We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent 61b57d6 commit 151a140Copy full SHA for 151a140
neuralprophet/time_dataset.py
@@ -175,7 +175,8 @@ def _stride_time_features_for_forecasts(x):
175
def _stride_lagged_features(df_col_name, feature_dims):
176
# only for case where n_lags > 0
177
series = df.loc[:, df_col_name].values
178
- return np.array([series[i + n_lags - feature_dims : i + n_lags] for i in range(n_samples)])
+ ## Added dtype=np.float64 to solve the problem with np.isnan for ubuntu test
179
+ return np.array([series[i + n_lags - feature_dims : i + n_lags] for i in range(n_samples)], dtype=np.float64)
180
181
if n_lags > 0 and "y" in df.columns:
182
inputs["lags"] = _stride_lagged_features(df_col_name="y_scaled", feature_dims=n_lags)
0 commit comments