJZAGZBCHABCUGKHUFUIBCUEU - HAUEUHUDUGLUDDMUHNUENBDOUDUGPUDDQTRSUAABCUGUBUC $. + ( cv wne wi wral csn wnel cdif wcel wceq wn velsn nnel nne 3bitr4ri con4bii + imbi1i ralbii raldifb bitri ) BEZDFZAGZBCHUDDIZJZAGZBCHABCUGKHUFUIBCUEUHAUE + UHUDUGLUDDMUHNUENBDOUDUGPUDDQRSTUAABCUGUBUC $. $( A set is an element of the universal class excluding a singleton iff it is not the singleton element. (Contributed by AV, 7-Apr-2019.) $) From 37698507ab5048b461cd4f4c70e2a107a0047d9d Mon Sep 17 00:00:00 2001 From: GinoGiotto <73717712+GinoGiotto@users.noreply.github.com> Date: Mon, 14 Oct 2024 14:19:38 +0200 Subject: [PATCH 3/4] rewrap --- set.mm | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/set.mm b/set.mm index e74e86b718..182e7238e9 100644 --- a/set.mm +++ b/set.mm @@ -32402,7 +32402,7 @@ general is seen either by substitution (when the variable ` V ` has no $} ${ - $d x y $. $d x A $. $d x y B $. $d x y ps $. + $d x y $. $d x A $. $d x y B $. $d x y ps $. vtocl2.1 $e |- A e. _V $. vtocl2.2 $e |- B e. _V $. vtocl2.3 $e |- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) $. @@ -32699,8 +32699,8 @@ general is seen either by substitution (when the variable ` V ` has no vtocl4g.3 $e |- ( z = C -> ( ch <-> rh ) ) $. vtocl4g.4 $e |- ( w = D -> ( rh <-> th ) ) $. vtocl4g.5 $e |- ph $. - $( Implicit substitution of 4 classes for 4 setvar variables. - (Contributed by AV, 22-Jan-2019.) $) + $( Implicit substitution of 4 classes for 4 setvar variables. (Contributed + by AV, 22-Jan-2019.) $) vtocl4g $p |- ( ( ( A e. Q /\ B e. R ) /\ ( C e. S /\ D e. T ) ) -> th ) $= ( wcel wa wi cv wceq imbi2d vtocl2g impcom ) LPUCMQUCUDJNUCKOUCUDZDUKCUEU @@ -34846,7 +34846,7 @@ something like (wi (wceq (cv vx) (cv vy)) wph) ) into just (wcdeq vx vy $} ${ - $d x z B $. $d y z $. $d z A $. + $d x z B $. $d y z $. $d z A $. nfccdeq.1 $e |- F/_ x A $. nfccdeq.2 $e |- CondEq ( x = y -> A = B ) $. $( Variation of ~ nfcdeq for classes. Usage of this theorem is discouraged @@ -44096,9 +44096,9 @@ will do (e.g., ` O = (/) ` and ` T = { (/) } ` , see ~ 0nep0 ). wa imbi2i 3bitri ralbii2 ) AEZABFZDGZHZBCDIJZCUDUGKZUCHUDCKZUDDLZSZUCHUIUJU CHZHUIUFHUHUKUCUDCDMNUIUJUCOULUFUIULUEEZUCHUFUJUMUCUDDPNAUEQRTUAUB $. - $( Restricted universal quantification on a class difference with a - singleton in terms of an implication. (Contributed by Alexander van der - Vekens, 26-Jan-2018.) $) + $( Restricted universal quantification on a class difference with a singleton + in terms of an implication. (Contributed by Alexander van der Vekens, + 26-Jan-2018.) $) raldifsnb $p |- ( A. x e. A ( x =/= Y -> ph ) <-> A. x e. ( A \ { Y } ) ph ) $= ( cv wne wi wral csn wnel cdif wcel wceq wn velsn nnel nne 3bitr4ri con4bii From cd68be7c527b23323013ac148af29267cac97d24 Mon Sep 17 00:00:00 2001 From: GinoGiotto <73717712+GinoGiotto@users.noreply.github.com> Date: Mon, 14 Oct 2024 14:42:08 +0200 Subject: [PATCH 4/4] remove additional DV condition --- set.mm | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/set.mm b/set.mm index 182e7238e9..da46d0abcb 100644 --- a/set.mm +++ b/set.mm @@ -44386,7 +44386,7 @@ will do (e.g., ` O = (/) ` and ` T = { (/) } ` , see ~ 0nep0 ). $} ${ - $d A w y x $. $d A w y z $. + $d A w y x $. $d A w y $. $d A w z $. $( A nonempty set is either a singleton or contains at least two different elements. (Contributed by AV, 20-Sep-2020.) $) n0snor2el $p |- ( A =/= (/)