Skip to content

Converting physiological recordings  #532

@tjhendrickson

Description

@tjhendrickson

Summary

I cannot seem to figure out how to convert physiological recordings present within the DICOM folder from a neuroimaging dataset. The physiological recordings are organized as one DICOM file within its own folder and with the same naming scheme as the BOLD it relates to with "PhysioLog" suffixed. The heuristic script below failed to find this and even when I run convertall.py as the heuristic the physiological recordings are not found.

Any ideas?

  • heuristic
import pdb

def create_key(template, outtype=('nii.gz','dicom'), annotation_classes=None): #), annotation_classes=None):
    if template is None or not template:
        raise ValueError('Template must be a valid format string')
    return (template, outtype, annotation_classes)


def infotodict(seqinfo):
    """Heuristic evaluator for determining which runs belong where

    allowed template fields - follow python string module:

    item: index within category
    subject: participant id
    seqitem: run number during scanning
    subindex: sub index within group
    """ 
    t1 = create_key('sub-{subject}/{session}/anat/sub-{subject}_{session}_rec-{rec}_run-{item:02d}_T1w')
    t2 = create_key('sub-{subject}/{session}/anat/sub-{subject}_{session}_rec-{rec}_run-{item:02d}_T2w')

    rest_ten_minute = create_key('sub-{subject}/{session}/func/sub-{subject}_{session}_task-rest_acq-10minute_run-{item:02d}_part-{part}_bold')
    rest_ten_minute_sbref = create_key('sub-{subject}/{session}/func/sub-{subject}_{session}_task-rest_acq-10minute_run-{item:02d}_sbref')
    rest_ten_minute_physio = create_key('sub-{subject}/{session}/func/sub-{subject}_{session}_task-rest_acq-10minute_run-{item:02d}_physio')

    rest_sixteen_minute = create_key('sub-{subject}/{session}/func/sub-{subject}_{session}_task-rest_acq-16minute_run-{item:02d}_part-{part}_bold')
    rest_sixteen_minute_sbref = create_key('sub-{subject}/{session}/func/sub-{subject}_{session}_task-rest_acq-16minute_run-{item:02d}_sbref')
    rest_sixteen_minute_physio = create_key('sub-{subject}/{session}/func/sub-{subject}_{session}_task-rest_acq-16minute_run-{item:02d}_physio')
    
    spinecho_fieldmap_ME_bold = create_key('sub-{subject}/{session}/fmap/sub-{subject}_{session}_acq-SpinEchoME_dir-{dir}_run-{item:02d}_epi')
    spinecho_fieldmap_ME_physio = create_key('sub-{subject}/{session}/fmap/sub-{subject}_{session}_acq-SpinEchoME_dir-{dir}_run-{item:02d}_physio')
    
    gradientecho_fieldmap_ME_bold_mag = create_key('sub-{subject}/{session}/fmap/sub-{subject}_{session}_acq-GradientEchoME_dir-{dir}_run-{item:02d}_magnitude')
    gradientecho_fieldmap_ME_bold_phase = create_key('sub-{subject}/{session}/fmap/sub-{subject}_{session}_acq-GradientEchoME_dir-{dir}_run-{item:02d}_phase')
    gradientecho_fieldmap_ME_bold_sbref = create_key('sub-{subject}/{session}/fmap/sub-{subject}_{session}_acq-GradientEchoME_dir-{dir}_run-{item:02d}_sbref')
    gradientecho_fieldmap_ME_bold_physio = create_key('sub-{subject}/{session}/fmap/sub-{subject}_{session}_acq-GradientEchoME_dir-{dir}_run-{item:02d}_physio')
    
    
    info = {t1: [], t2: [], 
            rest_ten_minute: [], rest_ten_minute_sbref: [], rest_ten_minute_physio: [],
            rest_sixteen_minute: [], rest_sixteen_minute_sbref: [], rest_sixteen_minute_physio: [],
            spinecho_fieldmap_ME_bold: [], spinecho_fieldmap_ME_physio: [],
            gradientecho_fieldmap_ME_bold_mag: [], gradientecho_fieldmap_ME_bold_phase: [], gradientecho_fieldmap_ME_bold_sbref: [], gradientecho_fieldmap_ME_bold_physio: []}

    for idx, s in enumerate(seqinfo):
        # retreive previous element in seqinfo
        if idx > 0:
            s_previous = seqinfo[idx-1]
        if idx - 1 > 0:
            s_previous_two = seqinfo[idx-2]
        # retreive next element in seqinfo
        if idx + 1 < len(seqinfo):
            s_next = seqinfo[idx+1]
        # retreive next next element in seqinfo
        if idx + 2 < len(seqinfo):
            s_next_two = seqinfo[idx+2]

