Skip to content

Commit 9f53e80

Browse files
committed
The Integral Test cannot be applied to the sum of a positive increasing function.
1 parent d4ae9a7 commit 9f53e80

File tree

1 file changed

+5
-13
lines changed
  • OpenProblemLibrary/Indiana/Indiana_setSeries5IntegralTest

1 file changed

+5
-13
lines changed

OpenProblemLibrary/Indiana/Indiana_setSeries5IntegralTest/ur_sr_5_11.pg

Lines changed: 5 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -144,7 +144,7 @@ $m = random(2,6,1);
144144

145145
qa(~~@questions, ~~@answers,
146146
"\( \displaystyle \sum_{n=1}^\infty n e^{-$a n} \)" , "CONV",
147-
"\( \displaystyle \sum_{n=1}^\infty n e^{$a n} \)" , "DIV",
147+
"\( \displaystyle \sum_{n=1}^\infty n e^{$a n} \)" , "NA",
148148
"\( \displaystyle \sum_{n=1}^\infty \frac{\ln{($d n)}}{n} \)" , "DIV",
149149
"\( \displaystyle \sum_{n=1}^\infty \frac{$b}{n \ln ($c n)} \)" , "DIV",
150150
"\( \displaystyle \sum_{n=1}^\infty \frac{$b}{n (\ln ($c n))^{$m}} \)" , "CONV",
@@ -213,18 +213,10 @@ EOT
213213

214214
if ($slice[$i] == 1) {
215215
&SOLUTION(EV3(<<'EOT'));
216-
($j). The function \(f(x) = x e^{$a x}\) is continuous and increasing because it is the product of
217-
continuous increasing functions, so \(f(x) \geq f(1)=e^{$a}\) when \(1\leq x < \infty\). Thus
218-
\[ \int_1^{\infty} f(x) \; dx \geq \int_1^{\infty} e^{$a} \; dx = \infty.\]
219-
Since \(f\) is increasing it follows that
220-
\[ f(n) \geq \int_{n-1}^n f(x)\; dx \text{ for each } n=2,3,4,\cdots\]
221-
thus one can apply the integral test:
222-
\[ \begin{aligned} \sum_{n=1}^{\infty} f(n) &= f(1) + \sum_{n=2}^{\infty}f(n) \\
223-
&\geq f(1)+\sum_{n=2}^{\infty} \int_{n-1}^n f(x)\; dx \\
224-
&= f(1) + \int_1^{\infty} f(x)\; dx \\
225-
& = \infty,
226-
\end{aligned}\]
227-
which shows that the series diverges.
216+
($j). The function \(f(x) = x e^{$a x}\) is increasing because it is
217+
the product of positive increasing functions. Therefore it is not
218+
a decreasing function, so the Integral Test does not apply, and
219+
the correct answer is NA.
228220

229221
EOT
230222
}

0 commit comments

Comments
 (0)