diff --git a/build/main.pdf b/build/main.pdf index c71484d..d724c9e 100644 Binary files a/build/main.pdf and b/build/main.pdf differ diff --git a/chapters/chapter2/chapter2-7.tex b/chapters/chapter2/chapter2-7.tex index 0780ca1..0875206 100644 --- a/chapters/chapter2/chapter2-7.tex +++ b/chapters/chapter2/chapter2-7.tex @@ -230,8 +230,8 @@ \section{Properties of Infinite Series} \begin{align*} \abs{\sum_{j={m+1}}^n x_jy_j} &= \abs{s_ny_{n+1} - s_my_{m+1} + \sum_{j=m+1}^n s_j(y_j - y_{j+1})}\\ - &= \abs{s_ny_{n+1} - s_my_{m+1}} + \abs{\sum_{j=m+1}^n s_j(y_j - y_{j+1})} \tag{$\bigtriangleup$ inequality}\\ - &= \abs{(s_n - s_m)y_{m+1}} + \abs{\sum_{j=m+1}^n s_j(y_j - y_{j+1})} \tag{$y_{m+1} > y_{n+1}$}\\ + &\leq \abs{s_ny_{n+1} - s_my_{m+1}} + \abs{\sum_{j=m+1}^n s_j(y_j - y_{j+1})} \tag{$\bigtriangleup$ inequality}\\ + &\leq \abs{(s_n - s_m)y_{m+1}} + \abs{\sum_{j=m+1}^n s_j(y_j - y_{j+1})} \tag{$y_{m+1} > y_{n+1}$}\\ &\leq M\abs{y_{m+1}} + M \abs{y_{m+1} - y_{n+1}}\\ &\leq 2M\abs{y_{m+1}} \end{align*} @@ -290,4 +290,4 @@ \section{Properties of Infinite Series} then $A < \epsilon/(2b_1)$ and $\abs{\sum_{j={m+1}}^n x_jy_j} < 2\abs{b_1}\cdot \frac{\epsilon}{2\abs{b_1}}$, which means we have the Cauchy Criterion for $\sum x_ny_n$, and therefore it converges. } -} \ No newline at end of file +}