-
-
Notifications
You must be signed in to change notification settings - Fork 18.7k
Open
Labels
BenchmarkPerformance (ASV) benchmarksPerformance (ASV) benchmarksPerformanceMemory or execution speed performanceMemory or execution speed performanceReduction Operationssum, mean, min, max, etc.sum, mean, min, max, etc.SparseSparse Data TypeSparse Data Type
Description
Code Sample, a copy-pastable example if possible
import pandas as pd
from scipy import sparse
X_sp = sparse.coo_matrix((2**30, 2**10))
X_pd = pd.DataFrame.sparse.from_spmatrix(X_sp)
X_sp.sum(axis=1)
X_sp.sum(axis=0)
X_pd.sum(axis=1)
X_pd.sum(axis=0)
Problem description
The new sparse dataframe is coerced to dense when computing the sum.
>>> import pandas as pd
>>> from scipy import sparse
>>> X_sp = sparse.coo_matrix((2**30, 2**10))
>>> X_pd = pd.DataFrame.sparse.from_spmatrix(X_sp)
>>> X_sp.sum(axis=1)
matrix([[0.],
[0.],
[0.],
...,
[0.],
[0.],
[0.]])
>>> X_sp.sum(axis=0)
matrix([[0., 0., 0., ..., 0., 0., 0.]])
>>> X_pd.sum(axis=1)
Traceback (most recent call last):
File "/home/scottgigante/sandbox/lib/python3.7/site-packages/pandas/core/frame.py", line 7908, in _reduce
values = self.values
File "/home/scottgigante/sandbox/lib/python3.7/site-packages/pandas/core/generic.py", line 5443, in values
return self._data.as_array(transpose=self._AXIS_REVERSED)
File "/home/scottgigante/sandbox/lib/python3.7/site-packages/pandas/core/internals/managers.py", line 822, in as_array
arr = mgr._interleave()
File "/home/scottgigante/sandbox/lib/python3.7/site-packages/pandas/core/internals/managers.py", line 840, in _interleave
result = np.empty(self.shape, dtype=dtype)
numpy.core._exceptions.MemoryError: Unable to allocate array with shape (1024, 1073741824) and data type float64
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/scottgigante/sandbox/lib/python3.7/site-packages/pandas/core/generic.py", line 11585, in stat_func
min_count=min_count,
File "/home/scottgigante/sandbox/lib/python3.7/site-packages/pandas/core/frame.py", line 7953, in _reduce
result = f(data.values)
File "/home/scottgigante/sandbox/lib/python3.7/site-packages/pandas/core/generic.py", line 5443, in values
return self._data.as_array(transpose=self._AXIS_REVERSED)
File "/home/scottgigante/sandbox/lib/python3.7/site-packages/pandas/core/internals/managers.py", line 822, in as_array
arr = mgr._interleave()
File "/home/scottgigante/sandbox/lib/python3.7/site-packages/pandas/core/internals/managers.py", line 840, in _interleave
result = np.empty(self.shape, dtype=dtype)
numpy.core._exceptions.MemoryError: Unable to allocate array with shape (1024, 1073741824) and data type float64
>>> X_pd.sum(axis=0)
# hangs forever
^C
Traceback (most recent call last):
File "/home/scottgigante/sandbox/lib/python3.7/site-packages/pandas/core/frame.py", line 7908, in _reduce
values = self.values
File "/home/scottgigante/sandbox/lib/python3.7/site-packages/pandas/core/generic.py", line 5443, in values
return self._data.as_array(transpose=self._AXIS_REVERSED)
File "/home/scottgigante/sandbox/lib/python3.7/site-packages/pandas/core/internals/managers.py", line 822, in as_array
arr = mgr._interleave()
File "/home/scottgigante/sandbox/lib/python3.7/site-packages/pandas/core/internals/managers.py", line 840, in _interleave
result = np.empty(self.shape, dtype=dtype)
numpy.core._exceptions.MemoryError: Unable to allocate array with shape (1024, 1073741824) and data type float64
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/scottgigante/sandbox/lib/python3.7/site-packages/pandas/core/generic.py", line 11585, in stat_func
min_count=min_count,
File "/home/scottgigante/sandbox/lib/python3.7/site-packages/pandas/core/frame.py", line 7935, in _reduce
result = opa.get_result()
File "/home/scottgigante/sandbox/lib/python3.7/site-packages/pandas/core/apply.py", line 186, in get_result
return self.apply_standard()
File "/home/scottgigante/sandbox/lib/python3.7/site-packages/pandas/core/apply.py", line 292, in apply_standard
self.apply_series_generator()
File "/home/scottgigante/sandbox/lib/python3.7/site-packages/pandas/core/apply.py", line 308, in apply_series_generator
results[i] = self.f(v)
File "/home/scottgigante/sandbox/lib/python3.7/site-packages/pandas/core/frame.py", line 7893, in f
return op(x, axis=axis, skipna=skipna, **kwds)
File "/home/scottgigante/sandbox/lib/python3.7/site-packages/pandas/core/nanops.py", line 70, in _f
return f(*args, **kwargs)
File "/home/scottgigante/sandbox/lib/python3.7/site-packages/pandas/core/nanops.py", line 495, in nansum
values, skipna, fill_value=0, mask=mask
File "/home/scottgigante/sandbox/lib/python3.7/site-packages/pandas/core/nanops.py", line 309, in _get_values
values = values.copy()
KeyboardInterrupt
Expected Output
The output should be computed successfully as in the scipy case.
Output of pd.show_versions()
INSTALLED VERSIONS
------------------
commit : None
python : 3.7.3.final.0
python-bits : 64
OS : Linux
OS-release : 5.0.10-arch1-1-ARCH
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 0.25.1
numpy : 1.17.0
pytz : 2019.2
dateutil : 2.8.0
pip : 19.2.3
setuptools : 41.0.1
Cython : None
pytest : 5.1.2
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.10.1
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : 3.1.1
numexpr : 2.7.0
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
s3fs : None
scipy : 1.3.1
sqlalchemy : None
tables : 3.5.2
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
Metadata
Metadata
Assignees
Labels
BenchmarkPerformance (ASV) benchmarksPerformance (ASV) benchmarksPerformanceMemory or execution speed performanceMemory or execution speed performanceReduction Operationssum, mean, min, max, etc.sum, mean, min, max, etc.SparseSparse Data TypeSparse Data Type