        # find pre scan normalized anatomicals
        if (s.dim3 == 176) and ('NORM' in s.image_type):
            if 'ABCD_T1' in s.dcm_dir_name:
                rec = 'normalized'
                info[t1].append({'item': s.series_id, 'rec': rec})
            elif 'ABCD_T2' in s.dcm_dir_name:
                rec = 'normalized'
                info[t2].append({'item': s.series_id, 'rec': rec})
        # find resting state scans. Differentiate by mag or phase
        elif (s.dim4 > 5) and ('rest' in s.series_description):
            if '10MIN' in s.protocol_name:
                if s.image_type[2] == 'M':
                    if (s_next.dim4 > 5) and ('rest' in s_next.series_description) and (s_next.image_type[2] == 'P'):
                        part = 'mag'
                        info[rest_ten_minute].append({'item': s.series_id,'part': part})
                elif s.image_type[2] == 'P':
                    if (s_previous.dim4 > 5) and ('rest' in s_previous.series_description) and (s_previous.image_type[2] == 'M'):
                        part = 'phase'
                        info[rest_ten_minute].append({'item': s.series_id,'part': part})
            elif '16MIN' in s.protocol_name:
                if s.image_type[2] == 'M':
                    if (s_next.dim4 > 5) and ('rest' in s_next.series_description) and (s_next.image_type[2] == 'P'):
                        part = 'mag'
                        info[rest_sixteen_minute].append({'item': s.series_id,'part': part})
                elif s.image_type[2] == 'P':
                    if (s_previous.dim4 > 5) and ('rest' in s_previous.series_description) and (s_previous.image_type[2] == 'M'):
                        part = 'phase'
                        info[rest_sixteen_minute].append({'item': s.series_id,'part': part})
        # retreive field maps
        elif 'FieldMap' in s.series_description:
            if 'GEFieldMap' in s.series_description:  
                if 'AP' in s.series_description:
                    if s.image_type[2] == 'M':
                        if (s_next.dim4 >= 15) and ('GEFieldMap' in s_next.series_description) and (s_next.image_type[2] == 'P'):
                            info[gradientecho_fieldmap_ME_bold_mag].append({'item': s.series_id, 'dir': 'AP'})
                    elif s.image_type[2] == 'P':
                        if (s_previous.dim4 >= 15) and ('GEFieldMap' in s_previous.series_description) and (s_previous.image_type[2] == 'P'):
                            info[gradientecho_fieldmap_ME_bold_phase].append({'item': s.series_id, 'dir': 'AP'})
                elif 'PA' in s.series_description:
                    if s.image_type[2] == 'M':
                        if (s_next.dim4 >= 15) and ('GEFieldMap' in s_next.series_description) and (s_next.image_type[2] == 'P'):
                            info[gradientecho_fieldmap_ME_bold_mag].append({'item': s.series_id, 'dir': 'PA'})
                    elif s.image_type[2] == 'P':
                        if (s_previous.dim4 >= 15) and ('GEFieldMap' in s_previous.series_description) and (s_previous.image_type[2] == 'P'):
                            info[gradientecho_fieldmap_ME_bold_phase].append({'item': s.series_id, 'dir': 'PA'})
            elif 'SpinEchoFieldMap' in s.series_description:
                if s.dim4 == 15: 
                    if 'AP' in s.series_description:
                        info[spinecho_fieldmap_ME_bold].append({'item': s.series_id, 'dir': 'AP'})
                    elif 'PA' in s.series_description:
                        info[spinecho_fieldmap_ME_bold].append({'item': s.series_id, 'dir': 'PA'})
                    
