Commit 2ec3370
committed
[new release] raven (11 packages) (1.0.0~alpha1)
CHANGES:
This release expands the Raven ecosystem with three new libraries (Talon, Saga, Fehu) and significant enhancements to existing ones. `alpha1` focuses on breadth—adding foundational capabilities across data processing, NLP, and reinforcement learning—while continuing to iterate on core infrastructure.
### New Libraries
#### Talon - DataFrame Processing
We've added Talon, a new DataFrame library inspired by pandas and polars:
- Columnar data structures that support mixed types (integers, floats, strings, etc.) within a single table (aka heterogeneous datasets)
- Operations: filter rows, group by columns, join tables, compute aggregates
- Load and save data in CSV and JSON formats
- Seamless conversion to/from Nx arrays for numerical operations
#### Saga - NLP & Text Processing
Saga is a new text processing library for building language models. It provides:
- Tokenizers: Byte-pair encoding (BPE), WordPiece subword tokenization, and character-level splitting
- Text generation: Control output with temperature scaling, top-k filtering, nucleus (top-p) sampling, and custom sampling strategies
- Language models: Train and generate text with statistical n-gram models (bigrams, trigrams, etc.)
- I/O: Read large text files line-by-line and batch-process corpora
#### Fehu - Reinforcement Learning
Fehu brings reinforcement learning to Raven, with an API inspired by Gymnasium and Stable-Baselines3:
- Standard RL environment interface (reset, step, render) with example environments like Random Walk and CartPole
- Environment wrappers to modify observations, rewards, or episode termination conditions
- Vectorized environments to collect experience from multiple parallel rollouts
- Training utilities: Generalized advantage estimation (GAE), trajectory collection and management
- RL algorithms: Policy gradient method (REINFORCE), deep Q-learning (DQN) with replay buffer
- Use Kaun neural networks as function approximators for policies and value functions
### Major Enhancements
#### Nx - Array Computing
We've significantly expanded Nx's following early user feedback from alpha0:
- Complete linear algebra suite: LAPACK-backed operations matching NumPy including singular value decomposition (SVD), QR factorization, Cholesky decomposition, eigenvalue/eigenvector computation, matrix inverse, and solving linear systems
- FFT operations: Fast Fourier transforms (FFT/IFFT) for frequency domain analysis and signal processing
- Advanced operations: Einstein summation notation (`einsum`) for complex tensor operations, extract/construct diagonal matrices (`diag`), cumulative sums and products along axes
- Extended dtypes: Machine learning-focused types including bfloat16 (brain floating point), complex16, and float8 for reduced-precision training
- Symbolic shapes: Internal infrastructure for symbolic shape inference to enable dynamic shapes in future releases (not yet exposed in public API)
- Lazy views: Array views only copy and reorder memory when stride patterns require it, avoiding unnecessary allocations
#### Rune - Autodiff & JIT
We've continued iterating on Rune's autodiff capabilities, and made progress on upcoming features:
- Forward-mode AD: Compute Jacobian-vector products (`jvp`) for forward-mode automatic differentiation, complementing existing reverse-mode
- JIT: Ongoing development of LLVM-based just-in-time compilation for Rune computations (currently in prototype stage)
- vmap: Experimental support for vectorized mapping to automatically batch operations (work-in-progress, not yet stable)
- LLVM backend: Added compilation backend with support for LLVM versions 19, 20, and 21
- Metal backend: Continued work on GPU acceleration for macOS using Metal compute shaders
#### Kaun - Deep Learning
We've expanded Kaun with high-level APIs for deep learning. These APIs are inspired by popular Python frameworks like TensorFlow, PyTorch, and Flax, and should feel familiar to users building models in Python:
- High-level training: Keras-style `fit()` function to train models with automatic batching, gradient computation, and parameter updates
- Training state: Encapsulated training state (TrainState) holding parameters, optimizer state, and step count; automatic history tracking of loss and metrics
- Checkpoints: Save and load model weights to disk for model persistence and transfer learning
- Metrics: Automatic metric computation during training including accuracy, precision, recall, F1 score, mean absolute error (MAE), and mean squared error (MSE)
- Data pipeline: Composable dataset operations (map, filter, batch, shuffle, cache) inspired by TensorFlow's `tf.data` for building input pipelines
- Model zoo: Reference implementations of classic and modern architectures (LeNet5 for basic CNNs, BERT for masked language modeling, GPT2 for autoregressive generation) including reusable transformer components
- Ecosystem integration: Load HuggingFace model architectures (`kaun.huggingface`), access common datasets like MNIST and CIFAR-10 (`kaun.datasets`), and use standardized model definitions (`kaun.models`)
### Contributors
Thanks to everyone who contributed to this release:
- @adamchol (Adam Cholewi) - Implemented the initial `associative_scan` native backend operation for cumulative operations
- @akshay-gulab (Akshay Gulabrao)
- @DhruvMakwana (Dhruv Makwana) - Implemented `einsum` for Einstein summation notation
- @gabyfle (Gabriel Santamaria) - Built PocketFFT bindings that replaced our custom FFT kernels
- @lukstafi (Lukasz Stafiniak) - Major contributions to Fehu and FunOCaml workshop on training Sokoban agents
- @nickbetteridge
- @sidkshatriya (Sidharth Kshatriya)1 parent 6471587 commit 2ec3370
File tree
11 files changed
+587
-0
lines changed- packages
- fehu/fehu.1.0.0~alpha1
- hugin/hugin.1.0.0~alpha1
- kaun/kaun.1.0.0~alpha1
- nx-datasets/nx-datasets.1.0.0~alpha1
- nx/nx.1.0.0~alpha1
- quill/quill.1.0.0~alpha1
- raven/raven.1.0.0~alpha1
- rune/rune.1.0.0~alpha1
- saga/saga.1.0.0~alpha1
- sowilo/sowilo.1.0.0~alpha1
- talon/talon.1.0.0~alpha1
11 files changed
+587
-0
lines changed| Original file line number | Diff line number | Diff line change | |
|---|---|---|---|
| |||
| 1 | + | |
| 2 | + | |
| 3 | + | |
| 4 | + | |
| 5 | + | |
| 6 | + | |
| 7 | + | |
| 8 | + | |
| 9 | + | |
| 10 | + | |
| 11 | + | |
| 12 | + | |
| 13 | + | |
| 14 | + | |
| 15 | + | |
| 16 | + | |
| 17 | + | |
| 18 | + | |
| 19 | + | |
| 20 | + | |
| 21 | + | |
| 22 | + | |
| 23 | + | |
| 24 | + | |
| 25 | + | |
| 26 | + | |
| 27 | + | |
| 28 | + | |
| 29 | + | |
| 30 | + | |
| 31 | + | |
| 32 | + | |
| 33 | + | |
| 34 | + | |
| 35 | + | |
| 36 | + | |
| 37 | + | |
| 38 | + | |
| 39 | + | |
| 40 | + | |
| 41 | + | |
| 42 | + | |
| 43 | + | |
| 44 | + | |
| 45 | + | |
| 46 | + | |
| 47 | + | |
| 48 | + | |
| 49 | + | |
| Original file line number | Diff line number | Diff line change | |
|---|---|---|---|
| |||
| 1 | + | |
| 2 | + | |
| 3 | + | |
| 4 | + | |
| 5 | + | |
| 6 | + | |
| 7 | + | |
| 8 | + | |
| 9 | + | |
| 10 | + | |
| 11 | + | |
| 12 | + | |
| 13 | + | |
| 14 | + | |
| 15 | + | |
| 16 | + | |
| 17 | + | |
| 18 | + | |
| 19 | + | |
| 20 | + | |
| 21 | + | |
| 22 | + | |
| 23 | + | |
| 24 | + | |
| 25 | + | |
| 26 | + | |
| 27 | + | |
| 28 | + | |
| 29 | + | |
| 30 | + | |
| 31 | + | |
| 32 | + | |
| 33 | + | |
| 34 | + | |
| 35 | + | |
| 36 | + | |
| 37 | + | |
| 38 | + | |
| 39 | + | |
| 40 | + | |
| 41 | + | |
| 42 | + | |
| 43 | + | |
| 44 | + | |
| 45 | + | |
| 46 | + | |
| 47 | + | |
| 48 | + | |
| Original file line number | Diff line number | Diff line change | |
|---|---|---|---|
| |||
| 1 | + | |
| 2 | + | |
| 3 | + | |
| 4 | + | |
| 5 | + | |
| 6 | + | |
| 7 | + | |
| 8 | + | |
| 9 | + | |
| 10 | + | |
| 11 | + | |
| 12 | + | |
| 13 | + | |
| 14 | + | |
| 15 | + | |
| 16 | + | |
| 17 | + | |
| 18 | + | |
| 19 | + | |
| 20 | + | |
| 21 | + | |
| 22 | + | |
| 23 | + | |
| 24 | + | |
| 25 | + | |
| 26 | + | |
| 27 | + | |
| 28 | + | |
| 29 | + | |
| 30 | + | |
| 31 | + | |
| 32 | + | |
| 33 | + | |
| 34 | + | |
| 35 | + | |
| 36 | + | |
| 37 | + | |
| 38 | + | |
| 39 | + | |
| 40 | + | |
| 41 | + | |
| 42 | + | |
| 43 | + | |
| 44 | + | |
| 45 | + | |
| 46 | + | |
| 47 | + | |
| 48 | + | |
| 49 | + | |
| 50 | + | |
| Original file line number | Diff line number | Diff line change | |
|---|---|---|---|
| |||
| 1 | + | |
| 2 | + | |
| 3 | + | |
| 4 | + | |
| 5 | + | |
| 6 | + | |
| 7 | + | |
| 8 | + | |
| 9 | + | |
| 10 | + | |
| 11 | + | |
| 12 | + | |
| 13 | + | |
| 14 | + | |
| 15 | + | |
| 16 | + | |
| 17 | + | |
| 18 | + | |
| 19 | + | |
| 20 | + | |
| 21 | + | |
| 22 | + | |
| 23 | + | |
| 24 | + | |
| 25 | + | |
| 26 | + | |
| 27 | + | |
| 28 | + | |
| 29 | + | |
| 30 | + | |
| 31 | + | |
| 32 | + | |
| 33 | + | |
| 34 | + | |
| 35 | + | |
| 36 | + | |
| 37 | + | |
| 38 | + | |
| 39 | + | |
| 40 | + | |
| 41 | + | |
| 42 | + | |
| 43 | + | |
| 44 | + | |
| 45 | + | |
| 46 | + | |
| 47 | + | |
| 48 | + | |
| 49 | + | |
| 50 | + | |
| 51 | + | |
| 52 | + | |
| 53 | + | |
| 54 | + | |
| Original file line number | Diff line number | Diff line change | |
|---|---|---|---|
| |||
| 1 | + | |
| 2 | + | |
| 3 | + | |
| 4 | + | |
| 5 | + | |
| 6 | + | |
| 7 | + | |
| 8 | + | |
| 9 | + | |
| 10 | + | |
| 11 | + | |
| 12 | + | |
| 13 | + | |
| 14 | + | |
| 15 | + | |
| 16 | + | |
| 17 | + | |
| 18 | + | |
| 19 | + | |
| 20 | + | |
| 21 | + | |
| 22 | + | |
| 23 | + | |
| 24 | + | |
| 25 | + | |
| 26 | + | |
| 27 | + | |
| 28 | + | |
| 29 | + | |
| 30 | + | |
| 31 | + | |
| 32 | + | |
| 33 | + | |
| 34 | + | |
| 35 | + | |
| 36 | + | |
| 37 | + | |
| 38 | + | |
| 39 | + | |
| 40 | + | |
| 41 | + | |
| 42 | + | |
| 43 | + | |
| 44 | + | |
| 45 | + | |
| 46 | + | |
| 47 | + | |
| 48 | + | |
| 49 | + | |
| 50 | + | |
| 51 | + | |
| 52 | + | |
| 53 | + | |
| 54 | + | |
| 55 | + | |
| 56 | + | |
| 57 | + | |
| 58 | + | |
| 59 | + | |
| 60 | + | |
| 61 | + | |
| 62 | + | |
| 63 | + | |
| 64 | + | |
| 65 | + | |
| Original file line number | Diff line number | Diff line change | |
|---|---|---|---|
| |||
| 1 | + | |
| 2 | + | |
| 3 | + | |
| 4 | + | |
| 5 | + | |
| 6 | + | |
| 7 | + | |
| 8 | + | |
| 9 | + | |
| 10 | + | |
| 11 | + | |
| 12 | + | |
| 13 | + | |
| 14 | + | |
| 15 | + | |
| 16 | + | |
| 17 | + | |
| 18 | + | |
| 19 | + | |
| 20 | + | |
| 21 | + | |
| 22 | + | |
| 23 | + | |
| 24 | + | |
| 25 | + | |
| 26 | + | |
| 27 | + | |
| 28 | + | |
| 29 | + | |
| 30 | + | |
| 31 | + | |
| 32 | + | |
| 33 | + | |
| 34 | + | |
| 35 | + | |
| 36 | + | |
| 37 | + | |
| 38 | + | |
| 39 | + | |
| 40 | + | |
| 41 | + | |
| 42 | + | |
| 43 | + | |
| 44 | + | |
| 45 | + | |
| 46 | + | |
| 47 | + | |
| 48 | + | |
| 49 | + | |
| 50 | + | |
| 51 | + | |
| 52 | + | |
| 53 | + | |
| 54 | + | |
| 55 | + | |
| 56 | + | |
| 57 | + | |
| 58 | + | |
| 59 | + | |
| 60 | + | |
| 61 | + | |
| 62 | + | |
| 63 | + | |
| 64 | + | |
| 65 | + | |
| 66 | + | |
| 67 | + | |
| 68 | + | |
| 69 | + | |
| 70 | + | |
| Original file line number | Diff line number | Diff line change | |
|---|---|---|---|
| |||
| 1 | + | |
| 2 | + | |
| 3 | + | |
| 4 | + | |
| 5 | + | |
| 6 | + | |
| 7 | + | |
| 8 | + | |
| 9 | + | |
| 10 | + | |
| 11 | + | |
| 12 | + | |
| 13 | + | |
| 14 | + | |
| 15 | + | |
| 16 | + | |
| 17 | + | |
| 18 | + | |
| 19 | + | |
| 20 | + | |
| 21 | + | |
| 22 | + | |
| 23 | + | |
| 24 | + | |
| 25 | + | |
| 26 | + | |
| 27 | + | |
| 28 | + | |
| 29 | + | |
| 30 | + | |
| 31 | + | |
| 32 | + | |
| 33 | + | |
| 34 | + | |
| 35 | + | |
| 36 | + | |
| 37 | + | |
| 38 | + | |
| 39 | + | |
| 40 | + | |
| 41 | + | |
| 42 | + | |
| 43 | + | |
| 44 | + | |
| 45 | + | |
| 46 | + | |
| 47 | + | |
| 48 | + | |
| 49 | + | |
| 50 | + | |
| 51 | + | |
0 commit comments