diff --git a/blueprints/function_calling_ollama_blueprint.py b/blueprints/function_calling_ollama_blueprint.py
new file mode 100644
index 00000000..70ff3dc1
--- /dev/null
+++ b/blueprints/function_calling_ollama_blueprint.py
@@ -0,0 +1,179 @@
+from typing import List, Optional
+from pydantic import BaseModel
+import os
+import requests
+import json
+
+from utils.pipelines.main import (
+ get_last_user_message,
+ add_or_update_system_message,
+ get_tools_specs,
+)
+
+# System prompt for function calling
+DEFAULT_SYSTEM_PROMPT = (
+ """Tools: {}
+
+If a function tool doesn't match the query, return an empty string. Else, pick a
+function tool, fill in the parameters from the function tool's schema, and
+return it in the format {{ "name": \"functionName\", "parameters": {{ "key":
+"value" }} }}. Only pick a function if the user asks. Only return the object. Do not return any other text."
+"""
+ )
+
+class Pipeline:
+ class Valves(BaseModel):
+ # List target pipeline ids (models) that this filter will be connected to.
+ # If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
+ pipelines: List[str] = []
+
+ # Assign a priority level to the filter pipeline.
+ # The priority level determines the order in which the filter pipelines are executed.
+ # The lower the number, the higher the priority.
+ priority: int = 0
+
+ # Valves for function calling
+ OLLAMA_BASE_URL: str
+ TASK_MODEL: str
+ TEMPLATE: str
+
+ def __init__(self, prompt: str | None = None) -> None:
+ # Pipeline filters are only compatible with Open WebUI
+ # You can think of filter pipeline as a middleware that can be used to edit the form data before it is sent to the OpenAI API.
+ self.type = "filter"
+
+ # Optionally, you can set the id and name of the pipeline.
+ # Best practice is to not specify the id so that it can be automatically inferred from the filename, so that users can install multiple versions of the same pipeline.
+ # The identifier must be unique across all pipelines.
+ # The identifier must be an alphanumeric string that can include underscores or hyphens. It cannot contain spaces, special characters, slashes, or backslashes.
+ # self.id = "function_calling_blueprint"
+ self.name = "Function Calling Ollama Blueprint"
+ self.prompt = prompt or DEFAULT_SYSTEM_PROMPT
+ self.tools: object = None
+
+ # Initialize valves
+ self.valves = self.Valves(
+ **{
+ "pipelines": ["*"], # Connect to all pipelines
+ "OLLAMA_BASE_URL": os.getenv(
+ "OLLAMA_BASE_URL", "http://localhost:11434"
+ ),
+ "TASK_MODEL": os.getenv("TASK_MODEL", "llama3.1:8b"),
+ "TEMPLATE": """Use the following context as your learned knowledge, inside XML tags.
+
+ {{CONTEXT}}
+
+
+When answer to user:
+- If you don't know, just say that you don't know.
+- If you don't know when you are not sure, ask for clarification.
+Avoid mentioning that you obtained the information from the context.
+And answer according to the language of the user's question.""",
+ }
+ )
+
+ async def on_startup(self):
+ # This function is called when the server is started.
+ print(f"on_startup:{__name__}")
+ pass
+
+ async def on_shutdown(self):
+ # This function is called when the server is stopped.
+ print(f"on_shutdown:{__name__}")
+ pass
+
+ async def inlet(self, body: dict, user: Optional[dict] = None) -> dict:
+ # If title generation is requested, skip the function calling filter
+ if body.get("title", False):
+ return body
+
+ print(f"pipe:{__name__}")
+ print(user)
+
+ # Get the last user message
+ user_message = get_last_user_message(body["messages"])
+
+ # Get the tools specs
+ tools_specs = get_tools_specs(self.tools)
+
+ prompt = self.prompt.format(json.dumps(tools_specs, indent=2))
+ content = "History:\n" + "\n".join(
+ [
+ f"{message['role']}: {message['content']}"
+ for message in body["messages"][::-1][:4]
+ ]
+ ) + f"Query: {user_message}"
+
+ result = self.run_completion(prompt, content)
+ messages = self.call_function(result, body["messages"])
+ # print(f"The return from from the tool is: {messages}")
+ return {**body, "messages": messages}
+
+ # Call the function
+ def call_function(self, result, messages: list[dict]) -> list[dict]:
+ if "name" not in result:
+ return messages
+
+ function = getattr(self.tools, result["name"])
+ function_result = None
+ try:
+ function_result = function(**result["parameters"])
+ except Exception as e:
+ print(e)
+
+ # Add the function result to the system prompt
+ if function_result:
+ system_prompt = self.valves.TEMPLATE.replace(
+ "{{CONTEXT}}", function_result
+ )
+
+ messages = add_or_update_system_message(
+ system_prompt, messages
+ )
+
+ # Return the updated messages
+ return messages
+
+ def run_completion(self, system_prompt: str, content: str) -> dict:
+ r = None
+ try:
+ r = requests.post(
+ url=f"{self.valves.OLLAMA_BASE_URL}/v1/chat/completions",
+ json={
+ "model": self.valves.TASK_MODEL,
+ "messages": [
+ {
+ "role": "system",
+ "content": system_prompt,
+ },
+ {
+ "role": "user",
+ "content": content,
+ },
+ ],
+ # TODO: dynamically add response_format?
+ # "response_format": {"type": "json_object"},
+ },
+ stream=True,
+ )
+ r.raise_for_status()
+
+ response = r.json()
+ content = response["choices"][0]["message"]["content"]
+
+ # Parse the function response
+ if content != "":
+ result = json.loads(content)
+ print(result)
+ return result
+
+ except Exception as e:
+ print(f"Error: {e}")
+
+ if r:
+ try:
+ print(r.json())
+ except:
+ pass
+
+ return {}