diff --git a/pypreprocess/configure_spm.py b/pypreprocess/configure_spm.py index c5159690..54f933f6 100644 --- a/pypreprocess/configure_spm.py +++ b/pypreprocess/configure_spm.py @@ -485,7 +485,7 @@ def _configure_spm_using_mcr(spm_mcr, spm_dir, spm_version): _logger.info('setting SPM MCR path to "{}" ' 'and "use_mcr" to True'.format(spm_mcr)) spm.SPMCommand.set_mlab_paths( - matlab_cmd='{} run script'.format(spm_mcr), use_mcr=True) + matlab_cmd='{} batch'.format(spm_mcr), use_mcr=True) _logger.info('SPM configuration succeeded using SPM MCR.') diff --git a/pypreprocess/nipype_preproc_spm_utils.py b/pypreprocess/nipype_preproc_spm_utils.py index 7d7410dc..9c46d232 100644 --- a/pypreprocess/nipype_preproc_spm_utils.py +++ b/pypreprocess/nipype_preproc_spm_utils.py @@ -196,7 +196,6 @@ def _do_subject_slice_timing(subject_data, TR, TA=None, spm_dir=None, time_acquisition=TA, num_slices=nslices, ref_slice=ref_slice + 1, slice_order=list(slice_order + 1), # SPM - ignore_exception=True ) if stc_result.outputs is None: subject_data.failed = True @@ -495,7 +494,6 @@ def _do_subject_coregister(subject_data, reslice=False, spm_dir=None, source=coreg_source, apply_to_files=apply_to_files, jobtype=jobtype, - ignore_exception=True ) # failed node ? @@ -633,7 +631,6 @@ def _do_subject_segment(subject_data, output_modulated_tpms=True, spm_dir=None, wm_output_type=gm_output_type, csf_output_type=csf_output_type, tissue_prob_maps=[GM_TEMPLATE, WM_TEMPLATE, CSF_TEMPLATE], - ignore_exception=True ) # failed node @@ -746,7 +743,7 @@ def _do_subject_normalize(subject_data, fwhm=0., anat_fwhm=0., caching=True, output_dir=subject_data.scratch) normalize_result = normalize( source=subject_data.anat, template=t1_template, - write_preserve=False, ignore_exception=True) + write_preserve=False) parameter_file = normalize_result.outputs.normalization_parameters else: parameter_file = subject_data.nipype_results[ @@ -777,7 +774,7 @@ def _do_subject_normalize(subject_data, fwhm=0., anat_fwhm=0., caching=True, apply_to_files=apply_to_files, write_voxel_sizes=list(write_voxel_sizes), # write_bounding_box=[[-78, -112, -50], [78, 76, 85]], - write_interp=1, jobtype='write', ignore_exception=True) + write_interp=1, jobtype='write') # failed node ? if normalize_result.outputs is None: @@ -807,9 +804,7 @@ def _do_subject_normalize(subject_data, fwhm=0., anat_fwhm=0., caching=True, write_voxel_sizes=list(write_voxel_sizes), write_wrap=[0, 0, 0], write_interp=1, - jobtype='write', - ignore_exception=True - ) + jobtype='write') # failed node subject_data.nipype_results['normalize_%s' % brain_name @@ -933,7 +928,7 @@ def _do_subject_smooth(subject_data, fwhm, anat_fwhm=None, spm_dir=None, in_files = [getattr(subject_data, x) for x in anat_like] smooth_result = smooth( - in_files=in_files, fwhm=width, ignore_exception=True) + in_files=in_files, fwhm=width) # failed node ? subject_data.nipype_results['smooth'][brain_name] = smooth_result @@ -1025,7 +1020,7 @@ def _do_subject_dartelnorm2mni(subject_data, flowfield_files=subject_data.dartel_flow_fields, template_file=template_file, modulate=output_modulated_tpms, # don't modulate - fwhm=anat_fwhm, ignore_exception=True, **tricky_kwargs) + fwhm=anat_fwhm, **tricky_kwargs) setattr(subject_data, "mw" + tissue, dartelnorm2mni_result.outputs.normalized_files) @@ -1034,7 +1029,6 @@ def _do_subject_dartelnorm2mni(subject_data, apply_to_files=subject_data.anat, flowfield_files=subject_data.dartel_flow_fields, template_file=template_file, - ignore_exception=True, modulate=output_modulated_tpms, fwhm=anat_fwhm, **tricky_kwargs @@ -1049,7 +1043,6 @@ def _do_subject_dartelnorm2mni(subject_data, createwarped_result = createwarped( image_files=subject_data.func, flowfield_files=subject_data.dartel_flow_fields, - ignore_exception=True ) subject_data.func = createwarped_result.outputs.warped_files @@ -1406,9 +1399,8 @@ def _do_subjects_newsegment( # run node newsegment_result = newsegment( - channel_files=[subject_data.anat for subject_data in subjects], - tissues=TISSUES, - ignore_exception=True) + channel_files=[subject_data.anat.replace(".nii.gz", ".nii") + for subject_data in subjects], tissues=TISSUES) if newsegment_result.outputs is None: return else: