these lines puzzle me:
w = sess.graph.get_operation_by_name("softmax/logits/MatMul").inputs[1]
logits = tf.matmul(tf.squeeze(pool3, [1, 2]), w)
softmax = tf.nn.softmax(logits)
I'm wondering, why not just use sess.graph.get_tensor_by_name('softmax:0') ? Why bother to manually do the matrix multiplication and apply softmax? also, why not add the bias term?