@@ -144,7 +144,7 @@ $m = random(2,6,1);
144
144
145
145
qa(~~@questions, ~~@answers,
146
146
"\( \displaystyle \sum_{n=1}^\infty n e^{-$a n} \)" , "CONV",
147
- "\( \displaystyle \sum_{n=1}^\infty n e^{$a n} \)" , "DIV ",
147
+ "\( \displaystyle \sum_{n=1}^\infty n e^{$a n} \)" , "NA ",
148
148
"\( \displaystyle \sum_{n=1}^\infty \frac{\ln{($d n)}}{n} \)" , "DIV",
149
149
"\( \displaystyle \sum_{n=1}^\infty \frac{$b}{n \ln ($c n)} \)" , "DIV",
150
150
"\( \displaystyle \sum_{n=1}^\infty \frac{$b}{n (\ln ($c n))^{$m}} \)" , "CONV",
@@ -213,18 +213,10 @@ EOT
213
213
214
214
if ($slice[$i] == 1) {
215
215
&SOLUTION(EV3(<<'EOT'));
216
- ($j). The function \(f(x) = x e^{$a x}\) is continuous and increasing because it is the product of
217
- continuous increasing functions, so \(f(x) \geq f(1)=e^{$a}\) when \(1\leq x < \infty\). Thus
218
- \[ \int_1^{\infty} f(x) \; dx \geq \int_1^{\infty} e^{$a} \; dx = \infty.\]
219
- Since \(f\) is increasing it follows that
220
- \[ f(n) \geq \int_{n-1}^n f(x)\; dx \text{ for each } n=2,3,4,\cdots\]
221
- thus one can apply the integral test:
222
- \[ \begin{aligned} \sum_{n=1}^{\infty} f(n) &= f(1) + \sum_{n=2}^{\infty}f(n) \\
223
- &\geq f(1)+\sum_{n=2}^{\infty} \int_{n-1}^n f(x)\; dx \\
224
- &= f(1) + \int_1^{\infty} f(x)\; dx \\
225
- & = \infty,
226
- \end{aligned}\]
227
- which shows that the series diverges.
216
+ ($j). The function \(f(x) = x e^{$a x}\) is increasing because it is
217
+ the product of positive increasing functions. Therefore it is not
218
+ a decreasing function, so the Integral Test does not apply, and
219
+ the correct answer is NA.
228
220
229
221
EOT
230
222
}
0 commit comments