        # retreive sbref images
        elif 'SBRef' in s.series_description:
            if 'rest' in s.series_description:
                if '10MIN' in s.protocol_name:
                    if (s_next.dim4 > 5) and ('10MIN' in s_next.series_description) \
                    and (s_next.image_type[2] == 'M') and (s_next_two.dim4 > 5) \
                    and ('10MIN' in s_next_two.series_description) \
                    and (s_next_two.image_type[2] == 'P'):
                        info[rest_ten_minute_sbref].append({'item': s.series_id})
                elif '16MIN' in s.protocol_name:
                    if (s_next.dim4 > 5) and ('16MIN' in s_next.series_description) \
                    and (s_next.image_type[2] == 'M') and (s_next_two.dim4 > 5) \
                    and ('16MIN' in s_next_two.series_description) \
                    and (s_next_two.image_type[2] == 'P'):
                        info[rest_sixteen_minute_sbref].append({'item': s.series_id})
            elif 'GEFieldMap' in s.series_description:
                pdb.set_trace()
                if 'AP' in s.series_description:
                    if s_next.image_type[2] == 'M' and (s_next.dim4 >= 15) and ('GEFieldMap' in s_next.series_description) and (s_next_two.dim4 >= 15) and ('GEFieldMap' in s_next_two.series_description) and (s_next_two.image_type[2] == 'P'):
                        info[gradientecho_fieldmap_ME_bold_sbref].append({'item': s.series_id, 'dir': 'AP'})
                elif 'PA' in s.series_description:
                    if s_next.image_type[2] == 'M' and (s_next.dim4 >= 15) and ('GEFieldMap' in s_next.series_description) and (s_next_two.dim4 >= 15) and ('GEFieldMap' in s_next_two.series_description) and (s_next_two.image_type[2] == 'P'):
                        info[gradientecho_fieldmap_ME_bold_sbref].append({'item': s.series_id, 'dir': 'PA'})
        # retreive physiological recordings
        elif 'PhysioLog' in s.dcm_dir_name:
            if 'rest' in s.series_description:
                if '10MIN' in s.protocol_name:
                    if (s_previous_two.dim4 > 5) and ('10MIN' in s_previous_two.series_description) \
                    and (s_previous_two.image_type[2] == 'M') and (s_previous.dim4 > 5) \
                    and ('10MIN' in s_previous.series_description) \
                    and (s_previous.image_type[2] == 'P'):
                        info[rest_ten_minute_physio].append({'item': s.series_id})
                elif '16MIN' in s.protocol_name:
                    if (s_previous_two.dim4 > 5) and ('16MIN' in s_previous_two.series_description) \
                    and (s_previous_two.image_type[2] == 'M') and (s_previous.dim4 > 5) \
                    and ('16MIN' in s_previous.series_description) \
                    and (s_previous.image_type[2] == 'P'):
                        info[rest_sixteen_minute_physio].append({'item': s.series_id})
            elif 'GEFieldMap' in s.series_description:
                if 'AP' in s.series_description:
                    if s_previous_two.image_type[2] == 'M' and (s_previous_two.dim4 >= 15) and ('GEFieldMap' in s_previous_two.series_description) and (s_previous.dim4 >= 15) and ('GEFieldMap' in s_previous.series_description) and (s_previous.image_type[2] == 'P'):
                        info[gradientecho_fieldmap_ME_bold_physio].append({'item': s.series_id, 'dir': 'AP'})
                elif 'PA' in s.series_description:
                    if s_previous_two.image_type[2] == 'M' and (s_previous_two.dim4 >= 15) and ('GEFieldMap' in s_previous_two.series_description) and (s_previous.dim4 >= 15) and ('GEFieldMap' in s_previous.series_description) and (s_previous.image_type[2] == 'P'):
                        info[gradientecho_fieldmap_ME_bold_physio].append({'item': s.series_id, 'dir': 'PA'})
                               
    return info

Platform details:

Choose one:

  • [X ] Local environment

python = 3.9.5
OS Ubuntu Xenial-20210429

  • Container
  • Heudiconv version:

heudiconv = 0.9.0

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions